Lecture I: Simplicial Complexes (Jan. 10, 2006)

SPEAKER: ADAM VAN TUYL

NOTES BY: JING HE

1. Introduction

The goal of these lectures is to introduce *combinatorial commutative algebra*. The foundations of this field were created by Mel Hochster and Richard Stanley. This area continues to be an active area of research.

Basic Idea: Combinatorial objects (simplicial complexes) are associated to algebraic objects (Stanley-Reisner ideals, facet ideals). The combinational objects are studied through their algebraic properties.

2. Definition of a Simplicial Complex.

Today's goal is to introduce the combinatorial objects we wish to study.

Recall: If S is a set, the power set of S, denoted P(S), is the set of all subsets of S.

Example 2.1. If $S = \{a, b, c\}$, then $P(S) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$ where $\emptyset = \text{empty set.}$

Definition 2.2. Let $V = \{v_1, \dots, v_n\}$ be a finite set. An (abstract) simplicial complex Δ on V is a subset of P(V) such that

- $\{v_i\} \in \Delta$ for each i;
- if $F \in \Delta$ and $G \subseteq F$, then $G \in \Delta$.

Note: $\Delta \subseteq P(V)$

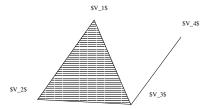
Example 2.3. If $V = \{v_1, v_2, v_3, v_4\}$ then

$$\Delta = \{\{v_1, v_2, v_3\}, \{v_1, v_2\}, \{v_1, v_3\}, \{v_2, v_3\}, \{v_1\}, \{v_2\}, \{v_3\}, \{v_3, v_4\}, \{v_4\}\}\}$$

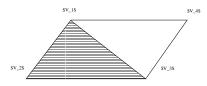
is a simplicial complex. On the other hand

$$\Delta' = \{\{v_1, v_2, v_3\}, \{v_2, v_4\}, \{v_1\}, \{v_2\}, \{v_3\}, \{v_4\}\}\}$$

is not a simplicial complex since $\{v_1, v_2\} \subseteq \{v_1, v_2, v_3\}$, but $\{v_1, v_2\} \notin \Delta'$. We can "draw" Δ :



Example 2.4. Consider the simplicial complex $\Delta =$



This is the simplicial complex

$$\Delta = \{\{v_1, v_2, v_3\}, \{v_1, v_2\}, \{v_1, v_3\}, \{v_2, v_3\}, \{v_1, v_4\}, \{v_3, v_4\}, \{v_1\}, \{v_2\}, \{v_3\}, \{v_4\}\}$$

Remark 2.5. If Δ is a nonempty simplicial complex, then $\emptyset \in \Delta$ (when writing elements of Δ , we usually omit \emptyset).

Definition 2.6. The elements of Δ are called *faces*. The maximal faces under inclusion are called *facets*.

We use the notation |S| to denote the number of elements in a set S.

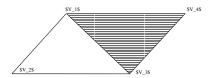
Definition 2.7. If $F \in \Delta$ is a face, then the dimension of F is

$$\dim F = |F| - 1.$$

The dimension of Δ is

$$\dim \Delta = \max \{\dim F \mid F \in \Delta\}.$$

Example 2.8. Suppose $\Delta =$



then dim $\Delta = 2$ since $F = \{v_1, v_3, v_4\}$ has dim 2, and all other faces have dimension ≤ 1

Definition 2.9. Let $F \in \Delta$ be a face.

- If dim F = 0, i.e. |F| = 1, then F is a vertex.
- If dim F = 1, i.e. |F| = 2, then F is an edge.
- If $F = \emptyset$ then dim F = -1.

If $\{F_1, \dots, F_s\}$ is a collection of subsets of V, then there is a unique smallest simplicial complex, denoted $\langle F_1, \dots, F_s \rangle$, which contains all F_i . We say $\langle F_1, \dots, F_s \rangle$ is generated by the F_i 's. In set notation we have

$$\langle F_1, \cdots, F_s \rangle = \{G \subseteq V \mid G \subseteq F_i \text{ for some } i\}.$$

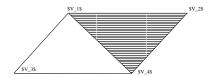
Note that if F_1, \dots, F_s are facets of a simplicial complex Δ , then

$$\Delta = \langle F_1, \cdots, F_s \rangle$$

We call Δ a simplex if $\Delta = \langle F \rangle$.

Definition 2.10. The simplicial complex Δ is *pure* if all its facets have the same dimension.

Example 2.11. The simplicial complex

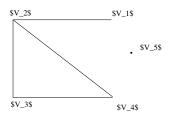


is not pure since $\{v_1, v_2, v_4\}$ and $\{v_1, v_3\}$ are two facets of different dimension.

3. Examples

3.1. **Graphs.** Let G be a finite simple graph. i.e., G has no loops or multiple edges. Then G is a 1-dimensional simplicial complex on vertex set $V = V_G = \{v_1, \dots, v_n\}$, the vertex set of G.

For example, the graph



is the 1-dimensional simplicial complex

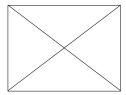
$$\Delta = \{\{v_1, v_2\}, \{v_2, v_3\}, \{v_2, v_4\}, \{v_3, v_4\}, \{v_1\}, \{v_2\}, \{v_3\}, \{v_4\}, \{v_5\}\}.$$

Note that any 1-dimensional simplicial complex can be represented as a graph.

3.2. Clique Complexes. We now present another way to associate to a graph a simplicial complex.

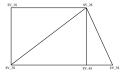
Definition 3.1. A clique of size n, denoted K_n , is the graph on n vectors with an edge between every pair of vertex.

Example 3.2. The graph for the clique K_4 is given below:

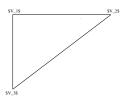


Definition 3.3. If $F \subseteq V_G$ the induced graph of G on F, denoted G_F , is the subgraph consisting of vertex of F and all edges of G between vertex of F.

Example 3.4. If G is the graph



then the induced graph $G_{\{v_1,v_2,v_3\}}$ is



Definition 3.5. If G is a finite simple graph, the clique complex of G is the simplicial complex

$$\Delta(G) = \{ F \subseteq V_G \mid G_F \text{ is a clique} \}$$

Note that $\Delta(G)$ is a simplicial complex because:

- $x_i \in \Delta(G)$ since for all i, $G_{\{x_i\}} = K_1$.
- if $F \in \Delta(G)$ and $H \subseteq F$, then G_H is an induced subgraph of the clique G_F . So G_H is also a clique, so $H \in \Delta(G)$.

3.3. Chess Problem. A famous chess question asks how many queens can be placed on a chessboard so that no two can kill each other. We can build a simplicial complex to answer this question.

We begin by labeling the entries of the chessboard with x_{ij} for $1 \le i \le 8$ and $1 \le j \le 8$.

\$X_115	•	
\$X_21\$		
\$X_81\$		\$X_88\$

Definition 3.6. Let $V = \{x_{ij} \mid 1 \le i \le 8, 1 \le j \le 8\}$. We call $F \subseteq V$ a safe queen configuration, if one can place a queen at each $x_{ij} \in F$, so that no two queens can kill each other.

Example 3.7. The set $F = \{x_{11}, x_{23}\}$ is a safe-queen-configuration.

Now set $\Delta = \{ F \subseteq V \mid F \text{ is a safe queen configuration} \}.$

Claim 3.8. \triangle as defined above is a simplicial complex.

Proof. We verify that Δ satisfies both conditions of the definition.

- for each $x_{ij} \in V$, $\{x_{ij}\}$ is clearly a safe queen configuration.
- if $F \in \Delta$ is a safe-queen-configuration, then any subset of F will also be a safe-queen-configuration, and thus, this subset will also be in Δ .

Theorem 3.9. The maximal number of queens that can be placed on the chessboard with no two killing each other is dim $\Delta + 1$.

Proof. Recall that $\dim \Delta = \max \{\dim F \mid F \in \Delta \}$. Let $F \in \Delta$ be the facet with $\dim \Delta = \dim F$. Then

$$\dim \Delta + 1 = \dim F + 1 = |F| + 1 - 1 = |F|$$

$$= \text{maximal number of queens in a safe queen configuration.}$$

Problems from Lecture 1

1. In class we looked at the chess problem of putting queens on an 8×8 chessboard so that no two can kill each other. We saw that we could associate to this problem a simplicial complex Δ such that dim $\Delta + 1$ is the maximal number of queens that can be placed on chessboard. Repeat this problem for a 4×4 chessboard. Write out all the elements of the corresponding simplicial complex.

- 2. Let Δ and Γ be simplicial complexes on disjoint vertex sets V and W. The **join** $\Delta * \Gamma$ is the set on the vertex set $V \cup W$ with elements $F \cup G$ where $F \in \Delta$ and $G \in \Gamma$. Show that $\Delta * \Gamma$ is a simplicial complex.
- 3. Let Δ be a (d-1)-dimensional simplicial complex. For $0 \leq r \leq d-1$, define the r-skeleton of Δ to be the set

$$\Delta_r = \{ F \in \Delta \mid \dim F \le r \}.$$

- (a) Show Δ_r is also a simplicial complex for each r.
- (b) If $\Delta = \langle \{x_1, x_2, x_3, x_4\}, \{x_3, x_4, x_5\} \rangle$, find Δ_r for each $0 \le r \le \dim \Delta$.