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Preface

We wrote this book with two goals in mind:
(i) To give a leisurely and fairly comprehensive introduction to the definition
and construction of Grobner bases;
(ii) To discuss applications of Grébner bases by presenting computational
methods to solve problems which involve rings of polynomials.
This book is designed to be a first course in the theory of Grobner bases suitable
for an advanced undergraduate or a beginning graduate student. This book is
also suitable for students of computer science, applied mathematics, and engi-
neering who have some acquaintance with modern algebra. The book does not
assume an extensive knowledge of algebra. Indeed, one of the attributes of this
subject is that it is very accessible. In fact, all that is required is the notion of the
ring of polynomials in several variables (and rings in general in a few places, in
particular in Chapter 4) together with the ideals in this ring and the concepts of
a quotient ring and of a vector space introduced at the level of an undergraduate
abstract and linear algebra course. Except for linear algebra, even these ideas
are reviewed in the text. Some topics in the later sections of Chapters 2, 3, and 4
require more advanced material. This is always clearly stated at the beginning of
the section and references are given. Moreover, most of this material is reviewed
and basic theorems are stated without proofs.

The book can be read without ever “computing” anything. The theory stands
by itself and has important theoretical applications in its own right. However,
the reader will not fully appreciate the power of, or get insight into, the methods
introduced in the book without actually doing some of the computations in the
examples and the exercises by hand or, more often, using a Computer Algebra
System (there are over 120 worked-out examples and over 200 exercises). Com-
puting is useful in producing and analyzing examples which illustrate a concept
already understood, or which one hopes will give insight into a less well under-
stood idea or technique. But the real point here is that computing is the very
essence of the subject. This is why Grébner basis theory has become a major
research area in computational algebra and computer science. Indeed, Grobner
basis theory is generating increasing interest because of its usefulness in pro-
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viding computational tools which are applicable to a wide range of problems in
mathematics, science, engineering, and computer science.

Grobner bases were introduced in 1965 by Bruno Buchberger! [Bu65]. The
basic idea behind the theory can be described as a generalization of the theory
of polynomials in one variable. In the polynomial ring k[z], where k is a field,
any ideal I can be generated by a single element, namely the greatest common
divisor of the elements of I. Given any set of generators {fi,...,fs} C k[z]
for I, one can compute (using the Euclidean Algorithm) a single polynomial
d=gcd(fi1,..., fs) suchthat I = (fy,..., fs) = (d). Then a polynomial f € k[z]
is in I if and only if the remainder of the division of f by d is zero. Groébner
bases are the analog of greatest common divisors in the multivariate case in the
following sense. A Grobner basis for an ideal I C k[zy,... ,z,] generates I and
a polynomial f € k[z,,... ,Z,] is in I if and only if the remainder of the division
of f by the polynomials in the Grébner basis is zero (the appropriate concept of
division is a central aspect of the theory).

This abstract characterization of Grébner bases is only one side of the theory.
In fact.it falls far short of the true significance of Grobner bases and of the
real contribution of Bruno Buchberger. Indeed, the ideas behind the abstract
characterization of Grobner bases had been around before Buchberger’s work.
For example, Macaulay [Mac] used some of these ideas at the beginning of
the century to determine certain invariants of ideals in polynomial rings and
Hironaka [Hil, in 1964, used similar ideas to study power series rings. But the
true significance of Grébner bases is the fact that they can be computed. Bruno
Buchberger’s great contribution, and what gave Grébner basis theory the status
as a subject in its own right, is his algorithm for computing these bases.

Our choice of topics is designed to give a broad introduction to the elemen-
tary aspects and applications of the subject. As is the case for most topics in
commutative algebra, Grébner basis theory can be presented from a geometric
point of view. We have kept our presentation algebraic except in Sections 1.1
and 2.5. For those interested in a geometric treatment of some of the theory we
recommend the excellent book by D. Cox, J. Little and D. O’Shea [CLOS]. The
reader who is interested in going beyond the contents of this book should use our
list of references as a way to access other sources. We mention in particular the
books by T. Becker and V. Weispfenning [BeWe| and by B. Mishra [Mi] which
contain a lot of material not in this book and have extensive lists of references
on the subject.

Although this book is about computations in algebra, some of the issues which
might be of interest to computer scientists are outside the scope of this book.
For example, implementation of algorithms and their complexity are discussed
only briefly in the book, primarily in Section 3.3. The interested reader should
consult the references.

1'Wolfgang Grobner was Bruno Buchberger’s thesis advisor.
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In Chapter 1 we give the basic introduction to the concept of a Grobner basis
and show how to compute it using Buchberger’s Algorithm. We are careful to
give motivations for the definition and algorithm by giving the familiar examples
of Gaussian elimination for linear polynomials and the Euclidean Algorithm for
polynomials in one variable. In Chapter 2 we present the basic applications to
algebra and elementary algebraic geometry. We close the chapter with three
specialized applications to algebra, graph theory, and integer programming. In
Chapter 3 we begin by using the concept of syzygy modules to give an improve-
ment of Buchberger’s Algorithm. We go on to show how to use Grobner bases to
compute the syzygy module of a set of polynomials (this is solving diophantine
equations over polynomial rings). We then develop the theory of Grobner bases
for finitely generated modules over polynomial rings. With these, we extend
the applications from the previous chapter, give more efficient methods for com-
puting some of the objects from the previous chapter, and conclude by showing
how to compute the Hom functor and free resolutions. In Chapter 4 we develop
the theory of Grébner bases for polynomial rings when the coefficients are now
allowed to be in a general Noetherian ring and we show how to compute these
bases (given certain computability conditions on the coefficient ring). We show
how the theory simplifies when the coefficient ring is a principal ideal domain.
We also give applications to determining whether an ideal is prime and to com-
puting the primary decomposition of ideals in polynomial rings in one variable
over principal ideal domains.

We give an outline of the section dependencies at the end of the Preface.
After Chapter 1 the reader has many options in continuing with the rest of the
book. There are exercises at the end of each section. Many of these exercises
are computational in nature, some doable by hand while others require the use
of a Computer Algebra System. Other exercises extend the theory presented in
the book. A few harder exercises are marked with (*).

This book grew out of a series of lectures presented by the first author at the
National Security Agency during the summer of 1991 and by the second author
at the University of Calabria, Italy, during the summer of 1993.

We would like to thank many of our colleagues and students for their helpful
comments and suggestions. In particular we would like to thank Beth Arnold,
Ann Boyle, Garry Helzer, Karen Horn, Perpetua Kessy, Lyn Miller, Alyson
Reeves, Elizabeth Rutman, Brian Williams, and Eric York. We also want to
thank Sam Rankin, Julie Hawks and the AMS staff for their help in the prepa-
ration of the manuscript.
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Chapter 1. Basic Theory of Grobner Bases

In this chapter we give a leisurely introduction to the theory of Grébner bases.
In the first section we introduce the reader to the kinds of problems we will be
interested in throughout this book. In the next two sections we motivate the
method of solution of these problems by presenting the method of solution in
two familiar special cases, namely the row reduction of matrices of systems of
linear polynomials, and the division algorithm for polynomials in one variable.
The basic method in both cases is to use the leading term of one polynomial to
subtract off a term in another polynomial. In Section 1.4 we introduce what we
mean by the leading term of a polynomial in n variables. In Section 1.5 we go
on to generalize the ideas in Sections 1.2 and 1.3. This leads us in Section 1.6 to
defining the central notion in this book, namely the notion of a Grébner basis. In
Section 1.7 we present the algorithm due to Bruno Buchberger which transformed
the abstract notion of a Grébner basis into a fundamental tool in computational
algebra. We refine the definition of a Grobner basis in an important way in
Section 1.8 and summarize what we have done in Section 1.9.

1.1. Introduction. Let k be any field (e.g., the rational numbers, Q, the real
numbers, R, or the complex numbers, C). We consider polynomials f(z1,... ,z,)
in n variables with coefficients in k. Such polynomials are finite sums of terms of
the form az3" - - z8, where a € k, and' §; € N,i=1,... ,n. We call " . . . B
a power product. For example, f = z}+23—1 and g = z, —3zZ + }z, 23 are poly-
nomials in three variables. We let k[z1, ... ,z,] denote the set of all polynomials
in n variables? with coefficients in the field k. Note that in k[z,, ... ,z,] we have
the usual operations of addition and multiplication of polynomials, and with re-
spect to these operations k[z1, . . . ,Z,] is a commutative ring. Also, k[z1,... ,Z.)
is a k-vector space with basis the set, T™, of all power products,

T":{z‘f’-o‘zﬁ" |B;eNyi=1,...,n}.

1We denote by N the set of non-negative integers, that is, N= {0,1,2,3,...}.

2Most of the titne, from now on, whenever we work with just one, two, or three variables,
we will not use variables with subscripts, but instead will use the variables z, y, or z as needed.
For example, f = 22 +y2 — 1 is a polynomial in Q[z, y] and g = = —3y? + 12z is a polynomial

in Qfz, y, 2}.
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For a positive integer n we define the affine n-space
k* = {(a1,.-. ,an) [a; €k,i=1,... ,n}.

(For example, if k¥ = R, then ¥* = R™ is the usual Euclidean n-space.) A
polynomial f € k[z,,... ,z,] determines a function ¥® — k defined by

(a1;...,an) — f(a,...,ay), for all (a1,... ,a,) € k™.

This function is called evaluation. We thus have two ways of viewing a poly-
nomial f € k[zy,...,zn]. One is as a formal polynomial in k[z;,...,z,] and
the other is as a function k™ — k (it should be noted that if k¥ happens to be
a finite field then two different polynomials can give rise to the same function;
however this need not concern us here).

This “double identity” of polynomials is the bridge between algebra and ge-
ometry. For f € k[z,,... ,z,] we define V(f) to be the set of solutions of the
equation f = 0. More formally,

V(f) = {(a1,--- ,an) €K | f(ar,.. ,an) = 0} C k™.

V() is called the variety defined by f. For example, V(22 + 3% — 1) C R? is the
circle in the zy-plane with center (0,0) and radius 1.

More generally, given fi,...,fs € k[z1,...,Zy,], the variety V(f1,...,fs) is
defined to be the set of all solutions of the system

(1.1.1) fi=0,f2=0,...,f;=0.
That is,
V(fl,“- 7fs) = {(al,”- )an) € k"™ I fi(al)“- )a'n) =0,1= 1;21--- 73}'

Note that V(fi,...,fs) = Ni=; V(f:). For example, the variety V(z? + ¢ —
1,z — 3y?) C R? is the intersection of the circle 2 + > = 1 and the parabola
z = 3y? in the zy-plane. More generally still, if S C k[zy,... ,2,], we define

V(S)={(a1,... ,an) € k™| f(a1,... ,a,) =0 for all f€ S}.

There are many numeric algorithms for solving non-linear systems such as
(1.1.1). These algorithms solve for one solution at a time, and find an “approx-
imation” to the solution. They ignore the geometric properties of the solution
space (the variety), and do not take into consideration possible alternate de-
scriptions of the variety (using a different system). Indeed, as we will see below,
a variety can be the solution set of a number of systems such as (1.1.1), and
the computation of the solutions can drastically improve if the given system of
equations is transformed into a different system that has the same solutions but
is “easier” to solve. To illustrate this, recall that the Gauss-Jordan elimination
method transforms a system of linear equations into the so-called row echelon
form (see Section 1.2). The system thus obtained has exactly the same solu-
tions as the original system, but is easier to solve; this example will be discussed
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more thoroughly in the next section. We will develop an analogous procedure
for System (1.1.1) which will give us algebraic and geometric information about
the entire solution space of System (1.1.1).

The method for obtaining this information is to find a better representation for
the corresponding variety. This will be done by considering the ideal generated
by polynomials fi,..., fs, denoted (fi,... , fs):

i=1

(fiy.o-» fs) = {Zuif.- | u; € k[z1,..., 2.}, =1,... ,s}.

It is easy to check that I = (f1,...,fs) is an ideal in k[z,,... ,z,]; that is, if
f,g€ I, thensois f+ gandif f €I and h is any polynomial in k[z,... ,Z,)],
then hf € I. The set {f1,...,fs} is called a generating set of the ideal I. The
desired “better” representation for the variety V(fi,...,f;) will be a better
generating set for the ideal I = (fy,..., fs).

To see how this might help, we consider the variety V/(I), that is, the solutions
of the infinite system of polynomial equations

(1.1.2) f=0,fel
and contrast it with the solutions of the finite system

(1.1.3) f1=0,fa=0,...,f, =0.

A solution of System (1.1.2) will clearly be a solution of System (1.1.3), since
fi€Ifori=1,...,s Conversely, if (aj,...,a,) € k™ is a solution of System
(1.1.3), and if f is any element of I, then f(ay,... ,an) =0,since f =Y ;_, wifi,
for some u; € k[z1,...,z,)- Hence (ai,...,a,) is a solution of System (1.1.2).
Thus we have that V(I) = V(f1,...,fs). We note that an ideal may have
many different generating sets with different numbers of elements. For exam-
ple, in k[z,y], (z + y,z) = (z,¥) = (z + zy,22,9%,y + zy). Now, if we have
I = (f,... afs) = (f{"" ’ftl)’ then V(fla-” ,fs) = V(I) = V(f{r“ ’ftl)'
This means that the system f; = 0,..., fs = 0 has the same solutions as the
system fi{ = 0,...,f; = 0, and hence a variety is determined by an ideal, not
by a particular set of equations. So, if we obtain a “better” generating set for
the ideal I = (f,... , fs), we will have a “better” representation for the variety
V(f1,---,fs)- And by “better” we mean a set of generators that allows us to
understand the algebraic structure of I = (fi,... , fs) and the geometric struc-
ture of V(f1,..., fs) better. The remainder of this chapter is devoted to finding
this “better” generating set for I (which will be called a Grébner basis for I).
In the case of linear polynomials this “better” generating set is the one obtained
from the row echelon form of the matrix of the system.

‘We will now look at the problem from a different perspective. Consider a col-
lection, V; of points of the affine space k™. We define the set I(V) of polynomials
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in k[z1,... ,z,] by
I(V)={f €klzy,... ,z.] | fa1,-...,an) =0for all (ay,...,an) €V}

It is easy to verify that the set (V) is an ideal in k[z1, . . . , Z,]. It would seem that
this ideal is very different from the ideal (fi,... , fs). The latter ideal is defined
algebraically as the set of all linear combinations of f1,... , f; with polynomial
coefficients, while the former ideal is defined by the geometric condition that f is
in I(V) if and only if f(a1,... ,an) =0 for all (a,,... ,a,) € V. We will examine
the exact relationship between these two descriptions later. For now, we note
that the ideal I(V) can be put in the form (f,..., fs) for some fi,...,fs €
k[z1,... ,Zs)- Indeed, the Hilbert Basis Theorem (Theorem 1.1.1) states that
any ideal I in k[z1,. .. ,Zn] (in particular the ideal J(V)) has a finite generating
set. We will prove the Hilbert Basis Theorem at the end of the section. Another
consequence of this result is that if A is an infinite set and for all A € A we have
a polynomial fy € k[z1,... ,Zy], then the solution set of the infinite system

Hh=0€eA

is, in fact, the solution set of a finite system, namely, of a finite generating set
for the ideal (fy | A € A) (this ideal is defined to be the set of all finite linear
combinations of the fy, A € A, with polynomial coefficients).

The construction of the ideal I(V)) above is a very important one. It is the
bridge from geometry back to algebra since, in addition to the map

{ Subsets of k[z1,... ,z,]} — { Varieties of ¥}
M — V(S),

we now have a map

{ Subsets of k*} — { Ideals of k[z1,... ,z.]}
1% — (V).

Understanding the relationship between these two maps allows us to go back
and forth between algebraic and geometric questions. In particular, we will be
interested in the exact relationship between the ideal I and the ideal I (V(I)). It
is easy to see that I C I (V(I)), but equality does not always hold. For example,
if I = (22,4%) C kl[z,y], then V(I) = {(0,0)}, and so z and y are in the ideal
I(V(I)), but they are not in I. For more on the relationship between I and
I(V(I)), see Section 2.2.

In order to find the “better” generating set discussed above, we will need to
determine whether two finite sets of polynomials in k[z1,. .. , Z5] give rise to the
same ideal. More specifically, given fi,... , fs € k[z1,... ,Z,], and fi,...,f{ €
k[z1,... ,Zs], we will need to determine whether (f1,..., fs) = (fi,-.. , fi). For
this reason and many others, it is desirable to solve the following problems: given
I={fi,... ,f.) and f € ka1, ,za],
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PROBLEM 1. Determine whether f is in I. This is the so-called “ideal mem-
bership problem.”

PROBLEM 2. If f € I, determine u1,... ,us € k[z1,...,Z,] such that f =
urfi tuafat+---+usfs.

REMARK: In this book, the word “determine” is informally understood to
mean that one can give an algorithm that can be programmed on a computer.

The discussion above is related to another problem that deals with a certain al-
gebraic construction. Let I be an ideal of k[z1, ... ,Zs], and let f € k[z1,... ,Zn).
We saw earlier that f determines an evaluation function £ — k defined by
(a1,--- ya@n) — f(ai,...,an). We now consider the restriction of this function
to V(I); that is, we consider the evaluation function V(I) — k defined by
(@1,-.. ,an) — f(ay,-.. ,ay) for all (ay,...,a,) € V(I).

We would like to answer the following question: for f, g in k[zy, ... , ], when
are the corresponding evaluation functions V' (I) — k equal? We note that this
is related to the ideal I (V(I)) introduced earlier. Indeed, if f ~ g is in the ideal
I(V(I)), then the evaluation function V(I) — k defined by f — g is identically
zero, and hence the evaluation functions V(I) — k determined by f and g are
equal. Recall that given f and g in k[z;, . .. , Zn], and an ideal J of k[z;, ... ,Z,],
we say that f is congruent to g modulo J, denoted f =g (mod J),if f —g € J.
Observe that “=” is an equivalence relation on k[z,... ,z,]. We denote the set
of equivalence classes by k[z1, ... ,Z,]/J. Elements of k[z1,... ,z,]/J are of the
form f + J and are called cosets of J. Also, k[z1,...,z]/J is a commutative
ring with the usual operations of addition and multiplication inherited from
k[z1,... ,zn) and is called the guotient ring of k[z1,... ,zs] by J. It is also a
vector space over k.

In connection with this construction, we would like to solve the following

problems:
PROBLEM 3. Determine a set of coset representatives of k[z;,... ,z,]/J.
PRrROBLEM 4. Determine a basis for k[z1,... ,2z»]/J as a vector space over &

(which may or may not be finite).

We now turn our attention to the Hilbert Basis Theorem. This result is
crucial in everything we will be doing throughout this book. It guarantees the
termination of our algorithms and also, as pointed out above, it guarantees that
every variety is the solution set of a finite set of polynomials.

THEOREM 1.1.1 (HILBERT BAsIS THEOREM). In the ring klzi,...,zn] we
have the following:
(i) IfI is any ideal of k[z1,- . . ,Zn), then there exist polynomials fi,... ,fs €
k[z1,... ,z,) such that I = (f1,..., fs).
) fLHLCLCI3C---CI, C--- is an ascending chain of ideals of

k[z1,... ,z,), then there exists N such that IN =INj1 =INj2 =---.

Before we go on to the proof we would like to make a couple of definitions.
An ideal I in a general ring R which satisfies Condition (i) is said to be finitely
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generated, or to have a finite generating set. Condition (ii) is sometimes referred
to as the Ascending Chain Condition, and any commutative ring R satisfying
that condition is called a Noetherian ring.

In the next two sections we will illustrate the discussion of this section using
two examples: linear systems and polynomials in one variable. These will be
fundamental motivations for the general constructions we will develop in the
remainder of this chapter.

The remainder of this section is devoted to the proof of Theorem 1.1.1. The
reader may skip the proof and proceed directly to the next section.

It turns out that if either of the two conditions in Theorem 1.1.1 holds, then
the other also holds; this is the content of the next theorem.

THEOREM 1.1.2. The following conditions are equivalent for a commutative
ring R:
(i) IfI is any ideal of R, then there exist elements fi,... , fs € R such that
I=(fye.. S}
@ fLCLCIC:-CI, C--- is an ascending chain of ideals of R,
then there ezxists N such that Iy = Inyy =Inja =+-+ .
That is, the ring R i3 Noetherian if and only if every ideal in R has a finite
generating set.

PROOF. Let us first assume Condition (i), and let
LELCLC---CI,C---

be an ascending chain of ideals of R. Consider the set I = |J3—, I,. Since the
ideals I,, are increasing, it is easy to see that I is an ideal of R. By Condition
@), I ={f1,-..,fs), for some f1,...,fs € R. Since for i = 1,...,s, f; isin I,
there exists N; such that f; € In,. Let N = max;<i<s N;; then f; € Iy for all
i=1,...,s and so I C Iy. Thus I = Iy, and Condition (ii) follows.

For the reverse implication, assume to the contrary that there exists an ideal
I of R that is not generated by a finite set of elements of R. Let f; € I. Then
there exists fo € I with fo & (f1). Thus (fi) C (f1, f2). We continue in this
fashion, and we get a strictly ascending chain of ideals of R which contradicts
Condition (ii). O

‘We now state and prove a more general version of the Hilbert Basis Theorem.
THEOREM 1.1.3. If R is a Noetherian ring, then so is R[z].

PROOF. Let R be a Noetherian ring, and let J be an ideal of R[z]. By Theorem
1.1.2, it is enough to show that J is finitely generated. For each n > 0, define
I, = {r € R| r is the leading coefficient of a polynomial in J of degree n } U {0}
(that is, 7 is the coefficient of z™). It is easy to see that I,, is an ideal of R and
that I, C I, for all n > 0. Since R is Noetherian, there exists N such that
I, = Iy for all n > N. Also, by Theorem 1.1.2, each I; is finitely generated,
say I; = (ri1,...,7i;). Now for i = 1,... ;N and j = 1,...,¢;, let f;; be a
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polynomial in J of degree ¢ with leading coefficient r;;. To complete the proof of
the theorem it suffices to show that J = (f;; | 1<i< N,1<j<t).

Solet J* = (fij |1 <4< N,1<j<t;). Clearly J* C J. Conversely, let
f € J, and let the degree of f be n. We prove by induction on n that f € J*.
I f=0o0rn=0, then f € Iy, and hence f € J*. Now let n > 0, and assume
that all the elements of J of degree at most 7 — 1 are in J*. Let r be the leading
coefficient of f. If n < N, then, since r € I,, we have r = Z;.":I 8jTnj, for
some s; € R. Then the polynomial g = Z;":I 3 fnj is of degree n, has leading
coefficient r, and is in J*. Thus f — g has degree at most n — 1 and is in J. By
induction, f — g is in J*, and hence f is alsoin J*. fn > N, then r € I,, = Iy,
and r = Zﬁ’;l 8jTnj, for some s; € R. The polynomial g = Zj’;’l s;2™ N s
has degree n, leading coefficient 7, and is in J*. Thus f — g has degree at most

n — 1 and, by induction, f — g € J*. Therefore f isin J*. O

Using a simple induction on » and the above result, we can easily show that
k[zy,... ,zn] is Noetherian (first noting that the field k is trivially Noetherian).
That is, Theorem 1.1.1 is true.

1.2. The Linear Case. In this section we consider the system
(1.2.1) fi=0,...,fs =0, where each f; is linear.

In this case, the algorithmic method to answer all the questions raised in
Section 1.1 is the well-known row reduction which changes System (1.2.1) to row
echelon form. Consider the following examples.

ExaMpLE 1.2.1. Let f; = z+y—2 and fo = 2x+3y+22 be linear polynomials
in Rz, y, z]. We consider the ideal I = (f1, f2) and the variety V(f1, f2), that is,
the solutions to the system

z + y — z =0
(1.22) {2:1: + 3y + 22 = 0.

We now perform row reduction on the matrix associated with this system:
11 -1 11 -1
—_— .
2 3 2 01 4
The last matrix is in row echelon form. The solutions of System (1.2.2) are
the same as those of the following system

z + y — 2z =0
(12.3) { A

and are easily obtained parametrically as: £ = 52z and y = —4z.

The row reduction process is, in fact, a methed to change a generating set for
the ideal I = (f1, f) into another generating set. We subtracted twice the first
row from the second row and replaced the second row by this new row. This
amounts to creating a new polynomial, f3 = fo — 2f; = y + 42, and replacing f2
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by fs. The original ideal I is equal to the ideal (fi, f3). Indeed, since f3 = f2—2f1
we see that f3 € I = (f1, f2), and since fo = 2f) + f3 we see that fo € (f1, f3)
and so I = (fy, f2) = {f1, f3). This process simplifies the generating set of the
ideal I and allows for an easy resolution of System (1.2.2), that is, it makes it
easy to determine V(I).

The process by which the polynomial f, was replaced by f3 using f; is called
reduction of fa by fi, and we write

215 f.

The new polynomial f; that was created can be viewed as a remainder of
a certain division: we used the first term of f;, namely z, to eliminate a term
from f>, namely 2z. Since this first term of f; cannot eliminate any other terms,
the division stops and the remainder is exactly f;3. This can be written in long
division form
2
r+y—z 22+ 3y + 22

2z + 2y — 2z
y+4z

which gives us fo = 2f; + f3.

When the system has more than two equations, the division (or reduction) of
a polynomial may require more than one polynomial.

EXAMPLE 1.2.2. Let fy =y—2, fo =2 +2y+ 32, and f3 = 3z — 4y + 2z
be linear polynomials in Q|z, y, z]. We consider the ideal I = (f}, fo, f3) and the
variety V(f1, f2, f3), that is, the solutions to the system

y — 2z =0
(1.2.4) z + 2y + 32 =0
3z — 4y + 22 0.

The row reduction is as follows:

0 1 -1 0 1 -1 01 -1
1 2 3|— 1 2 3| —1]1 2 3 1.
3 -4 2 0 -10 -7 00 -17

This says that a new generating set for I = (f}, f2, f3) is {f1, f2, —17z}. Note
that the polynomial —17z is obtained by the following reductions:

(1.2.5) fs 25 —10y — 72 4 172,

This amounts to a division, similar to that in Example 1.2.1, of f3 by f, and f;
in succession.
Repeated use of the reduction steps, as in the above, will be denoted by

f3 [1_;9f2+ -172.
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Note that we have
(126) f3=-10f; + 3f2 —17z.

The coefficient “3” of f, is the multiple of f5 used in the first reduction in (1.2.5)
and the coefficient “—10” of f, is the multiple of f, used in the-second reduction
in (1.2.5).

We would like to “extract” from these examples some general ingredients
that will be used in the general situation of non-linear polynomials. We will
concentrate on Example 1.2.2.

First, we imposed an order on the variables: we chose to eliminate z first
from the third equation of (1.2.4) and then we chose to eliminate y from the
new third equation. That is, when we row-reduce a matrix there is an order on
how to proceed to introduce zeros: first we introduce zeros into the first column
(that is, we eliminate ), and then we introduce zeros in the second column (we
eliminate y) etc. We could have written the variables in the polynomials in a
different order, say fy = —z+y, fo = 32+ 2y + = and f3 = 2z — 4y + 3z. We
would have used the same row reduction method, but would have eliminated z
first, then y. We would have wound up with a different set of equations in row
echelon form, but they would have been just as good for our purpose of solving
System (1.2.4). So the order does not matter, but there must be an order. This
issue becomes essential in our generalization of these ideas. We note that in our
example the order is such that z is first followed by ¥ and then z and so the
leading term of f, is y, the leading term of f> is z, and the leading term of f3 is
3z.

Second, the reductions in (1.2.5) were obtained by subtracting multiples of f;
and fa. This had the effect of using the leading terms of f; and f; to eliminate
terms in f3 and in —10y — 7z leaving the remainder of —17z and giving us
Equation (1.2.6). Note that —17z cannot be reduced further using the leading
terms of f; and f,.

The process of row reduction viewed in this light gives us a way to solve the
problems posed in Section 1.1. Let us concentrate on Example 1.2.1. First, we
have a very clear description of the solution space:

V(I) = V(fl, f2) = V(fl; f3) = {’\(5’ —4’ 1) I A€ IR},

it is a line in R3. We next turn to the question of determining whether a poly-
nomial f € k[z,y, 2] is in I and, if so, express it as a linear combination of the
elements in the generating set. In our case, because the leading term of f, is =
and the leading term of f3 is y, any polynomial f can be reduced to a polynomial
in z alone by the division process using both f; and f; in a way similar to that
used in (1.2.5). Also, any polynomial in z alone cannot be reduced using division
by f1 and fs;. The division process allows us to write f as a linear combination
of fi and f3 plus a remainder in a similar fashion to Equation (1.2.6) (the re-
mainder is in z alone). It is not too hard to see that f € I = (fy, f2) = (1, fa) if
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and only if this remainder is zero. Finally one could also check that the basis of
the vector space k[z, ¥y, 2]/I is the set of all cosets of powers of z. The statements
made in this paragraph may be a little difficult to verify or appreciate at this
point but will become clear later.

Exercises

1.2.1. Prove the last statement made about Example 1.2.1 in the last paragraph
of the section. Namely, prove that a basis of the vector space Q|[z,y, 2]/
is the set of all cosets of powers of z. Assume that we now eliminate 2
first, then z, then y. What is the row echelon form of the matrix? Use
this to give another basis for the vector space Q[z,y,z]/1.

1.2.2. Following what was done for Example 1.2.1, solve the problems posed in
Section 1.1 for Example 1.2.2. Repeat this eliminating y first, z second
and z last.

1.2.3. Consider the following polynomials in Q[z,y,2,t}, fi = z — 2y + z + ,
fo=xz+y+32+t fs=2r—y—2—t,and fy =2z + 2y + z+¢. Solve

~ the problems posed in Section 1.1 for this set of polynomials.

1.2.4. Let A be an s X n matrix with entries in a field k. Let fi,..., fs be the
linear polynomials in k[z1,... ,z,] corresponding to the rows of A, as in
Example 1.2.2. Let B be a row echelon form for the matrix A and assume
that B has ¢ non-zero rows. Let gy, ... , g: be the polynomials correspond-
ing to the non-zero rows of B. Prove that (fi,...,fs) = (91,..-,8t)-
Use the polynomials g;,...,¢: to obtain a basis of the k-vector space

k1. s @al/{f1s- - fo)-

1.3. The One Variable Case. In this section we consider polynomials in
k[z], that is, polynomials in one variable. In this context we will use the well-
known Euclidean Algorithm to solve the problems mentioned in Section 1.1. In
doing this we will present some of the standard material concerning k[z] but will
present this material using notation that will be more immediately generalizable
to the study of polynomials in many variables. The theory of polynomials in one
variable is a good illustration of the more general theory that will be presented
in the remainder of this chapter.

For 0 # f € k[z], we recall that the degree of f, denoted deg(f), is the largest
exponent of = that appears in f. The leading term of f, denoted 1t(f), is the
term of f with highest degree. The leading coefficient of f, denoted lc(f), is the
coefficient in the leading term of f. So, if f = @z +ap_12" * +---+ a1z +ag,
with ag, ... ,a, € k and a, # 0, then deg(f) = n, It(f) = anz™ and lc(f) = a,.

The main tool in the Euclidean Algorithm is the Division Algorithm (also
known as long division of polynomials) which we illustrate in the next example.

ExXampLE 1.3.1. Let f = 2% — 222 + 274 8, and g = 222 + 3z + 1 be in Q[z].
We divide f by g to get the quotient 1z — I and the remainder ¥z + 3 as
follows:



1.3. THE ONE VARIABLE CASE 11

1 7
3T— 1

222 + 3z +1 23 —2224 2248
2+ 322+ 1z

72 3
-51;' +§CL’+8

Tp2__ 21, 7
—37° — 2

4

and so we have f = (3z— D)g + (Fz + 39)

Let us analyze the steps in the above division. We first multiplied g by %:t
and subtracted the resulting product from f. The idea was to multiply g by
an appropriate term, namely %m, so that the leading term of g times this term
canceled the leading term of f. After this first cancellation we obtained the first
remainder h = f — 1zg = —1z% + 3z + 8. In general if we have two polynomials
f=anz"+an_12" 1+ +ayx+ap and g = b @™ +bpm_12™ L+ - -+ bz + by,
with n = deg(f) > m = deg(g), then the first step in the division of f by g is to
subtract from f the product ,%:m"‘"‘g. Using the notation introduced above, we
note that the factor of g in this product is %&3 andsoweget h=f — }: g as
the first remainder. We call h a reduction of f by g and the process of computing
h is denoted

f=Sh.

Going back to Example 1.3.1, after this first cancellation we repeated the

process on h = —Z22 + 3z + 8 by subtracting 1+ : g=—-122— Qx 2 from h to

obtain the second (and in this example the final) remainder r = Zz + 39 This
can be written using our reduction notation

FSnrLr
Repeated use of reduction steps, as in the above, will be denoted
5,

We note that, in the reduction f —» h, the polynomial A has degree strictly
less than the degree of f. When we continue this process the degree keeps going
down until the degree is less than the degree of g. Thus we have the first half of
the following standard theorem.

THEOREM 1.3.2. Let g be a non-zero polynomial in k[z]. Then for any f €
k[z], there exist q and r in k[z] such that

f=qg+r, withr =0 or deg(r) < deg(g).

Moreover r and q are unigue (q is called the quotient and r the remainder).
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ProOOF. The proof of the existence of ¢ and r was outlined above. The proof
of the uniqueness of ¢ and r is an easy exercise (Exercise 1.3.3). O

Observe that the outline of the proof of Theorem 1.3.2 gives an algorithm for
computing q and 7. This algorithm is the well-known Division Algorithm, which
we present as Algorithm 1.3.1.

INPUT: f,g € k[z] with g #0

OUTPUT: ¢, such that f = gg+ r and
r =0 or deg(r) < deg(g)

INITIALIZATION: ¢ :=0;r:= f
WHILE r # 0 AND deg(g) < deg(r) DO

. 1t(r)
qg:=q+ m-)
e lt('r)

' 1t(g)?

ALGORITHM 1.3.1. One Variable Division Algorithm

The steps in the WHILE loop in the algorithm correspond to the reduction
process mentioned above. It is repeated until the polynomial r in the algorithm
satisfies 7 = 0 or has degree strictly less than the degree of g. As mentioned
above this is denoted

f iq_ T.
ExAMPLE 1.3.3. We will repeat Example 1.3.1 following Algorithm 1.3.1.
INITIALIZATION: ¢ := 0,7 := f = 2% — 222 + 22 + 8
First pass through the WHILE loop:
q = 0+ £ ﬂ; 22) .
ri= (23— 222+ 224+ 8) — £5(22% +3z+1) = ~ 122+ 3z +8

Second pass through the WHILE loop:

q _'z"'_zjz"_ -

ri={(-1z2+3z+8) - FZr (202 +3z+1) =z + 3
The WHILE loop stops since deg(r) =1<2= deg(g)

‘We obtain the quotient ¢ and the remainder r as in Example 1.3.1.

Now let I = (f, g) and suppose that f > h. Then, since h = f — 11:(5 g, it
is easy to see that I = (h,g), so we can replace f by h in the generating set
of I. This idea is similar to the one presented for linear polynomials studied in
Section 1.2. Using this idea repeatedly (that is, using Theorem 1.3.2 repeatedly)
we can prove the following result.

——::
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THEOREM 1.3.4. Every ideal of k[z] is generated by one element®.

PRrOOF. Let I be a non-zero ideal of k[z]. Let g € I be such that g # 0
and n = deg(g) is least. For any f € I we have, by Theorem 1.3.2, that
f = qg +r for some ¢, 7 € k[z], with r = 0 or deg(r) < deg(g) = n.Ifr # 0, then
r = f —qg € I, and this contradicts the choice of g. Therefore r = 0, f = qg,
and I C (g). Equality follows from the fact that g isin I. O

Observe that the polynomial g in the proof of Theorem 1.3.4 is unique up to
a constant multiple. This follows from the fact that if 7 = (g1) = (g2), then g,
divides g, and g, divides g;.

We see that the polynomial g in the proof of Theorem 1.3.4 is the “best”
generating set for the ideal I = (fi,... , f;). For example, the system of equations

(1.3.1) fi=0,...,f, =0with f; € klz],i=1,...,s,

has precisely the same set of solutions as the single equation g = 0, where
(Froeer £ = (g)-
We now investigate how to compute the polynomial g of Theorem 1.3.4. We
will first focus on ideals I C k[z] generated by two polynomials, say I = (f1, f2),
with one of fy, fo not zero. We recall that the greatest common divisor of f, and
f2, denoted ged(f1, f2), is the polynomial g such that:
o g divides both f; and f;
e if h € k[z] divides f; and f,, then h divides g;
e lc(g) =1 (that is, g is monic).

We further recall

PROPOSITION 1.3.5. Let fy, fo € k|z], with one of fi,f» not zero. Then
ged(f1, f2) exists and (f1, f2) = (ged(f1, f2))-

PROOF. By Theorem 1.3.4, there exists g € k[z] such that (f1,f2) = (g)-
Since g is unique up to a constant multiple, we may assume that lc(g) = 1. We
will show that g = ged(f1, f2). Since f1, f2 € (g), g divides both f; and f,. Now,
let h be such that h divides both f; and f,. Since g is in the ideal (f;, f2), there
exist uj,up € k[z] such that g = u; fi; + uafo. Thus A divides g, and we are
done. O

As a consequence, if we have an algorithm for finding ged’s, then we can
actually find a single generator of the ideal (f1, f2). The algorithm for computing
ged’s is called the Euclidean Algorithm. It depends on the Division Algorithm
discussed above and the following fact.

LEMMA 1.3.6. Let f1, f2 € k[z], with one of f1, fa not zero. Then ged(fi, f2) =
ged(f1 — gfa, f2) for all g € k[z].
3Recall that an ideal generated by one element is called a principal ideal, and an integral

domain for which every ideal is principal is called a principal ideal domain, or PID. Therefore
Theorem 1.3.4 says that k[z] is a PID
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PROOF. It is easy to see that {f1, f2) = (fi — ¢f2, f2)- Therefore, by Propo-
sition 1.3.5,

(ged(fr, f2)) = (1, f2} = {fr — af2, f2) = (ged(f1 — afa, f2))-

Thus since the generator of a principal ideal is unique up to constant multiples,
and since the ged of two polynomials is defined to have leading coefficient 1, we

bave ged(f1, f2) = ged(fr ~ gfe, f2)- O

We give the Euclidean Algorithm as Algorithm 1.3.2. The reader should note
that the algorithm terminates because the degree of r in the WHILE loop is
strictly less than the degree of g, which is the previous r, and hence the degree of
7 is strictly decreasing as the algorithm progresses. Also, the algorithm does give
ged(f1, f2) as an output, since at each pass through the WHILE loop, we have
ged(f1, f2) = ged(f,g) = ged(r, g), by Lemma 1.3.6, as long as g # 0. When
g9 = 0, then ged(f1, f2) = god(f,0) = {5y The last step in the algorithm
ensures that the final result has leading coefficient 1 (that is, is monic).

INPUT: fi, f2 € k[z], with one of fi, f2 not zero
OUTPUT: f = ged(f1, fo)
INITIALIZATION: f := fi,9:=f2

WHILE g # 0 DO

f -2, 7, where r is the remainder of the division of f by g

f=g

ALGORITHM 1.3.2. Euclidean Algorithm

To illustrate this algorithm, consider the following

ExaMPLE 1.3.7. Let fi = 2 —3z+2 and f2 = 2% — 1 be polynomials in Q[z].
INITIALIZATION: f:=2% -3z +2,9:= 22 -1
First pass through the WHILE loop:

2?3z +2%7 —25+2
f=22-1
g:=—2z+2

Second pass through the WHILE loop:
2?2 -1 7225 1 724
f=-2c+2



13. THE ONE VARIABLE CASE 15

g=0
The WHILE loop stops
fregipf=tf=2-1

Therefore ged(f1, f2) =z — 1.

We now turn our attention to the case of ideals generated by more than two
polynomials, I = (fi,...,fs), with not all of the f;’s zero. Recall that the
greatest common divisor of s polynomials fi,... , fs, denoted ged(fi,..., fs), is
the polynomial g such that:

e g divides f;,1=1,...,s;
e if h € k[z] divides f;,i =1,...,s, then h divides g;
e Ic(g) =1 (that is, g is monic).

PROPOSITION 1.3.8. Let fi,..., fs be polynomials in k[z]. Then

(l) (fl?"‘ ?fs) = (ng(fl)"' )fs));
(ii) if s >3, then ged(fy,. .. , f5) = ged(f1,8¢d(f2, - -+ , f5))-

PROOF. The proof of statement (i) is similar to the proof of Proposition 1.3.5.
To prove statement (ii), let A = ged(f2,--- , fs)- Then, by (i), (f2,-.. , fs) = (h),
and hence (fy,..., fs) = (f1,h). Again, by (i),

gcd(fly” . 1f3) = ng(fl,h) = ng(flang(f2" v yfs))v
as desired. [

With the ideas developed in this section we can now solve all the problems
raised in Section 1.1 for the special case of polynomials in one variable. As noted
before, to solve System (1.3.1) we first compute ¢ = ged(fi,..., fs). It then
suffices to solve the single equation g = 0. The computation of ged(fi,... ,fs)
is done by induction, a polynomial at a time, as is easily seen from part (ii)
of Proposition 1.3.8. To decide whether a polynomial f is in the ideal I =
(f1,-.-,fs), we first compute g = ged(fi,...,fs). We then use the Division
Algorithm to divide f by g. The remainder of that division is zero if and only if
f is in the ideal I = (fi, ..., fs) = (g). Using the notation introduced earlier:

feI={g)ifand only if f <+, 0.

Also, the coset representative of the element f + I in the quotient ring k[z]/I
is 7+ I, where r is the remainder of the division of f by g (that is, f —g—>+ T,
with r = 0 or deg(r) < deg(g)). Finally, the cosets of 1,z,z2,... ,2%"!, where
d = deg(g), form a basis for the k-vector space k[z]/I (Exercise 1.3.6).

In the last section (the linear case) we saw that there were two ingredients for
our solution method: a reduction algorithm (in that case it was row reduction)
and an order among the terms. In the current section we saw that the concept
of reduction leading to the Division Algorithm (Algorithm 1.3.1) was the key
to solving the problems mentioned in Section 1.1. We have not yet stressed the
importance of the ordering of the terms in the one variable case, even though we
have already used the notion of ordering in the concepts of degree and leading
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term. In effect, the ordering is forced upon us. Indeed, in the Division Algorithm,

when we compute r — %g, the terms that we introduce (coming from %g)

must be smaller than the leading term of » which has been canceled, in order for
the algorithm to terminate. This can only occur if the powers of z are ordered so
that " < z™ if and only if n < m (Exercise 1.4.2). We note that the condition
n < m is equivalent to the statement that z™ divides z™.

Exercises

1.3.1. Follow Algorithm 1.3.1 (as in Example 1.3.3) to divide f = 2z° — 423 +
z2-z+2byg=2?+z+1.

1.3.2. Find a single generator for the ideal I = (z% — 1, z% 4 223 + 2% — 2z — 3).
Is 2% + 2% + 22 — 7 € I? Show that 2%+ 222 —3 € I and write z* +2z2 -3
as a linear combination of z6 — 1 and z* + 223 + 222 — 2z — 3.

1.3.3. Prove that ¢ and 7 obtained in Theorem 1.3.2 are unique.

1.3.4. Compute ged(f1, f2, f3) using Proposition 1.3.8, where f; = 2°—2z%—z2+
2z, fo = 7 +28—2x% - 223+ +1, and f3 = 26— 22° 4+ 24— 223 + 22— 2z.

1.3.5. Modify Algorithm 1.3.2 to output f, u1,u2 € k[z] such that f = ged(f1, f2)
and f = w1 fi + u2fo. Apply your algorithm to the polynomials f; =
28 — 1, f2 = z* + 228 + 222 — 22 — 3 € Q[z] of Exercise 1.3.2.

1.3.6. Let g € k[z] be of degree d. Prove that {1+ (g),z + {g),... ,z%* + {g)}
is a k-vector space basis for k[z]/(g)-

1.3.7. Show that in k[z,y], Theorem 1.3.4 is false. In particular, show that the
ideal (z,y) C k[z,y] cannot be generated by a single element. Show that,
in general, k[z), ... , ] is not a PID.

1.3.8. Prove that a system of equations f = 0, g = 0 with two relatively prime
polynomials f,g € k[z,y] has at most finitely many solutions. [Hint:
View f and g in k(z)[y] and use the Gauss Lemma: f and g are relatively
prime when viewed in k[z,y] if and only if they are relatively prime in
k(z)[y], where we recall that k{z) denotes the field of fractions of k[z], i.e.
Kz) = {2 | a,b € klz],b # 0}

1.3.9. Let g € kl[y] be irreducible, and let f € k[z),...,Zn,y] be such that
f ¢ (g). Prove that (f,g) Nk[zi1,...,z,] # {0}. [Hint: Use the hint of
Exercise 1.3.8 with k(z1,...,%n)[y], where we recall that k(z1,...,2z,)
denotes the field of fractions of k[z,... ,%,], ie. k(z1,-..,Zn) = {§ |
a,b € k[z1,... ,znl,b # 0}.]

1.3.10. Let f,g € Ciz,y]. Prove that if f and g have a non-constant common
factor in Clz,y], then V(f, g) is infinite. That is, show that if A € C[z, y]
and h is not in C, then the equation h = 0 has infinitely many solutions.
Generalize this exercise to the case where h € C[zy,... ,z,], for n > 2.

1.3.11. Let fi, f2,h € k[z]. We consider the equation u;fi + uafo = h, with
unknowns u;, ug, to be polynomials in k[z].

a. Show that the above equation is solvable if and only if g = ged(f1, fo)
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divides A.

. Prove that if g = ged(f1, f2) divides h, then there exist unique u;,us €

k[z] that satisfy the equation above and such that deg(u;) < deg(f2) -
deg(g)- Moreover, if deg(h) < deg(f1)+deg(f2)—deg(g), then deg(uz) <
deg(f1) — deg(g). Give an algorithm for computing such u; and us.

.Let i=2~-1,fo=22>+2—-2,h =2%—42+3 € Qz]. Find u;,up

which satisfy b.

. Use b to show that if fi and f, are relatively prime, then for every

h € k[z] such that deg(h) < deg(f1)+deg(f2), there exist uj,us € k[z]

such that
h u; U2

—_—=— 4 —,
hHfe H  f
with deg(u;) < deg(fi1) and deg(uz) < deg(f2). (This is the partial
fraction decomposition of rational functions.)

. Use d to compute the partial fraction decomposition of

z-—-3
23+ 32243z +2°

Generalize a and b to the case of s polynomials fi,... , f, € k[z].

When the coeflicients of polynomials in one variable are not in a field
k, the Division Algorithm (Algorithm 1.3.1) has to be modified. In this
exercise we present a “pseudo” division algorithm for polynomials in R[z],
where R is a unique factorization domain (UFD).

a.

- O

Let f,g € R[z] be such that g # 0 and deg(f) > deg(g). Prove that
there exist polynomials ¢,r € R[z] such that lc(g)’f = gg + r, where
r = 0 or deg(r) < deg(g), and £ = deg(f) — deg(g) + 1.

. Give an algorithm for computing ¢ and 7. The polynomials q and r are

called the pseudo-quotient and the pseudo-remainder respectively.

. Use this algorithm to find ¢ and r in the following cases:

(i) f=6z*—11z® — 3z% + 2z, g = 10z — 2322 — 20z — 3 € Z[z];
(i) f= (-2 +4i)2® + (5+ 3i)2? — 2iz + (-1 +4),9 = 222 + (1 +
1)z + (1 + 1) € (Z[i])[z], where i = —1.

. A polynomial f € R[z] is called primitive if its coefficients are relatively

prime. Let f,g be primitive polynomials in R|z], and let lc(g)?f =
gq + 7 be as in a. Prove that gcd(f,g) = ged(g,7’), where 7’ is the
primitive part of r; i.e. r = ar’, @ € R and r’ primitive.

. Use d to give an algorithm for computing ged(f, g).
. Use e to compute ged(f, g) for the examples in c.
. Use the above to give an algorithm for computing gcd(f,g), where

f,9 € R[zy,... ,z,), R a UFD.

Use g to compute ged(f, g), where f = (y2 +y)z® + (—y* —y+1)z? +
(P +y* = 2)z+(-y° +2), g = (* + 2y + 1)a® + (1 +3¢° — 2)z +
®® - y* - 2y) € Z[z, y).
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1.4. Term Orders. It was important in the last two sections to specify an
order on the power products. In the linear case, we computed with z first, then y,
etc. The particular order used was unimportant but did have to be specified. In
the one variable case we used the highest degree term first and this was required
by the procedures used. In more than one variable we need an order analogous
to the ones used in these two special cases and this will be the focus of this
section.

First recall that the set of power products is denoted by

T ={af - o | B eNi=1,...,n}.

Sometimes we will denote :cf‘ ---xP~ by 2P, where 8 = (f1,...,8,) € N™.

We would like to emphasize that, throughout this book, “power product” will
always refer to a product of the x; variables, and “term” will always refer to
a coefficient times a power product. So every power product is a term (with
coefficient 1) but a term is not necessarily a power product. We will also always
assume that the different terms in a polynomial have different power products
(so we never write 372y as 2z%y + z?y).

There are many ways to order T". However, we already know some properties
that a desirable order must satisfy. For example, the orders in the linear and
one variable cases were used to define a division (or reduction) algorithm, thus
the order had to extend divisibility relations (see the discussion at the end of the
previous section). That is, if £* divides «?, then we should have = < zP, or
equivalently, if a; < 3; for all i = 1,... ,n, then * < P. Also, in the divisions
described in Sections 1.2 and 1.3, we arranged the terms of the polynomials
in increasing or decreasing order, and hence we must be able to compare any
two power products. Thus the order must be a total order, that is, given any
2>, P € T, exactly one of the following three relations must hold:

z% <P, 2* = 2P or x* > «P.

Moreover, the reduction — described in Sections 1.2 and 1.3 must stop after a
finite number of steps. Recall that whenever we had f -, r, the polynomial r
was such that its leading power product was less than the leading power product
of ¢g: in Section 1.2, that meant that the reduced polynomial r was obtained
by eliminating a leading variable using g; in Section 1.3, that meant that the
remainder polynomial r had degree less than that of g. Therefore, for the reduc-
tion to be finite, we need that the order be a well-ordering, that is, there is no
infinite descending chain £** > £®2 > 23 > ... in T". An order that satisfies
all these conditions is called a term order, and it turns out that these conditions
are captured in the following definition (this will be justified in Proposition 1.4.5
and Theorem 1.4.6).

DEFINITION 1.4.1. By a term order on T" we mean a total order < on T"
satisfying the following two conditions:
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(i) 1< P forall P € T", P # 1;
(ii) If x> < xP, then z®x” < P, for all &7 € T™.

Before we prove that the basic properties we discussed above follow from the
conditions in Definition 1.4.1, we give three examples of term orders. The easy
verification that they are term orders will be left to the exercises (Exercise 1.4.3).

DEFINITION 1.4.2. We define the lexicographical order on T™ with z; > 5 >
-+ >z, as follows: For

o= (alj"‘ ’an))ﬂ= (ﬁl?"' 1ﬂn) eNn
we define

o the first coordinates a; and §; in o and B
2% <af = { from the left, which are different, satlisfy o; < ;.

So, in the case of two variables z; and z2, we have

2

1<a:2<a:§<:vg<---<:v1<:v2w1<a:§a;1<---<xl<-~~.

As noted before, when we do examples in a small number of variables, we will
usually use z,y, or z instead of the subscripted variables above. It is important
to note that we need to specify the order on the variables. For example, if we
use the lexicographic order with z < y, then we have

l<r<z’<zd<. . <y<zy<z?ly<.---<y?<---.

(We deliberately altered the order of z and y from what was probably expected
to emphasize the point that an order on the variables must be specified.)

Note that, for this order, z{ is always greater than z¥, for all non-zero g, v € N.
This will be of importance later on (see Section 2.3). We will always denote this
order by “lex”. We emphasize again that we always need to specify the order on
the variables.

DEFINITION 1.4.3. We define the degree lexicographical order on T™ with
Ty > To > -+ > Ty as follows: For

az(ala“' 1an)sﬂ=(ﬂla-“ ,ﬂn)eNn

we define
n n
i=1 a; < E‘i:l ﬂi
or
*<zP = n

o=y, Biandz* < 2P
with respect to lex with x; > x5 > -+ > Ty,
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So, with this order, we first order by total degree and we break ties by the lex
order. In the case of two variables z; and z5, we have

1<z <z <T2< T <z <zd<mai<aize<ad<---.
Or, using the degree lexicographic ordering in k[z,y] with z < y, we have
l<z<y<zl<zy<yP<el<2y<apl<yl<---.

We will always denote this order by “deglex”. Again, we always need to
specify the order of the variables.

DEFINITION 1.44. We define the degree reverse lexicographical order on T™
with ; > x93 > - -+ > z,, as follows: For

a=(a,-..,00),8=(61,--.,6,) E N
we define

or
S =Y i Bi and the first coordinates o; and B; in
« and B from the right, which are different, satisfy a; > S;.

2 <P =

We will always denote this order by “degrevlex”. It is easy to see that in the
case of two variables deglex and degrevlex are the same orders (Exercise 1.4.4).
However, if there are at least 3 variables, this is not the case anymore, as the
following example shows:

zizoz3 > 7175 with respect to deglex with z; > 72 > z3

but
:c'f:cza:s < xlxg with respect to degrevlex with z; > x5 > z3.

This order turns out to be extremely good for certain types of computations.
The important property that this order possesses is given in Exercise 1.4.9.

Note that the term “right” in Definition 1.4.4 refers to the smallest variable.
That is, we have z; > x5 > - -+ > Z,. This must be especially kept in mind when
we consider examples involving z,y, z (see Exercise 1.4.1).

There are many other orders on T™ which we will see later in both the exercises
and the text. The three examples given above are the ones we will use the most.
‘We will see that each order has different properties and which order we use will
depend on the problem we want to solve.

‘We now return to the general definition of a term order. We want to observe
that a term order, as defined in Definition 1.4.1, has all the properties discussed
before that definition. That is, we need to prove that any term order extends
the divisibility relation and is a well-ordering.

PROPOSITION 1.4.5. For &%, xP € T", if x> divides ° then = < zP.
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PROOF. By assumption there is an ¥ € T™ such that £? = z>zY. By
Condition (i) in Definition 1.4.1 we have Y > 1 and so by Condition (ii) we
bave f = %Y > £, as desired. [J

Now from the Hilbert Basis Theorem (Theorem 1.1.1) we can prove

THBEOREM 1.4.6. Every term order on T" is a well-ordering; that is, for every
subset A of T™, there exists *> € A such that for all P € A, = < =P.

PRrOOF. Suppose to the contrary that the given term order is not a well-
ordering. Then there exist £* € T,i =1,2,... such that

(1.4.1) ¥ > > > ...
This defines a chain of ideals in k[z;, ... ,Zx)
(1.4.2) (mal> g (mtn’maz) g (mal,maz’maa) C--r.

We first note that (x®1,... ,x%) # (x™,... ,x™+1), since if we had equality,
then

3
(14.3) gt =) ujE™,
F=1
where u; is a polynomial in k[zy,...,Zn], =1,... ,i. If we expand each uj as a

linear combination of power products, we see that each term in u;x®s is divisible
by . Thus every term of the right-hand side of Equation (1.4.3) is divisible
by some %/,1 < j < i. But £+ must appear as the power product of a term
on the right-hand side of Equation (1.4.3). Therefore 2+ is divisible by some
x%i,1 < j <1, and hence z*+! > =/ for some j,1 < j < 4, by Proposition
1.4.5 and this contradicts (1.4.1). So if we go back to the chain of ideals (1.4.2),
we now see that this chain is a strictly ascending chain of ideals in k[zy, ... ,Z,).
This is a contradiction to the Hilbert Basis Theorem (Theorem 1.1.1). [J

Theorem 1.4.6 will be used throughout this book for many proofs in a manner
described in Appendix B.

To finish this section, we fix some notation. First we choose a term order* on
k[z1,... ,Zn). Then for all f € k[zy,...,z,], with f # 0,we may write

f=az™ + 022 + -+ + a,zr,

where 0 # a; € k, £* € T*, and £** > 22 > --- > %, We will always try to
write our pelynomials in this way. We define:

e Ip(f) = 1, the leading power product of f;

e Ic(f) = a1, the leading coefficient of f;

o 1t(f) = a1z, the leading term of f.

4We will say that we have a term order on k[z1,... ,Zn] when we have a term order on T".



22 CHAPTER 1. BASIC THEORY OF GROBNER BASES

We also define 1p(0) = Ic(0) = 1t(0) = 0.

Note that Ip,lc, and It are multiplicative; that is, Ip(fg) = Ip(f) Ip(g), lc(fg)
= le(f)1c(g), and 1t(fg) = It(f)1t(g). Also, if we change the term order, then
Ip(f), 1c(f), and 1t(f) may change. For example, let f = 22%yz + 3xy® — 223 :

e if the order is lex with z > y > 2, then Ip(f) = z3,lc(f) = —2, and
1t(f) = —22%;

o if the order is deglex with = > y > 2, then Ip(f) = z2yz,lc(f) = 2, and
1(f) = 22%yz;

o if the order is degrevlex with z > y > z, then Ip(f) = zy3,lc(f) = 3,
and 1t(f) = 3zy°.

Exercises

1.4.1. Consider the polynomial f = 3z*z —2z3y*+722y%23 — 8zy%23 € Q[z, v, 2].
Determine the leading term, leading coefficient, and leading power produet
of f with respect to deglex, lex, and degrevlex with z > y > 2. Repeat
the exercise with z < y < z.

1.4.2. In the polynomial ring in one variable, k[z], let < be a term order. Show
that it must be the usual one, i.e. the one such that

l<z<z?l<zl<---.

1.4.3. Show that lex, deglex and degrevlex are term orderings.

1.4.4. Show that in k[z,y], deglex and degrevlex are the same orders.

1.4.5. Given polynomials fi,...,fs and uy,...,us in k[zy,... ,z,], show that
Ip(fiur + -+ fous) < maxi<i<s(1p(fi) Ip(:)). Does equality necessarily
hold? (Prove or disprove.)

1.4.6. Let < be a total order on T" satisfying condition (ii) in Definition 1.4.1,
and assume that < is also a well-ordering. Prove that for all 2* # 1 in
T, we have 1 < . (This is a partial converse of Theorem 1.4.6).

1.4.7. Let z,,... ,z, be variables, and let m < n. Prove that any term order
on power products in the variables z,,... ,Z, is the restriction of a term
order on power products in the variables z;,. .. , Z,. [Hint: Use the idea of
lex, grouping the variables zy, ... ,Z,, together, and using the given term
order on them.]

1.4.8. Let f € k[z,,... ,z,] and consider the lex order with z, > 23 > --- > z,,.
Let i € {1,...,n}. Prove that f € k[z;,...,z,] if and only if It(f) €
k[.'ti, .ee s T

1.4.9. We call a polynomial f € k[z,,... ,zn] homogeneous provided that the
total degree of every term is the same (e.g. z2y%z + zy* — 25 is homoge-
neous since every term has total degree 5, while z°y? — 22y2z2 + y22 is not
homogeneous; the latter polynomial is the sum of the two homogeneous
polynomials z3y? — 22y22 and y?z, called the homogeneous components of
z3y? —2%y22 +922). Let f be a homogeneous polynomial and let the term
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ordering be degrevlex with z; > z9 > --- > z,. Prove that z,, divides f
if and only if z,, divides It(f). Show more generally that f € (z;,... ,z,)
if and only if It(f) € (z;,... ,Zn)-

The revlex ordering is defined as follows: For a = (oy,...,0n),8 =
(B1,--- ,Pn) € N™ we define * < x? if and only if the first coordinates
o; and §; in a and B from the right which are different satisfy a; > 8;.
Show that revlex is not a term order on k[zy,... , ).

Let I C k[z,,...,z,] be an ideal generated by (possibly infinitely many)
power products (such an ideal is called a monomial ideal). Prove that
there exist a, ...,y € N® such that I = (2*,... ,z%m). [Hint: First
show that a polynomial f € I if and only if each term of f is in I.]
(Dickson’s Lemma) Prove that the result of Exercise 1.4.11 is equivalent to
the following statement: Given any A C N", there exist a;,... ,a,, € A
such that

m
AC | (e +N).

=1
(By @ + N™ we mean {a +v |~ € N*}.)
Prove that every monomial ideal I (see Exercise 1.4.11) contains a unique
minimal generating set. That is, prove there is a subset G C I such that
I = (G) and for all subsets F C I with I = (F) we have G C F. [Hint:
Prove first that if I = (®*,... ,z*™) then for @ € N* we have 2® & I if
and only if there is an i such that ¢ divides 7.
(Mora-Robbiano [MoRo]) Let

u; = (U11,%12, -+ , Uln)s- -+ s Um = (Um1, Um2, -« - ,Umn) € Q™.

We define an order in Q™ as follows: (a;,... ,am) < (B1,--- ,0m) if and
only if the first o;, B; from the left which are different satisfy a; < G;. (Note
that this is just lex on Q™.) Now we define an order <, in k[zi,... ,Zy]
as follows: for a, 8 € N*,

22 <, P = (@ uy,...,aUR) < (B-uy,...,B up),

where « - u; is the usual dot product in Q™.
a. Prove that <, is a transitive relation.
b. Prove that x> <, ? implies %z <, Pz for all , 3, € N".

c. Prove that if the vectors ui,... ,u,, span Q", then the order, <,, is
a total order.
d. Prove that if the vectors u;,... , %, span Q", then <, is a term order

if and only if for all ¢, the first u; such that uj, # 0 satisfies u;; > 0.

e. Let u;,... ,u, be vectors satisfying: for all ¢, the first u; such that
uji # 0 satisfies uj; > 0. Show that the partial <, can be extended to
a term order, <./, that is, ® <, «® implies > <, «P.



24

1.4.15.

1.4.16.

1.4.17.

CHAPTER 1. BASIC THEORY OF GROBNER BASES

What vectors u,...,u, € Q" in Exercise 1.4.14 give rise to the lex, to
the deglex, and to the degrevlex term orderings with z; < 23 < --- < z,?
Same question with 1 > zg > -+ > Zn.
Let f = 2z%° + 3252 + z%y° € Q|z,y|. Show that there is no term
ordering on Q[z,y] such that Ip(f) = z*y°.
(*) Let X; = g3 ... g% 4 =1,...,7, be power products in k[z1, ... ,Zys)]
and let f = 37, ¢;X;, where ¢; € k — {0}, for ¢ = 1,...,r. Assume
that there is a term order < such that Ip(f) = X;. Consider the vectors
a; = (a1,... ,0,) € N? i =1,...,r In this exercise we show that there
exists a vector u = (u1,...,u,) € Q" such that 4; > 0fori=1,...,n
and a1 -u = Y0 nu; > Y0 opu; = op-uforal £=2,...,r
(compare with Exercise 1.4.14). We will use the following result from
linear algebra (see, for example, [Ga)):
THEOREM. Let A be any r X n matrix with rational entries, then
exactly one of the following two alternatives holds:

e there exists a row vector v € Q" with non-negative coor-
dinates such that the coordinates of the vector v A are all
negative or zero,

e There exists a column vector » € Q™ with non-negative co-
ordinates such that the coordinates of the vector Au are all
positive.

a. Use the above result to show that there is a vector # € Q™ with non-
negative coordinates such that a;-u > ag-u for £ = 2,...,r. [Hint:
Consider the matrix A whose rows are the vectors a; — a.]

There is a geometric way to view the linear algebra theorem used above.
First we define the convezr hull of the vectors ey, - .. , a, as follows:

conv(ay,... o) = {Zc,a, | >0,i=1,...,r, and Eq = 1}.
Also, let {ey,...,e,} be the standard basis for Q", that is, e; is the
vector in Q™ with all coordinates equal to O except the ith coordinate
which is equal to 1.

b. Show that the first alternative in the linear algebra theorem above is
equivalent to the condition that the zero vector is in the convex hull
of the rows of A together with the vectors e;, i = 1,... ,n. Note that
the second alternative implies that there is a vector u which makes an
acute angle with every row of A; i.e. the hyperplane, L, orthogonal to
u has all the rows of A on one side, and so L has the convex hull of
the rows of A and the e;’s on one side.

c. Conclude that X is the leading term of f with respect to some term
order if and only if the zero vector is not in the convex hull of the



1.4.18.

1.5. DIVISION ALGORITHM 25

vectors oy — @, i =2,...,7 and e,, j =1,...,n. [Hint: See Exercise
1.4.14, part e.]

d. Use the above to determine all the possible leading terms of f =
2z4y® + 325y% + 23y° — 27y,

In this exercise we prove the Fundamental Theorem of Symmetric Poly-

nomials. Recall that a polynomial f € k[z,,...,z,] is called symmet-

ric provided that when the variables of f are rearranged in any way,

the resulting polynomial is still equal to f. For example, for n = 3,

T + 23 + 23, 1Z2 + 123 + T2x3, and z122x3 are symmetric. For general

nletoy =142+ + 24,00 =122+ 123+ -+ Tn-1Zpn,-.. ,0n =

Z1Z2 - - Tn. These polynomials are called the elementary symmetric poly-

nomials. The theorem states that every symmetric polynomial is a polyno-

mial in the elementary symmetric polynomials. Fix the lex term ordering

on k[zy,...,zn) With 21 > 29 > --- > z,. Let f € k[z1,...,z,] be a

symmetric polynomial. We need to show the existence of a polynomial

h € k[z1,... ,Zy] such that f = h(oy,...,0n)-

a. Let It(f) = cz™ where a = (a3, ... ,a,) € N" and c € k. Show that
o >az > 20y

b. Let

g= a?l—azazaz—as - o,::-ll—ano_g,, .
Show that Ip(g) = ==.

c. Now observe that Ip(f — cg) < Ip(f) and that f — cg is a symmetric
polynomial. Use the well-ordering property of term orders to com-
plete the proof of the existence of h and so to prove the Fundamental
Theorem of Symmetric Polynomials.

d. Note that the above proof yields an algorithm for computing £ given
the symmetric polynomial f. Use it in the case n = 2 to write z$ + z3
as a polynomial in oy = z; + z2 and o3 = 7:%Z2.

1.5. Division Algorithm. In this section we study the second ingredient
in our solution method for the problems mentioned in Section 1.1: a division
algorithm in kfz1,... ,Z»). In Sections 1.2 and 1.3 we had a division algorithm,
also referred to as a reduction process. We will define a division algorithm in

k[:l?l, .

.. ,Z,) that extends both of the algorithms seen in the previous sections.

The basic idea behind the algorithm is the same as for linear and one vari-
able polynomials: when dividing f by fi,.-. , fs, we want to cancel terms of f
using the leading terms of the f;’s (so the new terms which are introduced are
smaller than the canceled terms) and continue this process until it cannot be
done anymore.

Let us first look at the special case of the division of f by g, where f,g €

k[.’l.'l, .

.« ,Tn). We fix a term order on k[z;,... ,Zn)].
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DeFINITION 1.5.1. Given f,g,h in k[z,,... ,z,], with g # 0, we say that f
reduces to h modulo g in one step, written

f-5h,
if and only if Ip(g) divides a non-zero term® X that appears in f and

X

h:f—@g.

It must be strongly emphasized that in this definition we have subtracted
from f the entire term X and we have replaced X by terms strictly smaller than
X. (We observe that in the special cases presented in Sections 1.2 and 1.3 we
considered only the case where X = It(f).)

For example, let f = 622y — z +4y® — 1 and g = 2zy + %® be polynomials in
Q[z,y]. If the term order is lex with z > y, then f -2+ h, where h = —3zy° —
z +4y° — 1, since, in this case X = 622y is the term of f we have canceled using
t(g) = 2zy; in fact X = 1t(f). (We are not allowed to cancel, say, only 4z2y.
Another way of saying this is that we are not allowed to write f = 4z°%y+ 2z%y—
z + 4y® — 1 and just cancel 4x%y). We now consider the term order deglex with
z > y so that now lt(g) = ® and so f —2, h, where now h = 622y —8zy—z — 1.
We note that in this latter case we canceled the term X = 4y® from f which is
not the leading term of f.

We can think of & in the definition as the remainder of a one step division of
f by g similar to the one seen in Section 1.3. We can continue this process and
subtract off all terms in f that are divisible by 1t(g).

EXAMPLE 1.5.2. Let f = y?z +4yz — 32%,g =2y + = + 1 € Q[z, y]. Also, let
the order be deglex with y > z. Then

~

P
= —%ymz +5yz - 3z2 2, %z3 + 5y = 14—1:1:2 =, ix:’ - g:z:2 — —z.

)
IS

Note that in the last polynomial, namely z® — $2% — 2z, no term is divisible by

Ip(g) = y and so this procedure cannot continue. We could write this reduction
process in long division format as

5From now on we will use capital letters, usually X, Y or Z, to denote power products or
terms instead of the more cumbersome & or az® unless we need to make an explicit reference
to the exponent oc. We will also say X > Y, for term X, Y, provided that Ip(X) > Ip(Y).
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lyz— 122+ Iz

2y+z+1 32z + dyx — 322
Y’z + iyz? + Lyz

—1y2? + Iyz — 322

1

1,,.,.2 1.3 2
——§yz —ZZ —Z‘Z

1,3 4 To — 11,2
T+ 3yz — G

-27-ya: + %mz + -;(:z:

I e
In the multivariable case we may have to divide by more than one polynomial
at a time, and so we extend the process of reduction defined above to include

this more general setting.

DEFINITION 1.5.3. Let f,h, and fi,...,fs be polynomials in k[z,,... ,z,),
with f; #0 (1 <i < s), and let F = {fi1,..., fs}. We say that f reduces to h
modulo F, denoted

f L+ h,
if and only if there exist a sequence of indices i1,12,... ,4; € {1,...,s} and a
sequence of polynomials hy,... ,hi—1 € k[z1,... ,z,] such that

PRS- S SRS NN Y
EXAMPLE 1.54. Let fi = yz —y, f2 = ¥> — = € Q[z,y]. Let the order be
deglex with y > z. Let F = {f1, f2}, f = ¥?z. Then

F
f'_’+ z,

since
v’z ELN S Ny
DEFINITION 1.5.5. A polynomial r is called reduced with respect to a set of
non-zero polynomials F = {f1,... , fs} if r = 0 or no power product that appears
in r s divisible by any one of the Ip(f;),i = 1,...,s. In other words, r cannot
be reduced modulo F.

DEFINITION 1.5.6. If f i,+ r and r is reduced with respect to F, then we
call r a remainder for f with respect to F.

The reduction process allows us to define a division algorithm that mimics
the Division Algorithm in one variable. Given f, fi,..., fs € k[z1,... ,z,] with
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fi # 0 (1 <i < s), this algorithm returns quotients u,, ... ,us € k[Z1,... ,Zn],
and a remainder 7 € k[z1,. .. , %), such that

f=ufi+-+ufs+r.
This algorithm is given as Algorithm 1.5.1.

INPUT: f, f1,..- , fs € k[z1,... ,z,] with f; 0 (1 <1 < 5)
OUTPUT: uy,... ,us,r such that f =uy fy +--- +usfs + 7 and
r is reduced with respect to {fi,..., fs} and
max(Ip(w1) Ip(f1), - - . , Ip(us) Ip(fs), Ip(r)) = Ip(f).
INITIALIZATION: u; :=0,u3 :=0,... ,u3:=0,r:=0,h:=f
WHILE h # 0 DO
IF there exists i such that Ip(f;) divides lp(h) THEN

choose i least such that Ip(f;) divides Ip(h)

i lt(h)
wim l(t(fz)
()
h=h v b
ELSE
r=r+1t(h)
h:=h—lt(k)

ALGORITHM 1.5.1. Multivariable Division Algorithm

Note that in Algorithm 1.5.1 we have, in effect, assumed an ordering among
the polynomials in the set {fi,...,fs} when we chose ¢ to be least such that
Ip(f;) divides lp(h). This is an important point and will be illustrated in Example
1.5.10.

It is informative to consider the similarities between Algorithm 1.3.1, the one
variable Division Algorithm in Section 1.3, and Algorithm 1.5.1, the multivari-
able Division Algorithm. The quotients u,, ... ,us in Algorithm 1.5.1 correspond
to the single quotient ¢ in Algorithm 1.3.1; we have s different quotients in Al-
gorithm 1.5.1 because we are dividing f by s different polynomials fi,..., fs
as opposed to dividing f by a single polynomial g in Algorithm 1.3.1. The re-
mainders, denoted by r in both algorithms, have the same definition: no term
of r is divisible by the leading term of any divisor. In Algorithm 1.3.1, once the
leading term of  is not divisible by 1t(g), we also know that no other term of r
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is divisible by 1t(g), and we have obtained the remainder. So in Algorithm 1.3.1
we start with 7 = f and subtract off multiples of g until this occurs. This simple
property is not true in the multivariable case, necessitating the introduction of
the extra polynomial h in Algorithm 1.5.1. So we start with A = f and r =0
and subtract off the leading term of h when we can or add the leading term of
h into r when we cannot, and so build up the remainder.

EXAMPLE 1.5.7. We recompute Example 1.5.2 but now we follow Algorithm
1.5.1. Let F = {f,}, where fi = 2y + z + 1 € Q|z,y]. The order is deglex with
y > z. Let f =%z + 4yx — 322.

INITIALIZATION: u, := 0,7 := 0, h := y2z + 4y — 322

First pass through the WHILE loop

= Ip(f1) divides lp(h)

Uy = Uy + = 2yar:

hi=h- %‘,—’:’;fl
= (y%z + 4yr — 322) — 9;7”(2y+w+1)
=—lyz® + %ya: — 32?2

Second pass through the WHILE loop:
Y =Ip(f1) divides Ip(h) = F

u1=u1+—f—-—— iyz — }2?

h:=h-— f%é%’; f
= (~Lyo? + gz - 30%) - B oy + 2 41)

=123 4 Lyz — Yg?
Third pass through the WHILE loop
y = Ip(f1) does not divide lp(h) =z3
ri=r+1t(h) =
h:=h-1t(h) = 2'yar: -4
Fourth pass through the WHILE loop
y =Ip(f1) divides lp(h)
up i=u + 45— 2ya: 322+ Iz
hi=h- %,—’?;fl
=G4~ By ety
=—3%" — zx
Fifth pass through the WHILE loop:
y = Ip(f1) does not d1v1de lp(h) = z?
r:=r+I1t(h) = —:r — 222
h:=h- lt(h) —Z.’L'
Sixth pass through the WHILE loop:
= Ip(f,) does not divide Ip(h) =z
ri=r+lt(h) =123 - 32— Iz
h:=h—-1t(h)=
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The WHILE loop stops, and we have

and
9, 7

1 1,7 1,
f—(2y:v—-za: +4a:)(2y+:v+1)+(4:1: 5% 49:).

Note that these are the same steps we used in Example 1.5.2.
EXAMPLE 1.5.8. Let F = {f1, f2}, where fi = yz ~ y, fo = y* — z € Q[z, ¥].
The order is deglex with y > z. Let f = y?z.
INITIALIZATION: u, := 0,u3 := 0,7 := 0, h := y°z
First pass through the WHILE loop:
yz = Ip(f1) divides Ip(h) = y?=
Uy = Uy +11tt;: =Y
hi=h- 5 f =2z — L2(yz —y) =4?
Second pass through the WHILE loop:
yz = Ip(f1) does not divide Ip(h) = y?
y? = Ip(f,) divides Ip(h) = y?
Ug = Uz + lttfz =1
h:=h—%j%f2 =y2—§;(y2—x) =z
Third pass through the WHILE loop:
yz = Ip(f1) does not divide Ip(h) =z
y? = Ip(f2) does not divide Ip(h) = =
ri=r+lt(h) ==z
h:=h—lt(k) =0
The WHILE loop stops, and we get

f —F"+ r
and
f=yh+fat+z.

THEOREM 1.5.9. Given a set of non-zero polynomials F = {f,... , fs} and f
in k[z1, ... ,zy), the Division Algorithm (Algorithm 1.5.1) produces polynomials
Ul ... ,Us, T € k[Z1,... ,Tn] such that

f=wfi+---+usfs+rm,
with r reduced with respect to F and

Ip(f) = m(;gggg(lp(m) Ip(f:)), 1p(r)).
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PROOF. We first observe that the algorithm terminates. At each stage of
the algorithm, the leading term of A is subtracted off until this can no longer be
done. That is, we get a sequence hy, hs, . . . of the h’s in the algorithm, where h; )
is obta.ined from h; by subtracting off 1t(h;) and possibly some smaller terms:
hiy1 = hi — (1t(h;) + lower terms). This is because we compute h;,; from h;
by subtractmg off liﬁ% f; = It(h;) + lower terms (in case some Ip(f;) divides
Ip(h:)) or by subtracting off 1t(h;) (in case no Ip(f;) divides Ip(h;)). So we have
that for all i, Ip(h,4+1) < lp(h;). Thus, since the term order is a well-ordering
(Theorem 1.4.6), the list of the h;’s must stop.

To prove the second part, we note that from what we did above, and since
h = f at the beginning of the algorithm, we have at any stage in the algorithm
Ip(k) < 1p(f). Now, for each i, we obtain u; by adding terms %%, where E((ﬁ)jf,
cancels the leading term of h. It is then immediate that lp(u.) Ip(£:) < Ip(f)-
Moreover, r is obtained by adding in terms lt(h) and so Ip(r) < Ip(f), as well. 0O

With f written as in Theorem 1.5.9, we have f —7 € (fi,..., fs). Therefore,
if r =0, then f is in (f},... , fs). However, the converse is'not necessarily true;
that is, f may be in the ideal (fi,... , fs), but the remainder of the division of
f by fi,..., fs may not be zero as the following example shows.

EXAMPLE 1.5.10. Consider the polynomial f = ¥’z — z € Qz,], and the
ideal I = (f1, f2) C Qla, ], where f; = yz —y, fo = ¥* — z. Set F = {1, fa}.
Using the deglex term order with y > z and the Division Algorithm, we see that
F I g2z L0 that is, f <5, 0 and indeed, f = yfy + f2, and hence
f € I. However if we reverse the order of f; and f» (that is, we use f; first in
the Division Algorithm) then f ELRpS J z, and z? — z is reduced with respect
to F. So the remainder of the division of f by F is non-zero, but f is in the ideal
(f1, f2)-

This difficulty already occurred in the one variable case. For example, if
f =z, fi = 2% and f, = z2—=z, then f is reduced with respect to { f}, fo}, whereas
f = H— f2 € {f1, f2)- The difficulty was resolved by finding a better generating
set for (f1, f2), namely z = ged(z?,z? — ). To do this in the multivariable case
is the subject of the next section.

Exercises

151 Let f =233 + 292, fi = 222 + 3z + 4%, fo = ¥2 — 2y — 2 € Q[z,y].
Using lex with =z > y, divide f by fi, f2 to obtain a remainder r and an
expression as in Theorem 1.5.9. Repeat this exercise reversing the role of
f1 and f,.

152 Let f=2%2 —w? fi=z—v*w, o=y—2w,fa=z—-wd, fy=w?P—-we
Qlz,y, z,w]. Using lex with £ > y > 2z > w, divide f by f,, fo, f3, fa to
obtain a remainder r and an expression as in Theorem 1.5.9. Repeat this
exercise reversing the role of fi, f2, fs, fa, i-e. using f4, fs, fo, f1.

1.5.3. Prove that given a set of non-zero polynomials F' C k[z,,... ,z,], there
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can be no infinite chain g; ng —F—+g3 R [Hint: The new point
here that did not occur in Theorem 1.5.9 is that we may not be subtracting
off leading terms in g; —F‘* Gi+1 ]

1.5.4. Show that for any polynomials f,g € k[zi,...,z,], for any finite set
of non-zero polynomials F C k[z1,... ,z,], and for any power product
X € T, we have
a. If f € F, then fg ——, 0.
b. If f —F->+ g, then X f L.,. Xg.

1.5.5. Let f,g,h,7,8 € k[z1,... ,2,] and let F be a collection of non-zero poly-
nomials in k[z1,. .. ,Z,]. Disprove the following:
a. Iff——F—>+ra.ndgi»+s,thenf+gi»+'r+s.
b. If f —f—»+ rand g L.,. s, then fg —F++ 8.
c. If f+g —F->+ h, f —F->+ r,and g —F~>+ s, where h,r, s are reduced with

respect to F, then r + s = h.

1.5.6. Let F = {fi,... , fo} Cklz1,... ,Zn], with f; 0 (1 < i < s),and let f €
klzy,... ,zp] such that f = Y7 wf; with Ip(f) = maxi<i<s Ip(u.fi).
Give an example that shows this does not imply that f _f_,+ 0. [Compare
with Theorem 1.6.2 part (iii).]

1.6. Grobner Bases. In this section we finally define the fundamental object
of this book, namely, a Grébner basis.

DEFINITION 1.6.1. A set of non-zero polynomials G = {g,,... ,g:t} contained
in an ideal I, is called a Grobner basis® for I if and only if for all f € I such
that f # 0, there exists i € {1,... ,t} such that Ip(g;) divides Ip(f)-

In other words, if G is a Grobner basis for I, then there are no non-zero
polynomials in I reduced with respect to G. We note that it is not clear from
this definition that Groébner bases exist. We will prove this in Corollary 1.6.5.

We first present three other characterizations of a Grobner basis. In order to
do this we need to make the following definition. For a subset S of k[z, . .. , Za],
we define the leading term ideal of S to be the ideal

Lt(S) = (it(s) | s € S).

THEOREM 1.6.2. Let I be a non-zero ideal of k[z1,... ,z,])- The following
statements are equivalent for a set of non-zero polynomials G = {g1,... ,g:} C I.
(i) G is a Grobner basis for 1.
(i) f €1 if and only if f 5., 0.
(iii) f €I if and only if f = T, higi with Ip(f) = max, <i<e(Ip(h:) Ip(g:))-
(iv) Lt(G) = Lt(1).

6 Another term which is commonly used in the literature is standard basis.
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PROOF. (i) = (ii). Let f € k[z1,...,z,]. Then, by Theorem 1.5.9, there
exists r € k[zy,... ,Ty,], reduced with respect to G, such that f —g».,_ r. Thus
f—relandso f€lifandonlyif r € I. Cleatly, if r = 0 (that is, f — 0),
then f € I. Conversely, if f € I and r # 0 then r € I and by (i), there exists
i € {1,...,1} such that Ip(g;) divides Ip(r). This is a contradiction to the fact
that r is reduced with respect to G. Thus » = 0 and f ﬁ».,. 0.

(ii) => (iii). For f € I, we know by hypothesis that f -+, 0, and since the
process of reduction is exactly the same as the Division Algorithm, we see that
(iii) follows from Theorem 1.5.9.

(iii) => (iv).Clearly, Lt(G) C Lt(). For the reverse inclusion it suffices to
show that for all f € I, It(f) € Lt(G), since the 1t(f)’s generate Lt(). Writing
f as in the hypothesis, it immediately follows that

It(£) = 3 216(hs) 16(g3),

where the sum is over all i such that Ip(f) = Ip(h;)1p(g;). The result follows
immediately.
(iv) => (i). Let f € I. Then lt(f) is in Lt(G), and hence

t
(1.6.1) 6(f) =) hilt(g:),

i=1

for some h; € k[zy, ... , ). If we expand the right-hand side of Equation (1.6.1),
we see that each term is divisible by some 1p{g;). Thus 1t(f), the only term in
the left-hand side, is also divisible by some Ip(g;), as desired. O

COROLLARY 1.6.3. IfG ={g1,-.. ,9:} is a Grobner basis for the ideal I, then
I= (gly" . )gt>'

Proor. Clearly (g1,... ,9:) C I, since each g; is in I. For the reverse inclu-
sion, let f € I. By Theorem 1.6.2, f i.,. 0, and hence f € (g1,...,g). O

For the next corollary we first need some information about the special nature
of ideals generated by terms.

LEMMA 1.6.4. Let I be an ideal generated by a set S of non-zero terms, and
let f € k[z1,... ,z,). Then f is in I if and only if for every term X appearing
in f there exists Y € S such that Y divides X. Moreover, there exists a finite
subset So of S such that I = (Sp).

PrOOF. If f € I, then

£
(1.6.2) f=3 hXs,
=1

where h; € k[z1,... ,z,] and X; € S, for ¢ = 1,... ,£. If we expand the right-
hand side of Equation (1.6.2), we see that every term is divisible by some term



34 CHAPTER 1 BASIC THEORY OF GROBNER BASES

X; in S, and hence every term of the left-hand side must also be divisible by
some term X; € S.

Conversely, if for every term X appearing in f there exists a term Y € S such
that Y divides X, then each such X is in I = (S), and hence f is in I.

In order to prove the last statement we note that, by the Hilbert Basis Theo-
rem (Theorem 1.1.1), I has a finite generating set. By the first part of the lemma
each term in each member of this generating set is divisible by an element of S.
The finite set, Sp, of such divisors is clearly a generating set for I. [

COROLLARY 1.6.5. Every non-zero ideal I of k[z,, ... ,z,] has a Grébner ba-
sts.

PRrOOF. By Lemma 1.6.4 the leading term ideal Lt(I) has a finite generating
set which can be assumed to be of the form {1t(g,),...,1t(g:)} with g1,... ,9¢ €

I. If we let G = {g1,...,8:}, then we have Lt(G) = Lt(I) and hence G is a
Grobner basis for I by Theorem 1.6.2. [

We now give a fifth characterization of a Grébner basis. We will expand our
terininology a little.

DEFINITION 1.6.6. We say that a subset G = {g1,... ,9:} of klz1,... ,Zn] is
a Grobner basis if and only if it is a Grébner basis for the ideal (G) it generates.

THEOREM 1.6.7. Let G = {g1,--. ,9:} be a set of non-zero polynomials in
k[z1,...,z,)- Then G is a Gréobner basis if and only if for all f € k[zy,... ,zn],
the remainder of the division of f by G is unique.

PrOOF. We first assume that G is a Grobner basis. Let f i».,. 71 and
f ﬁ».,_ T2, with 7; and 72 reduced with respect to G. Since f —r; and f — 7
are both in (G) = (g1,..- ,9t), 80 is 1 — ro. Moreover r; — r2 is reduced with
respect to G. But then r; — ro = 0, by Theorem 1.6.2 (ii).

Conversely, assume that remainders upon division by G are unique. We will
prove condition (ii) in Theorem 1.6.2. So let f € (G). Suppose that f —€++ r
such that r is reduced. We must show that r = 0. (Of course, we know, by
bypothesis, that r is unique.)

CLAIM: If ¢ € k is non-zero, X € T™ is a power product, and g € k[z1,... ,Zn]
is such that g i».,. r, where r is reduced, then, for each i € {1,...,t}, g —
cXg, £,+ r. (Note that we have not assumed that cX 1t(g;) actually cancels a
term in g.)

We note that if the claim is true we are done. To see this, since f € I, we
can write f = Zﬁ=l ¢, X, 9i,, where ¢, is in k and is non-zero and X,, € T™ and
each 4, € {1,...,t} (this can be done by writing f = >¢_, hig: and writing
each h; as a sum of terms). Then, applying the claim to g = f, we see that
f—aXig, —G—»+ 7. So now we can apply the claim to ¢ = f — 1 X1g;, to
obtain f — ¢; X19i, — c2X29:, _E_,+ r. Thus, using induction, we see that 0 =
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f- Eﬁ=1 X 8i, -i_,. r. That is, 0 —Ga.,. r which immediately implies that
r = 0, as desired.

ProoF OF THE CLAIM: Define d by letting dlc(g;) be the coefficient of
X 1p(g;) in g. We will consider three cases.

e Case 1. d = 0. Then the coefficient of X Ip(g;) in g — cXg; is —cle(g;)
which is non-zero and so g — cXg; — g ﬁ,_'_ r which is the desired
result.

e Case 2. d = c. Let r, be reduced and assume that g — cXg; £,+ ).
Then, since d = ¢ # 0 we see that g 25 g — cXg; —G—».,_ 1. Thus, since
we know g —>+ r also, we see r = 71, as desired (by the assumption
that the remainder is unique).

e Case 3. d#A0andd #c. Set h =g — ng, Then the coefficient of
le(g.,)mhst Smced7£0wehaveg h. Also, since d # c we

have g- cX gi — h.Soifh ——>+ T2, such that 7y is reduced, we get
g Sk —>+ ro and so T = T, since the remainder. is unique. And so
—cXg; 2 h -G—>+ 7, as desired.
The theorem is now proved. [J

Although we have in Theorem 1.6.7 that remainders are unique for division by
a Grobner basis, we saw in Exercise 1.5.2 that the quotients are not necessarily
unique (we will see in Exercise 1.6.2 that the polynomials in Exercise 1.5.2 do
form a Grobner basis).

EXAMPLE 1.6.8. We continue Example 1.5.10. So let f = y?z—=z, f =yz—=2
and f, = y? — z. Let F = {f}, f}. We use deglex with y > z. We showed in
Example 1.5.10 that f ——, 0 and f ——, 72 — z, the latter being reduced with
respect to F. Thus by Theorem 1.6.7, F' is not a Grobner basis. We can see this
in another way. Namely, since f = yf1 + f2 € {f1, f2) and f ir... z? — T we
have z2 — x € {f}, f2). But 22 = Ip(z? — z) is not divisible by either Ip(f) = zy
or Ip(f2) = y2. Thus by the definition of a Grébner basis (Definition 1.6.1), F is
not a Grébner basis.

ExAMPLE 1.6.9. Consider the polynomials g) = 2+ 1z, g, = y—z € Q[z, ¥, 2|
Let G = {g1,92}, I = (91,92). We use the lex term order on Q[z,y,z] with
T < y < z. We will prove that G is a Grobner basis for I. Suppose to the
contrary that there exists f € I such that 1t(f) ¢ (1t(g1),1t(g2)) = (z,%). Then,
z does not divide 1t(f), and y does not divide 1t(f). Thus, because of the lex
term order, z and y do not appear in any term of f, and so f € Q[z]. Let

= (z + z)hy + (y — z)h2, where h,, ho € Q[z,¥, z]. Since y does not appear in
f, we may set y = z, and we have f = (z+z)hi(z, z, z), and hence z + z divides
f, a contradiction to the fact that the only variable occurring in f is z.

We will give a more systematic way of proving that a set of polynomials is a
Grébner basis in the next section.

We observe that if we have a Grobner basis G = {g1,...,g:} for an ideal I,
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then we can solve some of the problems posed in Section 1.1 in a fashion similar
to what we did in the one variable case. To decide whether a polynomial f is
in I, we use the Division Algorithm and divide f by G. The remainder of the
division is zero if and only if f is in I. Also, by Theorem 1.6.7, the representative
of the element f + I in the quotient ring k[z1,... ,z,]/I is 7 + I, where r is
the remainder of the division of f by G. Also, a basis for the k-vector space
k[z1,... ,z,)/I is the set of all cosets of power products that are not divisible
by some 1t(g;} (Exercise 1.6.10). All of these applications will be discussed fully
in Chapter 2.

We note that a Grobner basis with respect to one term order may not be a
Grobner basis with respect to a different term order. For example, if we use the
lex term order with z > y > z in Example 1.6.9, then {g;, g2} is not a Grobner
basis for I (Exercise 1.6.3).

Clearly, the question now is how do we compute a Grobner basis for an ideal
I? The results in this section only prove existence, and the proofs of these results
do not indicate any method for finding Grobner bases. We will give Buchberger’s
Algorithm for their computation in the next section.

However, we have already computed (without knowing it!) Grébner bases for
two special cases. In the linear case, the polynomials obtained from row reducing
the matrix of the original linear polynomials to row echelon form constitute a
Grobner basis for the ideal generated by these original polynomials, the variables
being ordered according to the position of their column in the matrix of the sys-
tem of equations (Exercise 1.6.5). In the one variable case, G = {ged(f1,-.., fs)}
is a Grobner basis for the ideal I = (fi, ..., fs), by Theorem 1.6.2(ii) (Exercise
1.6.6). In both cases we do have an algorithm for computing the Grobner basis.

Exercises

1.6.1. Show that the polynomials f; = 2zy?+3z+4y?, f2 = ¥*> —2y—2 € Q|z, 3],
with lex with > y do not form a Grébner basis for the ideal they generate.
(See Exercise 1.5.1.)

1.6.2. Show that the polynomials fy =z — y?w, o=y — 2w, fzs =z —uwd, fy =
w® —w € Q|z, y, 2, w] in Exercise 1.5.2 form a Grobner basis for the ideal
they generate, with respect to lex with z > y > 2z > w. [Hint: Follow
Example 1.6.9.] Show that they do not form a Grébner basis with respect
tolex withw >z >y> 2.

1.6.3. Show that the polynomials g;, g2 in Example 1.6.9 do not form a Grébner
basis with respect to lex with z > y > 2.

1.6.4. Let < be any term order in k{z,y, 2] with z > y > 2. Show that the
polynomials fi, f2, f3 in Example 1.2.2 do not form a Grébner basis for I,
whereas f}, f2, —17z do.

1.6.5. Let f1,..., fm be non-zero linear polynomials in k[zy,... ,z,] which are
in row echelon form. Show that they form a Grobner basis for the ideal
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they generate with respect to any order for which the variables are ordered

according to the corresponding columns in the matrix.

In the polynomial ring in one variable, k[z], consider a set of non-zero

polynomials F = {f1,..., f,} C k[z]. Let d = ged(f1,--. , f,)- Prove that

F is a Grobner basis if and only if ed € F, for some ¢ € k, ¢ # 0.

Generalize Exercise 1.6.6 to principal ideals in k[z1,. .. , Z,]. That is, show

that if I = (d) is a principal ideal in k[z1, ... ,z,], then F C I is a Grobner

basis for I if and only if ¢d € F, for some c € k, c # 0.

Let I be an ideal in k[zy,... ,z,]. Prove that Lt(J) is the k-vector space

spanned by {Ip(f) | f € I}.

Let I C k[zy,... ,z,] be an ideal generated by a set G = {X,... ,X,} of

non-zero terms. Prove that G is a Grobner basis for 1.

Let I be an ideal of k[z,,...,z,] and let G = {g1,...,9:} be a Grobner

basis for I. Prove that a basis for the k-vector space k[z;,...,z,]/I is

{X+1|X €T and Ip(g:) does not divide X for alli =1,...,¢}.

In this exercise we give another equivalent definition of a Grobner basis.

Let I C k[z1,...,z,] be an ideal. For a subset S C k[z;,...,z,] set

Lp(S) = {Ip(f) | f € S}. (Note that we have just taken the set of all 1p(f)

not the ideal generated by the Ip(f)’s.) Set I* = I — {0}.

a. Show that T" is a monoid; that is, T™ is closed under multiplication.

b. Show that Lp(I*) is a monoideal of T"; that is, show that for all
X € Lp(I*) and Y € T we have XY € Lp(I*). (Note: this is just
Exercise 1.7.6.)

c. Prove that F' C I* is a Grobner basis for I if and only if Lp(F") gener-
ates Lp(I*) as a monoideal. (We say that Lp(F') generates Lp(I*) as
a monoideal if and only if for all X € Lp(I*) there exists Y € T" and
Z € Lp(F) such that X = Y Z.)

In this exercise we give another equivalent definition of a Grébner basis.

Let G C k[zy, ... ,Zn] consist of non-zero polynomials. We call the reduc-

tion relation “—G->+” confluent provided that for all f,g,h € k[z1,... ,Z5)

such that f i_,_ gand f —G++ h, there exists an r € k[z,,...,z,] such

that h iq_ rand g i.,_ r. Prove that G is a Grobner basis if and only

if “-%5,” is confluent. [Hint: Use Theorem 1.6.7.]

Let {g1,...,9:} C k[z1,... ,zn] and let 0 # h € k[zy,... ,z,]. Prove that

{91,--- ,9:} is a Grobner basis if and only if {hg1,... ,hg:} is a Grdbner

basis.

Let G be a Grobner basis for an ideal I of k[z;,... ,Z,] and let K be an

extension field of k. Let J be the ideal of K[z,... ,z,] generated by I.

Prove that G is also a Grbaer basis for J.

Let G be a Grobner basis for an ideal I and let 7, f € k[z,,... ,z,], where

r is reduced with respect to G. Prove that if f —r € I, then f ﬁ».,_ T

Let G and G’ be two Grébner bases for an ideal I C k[z,... ,z,] with
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respect to a single term order. Let f € k[z,,... ,Z,]. Assume that f «Ci++

r and f —G-l->+ r' where 7 is reduced with respect to G and r’ is reduced

with respect to G’. Prove that r = r'.

Let I be an ideal of k[zy,... ,z,]. Assume that we are given two term

orderings, say <; and <2 . Let {g1,...,9:} be a Grébner basis for I with

respect to <; . Assume that lt<,(g;) = lt<,(g:), for ¢ = 1,...,t. Prove

that {g1,...,9¢} is also a Grobner basis for I with respect to <3 .

Let I be an ideal in k[z),...,z,] and let G = {g1,...,9:} and G’ =

{g%,--.,9:} be subsets of I of non-zero polynomials where we assume

that G is a Grébner basis for I. Assume that for all g; € G we have

9 = Y ;=1 @i;g} where Ip(g;) = maxicice (Ip(as;) Ip(g})). Prove that G’

is also a Grobner basis for I, with respect to the same term order.

Let f € k[zi1,...,zn] have total degree d, and let w be a new vari-

able. We define the homogenization of f to be f* = wif(Z&,...,22) ¢

klzi,... ,Zn,w]. Note that f* is homogeneous (see Exercise 1.4.9). For

an ideal I of k[z1, ... ,Z,], we define I"* to be the ideal of k[z1, ... ,Zn, W]

defined by I* = (f* | f € I). Also, for g € k[z1,... ,Zn,w] we define

gr = g(wl, eer 3T, 1) € k[a:l, ey m,,].

a. Give an example that shows that there is an ideal I = (f1,...,fs)
of k[z1,... ,Z,] such that I" is strictly larger than (fI,...,f*) C
k[xli e )xn,w]-

b. Let < be the deglex or degrevlex order in k[z;,... ,Zs]. Let <p be the
order defined by extending < to k[z,... ,Z,,w] as follows:

’ 7 4, ;
zy - ghrw’ <p zp - --zptw” if and only if
v vy v!
Tyt xir <zye-exg O
s s
Pt hn =:c'1'1--~:z::':‘ and v < V.

Prove that <y, is a term order in kfz,, ... ,Zn,w] and that lt<, (f*) =
16(f)-

c. Let I beanideal of k[zy,... ,z,] and let G = {g1,... ,9:} be a Grobner
basis for I with respect to deglex or degrevlex. Prove that G* =
{gt,..., 9P} is a Grobner basis for I" with respect to <, . [Hint: It
suffices to show that Lt<, (I*) = (lt<, (g?), ... ,lt<, (g)). If f € I*,
then we may assume that f is homogeneous. Prove that f = w”(f)",
for some v > 0 and that fj, € I.]

d. Use c to compute a set of generators for I”, where I = (yz —z,y* —z)
by first showing that G = {yz —z,y? —z, 2% —z} is a Grobner basis for
I with respect to deglex with = > y. [Hint: Show that if f is reduced
with respect to G and in I, then f = az + by for some a,b € k, and
f = hi(yz — z) + ha(y? — z) + ha(z? — z). Then successively set z =0
then y = 1.]
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1.6.20. This material is taken from Robbiano and Sweedler [RoSw]. By a k-
subalgebra A C k[z1,... ,z,) we mean a subring which is also a k-vector
space. For a subset F = {f1,...,fs} C k[z1,...,Zn] we denote by
k[F] the k-subalgebra of k[zi,...,Zs] generated by F, that is k[F] =
,efit---f | e € kand v = (11,...,¥;) € N° and only finitely
many ¢,’s are non-zero}. Fix a term order on k[z1, ... ,Z,]. We will define
a reduction procedure that answers the “algebra membership problem”
for k-subalgebras of k[z1,. .. ,Z,]. This is the problem of determining, for
f € k[z1,...,z,], whether f € k[F]. (This problem will be solved using
Grobner bases in Section 2.4.)

a. For F C k[z1,...,za), let Lp(F) = {Ip(f) | f € F}. (Note that
we have only taken the set of all Ip(f).) For a k-subalgebra A C
k[z1,...,z,] show that L£p(A) is a multiplicative submonoid of T™.
We call F a SAGBI basis for A = k[F] provided Lp(F) generates
Lp(A) as a monoid. (SAGBI stands for Subalgebra Analog to Grébner
Bases for Ideals. In Robbiano and Sweedler [RoSw]|, an algorithm for
computing SAGBI bases is given.)

b. For F = {f1,...,fs} C k[z1,...,2,] and v = (1,...,v,) € N®
denote by F¥ = fi* --- f¥s. For g,h € k[z1, ... ,Z,] we write g =5 b
to mean there is a ¢ € k (¢ # 0) and v € N° such that lt(cF¥) is a
term in g and h = g — cF¥. If we have g == g1 == go == - .. == b
we write g = h. Show that g ==, h implies that g — h € k[F).

c. Show that F C k[z,... ,T,] is a SAGBI basis for k[F] if and only if
for all f € k[F] we have f -—£>+ 0.

d. Show that if F' consists entirely of terms then F is a SAGBI basis for
k[F).

e. Prove that F = {22,y%,zy + y,zy?} is a SAGBI basis for Q[F] C
Q[z,y] for deglex with y > z. [Hint: For f = 3¢, (22)"1 (y?)"2(zy +
¥)”* (zy?)** € Q[F), expand out the zy + y term and show that it suf-
fices to prove that z7y™ is in the monoid generated by {z2, 32, zy, zy*}
for n < m.|

1.7. S-Polynomials and Buchberger’s Algorithm. In this section we
first lay the theoretical foundation for the algorithm for computing Grébner
bases by presenting Buchberger’s Theorem [Bu65, Bu85]. This result is given
in Theorem 1.7.4. We then present his algorithm.

Let I = (fi,...,fs) be an ideal of k[z1,... ,Z,], and let F = {fi,..., fs},
where we assume that f; # 0 (1 <4 < s). In the previous section we defined F
to be a Grobner basis if and only if for all f € I, there exists i € {1,... ,s} such
that 1p(f,) divides Ip(f). So a difficulty arises with elements of I whose leading
power products are not divisible by any 1p(f;). But if fisin I, f = 3";_, hif;,
for some h; € k[z,,... ,z,). Hence the difficulty occurs when the largest of the
Ip(hif;) = Ip(h;)1p(f:)’s cancel. The simplest way for this to occur is in the
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following.

DEFINITION 1.7.1. Let 0 # f,g € k[z1,... ,z,]. Let’ L = lem(Ip(f),1p(g))-
The polynomial

L L
S(f,9) = W'f— it(_g)g
1s called the S-polynomial of f and g.

EXAMPLE 1.7.2. Let f =2yr—y,9 =3y’ -z € Q[:c ], w1th the deglex term
ordering with ¥ > z. Then L = y? a:, and S(f,9) = 4.2 f 3—; 3uf—tzg=
—1y? + 122 Moreover Ip(3yf) = 4z = Ip(3zg) bave canceled in S(f,9).

There is another way of viewing S-polynomials. Namely, in the division of f
by fi,--.,fs, it may happen that some termn X appearing in f is divisible by
both Ip(f,) and Ip(f;) for i # j (hence X is divisible by L = lem(lp(fi), Ip(f;)).
If we reduce f using f;, we get the polynomial hy = f — Tﬂ%fi’ and if we
reduce f using f;, we get hy = f — m%? fi- The ambiguity that is introduced is
hy ~hy = &5 fi - m%fj = X8(fi f5)-

ExAMPLE 1.7.3. Let f = ¢’z + 1,fi = yz — 9, fo = y*> — = € Q|z,y] with
the deglex term ordering with ¥y > z. We consider the term X = y?z in f.
We have that f iR y¥?+1=f—yh, and f LR 22 +1 = f — zf,. Note
that X = L = lem(Ip(f1),1p(f2)) = ¥z, and that the ambiguity introduced is
—y +z2 = =yfi—zf2= S(fl,fz) Also, note that S(fy, f2) € (f1, f2), and that
it can be reduced: S(fi, f2) z2 — z. The polynomial 2 — z is now reduced
with respect to {f1, f2}, but is not zero.

Now that we have introduced S-polynomials as a way to “cancel” leading
terms and to account for the ambiguity in the Division Algorithm, we can go
ahead with a strategy for computing Grobner bases. It turns out that the S-
polynomials account for all ambiguities we need to be concerned about as the
next result shows.

THEOREM 1.7.4 (BUCHBERGER). Let G = {g1,...,9:} be a set of non-zero
polynomials in klz,,... ,z,). Then G is a Gribner basis for the ideal I =
(gl, cee :gt) tf and only szor alli 75 ja

S(9:,9;5) ..o

Before we can prove this result, we need one preliminary lemma.

LEMMA 1.7.5. Let fi,...,fs € k[z1,-... ,Zy] be such that Ip(f;) = X # 0 for
alli=1,...,s. Let f=3;_ cifi withc; € k,i=1,...,s. Iflp(f) < X, then f
is a linear combination, with coefficients in k, of S(f;, f;),1<i<j<s.

7Recall that the least common multiple of two power products X,Y is the power product

L such that X divides L, Y divides L and if Z is another power product such that X divides
Z and Y divides Z then L divides Z. We denote L by lem(X,Y).
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ProoF. Write f; = a;X+lower terms, a; € k. Then the hypothesis says that
3°%_, cia; = 0, since the ¢;’s are in k. Now, by definition, S(f;, f;) = 5. fi~ o f,
since Ip(f;) = 1p(f;) = X. Thus

f = afi+-+efs
cia1(o; 1)+ +caas(5: f)
aai(Efi — 5 f2) + (a1 + caa2)(L fa— S fa) + -
+(era1 + -+ €o185-1)(GE fomr — Efs) + (101 + -+ + €58) 5= fs
= aamS(f, f2) + (c101 + c202)S(fo, f3) + -
+(clal +--+ cs—las—l)s(fa-l, fa))

since ¢cja; +---+csas =0. O

Il

We are now ready to prove Buchberger’s Theorem.
PrOOF OF THEOREM 1.74. ¥ G = {g1,...,9:} is a Grobner basis for I =

{g1--- »gt), then S(gi, g;) i».,. 0 for all 7 # j by Theorem 1.6.2, since S(g;, g;) €
L

Conversely, let us assume that S(g;, g;) i’+ 0 for all i # j. We will use
Theorem 1.6.2(iii) to prove that G is a Grobner basis for I. Let f € I. Then f
can be written in many ways as a linear combination of the g;’s. We choose to
write f = E:=1 higi) with

X = lnsnggct(lp(h,)lp(ge))

least (here we use the well-ordering property of the term order). If X = Ip(f),
we are done. Otherwise, Ip(f) < X. We will find a representation of f with a
smaller X, and this will be a contradiction. Let S = {i | Ip(h;)Ip(g:) = X}. For
i € S, write h; = ¢;X; + lower terms. Set g =}, ¢ ¢;X;g:. Then, Ip(X;g;) = X,
for all ¢ € S, but Ip(g) < X. By Lemma 1.7.5, there exist d;; € k such that

9= dijS(Xigi, X;95)-

1,JE€S,i#]
Now, X = lem(Ip(X:g:), Ip(X;g;)), so
X X
S(Xi9:,X;0) = e Xigi — e Xi;
( igi JgJ) lt(Xigi) g lt(ngj) 193

X ox X
lt(gs)g1 lt(gj)gJ Xij o937

where X;; = lem(Ip(g:), Ip(g;)). By hypothesis, S(gi, g;) i».,. 0, and so we see
from this last equation that S(X;g:, X;g;) —4 0 (See Exercise 1.5.4). This
gives a representation

4
S(Xigi) ng:i) = Z h'ijugua

v=1



42 CHAPTER 1. BASIC THEORY OF GROBNER BASES

where, by Theorem 1.5.9,

ggt(lp(hzju)lp(gu)) = 1p(S(Xigi, X;9;))
< max(lp(X;g;),Ip(X;9;)) = X.

Substituting these expressions into g above, and g into f, we get f = >.._, hlg;,
with max; <;<:(1p(h})Ip(g;)) < X. This is a contradiction. O]

We have as an immediate Corollary of the proof of Theorem 1.7.4, the fol-
lowing additional equivalent condition for a subset G of k[z1,... ,Zs] to be a
Grobner basis.

COROLLARY 1.7.6. Let G = {g1,... ,9:} withgi #0 (1 <i<t). Then G s
a Grébner basis if and only if for alli # 7 (1 <1i,5 <t), we have

t
S(9i,95) = 3 hiju9v, where Ip(S(gi,95)) = max (p(hiz.) Ip(gy))-

v=1

We note that Buchberger’s Theorem (Theorem 1.7.4) gives a strategy for
computing Grobner bases: reduce the S-polynomials and if a remainder is non-
zero, add this remainder to the list of polynomials in the generating set; do this
until there are “enough” polynomials to make all S-polynomials reduce to zero.
Let us first look at an example.

EXAMPLE 1.7.7. Let fi = zy — z, fo = z° — y € Q|z, y] with the deglex term
order with z < y. Let F = {fy, fo}. Then S(f1, f2) = zfi — yfo = 12 — 2° -
y? —y, and f3 = y? — y is reduced with respect to F. So we add f3 to F, and
let F' = {f1, fa, f3}. Then S(f1, f2) L"O- Now S(fl,lf:i) =yfi—zf3 =0, and
S(far f3) = Y2 fa — 223 = =4 + 2%y > 2Py —y> - 0. Thus {f1, fo, fa} is a
Grébner basis.

We give Buchberger’s Algorithm to compute Grobner bases as Algorithm
1.7.1.

THEOREM 1.7.8. Given F = {f1,...,fs} with f; # 0 (1 < 1 < s), Buch-
berger’s Algorithm (Algorithm 1.7.1) will produce a Grobner basis for the ideal
I= (fly“' ).fs)-

PrROOF. We first need to show that this algorithm terminates. Suppose to
the contrary that the algorithm does not terminate. Then, as the algorithm
progresses, we construct a set G; strictly larger than G;_1 and obtain a strictly
increasing infinite sequence

GGG GGG

Each G; is obtained from G;_; by adding some h € I to G;_;, where h is the
non-zero reduction, with respect to G;—1, of an S-polynomial of two elements of
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INPUT: F ={fy,...,fs} Cklz1,... ,zn] with f; 0 (1 <i < s)
OUTPUT: G = {g1,--- ,9:}, a Grobner basis for (f1,..., fs)
INITIALIZATION: G := F, G := {{f;, f,} | fi # ; € G}
WHILE G # 0 DO
Choose any {f,g} € G
G:=6-{{f.9}}
S(f,9) —Ciq. h, where h is reduced with respect to G
IF h # 0 THEN
G :=GU{{u,h}| for all u € G}
G:=GU{h}

ALGORITHM 1.7.1. Buchberger’s Algorithm for Computing Grébner Bases

Gi—1. Since h is reduced with respect to G;_;, we have that lt(h) ¢ Lt(G,—,).
Thus we get
Lt(G1) S Lt(G2) S Lt(Gs) & - .

This is a strictly ascending chain of ideals which contradicts the Hilbert Basis
Theorem (Theorem 1.1.1).

Now we bave F C G C I, and hence I = (f1,...,fs) C {(91,--. ,9:) C I. Thus
G is a generating set for the ideal I. Moreover, if g;,g; are polynomials in G,
then S(gi, g;) iq. 0 by construction. Therefore G is a Grobner basis for I by
Theorem 1.7.4. O

ExaMPLE 1.7.9. Let f; = 2y — z, f2 = —y + z? € Q[z,y] ordered by the lex
term ordering with = < y.
INITIALIZATION: G := {fl,fg}, g = {{fl,fg}}
First pass through the WHILE loop
G:=0
S(f1, f2) 54 2° — z = h (reduced with respect to G)
Since h #0,let f3:=2% — =z
G:= {{fh f3}’ {f'b f3}}

G:= {fla f21 f3}
Second pass through the WHILE loop
G :={{fa, fs}}

S(f1, f3) 1 0=h
Third pass through the WHILE loop
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G:=90
S(far fa) 51 0=h
The WHILE loop stops, since G = 0.
Thus {fi, f2, f3} is a Grobner basis for the ideal (fi, f2).
We will conclude this section by giving two more simple examples which il-
lustrate Buchberger’s Algorithm.
EXAMPLE 1.7.10. Let fi = y* +yz + 22, fo = y+ 2, and f3 = y € Q[z,y].
Let us use the lex term order with ¥ > z to compute a Grobner basis for I =

<fl, f2, f3)
INITIALIZATION: G := {f1, f2, f3}

G:= {{f11f2}’ {flvf3}’ {f2’ f3}}
First pass through the WHILE loop

G = {{f1, s}, {f2: f3}}
S(f1, f2) = z? (reduced with respect to {f1, f2, f3})
let fs :=z2?
G .= {{f, s}, {2, 3} { v, fa}, {2, fa}, { fs, fa}}
G :={f1, fa, f3, fa}
Second pass through the WHILE loop
G := {{fa, s}, {f1, fa}s { o, fa}, { f3. fa}}
S(f1. f3) S+4 0
Third pass through the WHILE loop
G == {{f1, fa}, {fo, fa}, {f3, fs}}
S(f2, f3) = = (reduced with respect to {f1, f2, f3, fa})
fs=z
G :={{f, fa} {fo, fab {3, fa}, { 1, fs} { for F5}
{f3, fs}, {fa, fs}}
G :={f1, f2. f3, fa, f5}
Fourth pass through the WHILE loop
G := {{f2, fa}, {f3, fa}, { 1, fs}, { 2, Fs}s { fs, Fs}, {fa: 5}}
S(fi, fa) 540
Fifth pass through the WHILE loop
G:= {{f3, f4}’ {fla f5}, {f27 f5}; {f3, f5}’ {f4s f5}}
S(f2r f2) =51 0.

The sixth through tenth executions of the WHILE loop will also give S-
polynomials which reduce to zero (Exercise 1.7.4) and thus {f1, f2, f3, f4, f5}
is a Grobner basis for (f1, f2, f3)-

So far, in our examples, we have used the field Q. The theory developed so far
is valid for any field k. To illustrate this point, in our next example we compute
a Grobner basis in the case when k is a finite field.

ExXAMPLE 1.7.11. In this example we consider the field ¥ = Zs = Z/5Z. Let
A =22+y?+1and fo = 2%y + 2zy + z be in Zs[z,y]. We use the lex term
ordering with z > y to compute a Grébner basis for I = (f1, f2) C Zs|z, y].
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INITIALIZATION: G := {f1, f2}, G := {{f1, f}}
First pass through the WHILE loop
G:=0
S(fi.fo)=yh—-fo=3zy+4z+y*+y
(reduced with respect to G)
Let fa:=3zy+4z+1y3+y
G:= {{fla f3}1 {f2’ f3}}

G = {fi, f2, f3}
Second pass through the WHILE loop
g = {{f2’f3}}

S(fi,fs)=yfr—2zfs —4+ WP+ 3+  +y+3
(reduced with respect to G)
Let fy =4y +3y* + 3> +y+3
G : {{f2, f3}, {f1, s}, {f2, fa}, {f3, fa}}
G:= {fl; f2$ f3a f4}'

The third through the sixth executions of the WHILE loop give S-polynomials
that reduce to zero (Exercise 1.7.4) and thus G = {f1, f2, f3, f4} forms a Grdbner
basis for {f1, fo) C Zs[z, y]-

Exercises

1.7.L

1.7.2.

1.7.3.

1.7.4.

1.7.5.

Compute the S-polynomials of the following pairs in Q[z, y, 2] with respect

to the lex, deglex, and degrevlex orderings withz >y > z:

a. f=3z%z—1y%2% and g = xy® + 22.

b. f=32%yz —zy® and g = zy? + 22

c. f=32% —yz and g = zy* + 2%

Use Theorem 1.7.4 to show that the polynomials given in Exercise 1.6.2

do form a Grébner basis with respect to lex with z >y > 2 > w.

You should do the following exercises without a Computer Algebra Sys-

tem.

a. Find a Grobner basis for (z%y + 2,2z + y) C Q[z, y, 2] with respect to
deglex with x > y > 2. [Answer: 22y + 2,22 + y, zy® ~ 22,33 + 23]

b. Find a Grébner basis for (z%y + 2,2z + y) C Q[z, y, 2] with respect to
lex with = < y < 2. [Answer: z + z2y,zz + y, 2%y — y.]

Finish the computation in Examples 1.7.10 and 1.7.11 without a Computer

Algebra System.

In Example 1.7.11 we obtained G using arithmetic modulo 5 throughout

the computation. The reader might think that G could also be obtained

by first computing a Grébner basis G’ for I = (f, f2) viewed as an ideal

in Q[z,y], where we assume that the polynomials in G’ have relatively

prime integer coefficients, and then reducing this basis modulo 5. This is

not the case as we will see in this exercise.

a. Compute the Grobner basis G’ for I = (f1, f2) C Q[z,y| with respect
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to the lex ordering with z > y.
b. Reduce G’ modulo 5 to obtain Gf and compare with Example 1.7.11.
1.7.6. Assume that we have fixed a term order on T™. For 0 # f € k[, ... ,Zx)
define the multidegree of f by deg(f) = o where Ip(f) = = with « € N™.
Of course, this definition of deg depends on the term order in use. Define
deg(S) = {deg(f) | f € S} for subsets S C k[zi,... ,z,] not containing 0.
a. Let I be an ideal in k[z1,... ,2z,]. Let G = {g1,... ,9:} be a Grobner
basis for I. Assume that deg(g;) = a; for 1 < i < ¢. Prove that

t

deg(I*) = U(a,- +N7)

i=1

where I* = I — {0} (see Exercise 1.4.12).

b. In Q[z,y] let I = (z?y — y + z, 2y® — z). Show that, with respect to
the deglex ordering with z < y, deg(I*) is represented by the shaded
region in the diagram given below:

exponent
ofy //
(0,2)

21 /

(3,0) exponent of ¢

c. Draw the region which represents deg(l*) if we use lex with z < y.

1.7.7. Show how the steps in the Euclidean Algorithm (Algorithm 1.3.2) parallel
the steps in Buchberger’s Algorithm (Algorithm 1.7.1).

1.7.8. Show how the steps in Gaussian Elimination (see Section 1.2) pa.rallel the
steps in Buchberger’s Algorithm (Algorithm 1.7.1).

1.7.9. Assume that F = {fi,..., fs} C k[z1,... ,Zn] and each f; is a difference
of two power products. Prove that, with respect to any term order, (F)
has a Grobner basis consisting of differences of power products.

1.8. Reduced Grébner Bases. In the last section we saw how to compute
Grobner bases. However, the Grébner basis obtained from Buchberger’s Algo-
rithm might not be unique. In this section we show that by putting certain
conditions on the polynomials in the Grobner basis, we obtain uniqueness.
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In Buchberger’s Algorithm there are two places where choices are made. First,
there is the order in which the polynomials are inputed and this affects the ap-
plication of the Division Algorithm. Second, in the WHILE loop of Buchberger’s
Algorithm where we compute S-polynomials, we choose {f,g} € G at random.
So, if we were to change either of these choices, we might end up with a different
Gribner basis.

For example, in Example 1.7.10 if we had computed S(f2, f3) = z first, the S-
polynomial S(f1, f2) would have reduced to zero, and would not have appeared
in the Grébner basis. So we would have obtained a different Grobner basis. Note
that even after we have computed the Grobner basis G = {f1, f2, f3, f4, f5} for I,
we can observe that f; = 22 can be removed from G, that is, {f1, f2, f3, f5} is also
a Grobner basis for {f1, f2, fa)- This is because any term divisible by 1t(f;) = =2
is also divisible by It(fs) = z. The set {f1, fa, f, fs} is the Grobner basis for I
we would have obtained had we computed S(f2, f3) = z before S(f1, f2).

This leads to the following definition.

DEFINITION 1.8.1. A Grébner basis G = {g1,... ,9:} is called minimal if for
all i, Ic(g;) = 1 and for all i # j, Ip(g:) does not divide Ip(g;).

LeEMMA 1.8.2. Let G = {g1,...,9:} be a Gribner basis for the ideal I. If
Ip(g2) divides Ip(g,), then {go,... ,9:} is also a Grobner basis for I.

ProoF. Clearly, if a polynomial f is such that lp(f) is divisible by Ip(g1),
then it is also divisible by lp(gz2). Therefore, using Definition 1.6.1, {g2,... ,9:}
is a Grobner basis for I. [

As a direct consequence of this lemma, we now see how a minimal Grobner
basis can be obtained from a Grobner basis.

COROLLARY 1.8.3. Let G = {g1,... ,9:} be a Grobner basis for the ideal I.
To obtain a minimal Grébner basis from G, eliminate all g; for which there exists
J # 1 such that Ip(g;) divides Ip(g;) and divide each remaining g; by lc(g;).

In Example 1.7.10 above, a minimal Grébner basis for I can be obtained from
{fl1f21 f31f4:f5}’ by removing fl)f2) and f4° We could also remove .fl’f31 and
f1. So minimal Grébner bases are not unique, but, as the following proposi-
tion shows, all minimal Grébner bases for an ideal I have the same number of
elements, and the same leading terms.

PROPOSITION 1.8.4. If G = {g1,.-.,9:} and F = {f1,..., fs} are minimal
Grobner bases for an ideal I, then s = t, and after renumbering if necessary,
16(f;) =1t(gs) foralli=1,... ,¢.

PROOF. Since f; is in I and since G is a Grobner basis for I, there exists ¢
such that 1p(g;) divides Ip(f1). After renumbering if necessary, we may assume
that ¢ = 1. Now g, is also in I, and hence, since F' is a Grobner basis for I,
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there exists j such that Ip(f;) divides Ip(g;). Therefore Ip(f;) divides Ip(f1), and
hence j = 1, since F is a minimal Grobner basis. Thus Ip(f1) = Ip(g1)-

Now f, is in I, and hence there exists i such that Ip(g;) divides Ip(f2), since G
is a Grobner basis. The minimality of F' and the fact that 1p(g;) = Ip(f1) imply
that ¢ # 1, and, after renumbering if necessary, we may assume that i = 2. As
above we get that Ip(g2) = Ip(f2). This process continues until all f’s and g’s are
used up. Thus s = £ and after renumbering Ip(f;) =1p(g:) foralli =1,... ,t. O

As we mentioned after Corollary 1.8.3, minimal Grobner bases are not unique.
To get uniqueness, we need to add a stronger condition on the polynomials in
the Grobner basis.

DEFINITION 1.8.5. A Grébner basis G = {g1,...,9:} 5 called a reduced
Grobner basis if, for all i, lc(g;) = 1 and g; is reduced with respect to G — {g:}.
That is, for all i, no non-zero term in g; is divisible by any Ip(g;) for any j # 1.

Note that a reduced Grobner basis is also minimal. We now prove that reduced
Groboer bases exist.

COROLLARY 1.8.6. Let G = {g1,-.. ,9:} be a minimal Grobner basis for the
ideal I. Consider the following reduction process:

a ﬂ).,. hy, where hy is reduced with respect to Hy = {g2,... ,g:}

g2 E».;. ha, where hy is reduced with respect to Hy = {h1,gs,... ,9:}

g3 =2, hs, where hy is reduced with respect to Hy = {h1,ha, g4, ... ,9:}

g 2, hy, where hy is reduced with respect to Hy = {hy, ha, ... ,hy_1}.
Then H = {hy,... ,h:} is a reduced Grobner basis for I.

Proor. Note that, since G is a minimal Grébner basis, we have that Ip(h;) =
Ip(g;) for each i = 1,... ,t. Therefore, H is also a Grobner basis for I (in fact, it
is a minimal Grébner basis). Since the division of g; by A1, ... , hi—1,gi41,--- , 9t
is done by eliminating terms of g; using Ip(hi),... ,1p(hi-1),1p(gi+1), - - - , Ip(g),
and since Ip(h;) = 1p(g;), for all 4, H is a reduced Grobner basis. []

THEOREM 1.8.7 (BUCHBERGER). Fiz a term order. Then every non-zero
ideal I has a unique reduced Grébner basis with respect to this term order.

PROOF. We proved in the previous result that every ideal has a reduced
Grobner basis. Thus we only need to prove uniqueness. Let G = {g;,... ,9:} and
H = {hy, ... ,h:} be reduced Grobner bases for I. We note that by Proposition
1.8.4, since a reduced Grobner basis is minimal, both G and H have the same
number of elements and we may assume that, for each %, 1t(g;) = 1t(h;). Let i be
given, 1 <4 <t. If g; # h;, then g; — h; € I implies that there exists j such that
Ip(h;) divides Ip(g; — h;). Since Ip(g; — k) < Ip(hi), we see that j # i. But then
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1p(h;) = Ip(g;) divides a term of g; or h;. This contradicts the fact that G and
H are reduced Grébner bases. So g; = h;. [

ExAMPLE 1.8.8. Let us go back to Example 1.7.10. We have seen right after
Corollary 1.8.3 that {f3, f5} and {f2, f5} are both minimal Grobner bases for the
ideal I. Since f3 = y and f5 = x, we see that {f3, fs} is a reduced Grébner basis
for I. Since f2 =y + z, we see that fa can be reduced to y using fs. So {f2, f5}
is not a reduced Grobner basis. Of course, the reduced Grobner basis obtained
from {f2, f5} is in fact {f3, f5}, since the reduced Grobner basis is unique.

ExXAMPLE 1.8.9. We go back to Example 1.7.11. There we showed that a
Grobner basis for I = (22 +y2 + 1, 2%y + 22y + z) C Zs[z, y] with respect to the
lex ordering with z > y is {z2+y%+1, 2%y +2zy+z, 3zy+4z+ 33 +y, 495+ 3y* +
y%+y+3}. By Corollary 1.8.3, {z2+y2+1, zy+3z+2y°+2y, y°+2y* +4y% +4y+2}
is a minimal Grébner basis for I. In fact it is easy to see that it is the reduced
Grobner basis for 1.

Exercises

1.8.1. Compute the reduced Grobner basis for the ideal in Example 1.7.9.

1.8.2. Compute the reduced Grobner basis for the ideals in Exercise 1.7.3.

1.8.3. Let I C k[zy,... ,Zy] be an ideal. We call I a homogeneous ideal provided
that I = (f1,...,fs) where each f; is homogeneous (see Exercise 1.4.9).
Fix an arbitrary term order on k[z;,... ,Z,].

a. Show that I is homogeneous if and only if for all f € I, each homoge-
neous component of f is also in I.

b. Show that any homogeneous ideal has a Grobner basis consisting of
homogeneous polynomials.

c. Prove that I is a homogeneous ideal if and only if the reduced Grobner
basis for I consists of homogeneous polynomials.

d. Prove that a subset G of a homogeneous ideal I is a reduced Grobner
basis with respect to the lex ordering if and only if G is a reduced
Grobner basis with respect to the deglex ordering.

1.8.4. Let F Ck[z),... ,z,]| and let I = (F). Find an algorithm that will deter-
mine a subset ' C F such that I = (F”) and for which no proper subset
of F' generates I.

1.8.5. We use the same notation as in Exercise 1.6.19. Let < be any order on
k[z1,... ,z,). We let <, be as in Exercise 1.6.19. Let I = (f1,...,fs)
be an ideal of kfzi,... ,z,]. Let G = {g1,... ,9:} be a Grobner basis for
(fh,..., f*) with respect to <, . We may assume that the polynomi-
als in G are all homogeneous. Prove that G, = {(g1)n,-.-,(g:)rn} is a
Grébner basis for I. [Hint: First note that even without the assumption
that G is a Grobner basis we have (Gr) = (fn | f € (f2,..., fF)) =L
Then note that lt<, (f)n = It(fx) for every homogeneous polynomial in
k[z1,... ,Zn, w]. Prove that S((g:)n, (9;)n) = 5(9i, gj)n- Prove that given
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f)g € k[xl)' . ax‘mw], if f ﬁ’+ 9, then fh ‘Ci’+ gh~]

(*) As mentioned before, a Grobner basis with respect to one term ordering
might not be a Grobner basis with respect to another term ordering. In
this exercise we show that for a given ideal there are only finitely many
possible reduced Grdbner bases. Let I be an ideal of k[z1,... ,Zx].

a.

Let 7 be the (infinite) set of all possible term orderings on k[z1, ... ,Z,].
Let R = {reduced Gr&bner bases for I with respect to the term orders
in 7}, and let £ = {leading term ideals of I with respect to the term
orders in 7}. Prove that there is a one to one correspondence between
R and L.

. Prove that £ is finite. [Sketch of the proof ((MoRo]): Suppose to the

contrary that £ is infinite. For each leading term ideal in £, choose a
term ordering which gives this leading term ideal. Let 7o C 7 be the
infinite set of these chosen term orderings. Also, let I be generated by
{f1,-.., fs}. Since there are only finitely many terms which appear in
the f;’s, there exist terms m,,... ,m; and an infinite set 73 C 7 such
that 1t(f;) = m; for each term order in 7;. Consider the two possible
cases: either (my,... ,m,) is the leading term ideal for I with respect
to one term order in 77, or it is not. In the first case, use Exercise
1.6.17 and in the second add a polynomial to fi,... , fs and repeat the

argument.|

. Conclude that there are only finitely many reduced Grébner bases for

a given ideal.

. A set F which is a Grobner basis for an ideal I with respect to every

term order is called a universal Gréobner basis. Use ¢ to show that
every ideal has a universal Grobner basis. An example of such a basis
is given in Exercise 1.8.7.

Find a universal Grobner basis for the ideal (z—32, zy—z) C Q|z, y]. [Hint:
At each stage of Buchberger’s Algorithm, consider all possible choices of
leading terms.] (Answer: {z —y?,zy — z,3° —3%,2%2 — z}.)

1.9. Summary. We conclude this chapter by giving a summary of the most
important results that we have seen so far. The first theorem lists all the equiv-
alent conditions that we now have for a set G = {g1,...,:} to be a Grobner

THEOREM 1.9.1. The following statements are equivalent for a set of non-zero
polynomials

G={q,...,9:} and I = (G).

(i) For all f € I, there exists i such that Ip(g;) divides 1p(f), that is, G is

a Grébner basis.

(i) Lt(G) = Lt(I).
(iii) f €I if and only if f S5, 0.
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(iv) Forall f € k[z1,...,za), if f i).,. r, f —g—->+ r9, and T, T2 are reduced
with respect to G, then r1 = ro.
(v) For all i # j, 5(gi, 85) >4 0.
(vi) For all f € I, there exists hy,... ,hy € k[z1,... ,Zn] such that f =
higi + -+ + higs and Ip(f) = maxi <y <:(Ip(hy) Ip(g2))-
(vii) Foralli#j (1<1i,j <t), we have S(g:,9;) = hijig1 +--- + hijig such
that Ip(S(gi, g;)) = maxi<y<:(Ip(hijp) Ip(90))-

The proofs that all of these conditions are equivalent are contained in Theo-
rems 1.6.2, 1.6.7, and 1.7.4, and Corollary 1.7.6.

THEOREM 1.9.2. Fiz a term order on k[z1,... ,Z,)- Then every ideal I has
a reduced Grobner basis with respect to this term order. This Grébner basis
18 effectively computable once I has been given as generated by a finite set of
polynomials. Moreover this reduced Grobner basis for I (with respect to the
given term order) is unique.






Chapter 2. Applications of Grébner Bases

This chapter is devoted to giving a number of applications of the theory de-
veloped in Chapter 1 to computations in polynomial rings. We also give some
applications to computations which use polynomial rings. In Section 2.1 we give
methods for doing basic computations in k[z1, ... ,z,] and k[z1,... ,za]/I, e.g.
determining if one polynomial is a member of an explicitly given ideal. In Sec-
tion 2.2 we introduce the Hilbert Nullstellensatz and use it to connect Grdbner
bases to some elementary questions in algebraic geometry. In the next section
we give a method for eliminating variables in systems of polynomial equations
and use it, for example, to compute generators for the intersection of ideals. In
Section 2.4 we study homomorphisms between polynomial rings. In particular
we determine generators for the kernel of such a homomorphism and we give a
method to determine whether it is onto. We then generalize these results to the
case of polynomial rings modulo an ideal (affine algebras). In the next section we
give more applications to algebraic geometry, e.g. we show how to find the ideal
corresponding to the projection of a variety, and to a parametrically given vari-
ety. The last three sections present applications of Grobner bases to problems
in computational mathematics: determining minimal polynomials of elements in
field extensions, determining whether graphs can be colored by three colors, and
finding solutions to integer programming problems.

2.1. Elementary Applications of Grébner Bases. Let I = (fi,... , fs)
be an ideal of k[z1,... ,Zp]. In this section we want to show how to perform
effectively! the following tasks:

(i) Given f € k[zy,... ,Zy), determine whether f is in I (this is the ideal
membership problem), and if so, find v1,...,vs € k[Z1,...,Za] such
that f=vifi+- - +vsfs;

(ii) Determine whether two ideals I, J of k[zy,... ,z,] are equal;

(iii) Find coset representatives for every element of k[z1,... ,Za]/I;

(iv) Find a basis of the k-vector space k[z1,... ,za)/I;

1'We remind the reader that by “perform effectively” or by “determine” we mean that one
can give an algorithm than can be programmed on a computer.

53
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(v) Determine the operations in k[z,. .. ,2,]/I;
(vi) Find inverses in k[zi,... ,z,]/] when they exist.
We begin with Task (i). Let F = {f1,...,f,} and let G = {g1,... ,9:} be
a Grobner basis for I = {fi,... , fs) with respect to a fixed term ordering. We
have already seen in Theorem 1.9.1 that

f€I4=)f-E->_,,O.

So the ideal membership question is answered. Moreover, applying the Division
Algorithm to f € I yields u,,... ,u; such that

(2.1.1) f=wug+ - +ug.

Also, Buchberger’s Algorithm can be implemented so as to keep track of the
linear combinations of the f;’s that give rise to the g;’s. This can be seen as fol-
lows: during Buchberger’s Algorithm (Algorithm 1.7.1) for the computation of a
Grobner basis, a new polynomial g is added to the basis if it is the non-zero re-
mainder of the division of an S-polynomial by the current basis, say {h1, ... , he}.
That is,

£
9=8(hy,hy) =Y wihs,
i=1

for some v, u € {1,2,... ,£} and some polynomials w; which are explicitly com-
puted in the Division Algorithm. This procedure is illustrated in Example 2.1.1
below. So we can obtain as an output of Buchberger’s Algorithm not only the
Grobner basis {g1,...,9:} but also a ¢ X s matrix M with polynomial entries
such that

9 h
(212) il Y e
9t fs

Thus Equation (2.1.1) can be transformed to give the polynomial f as a linear
combination of the original polynomials fi,... , fs:

f=ufi+--+vfs.

EXAMPLE 2.1.1. In this example we consider k¥ = Q. Let f; = 22y —y + =,
f2 = zy®> — z, and I = (f1, f2). We use the deglex term ordering with z < y.
We follow Algorithm 1.7.1 given in Section 1.7, but we keep track of the linear
combinations that give rise to the new polynomials in the generating set.

INITIALIZATION: G := {fl,fg},g = {{fl,fg}}
First pass through the WHILE loop
G:=9
S(fr, f2) =yfL —zfa = -y +zy + 22
(reduced with respect to G)
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Let f3:= —y? + zy + 22
Note that f3 =yfi —zf2
g = {{fl, f3}a{f2a f3}}

G :={f1, f2, f3}
Second pass through the WHILE loop
G = {{f2, f3}}

S(ffs) =yh+a2fs=2y+z' -y’ +zy
AL 2t — 2 4 20y — 22
B, 24 4 gy — 222
(reduced with respect to G)
Let fy = z* + zy — 222
Note that fy = (yfi +22f3) —zfr — fs
=(Py—z)fL + (-2 + 2)f2
G = {{fa, f3}, {f1, fa}, {f2, fa}, {f3, fa}}
G :={f1, f2, f3, fa}
Third pass through the WHILE loop
G == {{f1, fa}, {f2, fa}, {f3, fa}}
S(fo, fa)=fotzfs=2’y+23 -z A1, g3 +ty—2z
(reduced with respect to G)
Let fo =23 +y—2z
Note that fs = (fo+zfs) — fi=(@y - Vfi+ (-2 +1)fa
G = {{f1, fa}, {f2, fa}, {f3, fa}, {1, Fs}s
{fa, fs},{f3, fs}, {f4, fs}}
G:= {fl)f2)f37f4a f5}
The reader can verify that all the remaining S-polynomials reduce to zero,

and hence G = {f1, fa, f3, fa, f5} is a Grobner basis for I. It is also easy to see
that {f1, f3, fs} is a Grobner basis for I, since 1t(f2) is divisible by 1t(f3) and
1t(f4) is divisible by 1t(fs). In fact {f1, f3, f5} is the reduced Grdbner basis for
I with respect to the deglex term ordering with z < y. Moreover, in the above
computation we kept track of the linear combinations of f; and f; giving rise to
f3 and fs and this gives us the following:

h 1 0
h
(2.1.3) £ | = — ‘
[f:] |ta:yy—-1 -—:1:2+1:||:f2]

Now consider the polynomial

f = zly — 22° + 222y — 223y — 2% — 2% + 42y® — 32y + 223 — y + 22.
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We show? that f € I:

Fooh oS 2% oty 2wt - P dmy? -2y 42—y + 2
TN 0a2y? 2%y —22% — 2 + dzy? — 32—y + 2
Wl _9rdy— 22 — 2P+ dmy? — 323+ 2P —2ay —y+ 22
E aat 2+ oy’ - 3% + 4y — 6oy —y+ 22
22l 9yt amy? -3+ 4 —doy— 42 —y+ 2
TR owy? -2y 3% + 4P —doy — 427 —y+ 22
2l Py’ —doy 42—y 42
Lfs 4y? — 4zy — 42?

B}
So we see that

f z?fi — 222 f5 + 2yfi — 2yfs — 22 fs + 2yfz — 22f3 — fs — 4fs

(@®+29)fy + 2y — 22 — 4)fs + (=20 — 2y — 22 — 1) fs.

Using Equation (2.1.3) we have

f = @+a)h+@Qy-22-4)(yhHh -zf)

+(—22% — 2y — 2z — 1)((zy — Vfi + (-2° + 1) f2)
(—2z%y — 2zy? — 222y + 2y — 32y + 322 + 2z + 1) f;
+(2z* + 222y + 223 — 22y + 2% — 2y + 2z — 1) fi.

EXAMPLE 2.1.2. We give another illustration of this for k = Zs. We go back to
Example 1.8.9. Recall that the reduced Grobner basis for I = (f), fo) C Zs[z,y],
where f; = 22 4+ y2 4+ 1 and f, = 2%y + 22y + z, with respect to the lex ordering
with z > y, is {g1, 92,93}, where g1 = f1, g2 = 2f3 = zy + 3z + 2y° + 2y, and
93 = 4fs = ¥° + 2% + 4% + 4y + 2. It is easy to keep track of how g, and g3 are
generated during the algorithm, and we get

92 = 2yf+3f
g3 = 4(y+3)g1 +2(3z+4° + 3y)g2
= (2zy+y3+202 +4y+2)fi + 3z + 4% + ) fo,

21t is convenient, when we are trying to keep track of the linear combinations in the reduc-
tion process, to include in the notation the term by which we multiply the polynomial we are
using for reduction. That is, if f,g,h € k[z1,. - ,Zn], and X is a term, then f %9 h means
that h = f — Xg.
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and so

a1 1 0 f
| = W : 5]
g 2oy + 1P+ 22 +4y+2 3z+42+3y 2

The second task, determining whether two ideals I, J are equal, is a conse-
quence of Theorem 1.8.7. That is, I = J if and only if I and J have the same
reduced Grébner basis. In particular, we note that for a given ideal I, we have
that I = k[zy,...,zy] if and only if the reduced Grobner basis for I is {1}.
Alternatively, I = (f1,...,fs) C J if and only if fi,..., fs € J, and we know
how to determine whether this is true; so, to determine if I = J, we may simply
check whether I C J and J C 1.

We now consider Task (iii), that is, finding coset representatives for every
element of k[z1,...,z,]/]. We keep the notation from the beginning of the
section: I = (G), where G = {g1,...,g:} is a Grobner basis for . We know that
for all f € k[z,. .. ,z,] there exists a unique element r € k[z1, ... , Z], reduced
with respect to G, such that f ir_,_ r (Theorem 1.6.7).

DEFINITION 2.1.3. The element r above is called the normal form of f with
respect to G, and is denoted Ng(f).

PROPOSITION 2.1.4. Let f,g € k[z1,-.. ,Zn]. Then
f=g (mod ) if and only if No(f) = Ng(g).

Therefore {Ng(f) | f € k[z1,--.,Za]} is a set of coset representatives for
klzy,... ,z,])/I. Moreover, the map Ng: k[z1,...,Zn] — k[z1,...,Zs] is k-
linear.

PrROOF. From the Division Algorithm, there exists ¢ € I such that f =
g+ Ng(f), so that f — Ng(f) € I. Thus f +I = Ng(f) + 1 in k[z1, ... ,2,]/1.

Also, for any c;,c; € k, and for any fi, fa € k[z1,...,z,), c1fi + c2fa —
(c1Ng(f1) +c2Ng(f2)) € I and e1Ng(f1) + caNg(f2) is reduced with respect to
G. Therefore Ng(c1f1 + caf2) = c1 Na(f1) + c2Ng(f2) (see Exercise 1.6.15) and
so the map Ng: k[z1,... ,Zn] — K[Z1,... ,Z,) is k-linear.

Now f = g (mod I) if and only if there exists ¢ € I such that f = ¢ + g.
Thus Ng(f) = Ne(g) + Ne(g)- But Ng(q) =0, since ¢ € I, so Ng(f) = Ng(9)
Conversely, if Ng(f) = Ng(g), then f —g = (f — No(f)) — (9 — Na(g)) € I and
hence f =g (mod I). O

EXAMPLE 2.1.5. We go back to Example 2.1.1. We note that

z3 LN ~y+ 2z.

Since —y + 2z is reduced, we have Ng(z®) = —y + 2z. Also,

2y +y Lo 2z
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Since 2y —z is reduced, we have Ng(z?y+y) = 2y—z. Moreover, since Ng(z3) #
Ng(z%y +y), we see that 23 # 22y +y (mod I).

The next task we want to consider is Task (iv), that is, we wish to find a basis
of the k-vector space k[zy,...,z,]/I. We keep the same notation as above.

PROPOSITION 2.1.6. A basis for the k-vector space k[z1,... ,zn]/I consists of
the cosets of all the power products X € T™ such that Ip(g;) does not divide X
foralli=1,2,... ,t.

PrOOF. We have seen that for any f € k[z1,... ,z,), f+I = Ng(f)+Iin
k[zy,... ,zn]/I. Since Ng(f) is reduced with respect to G, it is, by the definition
of reduced, a k-linear combination of power products X € T" such that Ip(g;)
does not divide X foralli = 1,2,... ,t. Finally, the cosets of such power products
are linearly independent by the uniqueness of the normal form. [

EXAMPLE 2.1.7. Again, we go back to Example 2.1.1. A Grobner basis for
I with respect to deglex with z < y is G = {z%y ~ y + z, —y? + zy + 22,2% +
y — 2z}. So a basis for Q[z,y]/I consists of the cosets of 1,z,y,z2,zy and so
dimq(Qlz, 31/I) = 5.

We are now able to complete Task (v), that is we can now give a multiplication
table for k[z1,... ,zn]/I. The representative of the coset of f times the coset of
g will be the normal form of fg.

ExXAMPLE 2.1.8. We go back to Example 2.1.7 and give a multiplication table
for Q[z, y]/I. The representative of the coset y + I times the coset zy + I is the
normal form of zy?. Since zy? >, z, and z is reduced with respect to G,
we have Ng(zy?) = z and so (y + I)(zy + I) = z + I. The other products are
computed in a similar fashion and we obtain the following multiplication table for
the representatives 1, z,y,z2, ry of the Q-basis {1+I,z+I,y+I,z%+I,zy+I}
for Q[z, /1.

x [ 1 z Y z? Ty
11 z y z? zy

z |z z? Ty -y+2z | y—=x
y |y zy zy + z? y—2z z

2?2 | 2? | ~y+2c| y—z |-zy+222 |y —2?
zylzy| y—2 z Ty — x2 z2

So, for example, (222 +y)(3zy — 5) = 623y — 1022 + 3zy? — 5y = 6(zy — z2) —
1022+ 3z — 5y = 6zy— 1622 —5y+3z (mod I) and so (2z%2+y+1)(3zy—5+1) =
6zy — 1622 — 5y + 3z + I

ExAMPLE 2.1.9. We go back to Example 1.8.9. Recall that the reduced
Grébner basis for I = (f1, f2) € Zs[z,y], where f; = 22 +y?> + 1, and f, =
z2y + 22y + x, with respect to the lex ordering with z > v, is {g1, 92, g3}, Where
@ = f1, 92 = zy+ 3z +2y° + 2y, and g3 = y° +2y* + 49 + 4y + 2. So a basis for
Zs|z,y]/I consists of the cosets of 1,z,y,y?, 3%, ¥*, and so dimg, (Zs[z,y]/I) = 6.
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To conclude this section, we consider Task (vi), that is, we want to determine
whether an element f+1I of k[zy, ... ,z,]/I has an inverse and, in the case when
f+1 has an inverse, we want to compute that inverse. Of course, given a k-basis
and the multiplication table, this problem translates into an exercise in linear
algebra provided the k-basis is finite (see Theorem 2.2.7). We illustrate this in
the following example.

ExAMPLE 2.1.10. Using Example 2.1.1 again, we would like to determine
whether y + z + 1 + I is invertible, and, if so, determine its inverse. So we
need to find a,b,c,d, e € Q such that

(axy+ bz’ +cy+de+e)(y+z+1)=1 (mod I).
Now,
(azy +bz? +cy+dz+e)(ly+z+1)

= axy? +az’y + azy + bo’y + ba® + ba® + cy? + cxy
+ey+dry+de’ +dx+ey+exr+e
az + a(y — z) + azy + b(y — ) + b(—y + 2z) + bz?
+c(zy + 2?) + cxy + cy + dzy + dz? + dx + ey + ex + € (mod I)
= (a+2+d)zy+(b+c+d)z’+(a+c+e)y+(b+d+e)z+e

So (azy + bz? +cy+dx+e)(y+z+1) =1 (mod I) if and only if

a + + 2 + d =0
b+ ¢ + d =0

a + c + e =0
b + d + e =0

e =1

b

since the cosets of 1,z,y,z2,zy form a basis of the Q-vector space Q[z,y]/I.
These equations are easily solved to yield a = —2,b = —1,c = 1,d = 0, and
e =1. Hence (—2zy — 2+ y+ 1) + I is an inverse of y+z + 1+ I in Q[z, y]/I.
Of course if we had started with an element of Q[z,y]/I that did not have an
inverse, these equations would have bad no solution.

An alternative approach to the method used in Example 2.1.10, which does
not suffer from the defect that k[z1, ... ,z,]/] must have a finite k-basis, is to
recognize that f + I has an inverse in k[z1,...,z,]/I if and only if the ideal
(I, f) is, in fact, all of k[zy,... ,zy,)], since fg—1 € I if and only if 1 € (I, f).
Thus, given an ideal I = (f1,..., fs) and a polynomial f € k[z1,...,Zx], to
determine if f+ I has an inverse in k[z,. .. ,z,)/I and to compute that inverse,
we first find a reduced Grébner basis H for the ideal {f1,... , fs, f). If H # {1},
then f + I does not have an inverse in k[z1,... ,z,]/I. If H = {1}, then, as in
the solution to Task (i), we can express 1 as a linear combination of fi,..., fs, f,

1=hfit+---+hsfs +9f.
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The polynomial g is then the inverse of f modulo I.

EXAMPLE 2.1.11. We go back to Example 2.1.10. We first compute a Grébner
basis for the ideal (f1, f3, f5. y+z+1) with respect to the deglex order with z < y,
keeping track of the multipliers as we did in Example 2.1.1. Letting fo = y+z+1
we compute that S(fi, fo) —+ —z2—2z = fr, S(f3, fs) —+ —2z—1 = f3. The
S-polynomials S(fs, fe), S(f1, fr), S(fs, f2), S(fe: f1), S(f1, fs), and S(f3, fs) all
reduce to zero. Finally, S(fs, fs) —+ §. At this point we stop, since all other
S-polynomials must reduce to zero using the polynomial . Working backwards
we compute

1 = Afs—4fs—2fr+(22° - 5)fs
= (222 +3)fi+(22° - 5)fs+ (22" + T)fs
+(2z% + 22y — 42 — 522 — 5y + 10z + 1) f,

giving us the inverse (2z* + 2r2y — 4% — 522 — 5y + 10z + 1) + I. Using the
multiplication table of Example 2.1.8 we readily see that this is the same answer
we obtained in Example 2.1.10.

Exercises

2.1.1. You should do this exercise without the aid of a Computer Algebra System.
Let f = zy* + 223y — zy? + 22%y — 2 — y. In Example 2.1.1 show that
f €I and write f as a linear combination of fi, f3, f5 and also as a linear
combination of fi, fo.

2.1.2. Compute the multiplication table for Example 2.1.9.

2.1.3. Consider Example 2.1.8. Let f = —1+z2+zy. Show that for all g € k[z, ]
such that g(0) = 0 we have fg € I. {Hint: Note that it suffices to show
that zf,yf € 1]

2.1.4. Show that dimg(Q[z, y, 2]/ (¥* + 3y%z + 22,22 + z,zy + y? 4 2)) = o0.

2.1.5. In Q[z,y, 2], let I = (&% + 2,2y + ¥* + 2,22 — ¥° — 2yz,y* + 3%z + 2?)
and J = (22 + 2,2y + ¥ + 2,2° — yz). Determine which of the following
(if any) are true: ITC J,JCI,or I = J.

2.1.6. In Example 2.1.9 determine which of the cosets, y> +I,z+1I,2+z+y>+1
has an inverse. For those that do have an inverse find it.

2.1.7. Rationalize the denominator of W [Hint: Consider the ideal

z
I'=(y?-3,43 —5) C Q(z)[y1,y2]- Note that {y? — 3,33 — 5} is a Grobner
basis for I. Follow the technique used in Example 2.1.10, keeping in mind
that the field is Q(z).]

2.1.8. Show that in Q[z,y]/I, where I = (z? +y,y? +z), the coset zy+y+a+1,
for a € Q, has an inverse if and only if a # 0.

2.1.9. Let I C k[z,,... ,z,] be an ideal.

a. Devise a method similar to that used in the first solution of Task (vi)
for determining whether for f € k[z1,... ,Za), f+1 is a zero divisor in
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k[z1,...,z,]/I. (Recall that in a commutative ring A, o € A is called
a zero divisor provided that o # 0 and there is a 8 # 0 in A such that
off=0.)

b. Show in Example 2.1.8 that zy + I is a zero divisor.

c. Show in Example 2.1.8 that if J = {g+ I € k[zy,...,z,]/I | (¢ +
I)(z? 4+ I) = 0}, then J is the set of all multiples of ~1 + 22 + zy+ I
by elements of k.

2.1.10. In Q[z,y, 2], let I = (z + y?,z%y + z). Show that I is a prime ideal (that
is, Q[z,¥y,2]/I contains no zero divisors). [Hint: Note that for lex and
z >z >y, the generators for I form a Grobner basis.]

2.2. Hilbert Nullstellensatz. In Section 1.1, we saw that there was a cor-
respondence between subsets of k[z,...,z,] and subsets of k™. The purpose
of this section is to analyze this correspondence further. We need to expand

somewhat the notions given there.
Let K be an extension field of k, that is, K is a field such that k C K. Given
a subset S C k[z),... ,Z,], we define the variety, Vk(S), in K™ by

Vk(S) = {(a1,--- ,as) € K™ | f(a1,-... ,an) =0 for all f € S}.
We note that, as in Section 1.1, if I = (f1,...,fs) C k[z1,... ,Z,] then
Vk(I) ={(a1,--. ,as) € K" | fi(a1,... ,an) =0,1 < i < 8} =Vk(f1,---, fs)-

We emphasize that the variety is in K™ and the ideal is in k[z),...,z,]. (It
makes sense to evaluate f € k[z),... ,Zn] at a point (ay,... ,a,) € K™ since
k C K.) Also, given a subset V C K™ we define the ideal, I(V), in k[z,... ,Z,)]
by

I(V)={f € klz1,... ,za] | f(a1,...,an) =0 for all (ay,... ,a,) € V}.
So now we have the correspondences

{ Subsets of k[z;,...,zs]} — { Subsets of K"}

(2.2.1) g _ Vie(S)
and
(2.2.2) { Subsets of K} — {Ideals of k[z1,... ,zn]}

174 — I(V).

The reason for introducing this extended notion of a variety is that the set of
solutions of a system of equations depends on the field K. That is, the field K
will affect the properties of the maps above. This is illustrated in the following
two examples.

EXAMPLE 2.2.1. For K = R we have Vg(z? + %) = Wr(z,y) = {(0,0)} C R2.
On the other hand for K = C we have that V¢ (z? + y2) is the union of the two
lines y = +iz, where i = /-1, while V¢(z,y) is still {(0,0)}.
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EXAMPLE 2.2.2. Consider the polynomial f = 2% + y2 + 1. Then for K = R
we see that VR(f) = @, whereas V¢(f) has an infinite number of points. The
situation is similar for f = z* + y* + 1. In fact there are infinitely many ideals
of R[z,y| whose corresponding variety in R? is empty.

Examples 2.2.1 and 2.2.2 show that a system of equations may have “too few”
solutions in k™ to give us insight into the algebraic and geometric properties of
I and Vk(I). In Example 2.2.1, the ideals (x? + ¢} and (z,y) give rise to the
same variety over R, but are “essentially different”. The same situation occurs
in Example 2.2.2. By enlarging the field R to C, “essentially different” ideals
will give rise to different varieties. This will be clarified later and the key result
for this is the Hilbert Nullstellensatz?® given below.

In order to state the Nullstellensatz, we consider the algebraic closure of the
field k, denoted k. Recall that a field K is algebraically closed if for every poly-
nomial f € K|[z] in one variable, the equation f = 0 has a solution in K. Every
field k is contained in a field k which is algebraically closed and such that every
element of % is the root of a non-zero polynomial in one variable with coefficients
in k. This field is unique up to isomorphism and is called the algebraic closure
of k (see [Hun, Lan]). For example, the algebraic closure of R is C. For the
remainder of this section we will consider the correspondences (2.2.1) and (2.2.2)
with K = %.

The Hilbert Nullstellensatz has many forms and we will present two of them
below in Theorems 2.2.3 and 2.2.5. We will not include the proofs of these
theorems. The interested reader can find them in [AtMD, Hunl].

THEOREM 2.2.3 (WEAK HILBERT NULLSTELLENSATZ). Let I be an ideal con-
tained in k[zy,... ,T,). Then Vi(I) =0 if and only if I = k[z,, ... ,zn].

Note that the result is clear for one variable since the field k is algebraically
closed. Before we go to the next form of the Nullstellensatz, we need a definition.

DEFINITION 2.2.4. For an ideal I of k[z,... ,T,] we define the radical of I,
denoted V1, by

VI ={f €klzy,...x,] | there exists e € N such that f© € I}.

It is easily checked that +/7T is an ideal in k[z1,... ,Zs]). Moreover, we have
that I and +/T give rise to the same variety; that is, for all fields K 2 k,
Vi (1) = Vk(VT).
THEOREM 2.2.5 (STRONG HILBERT NULLSTELLENSATZ). I(Vi(I)) = VT for
all ideals I of k[zy, ... ,Tn)-

3The word “Nullstellensatz” is a German word for “zero point theorem”. The theorem is
given this name because, as we see in Theorem 2.2.3, it gives information about the zero set,
i e. the variety, of an ideal.
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Theorem 2.2.5 implies that two ideals I and J correspond to the same variety,
ie. Vi(I) = Vi(J), if and only if their radicals are equal, i.e. VI = v/J. This
allows us to make more precise what we meant earlier by “essentially different”
ideals. Two ideals are “essentially different” if and only if they have different
radicals. In Example 2.2.1, note that v/{(z,y) = (z,y) and /(z? + y2) = (z? +
y?) and so are “essentially different” and correspond to different varieties in C 2.

We now consider some applications of the above results. Let I = (fi,... , fs)
be an ideal of k[z1,... ,Z,], and let G = {g1,...,9:} be the reduced Grébner
basis for I with respect to a term ordering.

THEOREM 2.2.6. Vi(I) = @ if and only if 1 € G. (i.e., given polynomials
f1,---, fs, then there are no solutions to the system fy =0,fo =0,...,fs =0
ink™ if and only if G = {1}.)

PROOF. By Theorem 2.2.3, Vi(I) = 0 if and only if 1 € I. But the last
condition is equivalent to G = {1}, since G is the reduced Grébner basis. [

THEOREM 2.2.7. The following statements are egquivalent.
(i) The variety Vi(I) is finite.
(ii) For eachi=1,...,n, there exists j € {1,...,t} such that Ip(g;) = z¥
for some v € N.
(i) The dimension of the k-vector space k[z1,... ,z,]/I is finite.

PROOF. (i) = (ii). Let Vi(I) be finite. If V4 (I) is empty, then, by Theorem
2.2.3, I = k[z,,... ,Z,] and hence G = {1} and (ii) is trivially satisfied. So we
may assume that V(I) is not empty. Fix i € {1,...,n}. Let a;;,5 = 1,... ,¢
be the distinct ith coordinates of the points in Vi(I). For each j,1 < j < £, let
0 # f; € k[z;] be such that f;(a;;) = O (this can be done by the definition of k).
Let f = fifa--- fe € k[zi] C k[z1,... ,%,]. Then we see that f € I(Vi(I)), and
hence, by Theorem 2.2.5, there exists e such that f¢ € I. Since Ip(f¢) = z¢™ for
some natural number m, and since the leading power product of every element
of I is divisible by the leading power product of some element of G, there exists
a polynomial in G whose leading power product is a power of z; alone. This is
true forevery i =1,... ,n.

(ii) =>(iii). We saw in Section 2.1 that a k-basis of k[z1,... ,Zx]/I is the
set of cosets of power products reduced with respect to G. Since for every i €
{1,...,n} a power of z; is a leading power product of some g;, there are only
finitely many power products which are reduced with respect to G, and hence
dimg k[zy, ... ,z,]/] is finite.

(iii)==>(i). We will show that for any 7 = 1,... , n, there are only finitely many
distinct values for the ith coordinate of points in V;(I). Fix ¢ € {1,... ,n}. Since,
by assumption, k[z;,... ,Z,]/I is a finite dimensional k-vector space, the powers
1,z;,72,... of z; are linearly dependent modulo I. Therefore there is an integer
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m and constants ¢, € k,0 < § < m, not all zero, such that

m .
chm‘;? el

Jj=0

Since the above polynomial can only have finitely many roots in k, there are only
finitely many values for the ith coordinates of the points of |01 ). O

An ideal I # k[z1,... ,z,] that satisfies any one of the equivalent conditions
in Theorem 2.2.7 is called zero-dimensional. This terminology is adopted because
Vi(I) consists of only finitely many points.

EXAMPLE 2.2.8. In Example 2.1.1 we saw that a Grobner basis for the ideal
I = (2%y — y + z,7y?> — z) in Q[z,y] with respect to the deglex term or-
dering with z < y is G = {z%y —y + z,—y% + zy + 2%,2% + y — 22}. We
see that z3 and y? appear as a leading power product of elements of G, and
hence V¢(I) is finite. In fact it is easy to solve the equations to get Vg(I) =
{(0,0), (e, -1), (~a, 1), (¢, 1), (—a’,1)}; where o and ' are the roots of the
equation 22 — 2 —1=0.

We note that a Grobner basis for I with respect to the lex term ordering with
z<yis G' = {z° — 3% + z,y + 23 — 2z}, and again we have that some power
of z and some power of y appear as leading power products of elements of G'.
These equations may easily be solved to yield the same answer as above.

EXAMPLE 2.2.9. We go back to Example 2.1.9. Recall that the reduced
Grobner basis for I = (f1, f2) € Zs[z,y], where fi = 22 +y>+ 1 and f, =
z?y + 2ry + =, with respect to the lex ordering with z > y, is {g1, g2, g3}, where
a1 =1, g2 = Ty + 3z +2¢° + 2y, and g3 = y° + 2y* + 4y® + 4y + 2. We see that
z? and y° appear as leading power products and hence V5 (1) is finite. We note
that not all of the solutions are in Zs; some are in the algebraic closure Zs of Zs.

EXAMPLE 2.2.10. As a third example we again let £ = Q and consider the
intersection of the circle f; = (z —1)2 4+ y? — 1 = 0 and the ellipse fo = 4(z —
1)2 + 42 4+ zy ~ 2 = 0. Using the lex term ordering with = > y we see that the
Grdbner basis for the ideal (f1, f2) is {g1, 92}, where g, = 5y* —3y® —6y% +2y+2
and g, = = — 5y + 3y? + 3y — 2. Since Ip(g;) = ¥* and Ip(g2) = z, we see that
Theorem 2.2.7 implies that the number of points in the intersection is finite.
Also, clearly g; = 0 has at most four solutions and for each solution of g; = 0 we
get precisely one solution of go = 0. Thus we see in this case the geometrically
obvious fact that the intersection of a circle and an ellipse can consist of at most
four points.

We note that in the last example the form of the Grobner basis was partic-
ularly convenient for determining the points in the variety. That is, the first
polynomial contained only the y variable, and the leading power product of the
second polynomial was a power of z. We will now show that, in the case of zero-
dimensional ideals, this type of structure in the Grobner basis is always present
when the lex term ordering is used.
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COROLLARY 2.2.11. Let I be a zero-dimensional ideal and G be the reduced
Grébner basis for I with respect to the lex term order with z; < Z3 < -+ <
Zn. Then we can order gi,... ,g: such that g, contains only the variable z;, g2
contains only the variables 1 and zo2 and Ip(ge) is a power of z2, g3 contains
only the variables z1,z2 and z3 and Ip(g3) is a power of =3, and so forth until

gn-

PROOF. This follows immediately from Part (ii) in Theorem 2.2.7. That
is, we may reorder the g; such that Ip(g;) is a power of z;. It then follows,
because of the lex ordering, that the only variables that may appear in g; are
Z1,T2,-..,25. O

We see that the Grobner basis for a zero-dimensional ideal [ is in “triangular”
form (this is similar to the row echelon form in the linear case). Thus, in order
to solve the system of equations determined by a zero-dimensional ideal I, it
suffices to have an algorithm to find the roots of polynomials in one variable.
That is, we first solve the equation in one variable g; = 0. For each solution a
of g1 = 0, we solve the equation g2(a,z2) = 0. We continue in this manner all
the way until g,, = 0. The solutions obtained in this way are the only possible
solutions. We still have to test them in the equations g,4+; =0,... ,9: =0 (in
the case when ¢ > n) in order to obtain the set of solutions of the full system of
equations. The techniques for finding the roots of polynomials in one variable
are not part of the theory of Grobner bases. The interested reader should consult
[Coh]. These ideas will be illustrated in the following example.

EXAMPLE 2.2.12. Consider the ideal I = (2%y+2%,z3y+z+y+1, 2+ 22 +33)
in Q[z,y,2]. We compute* the reduced Grébner basis G for I with respect to
the lex ordering with z > y > 2. We get G = {z* — 23,y + 3y%2 — 297 —
lz+ P+ + 2+ 2 -2+ 2+ 1,22+ P 2yt + 2y Yy +
22—y 22—z +y 0 — ¥ + B + 3y ey — 282 — ¢ + 252 + 5 -
2ytz —y* — 2032+ 93 + y?2z —yz + y — 23 + 522 + 2z + 1}. So using the notation
of Corollary 2.2.11, we have g; = 2* — 2% is a polynomial in z alone. Also,
g =y +3y%2 -2y —dytz+y3+y? +2y+ 2% — 22+ 2+ 1 is a polynomial in y
and z alone whose leading power product is Ip(gz) = y*!. Finally g3 = 22 +y%+2
is a polynomial in z,y, z whose leading power product is Ip(gs) = z2. So to find
the solutions of the original set of equations, we first note that z =0 or z = 1.
Then in order to find the corresponding y values, we would have to solve the
11th degree equations g(y,0) = 0 and g2(y,1) = 0. We continue this way as
described above.

4For the remainder of this chapter and following chapters, Grobner basis computations will,
most often, not be done explicitly in the text and will often require the use of a Computer
Algebra System. The reader who wants to verify the computations stated in the text should
avail themselves of such a system. The authors usually used CoCoA, but other systems could
have been used for some of the computations. This is discussed in the Appendix.
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We have seen in Theorem 2.2.5 the importance of computing v/T. For zero-
dimensional ideals we will show how to do this in Exercises 2.3.23 and 2.3.24.
But this is a difficult task, in general, which is beyond the scope of this book.
The interested reader should consult [EHV, GTZ]. However we can now give
an easy criterion for membership in v/7.

THEOREM 2.2.13. Let I = (f1,...,fs) be an ideal in k[z,,... ,z,). Then f €
VI if and only if 1 € {f1,... , fs; 1 —wf) C k[z1,... ,Zn, w], where w is a new
indeterminate.

PrOOF. By Theorem 2.2.5, VI = I(Vi(I)), and hence f € VI if and only if
fla1,... ,an) = 0 for all (ai,...,an) € Vi(I). Let f € VI. If (ay,... ,an,b) €
VE((fla (RN 1f3) 1- 'U)f)), then

fi(a1,...,an) =0foralli=1,2,...,sand 1 —bf(ay,...,a,) =0.

But then (ay,... ,a,) € Vi(I), and hence f(a;,...,a,) = 0, which is a contra-
diction. Therefore Vi((f1,...,fs,1 —wf)) =@, and by Theorem 2.2.3, we have
1€ {f1,---,fs,1 —wf). Conversely, let 1 € (f1,...,fs,1 — wf). Then

1= hifi+h(1 - wf),

i=1

for some h;, h € k[zy, ... ,Zn,w]. Then for every (ay,... ,a,) € Vi(I), we have
1=(1-wf(ay,...,an))h(a,-.. ,an,w).

Note that the right-hand side is a polynomial in w. If f(ay,... ,an) # 0, then we
can set w = m to obtain a contradiction. Therefore f(ai,... ,an) =0,

andso f€vI. O

So the radical membership question can be answered by deciding whether 1
is in an ideal. Thus, as we showed in Section 2.1, to decide whether f is in v/,
we first compute a reduced Grobner basis G for the ideal (fi,... ,fs,1—wf). If
1€ G, then f € VI, otherwise, f ¢ V1.

EXAMPLE 2.2.14. Let I = (zy? +2y?,z* — 222 +1) be an ideal of Q[z,y]. We
would like to determine whether f =y — z2 + 1 is in v/I. So let us consider the
ideal (zy? +2y?,z* —22%2+1,1—w(y —z2+1)) in the ring Q[z, y, w]. A Grébner
basis for this ideal with respect to the deglex term ordering with z < y < w can
be computed to be {1}, so that f is indeed in v/I. Since f € VI, we know that
fe € I for some e, and we may want to determine the smallest such e. To do this
we first compute a Grébner basis for I. For example, with respect to the deglex
term ordering with z < y, we have G = {y?,z* — 222 + 1}. We use this Grdbner
basis to compute the normal form of f* for 4 = 1,2,... until the first time
that normal form is zero. For example, we can compute that Ng(f) = f # 0,
Ng(f?) = ~2yz? + 2y # 0, but Ng(f2) =0, so that f3 € I.
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Theorem 2.2.13 gives a method for determining whether two ideals I and
J have the same radical and therefore correspond to the same variety in ™.
Let I = {f1,...,fs) and J = {g, ... ,g:). Using Theorem 2.2.13 we can decide
whether each f; is in v/J. If so, then I C v/J and hence VT C v/J. The reverse
inclusion is checked similarly.

EXAMPLE 2.2.15. Let I = (z222+2%, 224 +22222 + 23, y22—2y22+23, 2%y +¢°)
and J = (z22+22,y22 - 23, 22y —x%2,y* — 3, 42— 232, 26+ 24, 25 — %) be ideals
in Q[z,y, 2. The reader can easily verify by the method above that VT = v/J.

Exercises

2.2.1.

2.2.2,

2.2.3.

2.24.

2.2.5.
2.2.6.

22.7.

Consider the system of equations over C

210 — 2228 4 5124 — 4822 + 18 —18y
{ z10 — 222 + 51z* — 3022 + 18 18z
712 — 9710 4 3228 — 5726 4+ 5124 - 1822 = 0.
Obtain an explicit solution involving ¢ and ¢? where 1,({, and (2 are the
three cube roots of unity. [Hint: Use lex with £ > y > z. There are 11
solutions.]
Use Lagrange Multipliers to maximize the function f = z? + 32 + zy
subject to the constraint z2 4+ 2y = 1. (At least find explicitly the 4
points where the maximum could occur.)
Show (using a Computer Algebra System) that the function f(z,y,2) =
(2% +y?)(z? + y® — 1)z + 2% + = + y has no real critical points (i.e. places
where the three partial derivatives vanish simultaneously).
In Q[z,y,2], let I = (z*y? + 22 — dzy®z — 2y%2,22 + 22y + y%). Let
f = yz — z3. First show that f € /7. Then find the least power of f
which lies in I.
Verify the assertions made in Example 2.2.15.
Show that the following are equivalent for an ideal I C k[zy, ..., Zn].
a. I is zero-dimensional.
b. For all 4, 1 < i < n, there is a polynomial f € I such that f contains
only the variable ;.
Let I be a zero-dimensional ideal of k[z1,... ,z,]|. Corollary 2.2.11 gives
one way to compute the monic generator of I N k[z;]. In this exercise we
present a more efficient way to compute this polynomial, fori =1,... ,n.
We will assume that we have a Grobner basis G for I with respect to
some term order (any order will do). This method will not require any
pew Grobner basis computation, instead it will use simple techniques of
linear algebra applied to the vector space k[zq,... ,z,|/I.
a. Let m be least such that {1+ I,z;+1I,... ,z7" + I} is a set of linearly
dependent vectors in k[zi,...,zn]/I. Let 37" ja,z¥ = 0 (mod I).
Prove that f = -~(37. a,z¥) is the monic generator of I N kfz;].
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In view of this, we need a method for determining whether {1+1,z;+
I,...,z™ + I} is linearly dependent in k[z),... ,,]/I and, if so, for
finding a linear combination }°J" a,z? in I. Consider m + 1 new
variables yo,¥1,. .. ,¥m and the polynomial g = S % Ng(z¥) €
k[Zy,. - Zn,Y0,--. ,Ym]. We view g as a polynomial in k[z,, ... ,z,]
with coefficients in k[yo, - . . , ¥m] (Which we note are all linear), and we
let J be the ideal in k[yo, - .. , ¥m] generated by the coefficients of g.

. Prove that {1+ I,z; +I,... ,z™ + I} is a linearly dependent subset

of k[z1,... ,Zx]/I if and only if Vi (J) # {0}.

. Prove that if (ag,... ,am) € Vi(J), then f =37 ja,z? € I.
. Use the above to give an algorithm that inputs a Grébner basis G for

I and outputs the monic generator of I N k[z;].

. Use the algorithm above to find INk[z] and I Nk[y] in Examples 2.2.8,

2.2.9, and 2.2.10. Verify your answers by computing the appropriate
Grobner bases.

(Fauggre, Gianni, Lazard, Mora [FGLM]) Let I be a zero-dimensional
ideal of k[z1,...,Z,]. Let G; be a Grobner basis for I with respect to a
term order <;, and let <3 be another term order. The technique presented
in Exercise 2.2.7 can be used to compute a Grobner basis, G, for I with
respect to <2 using only linear algebra.

a.

Let X1,... , X, be power products in k[z,, ... ,z,). Use the technique
of Exercise 2.2.7 to give a method for determining whether {X; +
I,...,X, + I} is linearly dependent or not.

. Assume that all the the power products in k[z,... ,Z»] are ordered

using <2 as follows
1<2X1 <9 Xo <2X3 <g---.

Modify a to give a method for deciding whether there exists a polyno-
mial f in I whose leading term with respect to <z is Xr.

. Use the above to find an algorithm that inputs a Grobner basis, Gy,

for I with respect to <; and outputs a Grobner basis, G, for I with
respect to <z . (Note that any power product X € k[z1,...,z,] is
either reduced with respect to G2, a leading power product of some
polynomial in G2, or a multiple of the leading power product of some
polynomial in G5. Moreover, eventually in the algorithm, every power
product not yet examined will be a multiple of a leading power product
already generated.)

. Why does the method of this exercise not work for ideals which are

not zero-dimensional? [Hint: Think about the stopping condition in
c]

. Use this algorithm to compute a Grobner basis for I in Example 2.2.8

with respect to degrevlex with z < y.
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2.2.9. Let I be a zero-dimensional ideal in k[zy,... ,z,]. Fori=1,... ,n, let ;
be the degree of the monic generator of I N k[z;].
a. Prove that Vi(I) has at most p142 - - - i elements.
b. Prove that dimg(k[z1, ... ,za]/I) < a2 - - pin-

2.3. Elimination. In the previous section we saw the advantage of comput-
ing Grobner bases with respect to the lex term order. In this section we present
a far reaching generalization of this idea.

Consider two sets of variables {zi,... ,Z»} and {y1,... ,¥m}. Assume that
the power products in the z variables and the power products in the y variables
are ordered by term orders <g, <, respectively. We define a term order < on
the power products in the z,y variables as follows.

DEFINITION 2.3.1. For X, X2 power products in the x variables and Y1,Ys
power products in the y variables, we define

X1 <z Xo
XY < XoY = or
X, =X; and i <, Ya.

This term order is called an elimination order with the x variables larger than
the y variables.

Elimination orders have the following fundamental property whose proof we
leave to the exercises (Exercise 2.3.2).

LEMMA 2.3.2. The elimination order defined in Definition 2.3.1 is a term
order. Moreover, if Y is a power product in the y variables and Z is a power
product in the z,y variables such that one of the z; appears to a positive power
inZ,thenY < 2.

EXAMPLE 2.3.3. If the orders <; and <, are lex term orderings, then the
elimination order defined in Definition 2.3.1 is the lex term ordering on all the
variables with the y variables smaller than the z variables (Exercise 2.3.3).

The elimination order is “like” a lexicographic term ordering between the z
and y variables. The advantage of this order is that when one is interested in
properties that the lexicographic term ordering between the two sets of variables
is advantageous for, the order within the two sets is unimportant. It is a fact that
computations using the lexicographic term ordering are slow (see, for example,
[Bu83, GMNRT)) and it is better to have as “little lexicographic ordering as
possible”. There is a great advantage to the elimination order as the following
result shows.

THEOREM 2.3.4. Let I be a non-zero ideal of k[y,... ,Ym,Z1,- .. ,Zn], and
let < be an elimination order with the z variables larger than the y variables.
Let G = {g1,... ,9:} be a Gribner basis for this ideal. Then G Nklyy,... ,¥m]
is a Grébner basis for the ideal I Nk[y, ... ,Ym)-
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The ideal I Nk[y1,... ,Ym] is called an elimination ideal, since the z variables
have been “eliminated”.

PROOF. Clearly G Nklyi,.-- ,Ym] is contained in I Nk[yi,-.. ,Ym].- Now let
0+# f(v1,--- »Ym) € INKk[y1,-.. ,Ym]. Since G is a Grobner basis for I, there
exists ¢ such that lp(g,) divides lp(f). Moreover, since f has only y variables,
we see that 1p(g;) involves only the y variables and so, from Lemma 2.3.2, every
term in g; involves only y variables, i.e. g; € GNk[yy,... ,ym]- Thus, for every
f€INkfy,...,ym], there exists g; € GNk[yi,... ,Ym] such that Ip(g;) divides
Ip(f), and hence G Nkly1, ... ,ym) is a Grobner basis for I Nkfy;,... ,ym]. O

As a first application of Theorem 2.3.4 we now present a method for finding
generators for the intersection of two ideals.

PROPOSITION 2.3.5. Let I,J be ideals in k[z),... ,z,], and let w be a new
variable. Consider the ideal (wl, (1 — w)J) in k[z1,... ,Zn, w]. Then

INJ=(wl,(1-w)J)Nkiz,...,zs]

REMARK: If I = (fy,...,fs), and J = (f],..., fp), then a set of generators
for the ideal (wl, (1 —w)J) is {wfr,... ,wfs, (1 —w)fi,..., (1 —w)f}.

PROOF. Let f € I'NJ. Since
f=wf+(1-w)f,

we have f € (wl, (1—w)J)Nk[z,, ... ,Z,]- Conversely, suppose that f € (wI, (1—
w)J)Nk[zy,...,zy,]. Then, since f € (wl,(1-w)J) C k[z1,... ,Zn, w], we have

fz1,...,zn) =wa,-(xl,... yZn)hi(Z1,. .., Zn,w)

‘i=l

»
+ ) (1-w)fi(zr,--. s zo)h(1,. .. s Zn,w).
=1

Since w does not appear in f(z1,...,Zs), we can let w =1 and get f € I, and
thenlet w=0and get feJ. O

As a consequence of the above result we obtain a method for computing
generators for the ideal I N J. First we compute a Grobner basis G for the ideal
(wl,(1 —w)J) C k[z1,... ,Zn, w] using an elimination order with z;,...,2Zn
smaller than w. We then obtain a Grobner basis for I N J by computing G N
k[zy,... ,z,], which is done simply by inspection. A similar technique can be
used to compute the intersection of more than two ideals (see Exercise 2.3.8).



2.3. ELIMINATION 71
ExAMPLE 2.3.6. Consider the following ideals in Q[z, y|:
I={(z>+y® -1,z —yz +3) and J = (z?y — 1).
We wish to compute I N J. We compute a Grobner basis G for the ideal
(w(z® +y° - 1), w(z — yz +3), (1 - w)(z’y - 1)) € Qlz, y, u]

using the deglex term ordering on the variables z and y with z > y and an
elimination order with w greater than z,y. We get

G={2% -1y —-32%y—zy+z+3,2% + 2ty — 22y — ¥ - 2% +1,
12853w + 118z*y + 9z%y3 — 35723y — 9722%y? + 215222y — 11822 — 9y + 357z
+972y — 2152, 2%y + 32y + 32%y? — 2% + 3%y — 3y — 3y - 3}.

So a Grobner basis for the ideal I N J is
{z3y? — 23y~ 322y —zy+ 2+ 3,22 + 2ty — 2Py — 3 — 2% + 1,

20y + 32%y% + 32%y® — 2° + 3%y - 3y? — 3y - 3}.

Fix a term order on k[zi,...,z,]). For f,g € k[z1,...,z,], both non-zero,
we define the greatest commmon divisor of f and g, denoted ged(f,g), to be the
polynomial d such that (i) d divides both f and g; (ii) if h divides both f and
g then h divides d; (iii) lc(d) = 1. Dually, we define the least common multiple
of f and g, denoted by lcm(f, g), to be the polynomial £ such that (i) f and ¢
both divide ¢; (ii) if f and g both divide a polynomial h, then £ divides h; (iii)
le(2) = 1c(f)lc(g). It may be shown that lem(f, g) and ged(f, g) exist® and that

fg =lem(f, g) ged(f, 9)-

‘We now show that Proposition 2.3.5 can be used to compute least common
multiples and greatest common divisors of polynomials in k[zy, ... ,Z,).

LEMMA 2.3.7. For f,g € k[zy,... , ], both non-zero, we have

(£)N{g) = (lem(f, 9))-

PROOF. Let £ = lem(f,g). Then £ € (f) N {g), by the definition of £. Con-
versely, if h € (f) N (g), then h = af = bg for some a,b € k[z,... ,z,]. Hence f
divides h and g divides h, and thus £ divides h by the definition of lem(f, g), so
that h € (). O

5The reader should recognize that this is due to the fact that k[z1,... ,2n] is a unique
factorization domain (UFD) (see [Hun)].)
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Therefore to compute the lem and then the ged of two non-zero polynomials f
and g in k[z), ... ,z,], we first compute the reduced Grobner basis G for the ideal
(wf,(1—w)g) with respect to an elimination order with z,,... ,z, smaller than
w. Then lem(f, g) is the polynomial in G in which w does not appear. To obtain

ged(f, g), we use the Division Algorithm to compute ged(f,g) = ——_lcm(i a7
)

To compute the lem and ged of more than 2 polynomials, we use the above
method repeatedly and the fact that

lem(fy, f2, f3) = lem(f1,lem(f2, f3)), and

ged(f1, f2, f3) = ged(fr, ged(f2, £3))-
(Alternatively we could note that (fi) N {f2) N{fs) = (lem(fi, f2, f3)) and apply
Exercise 2.3.8).

EXAMPLE 2.38. Let f = 222 -y +22—-land g = x> —y? —z + 1
be polynomials in Q[z,y]. To compute lem(f, g), we first compute the reduced
Grébner basis G for the ideal (wf, (1 — w)g) = (w(z?y? — y? + 22 - 1),(1 -
w)(zy? —y? —z+1)) C Q[z, y, w] using the lex term ordering with w > z > y to
get G = {22y ~ 22 —y* +1,~wry? twr+wy? —w+zy’ —r—y? +1,2wz? — 2w+
z2y?— 2% —y?+1}. Therefore lem(f, g) = 1—z2—y*+z%y*. To compute ged(f, g),
we use the Division Algorithm to divide fg by lem(f, g) to get a quotient equal
to z — 1, and this is ged(f, 9)-

Proposition 2.3.5 has another application: the computation of ideal quotients.
We will discuss the geometric significance of these ideals after Proposition 2.5.1.

DEFINITION 2.3.9. Let I and J be ideals in k[z),... ,Z,). The ideal quotient
J: I is defined to be

J: I={g€klz,...,za) | gI C J}.
LEMMA 2.3.10. Let I = (f1,...,fs) and J be ideals in k[z,, ... ,z,]. Then

J:I= ﬁJ: (fi)-

i=1

Proor. If g € J: I, then gI C J, so in particular gf; € J fori = 1,...,s,
and hence g € (;_, J: (fi). Conversely, if g € N;_, J: (fi), then g(f;) C J for
i=1,...,s,and hence gI C J,sothat ge J: I. O

We have seen a method for computing intersections of ideals, so, in view of
the above lemma, we only need to concentrate on computing J: (f) for a single

polynomisal f.
LEMMA 2.3.11. Let J be an ideal and f # 0 be a polynomial in k[zy,... ,Z.)].
Then

J«ﬁ=}UnU»
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ProoOF. If g € %(Jn (f)), then gf € J, and hence g € J: (f). Conversely, if

g € J: (f), then gf € J, and hence gf € J N (f), so that g € }I;(Jn(f)). 0

EXAMPLE 2.3.12. Let ¢; = z(x+y)%, g2 =y, fi = 2%, and fo =z +y in
Q|z,y]. Consider the ideals I = (fy, fo) and J = (g1, g2). We wish to compute
J: I. By Lemma 2.3.10 we have

J: I=(J: () U= ()

and so by Lemma 2.3.11
1 1
JiI=2(I0(A) N 7N {R)

First we compute J N (f;) by computing a Grobner basis G; for the ideal
(wg1,wge, (1 — w)fi) C Q[z,y,w] with respect to the lex term ordering with
w > x > Y to obtain

G = {z?w — 7%, wy, 2°, 2%y},

so that fl(J N{f1)) = (z,y). Second we compute J N (f2) by computing a
1

Grébner basis G, for the ideal (wgy, wge, (1 — w) f2) € Q[z,y, w] using the same
order as above, and we obtain

Gz = {wz — z - y,wy,2* + ¥*, 2y + ¥°},

so that 71~(J N{f2)) = (x* — zy + ¥*,y). Finally we compute (z,y) N (z2 — zy +
2

y%,y) by computing a Grébner basis G for the ideal (wz, wy, (1 — w)(z? — zy +
¥?), (1 — w)y) € Q[z,y, w] with respect to the lex ordering with w > z > y, to
obtain

G = {wz, 2%y}
Therefore J: I = (z2,y).

Exercises

2.3.1. Assume that we have the lex ordering on z,y with > y and the degrevlex
ordering on u,v,w with ¥ > v > w. Use the elimination order with the
variables z,y larger than the variables u,v,w to write the polynomial
[ = zv?vw+ 3y uvw — 6ruvw — 10022 yuv? + 2zudw — x?yu?w + 9ruw? €
k[z,y,u,v,w| in order of descending terms.

2.3.2. Prove Lemma 2.3.2.

2.3.3. Verify the assertion in Example 2.3.3.
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2.3.4.

2.3.5.

2.3.6.

2.3.7.

2.3.8.

2.3.9.
2.3.10.
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In this exercise we generalize the concept of elimination orders. Let S and
T be subsets of {zi,... ,Z5} such that SUT = {z,,... ,z,} (Sand T
may overlap). For a power product X = " ---2%" € k[z1,... ,2,] We
define X (resp. X7) tobe [[, 55" (vesp. [, cr 2i")- Let <s and <1
be term orders on the variables in S and T respectively. We define a new
order < as follows: for power products X and Y in k[z1,... ,z,),

X <Y < Xs<gYsor (Xs=Ys and X7 <7 Y7).

a. Prove that < is a term order.

b. Let n = 3 and the variables be z,y, z. Let S = {z,y} and T = {x, y, 2}
Let <g be deglex with z < y, and let < be lex with z > y > 2. Order
the following power products according to <:

2222, 2%z, 124, %y, Y223, zyz, 25,
Let <, be a relation on T" satisfying
eforall X,YeT*, X<, YorY <, X;
e <, is reflexive and transitive;
o 1<, Xforall X € T
o X <,Y implies XZ <, YZ, for all X,Y,Z,€ T".

a. Prove that there is a term order < which extends <, . That is, if
X <Y, then X <, Y. [Hint: Use the idea of an elimination order to
combine <, with any term order.]

b. Ler v = (uy,-.. ,u,) € R™ be a vector with non-negative coordinates.
Define <, on T" as follows. For X = z{* ---z%», and Y = :z:’l31 cezhnoe
T, X <, Y if and only if 3 uiai < Yoo, uif;. Show that <,
extends to a term order on T™.

c. Construct the deglex ordering using b.

Without the use of a Computer Algebra System, compute {z,y) N (z —

1L,9) € Q[z,y.

Compute the intersection, I N J, where I = (z%y —z — 1,zy +y + 1) and

J=(z _y’z2 —z) C Q[z,y,2].

In this exercise, we extend Proposition 2.3.5. Let I, I,. .. , I,, be ideals of

k[z1,... ,z,). Foreach i = 1,... ,m, consider a new variable w;. Let J =

1= (witwe+- -+ wm)ywily, ... ,WnIm) Ck[T1,.-- ,Tn, Wi, - . , W)

a. Prove that L NLN---NI, =JNk[z1,... ,Zn)

b. Use a to give a method for computing generators of 1 NIo N - --N I,,.

c. Use b to compute generators for the ideal (z,y)N{(z—1,y)N{(z—2,y—
1) € Qle, ]

Verify the assertions in Example 2.3.8.

In Q[z,y] compute ged(x® — 22y — 3z% + zy—y? — 3y, 23y + 2y + 222 + 2y).

[Answer: 22 +y.]
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2.3.14.

2.3.15.

2.3.16.
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In Q[z, y], compute generators for I: (1 — z2 — zy), where I is the ideal
defined in Example 2.1.8. (See Exercise 2.1.3.)

In Q[z,y, 2] compute generators for I: J and J: I where I = (z%y —y+
z,zy’—z) and J = (22 +y%, 23 +y). [Answer: I: J = (§° 1,22+ zy—1)]
Let g1Zn,... ,9u%n,9v+1,--- ,9: be homogeneous polynomials (that is,
every power product occurring in each g; has the same total degree)
where z, does not divide any of g,t1,...,g:. Consider degrevlex with
Ty > T2 > -+ > Z,. Prove that if g1Zn,...,90%n,9041,--.,0 IS &
Grobner basis for the ideal I, then g;,... ,g; is a Grobner basis for the
ideal I: (z,). [Hint: See Exercise 1.4.9.]

Let I be an ideal of k[z,... ,Zn], and let f € k[z1,... ,z,]. We define

I:f°°=DI: (9.

(The ideal I: f* can be thought of as the ideal defining the points in V/(I)
which do not lie on the hyper-surface defined by f = 0; see the discussion
following Proposition 2.5.1.)

a. Show that I =1I: (1) CI: (f) CI:(f%) C---. Conclude that I: f>®

is an ideal of k[z1,... ,Zn)-
b. Prove that I: f° = I: (f™) for some m.
c. Let w be a new variable, and let J = (1,1 — wf) C k[z1,... ,Zn,w)].

Prove that I': f*° = JNk[z,,...,Z,). (Compare with Theorem 2.2.13.)
d. Let {fi,..., fs} be a generating set for I and {g1,... ,9:} be a gener-
ating set for JNk[zy, ... ,2,)- Now write g; = (1 —wf)hi+z;=l uii fy
for i = 1,...,t. Define m = max;;(deg,, (ui;)). Prove that I: f® =
I: (f™).
e. Compute generators for I: f>°, where I and f are as in Exercise 2.2.4.
Let I be an ideal of k[z,,... ,z,). Prove that if {z%'gy,...,2%¢;} is a
Grobner basis for I with respect to the degrevlex ordering with z; > z2 >
-+ >z, with ¢,... , g: homogeneous and with no g; divisible by z,,, then
{91,--- ,9:} is a Grébner basis for I: 2. [Hint: Recall Exercise 1.4.9.]
In this exercise we show how to compute the generator for the radical of
a principal ideal.
a. For a polynomial f € k[z1,... ,z,] write f = p{*py? - .- pim where the
polynomials p;,pa, ... , pm are irreducible. Set f* = p1ps - - - ppm, called

the square free part of f. Show that \/(f) = (f*)
b. Let k be a field of characteristic zero. Show that in k[zq,... ,z,]

= d -

ng(fs 'a%%,"' ) 58;%)

c. Find the radical of the ideal (—z2y? + z3y? + 2z%y? — 2252 — 282 +
z7y? ~2zy® +4z%y% —4z*yP 4225y —y* 4+ 3zy* — 322y +23y*) C Q[z, ).
[Answer: (2% —y? + zy® — zy) ]
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2.3.17.

2.3.18.

2.3.19.
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In this exercise, we compute the solutions to a system of congruence equa-
tions. More precisely, let I, ... , I, be distinct ideals in k[z4,. .. ,z»], and
let fi,...,fm € k[z1,...,zn]. We wish to compute the set of solutions
f € k[z1,... ,zy,] of the system

(2.3.1) f=fimodL),1<i<m.

As in Exercise 2.3.8, let wy,... ,wn be new variables, J = (1 — (w; +

s+ wm),wrlh,... ,Wmly), and G be a Grobner basis for J with respect

to an elimination order with the w variables larger than the z variables.

Finally, let g = Y 10, wifi.

a. Prove that System (2.3.1) has a solution if and only if g i,+ h, where
h € klzy,...,zn)

b. Prove that if h = Ng(g) and h € k[z,, ... , z,], then the set of solutions
of System (2.3.1) is given by h + ()=, ;- In particular, prove that
u € k[zy,... ,Zy,] is a solution of System (2.3.1) if and only if A =
Nenkizy,. . ,zn] (1)

c. Show that the following system of congruence equations has a solution
and compute the set of solutions.

f = z-1 (mod (z,y))
f = z (mod (z - 1,y))
f = y (mod (z—2,y-1)).

Prove that if we replace (z,y) by (z?,y), then the system above has
no solution.
In this exercise we use the Chinese Remainder Theorem (see [Hun]) which
states that if all the ideals I; are maximal then System (2.3.1) always has
a solution. Let e;,...,a,, € k™ be distinct, and let o4,... 0y, € k be
given.
a. Prove that there exists f € k[zi,...,z,] such that f(a,) = a; for
i=1,...,m. [Hint: Use Exercise 2.3.17.]
b. Give a method for computing such an f.
c¢. Find a polynomial f in Q[z, 3| which satisfies f(0,0) = —1, f(1.0) =1,
and f(2,1) =1
Let f € k[z1,... ,zn] be a homogeneous polynomial. Consider the ideal
I C k[z,... ,z,] generated by all power products X which appear in f
and such that lp(f) = X with respect to some term order. Prove that
f € V1. [Hint: First show that if X and Y have the same total degree,
and if X divides Y, then X =Y. Then show that if ¥ appears as a term
in f, then any term in f with z; is in v/7. So we may assume that no
power of any single variable z; appears in f. Use the same argument for
terms in f of the form z;z;. Use Exercise 2.3.4]
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(Lakshman [Lak]) Let Q; be a zero-dimensional ideal of k[z;,... ,z,)

(1 <4 < r)and let < be a term order on k[zy,...,z,]. Let G; be a

Grobner basis for @;, 1 =1,...,r. Let I=Q1NQ2N...N Q.. We will

compute a Grobner basis for / with respect to < using linear algebra

techniques only.

a. As in Exercise 2.2.8, write all the power products in k[z1,... ,Zn)
ordered by <: 1 < X3 < X3 < -.-. Modify the method of Exer-
cise 2.2.8 to give a method for deciding whether there exists a poly-
nomial f in I whose leading term with respect to < is X,. [Hint:
{1+1,X,+1,...,X,+ I} is linearly dependent if and only if {1 +
Qi, X1+ Q;, ..., X, + Q;} is linearly dependent for each i.]

b. Use a to give an algorithm that inputs a Grébner basis G; for each Q;
with respect to < and outputs a Grébner basis for I with respect to
<.

c. Use b to compute generators for the intersection @, N @2 in the fol-
lowing cases:

(i) Q1= (x,y>’ Q2 = (x - 1)3/) Cc Q[x7y]'
(il) Q= (zy+ 1)372 - 1>a Q2 = (x2 +y,y+ x) < Q[z’y]’ [Answer:
For lex with z > y, (¢ —y,z + y).]

(Lakshman [Lak]) Let I be a zero-dimensional ideal of k[z;,... ,z,], and

let G be a Grobner basis for 7 with respect to some term order < . Let

J = (hi1,....hs) be an ideal of k[z;,...,z,]. We wish to compute a

Grobner basis for I: J using linear algebra techniques only.

a. As in Exercise 2.2.8, write all the power products in k[z;,... ,Z,] or-
dered by <: 1 < X; < X3 < ---. Modify the method of Exercise
2.2.8 to give a method for deciding whether there exists a polyno-
mial f in I: J whose leading term with respect to < is X,. [Hint:
{1+I:J), Xai+(I:J),..., X+ (I: J)} is linearly dependent if and
only if {h; + I, X h; + I,... , X, h; + I} is linearly dependent for each
i)

b. Use a to give an algorithm that inputs a Grébner basis G for I with
respect to < and a generating set for J and outputs a Grébner basis
for I: J with respect to < .

c. Use b on the following example: I = (2zy — 2z — y% + y,3° — 3y% +
2y,2° - 22% —z — y? + 3y), J = (y — 2%, 2 ~ 4*) C Q[z,y]. [Answer:
forlexz >y, I: J=(x+y—3,5° — 3y +2)

(Lakshman [Lak]) Let

¢: k[zl,...,a:n] — k[y1,...,yn)
T; _ ;=1aijyj:

where a;; € k be a non-singular linear transformation. For an ideal I of
k[zi, ... ,zs], note that ¢(I) is an ideal of k[y;, ... ,yn]. We will consider
a zero-dimensional ideal I. Let Gy be a Grobner basis for ¢(I). We wish
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to compute a Grobner basis for I with respect to some term order < using
linear algebra techniques only.
a. As in Exercise 2.2.8, write all the power products in k[z;,...,Zy)

ordered by <: 1 < Xj < X3 < ---. Modify the method of Exer-
cise 2.2.8 to give a method for deciding whether there exists a poly-
nomial f in I whose leading term with respect to < is X,. [Hint:
{1+I,X,+1,... ,X,+1I} is linearly dependent if and only if {¢(1) +
o), ¢(X1) + ¢(I), ... ,¢(X,) + ¢(I)} is linearly dependent.]

. Use a to give an algorithm that inputs a Grébner basis G for ¢(I) and

outputs a Grobner basis for I with respect to < .
Use b on the following example: Consider the map

¢: Qlz,y] — Qu,v
T — 2u—v
Y — —u+4v

and let I = (z® + 322y + 3zy® + v + 22 + 3y + 292, 22 + dxy + 4% +
2z + 3y). Use deglex with =z > y.

(*)(Seidenberg [Se]) Let char(k) = 0 and let I be a zero-dimensional ideal
of k[z1,... ,Zn). Assume that for each i = 1,... ,n, I contains a square-
free polynomial g; € k[z].

a.

d.

e.

Prove that I = v/T. [Sketch of the proof: Use induction on n. For
n> 1, let g1 =p; -+ pr, with p; € k[z,] irreducible and pairwise non-
associate. Prove that I = (;_;(I,p;), and so it suffices to show that

V{I,p;) = {I,p;) for j =1,...,r. Consider the map
¢;: (klza])[@2, - .., zn] — (klza]/(Ps)) 22, .., 2n).

Use Exercise 2.3.16 to observe that a polynomial f is square-free if and
only if ged(f, f’) = 1 and the fact that ged’s are invariant under field
extension to conclude that the images of g;, i = 2, ... ,n are square-free
in (k[$1]/(pj))[$2, oo ,xn]' By induction hypothesis, v ¢J((I)pfl§) =
¢;({I,p;)). Conclude that /{T,p;) = (I,p;).]

. Conclude that a zero-dimensional ideal I of k[z1, . . . , Z] satisfies VI =

I if and only if it contains a univariate square-free polynomial in each
of the variables.

Use this to give an algorithm which inputs a zero-dimensional ideal I
and outputs TRUE if v/T = I and FALSE otherwise.

Give an example that shows that part a is not necessarily true if
char(k) # 0.

Use the above to determine whether I = /T where I = (z?y — z —
y7$y+z+z_yzazz _y) < Q[xay,z]-

Let char(k) = 0 and let I be a zero-dimensional ideal of k[z1,. .. ,Zn]. For
i=1,...,n, let g; be the monic generator of I N k[z;], and let g} be its
square-free part.
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a. Use Exercise 2.3.23 to prove that v = (I,¢7,63,-.- ,g%).

b. Use a to give an algorithm for computing generators for v/I, where I
is a zero-dimensional ideal.

c. Compute generators for the radical of I = (z%y —z ~y,zy+ z+ 2 —
zy, 2* —~ 2922 +yz + 2 — 2y + 2 — z) C Qz,y, 2]

Let char(k) = 0 and let I be a zero-dimensional ideal of k[zy, ... ,Zs).

Assume that +/T = I. Also, let K be an extension field of k. Let J be

the ideal of K[zy,... ,,] generated by I. Prove that v/J = J. Give an

example that shows that this is not necessarily the case if char(k) # 0.

[Hint: Use Exercises 2.3.16 and 2.3.23.]

(*) Let char(k) = 0 and let I be a zero-dimensional ideal of k[z1,. .. , Z5)-

a. Prove that the number of points in V;(I) is less than or equal to
dimg (k[zy, ... ,zn]/I). [Sketch of the proof: Let G be a Grébner ba-
sis for I and let J be the ideal of k[zi,... ,Z,] generated by G. Use
Exercise 1.6.14 to prove that J is zero-dimensional and that

dimy(k[z1,. .. ,Zn)/I) = dimg(k[z1, . .. ,za]/J).

For each point @ = (ay,...,an) € Vi(I), consider the ideal J, =
(1 —ay,... ,Zn —an) Ck[z1,. .. ,Z,]- Prove that f +J, = f(a)+ J,
for all f € k[z,,...,z,). Consider the map

é: k[z1,...,Tn] — l'[msv_k_z[:z:l,...,:1:,,]/.]¢l
f — (f(a)+ Ja|a €Wg).

Using Exercise 2.3.18 show that ¢ is surjective. show that ¢ induces a
map
V: klz1,... ,2a]/T — H k[, 1 Z0)/Ja-
a€V;
Since K[z, ... ,Zn]/Ja & k, we see that 4 is a k-vector space homo-
morphism.]

b. Prove that if /7 = I and char(k) = 0, then equality holds in a.
[Hint: If /T = I, then v/J = J by Exercise 2.3.25. Prove that J =
naeV;( J) Ja, and conclude that 4 above is a bijection,]

c. Compute the dimension of Q[z,y]/I and the number of points in V¢(I)
where I = (z2y — z — y,zy + z). [Answer: dim = 3 and there are 3
points.]

d. Compute the dimension of Q[z,y]/I and the number of points in V¢ (I)
where I = (z%y — z —y, 2+ zy + 222 +y+y?). [Answer: dim = 6 and
there are 3 points.]

2.4. Polynomial Maps. In this section we are interested in k-algebra ho-
momorphisms between the polynomial rings k[yy, ... ,¥m] and k[z,,... ,z,). We
recall that such a k-algebra homomorphism is a ring homomorphism

&: klyr,--- ,Ym] — k[Z1,... ,Zn)
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which is also a k-vector space linear transformation. Such a map is uniquely
determined by

(24.1) ¢: 4 — fi

where f; € kfz1,...,Zn],1 < ¢ < m. That is, if we let h € k[y1,... ,ym], say
h=3Y,cuy -y, where c, €k, v = (v1,..., V) € N™, and only finitely
many ¢,’s are non-zero, then we have

(242)  G(h) =S S fir =hifu,- .., fm) € Kl .. 120l

Also, conversely, given any such assignment (2.4.1), we get a k-algebra homo-
morphism from formula (2.4.2).
Recall that the kernel of ¢ is the ideal

ker(¢) = {h € k[ylx (RS ,ym] I ¢(h) = 0}?
and the image of ¢ is the k-subalgebra of k[z1,... , ],

im(¢) = {f € k[z1,... ,za] | there exists h € k[y1,-.. ,ym] with f = ¢(h)}.

This subalgebra is denoted by k[fi, ... , fm]- We know from the theory of abelian
groups that
k[yl’ 1o ,ym]/ker(¢) = k[fl) ey fm]

as abelian groups under the map

k[yl’ cee ,ym]/ker(¢) — k[fl’ ene afm]

defined by
g + ker(¢) — 4(9)-
This map is, in fact, a k-algebra homomorphism, as is easily seen, and thus
is a k-algebra isomorphism. This is called the First Isomorphism Theorem for
k-algebras. Another way to think of ker(¢) is that h € ker(¢) if and only if
h(f1,---,fm) = 0 and so ker(¢) is often called the ideal of relations among the
polynomials fi, ... , fm.
‘We will use the theory of elimination presented in Section 2.3 to determine
the following:
(i) The kernel of ¢ or more precisely, a Grobner basis for the kernel of ¢;
(ii) The image of ¢ or more precisely, an algorithm to decide whether a
polynomial f is in the image of ¢ and an algorithm to decide whether ¢
is onto.
Before we give a characterization of the kernel of the map ¢, we need a tech-
nical lemma.

LEMMA 2.4.1. Let a1,a3,... ,0n,b1,b2,... ,b, be elements of a commutative
ring R. Then the element ajaz---ay — biba---by, is in the ideal (a; — by, a2 —
o, n — by).
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PROOF. The proof is easily done by induction using the fact that
0182 8n —byby- by =a1(az - -an —ba--bn) + b2+ -bu(ar —b1).
(|

THEOREM 2.4.2. Let K = (yl—fl,... ,ym—-fm) c k[yl,... »yYmy L1, ... ,(Bn].
Then ker(¢) = K Nk[y1,--- Yml-

PROOF. Let g € KNk[y1,... ,Ym)- Then

m
g(yla LR ym) = Z(yz - fi(xla v ,xn))hﬂi(ylﬁ ey Ymy T, .- 7xn),
=1
where h; € k[y1,... ,Ym,Z1,-.. ,Zn|. Therefore g is zero when evaluated at

(¥1,--- s¥m) = (f1,-.. , fm) and hence g € ker(¢).
Conversely, let g € ker(¢). We can write

9= cu -y,
v

where ¢, € k, v = (v1,... ,/m) € N™, and only finitely many ¢,’s are non-zero.
Therefore, since g(f1,--. , fm) = 0, we have

9=0=9(frse s fm) = S oyl -yl — 1 f2),

By Lemma 2.4.1, each term in the sum above is in the ideal K, and hence
g€ KNkly,...,ym). O

‘We now have an algorithm for computing a Grébner basis for the kernel of ¢.
We first compute a Grobner basis G for the ideal K = (y1 — f1,--. ,Ym — fm)
in k[y1,... ,Ym,Z1,... ,Zn] with respect to an elimination order in which the z
variables are larger than the y variables. The polynomials in G without any z
variables form a Grobner basis for the kernel of ¢.

EXAMPLE 2.4.3. Let ¢: Q[r,u,v,w] — Q|z, y] be the map defined by

—> $4

—  z3y
— zy
— y4 .

g e s

We first compute a Grobner basis G for the ideal
K={r—z'u—- iy v—zyd,w -y C Q[r, u, v, w, z,y]

with respect to the deglex term ordering on the z,y variables with y > z and the
degrevlex term ordering on the 7, u,v, w variables with » > 4 > v > w, with an
elimination order between them with the z,y variables larger than the r,u,v,w
variables. We get G = {z* — r,z%y — u,2y° — v,9% — w,yv — Tw,Yr — zuy?u -
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2 3 2 p2

z2v,2%y%w — v uw — rwwd — uw?,rv
Therefore a Grébner basis for ker(¢) is

2,3

— wdwyuw — zv2ud — r2uyu? — zru}.

3

G Nklr,u,v,w] = {uv — rw,v® — uw?,rv® — 2w, u® ~ ro}.

We now turn our attention to the second question posed at the beginning of
the section, namely, the question of finding an algorithm to determine whether
an element f € k[zy,...,Zy] is in the image of the map ¢ and an algorithm to
determine whether ¢ is onto. This material has been adapted from D. Shannon
and M. Sweedler [ShSw].

THEOREM 2.44. Let K ={y1 — f1,.-- yYm — fm) S kY1, -+ ,Ym>T15--- » Tn)
be the ideal considered in Theorem 2.4.2, and let G be the reduced Grobner basis
for K with respect to an elimination order with the = variables larger than the y
variables. Then f € k[z1,... ,z,) is in the image of ¢ if and only if there exists
he k[yl)”' »ym] such that f "G_’+ h. In this case, f = ¢(h) = h(fl)“ . )fm)'

PrOOF. Let f € k[z1,... ,zx] be in im(¢). Then f = g(f1,-..., fm) for some
g € kly1,- .. ,Ym]. Consider the polynomial

f(zl:--- ,xn) —g(yl"'- )ym) € k[yl,'” yYmrTly . - - yx‘n]-

Note that f(z1,...,2n) — g(¥1,--- ,Ym) = 9(f1,---» fm) — 9(¥1,--- ,¥m), and
hence, using Lemma 2.4.1, we see that f(z1,...,Zn) — 9(v1,-.. ,ym) is in K.

Therefore, by Proposition 2.1.4, g —g».,. h, and f —q—q. h, where h = Ng(g) =
Ng(f). But, since g € k[y;,--- ,¥m], g can only be reduced by polynomials in
G which have leading terms in the y variables alone. Since the z variables are
larger than the y variables in our elimination order, the polynomials used to
reduce g are in kfyy,. .. ,ym). Therefore h € k[y1,... ,ym]-

Conversely, let f —Ci>+ h, where h € k[y1,... ,ym)- Then f ~h € K, so
fl@y,..ohzn) = h(y,--. ym)
m
= Zgi(yl"" yYms L1, - - - sz‘n)(yi —fi(xla-" ,$n)).
i=1
If we substitute f; for y;, we see that f = h(f1,... ,fm) = ¢#(h), and f is in the
image of ¢. O

The following Corollary shows that the result of the preceding theorem gives
an algorithmic method for determining whether f is in the image of ¢.

COROLLARY 2.4.5. With the notation of Theorem 2.44, f € k[z1,... ,zy] is
in the image of ¢ if and only if Ng(f) € k[y1,... ,ym]-

ProOF. If Ng(f) € k[y1,--- ,Ym], then, since f —G—>+ Ng(f), we have f €
im(¢) by the Theorem. Conversely, if f € im(¢), then by the Theorem f -G—v.,. h
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with h € k[y1,...,ym)- By Proposition 2.1.4, Ng(f) = Ng(h) and as in the
proof above we see that h € k[y1,... ,ym] implies Ng(h) € k[y1,... ,ym]. O

EXAMPLE 2.4.6. Let ¢: Q[u,v] — Q[z] be the map defined by

U — :t:4+:c
v — 3

We would like to determine if 2° is in the image of ¢. We first compute a Grébner
basis G for the ideal

K= (u-z*~z,9-1% CQu,v,1]

with respect to the lex term ordering with z > u > v to get

G = {3 —v* - 3% -3v? —v,zv +z—u,zu® — > —20% —v,2%u~ 0% —v,2% —v}.

We now reduce z° using G to get

3_ —
5 z°—v 2vxv+x u

P — —x2+xu,

and —z% + zu is reduced with respect to G. Since Ng(z®) = —z? + zu ¢ Q[u,v],
we have, by Corollary 2.4.5, that z° is not in the image of ¢.

Now that we have an algorithm to determine whether a polynomial f is in
the image of ¢, we can determine whether ¢ is onto. We simply check whether
Z1,...,Tn € im(¢). In the next result we see that we can do this simply by
inspecting the Grobner basis.

THEOREM 2.4.7. Let K = (y1— f1,--- »Um — fm) S Ek[Y1,--+ s Ym»T1y- -+ ,Zn)
be the ideal considered in Theorem 2.4.2, and let G be the reduced Grébner basis
for K with respect to an elimination order with the x variables larger than the
y variables. Then ¢ is onto if and only if for each i = 1,... ,n, there exists
gi € G such that g; = x; —~ h;, where h; € k[y,,... ,ym]. Moreover, in this case,
T = hi(fl’ cee afm)'

PROOF. Let us first assume that ¢ is onto. Also, without loss of generality,
let us assume that the order is such that z; < -- - < z,. Then by Theorem 2.4.4,
since x; is in the image of ¢, there exists b} € k[y1,. .. ,ym] such that z, —G->+ hi.
Therefore x; — h} € K, and hence there exists g; € G such that 1p(g;) divides
Ip(z1 — h}) = z,. Therefore, since the only terms strickly smaller than z; are
terms in the y variables alone, g; = x;—h; for some h; € k[y1,... , yp]. Similarly,
since x3 is in the image of ¢, there exists hy € k[y1,-.. ,y¥m] such that —Gu,
h5, and hence there exists go € G such that Ip(g2) divides Ip(zs — k%) = zo.
Since the only terms strictly smaller than z; are terms involving z; and the y
variables only, and since G is the reduced Grobner basis and any term involving
z; could be reduced using g, = z; — h;, we must have go = x5 — hy for some
ha € k[y1, ... ,Ym]. We proceed in a similar fashion for the remaining z;’s.
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For the converse we first note that ¢ is onto if and only if z; € im(¢) for
1 < i < n. Since z; — h; € G, we have z; i.,. h;. Since h; is a polynomial in
the y variables alone, we have that z; is in the image of ¢ by Theorem 2.4.4, and
hence ¢ is onto. Again by Theorem 2.4.4, we see that z; = h;(f1,... ,fm). O

The above result gives an algorithm for determining whether the map ¢ is
onto or not. We first compute the reduced Grébner basis G for the ideal K,
and, by inspection, we check whether there exists g; = z; — h; € G for each
i=1,...,n, with h; € k[yl,... )ym]

EXAMPLE 2.4.8. We have seen in Example 2.4.6 that the map ¢ was not onto,
since z° was not in the image of ¢. Also, the Grobner basis G did not have a
polynomial of the form z — h(u, v). Now consider

¢*: Qu,v,w] — Qla]

u — zi4z
v — 3
w — x5,

We want to determine whether ¢* is onto. We first compute a Grobner basis G*
for the ideal

K*={u—z*—z,u— 23w - % C Qu,v,w,7],

with respect to the lex term ordering with z > u > v > w to get

G* = {z — uwv? + wv — u + w?,v® — w?, —uw + v® 4+ v?, —u® + vw? + w?,

—u?y +v%w + 2vw + w,u® — v* — 303 — 30 — v}
Since we have z — uwv? + uv — u + w? € G*, the map ¢* is onto. In fact we have
z = ¢*(w? — w4 u — v?) = (z* + 2)(2%)? — (z* + 2)z% + 2* + = — (25)2.
‘We now extend the preceding results to quotient rings of polynomial rings.

DEFINITION 2.4.9. An k-algebra is called an affine k-algebra. if it is isomorphic
as a k-algebra to k[z1, ... ,z,)/I for some ideal I of k[z1,... ,zn]

Clearly the polynomial ring k[z;, ... ,Z,] is an affine k-algebra. Moreover, if
fiy-oo y fm € k|z1, ... , 4], then, as we saw at the beginning of this section, the
ima’ge) k[fla crty fm], of the map

¢I k[yl,... ,ym] —_ k[.’tl,... ,:L'n]

which sends y; to f; is isomorphic to k[y1, ... , ym]/ ker(¢) and hence is an affine
k-algebra.

We now want to study k-algebra homomorphisms between affine k-algebras.
Let J be an ideal of k[y1, . .- , Ym] and let I be an ideal of k[z1, ... ,z,]. Consider
a k-algebra homomorphism

¢: klyr,- .., yml/J — klz1,.- - 20l /1
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Let us assume that
oy +J— f;+1.
We note that the map ¢ is well-defined if and only if the following condition
is satisfied:
if J= (gl,... ,gg), then, for ¢ = 1,...,¢ gi(fl,--- ,fm) el

This condition can be checked easily using a Grobner basis for I and Theorem
1.6.2.
Generalizing Theorem 2.4.2 we have

THEOREM 2.4.10. Let K be the ideal of k[y1,-.. ,Ym,Z1,.- - ,Tn] whose gen-
erators are those of I together with the polynomials y; — fi,1 < 1 < m, that is,
K= (I’yl - fi,... ,ym—fm)- Then ker(¢) = Knk[yl’-" ’ym] (mOd J)‘ That
is, if KNkfy,... ,ym] = (f1,-.- ,f;’a)’ then ker(¢) = (fi +J,... ’f;;+'])'

PROOF. Let f’ € KNk[yi,...,Ym|. Then we can write

P s m) =Y % — fil@n - s Za)hi¥1,-- - Ym, T1, oo 1 Tn)

i=1
+w(y1’ ey Ymy Ty - - )xn),

where

WYL Yy T1ee 1 Tn) = D (Ul 2 Yms Ty - 1 Tn) (T, -, Tn)
14

with v, € I, and h;,u, € k[y1,-.- ,Ym,Z1,- - , Zn]. Then
¢(fI+J) =.f,(f1,”' ,fm)+I='w(f1,--- ’fmsxl)”- 7mn)+I=0,
since

w(fl?'" ’fm,a;l;“- ’wn) =Euu(fly--- 7fm7ml,--- )xn)vv(wl,'-' ’zn) GI,

since each v, € I.

Conversely, let f' € k[y1,- .. ,ym] with ¢(f'+J) = 0. Then f'(f1,...,fm) € I.
Let f'(¥1,.. ,¥m) = >, ¥yt « -y, where v = (11,... ,um) € N™, ¢, €k,
and only finitely many c, are non-zero. Then

f’(yl"" ;‘!/m) = (f’(yla aym)_f,(fl’”' :fm))'l'fl(fl"" ’fm)
=Y et v = P+ (fu e Fm)-

By Lemma 2.4.1,
S eyl ~ S fo)

is in the ideal (y; — f1,... ,Ym — fm) and hence
f,(yl’“' yUm) € Ly — fiy--- 1 Ym —fm) =K,
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since f'(f1,-..,fm) € I. Therefore f'(y1,... ,Ym) € K Nkly1,... ,ym]. O
‘We now prove the analog of Theorem 2.4.4.

THEOREM 2.4.11. Let K = {I,y1—f1,--- ,Ym—Jfm) be the ideal as in Theorem
2.4.10, and let G be a Grobner basis for K with respect to an elimination order
with the x variables larger than the y variables. Then f+1I € k[z1,... ,za)/I is
in the image of ¢ if and only if there exists h € k[yi, ... ,Ym] such that f S h
In this case f+I=¢(h+J)=h(f1,.. ., fm)+ 1.

PrOOF. Let f + I be in the image of ¢. Then there exists g € k[y1,- .. , Ym]
such that f — g(f1,--- ,fm) € I. We consider the polynomial f(zi,...,Zn) —
g(yl,“- :ym) € k[ylv"' 1 YmsrT1y - - - ’xﬂ]' Since f(xly'“ ,xn)-g(yl"‘ . ,ym) =

g(.fl,-- . ,fm) _'g(yla' . aym) + (f($1)'~ . )xn) —g(fl)-- . ,fm))’ we have, using
Lemma 2.4.1, that f(z1,... ,Zn)—9(¥1,.-- ,¥m) is in K. The argument proceeds
as in the proof of Theorem 2.4.4 (Exercise 2.4.8).

Conversely, let f € k[z1,. .. , 5] besuch that f i».,. hwith h € k[y1,.-. ,Ym)-
Then f — h € K, and hence

f(xlw-- ,zn) _h(yl"'- ,y‘m) =

m
Zgi(yla--- yYm L1, - sxn)(yi - fi(ml,-“ ’zn)) +'w(y1,~~- 1y YmyrT1y - - - ,xn)’

i=1

where

'w(yl,“' yYmy L1,y - ’zn) = Zuv(yla-“ yYmyrT1, - - - ,wn)vv(xlv"' )xn)
v

with v, € I and where g;,u, € k[y1,-.. ;Ym,Z1,... ,Tn]. If we substitute f; for
¥i, we see that f — h(f1,...,fm) €I, and hence f+I=¢(h+J). O

As before we have

COROLLARY 2.4.12. Continuing the notation of Theorem 2.4.11, we have that
f+I € k[zy,... ,zn)/I is in the image of ¢ if and only if Na(f) € kly1,--- ,Ym)-

We finally determine whether the map ¢ is onto, again in a fashion similar to
Theorem 2.4.7.

THEOREM 2.4.13. Let K be the ideal as in Theorem 2.4.10, and let G be
the reduced Grébner basis for K with respect to an elimination order with the
z variables larger than the y variables. Then ¢ is onto if and only if for each
i=1,...,n there ezists a polynomial g; = z; — h; € G, where h; € k[y1,-.. ,Ym]-

PRrOOF. The proof is similar to the one of Theorem 2.4.7 and is left to the
reader (Exercise 2.4.9). O
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EXAMPLE 2.4.14. Consider the following QQ-algebra homomorphism

@: Q[u’v7w]/‘] — Q[x’y]/I
u+J — z4+y+1
v+ J — z-y+1
w+J — 2zy+1,

where J = (uwv — w,u? — v? — w? — 2w) C Qu,v,w], and I = (z? — 2zy,y?) C
Q|z, y]. We first note that the map ¢ is well-defined, since

pw—w+J) = (z+y)(z—y)—2zy+1
= 22—y -22y+1=0,

and

(z+y)? - (z-y)* -4z’ —day+1
—4z?y? +1=0.

p(u? — v ~w? —2w+J)

We now compute the kernel of ¢ as in Theorem 2.4.10. So let
K= <$2 - 21?’9,1/2»“ - (ZD +y),v - (.’II - y))w - 23}:’/) - Q[m,y,%'v»w]‘

We compute the reduced Grobner basis G for K with respect to the lex order
withz >y > u>v > wto get

1 1
G= {u2 —2w,v?,y — %u+ %v,:c — U GV —-w,vw,uw,wz}.

By Theorem 2.4.10, we have

ker(¢) = (u2—2w+J,v2+ Juv—w+ Jow+ Juw+ J,w? + J)
= (W -2w+J,v®+ J,ow+ Juw+ J,w? +J)=L/J,
where L = (u? — 2w, v?, vw, vw, w?,uwv — w,u? — v — w? — 2w) (recall that

wv —w € J). Also, by Theorem 2.4.13, we see that the map ¢ is onto, since

¢ — tu—3vand y— Lu+ Lv are in G. In fact we have

z+1= %¢(u+'v+J) andy+ 1= %¢(u—v+J).
To conclude, note that, by the First Isomorphism Theorem, we have
(Qlu, v, wl/J)/(L/J) = Qlu, v, w]/L,
and hence

where the isomorphism is obtained from ¢.
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Exercises

2.4.1.

2.4.2.

2.4.3.

244.

2.4.5.

2.4.6.

Without using a Computer Algebra System, use the method of Example
2.4.3 to find ker(¢), where ¢: Q[u,v] — Q[z] is defined by ¢: u +— z2
and ¢: v —s z5.

Compute generators for ker(¢), where ¢: Q[u, v, w] — Q|z,y] is defined

by ¢:u — 22 +y,¢:v — z+yand ¢: w — z—y2. Is ¢ onto?

Determine whether the map ¢ is onto, where ¢: Q[r, u,v, w] — Q[z,¥]

is defined by ¢: r > 22 +y, ¢:u — T+y, d:v ~— z—9y? and

¢:w — 2 9%

(Shannon and Sweedler [ShSw]) This exercise assumes that the reader

is familiar with the definition of the minimal polynomial of an algebraic

element over a field. Let f, fi1,..., fm € k[Z1,... ,Zn]. Consider the ideal

K=@W~fiyn— fi,---sYm — fm) In K[y, 91, ,Ym:Z1,... ,Tn). Let G

be the reduced Grobner basis for K with respect to the lex ordering with

T1> >, >Y> Y >0 > Ym- Let Gp be the set of all polynomials

in G involving only the variables y,%1,... ,y¥m and in which y actually

appears.

a. Show that f is algebraic over k(fi, . - - , fm) if and only if Gy # 0. [Hint:
In the case where we assume that f is algebraic over k(fy,... , fm), we
can find h=3", h,(31,.-. ,Ym)y” such that h(f, f1,...,fm) =0 and
ho(f1s..., fm) # 0. We have h £, . 0. Analyze this reduction.]

b. In the case that Gy # 0 let go € Gp be such that Ip(gp) is least. Show
that go(y, f1,- .. , fm) is a minimal polynomial for f over k(f1,... , fm)-

A polynomial f € k[z1,. .. ,Zn] is called symmetric if

f(xl: cee axn) = f(xa(l)a fee 7x0(7l))7

for all permutations o of {1,...,n}. In Exercise 1.4.18 we saw that the
set of symmetric functions is a k-algebra generated by the following n
functions:

61 = my+zat-

Oy = T2+ T1Z3+-+T1Zpn+ 2223+ +Tp_1Ty

Cpn = ZI1T2° " Tn-

Use Theorem 2.4.4 to give a method for deciding whether a given function
f € k[z1,... ,z,] is a symmetric function. Use this method to check your
answer in Exercise 1.4.18, part d.

(Shannon and Sweedler [ShSw]) In this exercise we extend the results of
this section to maps from subrings of k(y1, .. . ,Ym) to k(z1, ... ,z,), where
k(y1,--- ,Ym) and k(z1,. .. ,Zn) are the fields of fractions of k[y1, - - - , Y]
and k[zi,. .. ,z,] respectively.
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a. We consider the following map

é: k[yl)“-,ym] - k[xli"')xn]
Yi —  fi
Let P = ker(¢). Prove that ¢ can be extended to a k-algebra homo-
morphism
¥: kly1, ... ymlp — k(z1,... ,20),

where k[y;,... ,Ymlp = {f | £,9 € kly1,--.,ym] and g ¢ P}. Note
that k[y1,... ,ym]p is a subnng of k(y1,-.. ,Ym). It is called the local-
ization of kly,... ,ym] at P.

b. Give a method for computing generators of ker(1).

c. Prove the following analog of Theorem 2.4.7. Let K be the ideal of
klvi,... ,Ym,Z1,--- ,Ty] generated by y; — fi, 1 = 1,... ,m. Let G
be a Grébner basis for K with respect to the lex term order with
Ty > Ty > > Ty > Y1 > o > Ym- Then ¥ is onto if and only
if for each ¢ = 1,... ,n there exists g; € G such-that g; = a;z; — i,
where o; & P, o; € k[y1,... ,Ym] and B; € K[Tit1, ... 1T, Y1+ » Ym)-
[Hint: If z; is in the image of 9, then z; = %—’&% for some
i, € k[y1,- .. ,ym] such that y; ¢ P. Choose +; such that lp(+y;) is
the smallest possible. Consider t; = %(y1,.-- ,Ym)%i — 8:(y1,--- , Ym)-
Prove that t; € K. Prove that there exists a polynomial g; € G such
that Ip(g;) = y{* - - - ¥4z, and so conclude that g; is of the required
form. For the converse, first prove that z,, is in the image, then z,,_1,
etc.]

d. Consider the map ¢: k[u,v] — k[z] defined by u — z* 4+ z and
v — 23, Compute generators of P and determine whether 9 is onto.

e. Consider the map ¢: Q[u,v,w] — Q|z,y] defined by u — 22 +y,
and v ~— z 4+ y and w — z — y2. Compute generators of P and
determine whether % is onto.

Let ¢: Q[u,v] — Q[z] be defined by ¢: u — z*+2?2+z and ¢p: v +—

z3 —z.

a. Using Theorem 2.4.7 show that ¢ is not onto.

b. Show that 23 is not in the image of ¢.

c. Show that the map 1), corresponding to the one given in Exercise 2.4.6,
is onto.

Complete the proof of Theorem 2.4.11.

Prove Theorem 2.4.13.

Let ¢: Q[u,v,w]/J — Q[z,y]/I be defined by ¢: u+J — 22 +y + 1,

¢: v+J +— z4+y+1, and ¢: w+J — z3+zy?+1 and where J = (uv—w)

and I = (zy +y).

a. Prove that ¢ is well-defined.

b. Find the kernel of ¢.

c. Show that ¢ is onto.
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2.4.11. For those who have the appropriate algebra skills, generalize Exercise 2.4.6
to the case of

& kv, yml/J — EKlzy,...,z0)/I
yi+J — fit+1,

where we assume that J,I are ideals in the appropriate rings and I is a
prime ideal.

2.5. Some Applications to Algebraic Geometry. In this section we will
apply the results of the previous sections to study maps between varieties.
Throughout this section, for I an ideal in k[zi,... ,,], we will consider the
variety Vi(I) C k™ as we did in Section 2.2. We will abbreviate this variety
more simply by V(I).

‘We begin by considering projection maps

T Emin — k™

2.5.1
( ) (a'lr--,am’bl,-“’bn) —_ (al,...,%).

If we apply this map to a variety V, we may not obtain a variety. For example,
the variety V' (zy — 1) projects onto the z-axis minus the origin, and this is not a
variety. We are interested in finding the smallest variety containing 7(V'). Before
we do this we give the following general proposition.

PROPOSITION 2.5.1. If S C k™, then V(I(S)) is the smallest variety contain-
ing S. That is, if W is any variety containing S, then V(I(S)) C W. This set is
called the Zariski closure of S.

PROOF. Let W = V(J) C k™ be a variety containing S, where J is an ideal
in k[z1,... ,zn]. Then I(W) C I(S) and V(I(S)) C V(I(W)). But V(I(W)) =
V(V/J) = V(J) = W, by Theorem 2.2.5. Therefore V(I(S)) CW. O

As a simple example of the above proposition, consider two varieties V' and
W contained in k™. Then V — W need not be a variety, and its Zariski closure
is V(I(V — W)). We note that I(V — W) = I(V): I(W) (Exercise 2.5.2). Recall
that we showed how to compute the ideal quotient in Lemmas 2.3.10 and 2.3.11.

EXAMPLE 2.5.2. Consider the varieties V = V(z(y — 2),y(z — 2)) and W =
V(y—2z) in C3. Then V consists of the four linesy =2 =0,z =2=0,z =y =0,
and z = y = 2. Moreover W is the plane y = z which contains just two of these
lines, namely y = z = 0 and z = y = z. Thus V — W consists of the union of
the two lines £ = z = ¢ and z = y = 0 excluding the origin. We use the above
method to compute the smallest variety containing V — W, namely V (I(V —W))
(although it is geometrically obvious that this variety is the union of the two
lines including the origin). By the above we have I(V — W) = I(V): I(W).
Also, it is easy to see that I(V) = (z(y — 2),y(z — 2)) and I(W) = (y — 2),
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since \/(z(y — 2),y(z — 2)) = (z(y — 2),y(x — 2)) and \/(y —2) = (y — 2). We
compute I(V): I(W) using Lemma 2.3.11 to get

(z(y — 2),y(z — 2)): (y — 2) = (z,y2).

Therefore the smallest variety containing V' — W is, as we observed above, the
union of the two lines zt =z=0and z =y =0.
We now return to the projection map (2.5.1).

THEOREM 2.5.3. Let I be an ideal in ky1,... ,Ym,Z1,--. ,Zn|. The Zariski
closure of m(V(I)) is V(I Nklyy,- .. »Ym))-

ProOF. Let V = V(I) and I, = I Nkly1,... ,Ym]. Let us first prove that
m(V) C V(I,). Let (a1,... ;8m,b1,... ,bn) €V, so that (a1,... ,am) € w(V). If
f € I, then f(a1,... ,@m,b1,... ,by) = 0, since f € I, and thus f(ay,... ,am) =
0, since f contains only y variables. Therefore #(V) C V(I,). In view of
Proposition 2.5.1, to complete the proof of the theorem we need to show that
V(L) € V(I(x(V))). We first show that I(x(V)) C /T,. Let f € I(x(V)),
so that f(ai,...,am) = 0 for all (aj,...,am) € (V). If we view f as an
element of k[y1,... ,Ym,Z1,... ,Zxs), then f(a1,...,am,b1,... ,b,) = 0 for all
(@1y+.. ,amyb1,... ,bn) € V. By Theorem 2.2.5, there exists an e such that
fe € I. But, since f involves only y1,... ,Ym, f® € I, and hence f € /I,,.
Now we bave V(I) = V(4/T;) € V(I(n(V))). This complete the proof of the
theorem. [

We now turn our attention to an application of Theorems 2.3.4 and 2.5.3.
We consider a map
p: k™ — k™,
given by ¢(z1,...,2n) = (fi(z1,.-- ,Zn)s- -+ » fm(Z1,- .- 'f"))’ where the f;’s
are in k[z;,... ,Z,). One can think of this as a subset of k™ parametrized by
fl’ L | fm:
v = fi(z1,.-- ,%n)

Y2 = f2($11-” ,z'n)

Ym = fm(zl,' .. $m»n)'

These equations define a variety in k£ ™", namely

V=V(y1—fl)'“ ,ym"fm)'

(We note that V is, in fact, the graph of ¢.) We want to convert the parametric
equations into polynomial equations in the y variables alone. This process is
called implicitization. One has to be careful, since parametric equations do not
always define a variety and so we will find the Zariski closure of im(¢).
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Consider the projection
e Em+n N Em
(yly“‘1y7n7$11""zn) L (yli"'!ym)'

Then we can see that 7(V) is the image of ¢, and so we apply Theorem 2.5.3.
That is we let

I= (yl —fl’-" yYm —fm) g k[yl’ yYm,T1, . .- ’zn]'

Then the Zariski closure of (V) is V(I Nk[yy, ... ,ym]). Note from Theorem
2.4.2 that the Zariski closure of the image of  is defined precisely by the ideal
of relations of the polynomials fi,... , fm.

Therefore, to find a set of defining equations for that variety, one computes a
Grobner basis G for I with respect to an elimination order with the z variables
larger than the y variables. The polynomials in G which are in the y variables

only are the desired polynomials.
ExAMPLE 2.5.4. Consider the map
p: €2 — Cc4

(z,y) — (=4 2%,29%,9")
so that the parametrization is given by:
4

r =
u = 2%
(2.5.2) o
w = gy

The Grobner basis for the ideal I = (r —z*, u—z3y, v —zy?, w—y*) with respect
to the lex term ordering with z >y > r >u > v > wis G = {uw? — v3,rw —
wv, —rv? + v?w, —r2v + ud, —y* + w, —zw + yv, —2v* + yuw, —Tu + Yr,TTV —
yu?, —zy® + v, —z2v + y?u, —z%y?r + u?, —z%y + u, —z* + r}. The polynomials
that do not involve z or y are those that determine the smallest variety containing
the solutions of the parametric equations (2.5.2):

3

uw? — 03, rw — wv, —rv? + vlw, —rv + ud.

More generally, we consider maps between two varieties V C k™ and W C k™
given by polynomials; i.e.,
a: v — W
(@1,---,an) +— (fi(@1,---,8n),-.. , fm(a1,..- ,@n)),
where fi,..., fm € klz1,... ,Zn]
Such a map a gives rise to a k-algebra homomorphism a* between the affine
k-algebras k[yi, - - . ,ym|/I(W) and k[zi, ... ,z,]/I(V) as follows:

a*: Ky, yml/IW) — Klz1,.-. 2] /I(V)
v+ I(W) —  fi+I(V).
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To see that a* is well-defined, we need to show that for all g € I(W), we have
9(f1,--- s fm) € I(V). But for all (a;,...,an) € V, we have a(a,,... ,a,) € W,
and hence

0 =g(a(al,--- ,a'n)) =g(f1’-" $fm)(a’1"" ’aﬂ):

as desired.

We have then that o* is a k-algebra homomorphism. Note also that if the
map o is the identity map of the variety V onto itself, then the corresponding
map a* is the identity of the affine algebra k[z1,... ,za]/I(V) onto itself (this
follows since the field % is infinite).

Thus the study of the map o between varieties might be done by studying
the corresponding map o* between the corresponding affine k-algebras. We will
give two examples illustrating this idea: determining the image of a variety and
determining whether a given map is a variety isomorphism.

Suppose that we have a variety V in k™ and a map o into k™ given by
polynomials f1,... , fm € klz1, - ,@a]:

a: \%4 — k™
(aj,...,an) — (fi(ar,---an)s---, fm(a1,--. ,a5)).

We would like to determine the Zariski closure of the image of the map . In
the case when V = k™ we did this at the begining of this section. We can find
I(im(c)) by considering the corresponding map

a*: klyn,.. Ym] — K[z1,.-.,z0]/I(V)
Y —  fi+I(V).

PROPOSITION 2.5.5. A polynomial g € k[yy,...,ym| s in I(im(a)) if and
only if g € ker(a*).

PROOF. Let g € I(im(c)). Then for any (a1,-.. ,a) €V, g(a(ay,... ,a,)) =
0, and hence g(a(z,, ... ,z,)) € I(V), so that a*(g) = 0 and g € ker(a*). The
argument is clearly reversible.

This proposition together with Theorem 2.4.10 gives us an algorithm for com-
puting the ideal I(im()), and hence for determining the smallest variety con-
taining im(a).

EXAMPLE 2.5.6. Let V be the variety in C2 defined by z? +y2 —1 (a circle in
the z,y plane). Consider the map o given by the polynomials f, = 22, f, = 32,
and f3 = zy; ie.

a: Vv — (3
(z,y) — (2% 9% 2y).
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The corresponding map a* is
a*: C[‘U:,U,'lll] i C[:c,y]/(:cz + y2 - 1)

u — 224+ (z2+y?-1)

v — P+ +y’ - 1)

w —  zy+(z2+y2 -1).
To find I(im(a)), we consider the ideal K = (22 +3* — 1,u — z2,v — y%, w — zy)
and find a Grébner basis G for K with respect to the lex term ordering with
z>y>u>v>wtoget G= {22 +v - 1,2y — w,zv — yw,zw + yv — y,y° —
v,u+ v — 1,92 — v + w?}. Therefore

I(im(e)) = ker(a*) = K NClu,v,w] = (u+v — 1,9% — v + w?).

Geometrically, the equation u + v — 1 = 0 is the equation of a plane parallel to
the w axis. The equation v?> — v + w? = 0 is the equation of a cylinder whose
axis is parallel to the u axis. The intersection of these two surfaces is an ellipse.

The second example illustrates how a* can be used for determining whether
two varieties are isomorphic.

DEFINITION 2.5.7. Two varieties V C k™ and W C k™ are said to be isomor-
phic over k if there are maps a: V — W and B: W — V given by polynomials
with coefficients in k such that ao 8 = idw and Boa = idy, where idy and idw
are the identity maps of V and W respectively.

THEOREM 2.5.8. The varieties V C k™ and W C k™ are isomorphic over k
if and only if there exists a k-algebra isomorphism of the affine k-algebras

klvi,... ,yml/I(W) and k[z1,... ,z,.]/I(V).

PrOOF. First let a and § be inverse polynomial maps. Suppose that
a: vV — W
(a1,---,8n) — (filar,--. ,@n),--. s fm(ars-- - yan)),
where fi,..., fm € k[z1,... ,Zy), and suppose that
B: w — V
(b1,-+. ,0m) — (g1(b1,--. ,b), -+ s 9n(B1y-.. ,bm)),
where g1,...,9n € k[y1,... ,¥m]- Note that the map (B o a)* is defined by
z; V— gi(f1,-.. , fm) while the map a* o B* is defined by
Ti— g — gi(fl, see )fm)7

and so, (8o a)* = a* o B*. Now, since foa = idy, (B0 a)* = idr,, .. z.)/1(V)
and hence a* o §* is also the identity of k[z1, ... ,z,]/I(V) onto itself. Similarly,
we have that 3* o a* is the identity of k[y1, ... ,ym]/I(W) onto itself. Therefore
a* is a k-algebra isomorphism
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For the converse, we assume that we have a k-algebra isomorphism
O: k[y1,...,ym]/I(W) — k[z1,. .., 2a]/I(V).

We will see that © = a* for a map o between the varieties V and W which is
given by polynomials and such that a~! exists and is also given by polynomials.
Let O(y; + IW)) = fi + I(V), where f; € k[z1,... ,z,] for i = 1,... ,m,
and let -1 (z; + I(V)) = g; + I(W), where g; € k[y1,... ,ym] for j=1,... ,n.
Consider the maps
a: Vv —_— W
(al7"'7an) — (fl(al)--')an)7"‘7fm(a11-",an))7
and
B: w — V
(bI) e sbm) — (gl(bh see :b‘m)’ oo 7gﬂ(b17' .- 7bm))'
It is readily seen that a maps V into W, 8 maps W into V| and that o and 8
are inverse maps. []

Therefore, to determine variety isomorphism, we need to check whether o* is
a k-algebra isomorphism. We have seen in Theorem 2.4.10 how to compute the
kernel of a* and in Theorem 2.4.13 how to determine whether o* is onto.

EXAMPLE 2.5.9. Consider the variety V C C? defined by the equation z2? —
yz + 1 in the z,y plane. Also, consider the variety W C C?2 defined by the
equation u* +u3 + 2u?v +v% +uv +1 in the u, v plane. Finally consider the map

a: Vv —s W
(z,y) — (y,—y*-2)
We will show that this gives an isomorphism of the varieties V and W.

First we show that o maps V into W. So let (z,y) € V. Then if we replace u
and v by y and —y? — z respectively in the equation defining W we get

¥+ + 2 (- - o)+ (¥ -2 +y(-y - 2) + 1 =2~y +1=0,
since (z,y) € V.
Now consider the corresponding map
a*: Clu,v]/J — Clz,y)/I
f+J — f(y,—y2'~$)+I,

where J = (uf+u3+2u?v+v?+uv+1) and I = (2 —yz+1) (see Exercise 2.3.16
part a tosee why I = I(V) and J = J(W)). Let K = (z?~yz+1,u—y, v+y2+z)
be the ideal in Clu,v,z,y] as in Theorem 2.4.10. We compute a Grobner basis
for K with respect to the lex term ordering with z > y > u > v to get

G={z+v®+v,y—u,u* +u®+ 2020 +uv +v2 + 1}

Thus K N k[u,v] = (u* + 43 + 2u?v + uwv + v2 + 1) = J, and hence ker(a*) =0
by Theorem 2.4.10 and so a* is one to one. Also, since z +u2+v and y —u
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are in G, the map o* is onto by Theorem 2.4.13. Therefore o* is a C-algebra
isomorphism and, so by Theorem 2.5.8, o gives an isomorphism of the varieties
V and W. Note that the inverse map is given by a~(u,v) = (—u? — v,u), for
(u,v) € W.

If the reader is interested in studying further the ideas presented in this section
we strongly recommend the book of Cox, Little, and O’Shea [CLOS].

Exercises

2.5.1.

2.5.2.
2.5.3.

2.5.4.

2.5.5.

2.5.6.

2.5.7.

Show that in C3, if the plane defined by = = 1 is removed from the variety

V =V(zy® +z2% —zy — y? — 22 + y,2% + 2y — 22 — y + 1), the Zariski

closure of what remains is an ellipse. Conclude that V is the union of this

ellipse and the given plane.

Let V and W be varieties in k™. Prove that I(V — W) = I(V): I(W).

a. Find the equation in C2 for the curve parametrized by z = 3,y =
2 +1.

b. Find the equation in C2 for the curve parametrized by z =3+ 1,y =
t2.

c. Find the ideal for the intersection of these two varieties and then de-
termine all points on this intersection.

d. Do part ¢ by solving the equations directly.

Show by the method of this section that the vanety in C3 parametrized

by z =u+uw+wy=u+v>+w?z=1u?+vis all of C3. [Hint: If

you try to compute this example using lex, your computer may not be
able to complete the computation. However, if you use deglex on the

u, v, w variables and also on the z, y, z variables with an elimination order

between them, you should encounter no difficulties.]

Consider the variety V parametrized by z = 3,y = %,z = 5 in C3.

a. Show that I(V) = (y° —2*, —y? +x2,2y° — 28, 22y — 22, 2% —yz). [Hint:
Use lex with z > y > 2.]

b. Verify that also I(V) = (zz — 2,23 — yz, 2%y — 2?).

c. Show that the tangent variety of V is parametrized by = t3+3t%u,y =
t* + 4t3u, 2 = 5 4+ 5t%u. [Hint: The tangent variety is defined to be
the union of all the tangent lines of V. So this exercise is done using
elementary multivariable calculus.]

d. Compute generators for the ideal of the tangent variety of V. [Answer:
(15z%y? — 48y° — 16252 + 80zy3z — 30z2y2? — 22).]

Let V be the variety in C3 defined by 22 + y> — 22 =0 and 23 +y = 0.

Define a: V — C* by (a,b,c) — (a%,a+ b,c? + a,c). Find the ideal

of the image of a.

In Clz,y, 2] let J = (—2y—y? +22+ 22,22 —yz—2?2) and in Clu,v] let I =

(uv+v). Define the map a: V(I) —s V(J) by (a, b) — (a%+b, a+b,a—b).

Prove that o defines an isomorphism between V(I) and V(J) (you may
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assume that I(V(J)) = J).

2.6. Minimal Polynomials of Elements in Field Extensions. In this
section we will use the results of Section 2.4 to find the minimal polynomial of
an element algebraic over a field k. We will assume that the reader is familiar
with the most elementary facts about field extensions [Go, He]. The results of
this section will not be used in the remainder of the book and may be skipped.

Let k C K be a field extension. Recall that if o € K is algebraic over &, then
the minimal polynomial of o over k is defined to be the monic polynomial p in one
variable, with coefficients in k, of smallest degree such p(a) = 0. Alternatively,
considering the k-algebra homomorphism ¢: k[z] — k(a) defined by z — a,
we have that ker(¢) = (p). Moreover, the map ¢ is onto, since « is algebraic,
and so

(26.1) klz]/(p) = k(a),

under the map defined by z + (p) — a.

We first consider the case where K = k(a), with a algebraic over k, and our
goal is to compute the minimal polynomial of any 8 € K. We note that in order
to compute in k(a) it suffices, by Equation (2.6.1), to compute in the affine
k-algebra k[z]/(p). We assume that we know the minimal polynomial p of c.

THEOREM 2.6.1. Let k C K be a field extension, and let a € K be algebraic
over k. Let p € k[z] be the minimal polynomial of a over k. Let 0 # 8 € k(a),

say
_gtaa+---+aa”

= bt hiat T b’
where a;,b; € k,0<i <n,0<j <m. Let f(z) = ap+a12+---+ anz™ and
g(z) =bp+b1z+---+byx™ be the corresponding polynomials in k[z]. Consider
the ideal J = (p,gy — f) of k|z,y]. Then the minimal polynomial of B over k is
the monic polynomial that generates the ideal J N k[y].

Note that J N k[y] is generated by a single polynomial, since this is true for
every ideal in k[y] (i.e. k[y] is a principal ideal domain).

PROOF. Note that since k[z]/(p) is a field, and g(c) # O (it is the denominator
of B), there is a polynomial £ € k[z] such that g =1 (mod (p)), thatisgl—1 €
(p). Let h = ff. Note that h(a) = B. Now consider ¢, the composition of the
affine algebra homomorphisms

¢: kol — Klal/p) = k)
y — ki) — B
Note that g is in the kernel of ¢ if and only if ¢(8) = 0. Therefore to find the
minimal polynomial of 8, we find the generator of the kernel of ¢. By Theorem
2.4.10, the kernel of the map ¢ is (p, y—h)Nk[y]. Therefore it suffices to show that
(p,y — h) = (p, gy — f). First note that y — h = y — f¢ = £(gy — f) (mod (p})),
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and hence y — h € (p,gy — f) so that (p,y — k) C (p,g9y — f). Conversely,
9y —f = g(y— f€) = g(y — h) (mod (p)). Therefore gy — f € (p,y — h), and

The above result gives an algorithm for finding the minimal polynomial of an
element 8 in k(c): given o and B as in the theorem, we compute the reduced
Grobner basis G for the ideal (p, gy — f) of k[z,y] with respect to the lex term
ordering with £ > y. The polynomial in G which is in y alone is the minimal
polynomial of 5.

EXAMPLE 2.6.2. Consider the extension field Q(a) of Q, where a is a root of
the irreducible polynomial z° — z — 2. Now consider the element 8 = 1"—"‘;—29-3— €
Q(a). We wish to find the minimal polynomial of 3. We consider the ideal J =
(z° —z— 2,2y + 22° + z — 1) in Q[z,y]. We compute the reduced Grébner basis
G for J with respect to the lex term ordering with z > y to obtain

G={x 1438 s 2183 3+10599 o 8465 101499

258877 458877 T 15887’ T 458877 45887

v+ %y" +4y% — 5y + 95y + 259}.

Therefore the minimal polynomial of 3 is y® + 1ly* + 4y° — 5y2 + 95y + 259.

This technique can be extended to a more general setting of field exten-
sions of the form K = k(oj,...,0n). For this we need the following nota-
tion which we use for the remainder of this section. For i = 2,...,n and
P € k(ai,...,ai—1)[zi], we let B be any polynomial in k[zy,...,z;] such that
P(oy,...,ai—1,z;) = p. We note that P is not uniquely defined, but every ap-
plication we will make of  will not depend on the particular choice we have
made.

We now determine the minimal polynomial of any element 3 of k(a1, ... ,an)
using the following result, which is similar to Theorem 2.6.1.

THEOREM 2.6.3. Let K = k(ay,-..,a,) be an algebraic extension of k. For
i=1,...,n, let p; € kleu,... ,ai—1)[zi] be the minimal polynomial of a; over
k(ay,...,ai1). Let BE€ k(a,... ,an), say

PR ICS

glog,...,an)’

where f,g € k[z,,... ,z,]. Consider the ideal J = (D,,... ,Pn,9y — f) contained
in k[z1,... ,Zn,y]. Then the minimal polynomial of B over k is the monic poly-
nomial that generates the ideal J N k[y|.

PRrOOF. We first show that

k[xl"'- ’xn]/@li'“ 7?1;) = k(ala"’ ,an)
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using the map
bn: Koy, ,zal — kon,...,an)
T; — [+ 798
We note that ¢, is onto, since o, .. . , o, are algebraic over k. It remains to show

that ker(¢,) = (Py,... ,P,). For this we use induction on n. The case n =1 is
Equation (2.6.1). The fact that py,...,P, € ker(¢,) is immediate. Now let
f € k[zy,... ,z,] be such that f(ai,...,0n) =0. Let

h(xn) = f(ala R ’an-—hx‘n) € k(ah LR ,an—l)[xn];

and note that h(ay,) = 0. Therefore p, divides h, by definition of p,. Say h =
Pnln, for some £, € k(o, ... ,an_1)[zn]. Consider f — 5,2, € k[z1,...,Zs] and
write
f=Pnln = Zg,,(a:l, ey Tnoy)Th.
v

Then, since
(f —ﬁnzn)(ala e Qno1,Tn) = h ~pply, =0,
we see that for all v, g, (0, ... ,an—1) = 0. Therefore g, (z1,... ,Zn—1) is in the
kernel of
On—1: k[Z1,--. ,2pn_1] — k(a1,... ,an_1),
and hence

gu(wl,m axu-l) € (I_’I»“' ’T’n—-l)’

by induction. Thus f — P,ln € (P1,--- ,Pp_1)> 2nd f € (Py,... ,P,). Thus
ker(¢n) = (Py,.--,P,p) 8s desired. The proof now proceeds as in Theorem
26.1. O

EXAMPLE 2.6.4. Consider the field extension Q C Q(v/2, ¥/5). The minimal
polynomial of v/2 over Q is p; = 27 — 2 € Q[z;] and the minimal polynomial
of V/5 over Q(v2) is pa = 23 — 5 € Q(v2)[z2]. We wish to find the minimal
polynomial of v2 + /5. We compute the reduced Grébner basis G for the ideal

J = @17?23y - (xl +$2)) = (xf - 273'3 - 57y - (-'1:1 +$2)> g Q[xlax2)y]
with respect to the lex term ordering wih z; > z3 > y to obtain
G = {1187z; — 48y° — 45y* + 320y° + 780y% — 735y + 1820,
11873 + 48y° + 45y* — 320y — 780y% — 452y — 1820,

3® — 6y* — 10y° + 124 — 60y + 17}.
Therefore the minimal polynomial of v2+ ¥/5 over Q is y® — 6y* — 103 + 1232 —
60y + 17.
We also see that v/2 + ¥/5 has degree 6 over Q and hence Q(v2 + V/5) =
Q('\/ia '\:75)’
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EXAMPLE 2.6.5. The minimal polynomial of ¥/2 over Q is p; = 7} —2 € Q[z1].
All the roots of this polynomial generate the extension Q(+/2,4), where i the

complex number such that i2 = —1. We consider the element 5 = 1 + %2. We

wish to find the minimal polynomial of 3 over Q. First, the minimal polynomial
of i over Q(¥/2) is p2 = 22 + 1. Then p, = p1, and B, = p,. We consider the ideal
J = (z} - 2,22 + 1,21y — (21 + z2)) of Q[z1,72,y]. The reduced Grobner basis
for J with respect to the lex term ordering with z; > z2 > y is computed to be

1
G= {231 — 2%z, + 6y’zy — 6yzy + 222,73 + 1,3* — 4° + 63° — 4y + 5} .
Therefore the minimal polynomial of g is y* — 4y® + 6y% — 4y + 3.
Alternatively, Q(v/2,1) = Q(¥/2,4+v/2). The minimal polynomial of i¥/2 over
Q(¥?2) is p; = % + V2. Thus P, = z3 + z7. We again want to compute the
minimum polynomial of 8 = 1+ % We consider the ideal J = (z} — 2,223 +

22,22y — (z? + z2)). The reduced Grobner basis for J with respect to the lex
term ordering with z; > z2 > y is computed to be

1
G={$§+2y2-4y+2,x2+2y3—6y2+6y—2,y4—4y3+6y2—4y+§}.

So we obtain the same result as before.

Since the degree of 3 over Q is 4, and since the degree of Q(+¥/2,1) over Q is
8, we see that Q(B) is a subfield of Q(¥/2, 1), but is not equal to it.

In the preceding two examples, we used a degree argument for deciding
whether k() is equal to k(ay,...,a,). We will give another method for de-
termining this which has the added advantage of expressing the a;’s in terms of
B. This algorithm is a consequence of the following theorem.

THEOREM 2.6.6. Let o1,... ,an and Dy,... ,D, be as in Theorem 2.6.3. Let

B € k(ay,... ,an), sayﬂ=%, with f,g € k[z1,... ,Zn). Let J be as
13- yCn

in Theorem 2.6.3, and let G be the reduced Grébner basis for J with respect to an
elimination order with the = variables larger than y. Then k(ai, ... ,an) = k(B)
if and only if, for each i = 1,... ,n, there is a polynomial gi € G such that
9i = z; — h;, for some h; € k[y]. Moreover, in’this case, c; = hi(0).

PROOF. Let I = (py,... ,D,),and let £ € k[zy,. .. ,z,] be such that gf—1 € I.
Set h = f£, and note that h(ay,... ,a,) = B. Consider

Kyl % Kloy,...,zal/T =5 Ko, ,an)
Y — h+1 — B.

Then k(ai,...,on) = k(B) if and only if ¢ is onto. We conclude by using
Theorem 2.4.13 and the fact that J = (I,y—h). O
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EXAMPLE 2.6.7. In Example 2.6.4, the Grobuer basis G contained the follow-
ing polynomials

1187z, — 48y° — 45y* + 320y + 780y% — 735y + 1820,

1187z, + 48y° + 45y% — 320y — 780y — 452y — 1820.
This gives another proof that Q(v/2 + ¥/5) = Q(v/2, ¥/5). Moreover, we have
(2.6.2)

V2= 1187 (48(\/_ + ¥5)5 + 45(V2 + V5)* — 320(V2 + ¥5)°
~780(V2 + ¥/5)% + 735(V2 + V/5) — 1820) ’
and
(2.6.3)
= 1187 (—48(v2 + ¥B)° - 45(v2 + 5)* + 320(VE + VB)°

+780(V2 + ¥/5)2 + 452(V2 + ¥/5) + 1820) .

However, in Example 2.6.5, no polynomial of the form z; — h; exists in G
with h; € k[y], and this gives another proof that Q(3) # Q(+v/2,1).
Finally, we also note that in Example 2.6.2 we have Q (1_—“;‘33) = Q(a) and

1438 2183 , 10599 , 8465 . 101499
= meg? T mes? ~wes? e’ T mesr

—ry—r3
where g = 1=e=a®,

Exercises
2.6.1. Compute the minimal polynomial of the following over Q.
a. V2+ V4+5.
V247

\/_ 2+1
c. L;'L?,whereae‘—a 1=0.
2.6.2. Compute the minimal polynomial of the following over Q.
a. vV2+92+5.
b. V2+ V5+5.
c. V2+V3++5.

2.6.3. Show that Q(ay,a2) = Q(B) and express a; and a3 in terms of 8, where

o102 +1
03 a;—1=0, 02—53ndﬂ—m—

2.6.4. In Theorem 2.6.3 we required that p;11 € k(al, . »0;)[Z;41] be the min-
imal polynomial of a;4; over k(ai,... ,0;). The minimal polynomial of
a;+1 over k would not do as the following example shows. Let K =
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Q(¥/2,i¥/2) and 8 = ¥/2 + i¥/2. We wish to find the minimal polynomial

of S.

a. Use Theorem 2.6.3 to compute the minimal polynomial of 8 over k.

b. Instead of the minimal polynomial of i¥/2 over Q(¥/2), use the min-
imal polynomial of iv/2 over Q in the method described in Theorem
2.6.3, and see that, now, the method does not give the correct minimal
polynomial of 8 over Q.

2.6.5. Find, explicitly, the quadratic subfield of Q(¢) where ¢ is a primitive 7th
root of unity. [Hint: Using the method of the text, note that the minimal
polynomial of ¢ is £=1 ”‘7‘1 and that this quadratic subfield is the fixed field
of the automorphlsm deﬁned by ¢ — (2]

2.6.6. Complete the proof of Theorem 2.6.3.

2.7. The 3-Color Problem. In this section we want to illustrate how one
can apply the technique of Grobner bases to solve a well-known problem in
graph theory: determining whether a given graph can be 3-colored. (The same
technique would work for any coloring.) This material is based on a portion of
D. Bayer’s thesis [Ba]. The material in this section will not be used elsewhere
in the text and may be skipped.

Let us first state the problem precisely. We are given a graph G with n vertices
with at most one edge between any two vertices. We want to color the vertices in
such a way that only 3 colors are used, and no two vertices connected by an edge
are colored the same way. If G can be colored in this fashion, then G is called
3-colorable. This can be seen to be the same as the 3-color problem for a map:
the vertices represent the regions to be colored, and two vertices are connected
by an edge if the two corresponding regions are adjacent.

First, we let £ = ¢ € C be a cube root of unity (i.e. £ =1). We represent
the 3-colors by 1,&, €2, the 3 distinct cube roots of unity. Now, we let zy,... ,Tn
be variables representing the distinct vertices of the graph G. Each vertex is to
be assigned one of the 3 colors 1,£, £2. This can be represented by the following
n equations

(2.7.1) 2-1=0,1<i<n.

Also, if the vertices z; and a:, are connected by an edge, they need to have a
different color. Since z} = 2, we have (z, — z;)(z? + z:z; + z3) = 0. Therefore
z; and z; will have dlﬂ’erent colors if and only if

(2.7.2) @7 + zizj + z2 = 0.

Let I be the ideal of C[zy,... ,z,] generated by the polynomials in Equation
(2.7.1) and for each pair of vertices z;, z; which are connected by an edge by the
polynomials in Equation (2.7.2). We will consider the variety V'(I) contained in
C™. The following theorem is now immediate.

THEOREM 2.7.1. The graph G is $-colorable if and only if V(I) # 0.
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We have seen in Section 2.2 that we can use Grobner bases to determine
if V(I) = 0. We first compute a reduced Grobner basis for I. If 1 € G, then
V(I) = 0 and otherwise V() # 0 (see Theorem 2.2.6).

ExaMPLE 2.7.2. Consider the graph G of Figure 2.1.

Tg

T3 o

T4 z5

Z7 z)

Tg
FIGURE 2.1. The graph G

The polynomials corresponding to G are:
z2-1, fori=1,...,8
and
#? + z;z; + 2, for the pairs (3,5) € {(1,2),(1,5),(1,6),(2,3),(2,4),

(2,8),(3,4),(3,8),(4,5),(4,7),(5,6),(5,7),(6,7), (7,8)}.
We compute a Grobner basis G for the ideal I corresponding to the above poly-
nomials. Keeping in mind Corollary 2.2.11, we use the lex term ordering with
1> 29 > -+ > 3. We obtain

G = {z, — z7,22 + T7 + T8, T3 — T7, T4 — Ts, T5 + T7 + T,

Tg — Tg, T2 + T7Tg + 3, 5 — 1}.
Since 1 ¢ G, we have that V(I) # 0, and hence, by Theorem 2.7.1, G is 3-
colorable. We can use the Grobner basis G to give an explicit coloring, since
the system of equations represented by G turns out to be easy to solve. Let us
assume that the 3 colors we are using are blue, red, and green. We must first
choose a color for zg, say red, since the only polynomial in one variable in G is
z3 — 1. We then must choose a different color for z7, say blue, because of the
polynomial 22 + z7z5 + 22 € G. Then we have that z; and z3 must be blue
because of the polynomials z; — z7,z3 — 27 € G, and z4, z¢ must be red because
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of the polynomials z4 — xg, 6 — g € G. Finally z, and x5 have the same color,
which is a different color from the colors assigned to z7 and zg, so =2 and x5 are
green; this is because the polynomials z3 + z7 + zg, and z5 + z7 + zg are in G.
We note that it is evident from the Grobner basis in Example 2.7.2 that there
is only one way to color the graph G, up to permuting the colors, and so it should
not be too surprising that solving the equations determined by the Grébner basis
is easy. However, if there is more than one possible coloring, the Grébner basis
may look more complicated. This is illustrated in the following example.
ExAMPLE 2.7.3. Consider the graph G’ in Figure 2.2.

Z7 T3 z3

Ts T

T4

xg Ze

9

FIGURE 2.2. The graph G’
The polynomials corresponding to G’ are:
-1, fori=1,...,9
and
a? + z;z; + z3, for the pairs (3,5) € {(1,2),(1,4),(1,5), (1,6),(2,3),(2,5),
(2,7),(3,4),(3,6),(3,9),(5,86),(6,8),(7,8),(8,9)}.

We compute a Grobner basis G’ for the ideal I’ corresponding to the above
polynomials using the lex term ordering with z; > x9 > --- > g > g to obtain

G' = {z3 — 1,23 + z3z9 + 23, (T7 — 79)(z7 + T8 + T9),
Zg + 7 + T3, (—IL',r, + $7)(—$5 + .'l:g),
(z5 — z9)(xaz7 + T4Ty + T7Ts + T4Tg + T7Tg + TsTg),
(x4 — z5) (24 + 27 + T8), T3T7 + T3Tg — T7T3 + T3T9 + :1:3,
T3T4 + T4T5 — T4Ty + TpT7 — TaTy + TsTg — T3Ty — Lo,

T2 + T3%9 + T3, 22 + T7 + Ts, Ty + Ts — T7 — Ty}
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Since 1 ¢ G', we have that V(I') # 0, and hence, by Theorem 2.7.1, G’ is
3-colorable. This Grobner basis looks much more complicated than the one in
Example 2.7.2. This reflects the fact that there are many possible colorings of
this graph. In fact, it is easy to 3-color the graph G’ by trial and error.

Exercises

We note that we have tried to keep these problems small, without making
them too trivial looking, but your Computer Algebra System may still have
trouble doing the computations.

2.7.1. Show that if we add an edge between z2 and zs in the graph G of Figure
2.1, the graph is no longer 3-colorable. (This can be done either by com-
puting a Grébner basis for the new ideal, or by observing what was done
in Example 2.7.2.)

2.7.2. Show that if we add one edge between vertices z; and z3 in the graph G’
of Figure 2.2, then G’ is still 3-colorable. Show that now the 3-coloring is
unique except for the permutation of the colors.

2.7.3. Generalize the method given in this section to the case of determining
whether graphs are 4-colorable.

2.7.4. Use the method of Exercise 2.7.3 to show that in the trivial example where
there are 4 vertices, each pair of which is connected by an edge, the graph
is 4-colorable and show that the equations imply that all 4 vertices must
be colored a different color.

2.7.5. Show that in principle (by this we mean that the computations would
probably be too lengthy to make the scheme practical) the method in this
section could be generalized to giving a method to determine whether a
graph is m-colorable for any positive integer m.

2.8. Integer Programming. The material in this section is taken from P.
Conti and C. Traverso [CoTr]. No use of this section will be made elsewhere in
the book.

The integer programming problem has the following form: let a;; € Z, b; € Z,
andc; €R,i=1,...,n,5=1,...,m; we wish to find a solution (01, 02,... ,0m)
in N™ of the system

1107 + @202 + -+ GmOm = b

@101 + a0z + -+ + amom = by
(2.8.1)

@n101 + Gn202 + ¢+ QamOm = bn,

which minimizes the “cost function”

m
(2.8.2) c(01,02,... ,O0m) = cha,-.
j=1
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This problem occurs often in scientific and engineering applications. There
are many books on the subject which the reader may consult, see, for example,
[Schri]. Our purpose here is to apply the results of Section 2.4 to indicate a
solution method to this problem.

Our strategy is to:

(i) Translate the integer programming problem into a problem about poly-
nomials;
(i) Use the Grébner bases techniques developed so far to solve the polyno-
mial problem;
(iii) Translate the solution of the polynomial problem back into a solution of
the integer programming problem.

Io order to motivate the general technique presented below, we will first start
with the special case when all ¢;;’s and b;’s are non-negative integers. We will
also concentrate first on solving System (2.8.1) without taking into account the
cost function condition (Equation (2.8.2)).

We introduce a variable for each linear equation in (2.8.1), say z1,%2,... ,Zn,
and a variable for each unknown o, say ¥1,%2;.-. ,Ym- We then represent the
equations in (2.8.1) as

x?‘il”l"’"""az'mam = w?i’

?
for i = 1,...,n. Then System (2.8.1) can be written as a single equation of
power products

:B‘;ual+'“+almam . xgnlal+.~-+anml7m = xglxgz . xg:‘,

or equivalently,

(2.8'3) ($g11x321 e xg:nl )o'l e (xtlllmwgﬁm ‘e x‘(’l‘nm)o'm i xglxgﬂ e x,b‘n.

We note that the left-hand side power product in Equation (2.8.3) can be viewed
as the image of the power product y7*y32 - --y%~ under the polynomial map

k[yl,'“ )'ym] i’ k[xlx--- aw'n]
Y; — x‘lhj x;’j - x:"‘-" N

The following lemma is then clear.

LEMMA 2.8.1. We use the notation set above, and we assume that all a;; ’s and
b; ’s are non-negative. Then there exists a solution (01,02,... ,0m) € N™ of Sys-
tem (2.8.1) if and only if the power product 25'x%? - - - 2t is the image under ¢ of
a power product in k[yi,. .. ,ym]. Moreover if 22232 ... gbn = oYy ya2 - yom),
then (01,02,... ,6m) € N™ is a solution of System (2.8.1).

We have presented in Section 2.4 an algorithmic method for determining
whether an element of k[zy, ... ,Zy,] is in the image of a polynomial map such
as ¢ (see Theorem 2.4.4). However the above lemma requires that the power
product :v'l’l zg’ -- -z be the image of a power product, not a polynomial. But,
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because the map ¢ sends the variables y; to power products in k[zi,. .. ,Z,], we
have

LEMMA 2.8.2. We use the notation above, and we assume that all a;;’s and
b;’s are non-negative. If :cl :c2 .-z is in the image of ¢, then it is the image
of a power product y7'y5?---yom € k[, ... ,Ym]-

PrOOF. Let K = (y;—z1Yz9* ---zn | § =1,... ,m) be the ideal considered

in Theorem 2.4.4. Let G be a Grobner basis for K with respect to an elimination
order with the z variables larger than the y variables. Then, by Theorem 2.4.4

Pzl 2t € im(g) <= zdabz :cb" —4 h with h € kly1,... ,ym)-
Moreover, if 2z - -zl S hwithh € K[y1,--- ,Ym] then 00252 ... zbn =
é(h)-

We first note that the polynomials that generate K are all differences of two
power products. Therefore, during Buchberger’s Algorithm to compute G (see
Algorithm (1.7.1)), only polynomials which are differences of two power products
will be generated. Indeed, the S-polynomial of two polynomials which are both
differences of two power products is itself a difference of two power products,
and the one step reduction of a polynomial which is a difference of two power
products by another polynomial of the same form produces a polynomial which
is itself a difference of two power products. Therefore the polynomials in G are
all differences of two power products. Now if :1:'1’1:1:32 ...zl is in the image of ¢,
then it reduces to a polynomial k € k[ys, ... ,¥m|. But the one step reduction
of a power product by a polynomial which is a difference of two power products
produces a power product. Therefore h is a power product and we are done. [J

The proof of Lemma 2.8.2 gives us a method for determining whether System
(2.8.1) has a solution, and for finding a solution:

(i) Compute a Grébner basis G for K = (y; — 277z ---zn™ | § =
1,... ,m) with respect to an elimination order with the 2 variables larger
than the y variables;

(ii) Find the remainder h of the division of the power product z5'z%? - - - zb»
by G;
(iii) If A & k[y1,-- . ,¥m], then System (2.8.1) does not have non-negative in-
teger solutions. If h = y{*y2? - - -y, then (01,02, ... ,0m) is a solution
of System (2.8.1).
To illustrate the ideas presented so far, we consider a simple example.
ExAMPLE 2.8.3. Consider the system

301 + 209 + 03 + o4 = 10
(2‘8.4) {40‘1 + o2 + o3 = 5.

We have two z variables, z,,z2, one for each equation. We also have four y
variables, ¥1,¥2,¥s, Y4, one for each unknown. The corresponding polynomial
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map is
Qly1, y2,y3, 4] 2, Q[z, z)
n — x?w%
Yo — :1:1:1:2
Y3 —  Z1Tp
Ya — I,

and so K = (y1 — 2375, y2 — z3z2, Y3 — 2122, % — 71) C Qv1, %2, Y3, Y4, T1, Z2).
The Grobner basis for K with respect to the lex order with z; > z2 > y; >
Y2 > y3 > ya 8 G = {f1, fo, f3, fa, fs}, where fr = x; — ya, fo = T2ya — y3,
fa =203 — y1, fa = Y2 — Ysys, f5 = y1¥a — ¥3- Then

iaf L5) g
and h = yJy;3 is reduced with respect to G. Using the exponents of k we get that
(0,0,5,5) is a solution of System (2.8.4).

Now we turn our attention to the more general case where the a;;’s and b;’s in
(2.8.1) are any integers, not necessarily non-negative. We still focus our attention
on determining whether System (2.8.1) has solutions and on finding solutions,
that is, we still ignore the cost function condition (Equation (2.8.2)). We will
proceed as before, except that we now have negative exponents on the z variables.
Of course, this cannot be done in the polynomial ring &[z1, ... ,Zs]- Instead, we
introduce a new variable w and we work in the affine ring k[z1,... ,Zn, w]/1,
where I = (z122 - - - Zo,w — 1). We may choose non-negative integers a}; and aj,
foreach j=1,... ,mand ¢ = 1,... ,n such that for each j = 1,... ,m we have

(@1, 8255- -+ @nj) = (81,035, - - - ,@nj) + (=1, =1,... , —1).

For example, (-3,2,—5) = (2,7,0) + 5(—1,—1,~1). Then in the affine ring
k[z1,... ,Tn,w]/I we can give meaning to the coset 27725 - --z7™ +1I by defin-
ing

2T gl + T =y Ty e gh w4 L.
Similarly, (blabZ,- n) - ( { .- ab:;)"'ﬂ(_l, "’17‘“ a_l)a Wherebli mdﬂ
are non-negative integers fori= 1 ... ,n, and define

.7:"‘.7:2 coogln +I-—:1: :z:zl . :l:,{‘wﬂ + I
Therefore we have the following equation which corresponds to Equation (2.8.3)
(2.8.5)

(x?lu .. _m‘:‘:ﬂwal )Ul e (mT’lm Ty umwam )O'm + I= xl . xf‘:twﬁ + I.

‘We therefore proceed as before, and we note that the left-hand side of Equation
(2.8.5) can be viewed as the image of the power product yy'ys?---y%" under
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the algebra homomorphism

kly1,-.. ,ym] 2, k[wl, :cl,,,w]/I
Y; — x:lj .’12'2 :z::"’w“i + 1.

As before we have

LEMMA 2.8.4. We use the notation set above. Then there e:msts a solution
(01,02,-.. ,0m) € N™ of System (2.8.1) if and only 1f:z:1 :z:2 . a:n w’s+I is the
image under ¢ of a power product in k[yy, .. . , Ym]- Moreover zf :1:1 :1:2 .zt
I=¢(y7'y3?---yom), then (01,02,... ,0m) 8 a solution of System (2.8.1).

We have presented in Section 2.4 an algorithmic method for determining
whether an element of k[z,,...,z,,w]/I is in the image of an affine algebra
homomorphism such as ¢ (see Theorem 2.4.13). As in the first case we consid-
ered, the above lemma requires that :1:11”1 a:g;‘ e a:fé‘wﬂ +1I be the image of a power
product, not a polynomial. As before we have

LEMMA 2.8.5. We use the notation set above. If 72222 - - - sorwP + I is in the
image of ¢, then it is the image of a power product y7'y3° - - - yom € k[y1,- .. , Ym]-

PROOF. As in Theorem 2.4.13, let K C k[y,... sYmy L1, - - - -+ »Zn,w] be the
ideal generated by z, x5 - - - To,w—1 and {y,-—x';":v;” ce Ty T w |j=1,...,m}.
Let G be a Grébner basis for K with respect to an elimination order with the z
and w variables larger than the y variables. Then, by Theorem 2.4.13,

:cbla:b’ ml,’é‘wﬂ+I€im¢ 4=:>a:b1wb’ wf,:'w‘gi).,.hekyl,...,ym.
1 T2 1 %2

Moreover, if :c'{‘:vg’ x%‘wﬁ iq. h with h € k[y1,... ,Ym] then

:v‘{':czl LTy g é(h).

As in Lemma 2.8.2, the polynomials that generate K are all differences of
two power products, therefore, the argument used in the proof of Lemma 2.8.2
can again be applied. That is, the polynomials in G are all differences of two
power products, and the reduction by G of a power product produces a power
product. [

ExXAMPLE 2.8.6. We consider the following system

301 — 202 + 03 ~ 04 = -1
2.8.6
(2.8.6) { 460y + 02 — o3 = .

We have two z variables, z;, 2, one for each equation. We also have four y vari-
ables, y1, Y2, Y3, Ys, one for each unknown. We consider the ideal I = (z;z,w—1)
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of Q[z1, 22, w] and the algebra homomorphism

Qlyr,v2, 43, 9] > Q1 z2,w]/I
n — zizi+1
Yo — ziw?+ T
Y3 — zjw+]
Ya — zow+ I.

Thus K = (y; ~ 2323, yo — z3w?, y5 — 7w, ys — Tow, 2172w — 1). The Grobner

basis for K with respect to the lex order with z; > Zo >w>y1 > 9 > y3 > v
is G = {f1, fa, f3, fa, f5, Jo, F1, fo, fo}, where f1 = z1 — 1193515, fo = 22 — 119345,
fs=w—1y], fa=ywdvi— 1, fs = nvdvl — v, fo = mydyd — 3, fr =
Y1Y3Y1° — 3, fs = 11yit — ¥4, fo = Y23 — ys. We now reduce the power product
z5w by G (note that z7 23 + I = z§w + I)

{a ds}
gfw 23 ity

2
S sy

f
==yl

2 il
S 2y
=yl

and y1y2y2 is reduced with respect to G. Observing the exponents of the different
power products obtained during the reduction, we have the following solutions
of System (2.8.6)

(6,0,19,38), (5,0,15,31), (4,0,11,24), (3,0,7,17),(2,0,3,10), (1,1,0, 2).

We return to the original problem. That is, we want to find solutions of
System (2.8.1) that minimize the cost function c(01,02,...,0m) = 37, ¢;05
(Equation (2.8.2)).

As we mentioned before, the only requirement on the term order in the method
for obtaining solutions of System (2.8.1) described above, is that we have an
elimination order between the z, w and the y variables with the z and w variables
larger. Our strategy for minimizing the cost function is to use the c;’s to define
such a term order.

DEFINITION 2.8.7. A term order <. on the y variables is said to be compatible
with the cost function ¢ and the map ¢ if

S " - yar) = BT vy - yal) . oo o
and =YY Ym <c Y12 Ymn-
c(01,---,0m) < (o1, .. ,0m)
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Term orders on the y variables which are compatible with c and ¢ are exactly
those orders which will give rise to solutions of System (2.8.1) with minimum
cost as the next proposition shows.

PROPOSITION 2.8.8. We use the notation set above. Let G be a Grébner basis
for K with respect to an elimination order with the x and w variables larger
than the y variables, and an order <. on fhe Y va'r‘itllbles which is compatible with
the cost function ¢ and the map ¢. If a:ll’la;g’ . -:1:",’:"10‘9 —(iq. Yy ---y9m, where
Yyt - - - yom is reduced with respect to G, then (01,... ,0m) is a solution of System
(2.8.1) which minimizes the cost function c.

PROOF. Let :1:'1”‘ x’{* gl S, yi* - ygm, with y7* - - yZm reduced with
respect to G. Then (o03,...,0) is a solution of System (2.8.1) by Lemma
2.8.4. Now assume to the contrary that there exists a solution (o4,...,0%,)
of System (2.8.1) such that 37", ;0 < Y7L, cjo;. Consider the correspond-
ing power product y3i ---yar. Note that (3" ---3%r) = $(yfi---ymr) =
:c’l’lla:g; .-z wP + I. Therefore Y7t -yom — gy Y ker(¢). By Theorem
2.4.10, ker(¢) C K, so that y* ---y5r — ¥ ~--y{',:"l' € K. Hence 7" ---yZm —
yf‘ s yfnm
(yy® - ygr — o7 ovn) = 7ty But gt - y7m is reduced with re-

spect to G, and therefore y{* - - -y — ;' - - - ym~ cannot reduce to 0 by G. [

S, 0. Sinc? Yt - y9m >c yit -+ -ym" by assumption, we have

We note that a different minimal solution may be obtained if we use a different
order, as long as we have an elimination order with the z and w variables larger
than the y variables, and as long as we use an order on the y variables compatible
with the cost function ¢ and the map ¢.

For some cases, the term order <. is easy to obtain, however the general case
is more involved. We refer the reader to the original paper [CoTr].

One particular simple case is when the cost function only involves positive
coefficients, that is ¢; > 0 for j = 1,... ,m. Then the following order is a
term order compatible with the cost function and the map ¢: first order power
products using the cost function, and break ties by any other order (see Exercise
2.3.5). The following illustrates this idea.

ExAaMPLE 2.8.9. We go back to Example 2.8.6 but we now consider the cost
function

¢(01,02,03,04) = 10000 + 02 + 03 + 10004.

We use the lex order on w and the z variables with x; > z2 > w. The power
products in y are first ordered using the cost function and ties are broken by
lex with 91 > y2 > g3 > ya. That is 33 45795°%5* < y{iy5?y3ey]* if and only if
10000, +02+03+10004 < 10000} +05+05+10007 or 10000, + 02 +03+10004 =
1000 + 0% + 04 + 10004 and ¥7 ¥22y5°Y5* <iex yi'llygéyg‘,‘yf‘. Finally we use
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an elimination order with w and the z variables larger than the y variables. The
reduced Grobner basis for K is

G ={w~313, va—vous, =1 — n13u3°, =2 — 19383, winded! - 1}

We have zfw -+, y;43y2 which gives the solution (1,3,2,0). This solution is
of minimal cost.

Exercises

2.8.1.

2.8.2.

2.8.3.

2.84.

2.8.5.
2.8.6.

2.8.7.

2.8.8.

Use the method of Lemmoa 2.8.1 to solve the following system of equations
for non-negative integers.

361 + 202 + o3 = 10

401 + 302 + o3 = 12.

Use the method of Lemma 2.8.1 to solve the following system of equations
for non-negative integers.

301 + 202 + o3 = 10

407 + 302 + o3 = 4
Use the method of Lemma 2.8.1 to solve the following system of equations
for non-negative integers.

361 + 202 + o3 + 204 = 10

409, + 302 + o3 = 12

201 + 402 + 203 + o4 = 25.
Use the method of Lemma 2.8.1 to solve the following system of equations
for non-negative integers.

{30'1 + 209 + 03 4+ 204 10

400 + 302 + o3 11
200 + 402 + 203 + o4 = 10.

Prove Lemma 2.8.4.
Use the method of Lemma 2.8.4 to solve the following system of equations
for non-negative integers.

201 + 02 — 303 + o4 = 4
—30y + 209 — 203 — 04 = 3.

In Example 2.8.9 replace the cost function by
c(01,02,03,04) = 10000, + 02 + 03 + 04.
In Example 2.8.9 replace the cost function by

6(0'1,02, 0'3,04) =01 + 100003 + 03 + 04.



Chapter 3. Modules and Grébner Bases

Let k be a field. In this chapter we consider submodules of k[z,, ... ,z,|™ and
their quotient modules. In Section 3.1 we briefly review the concepts from the
theory of modules that we require (see [Hun]). Then in Section 3.2 we define
the module of solutions of & homogeneous linear equation with polynomial co-
efficients (called the syzygy module) and use it to give yet another equivalent
condition for a set to be a Grdbner basis for an ideal. In Section 3.3 we fol-
low Buchberger [Bu79] and show how to use this new condition to significantly
improve the computations of Grébner bases. In Section 3.4 we show how to com-
pute an explicit generating set for the syzygy module of a vector of polynomials.
We then generalize the definition of Grébner bases and the results of the previous
two chapters to modules (Section 3.5) and show that the same type of applica-
tions we had for ideals are possible in the more general context of submodules
of free modules (Section 3.6). In Section 3.7 we generalize the results of Section
3.4 to systems of linear equations of polynomials. In Section 3.8 we show how
this theory can be applied to give more efficient methods for the computations
of Chapter 2 that required elimination. In the next to last section we explicitly
compute Hom. That is, we compute a presentation of Hom(M, N) given two
explicitly presented modules M and N. Finally, in the last section we apply the
previous material to give results on free resolutions and outline the computation
of Ext(M, N).

3.1. Modules. In this section we let A be any commutative ring. The ring
that will be of interest to us in later sections is A = k[z1,...,z,]. We will
consider the cartesian product

ay
A" = Ia,-eA,'i:l,...,m

Qm

That is, A™ consists of all column vectors with coordinates in A of length m.
Although we will always consider the elements of A™ as column vectors (which
we will enclose in square brackets), in the interest of saving space in the book

113
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we will usually write the elements of A™ as row vectors enclosed in parentheses.
In other words, we will often use

ay
(@1,--- ,am) instead of
Qm

The use of column vectors is necessitated by the desire to have function compo-
sition match the usual notation used in matrix multiplication.

The set A™ is called a free A-module. A set M is called an A-module provided
that M is an additive abelian group with a multiplication by elements of A (scalar
multiplication) satisfying:

(i) for all a € A and for all m € M, am € M;
(ii) for all a € A and for all m,m’ € M, a(m + m’) = am + am/;
(iii) for all a,a’ € A and for all m € M, (a+ a')m = am + a'm;
(iv) for all a,a’ € A and for all m € M, a(a’'m) = (aa’)m;
(v) forallm e M, lm =m.
Scalar multiplication in A™ is done componentwise; that is,

ay aa;
a = : s
am aam
or using our space saving notation, a(ai,--. ,an) = (aay,-.. ,0an,), fora € A

and (ajy,-...,am) € A™. The module A™ is called free because it has a basis,
that is a generating set of linearly independent vectors. For example,

e1=(1,0,...,0),e2 = (0,1,0,...,0),... ,em = (0,0,...,0,1)

is a basis which we will call the standard basis for A™. In other words, every
element @ = (aj, ... ,an,) of A™ can be written in a unique fashion

m
a= Za,-e,-, where a; € A.
=1
Note that an ideal of A is an A-module, and in fact a submodule of the A-
module A = Al. A submodule of an A-module M is a subset of M which is an
A-module in its own right. For example, if a,,-.. ,as are vectors in A™, then

M={b1a1+---+bsa3|b,-€A,i=1,...,s}gA"‘

is a submodule of A™. We denote this submodule by (a,,... ,a;) C A™, and we
call {ay,-..,as} a generating set of M.

The concept of an A-module is similar to the one of a vector space, except that
the set of scalars in the module case is the ring A which is not necessarily a field.
Submodules of A™ are used for linear algebra in A™ in the same way subspaces of
k™ are used for linear algebra in k™. For example, let M = (a1,... ,a,) C A™.
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If we think of the vectors a;’s as the columns of an m x s matrix S, then M is
the “column space” of the matrix S, that is,

by
M={Sb|b=| : | €A’
bs

So, given a € A™, the system of m linear equations (with unknown the coordi-
nates of b € A®) determined by the matrix equation

(3.1.1) Sb=a

can be translated into the question of whether the vector a is in M or not.
In the case where m = 1, that is, M is an ideal of A, and System (3.1.1) has
only one equation, then this problem is the ideal membership problem discussed
in Section 2.1. Other linear algebra problems in A™ can also be translated this
way into a module theoretic question. In this chapter we will develop algorithmic
tools to answer these questions in the case where A = kfzi,... ,Z,).

We first go back to the general theory of modules. Since we are mainly
interested in the ring kfz),...,zn] which is Noetherian by the Hilbert Basis
Theorem (Theorem 1.1.1), we will assume that the ring A we are considering is
Noetherian. We have the following

THEOREM 3.1.1. Every submodule M of A™ has a finile generating set.

PROOF. Let M be a submodule of A™. We use induction on m. ¥f m = 1,
then M is an ideal of A, and the result follows from the Hilbert Basis Theorem
(Theorem 1.1.1). For m > 1, let

I ={a € A|a is the first coordinate of an element of M}.

Then I is an ideal of A, and hence, using the Hilbert Basis Theorem, I is finitely
generated. Let

I= <al$"- )at>'

Let m;,... ,m; € M be such that the first coordinate of m; is a;. Now consider
M ={(bs,... ,bn) | (0,b2,...,b,) € M}.

Note that M’ is a submodule of A™~! and so, by induction, is finitely generated,
say by nf,... ,nj, e M C Am" . Fori=1,...,¢, let n; be the element of A™
with 0 in the first coordinate and the coordinates of n) in the remaining m — 1
coordinates. Note that n; € M. To conclude, we show that

M = (ml,... My, M, ... ,ng).
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Let m € M. Then the first coordinate m; of m can be written as m; =
> 1 dia;. Now consider m’ = m — Y°¢_, dim;. Then m’ € M and its first

coordinate is zero. Therefore m’ =Y. , ¢in;. So,

t 4 t
m=m'+) dm;=) ani+y dim,
i=1 =1 =1

as desired. [J

DEFINITION 3.1.2. An A-module M is called Noetherian if and only if every
submodule of M s finitely generated.

Thus Theorem 3.1.1 states that if A is a Noetherian ring then A™ is a Noethe-
rian module for all m > 1 and, in fact, any submodule of A™ is a Noetherian
module. Definition 3.1.2 is equivalent to saying that if

MiCMC---CM,C--

is an ascending chain of submodules of M, then there exists ng such that M,, =
M, for all n > ng. That these two statements are equivalent is proved in exactly
the same way as Theorem 1.1.2 was proved.

Now for N any submodule of the A-module M, we define

M/N ={m+ N |m e M}.

M/N is the quotient abelian group with the usual addition of cosets. We make
M/N into an A-module by defining

ao(m+N)=am+ N, foralla€ A,m € M.

It is an easy exercise to see that this multiplication is well-defined and gives
M|/N the structure of an A-module. We call M/N the quotient module of M by
N.

For M and M’ two A-modules, we call a function ¢: M — M’ an A-module
homomorphism provided that it is an abelian group homomorphism, that is,

d(m +m') = ¢(m) + ¢(m’) for all m,m’ € M,
which satisfies
ad(m) = ¢(am), foralla€ A,m e M.

The homomorphism ¢ is called an isomorphism provided that ¢ is one to one
and onto. In this case we write M =2 M’.

Let N = ker(¢) = {m € M | #(m) = 0}. Then, it is easy to see that N is a
submodule of M. Also, we note that ¢(M) is a submodule of M’. We know from
the theory of abelian groups that

M/N = ¢(M)
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as abelian groups under the map

M/N — ¢(M)

This map is, in fact, an A-module homomorphism as is easily seen and thus is
an A-module isomorphism. This fact is referred to as the First Isomorphism
Theorem for modules.

As in the theory of abelian groups, the submodules of M/N are all of the
form L/N, where L is a submodule of M containing N.

Now, let M be an A-module, and let m;.... ,m; € M. Consider the map
¢: A* — M defined as follows:

8
¢(a13 see 7a8) = Zaimi~
i=1
It is easy to prove that ¢ is an A-module homomorphism. Moreover, the image
of ¢ is the submodule of M generated by m;,... ,m,. Hence if m,,... ,m,
generate M, then ¢ is onto.

Letting ey, . .. , e, denote the standard basis elements in A®, we note that ¢ is
uniquely defined by specifying the image of each e; € A°, namely by specifying
&(e;) = m;. We will often define homomorphisms ¢ from A® by simply specifying
#(e;), fori=1,...,s.

Now given generators m;,... ,m, of the A-module M, we define ¢ as above.
Since m,,... ,m, generates M we see that ¢ is onto. Let N be the kernel of ¢.
Then, by the First Isomorphism Theorem for modules, we have

M = A®/N.
So we conclude

LEMMA 3.1.3. Every finitely generated A-module M is isomorphic to A°/N
for some positive integer s and some submodule N of A®.

Our purpose in this chapter is to do explicit computations in finitely generated
modules over A. So the first question we have to answer is what do we mean when
we say that we have an explicitly given finitely generated A-module M? The
first way is to be given N = (a1, ... ,an) for explict a4, ... ,amn € A® such that
M = A®/N for some explicit isomorphism. Lemma 3.1.3 ensures the existence
of such an s and N.

DEFINITION 3.1.4. If M = A% /N, then we call A*/N o presentation of M.

The second way to have an explicitly given module M, provided that M
is a submodule of A%, is to have explicit m,,... ,m; € A® such that M =
{my, ... ,my). Or, more generally, if we have an explicitly given submodule N
of A%, the submodule M = (m; + N, ... ,m; + N) of A*/N is explicitly given.



118 CHAPTER 3 MODULES AND GROBNER BASES

It is also useful sometimes to have a presentation of M in the last two cases, and
we will show how we can obtain this in Section 3.8.

COROLLARY 3.1.5. Every finitely generated A-module M is Noetherian.

PROOF. By Lemma 3.1.3, M & A% /N, for some s and some submodule N of
A®. The submodules of A*/N are of the form L/N, where L is a submodule of
A? containing N. Since A® is Noetherian (Theorem 3.1.1), we have that every
submodule of A® is finitely generated, and hence every submodule of A%/N is
finitely generated. Therefore A*/N and hence M is Noetherian. []

3.2. Grobner Bases and Syzygies. In this section we let A be the Noethe-
rian ring k[z1,... ,2,]. Let I = (f1,..., fs} be an ideal of A. We consider the
A-module homomorphism ¢ defined in Section 3.1,

¢: A — 1
given by
]
(h1y-oe ha) — S hifi.

i=1

As we have seen in Section 3.1,

(3.2.1) I = A®/kei(¢), as A-modules.

DEFINITION 3.2.1. The kernel of the map ¢ is called the syzygy module of
the 1 X s matriz { fi o fs ] It is denoted Syz(fi,...,fs).- An element
(ha,... ,hs) of Syz(fy,... , fs) is called asyzygy of [ fy --- fs | and satisfies

hfi+ooe+hafa =0,

Another way to say this is that Syz(fi,... , fs) is the set of all solutions of
the single linear equation with polynomial coefficients (the f;’s)

(3.2.2) hxi+-+ foxs =0,

where the solutions x; are also to be polynomials in A.
‘We note that the map ¢ can also be viewed as matrix multiplication:

hy s
$lhy-o k) =[fi - £ ]| P | =)omk
h's i=1
h
That is, if Fisthe 1 x smatrix [ fi -~ f, |,andh=| : | € A® then
hs

&(h1, ..., hs) = Fh and Syz(f1,... , fs) is the set of all solutions h of the linear
equation Fh =0.
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EXAMPLE 3.2.2. Let A = Q[z,y, z,w], and
I = (z? — yw,zy — wz,y* — z2).
The map ¢ is
¢: A3 —1T
given by
(h1y ha, hg) — h1(2? — yw) + ha(zy — w2) + ha(y? — z2).
Then (y, —z,w) and (—z,y,—z) are both syzygies of

[2?—yw zy-—wz -2z ],
since
y(&? — yw) — z(zy — wz) + w(y® —z2) =0
and
—2z(z? — yw) + y(zy — wz) — z(y* — z2) = 0.

We will show later (see Example 3.4.2) that in fact these two syzygies generate
Syz(z? — yw, Ty — wz,y? — 2), that is,

Syz($2 - Yyw,ry —wz, y2 - .’I}Z) = ((y’ -, ‘UJ), (—Z, Y, —{E)) c Aa-

Because of the isomorphism given in Equation (3.2.1), the ideal I can be
described as a quotient of a free A-module and Syz(fi,- .., fs). Moreover, we
can view Syz(fi,... , f;) as the set of all linear relations among f,... , f,. Also,
homogeneous systems such as Equation (3.2.2) or, more generally, such systems
in A™ play a central role in the theory of rings and modules, similar to the role
they play in the usual linear algebra over fields. Finally Syz(fi,... , fs) will play
a critical role in the theory of Grobner bases; in particular, its use will lead to
improvements of Buchberger’s Algorithm (see Section 3.3).

For these reasons and others, Syz(fi,...,fs) is a very important object in
commutative algebra.

We note that Syz(f1,.. . , fs) is finitely generated, since it is a submodule of A*
(Theorem 3.1.1). One of our goals is to compute generators for Syz(fi,... , fs).
The next lemma shows how to compute these generators in a special case (the
general case is presented in Section 3.4).

PROPOSITION 3.2.3. Letcy,... ,cs € k—{0} and let X;,X>, ..., X, be power
products in A. Fori # j € {1,...,s}, we define Xi; = lem(X;, X;). Then the
module Syz(c1X1,... ,¢:X;) is generated by

Xij X,‘j . . }
— e; — e A°11<i<j<
{ciX;e' chje,e l11<i<ji<sy,

where ey, ... ,es form the standard basis for A®.



120 CHAPTER 3. MODULES AND GROBNER BASES

X X
PROOF. First note that for all i # j we have —~e; — —2-e; is a syzygy of

c,'X,' Cij
[ aX: cXa - X, ], since!
[aX: X2 -+ ¢X,](0,...,0, X o0~ 0. 0=0
X Cj.Xj
v N st
ith jth
coord coord
Therefore
Xy Xy
< < - . .
<c,X,e c,X e;j|1<i<j< s> Syz(c1X1,... ,¢5Xs)
To prove the converse, let (hy,... ,h,) be a syzygy of [ aX: - s X ] ,
that is,

hici X1+ -+ hscs X, = 0.
Let X be any power product in T™. Then the coefficient of X in hyje; X3 +---+
hscs X, must be zero. Thus it suffices to consider the case for which h; = ¢ X,
i=1...,s and where ¢, = 0 or X;X] = X for a fixed power product X.
Let ¢ ,... cﬁt, with i; < 42 < --- < 4z, be the non-zero cj’s. Then we have
cier + c’2c2 + -+ ces = ¢ ¢y + -+ + ¢ ¢, = 0. Therefore, using the same
technique as in Lemma, 1.7.5, we have

(hl,-“ ’hs) = (c{lXi’ ,C';X;) = cng{le,-, +'“+C€¢Xz{,e‘u

- c‘::lc‘l cy X'-l e‘l + + cztc‘t c"tx‘t e‘t

= X (Xiaiz e, — Xitz g, )
- ”c" x‘ltz °'1xt1 Cip Xip 12

X,
+(c£]cil + c‘2)x‘2‘8 (qzx‘z e“2 - E.‘—;-axi‘aa_ei3)+‘..

+(cglc"l + +c:¢ lc“-l)x‘t-l‘t(c“t-lx‘t—lezt-l citx' e‘t)

+ (c,lczl +--- 4,6,

/ ¢4 Xiz
=0
a)
1Recall that (ai,...,as) stands for the column vector : |,andso
as
ay
[ by - - bs ](a1,...,a,)=[b1 . bs ] =ba1 +-- +bsas,
as

as in the usual matrix multiplication. We have adopted this awkward looking convention
instead of the usual “dot product” because it will be consistent with the notation of computing
syzygies of column vectors of matrices later.
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as desired. [

We observe that if ¢ X),... ,csX; are the leading terms of the polynomi-
als f1,...,fs, and if (hy,... , hs) € Syz(c1 Xa,... ,¢sX;), then 3°7_, h;f; has a
leading term strictly smaller than

max Ip(hs) Ip(f:).
Xij Xi; . .
In particular the syzygy —Z- X &= 5 € of [ Xy -+ ¢X, ] gives rise to
the S-polynomia] of f; and fis smceJ !
Xij , _ Xij y_
(£ B GEe oie)=
Xi;
[fl T fs](o ;:O ,0,— ;70 ,0) =
T —
it jth
°Z‘°rd ogord
Xij o Xij ¢ _gip ¢

This last observation and Proposition 3.2.3 seem to indicate that the syzygy
module of [ k() -+ L(fs) ] might be relevant to the computation of a
Grébner basis for (fy,..., fs). In order to implement this idea we need the
following definition.

DEFINITION 3.2.4. Let X,...,Xs be power products and c,,...,c, be in
k — {0}. Then, for a power product X, we call a syzygy b = (hy,... ,hs) €
Syz(c1X1,... ,¢sX;) homogeneous of degree X provided that each h; is a term
(that is, 1t(h;) = h; for all i) and X;1p(h;) = X for all i such that h; # 0. We
say that h € Syz(c; X, ... ,csXs) is homogeneous if it is homogeneous of degree
X for some power product X.

Note that the generating set given in Proposition 3.2.3 consists of a finite set of
homogeneous syzygies. The next theorem presents another equivalent condition
for a set to be a Grobner basis.

THEOREM 3.2.5. Let G = {g1,-.. ,9:} be a set of non-zero polynomials in A.
Let B be a homogeneous generating set of Syz(lt(g1),... ,1t(g:)). Then G is a
Grobner basis for the ideal (g1, ... ,9:) if and only if for all (hy,... ,h;) € B, we
have

higi1 +--- +hige i’-i— 0.
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PROOF. If G is a Grobner basis, then by Theorem 1.6.2,

higy + -+ hig: i’+0

for all hy,..., hs.
Conversely, let g € (g1,. .- ,9:), say
(3.2.3) g=u1gr + - + gy

Choose a representation as in Equation (3.2.3) with

X = max (Ip(u;) 1p(g;))

least. Since, by Theorem 1.6.2, we need to show that g can be written as in
Equation (3.2.3) with X = 1p(g), we may assume that Ip(g) < X and show that
then we can obtain an expression such as (3.2.3) for g with a smaller value for
X. Let S={ic{1,...,t} | 1p(u;)1p(g;) = X}. Then

2 1(us) 1b(g:) = 0.

€S
Let h = Y ;cglt(ui)e; (where ey,... ,e; is the standard basis for A*). Then
h € Syz(lt(g1),... ,1t(g:)) and h is homogeneous. Now let B = {h1,... ,he},
where for each j = 1,...,%, hj = (h1j,... ,hj). Soh = Z;___l a;h;, where, since
h is a homogeneous syzygy, we may asssume that the a;’s are terms such that
Ip(a,) Ip(hi;)Ip(g;) = X for all ¢, j such that ajh;; # 0. By hypothesis, for each
3y b, hijgi —Ci>.,_ 0. Thus by Theorem 1.5.9 we have for each j =1,... ,¢

g2
¢ ¢
E hijgi =) vijgi,

i=1 i=1
such that

t
max Ip(vi;) Ip(9:) = lp(; hijg:) < max 1p(his) Ip(gs)-

The latter strict inequality is because Z;l hij1t(g:) = 0.
Thus,
g = wmg1 -+ + UG

D lt(w)g + Y (u — l(w))gs + Y wigs

i€S :GS i¢S
terms lower than X

Lt
= zzajhijgi + terms lower than X
j=1i=1
Lt
= ZZajv;jgi + terms lower than X .

7=11i=1
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We have
max Ip(a;) Ip(vi;) Ip(9:) < maxIp(a;) Ip(hi;) Ip(g:) = X

‘We have obtained a representation of g as a linear combination of the g;’s such
that the maximum leading power product of any summand is less than X. Thus
the theorem is proved. [

In Exercise 3.2.1 we will give an example which shows that the hypothesis
that the generating set of syzygies be homogeneous is necessary.

We observe that the above proof uses an argument similar to the one used in
the proof of Theorem 1.7.4. In fact, as a corollary to the above result, we can
recover Theorem 1.7.4.

COROLLARY 3.2.6. Let G = {g1,... ,9:} be a set of non-zero polynomials in
A. Then G is a Grébner basis if and only if for alli,j =1,... ¢, S(gi, g;) ~>4 0.

PROOF. Let G be a Grobner basis. Then, since S(g;, g;) is an element of the

. G
ideal {g1,... ,g:), we have S(g,,g;) —+ 0.
For the converse, we first use Proposition 3.2.3 to see that the set

ei——>e;|i<ji,j=1,. CA
R AR

is a homogeneous generating set of the syzygy module of [ 1t(g1) -+ It(ge) ].
As we have noted after Proposition 3.2.3, each element of B gives rise to an S-
polynomial, which reduces to zero by hypothesis. Therefore, by Theorem 3.2.5,
G is a Grobner basis. [

Exercises
3.2.1. In Theorem 3.2.5 the generating set B of Syz(lt(g1),...,lt(g:)) was re-
quired to be homogeneous. In this exercise we show that this hypothesis

is necessary.
Consider the set G = {g1,92}, where g1 =z +y, go =z +1 € Q[z,y]. We
will use lex with z > y.

a. Prove that G is not a Grobner basis for the ideal it generates.

b. Prove that the set {(z + 1,—z — 1), (z,—z)} is a generating set for
Syz(1t(g1), 1t(g2))-

c. Prove that (z +1)g + (—z — 1)g2 -<,, 0 and that zg1 — Zg2 i»... 0.

3.2.2. Give another example that shows that the hypothesis that B be homoge-
neous in Theorem 3.2.5 is necessary.

3.2.3. Let G = {g1,--- ,9t} be a set of non-zero polynomials in A. Let B be a
homogeneous generating set of Syz(lt(g1),... ,1t(g:)). Prove that G is a
Grobner basis for the ideal (g1, - .. ,g:) if and only if for all (hy,... ,hs) €
B, we have

higi +--++ hige = v1g1 + -+ - + vige,
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where

Ip(h1g1 + - - - + hige) = max(Ip(v1) 1p(g1), - - - » Ip(vz) Ip(gs)).

[Hint: See the proof of Theorem 3.2.5.]

3.2.4. At this point we do not know yet how to compute generators for the
syzygy module of [ fi -+ f, |. We will see in Section 3.4 how to do
this. However, in certain instances we can easily find some elements of
Syz(fi,--.,fs). Let I be the ideal of k[z,y] generated by fi, f2, f3, the
2 x 2 minors of the 2 x 3 matrix S, where

[z 9y =
5= [ 1z y ] '
a. Give a method for finding elements of Syz(f, f2, f3). [Hint: Think of
3 x 3 matrices whose determinant must be zero, and obtain 2 syzygies

this way.]
b. Generalize this idea to the case of m x (m + 1) matrices with entries
in kfzq,... ,z,)

3.3. Improvements on Buchberger’s Algorithm. So far we have not dis-
cussed the computational aspects of Buchberger’s Algorithm presented in Section
1.7 (Algorithm 1.7.1). A careful look at this issue is outside the scope of this
book (see, for example, [BaSt88, Bu83, GMNRT, Huy, MaMe, Laz91]).
However the computational complexity of Buchberger’s Algorithm often makes
it difficult to actually compute a Grébner basis for even small problems and
1his limits, in practice, the scope of the applications of the theory. So we will
now discuss improvements in the algorithm for computing Grobner bases. We
note that the results of this section are rather technical and will only be used
occasionally in some of the exercises and examples in the remainder of the book.

Some algebraic results, such as the results presented below, can be used in con-
junction with some simple heuristic observations to improve significantly Buch-
berger’s Algorithm (see [Bu79]). It can also be shown (but we shall not do
it here) that certain algebraic (respectively geometric) properties of the ideal I
(respectively of the variety V(I)) have a direct influence on the difficulty of the
computation of a Grobner basis for I (see the references above).

Recall that the algorithm has two steps: the computation of S-polynomials
and their reduction. A problem that arises is the potentially very large number of
S-polynomials that have to be computed. Indeed, as the computation progresses,
the number of polynomials in the basis gets larger, and therefore, each time a new
polynomial is added to the basis, the number of S-polynomials to compute also
increases. Since the algorithm does terminate, the proportion of S-polynomials
which reduce to zero eventually increases as we get far in the algorithm. A huge
amount of computation might be performed for very little gain, since few new
polynomials are added to the basis. In fact, at some point before the algorithm
terminates, the desired Grébner basis is obtained but we do not “know” it.
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At that point, the computation of S-polynomials and their reductions are all
together useless except for the fact that they verify that we do have a Grébner
basis. One way to improve this situation is to “predict” that some S-polynomials
reduce to zero without actually computing these S-polynomials or reducing them.
The following results are the basis for two criteria for a priori zero reduction of
S-polynomials.

LEMMA 3.3.1. Let f,g € A = k[z1,...,Zs), both non-zero, and let d =
ged(f, g). The following statements are equivalent:
i) lp(ﬁ) and Ip(§) are relatively prime;
() 5(f,9) %, 0.
In particular, {f, g} is a Grébner basis if and only if lp(g) andIp(%) are relatively
prime.

PROOF. (i) = (ii). Assume first that d = ged(f,g) = 1. We write f =
aX +f', g =>bY +g', where It(f) = aX, lt(g) = bY, a,b € k, and X,Y are power
products. Then X = 2(f — f'),and Y = 3(9 — ¢).

Case 1. f' =g’ =0. Then f and g are both terms and S(f,g) = 0.

Case 2. f' = 0 and ¢’ # 0. Then, since ged(Ip(f),lp(g)) = 1, we have
S(f,9) = 1Yf~3Xg= 25(9—9)f= 25f9 = —9'f. We see that (Exercise
1.5.4) S(f.g) -5 0.

CaSE 3. f' #0 and ¢’ = 0. This is the same as Case 2.

CaSE 4. f' #0and ¢’ # 0. Then, since ged(Ip(f),Ip(g)) = 1, we have

S(f9) =Y f - 1 Xg= (g =9V~ o (F = g = =(f'g = d'f).

If Ip(f'9) = Ip(g'f), then Ip(f')Ip(g) = Ip(f'g) = Ip(¢'f) = Ip(¢’)Ip(f), and
since ged(Ip(f),1p(g)) = 1, we have Ip(f) divides Ip(f’) and lp(g) divides Ip(¢’)-.
This is a contradiction, since Ip(f’) < Ip(f) and lp(¢’) < Ip(g). Therefore
Ip(f'g) # Ip(¢'f), and the leading term of 2 (f'g — ¢'f) appears in f'g or ¢'f
and hence is a multiple of Ip(f) or Ip(g). If Ip(f'g) > Ip(¢’f), then

S(f,9) > (- 1W(g - ¢ D).
If 1p(f'g) < Ip(¢'f), then
S(£,9) 2> =(f'9 = (¢ ~1(&)):

Using an argument similar to the one above, we see that the leading term of
(' ~1(f))g—g'f) or Z(f'9~ (¢’ —16(¢))f) is a multiple of Ip(f) or Ip(g).
Therefore this reduction process continues using only f or g. At each stage of
the reduction the remainder has a leading term which is a multiple of Ip(f)
or Ip(g). We see that we can continue this process until we obtain 0, that is,

S(f.9) L%, 0.
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Now assume that d = ged(f,g) # 1. Then gcd(f;-, 2) = 1. By assumption we
have gcd(lp(ﬁ),lp(%)) = 1, and hence, by the case above, {5, 2} is a Grobner
basis. Thus {d£,d4} is also a Grobner basis (Exercise 1.6.13). By Theorem

1.7.4, 8(f,9) ¥9. 0.

(i) = (i). Let us first assume that ged(f,g) = 1. We need to show that
Ip(f) and lp(g) are relatively prime. Let Ip(f) = DX and lp(g) = DY, where
D, X, and Y are power products in 4, ged(X,Y) = 1. Then

Y X
S(f,9) = mf - ﬂ;—(?)g'

By assumption we have S(f, g) {f_,g?+ 0, and hence there exist u,v € kfzy, ... ,z,)
such that
X

(33.1) 8(f,9) = lc(%f— e =+,

where Ip(uf) < 1p(S(f,9)) and lp(vg) < Ip(S(f,9)). From Equation (3.3.1), we

obtain -~ X v
(5 +°)o= (e ) *

Therefore f divides (Tc')(%j + v), and g divides (ﬁ% — u), since f and g are
relatively prime. Also,

Ip(u)DX = Ip(uf) < 1p(S(f,9)) < X1p(g) =Y Ip(f) = DXY.

Thus, lp(u) < Y, and hence lp(ﬁ'?; —u) = Y. But g divides (-13%'75 — u), 80
Ip(g) = DY divides lp(ﬁ% —u) = Y, and hence D = 1. Therefore Ip(f) and
Ip(g) are relatively prime.

Now assume that d = ged(f, g) # 1. Then gcd(*g, 4) = 1. It is easy to prove

that if S(f,9) L%, 0, then 15(f,) &4, 0 (see Exercise 3.3.3). It is also
easy to prove that 1S(f,g) = S(£,9), since d is monic (see Exercise 3.3.3).
Therefore, by the above, we have lp({l) and Ip(4) are relatively prime as desired.

The last statement of the lemma is an immediate consequence of Theorem
1.74. O

Lemma 3.3.1 gives a criterion for a priori zero reduction: during Buchberger’s
Algorithm, whenever f and g are such that lp(g) and Ip(4) are relatively prime,
then it is not necessary to compute S(f,g), since S(f,g) will reduce to zero
using f and g alone, and hence S(f,g) will not create a new polynomial in the
basis. We note that if Ip(f) and lp(g) are relatively prime, then d = 1 and so
S(f,9) {f—’92+ 0. This is the form in which we will use the criterion below (see
crit1).

Now we turn our attention to another criterion that turns out to be remarkably
effective in improving the performance of Buchberger’s Algorithm.
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LeMMA 3.3.2. Let X1,Xo,...,X,; be power products in A = k[z,,...,Tx)
and let c1,... ,¢5 € k— {0}. Fori,j=1,...,s, define X;; = lem(X;, X;), and
let

X X
Tij = Q—;iei - cj;j e; € Syz(c1X1,... ,c:Xs) C A°,

where ey, . .. , e, is the standard basis for A®. For eachi,j,£=1,... s let X;jo =
lem(X;, X, X;). Then we have
Xije Xige o Xije
» —y
Xij Tt XJ! Xe Th
Moreover, if X, divides X;;, then 7; 8 in the submodule of A® generated by ;¢
and Ty;.

Tje+

PROOF. We have

thl X‘L]t 7 thl
Xq Tij + th ¢+ X Tei =
Xije , Xij t]t Xje  Xje Xije [ Xoi Xe
Xij (c,-X cj X J) ¢ CiX; 4 c,Xge‘) (C(X[et cX; e,)
_ Xt]l Xz]l Xz]t Xt]l Xt]t ijt
- CiXi e X € * ij €~ C(Xge C(X[e C;X =0.

Now if X, divides X,J, then X;;¢ = X;j, and we have

X, X
Tij + X—;‘;Tj( + —Ji’rgi =0.

Hence 7;; is in the submodule of A® generated by 7, and 72,. O

COROLLARY 3.3.3. We continue to use the notation of Lemma 3.3.2. Let
B C {nj|1<1i<j< s} bea generating set for Syz(c1X1,...,csX;). Sup-
pose we have three distinct indices %,j,£ such that T, Tje,7ij € B, and such
that X, divides X,; = lem(X;, X;). Then B — {r;} is also a generating set for
Syz(e1 X1, ... ,csX5).

We will use Corollary 3.3.3 to improve Buchberger’s Algorithm in the following
way. Let {f1,...,fs} be a set of generators for an ideal I in k[z,,... ,Z,]. Let
¢;X; = It(f,) and use the notation above. We begin by letting B = {r;; | 1 <
1 < j < s}. Of course, B generates Syz(It(f1),... ,1t(fs)). We apply Corollary
3.3.3 to eliminate as many of the 7;; € B as possible obtaining a possibly smaller
set of generators for Syz(It(f1),- .. ,1t(fs)). We then compute the S-polynomial,
S(fi, f;), corresponding to one of the 7;, remaining in B and reduce it as far as
possible; we add the reduction to the set {f1,... , fs} if it does not reduce to zero,
calling it fs41. We enlarge B by the set {7; 541 | 1 <% < s} to obtain a new set B
which now generates Syz(1t(f1),. .. ,1t(fs),lt(fs+1)). We again apply Corollary
3.3.3 to eliminate as many of the 7;; € B as possible obtaining a possibly smaller
set of generators for Syz(lt(f1),--. ,1t(fs),1t(fs+1))- We again compute an S-
polynomial corresponding to a 7;; remaining in B. We continue this process until
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all of the S-polynomials corresponding to elements in B have been computed and
reduced to zero, always maintaining B as a basis of the current syzygy module.

In order to keep track, in the algorithm, of those 7;; € B whose corresponding
S-polynomial has been computed and reduced we break up the basis B into two
parts. We also use just the indices. So we will use N'C for the set of all indices
{3,7} of 7:; € B at any given time for which the S-polynomial has not been
computed and use C for the set of all indices {3, j} of 7;; € B at any given time
for which the S-polynomial has been computed. We note that at any time in the
algorithm after N'C has been initialized, {7; | {,7} € NC UC} is a generating
set of the syzygy module of the current set of leading terms (see the proof of
Proposition 3.3.4). So we continue the algorithm until NC = 0.

We now give an improved version of Buchberger’s Algorithm as Algorithm
3.3.1. We note that the purpose of the first WHILE loop is to initialize N'C.

The commands used in the algorithm are defined as follows.

The command, critl(, j), returns “TRUE” if and only if Ip(f;) and Ip(f;) are
relatively prime. If crit1(é,j) = TRUE, then, by Lemma 3.3.1, we know without
computing it, that S(f;, f;) reduces to zero. Nevertheless 7;; must be added to
C.

The command crit2(NC,C, s) is given as Algorithm 3.3.2.

Algorithm 3.3.2 is an implementation of the ideas in Corollary 3.3.3 and the
ensuing discussion. We now make a few technical points about this algorithm.
The basic idea is to find triples of indices v, u, p such that {v,u}, {, p}, {u, o}
are in NC UC and X, divides lem(X,,, X,)). Because of the way we call this
procedure in the main algorithm (Algorithm 3.3.1), we need only consider the
cases where one of v, u, p is s. This is because the cases of all triples with v, u, p
all less than s were checked before. Since p, p are interchangeable, it is enough
to consider the cases p = s and v = s. These two cases are the two main WHILE
loops in Algorithm 3.3.2. Moreover, we note that a pair of the form {%, s} cannot
lie in C (this explains why checking membership in N'C U C was often just done
by checking membership in N'C). Finally, we only check, in the second main
WHILE loop, whether {%, j} is in N'C since we are only interested in eliminating
it from N'C.

PROPOSITION 3.3.4. Given a set of non-zero polynomials F = {f1,..., fs},
the Improved Buchberger’s Algorithm (Algorithm 3.3.1) will produce a Grébner
basis for the ideal I = (F).

Proor. Let G = {f1,...,f:} (¢ > s) be the output of Algorithm 3.3.1.
We first note that the S-polynomials corresponding to every pair in C reduce
to zero. It then suffices to show that {7i;|{i,j} € C} is a generating set for
Syz(1t(f1),--- ,1t(f:)), and for this it suffices to show that at any stage of the
algorithm {7;;|{,j} € NC UC} is a generating set for the syzygy module of
current leading terms. We see this as follows. At each stage of the algorithm
there is one of two possibilities. Either the S-polynomial reduces to zero, and
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INPUT: F = {fi,...,f:} Cklz1,... , 7] With f; #0 (1< i < 5)
OUTPUT: A Grobner basis G for (fi,... , fs)
INITIALIZATION: G:=F

C:=0
NC = {{1,2}}
1:=2

WHILE i < s DO
NC:=NCU{{j,i+1}|1<j<i}
NC = crit2(NC, C,i + 1)
i:=1t+1
WHILE NC # 0 DO
Choose {i,j} e NC
NC:=NC-{{i,5}}
C:=Cu{{i,j}}
IF critl(i, j) = FALSE THEN
S(fir f;) >4 h, where h is reduced with respect to G
IF h # 0 THEN
fot1=h
G:=GU {fs11}
s:=s5+1
NC:=NCU{{i,s}|1<i<s-1}
NC := crit2(NC,C, s)

ALGORITHM 3.3.1. Improved Buchberger’s Algorithm

NCUC does not change, or a polynomial is added to G, and the relevant pairs are
added to NCUC and so the set of 7;;’s corresponding to this updated NCUC is
a generating set for the syzygy module of the new set of leading terms. Then we
apply crit2 to the new N'C which does not alter this last statement by Corollary
3.3.3.

The algorithm stops for the same reason Algorithm 1.7.1 stopped. O

We note that in Algorithm 3.3.1 we do not give a rule for choosing the pair
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INPUT: NC,C, s from Algorithm 3.3.1
OUTPUT: NC with pairs deleted using Corollary 3.3.3
INITIALIZATION: ¢:=1
WHILE ¢ < s DO
IF {¢,s} € NC THEN
i:=1
WHILE ¢ < s DO
IF {i,¢} € NCUC AND {i, s} € NC THEN
IF X, divides lem(X;, X,) THEN
NC =NC - {{i,s}}

i:=i+1
£:=£+1
1:=1
WHILE : < s DO
IF {i,s} e NC THEN
jr=1i+1
WHILE j < s DO
IF {j,s} e NC AND {i,j} €e NC THEN
IF X, divides lem(X;, X;) THEN
NC:=NC - {{i,j}}
1=j+1
i=i+1

ALGoRrITHM 3.3.2. crit2(NC,C,s)

{i,7} € NC for which we compute the corresponding S-polynomial. Some stud-
ies have shown that this choice is of vital importance. Often the S-polynomials
are computed in such a way that S(f;, f;) is computed first if lem(Ip(f;), lp(f;))
is least (with respect to the current term order) among the lem(lp(f,),1p(f.))-
This procedure is called the normal selection strategy. Experimental results
show that this works very well for degree compatible term orders. It is not so
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good for the lex term ordering. This can be explained as follows: if at some
point the basis contains polynomials f,... , f; in which the largest variable (say
Z,,) does not appear, then the normal selection strategy will first consider only
f1,..., fe, disregarding the ones in which z,, appears; in effect, a Grébner basis
for {f1,..., fe) will be computed. Experimental and theoretical results show
that this Grébner basis subcomputation can be worse than the original Grébner
basis computation. There are techniques to get around this problem but they
are beyond the scope of this book.

There is another technique that is used to improve the performance of Buch-
berger’s Algorithm. Namely, the polynomials f;’s are inter-reduced at the be-
ginning, and the basis is kept inter-reduced as the algorithm progresses. Even
though this may require a lot of computation, it helps to avoid an unmanageable
growth in the number of polynomials in the basis, and in the number of divisions
necessary throughout the computation. This method is discussed in Buchberger
[Bu85].

We conclude by noting that the use of critl and crit2 help to reduce the
number of S-polynomials that have to be computed. In fact, empirical evidence
shows that if IV is the number of S-polynomials that would be computed without
these criteria, the use of these two criteria reduces that number to about vN
(see, for example, [Cz]).

To illustrate Algorithm 3.3.1 we consider the following example. Since the
polynomials generated by the algorithm are scattered throughout the text of the
example, we have put boxes around these polynomials for easier reference.

EXAMPLE 3.3.5. Consider polynomials Lfl =z2y? — 22, [fg =xylz — a:y?,l
2

and | f3 = zy2z® — 2% |in Q[x, y, z]. We use the deglex term order with z < ¥ < z.
We follow Algorithm 3.3.1. However, we will not trace the algorithm crit2 except
for one significant example at the end.

We start with G = {fi, fs, fs}, C = 0, and NC = {{1,2},{1,3}, {2,3}}. We
see that we do not have to consider {1, 3}, that is, we have NC =crit2(N'C,C,3) =
{{1,2},{2,3}}. We choose the pair {1,2}, changing NC to {{2,3}} and C to
{{1,2}}, and compute S(f1, f2) = z*yz — z* which is reduced with respect to G.
Thus we add i fa = 2%yz — 2* | to G. We update N'C to include the pairs with 4
in them and then we use crit2 to compute the new NC = {{2,3},{1,4}, {3,4}}-
We now choose the pair {1,4}, changing NC to NC = {{2,3},{3,4}} and C
to C = {{1,2},{1,4}}, and compute S(fi1, fa) = yz® — 23 which is reduced with
respect to G. Thus we add to G. After applying crit2 again we ob-
tain NC = {{2,3},{3,4},{3,5}}. We choose the pair {3, 5}, so that now NC =
{{2: 3}’{3’ 4}} and C = {{1’2}1 {1’4}’ {3’ 5}}’ and we compute S(f3, f5) =
zz* — 2% which is reduced with respect to G. Now we add | fs = z2% — 22>
to G. Applying crit2 again we get NC = {{2,3},{3,4},{3,6}}. Next we choose
the pair {3,6}, update NC and C = {{1,2},{1,4},{3,5},{3,6}}, and we com-
pute S(f3, fs) = zyz% — z2? which is reduced with respect to G. Thus we add
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fr = zyz® — z2? | to G. Applying crit2 again we get NC = {{2,7},{3,7},{4,7}}.
Now we choose the pair {4,7} and compute S(fs, fr) = —2* + 2222 which is

reduced with respect to G. Thus we add | fs = —2* + 2222 | to G. After apply-
ing crit2 we have NC = {{2,7}, {3,7}, {2,8}, {4,8}, {5,8},{6,8}}. Now we
choose the pair {2,7} and observe that S(f2, fz) = 0. We choose next the pair
{3,7} and see that S(fs, f7) £, 0. Then we choose the pair {6, 8}, we update
NC = {{2,8}, {4,8},{5,8}} and C = {{1,2}, {1,4}, {3,5}, {3, 6}, {4,7}, {2, 7},
{3,7}, {6,8}}, and compute S(fs, fs) = z32% — z2° which is reduced with re-
spect to G. Thus we add | fo = 2322 — 223 | to G. After applying crit2 we have
NC = {{2,8}, {4,8},{5,8}, {4,9}, {6,9}}. The S-polynomials corresponding to
the remaining pairs in N'C all reduce to zero. Thus G = {fi1, f2 , fa, f1, 5, Je»
fr, fs, fo} is a Grobner basis for I = (fy, f, f3)-

We now give one example of crit2. We consider the situation right after
adding fs to G. There we started with NC = {{2, 3}, {3,4},{1,6}, {2, 6}, {3,6},
{4,6},{5,6}} and C = {{1,2},{1,4}, {3,5}}. For £ =1 we first note that {1,6}
is in NC and we must consider the pairs {2,6} and {4,6} (we do not consider
the pair {3,6} because the pair {1,3} ¢ NC UC, and we do not consider the
pair {5,6} because {1,5} ¢ NC UC). For {2,6} we see that 1p(f;) = 22y? does
not divide lem(lp(f2),Ip(fs)) = zy?23, and for {5,6} we see that Ip(f,) = z%y?
does not divide lem(lp(f5), Ip(fs)) = zyz3. So we eliminate no pairs from N'C.
For £ = 2 we note that {2,6} € NC and we only consider {1,6} and {3,6}.
For {1,6} we note that Ip(f2) = zy?z divides lem(Ip(f1), Ip(fs)) = z?y%2> and
so we eliminate the pair {1,6} from NC. We may not eliminate {3,6}. Now
NC = {{2,3}, (3,4}, {2,6}, {3, 6}, {4,6},{5,6}}. For £ = 3 we consider {2, 6},
{4,6} and {5,6} and all three of them are eliminated giving us NC = {{2,3},
{3,4}, {3,6}}. We do not need to consider £ = 4,5, since {4,6},{5,6} ¢ NC.
‘We do not need to consider £ = 6, since there is only one pair with 6 in it left in
NC. So we finally arrive at NC = {{2,3}, {3,4}, {3,6}}.

Although it might appear in this example that no real saving in computation
time has been gained in using crit2, we recall that, in practice, the most time
consuming part of Buchberger’s Algorithm is the reduction of S-polynomials and
we have avoided most of these reductions by using the current algorithm. Indeed,
we computed a total of 13 S-polynomials, 6 of which generated elements of the
Grobner basis. Had we not used crit2 we would have had to compute and reduce
9;28 = 36 S-polynomials. Note that the computations in crit2 are always trivial.

To conclude this section, we mention two other difficulties that arise during
the computation of Grébner bases, namely, the possible rapid growth of the
degrees and coefficients of the S-polynomials. Even though the degree and/or
size of the coefficients of the original polynomials and the Grobner basis may
be of modest size, the intermediary polynomials generated by the S-polynomial
computations and reductions can become quite large. This can dramatically slow
down the computation. Doing computations with large coefficients can be very
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costly because of the large amount of arithmetic that becomes necessary. As
an example of this situation, the reduced Grobner basis for the ideal {(4z2y? +
3z,9% + 2y, 7z® + 6y) with respect to the lex order with x > y is {z,y}, while
the coefficients during the computation grow as large as 10%. This can be seen
by expressing z as a linear combination of the three original polynomials f; =
4x2y? + 3z, f2 = y° + 2y, and f3 = Tx® + 6y:

x_(7 o 4008 . 1835008 o 9604 o 43904 .

54° ¥ T 564286237 564286237 188095417 188095417

200704 , 1 7 a0, 1605632 g 7340032 , g
188095417 )f 1+( 27 ¥V * 56428623 ¥ 56428623
BAI6_ . LT6I6 o OMOS o 2 017504

*1s809541° ¥ Tt 18800541° ¢ T 18809541°Y ~ 3%t 188095417

02, 2952 o 100352 g 1
+ooosa7Y T ooe9sa7? T eze98a7? T 3Y ) 2
____.1_ 5 5 4 3 2
e e (917504y° + 14406y* + 63856y° + 30105647 + 6269847) .

There are techniques to try to get around this problem, but again they are
beyond the scope of this book.

To illustrate the growth in total degree, consider the ideal I = (z7 + zy +
Y,9° +yz+2,22 + 2+1) C Q[z,y, 2]. The generators of this ideal have maximum
total degree 7. However the reduced Grébner basis for I with respect to lex with
z > y > z contains a polynomisl of degree 70. The problem with polynomials
with large total degree is the fact that they can have a very large number of
terms. For example, the reduced Grobner basis for the ideal I above has 3
polynomials with 58, 70, and 35 terms respectively. Again, a large number of
terms make any computation very costly.

Exercises

3.3.1. Compute a Grébner bases for the following ideal using Algorithm 3.3.1
without using a Computer Algebra System.

a. (z?y—y+z,zy° —z) C Q[z,y] using deglex with z < y. Compare with
Example 2.1.1.

b. {z%y + 2,2z + y) C Q|z,y, ] using deglex with z > y > 2. Compare
with Exercise 1.7.3.

c. (%y+ z,x2+y,y%2 + 1) C Q[z,y, 2] using lex with z > y > 2.

3.3.2. The following exercise may tax your Computer Algebra System. If so,
try to make up your own more modest example that illustrates the same
point. Let I = (" + zy+y,4° +yz+ 2,22 + 2+ 1) C Q[z,y, 2].

a. Find the reduced Grobner basis for I with respect to lex with z > y >
2. (No computation is needed!)

b. Compute the reduced Grébner basis for I with respect to lex with
z >y > z. Compare the two bases.



134

3.3.3.

a o

n O

CHAPTER 3. MODULES AND GROBNER BASES

. Can you give a reason for the difference between the bases in a and b?
. Use c to give a method for generating polynomials fi,... , fs in n vari-

ables whose total degree is small, but such that the reduced Grébner
basis for {fi,... , fs) with respect to a certain lex order has polynomi-
als of very high degree. [Hint: In the given example, note that there
are 2 solutions for z, and for each such solution, there are 5 solutions
for y, etc.]

. Give examples of polynomials which satisfy d.
. Experiment by changing the degree of the z,y, z terms in the polyno-

mials above, but keeping lex with z > y > z. How does it affect the
computing time?

. Experiment by changing the term order and the order on the variables

for the examples in this exercise. How does it affect the computation
and the computing time?

Let f,g9,d € k[z1,... ,T,] such that d divides both f and g.

a.

b.

Show that S(£, 4) = 1S(f, g).
Sh . {f.9} 1 8
ow that if S(f,g) == 0, then 35(f,9) =54 0.

3.4. Computation of the Syzygy Module. In this section we show how
to compute Syz(fi,--. ,fs) for fi,...,fs € A = k[z1,...,z,]. This is done in
two steps. We first compute a Grébner basis G = {g1,... ,g:} for {f1,..., fs)
and compute Syz(gi, - - - , g:). For convenience, we will assume that g,... , g; are
monic. We then show how to obtain Syz(fi,...,fs) from Syz(g:,...,9:). We
will assume that we have a fixed term order on A.

Let {g1,...,9:} be a Grobner basis, where we assume that the g;’s are monic.
For i € {1,...,t}, we let Ip(¢;) = X; and for i # j € {1,...,t}, we let X;; =
lem(X,, X,). Then the S-polynomial of g; and g; is given by

X, Xij
5(9.,95) = Yt:’gi - X‘:'gj-
i i

By Theorem 1.6.2, we have

t
5(9:,95) = Y hijugus

v=1

for some h;;, € A, such that

llélf.ét(lp(hijv) Ip(g.)) = Ip(S(g:, 95))-

(The polynomials h;j, are obtained using the Division Algorithm.) We now
define for 4,7 =1,...,¢,1 # j,

X X
7(‘;-8.' - Y;’-ej - (h,‘jl, aee ,hz'jt) € A%

8,'_7' =
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We note that s;; € Syz(gs,.-. ,9:), since

Xij
[on - o] = [a - gt] X’ea)
J

-[o - @& ](hz‘jl,--- s hije)

t
S(g:,95) — Zhijugu =0.

v=1

THEOREM 3.4.1. With the notation above, the collection {s;; |1<i< j <t}
is a generating set for Syz(gi,... ,9:)-

PROOF. Suppose to the contrary that there exists (uy, ... ,u:) such that

(u1s--. ,ut) € Syz(g, ... ,9¢) — (8,5 |1 < i< j <)

Then we can choose such a (uy,... ,u:) with X = max;<i<:(lp(ui) Ip(g:)) least.
Let

S={ie{1,...,t}|Ip(uw)lp(g:) = X}.
Now for each i € {1,... ,¢} we define u] as follows:

y_ Juifigs
e u;—lt(u,-)ifies.

Also, for 7 € S, let 1t(u;) = c;i X}, where ¢; € k and X] is a power product. Since
(ul" .- )ut) € Syz(gh cee ;gt)’ we see that

Y aXiX:=0,
€S
and so

zcixéei € Syz(X; |1 € §).
i€S

Thus, by Proposition 3.2.3 we have
Xi;
ZciXiei = Z au(X e — X; €;),
i€S i<z

i,j€S

for some a;; € A. Since each coordinate of the vector in the left-hand side of the
equation above is homogeneous, and since X! X; = X, we can choose a;; to be a
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constant multiple of X Then we have
i
(wryeeesu) = Y eXieit+ (uy,... ,up)
ies
Xij Xy / /
1,jJES
= z Qi;8ij + (u’l, ‘e vu:) + z a"l](htjl) 1_1t)
i5es iges

We define (vy,...,v) = (ul,...,u}) + 3, 2 aij(hij1, . - - , hijt). We note that
(vlv”' ,'Ut) € Syz(gll' . 3gt) - (31.1 | 1 i< .7 < t)) since (ul’ . ,W),Sij €
Syz(g1,--. ,9t) and (u1,...,us) € (8;; | 1 < i < j < t). We will obtain the
desired contradiction by proving that max; <, <:(lp(v,) Ip(g,))< X. For each v €
{1,...,t} we have

Ip(w)lp(e,) = Ip(w, + ) aihii)X,
1,:1'<€jS

< max(lp(u;/)’ I:513;;){(lp(ata) lp(hiju)))Xu-
i,jES
But, by definition of u,, we have lp(u])X, < X. Also, as mentioned above, a.;

is a constant multiple of , and hence for all %, j € S,% < j, we have

ij
X X
lp(aij) lp(h,],,)X = ')Ejlp(hiju)xu _<. '—: lp(S(gi,gJ')) <X

Therefore Ip(v,) Ip(g,) < X for each v € {1,... ,t} violating the condition that
X = max;<,<¢(Ip(u, ) Ip(g,)) is least. O

EXAMPLE 3.4.2. We return to Example 3.2.2. Let g; = 22 —wy, g» = zy—wz,
and g3 = y? — zz. These form a reduced Grdbner basis with respect to the
degrevlex ordering with z > y > z > w. Using the notation of the above result,
we have:

X, = 2%, Xo = zy, X3 = %, X12 = 2%y, X13 = 2%4%, Xo3 = 29°.
Now S(g1,92) = —wy? + zwz = —wgs, 50 hj21 = hizp = 0 and hjz3 = —w.
Therefore

X1z X12 -
812 = y-e1~ 2-e (121, h122, hazs) = (y, —2, ).
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Also, S(g1,93) = 32 — y®w = z2g) — ywgs, so that k3 = 2, h1z2 = 0 and
hi133 = —yw. Therefore

X X
813 = Yll"iel - -X?es — (h131, h1sz, huss) = (1% — 22,0, —2* + yw).

Fina.lly, S(gg,g;;) =%z — Yyzw = z4g1, SO that h231 =2z, ho3za = 0 and h233 =0.
Therefore
Xa3 X23

823 = };ez - 7383 — (h231, hasa, hass) = (—2,y, —Z).

By Theorem 3.4.1,
Syz(gla.q?’ g3) = ((y’ ~Z, ‘ID), (1‘12 — Iz, 0, __x2 + W)’ (_z’ Y, -z))

We note that 813 = yS12 + 823, so we have, in fact, that

Syz(91, 92, 93) = (¥, —2, w), (-2, 9, — 7))

We now turn our attention to computing Syz(fi,...,fs), for a collection
{f1,--- , fs} of non-zero polynomials in A which may not form a Grobner basis.
We first compute a Grobner basis {g1, ... ,g:} for {fi,..., f,). We again assume
that g1,... ,g; atemonic. Set F=[ f; --- f, JandG=[a@ -+ g |-
As we saw in Section 2.1, there is a ¢ X s matrix S and an s x £ matrix T with
entries in A such that F = GS and G = FT. (Recall that § is obtained using the
Division Algorithm, and T is obtained by keeping track of the reductions during
Buchberger’s Algorithm.) Now using Theorem 3.4.1, we can compute a gener-
ating set {s,...,8,} for Syz(G) (the s;’s are column vectors in A*). Therefore
foreachi=1,...,r

0=Gs, = (FT)s; = F(Ts;),

and hence
(Ts; |i=1,...,r) C Syz(F).

Moreover, if we let I; be the s x s identity matrix, we have
F(I, -TS)=F-FIS=F-GS=F—-F=0,
and hence the columns ry,... , 7, of I, — T'S are also in Syz(F).
THEOREM 3.4.3. With the notation above we have
Syz(f1,--., fs) ={Ts1,... ,T8p,71,...,75) C A°.

PRrROOF. Let 8 = (ai,...,as) € Syz(f1,---,fs). Then 0 = F's = GSs, and
hence Ss € Syz(g1,-..,9:)- By the definition of s;,...,s,, we have Ss =
>-i_1 his; for some h; € A. Thus we have T'Ss = }"_, hi(Ts;). Finally,

s=8—-TSs+TSs=(I,-TS)s+ Z hi(Ts;) = Za,-r,- + Z hi(Ts;).

=1 =1 =1
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Therefore Syz(fi,...,fs) € (T's1,...,T8,,71,...,7s). The reverse inclusion
has already been noted.

EXAMPLE 3.4.4. Let f; = 229 ~ 2%y, fo = zy® — 222, and f3 = y* — 23, Let
F=[fi f» fs].Wefirst compute a Grobner basis G with respect to the lex
term ordering with = < y for (f1, fo, f3). Wefind>G=[g1 g2 935 91 g5 |,
where g, = y* — 28, g2 = z3® — 23y, g3 = 2%y — 2y, g4 = z'y — z*, and
g5 = x° — 2. Moreover we have

[91 92 g3 94 95]=

011 —(z+y) —(z+y)

[A f2 fs]]0 10 - -y(y+1) and
100 T -2 tzy+z
T
0 0 1
0 1 O
(A f2 fs]l=[o 92 95 94 gs]|1 -1 0
0 0 O
0 0 O
N ——r
s

To compute generators for Syz(g1, g2, g3, 94, g5) we need to reduce all S(gi, g;)’s
for 1 < i< j <5 using 91,92, 93, 94,95 (Theorem 3.4.1). In view of Corollary
3.3.3 and Exercise 3.4.4, it is enough to reduce S(g1, g2), S(92, 93), S(g3, 94), and
S(g4, 95) which give the following respective syzygies:

81 = (x) -Y,—Z, -17 0), 89 = (01 z,—Tr—Y, 07 0):

83 = (0: 0: z2, -y, y)) 84 = (0) 0: 0,2,' - 17 -y+ 1)
By Theorem 3.4.1, we have

Syz(gl,gz,ga,g4, 95) = (31) 82, 83, 84)'

Then
T 0
-y 0 T -y
T| -z =[0],T -z —y =[m],
-1 0 0 0
0 0

2We will often use the same letter for a finite set and a row vector corresponding to it,
when the context is clear.



3.4, COMPUTATION OF THE SYZYGY MODULE 139

0 0
0 z? 0 —z2 +y?
T| =2 =[ -y },T 0 =[—x’y+y3].
—y —z%y + zy? z—1 z2y — zy?
Yy -y+1

We note that (—z2+y2, —zy+y®, 22y —zy?) is in the submodule of A% generated
by (-y,7,0) and (22, —y°, 2y + zy?).
Finally, it is easy to verify that

000
I;-TS=|0 0 0 |.
000

Therefore
Syz(fh f2, f3) = ((_y) z, O)a (332) _y37 —3323/ + zyz))'

Using the notation of Theorem 3.4.3, we note that in Example 3.4.4 the rows
of I, — T'S did not give any syzygies that were not already in the submodule
(Ts1,-..,Ts,) of A°. This is not always the case (see Exercise 3.4.2). However
it is easy to see (Exercise 3.4.3) that if the polynomials fi, ... , fs appear in the
list g1,... ,9;, then Syz(fi,..., fs) = (Ts1,...,Ts.). If the Grobner basis for
(f1,--. , fs) is computed using Buchberger’s Algorithm (Algorithm 1.7.1) or by
the improved Buchberger’s Algorithm (Algorithm 3.3.1), then the polynomials
f1,..., fs do appear in the list g,... ,g;- However, if a reduced Grobner basis
is computed, as is done in all Computer Algebra Systems, then the polynomials
f1,-.., fs may not appear in the list g1,... ,4;.

Exercises

3.4.1. Compute generators for Syz(fi,..- , fs) in the following examples:
a. fi=2*y+2 fr=zz+y€Qz,y,z
b. fi=2?y—y+z, o=z -z €Qlz,y.

c fi= x2y+z, fo=z2+y, f3= y22+ le Q[x,y,z].

3.4.2. In Theorem 3.4.3 we had to include the columns of the matrix i, — T'S
in the set of generators for Syz(fi,... , fs)- In this exercise, we show that
these vectors are necessary. Consider the polynomials f; = zy + 1, fo =
zz+1, and fz3 =yz+ 1€ Q[z,y, 2]

a. Verify that the reduced Grébner basis for I = (fi, fa, f3) with respect
tolex withz >y > zis G = {g1,92,93}, where g1 =y—2, g2 =z — 2,
and g3 = 22 + 1. Also, show that

0 =z 1

~ J

-z -z 22
[91 g2 93]=[f1 f2 fs][y 0 —yz:l.
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b. Compute the matrix Ssuchthat [ fi fo f3 |=[o g2 93]S
c. Compute the 3 generators, say s1, 82, 83, for Syz(g1, g2, 93)-

d. Compute I3 — T'S. This matrix has 2 non-zero columns, say 1, 5.
e. Verify that (T'sy,T's2, T's3) # (T's1,T82,T's3,71,72).

3.4.3. Assume that {f1,...,fs} € {g1,.-.,9:} and {g1,...,9:} is a Grobner
basis for I = (f1,... , fs). Prove that, with the notation of Theorem 3.4.3,
Syz(f1,..- s fs) = (Ts1,...,Ts,), that is, the columns of the matrix I, —
TS are not necessary.

3.4.4. Generalize Theorem 3.4.1 as follows: Let {g1,...,9:} be a GrSbner basis
and let 75, be as in Section 3.3. Let BC {r;; | 1<i< j<t}bea
generating set for Syz(lt(g1),...,1t(g¢)). Prove that {s,, | 7;, € B} is a
generating set for Syz(gi, ... ,g:)-

3.4.5. Apply Exercise 3.4.4 and Corollary 3.3.3 to the computations in Exercise
34.1.

3.4.6. Let f1,...,fs,g € k[z1,--. ,Zn] and consider the linear equation

hifit+hefot---+hsfs =g,

with unknowns h,,... ,hs € k[z1,... ,z,). Let S be the set of solutions;

ie.

S ={(h1,... ,hs) € A’ | by fr + hofo +--- + hs fs = g}

a. Prove that S is not empty if and only if g € (f1,..., fs)-

b. Prove that if S # @ then S = h + Syz(f1,...,fs) = {h+s| s €
Syz(f1,-.. ,fs)}, where h is a particular solution. Give a method for
computing h.

c. Use the above to find the solution set for the equation

hi(z%y? — z%y) + ha(zy® — 2%Y°) + ha(y® — 2%) =y —4°.

3.5. Grébner Bases for Modules. As before, let A = k[zy,... ,z,] for
a field k. We have seen in the previous sections of this chapter that certain
submodules of A™ are important. In this section, we continue to study such
submodules, but now from the point of view adopted for ideals in the earlier
parts of this book. Namely, we will generalize the theory of Grobner bases to
submodules of A™. As a result we will be able to compute with submodules of
A™ in a way similar to the way we computed with ideals previously.

The idea is to mimic the constructions we used in Chapter 1 as much as
possible. Let us recall the ingredients for the methods we used before for ideals.
First, in Section 1.4 we defined the concept of a power product and then defined a
term order on these power products, that is, a total order with special properties
with respect to divisibility (we will need to define a concept of divisibility). Using
these ideas, in Section 1.5 we defined the concept of reduction which in turn led
to the Division Algorithm. Then in Section 1.6 we defined the concept of a
Grobner basis, giving the equivalent conditions for a Grobner basis in Theorem
1.6.2 (and further in Theorem 1.9 1). The next issue, discussed in Section 1.7,
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was how to compute Grobner bases, and for that we developed S-polynomials and
Buchberger’s Algorithm. We will follow this development very closely. Indeed
many of the proofs in this and the next two sections are very similar to the
corresponding ones for ideals and will be left to the exercises.

‘We again need the standard basis

er = (1,0,... ,0),82 =(0,1,0,... ,0),...,em =(0,0,... ,0,1)

of A™. Then by a monomial® in A™ we mean a vector of the type Xe; (1 <i <
m), where X is a power product in A. That is, a monomial is a column vector
with all coordinates equal to zero except for one which is a power product of A.
Monomials in A™ will replace the notion of power products in the ring A. So,
for example, (0,z?z3,0) and (0,0,z;) are monomials in A3, but (0,z, + x2,0)
and (0, z2,z;) are not. If X = Xe; and Y = Ye,; are monomials in A™, we say
that X divides Y provided that i = j and X divides Y. Thus in A3 we see that
(0,z2z3,0) divides (0,z3z3,0), but does not divide (0,z;z3,0) or (z2z3,0,0).
We note that in case X divides Y there is a power product Z in the ring A such
that Y = ZX. In this case we define*

Y Y
x-x- %

So, for example
(0,2323,0) -"31-"33 —
(0,2%z3,0)  ziz;

Similarly, by a term, we mean a vector of the type ¢ X, where ¢ € k—{0} and X
is a monomial. Thus (0,5z%x%,0,0) = 5X, where X = (0,z2z%,0,0) = z3z}e,,
is a term of A% but not a monomial. Also, if X = cXe; and Y = dYe; are
terms of A™, we say that X divides Y provided that i = j and X divides Y. We

write
Y _av
X X

So, for example,
(o, 5“’13’3»0) 1‘”% _3

We now can define a term order on the monomials of A™,

DEFINITION 3.5.1. By a term order on the monomials of A™ we mean a total
order, <, on these monomials satisfying the following two conditions:
(i) X < ZX, for every monomial X of A™ and power product Z # 1 of A,

3In the case that m = 1 we have now called a monomial what we referred to before as a power
product. From now on in the book we will use monomial and power product interchangeably
for such elements in the ring A.

4Be careful about what we are doing here. We are “dividing” two vectors in A™ to obtain
an element in A; but we are only doing this in the very special case where each of the vectors
has only one non-zero coordinate in the same spot which is a power product and one power
product divides the other. The “quotient” is defined to be the quotient of those two power
products.
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(i) If X <Y, then ZX < ZY for all monomials X,Y € A™ and every
power product Z € A.

Looking at Definition 1.4.1 we see that Conditions (i) and (ii) there correspond
to Conditions (i) and (ii) in Definition 3.5.1. Condition (i), specialized to the
case of m = 1, simply says that Z > 1, since the monomial X can be cancelled.
This is Condition (i) of Definition 1.4.1. The corresponding second conditions
are exactly parallel.

If we are given a term order on A there are two natural ways of obtaining a
term order on A™. These are given in the following two definitions.

DEFINITION 3.5.2. For monomials X = Xe; and Y = Ye; of A™, we say

that
X<Y

X<Y < or
X=Y andi<j.
We call this order TOP for “term over position”, since it places more importance
on the term order on A than on the position in the vector.

So, for example, in the case of two variables and m = 2, using deglex on the
power products of A with z < y, we see that

(z,0) < (0,2) < (3,0) < (zy,0)-

DEFINITION 3.5.3. For monomials X = Xe; and Y = Ye; of A™, we say
that
1<j
X<Y &= { or
i=jand X <Y.
We call this order POT for “position over term”, since it places more importance
on the position in the vector then on the term order on A.

So in this case we have, again for the case of two variables and m = 2, using
deglex on the power products of A with z < y,

(z,0) < (,0) < (23,0) < (0,2)-

It is easily verified that these two orders satisfy the two conditions of Definition
3.5.1 (Exercise 3.5.1). Of course, each of these two orders could just as well have
been defined with a different ordering on the subscripts {1,... ,m}. In order to
indicate which order we are using we will write, for example, e; < e3 <:-- < €p,.
There are many other examples of orders and we will use an order different from.
either one of the above in the next section.

We note that we are using the symbol “<” in two different ways, both for a
term order on the power products of A and for a term order on the monomials
of A™. The meaning will always be clear from the context.

In analogy to Theorem 1.4.6 we have the following
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LEMMA 3.5.4. Every term order on the monomials of A™ is a well-ordering.

PrOOF. The proof of this lemma is exactly the same as the proof of Theorem
1.4.6 except that the Hilbert Basis Theorem (Theorem 1.1.1) used there must
be replaced by Theorem 3.1.1 (Exercise 3.5.2). O

‘We now adopt some notation. We first fix a term order < on the monomials
of A™. Then for all f € A™, with f # 0, we may write

f=aX,+a X+ +a,.X,,

where, for 1 < i < r, 0 # a; € k and X; is a monomial in A™ satisfying
X;>Xg > > X,. We define

¢ Im(f) = X, the leading monomial of f;

e Ic(f) = a), the leading coefficient of f;

o It(f) = a1 X, the leading term of f.
We define 1t(0) = 0,1m(0) = 0, and 1c(0) = 0.

Note that, consistent with using monomials in A™ instead of the power prod-
ucts in A, we now use leading “monomials” instead of leading “power products”,
and use the symbol “Im” instead of “lp”.

EXAMPLE 3.5.5. Let f = (22%y —3° + 5z, 3zy? + 4z + y?) € A2, with the lex
ordering on A = Q[z,y] with z < y. Then in the TOP ordering with e; < ez of
Definition 3.5.2 above, we have

F = ey + 3zyes + yes + 223ye; + 4ze + Sze;,

and so Im(f) = ey, lc(f) = —1, and lt(f) = —y®e;1. On the other hand, in the
POT ordering with e; < e, of Definition 3.5.3 above, we have

F =3zyez + y’ex + 4z€n — yie; + 2z3ye, + 5ze,,

and so Im(f) = zy?es, lc(F) = 3 and It(F) = 3ry’e>.

‘We note that lm, lc and 1t are multiplicative, in the following sense: Im(fg) =
Ip(f) Im(g), lc(fg) = lc(f)Ic(g), and 1&(fg) = 1t(f)1t(g), for all f € A and
g € A™ (Exercise 3.5.6).

‘We now move on to the second ingredient in our construction of Grobner bases
for modules, namely, reduction and the Division Algorithm. It should be em-
phasized that now that we have defined monomials (in place of power products),
divisibility and quotients of monomials, and term orders, the definitions can be
lifted word for word from Section 1.5. The basic idea behind the algorithm is
the same as for polynomials: when dividing f by f,,... , f,, we want to cancel
monomials of f using the leading terms of the f;’s, and continue this process
until it cannot be done anymore.

DEFINITION 3.5.6. Given f,g,h in A™, g # 0, we say that f reduces to h
modulo g in one step, written
F*h,
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if and only if 1t(g) divides a term X that appears in f and h = f — ﬁ‘ag.

We can think of h in the definition as the remainder of a one step division of
F by g similar to the one seen in Section 1.5. Observe that the terms introduced
by subtracting ﬁ%;g from f are smaller than the term X subtracted out of f.
We can continue this process and subtract off all possible terms in f divisible
by It(g).

EXAMPLE 3.5.7. Let f = (—y® +22%y,3zy? +9® +4z) and g = (z+1,9°+7)
be in A%2. We use the lex ordering on A = QJz,y], with ¢ < y, and TOP with
e) < ez in A% Then, lt(g) = (0,y?) = y2ez, and

f 5 (—®+22% — 32% - 37,97 — 327 + 4z)
25 (o + 203y — 32® — 4z — 1,322 + 3x).

DEFINITION 3.5.8. Let f,h, and f,,... , f, be vectors in A™, with f,,... , f,
non-zero and let F = {f,,...,f,}. We say that f reduces to h modulo F,
denoted

FSouh,
if and only if there exists a sequence of indices iy,42,...,% € {1,...,s} and
vectors hy,... ,hy_1 € A™ such that

f f{l f52 h2 fia f‘t 1 ht_]_ ftt

EXAMPLE 3.5.9. Let f, = (zy — y,22), f» = (z,92 — =) € A%2. We use the
lex ordering on A = Q[z,y|, with £ < y, and TOP with e; < ez in A% Let
F= {fl’fz} and f = (y2 +2x2y,y2). Then

f L_,, (v + 2y — z, —22° — 2% + 2),

since
F= 2 +22%,1) 25 (2 + 2%y — 2,2) I

(¥ + 22y — z, —22° +a:) L (v + 2y — z, —22° — 222 + 7).

Notice that this last vector h = (y% + 2y — x,—22% — 222 + z) cannot be
reduced further by f, or f,. This is because lm(f,) = (zy,0) and no power
product in the first coordinate of h is divisible by zy and Im(f,) = (0,%?) and
no power product in the second coordinate of h is divisible by y2.

DEFINITION 3.5.10. A wector r in A™ is called reduced with respect to a set
F = {f1,--.,fs} of non-zero vectors in A™ if r = 0 or no monomial that
appears in r is divisible by any one of the Im(f,),i=1,... ,s. If f i rand
T is reduced with respect to F, then we coll v a remainder for § with respect to
F.
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The reduction process allows us to give a Division Algorithm that mim-
ics the Division Algorithm for polynomials. Given f, fy,...,f; € A™, with
fi,---»fs # 0, this algorithm returns quotients ay, ... ,as € A = k[z1,... ,Za),
and a remainder » € A™, which is reduced with respect to F, such that

F=afi+--+af, +r.
This algorithm is given as Algorithm 3.5.1.

INPUT: f, f1,... , fs €A™ with f; #0 (1<i< s)

OUTPUT: qy,...,as € A,r€ A" with f=a1f, +---+af,+7
and r is reduced with respect to {f,,..., f,} and
max(Ip(a1) Im(f,), . - - , Ip(as) Im(f,), Im(r)) = lm(f)

INITIALIZATION: q; :=0,a2 :=0,... ,a5 :=0,7:=0,g:= f

WHILE g # 0 DO

IF there exists i such that Im(f;) divides lm(g) THEN
Choose i least such that lm(f;) divides lm(g)

_ 1t(g)
w=at ltu)'o
lt(g
A
ELSE
r:=r+1t(g)
g:=g-1t(g)

ALGORITHM 3.5.1. Division Algorithm in A™

Note that the step  := r +1t(g) in the ELSE part of the algorithm is used to
put in the remainder the terms that are not divisible by any 1t(f,) and the step
g := g —1t(g) is used to continue in the algorithm to attempt to divide into the
next lower term of g.

ExAMPLE 3.5.11. We will redo Example 3.5.9 going step by step through
Algorithm 3.5.1.

INITIALIZATION: a; := 0,a3 := 0,7 := 0, g := (¥% + 222y, 1?)

First pass through the WHILE loop:

(zy,0) = Im(f,) does not divides Im(g) = (0,%?)
(0,3%) = Im(f,) divides lm(g) = (0,3°)
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az :=az + l:;t(fgg =1

2
9:=9— i f2= 4 +2%,1?) - § (@, 4* — o)
= (y* + 22y — z,2)

Second pass through the WHILE loop:

Neither Im(f,) nor Im(f,) divides lm(g) = (¥2,0)
r:=r+1t(g) = (¥2,0)
g9 =g -lt(g) = (22%y - z,7)

Third pass through the WHILE loop:

(zy,0) = Im(f,) divides lm(g) = (z°y,0)

ay '=a1 + litfl =2z
2
g = (22% — z,z) — G=L) (zy - y,2?)
= (2zy — =, —22°% + )
Fourth pass through the WHILE loop:
(zy,0) =Im(f,) divides lm(g) = (zy,0)
ay :=0,1+|th((% =2x+2
9= 2y ~ z,-22% + z) ~ P23 (zy — y,2?)
= (2y — z,~22% — 222 + 1)

Fifth pass through the WHILE loop:

Neither Im(f,) nor lm(f,) divide lm(g) = (y,0)
r:=r+lt(g) = (¥* + 2y,0)
g:=g-1t(g) = (—z,—22% — 222 + ).

The remaining four passes through the WHILE loop, one for each of the four
remaining terms in g, will be similar to the last one, since neither Im(f;) nor
Im(f,) divides any of the remaining terms of g. So we finally get, as we did in
Example 3.5.9, that

fiq_ VP +2y—z,-22°~ 2% +z)=7r

and, moreover

THEOREM 3.5.12. Given a set F = {f,,...,f,} of non-zero vectors and
f in A™, the Division Algorithm (Algorithm 3.5.1) will produce polynomials
a,-..,as,€ A and a vector r € A™ such that

F=aifi+-+af, +r,

with v reduced with respect to F, and

lm(f) = max(lp(a,) bm(f,),. .. ,Ip(as) Im(£,), lm(r)).
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ProoF. The proof is exactly the same as the proof of Theorem 1.5.9 except
that we use Lemma 3.5.4 instead of Theorem 1.4.6. [

We now have what we need to define Grobner bases in modules. So let M be
a submodule of A™.

DEFINITION 3.5.13. A set of non-zero vectors G = {g,... ,g;} contained in
the submodule M is called a Grobner basis for M if and only if for all f € M,
there exists i € {1,... ,t} such that Im(g,) divides lm(f). We say that the set
G is a Grobner basis provided G is o Griobner basis for the submodule, (G), it
generates.

We now give the characterizations of a Grobner basis analogous to those in
Theorems 1.6.2 and Theorem 1.6.7. The proof is basically the same as the one
for the ideal case and is left to the exercises (Exercise 3.5.9). We first define, for
a subset W of A™, the leading term module of W to be the submodule of A™,

Lt(W) = (t(w) | w € W) C A™.

THEOREM 3.5.14. The following statements are equivalent for a submodule
MCA™ and G ={g,,...,9,} C M withg; #0 (1 <i <t).
(i) For all f € M, there exists i such that lm(g,) divides lm(f) (that is, G
is a Grébner basis for M).
(i) f€M ifand only if f i».,_ 0.
(iii) For all f € M, there ezists hy, ... ,hy € A such that f = hyg,+---+h:g;
and lm(f) = max; <i<:(Ip(h:) Im(g;))-
(iv) Lt(G) = Lt(M).
(v) For all f € A™, if f £++ r, F i».,. T2, and 71,72 are reduced with
respect to G, then r) = rs.

For completeness sake, we note the Corollaries of this result which correspond
to the Corollaries of Theorem 1.6.2 (Exercises 3.5.10 and 3.5.11).

COROLLARY 3.5.15. IfG = {g,,. .- ,8:} is ¢ Grébner basis for the submodule
M of A™, then M = (g,,... ,9;)-

COROLLARY 3.5.16. Every non-zero submodule M of A™ has a Grébner basis.

We will now introduce the analogue of S-polynomials. We continue to em-
phasize that we need only copy what was done in the polynomial case, except
that it is not yet clear what the least common multiple of two monomials should
be. So let X = Xe, and Y = Ye; be two monomials in A™. Then by the least
common multiple of X and Y (denoted lem(X,Y")), we mean

e 0,if i # j;
e Le, where L =lem(X,Y), if i =3.

For example, lom( (%2, 0), (z3?, 0)) = (¢%°2,0) and lem((2%, 0), (0, 23°)) =
(0,0).
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DEFINITION 3.5.17. Let 0 # f,g € A™. Let L = lem(lm(f),lm(g)). The

vector L
L
S(f,9) = Tt_(:f_)f_ @9

is called the S-polynomial® of f and g.

The motivation for this definition is the same as the one used for the defi-
nition of S-polynomials in Definition 1.7.1. Namely, we are interested in linear
combinations of f and g in which the leading monomials cancel out. This can-
not happen if lm(f) and lm(g) have their respective non-zero entries in different
coordinates and so, in this case, we define their least common multiple to be the
zero vector making their S-polynomial the zero vector. On the other hand, if
lm(f) and lm(g) have their respective non-zero entries in the same coordinate,
then S(f, g) is set up to cancel out these leading monomials in the most efficient
way.

EXAMPLE 3.5.18. We consider A = Q[z,y] with the deglex ordering with
z < y and A? with the TOP ordering with e; < e3. Then,

S((=* +1,5zy° + z), (a%y, 3%y + y)) =

(0,2%°) (0,2%y°)

(0, 5z3°) (0.32%) @ B35V ) =

(% +1,5zy° + ) —

2 2
z° 9 3 Y2 a3 s 15 15313 14
5(:z: +1,5zy° + z) 3(:1: y, 3z y+y)—(5x +5:z: 3T Vg — 3y ).
Note that the leading monomial of each of the summands is (0, z3y3) while the

leading monomial of the S8-polynomial is (z2y3,0) < (0, z%y3).

THEOREM 3.5.19. Let G = {g,,...,9;} be a set of non-zero vectors in A™.
Then G is a Grébner basis for the submodule M = (g,,...,9;) of A™ if and
only if for all i # 3,

G
S(gi,gj) —4 0.

We will leave the proof of this Theorem to the exercises (Exercise 3.5.13); it
follows the proof of Theorem 1.7.4 exactly.

This last Theorem allows us to give the analog of Buchberger’s Algorithm,
Algorithm 1.7.1, for computing Grébner bases. It is given as Algorithm 3.5.2.
Although this algorithm is exactly the same as Algorithm 1.7.1, we will restate
it here for the convenience of the reader. The proof of the correctness of the
algorithm is left to the exercises (Exercise 3.5.14).

5We use the term “S-polynomial” even though the result is clearly a vector with polynomial
coordinates.
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INPUT: F={f,,...,f,} CA™ with f; #0 (1<i < s)
OUTPUT: G ={g,,.--,9:}, a Grobner basis for (f,,...,f,)
INITIALIZATION: G:=F, G :={{f., f;} | f: # f; € G}
WHILE G # ¢ DO
Choose any {f,g} € G
G:=6-{{f.g}}
S(f,9) -2, h, where h is reduced with respect to G
IF h # 0 THEN
G :=GU{{u,h}| forall u € G}
G:=GuU{h}

ALGORITHM 3.5.2. Buchberger’s Algorithm for Modules

EXAMPLE 3.5.20. Consider the following vectors of (Q[z,y]):
fi= (0,9,93), f2 = (0,-’13,93!/—33), f3 = ($’y270)7 .f4 = (yaoaw)'

We use the deglex term order on Q[z,y] with £ > y and the TOP order
on (Q[z,y])® with e; > ex > es. We compute a Grobner basis for M =

(£1, F2, T3, F4) using Algorithm 3.5.2. Let G = {f;, f2, f3, f4}- The only S-
polynomials with non-zero L in Definition 3.5.17 are the ones corresponding to

G = {{f1, F2}, {F1, Fa}, {F2, F4}}- We compute
S(f1, £2) =vF1 — F2= (0,7 — 3,2) 5y (—3,—2 - 3,0).
This vector is reduced with respect to G, so we set fs = (—z,—z —y,0), and we
add it to G. Next,
S(f1,f) =F1— Fa=(~9,9,0).
Again, this vector is reduced with respect to G, so we set fg = (—¥,,0), and

we add it to G. One readily sees that S(fs, f4) —>4+ 0. The new vectors fs
and fg generate only one S-polynomial that needs to be considered,

G
S(fs, .fs) = 'y.fs - xfs = (0’ —2:vy - y2,0) —+ (01 —2931/ ~T— yio)
This vector is reduced with respect to G, so we set f, = (0,—2zy — z — y,0),
and we add it to G. This new vector generates only one S-polynomial that needs
to be considered,

1 1
S(fs, £7) =20f5+yfr = (227, —ay —v7,0) Zop (0,~22 + 53+ 53,0).
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We set fg = (0,—2z% + 3z + 1v,0) and add it to G. This new vector generates
two S-polynomials we need to consider,

1 1 fe]
S(fs, Fs) =222 f3 +y*f5 = (2%, Exyz + §y3,0) —4+ 0

and
3 1
S(fr, fs) = afr —yfs = (0,—a* = 2y — 53%,0) >4 0.

Therefore G = {f1, f2, F3, F4» f5: F6, F7, Fs} i a Gr6bner basis for M.

Finally, we conclude this section by noting that the results in Chapter 1
concerning reduced Grobner bases hold in this context as well. We will not
prove the results here as, again, they exactly parallel the ones in Chapter 1, but
we will state the main Definition and Theorem here for completeness. The proof
will be left for the exercises (Exercise 3.5.17).

DEFINITION 3.5.21. A Grobner basis G = {g;,-..,9;} C A™ i3 a reduced
Grébner basis if, for all i, g; is reduced with respect to G — {g,} andlc(g;) =1
for alli = 1,...,t. Thus for all i, no non-zero term in g, is divisible by any
m(g;) for any j #1.

THEOREM 3.5.22. Fiz a term order. Then every non-zero submodule M of
A™ has a unique reduced Griobner basis with respect to this term order. This
Grobner basis is effectively computable once M has been given as generated by a
finite set of vectors in A™.

EXAMPLE 3.5.23. We go back to Example 3.5.20. In that example we had
that G = {f,, f2, Fa, fa» Fs, fe:» F7, Fs} is a Grobner basis for M. We first
observe that since Im(f,) divides Im(f,) and lm(f,) we may eliminate f, and
f4 from G and still have a Grobner basis. Moreover, f3 — 4 (0,42 —z —y,0).
Therefore the reduced Grébner basis for M is

1 1
{(O, y;z), (O,yz -y, O), (O)xz - Zx - Zy: 0)7

1 1
(0,:1:'y+ §x+ Ey’ 0)’ (y) -y 0)1 (Z,.’D + Y, O)} .

Exercises

3.5.1. Prove that the POT and TOP orders of Definitions 3.5.3 and 3.5.2 are
term orders on A™.

3.5.2. Complete the proof of Lemma 3.5.4.

3.5.3. Prove the analog of Proposition 1.4.5: Let < be a term order on A™. For
X ,Y monomials in A™, if X divides Y,then X <Y.

3.5.4. Prove the analog of Exercise 1.4.6: Let < be a total order on the monomials
of A™ satisfying Condition (ii) of Definition 3.5.1, and assume that < is
also a well-ordering. Prove that X < ZX for every monomial X of A™
and power product Z # 1 of A.



3.5.5.

3.5.6.

3.5.7.
3.5.8.

3.5.9.
3.5.10.
3.5.11.
3.5.12.

3.5.13.
3.5.14.
3.5.15.
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Write the following vectors as the sum of terms in decreasing order ac-

cording to the indicated term orders:

a. f = (z2y—xy?, z3+1,y%—1), with the deglex term order on A = Q|z, y]
with z > y, and the TOP ordering on A% with e; > e; > e3. Then
change the order to deglex with y > z and the POT ordering with
e; < ey < e3. Finally, change the order to lex with y > z and the
TOP ordering with e; < e3 < e3.

b. f = (2% + zy,y? + yz,2% + zz), with the degrevlex term order on
A = Qlz,y,z] with £ > y > 2, and the TOP ordering on A3 with
e; < ez < e3. Then change the order to degrevlex with z > y > z and
the POT ordering with e; > ez > e3. Finally, change the order to lex
with 2 > y > z and the TOP ordering with e; < ez < es.

Prove that It, lm, and lc are multiplicative. Namely, prove that for all

f € Aand g € A™ we have It(fg) = It(f)1t(g), Im(fg) = Ip(f)Im(g),

and Ic(fg) = lc(f)lc(g).

Complete the proof of Theorem 3.5.12.

As in Example 3.5.11, follow Algorithm 3.5.1 to find the quotients and

remainders of the following divisions:

a. Divide f = (z®y+y, zy+y?,2y* +2?), by F = {1, 2, f3, Fa}, where
fi= (x27xy7y2)’ fa= (y,O,a:), fs= (07$’y)7 and f, = (y,1,0). Use
lex with z > y on A = Q[z,y] with the TOP ordering on A3 with
e} > ez > e3.

b. Divide .f = (x2y+y,xy+y2,a:y2 +$2), by F= {.fl» .f2’ f37 f4}’ where
F1 = (z4,0,2), f5 = (,2,0), f3 = (z +¥,0,0), and f, = (z,y,0).
Use deglex with z > y on A = Q[z,y] with the POT ordering on A3
with e; > e; > e3.

Prove Theorem 3.5.14.

Prove Corollary 3.5.15.

Prove Corollary 3.5.16.

Prove the analog of Exercise 1.6.13: Let {g,,-.. ,g;} be non-zero vectors

in A™ and 0 # h € A. Prove that {g,,...,9;} is a Grobner basis if and

only if {hg,,... ,hg,} is a Grobner basis.

Prove Theorem 3.5.19.

Prove that Algorithm 3.5.2 produces a Grobner basis for (f,, ..., f,)-

Compute the Grobner bases for the following modules with respect to

the indicated term orders. You should do the computations without a

Computer Algebra System.

a. M= (fl, F2, Fss .f4) - A3, where f; = ($27$y’y2)’ F2 = (v 0,33),
f3=(0,z,y), and f, = (y,1,0). Use lex on A = Q[z,y) with z > y
and the TOP ordering on A3 with e; > ez > e3.

b. M = (f1,f2 Fs fa) C A®, where Fi=(z-y,%,2), 5 = (y2,9,9),
.f3 = (ya z, (B), and f4 = (y,x,O). Use deglex on A= Q[a:,y] with y>z
and the TOP ordering on A3 with e; > ez > e3.
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3.5.16. Give an example that shows that the analog of Lemma 3.3.1 is false in
the module case; that is, critl of Section 3.3 cannot be used in Algorithm
3.5.2.

3.5.17. Prove Theorem 3.5.22.

3.5.18. Find the reduced Grébner bases for the examples in Exercise 3.5.15.

3.5.19. In this exercise, we will take a different view of the module A™ which
allows us to implement Grobner basis theory in Computer Algebra Sys-
tems that don’t have a built-in module facility. Let e;,es, ... ,en be new
variables and consider the polynomial ring k[z1,... ,Zn,€1,-.. ,€m]. We
identify A™ with the A-submodule of k[zi, ... ,Zn,€1,... ,€m] generated
by e1, ez, .. ,en simply by sending (f1,.-- o fs) to fier + - + fmem €

k[z1,... ,Zn,€1,... ,em). Fix a term order on k[z,, ... ,Z,]. Consider any
order on the variables e;, ez, ... ,e, such that ¢; < e; < --- < e,,. Prove
the following:

a. Consider an elimination order between the z and e variables. Then,
in the above correspondence, if the z variables are larger than the e
variables we have the TOP ordering in A™ and if the e variables are
larger than the z variables we have the POT ordering in A™.

b. Note that division and quotient of monomials in A™ just mean the
usual division and quotient in k[z;,...,Zn,e€1,...,6m]. Then note
that Definitions 3.5.6, 3.5.8, and 3.5.10 become the usual ones in
k[z1,... ,Zn,€1,... ,€m]. Show that the Division Algorithm for mod-
ules (Algorithm 3.5.1) corresponds directly to the polynomial Division
Algorithm (Algorithm 1.5.1).

c. Show that the usual Buchberger’s Algoritbm (Algorithm 1.7.1) per-
formed in k[z;,... ,Zn,€1,... ,€m] can be used to compute Grébner
bases in A™ with the following modification: In the definition of the
least common multiple, we must set lem(Xe;, Ye;) = 0 for power prod-
ucts X and Y in the z variables when ¢ # j.

d. Redo the computations in Exercise 3.5.15 using the above method.

3.6. Elementary Applications of Grébner Bases for Modules. Let
M = (f,,...,f,) beasubmodule of A™. As in the case of ideals in A (see Section
2.1), we show in the present section how to perform effectively the following tasks:

(i) Given f € A™, determine whether f is in M (this is the module
membership problem), and if so, find h;,...,hs € A such that f =
h1f1+'”+hs.fs;

(ii) Given M’, another submodule of A™, determine whether M’ is contained
in M, and if M’ C M, whether M’ = M;

(iii) Find coset representatives for the elements of A™/M;

(iv) Find a basis for the k-vector space A™/M.
Moreover, we show how the theory of elimination we introduced in Section 2.3
is carried over to the module setting.
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Let F = {fy,---,F,} be a set of non-zero vectors in A™ and let M =
(f1,---,Fs). Let G = {g,,...,9;} be a Grobner basis for M with respect to
some term order.

We start with Task (i). Let f € A™. We have already noted in Theorem
3.5.14 that

feM=f5S. 0

So we can determine algorithmically whether f € M or not. Moreover, if f € M,
we apply the Division Algorithm for modules presented in Section 3.5 (Algorithm
3.5.1) to get

(3.6.1) f=hig +--+hg,.

As in the ideal case, we can find an s X £ matrix T' with polynomial entries
such that, if we view F' and G as matrices whose columns are the f;’s and
the g.’s respectively, we have G = FT. (T is obtained, as in the ideal case,
by keeping track of the reductions during Buchberger’s Algorithm for modules.)
Therefore Equation (3.6.1) can be transformed to express the vector f as a linear
combination of the vectors f,,..., f,.

EXAMPLE 3.6.1. Let A = Q[z,y]. We consider the submodule M of A3 gen-

erated by F = {f,, f2, f3, f4}, where
.fl = (xy,y,@’), .f2 = ($2 + $1y+x2:y):
.f3 = (—yy :v,y), -f4 = (.’t2,$, y)'
‘We use the lex term ordering on A with z < y and TOP with e; > ez > e3 on
A3, To indicate the leading term of a vector we will underline it; e.g.
= (ﬂ:y:x)a fa= (-7:2 +$,g+$2,y),
.f3 = (:_y_a z, y)’ -f4 = (32) .’E,!_/).
The reduced Grobner basis for M is G = {g,, 92,93, 94, 95,96}, Where
9= (ﬁ"' x,$2 -z, —.‘B), g2 = (-‘L"y+ z? —.‘B,O),
93 = (_y_+ $2)0’ 0)’ 94 = ($2, z, Q))
g5 = (22,23, —2%), g¢ = (2 — 2z, —2% + 22,2° — z* — 323 + 2% + 22).
Consider the vector f = (—2z,z — 1,zy + ). To determine whether f is in M,
we perform the Division Algorithm presented in Section 3.5 (Algorithm 3.5.1)8:
F 28 (—z-22,-22+z—-1,2)
8 (—g,—1,0).
Since ze;, and ey cannot be divided by any lm(g;), the vector (—z,—1,0) is
reduced with respect to G, and hence f is not in M.

SWe remind the reader that when we write f %8 b we mean that b = f — Xg.
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Now consider the vector g = (yz° —yz +z,yz* +y+22® — z,2° + yz). Again
we perform the Division Algorithm:

5
9 = (-yz -2 +3,y5' +y+22° - z,yz+ 2°)

4
B (—yz -7 — 2%+ z,y — 2% + 2% + 22 — 2,7y + %)
285 (a7 — 25 + 7® + 7,y — 2° + 25 + 222 — 3,3y + 2°)
84 (—z" — 25+ z,y — 2® + 2° + 2% — 2, 2°)

192 (g7 — 25, 28 + 25, 25)

.4

2% (0,0,0).

Therefore g is in M. Moreover, we get

g = 1z°g;+1'g, —zgs+29,+9,—z'g,
= —z*g, + (z* +1)gy + (2° — 2)g; + zg,.

We now want to express g as a linear combination of the original f;’s. So we
consider the matrix T' that transforms G into F. We have

(36.2) [91 92 95 94 95 96 ]
-1 0 0 0 -z?2-y N
_ 1 1 0 0 z+y  h
=lh £ £ ]l g o z(l-y) hs |’
z—1 -1 1 1 zy—y—~z hy
T
where
hy = YP+22%y—zy—2y+a*—2%-322+2+2
(3.6.3) hy = —y?—-zly+2y+222+z-2
e hs = zy?+23%y—22y—3zy— 223+ 2% + 4z
he = —zy?+1y°? —23y+22%y+ 22y — 2y — 222 - 3z + 2.

Therefore we have

g = —z'g + (" +1)g, +(2° — z)gs + 29,
—z(—f1+ fa—afs+ (@ —1)f) + (@ +1)(f2— Fa)
+(@® —z)(~f3+ o) +2fs
= z*fi+fo+zfs—fs
Now we turn our attention to Task (ii). Let M’ be another submodule of A™,
say M' = (f1,..., f2)- Then M’ C M ifand only if f; € M fori=1,... ,£. This
can be verified algorithmically using the method described above. Moreover, if
M' C M, then M’ = M if and only if M C M’, and this, again, can be verified
algorithmically using the above method. Alternatively, we can compute reduced
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Grébner bases for M and M’ and use the fact that reduced Grébner bases for
submodules of A™ are unique (Theorem 3.5.22) to determine whether M = M’.

EXAMPLE 3.6.2. We go back to Example 3.6.1. Let M’ be the submodule of
A? generated by {f,, f3, f4,9}. M’ is a submodule of M, since we showed in
Example 3.6.1 that g € M. However, using the same order we did in Example
3.6.1, the reduced Grébner basis for M’ is given by {9,953, 93, 9%, 9%, g5}, where

91 = (z,9 +2° ~2,0), g5 = (y +2°,0,0)
9’3 = (z6’$7, —$7), g:l = ($7 + wS,zG - xS) —xs),

g’5 = (:1;2, x,y), 9’6 = (:1;6 — 2:1:5, -5 + 2:1:5,:139 —z8 - 327 + 28 + 21:5).
Since the reduced Grébner basis for M’ is not equal to the one for M, the modules
M and M’ are not equal.

Now if we consider the submodule M” of A® generated by {f,, f,, f3, g}, then
again M” is a submodule of M. Moreover, we can compute that the reduced
Grobner basis for M” is the same as the reduced Grobmer basis for M, and
therefore M" = M.

We next turn our attention to Task (iii), that is, we find coset representatives
for the quotient module A™ /M. Let G be a Grébner basis for M and let f € A™.

We know from Theorems 3.5.12 and 3.5.14 that there exists a unique vector
T € A™, reduced with respect to G, such that

fi)_‘_ r.

As in the ideal case, we call this vector r the normal form of f with respect to
G, and we denote it by Ng(f).

PROPOSITION 3.6.3. Let f and g be vectors in A™. Then
F+M=g+M in A"/M < Ng(f) = Ng(9).

Therefore {Ng(f) | f € A™} is a set of coset representatives for the guotient
module A™ /M. Moreover the map

NGZ Am — A™
F +— Ne(f)

s k-linear.

The proof of this result is similar to the one for the ideal case (Proposition
2.1.4) and is left to the reader as an exercise (Exercise 3.6.4).

As in the ideal case (Proposition 2.1.6), we have the following Proposition
whose proof we also leave to the exercises (Exercise 3.6.5). It solves Task (iv).

PROPOSITION 3.6.4. A basis for the k-vector space A™/M consists of all the
cosets of monomials X € A™ such that no Im(g;) divides X.
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ExXAMPLE 3.6.5. We again go back to Example 3.6.1. The leading terms of
the reduced Grébner basis are:

3 3 5
z-e),yez, ye;,yes,r e2,x" €s.
Therefore a basis for the Q-vector space A%/M is
2 2 2 3 4
{el,$el,$ €),€e2,xe2,r €2,€3,T€3,T €3,T €3,T 33}'

To conclude this section, we consider the theory of elimination presented in
Section 2.3, but now in the module setting. Again the proofs are very similar to
the ones for the ideal case and, except, for the proof of Theorem 3.6.6, are left to
the reader.

Let y1,... ,y¢ be new variables, and consider a non-zero module

M c (A[yl,' v )yt])m = (klxly“ 9T, Y1y )yl])m'

As in the ideal case (Section 2.3), we wish to “eliminate” some of the variables.
For example, we wish to compute generators (and a Grobner basis) for the
module M N A™, that is, we wish to eliminate the variables v, ... ,y¢. First,
we choose an elimination order on the power products of Aly, ...,y with the
y variables larger than the z variables (see Section 2.3). The next result is the
analog of Theorem 2.3.4 in the module context (in fact Theorem 2.3.4 is the
special case m = 1 in Theorem 3.6.6).

THEOREM 3.6.6. With the notation as above, let G be a Grobner basis for M
with respect to the TOP monomial ordering on (Afy,. .. ,y))™. Then GNA™
is a Grobner basis for M N A™.

PROOF. Clearly (GNA™) C MNA™. Solet 0 # f € MNA™. Then there is
a g € G such that Im(g) divides Im(f). Since the coordinates of f involve only
the z variables, we see that Im(g) can only involve the z variables as well. Then
since we are using an elimination order with the y variables larger than the z
variables we see that the polynomial in the coordinate of g giving rise to lm(g)
can contain only z variables. Finally, since the order is TOP on A™ we see that
the polynomials in all of the coordinates of g must contain only z variables. [

We will give an example in the exercises where the above result is false if the
TOP ordering is replaced by the POT ordering on A™ (see Exercise 3.6.8).

ExAMPLE 3.6.7. In Example 3.6.1 we saw that the reduced Grobner basis for
M has three vectors in z alone, namely g,, g5, and gg. Therefore by Theorem
3.6.6, M N (Q[z])? is generated by {g,,95,96}

‘We can use this result to compute intersection of submodules of A™ and ideal
quotients of two submodules of A™. First, as in the ideal case (Proposition 2.3.5)
we have
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PROPOSITION 3.6.8. Let M = (f,,...,f,) and N =(g,,...,9,) be submod-
ules of A™ and let w be a new variagble. Consider the module

L= (wfl)"' 7w-fa’(1 "w)gl"" ’(1 —w)gt> g (A[w])m

Then MNN =LNA™.

We note that in Proposition 3.6.8, neither {f,,... , f,} nor {g,,... ,g;} need
be a Grobner basis.

As a consequence of this result we obtain a method for computing generators
for the module M NN C A™: we first compute a Grobner basis G for L with
respect to the TOP ordering on monomials of (A[w])™, using an elimination order
on the power products in Afw] with w larger than the z variables; a Grobner
basis for M N N is then given by G N A™.

EXAMPLE 3.6.9. Let M be the submodule of A3 of Example 3.6.1, and let N
be the submodule of A% generated by the vector g, = (¥,z,zy). The reduced
Grobner basis for (wf,, wf,, wfs, wfy, (1 — w)g,) C (A[w])® with respect to
the TOP term ordering with e; > e, > e3 using the lex ordering in A[w] with
w > y > z has 8 vectors, two of which are in A3:

hy, = (9 — Tyz® + 2yz® + 25yz* + Tyx® — 9yz? — 9yz,
Yyz — Tz” + 22° + 252° + Tz* — 92° — 922,
9%z — Tyz" + 2y + 25yz° + Tyz? — 9yz® — 9y2?)

hy = (yz’ —yz® — 3yz® + yax* + 2yz3, 2% — 27 — 32% + 2% + 224,
yz® — yz7 — 3yz® + yz° + 2yz?).

Therefore M NN = (h;,hy) C A3.

DEFINITION 3.6.10. Let M and N be two submodules of A™. The ideal quo-
tient N: M is defined to be

N:M={fecA|fMCN}CA.

Note that N: M is an ideal in A.
As in the ideal case (Lemmas 2.3.10 and 2.3.11) we have

LEMMA 3.6.11. Let M = (f,,...,f,) € A™ and let N be any other submod-
ule of A™. Then

N:M=ﬁN: (f.)-
i=1

Since we have a method for computing intersection of ideals (Proposition
2.3.5 or equivalently Proposition 3.6.8 with m = 1), we only need to show how
to compute N: (f) for a single vector f € A™.
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LEMMA 3.6.12. Let N be a submodule of A™ and let f be a vector in A™.
Then
N:(f)={a€Alg=af e NN(f)}.
Thus we may compute N: (f) by first computing a set of generators for N N (f)
and dividing these generators by f using the Division Algorithm. The gquotients
obtained are then a set of generators for N: (f).

EXAMPLE 3.6.13. In Example 3.6.9 we saw that
M (g,) = (h1, h2).
Note that
hy, = (9 —7z%+ 225 + 252% + 72 — 92% — 92)g,
hy = (z7—2%~32%+2%+2:%)g,.
Therfore, by Lemma 3.6.12,
M:(g,) = (9‘y--7:1:6+2:z:5+25:z:4+7:1:3 —972 -9z, 27 — 2% —37° +x4+2z3) CA

Now let g, = (y + 22,y,22) € A3. We wish to compute M: (g,,9,). By Lemma
3.6.11, we first need to compute M : (g,). We proceed as in Example 3.6.9 using
the same term order, and we find

M 01 (g;) = (hs, ha),

where

hs = (27 —2%—-32%+ 2% + 22%)g,

hy = (9y+2z°—72° — 22* + 162° + 927 — 9z)g,.
Therefore, by Lemma 3.6.12,
M: (g,) = (z7 —2® — 325+ 2* + 223, 9y + 228 — 7% — 22 + 162% +92° - 9z) C A.
Now, by Lemma 3.6.11,

M: (gy,9,) = (M: {g,)) N (M: (g,)).
To compute this intersection, we find the Grobner basis for the ideal
(w(9y — 72 4 225 + 252* + Tz3 — 922 — 92), w(z” — 28 — 32° + * + 223),

(1—w)(z” — 2% — 325 + 2+ 22%), (1 — w) (9y + 22° — 725 — 22 4 1623 +-92% - 9z))

of A[w] with respect to the lex term ordering with w > y > z. The Gr6bner
basis has five polynomials, three of which do not contain the variable w,

uy = z7 —2z%—325+2%+ 223
u; = 9yz — 5z°+42% + 142* — 52 — 922
uzg = 3y — 28 +20% 4 2% — 22° — 322

Therefore M: (g;,9,) = (u1,u2,u3) C A.
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Some of the computations we have performed in this section can also be done
more efficiently using the syzygy module of the matrix [ f, --- f, ], where
f; € A™. In the next section, we introduce these syzygies, and then, in Section
3.8, we give these applications.

Exercises

3.6.1.

3.6.2.

3.6.3.

3.6.4.
3.6.5.
3.6.6.

Consider the following 3 vectors in (Q[z,y])? :
fi= (wy‘x;y)’ fa= (z’y)a fi= (yazyz)-

You should do the following without the use of a Computer Algebra Sys-

tem.

a. Let f = (—=z,—2%y% + 2zy — y? + y). Show that f € (f,, fa, f3)-
Moreover, express f as a linear combination of f,, f,, and f;.

b. Let g = (—z,2%” + 2zy — y* +y). Show that g ¢ (£}, f2, f3)-

c. Clearly we have (f,,9) C (f,, f2,9)- Prove that this inclusion is strict.

Cousider the following vectors in (Q[z,y])3 :

.fl =(0’y,$)1 f2=(0,x,zy—x), f3= (y,x’o)a f4=(y2,y,0)~

You should do the following without the use of a Computer Algebra Sys-

tem.

a. Compute a Grobner basis for M = (f,, fa, f3, f4) with respect to the
TOP ordering on (Q[z,y])® with e; > ez > e3, using deglex on Q[z,y]
with z > y. Use this to compute the matrix T which gives the Grobner
basis vectors in terms of the original vectors.

b. Use a to show that the vector (z2y—y%+zy?, zy? —y? + 2%+ 2zry——
Yy, x2y + zy? — 3Ty + z) is in M and express it as a linear combination
of 1, f2, F3: fs-

Consider the following two submodules of (Q[z, y, z])3:

M ={(z* - y,y,22 — ), (zz + z,yz + ¥,y2 + 2), (2,0, 7)) and

M ={((-y,y 2z~ 2> —y), P +y,y2’ -y + 22y —y,y2 -2 +1° +y),
(2,0,z), (0,zy + y,—zz — z + yz + 2)).
Determine whether any of the following holds:

MCM, MCM, M=M.

Prove Proposition 3.6.3.

Prove Proposition 3.6.4.

Consider the module M of Example 3.6.1. Determine whether f + M =

g + M for the following examples:

a f=02z,z+y+yz+2y—3z,—-y+2z), 9= (- +z-yy* +
2y%, 9% ~ z).

b. f=FP+y¥¥+z—-y¥? +y,y+2), 9= (z,9° + 2y —yz — z,0).
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3.6.7. Find a Q-basis for the vector space A3/M for each module M in Exercise
3.5.15.

3.6.8. In Theorem 3.6.6 we required that the order be TOP. In this exercise
we show that this is necessary. Consider the vectors f; = (y,zy), fo =
(0,z+1) € (Q[z,y])?. We use the POT ordering on (Q[z, y])? with e; > e
and lex on Q|z,y] with z > y.

a. Prove that G = {f,, f,} is a Grobner basis and note G N (Q[y])? = 0.
b. Prove that M N (Q[y])? contains a non-zero vector.
3.6.9. Consider the submodule M of (Q[z,y, 2])3:

M = {((z,z2,22), (z, 2% = + ¥), (%,0,7), (z,0, 2)).

Compute generators for the following modules:
a. Mn(Qlz,y))%
b. M N (Qly,2])%.
c. MNn(Qz,2])3.
3.6.10. Prove Proposition 3.6.8.
3.6.11. Compute generators for the intersection of the following two submodules
of (Qlz,4])*:
M= ((z,mz,a: +¥),(%,0,z)) and N = ((‘Ezszya 'y2)7 (z —y,z,2)).

3.6.12. State and prove the analog of Exercise 2.3.8 for the computation of the
intersection of more than two submodules of A™. Use this to compute gen-
erators for the intersection of the following three submodules of (Q[z, y])3 :
M, = ((z,2,-y), (z,y,—2)), M2 = ((z,9,9), (z,%,2)), M3 ={(%¥9),
(y,2,2))-

3.6.13. Prove Lemma 3.6.11.

3.6.14. Prove Lemma 3.6.12.

3.6.15. Compute generators for M : N, where M = ((0,y, z), (0, z, zy—=z), (¥, z,0),
(v*,9,0)) and N = ((y,2,2), (z,,%)) € (Qlz,¥))*

3.6.16. Consider module homomorphisms ¢: A5 — Af and v: A™ — A%, such
that im(y) C im(¢). A theorem of Module Theory states that there exists
a “ifting”, that is, a homomorphism %: A™ — A® such that poyp = +;
i.e. the following diagram commutes:

Am

A? ¢ At

a. Show how to compute 9. That is, show how to compute ¥(e,), i =
1,...,m. [Hint: Let {g,,...,9,} be a Grobner basis for im(¢) and
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apply the method used to solve Task (i) at the beginning of the section.]

b. Compute 4 in the following example. Let A = Q[z,y]. We define
7v: A— A% by y(1) = (z%y® + 22,9 +zy+4?, 2> — 1), and we define
¢: A2 — A3 by ¢(e1) = (* + zy,9%, 2y — 1), d(e2) = (z%y —z,9° +
z,zy — x), and ¢(es) = (y2 + z + y, 2%,z — y). You should first verify
that im(7) C im(4).

3.7. Syzygies for Modules. We now turn our attention to computing the
syzygy module of a matrix [ fi - Fs ] of column vectors in A™. This
computation is very similar to the computation of the syzygy module of the
1xsmatrix [ fi --- f, ] of polynomials in A (see Section 3.4).

Recall that in Section 3.1 we defined the map ¢: A* — A™ by ¢(hy,... ,hs)
= Y71 hif;. As in the case where m = 1 (see Section 3.2), the kernel of this
map is called the syzygy module of [ f; --- f, ] and is a submodule of A°.
More formally we have

DEFINITION 3.7.1. Let fy,...,f, € A™. A syzygy of the m x 5 matriz F =
[ Fi o Fs ] is a vector (hy,... ,hs) € A® such that

> hif;=o0.

i=1
The set of all such syzygies is called the syzygy module of F' and is denoted by
Syz(f1,--.,fs) or by Syz(F).

In other words Syz(F) = Syz(f;,...,f,) can be viewed as the set of all
polynomial solutions h € A® of the system of homogeneous linear equations
Fh = 0 with polynomial coefficients. That is, if f; = (fi1,-.. , fm1)s ---, Fs =
(fiss--- » fms), then Syz(fy,--.,f,) is the set of all simultaneous polynomial
solutions x1,...,xs of the system

fuxi+--+fisxs = 0
faxi+--+fasxs = 0

fmxa+- -+ fmsxs = 0O

As in the case of the syzygy module of a 1 x s matrix [ fi --- f, ] of
polynomials in A, the computation of Syz(f;,...,f,) is done in two steps.
We first compute a Grobner basis {g,,...,9.} for (f;,...,f,) € A™ and
compute Syz(g,,...,g,) C A’. We then obtain Syz(f;,...,f,) € A® from
Syz(g1,-- - »9¢)-

So let us first start with G =[ g, --- g, |. As we did in the polynomial
case, we assume that lc(g;) = 1. We follow closely the construction we used for
the ideal case (see Section 3.4). Let i # j € {1,...,t}. Let Im(g;) = X; and
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X; =lem(X;, X ;). Then the S-polynomial of g; and g; is given by
X X

S(g;,9,)==2g — =g

(gt g]) Xz gt XJ g]

By Theorems 3.5.12 and 3.5.19, we have

t
S(gi)gj) = Zhi]ugnn

v=1

for some h;j, € A, such that

(37.1) mas (1p(his) Im(g,)) = 1m(S(g:.9,))-

For 4,j € {1,... ,t}, we define

X Xy
— J 9
8ij = <5 €i

X, 5~ ')Tjej = (hej1y--- » hige) € AL

We easily see that s;; € Syz(g,,...,9;)-
We first state the analog of Proposition 3.2.3.

PROPOSITION 3.7.2. Syz(X,,...,X;) is generated by

X5 Xj sl -
{X,-e' Xje’EA 4,7 €{1,...,s}p.

We now give the analog of Theorem 3.4.1. The proof is identical except that
instead of Proposition 3.2.3 we use Proposition 3.7.2. We leave the proofs of
both the Proposition and the Theorem as exercises (Exercises 3.7.4 and 3.7.5).

THEOREM 3.7.3. With the notation above, the collection {s;; |1 <i< j <t}
is a generating set for Syz(G) = Syz(g,,--. ,9)-

EXAMPLE 3.7.4. We go back to Example 3.5.23. Recall that the set {g,, g,
g3, 94, 95,9} is a Grobner basis with respect to the deglex term order on Q{z, y]
with z > y and the TOP order on (Q[z,y])® with e; > ez > e3, where

g9, = (O,yax), gs = (0)y2 ' y10)1
gs = (Zl?,:l? +y10)’ 94 = (y9 —y’o)’

_ 1,1 o, 11
gs = (0,$y+ 227 + 2ya 0)7 9 = (0,17 4:1" 4y1 0)

To obtain the generators for Syz(g,, 95, 93,94,95,9s), we follow Theorem 3.7.3
and so we compute and reduce all S-polynomials. The S-polynomials we need
to compute are S(gs,9s), S(92,96), (95, 9¢) aud S(gs, 9,)- For example, since
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S(93,94) = Y95 — g4 = g + 295, we have s34 = (0, —1,y, —z,—2,0). The other
syzygies are computed in a similar way (Exercise 3.7.2) to obtain

1 3
825 = (0,a:+-2-,0,0,—~y+ 5,1)

1 3 1
856 = (0’ '—Z’O’ 0,z — 27_y - 5)

Note that we have not included s26 because it is in (834, 825, 856) (See Exercise
3.7.7).

ExXAMPLE 3.7.5. We consider the submodule M of A3 = (Q|z, y]) of Example
3.6.1. We saw that {g,,95, 93,94, 95,95} forms a Grobner basis with respect to
the TOP term ordering in A3 with e; > e; > e3 and with lex in A with y > z,
where

g, = (% +2,2* —z,~2), g, = (z,y+ 2% — 2,0),
9; = (y+2°,0,0), g, = (2°,,9),
g5 = (2%,23,-2%), g¢ = (z? — 2z, —2% + 22,25 — 2* ~ 32% + 2% 4 22).
The syzygy module Syz(g,, 95,93, 94,95,9¢) can be computed using Theorem
3.7.3. For example

S(g1,93) = g, —2%g;
(yz — 2°, y2* — yz, —yz)

2 S
= (—a® -2 —yz — 2" +7°, ~yo)
28 (—2® - 22° + 22, -2t + 2% — 2?, —ya)
28 (=2® 2 + 22, -2 +22%,0)
S
135 (0,0,0).

So S(g1,93) = yg, — 2°g; = 2%g, +29; — 29, — 29, — 2g; + g5, and therefore
813 = (y + mzi _'_z2 +z, __z3 -z,z, _1, 0)
The other generators of the syzygy module are obtained similarly (Exercise
3.7.3):
835 = (—2?+z+2,-2%, -2 y+2?—2-2,1)
~z5 2t 4+ 32% ~ 22— 21,2~z -2,y +2).

These are the only generators needed, since the remaining S-polynomials are all
Zero.
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We now consider the computation of Syz(f;,... , f,), for a non-zero matrix
F = [ fi - F, ] of column vectors in A™. We first compute a Grobner
basis {g;,... ,g,} for (F) andset G=[g, --- g, |. As in the ideal case,

there is a ¢ X s matrix S and an s x ¢ matrix T with entries in A such that
F = GS and G = FT (S is obtained using the Division Algorithm and T is
obtained by keeping track of the reductions during Buchberger’s Algorithm for
modules.) As in the ideal case we compute generators of Syz(gy,--. ,9;), say
81,-..,8y, and we let y,... ,7, be the columns of the matrix I; — T'S, where
I, is the s x s identity matrix. The proof of the following result is similar to the
one for the ideal case (Theorem 3.4.3) and we leave it to the reader (Exercise
3.7.9).

THEOREM 3.7.6. With the notation above we have

Syz(fl’”’ 7.f3) = (TS]_,... ,TS,-,‘I’],... ,1'3) (_:A8~

EXAMPLE 3.7.7. We go back to Example 3.7.5. Recall from Example 3.6.1
that the original vectors are

fl = (xyay’x)$ fa= (:172 +x,y+x2,y),

.f3 = (-y$ z, y)) f4 = (222,22, y)

The Grobner basis G for (f,,f2, f3, f4) given in Example 3.7.5 consists of
the six vectors g;, 1 = 1,...,6. Also, in that example we saw that a basis
for Syz(g9,,95,93,94,95:96) 1S 813, 825, and 846. Recall also that the matrix T
which gives G in terms of F' is given in Example 3.6.1 in Equations (3.6.2) and
(3.6.3). To compute Syz(f,, f2, f3, F4) we use Theorem 3.7.6 and compute

Ts;3 = (0,0,0,0)

Tsys = (0,0,0,0)

Tsgs = (v°+2y%2% — Pz +yzt —yz3, -9 — v%2% + y2® + 24,
ysz + y2z3 - y2x2 - y2z - ya:3 —z° +z* 4+ 28,
_ysz +1° — o228 + 29222 — y:z:3 _gh_ zs)'

Now we need the matrix S that expresses F' in terms of G. We have

10 0 0
1 1 0 0
£ 0 —1 0
[fi fo fo fal=[01 92 95 94 95 96]| o | | 1
0 0 0 O
| 0 0 0 o]

w4
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Then
0000
0000
L-TS=14 9 0 ¢
0000
Therefore

Syz(f17f25f37f4) = (T346> C A4.

In the last example, the rows of the matrix I, — T'S did not contribute to
the syzygy module Syz(f,, fa, f3, f4)- It is not true in general that the T's; in
Theorem 3.7.6 give a complete set of generators for Syz(F') as the next example
shows.

EXAMPLE 3.7.8. Let A = Q[z,y] and let f, = (y + 22° + z,9), f, = (~y +
z,y), and f3 = (z2 4 z,y) be vectors in A2. Then the reduced Grobner basis G
for {f,, 2, f3) with respect to the TOP term ordering on A? with e; > ey and
the lex ordering on A with y > z is {g,,9,}, where

91 = (y+2°,0)
g = (@ +z,).

Since Im(g;) = ye; and lm(g,) = ye;, we see that Syz(g,,g;) = ((0,0)). Also,
we have

0 0
[ 9 92]=[f1 f2 fs][—l Ojl,

1 1
S —
T
and
1 -1 0
[fl -f2 f3]=[gl 92][1 1 1:|
| S —
s
‘We have
1 00
I3-TS=|1 0 0.
2 00
Therefore

Syz(f1, f2, £3) = ((1,1,-2)) C A3,

We conclude this section by showing that the generators for Syz(g,,... ,g;)
computed in Theorem 3.7.3 (or in the polynomial case Theorem 3.4.1) form
a Grobner basis for Syz(g,,...,g;) with respect to a certain order which we
define next (see Schreyer [Schre]). This result is technical and will only be used
in Section 3.10.
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LEMMA 3.7.9. Let g,,...,9, be non-zero vectors in A™ and let < be a term
order in A™. We define an order < on the monomials of At as follows:

Im(Xg;) < Im(Yg;) or

Xei<Yej = { Im(Xg;) = Im(Yg,) and j < i.

Then < 1is a term oredering on A™.

The reader should note that when lm(Xg;) = Im(Yg;) in the lemma, we
have Xe; < Ye; when j < i, that is, the j and ¢ are reversed. Note that the
hypotheses of the lemma do not require that {g;,... ,g,} be a Grobner basis.

DEeFINITION 3.7.10. The term order defined in Lemma 3.7.9 is called the order
on At induced by [ g, --- g, ] (and of course, implicitly, by the term order
< on A™).

Proor oF LEMMA 3.7.9. We first show that < is a total order. Let X,Y
be power products in A. First, if ¢ # j € {1,...,t}, then either Im(Xg;) =
Im(Yg,) and one of ¢ < j or j < 4 holds, or one of Im(Xg;) < Im(Yg;) or
Im(Yg;) < Im(Xg;) holds. In any case, one of Xe; < Ye; or Ye; < Xe;
holds. If i = j € {1,...,t}, and X # Y, then one of Im(Xg;) < Im(Yg;) or
Im(Yg;) < Im(Xg;) holds, for otherwise, if Im(Xg;) = Im(Yg;), then

XIm(g;) =Im(Xg;) = Im(Yg;) =Y Im(g;),
and hence X = Y, since g; # 0. Therefore, we have one of Xe, < Ye, or
Ye; < Xe;.

We now verify that < is a term order as defined in Definition 3.5.1. Let X,Z
be power products in A such that Z # 1. Let ¢ € {1,...,t}. Then Im(Xg;) <
ZIm(Xg;) =1m(ZXg,), and hence Xe; < ZXe;. Finally, let X,Y, Z be power
products in A, and let 4,5 € {1,... ,t}. Assume that Xe; < Ye,. If Im(Xg;) <
Im(Yg;), then

Im(ZXg;) = Zlm(Xg;) < Zlm(Yg;) =Im(ZYg;),
and hence ZXe; < ZYe;. If Im(Xg;) = Im(Yg;) and j <i, then
Im(ZXg,) = Zlm(Xg;) = Zlm(Yg;) = Im(ZY g;)

and j <4,s0 ZXe; < ZYe;. O

ExAMPLE 3.7.11. We first consider the case where m = 1 and polynomials
a1 = 22y% -3y, g2 = zy® — 2242, and g3 = y* — z°. We use the lex term ordering
in Q[z,y] with z < y. In the notation of Lemma 3.7.9, we have

ze; < ye; < zeg,

since
Ip(zgz) = Ip(yq1) = z°* < zy* = Ip(zgs).
Note that < is neither TOP nor POT as defined in Section 3.5.
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ExampLE 3.7.12. Let us use the six vectors g;, 7 =1,... ,6 of Example 3.7.5.
These vectors determine a term ordering on A® as described in Lemma 3.7.9. In
order to distinguish the basis vectors e; in A% and A%, we will use es; and eg; for
the ith basis vector in A3 and A°® respectively. In A3 we are using lex withy > z
and TOP with e33 < e32 < e3;. Using the order induced by [ g, --- g5 | we
have

zegs < €62 < Tepy < Yeq1,

since Im(zgg) = z%€33, Im(g,) = yess, Im(zg,) = zyess, and lm(yg;) = yzes;,
and
6

T e33 < yezy < ryess < yw3e31.

THEOREM 3.7.13. Let G = {g,,... ,9;:} be a Grobner basis. With the nota-
tion of Theorem 3.7.3, the collection {8;; | 1 <1i < j <t} is a Grobner basis for
Syz(g;,--- ,g:) with respect to the term order < on monomials of A® induced by

X
[g1 - gt].Moreover,lm(sij)=X”eiforeachls'i<j$t.
i

X.s
PROOF. We first prove that for 1 < i < j < ¢, we have lm(s;;) = X” e;.
i

Note that we have lm (&g,) =Im ();(—':gj) = X ;. Therefore

X;
Xij . Xij .
—XTGJ < X, €e;,
since i < j. Now let Xe, be a monomial that appears in (hij1, ... , hij¢). Then
. Xi;
I (Xge) < lm(S(gs,9;), by Eaquation (3.1.1). But km(S(gi,9,) < Im (29
1

therefore Xe; < Xfij’:e,-.

We now show that {8ij | 1 < i< j <t} is a Grobner basis for Syz(g,,-.. ,9;)
with respect to < . Let s € Syz(g,,... ,g;). By Defintion 3.5.13 we need to show
that there exist 4, j such that 1 <4 < j < ¢ and lm(s;;) divides lm(s). First we
write s = Z§=1 ageq, where ap € A. Let Yz = Ip(ae) and ¢, = lc(ag). Note that
we have lm(s) = Y;e; for some i € {1,... ,t}. For this ¢ define

S = {Z € {1’ cee ,t} | hn(}’lgl) = lm(ng)}
We observe that if £ € S, then £ > 4, by the definition of < . Define a new vector

s = E ceYzeq.
es

Since.sisa.syzygyof[gl cer Gy ],wehave

Z ceYelt(g,) = 0.
s
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Therefore s' is a syzygy of [ 1t(g,) -+ lt(g,) | - Noting that the indices of the
non-zero coordinates of s’ are in S, we have, by Proposition 3.7.2, that 8’ is in the

submodule of A* generated by B = {ﬁel - -&em €A |Lme S t< m}

X e X m
Thus we have x e
&= am (——X‘"‘ez - —""%) ,
£,meS ¢ m
&<m

for some ag, € A. Now Im(s’) = lm(s) = Y;e; and thus, since j > i for all
j#1 €S, we see that

c:Yie; =1t(s') = th(a.-,-)%{;—_jei,

where the sum is over all § € S, j # 4 such that ¥; = lp(a{j)‘)%l'. It follows
immediately that for some j € S, %ei = lm(s;;) divides Im(s’) = lm(s) as
desired. O

We might hope that a result similar to Theorem 3.7.13 holds for finding a
Grobner basis for Syz(f,,... ,f,), where the corresponding order on monomi-
als of A* would be the one induced by [ f, --- f, | where {f},...,f,}
is not necessarily a Grobner basis. We saw in Theorem 3.7.6 how to com-
pute generators for Syz(f,,... , f,). These generators do not form, in general, a
Grdbner basis with respect to the order induced by [ f, --- f, ] (see Exer-
cise 3.7.15). So, to obtain a Grobner basis for Syz(f,,... , f,), we would use the
algorithm. presented in Section 3.5 (Algorithm 3.5.2) starting with the generators
of Syz(f,,...,f,) given in Theorem 3.7.6.

Exercises

3.7.1. Let f, f1,..., fs € k[z1,... ,2,]. Show that f € (f1,...,fs) if and only
if in the Grobner basis, G, of Syz(f, fi1,... , fs) with respect to the POT
ordering with the first coordinate largest, there is a vector (u, uy, ... ,us) €
G with u # 0 and u € k. In this case we obtain f = -1 577 | u;f;.

3.7.2. Complete the computations in Example 3.7.4.

3.7.3. Complete the computations in Example 3.7.5.

3.7.4. Prove Proposition 3.7.2.

3.7.5. Prove Theorem 3.7.3.

3.7.6. State and prove the analog of Theorem 3.2.5 in the module case; that
is, give a definition of Grobner bases for modules in terms of the syzygy
module of the leading terms.

3.7.7. State and prove the analog of Corollary 3.3.3, and use it to describe how
crit2 can be implemented in Algorithm 3.5.2. Note that we have already
seen in Exercise 3.5.16 that critl cannot be used in the module case.

3.7.8. Use Exercise 3.7.7 to state and prove the analog of Exercise 3.4.4 in the
module case (generalizing Theorem 3.7.3).



3.7.9.
3.7.10.

3.7.11.
3.7.12.

3.7.13.

3.7.14.

3.7.15.
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Prove Theorem 3.7.6.

Compute generators for Syz(f,, f2, f3, f4) in the following examples. You

should do this without the use of a Computer Algebra System.

a. f1=(zy+y9,2), fo=(y+zy, fs=(y+2), fi=(-z,9) €
(Qlz, )%

b. fl = (:zy - x)y), .f2 = (z2 - y,l‘), -f3 = (x3 - T,y + 1‘2), f4 =
(_z + y21 y) € (Q[:E, y])z’

State and prove the analog of Exercise 3.4.3 in the module case.

Consider the following analog of Exercise 3.4.6. Let f;,...,f,,g € A™.

‘We consider the linear equation

hl.f1+h'2f2+"'+hsfs=g7

with unknowns h;,... ,hs € A. Let S C A°® be the set of all solutions

(hay- .. ,hs).

a. Prove that S is not empty if and only if g € (f,,..., f,)-

b. Prove that if S # @ then S = h + Syz(f,,...,.f,) ={h+s| s €
Syz(fi,... ,fs)}, where h is a particular solution. Give a method for
computing h.

¢. Use the above to find the solution set for the equation

hl (a:+y, Y, :l:) +h2($, Y, :l:) +h3(_$’ —z+y, l‘) +h4($, z, y) = (y, 0’ zs)'

Consider g, = (z%,9), 9, = (zy +¥,4°), and g5 = (z°,—z +¢°) €

(Q[z, y])?. We use the lex order on Q[z,y] with z > y and the POT order-

ing on (Q|z,y])? with e, > e;. Consider the vector f = (zy? + %, z%y +

yz?, 4% + 2%y) € (Q[z,y])3. Write f as the sum of terms in descending

order according to the order on (Q[z,y])® induced by [ g, g, g5 ]-

Repeat the exercise using deglex with =z > y on Q[z, y].

Verify that the following vectors form a Grobner basis with respect to the

indicated term order, compute generators for Syz(g,,... ,g,), and verify

Theorem 3.7.13.

a. g, = (0,z%), g, = (y,2), g3 = (22, %), g4 = (0,2y +z). Use the deglex
order on Qz,y] with y > = and the POT ordering on (Q[z,y])? with
e > e,

b. g, = (0,1‘2), g2 = (y2 - ¥,2), g3 = (O,xy), 94 = (z—y.z— Y),
gs = (0,%2). Use the deglex order on Q[z,y] with z > y and the POT
ordering on (Q[z,y])? with e; > es.

We mentioned at the end of the section that a result similar to Theorem

3.7.13 does not hold for the generators of Syz(f,,...,f,) obtained in

Theorem 3.7.6. Namely, the generators for Syz(f,,... ,f,) obtained in

Theorem 3.7.6 do not, in general, form a Grobner basis for Syz(f,,... , f,)

with respect to the order induced by [ Fioo-n Fs ] . Consider the vectors

fl = (l‘+?/,?/,$), f2= (Z—y,z,y), f3 = (a:+y,a:,y),
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fa= (—27 +y,y,$), .f5 = (x,z,z) € (Q[x, y])3

a. Verify that the reduced Grébner basis for (fy, f, f3, f4, F5) with re-
spect to the TOP ordering with e; > e; > e3 and lex on Q[z, y] with
y > z is given by the vectors

g = (anrx)’ g2 = (0,07?/ - .’B), g3 = (0,:13,1«'),

94= (ys 0, 0)) 95 = (xs 0: 0)

b. Venfy that Syz(gl,gz, 93,94, 95) = ((-—:L', -z,9,0, 0), (Oa 0,0, -z, y))
c. Verify that Theorem 3.7.6 gives

Syz(.fl, f2, .f3: .f4’ .fs) = ((—.’B, -, —Z,—Z, 2y+ 2-'3)’ (y’ Z, —T, —Y, 0))~

d. Verify that the two vectors given in ¢ do not form a Grébner basis with

respect to the order induced by [ f, fo f3 fi fs]-
Let M = (f,,...,f,) be a submodule of A™. Assume that we have a

generating set for Syz(f,,...,f,), say Syz(f1,...,fs) = (81,...,82) C
A®. Now consider vectors g; = Z;=1 ai;jf;, for some a;; € A, for i =

1,... ¢t

a. Use Theorem 3.5.22 to give a method to decide if M = (g,, ... ,9;)-
If so, give a method to find b;; € A such that f; = 3. _, b;;g;. Use
the proof of Theorem 3.7.6 to find a generating set for Syz(g;, ... ,9;).
(Note that the proof of Theorem 3.7.6 has nothing to do with the
theory of Grébner bases.)

b. Apply the methods given in a to the following example. Consider
fl = (wy’y)z), f2 = (18,'!/"'-’1?»!/), f3 = (—y,x,y), a'nd f4 = (.’B,.’B,y) €
(Q[«’B, y])s' It is easy to verify that Syz(fl) f27 f3’ .f4) = ((y3 + yzx)
-y® — v’z +y2? + 28, 4Pz —y2?, —yPz+y® — y2? — 2%)). Now consider
the polynomials g = (0) Y 0) = f2_f4’ g: = (—y—a:, 0, 0) = f3—f4a
93 = (z,2,y) = fy, 94 = (—22,0,2) = f1 — fa+xf3 + (—z + 1)f,,
gs = (0,22, -2% +z) = (—z—y+1)f; + (@ +y—1)f+(~=yz+z)f5 +
(yz—y—z+1)f,, and gg = (—2%, —22,2°) = (2 -y +y) 1+ (—22°+
¥:—y)f2 + (y2? —zy® +29)f3 + (—2?y +2y? + 227 -y —z + ),
You should fixst verify that

M= (.fl’ .f2’ .f3;.f4> = (gl’g2’gs)g4’95’96)'

(Msller [M690]) In this exercise, we give a more efficient way to solve
the problem raised in Exercise 3.7.16. We have the same hypotheses
as in Exercise 3.7.16: we are given a generating set {f,,...,f,} for
a submodule M of A™ (not necessarily a Grobner basis), a generating
set {s1,...,8:} C A® for Syz(f,,...,f,), and a collection of vectors
{91,-.-,9:} such that g; = 3°7_, a;; f;, forsome a;; € A, fori=1,... ,t.
As in Exercise 3.7.16, we wish to determine whether M = (g,,... ,9;)

and if so to find generators for Syz(g,,...,g,)- Let es;,i=1,...,s and
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e:j,7 =1,...,t be the standard basis for A° and A* respectively. Finally,

let a; = (@i1,... ,0is) € A%, fori=1,... L.

a. Let W = {(u,v) € A** | u = (uy,... ,us) € A%,v = (v1,...,) €
ALY uif; =Y., v,g;} Prove that

{(ahetl)) RN (at) ett)’ (31’ 0)’ cvey (35’ 0)}

generates W.

b. Prove that M = (g,,... ,g,) if and only if there are by,... b, € A*
such that (es;,b;)) € W, fori=1,...,s.

c. Fix an order <, and an order <; in A®* and A? respectively. Consider a
new order < on A*** defined as follows: for u;,u; € A° and v;,v; €
At

u) <g uy Or

o) <o) e { B2

Prove that M = {(g,,...,9,) if and only the reduced GrSbner basis
for W with respect to < is the union of the two sets {(es:, b;) | i =
1,...,s} and {(0,%;) | 4 = 1,...,£}. Prove that the set {(0,¢;) | 7z =
1,...,£} is a generating set for Syz(g;,. .. ,9:)-

d. Redo the computation in Exercise 3.7.16 b using this method.

One can think of the vectors a; as the rows of a matrix A which defines a
linear transformation T': M — M. This exercise answers the question of
whether T is onto and whether there is a linear transformation 77: M —
M defined by a matrix B such that (T'oT)(M) = M (B is an “inverse” of
A in the sense that BA—I, C Syz(fy,... , f,), where I, is the s x s identity
matrix). The method presented here is a generalization of a linear algebra
method to compute the inverse of the matrix of a linear transformation.
In linear algebra over fields, to compute the inverse of an s x s matrix
A, one reduees the matrix [ 4 I I, ] to the row reduced echelon form
[ I, | B ], where I, is the s x s identity matrix. The matrix B is then
the inverse of A. In the case of a module M, we use the Grobner Basis
Algorithm to transform the matrix

st

into the matrix

]
0 | Syz(g1,.--,9:) |

3.8. Applications of Syzygies. The purpose of this section is to reconsider
and solve more efficiently various problems, such as computing the intersection
of submodules of A™ (where, again, A = k[z1,... ,2,] for a field k). These
problems were solved previously using elimination. As we have noted before,
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the lex term ordering (or more generally, any elimination ordering) is very in-
efficient from a computational point of view. Indeed, much effort in the theory
of Grobner bases has been expended in order to avoid the use of elimination in
computations involving Grobner bases. Here, we will show how the computation
of intersections, ideal quotients and kernels of homomorphisms can all be done
using syzygies, where the latter may be computed using any term order what-
soever. Even in A (when m = 1) these computations using syzygies turn out to
be more efficient than using elimination orders in A.

We begin by considering the simplest case, the intersection of two ideals in
A. This case, nevertheless, contains all of the essential ingredients of the most
general situation. Let [ and J be ideals in A. Assume that I = (fi,..., fs) and
J={q1,--.,9:) (we will not assume that either {f1,...,fs} or {g1,...,9:}isa
Grobner basis). Then a polynomial & is in I N J if and only if

h=a fr+azfa+---+asfs and h =bygy +bago + -~ - + b:gs,

for some polynomials a,,...,as,b1,...,b: € A. This is the same as the two
conditions that (—h,ay,... ,a,) is a syzygy of the matrix [ 1 f; --- f, ]
and (—h,bi,...,b;) is a syzygy of the matrix [ 1 g1 - @ ] It is then
easy to put these two conditions into a single condition for syzygies of vectors in
A%, Let

(e (8] e[ me[ 2 ]one[ ]

Then it is easily seen that h is in I N J if and only if there are polynomials
G1,--. ,0g,b1,...,b; € A such that

(381) (_h,a'l"" )as’bl,“' )bt)
is a syzygy of

. 1 .. fs 0 .00
[i f1 v fo a0 - gt]=[1 {)1 J;J 9 ... gt:|.

Thus we have essentially shown

PROPOSITION 3.8.1. Using the notation above,

INJ={h| there erist polynomials a1, ... ,as,b1,... ,b; such that

(h,a1,... ,8,b1,... b)) isasyzygyof [¢ f, ... f, @1 ... g ]}

Moreover, if hy, ... ,h, is a generating set for Syz(3, fy,... , 5, 91,--- ,9;) and
the first coordinate of h; is h; for 1 < i <, then {hy,... ,h,} is a generating
set for INJ.



3.8. APPLICATIONS OF SYZYGIES 173

ProOF. For the first statement we simply note that h € I'N J if and only if
~h € I'NnJ, and this accounts for the difference between the statement of the
proposition and Expression (3.8.1). The second statement follows from the first
statement, since if a vector is a linear combination of other vectors, then the first
coordinate of the vector is a linear combination of the first coordinates of the
other vectors. [J

EXAMPLE 3.8.2. We will consider the following ideals in Q[z, y]:
I={zy—~z—y—-1,2>+1) and J = (—2? + zy, 2%y + 9,33 + 2).

We wish to compute I N J. We use the deglex ordering with z > y in A. So we

let
e[ e [2),

_ 0 _ 0 _ 0
gl_[—x2+:l:y]’92—[x2y+y]’g3_[y3+x]'
Then we can compute that the module of syzygies with respect to TOP and
e, > e, is generated by (z%y + 3,0, -9,0,—1,0), (z® + zy® + 3y° — 22 + zy +
¥ +2+3y,229° + 97 + 2y + 1, -2° + 247 +1,229% —y® — 3y ~ 1, 220y — 2% —
y—3,-1), (¥ + 23 +22% - 2% + £+ 2y, 2% — 2y + 2 +2—1, P + 32—z —
3y—1,zy2 —2zy+z—y+2,zy—y° —2x+2y—2, 1), and (—4zy? - 10y3 — 4z —
10y, z2y? — 2%y —5zy® + 3zy —4y? — 20— 4y —2, —zy® + 222 + 635 — ry —8y% +4y—
2, z2y? — x2y—6zy? + ry+ 2% + 9y —1, 2%y —zy? ~ 22 — 5y +6y2 + £+ 10, —z +4).
So the first coordinates of these vectors form a generating set for I N J, that is,

INJ = (z2y+y,zy° + 2> + 3y° — 2% + 2y + y* + = + 3y,

2% + 2% + 222 — 2% + 2 + 2y, —4zy® — 10y° — 4z — 10y).

These polynomials do not form a Grobner basis for /NJ with respect to the given
term order. Computing a Grobner basis for this ideal from the given generators,
we get the much simpler generating set

INJ={zy? +z,9° +y,22 - 2.

We note that in Proposition 3.8.1, as we just saw, we only obtained a generat-
ing set for INJ. Of course, we could obtain a Grobner basis for INJ by applying
Buchberger’s Algorithm to this set of generators. Alternatively we have

THEOREM 3.8.3. We use the same notation as above. Assume we have a fized
term order < on A and consider the corresponding POT order on A%t ywith e;
targest. Let {hi,...,h,} be a Grébner basis for Syz(s, f1,--- F5:91,--- » 1)
Assume that the first coordinate of h; is h; for 1 < i < r. Then {hy,... ,h.} is
a Grobner basis for I N J with respect to < .
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PROOF. We need to show that (1t(h1),... ,lt(h,)) = Lt(I N J). One contain-
ment is clear, so let A € INJ, where we may assume that h # 0. From Proposition
3.8.1 we can choose

h=(h,ay,...,a5b1,...,b) € Syz(%, F1,---  Fsr91:-+- +9¢)-

Since hj,...,h, is a Grobner basis for this module, we can find polynomials
c1,--- ,¢ such that h =3[, ¢;h; and Im(h) = max;<i<r(Ip(c;:) Im(h;)). Then,
since the order is POT, h # 0, and the first coordinate is largest, we see that
(1t(R),0,...,0) = lt(h) = >_lt(c;) 1t(h;), where the sum is over all ¢ such that
Im(h) = Ip(¢;) Im(h;). It is then clear that we have lt(h) = " It(c;) 1t(h;) where
i ranges over the same #’s as before. This gives the desired result. [J

We note that in Theorem 3.8.3, as should be evident from the proof of the
theorem, we made essential use of the POT ordering. In particular, the TOP
ordering would not work, as an example in Exercise 3.8.3 shows.

EXAMPLE 3.8.4. We redo the computation of the previous example. For sim-
plicity we use the Grébner bases for the ideals I and J with respect to deglex
with £ > y. We compute that I = (z+y,9%> + 1) and J = (3* + y,z — 7). So
using

(e[ [ e[ ][0

we compute a Grébner basis for Syz(3, f,, £2,9;,9,) With respect to POT with
e; > ez > e3 > e4 > e5, and obtain (0,0,0,z—y, —y*—y), (0,4%+1, —z—y,0,0),
(y3 +9, 0, =Y -1, 0): ($y2 +z,0,-z,-1, _y2 - 1)) (32 _y2, -z+y, 0) 0) —T— y)'
Reading off the first coordinates of these vectors, we obtain the same Grébner
basis we did in the previous example.

At this point it is convenient to compactify the notation. Let H; be an s; X ¢;
matrix and H; be an s x t; matrix. We define the (s1 + s2) X (¢1 + t2) matrix
H, & H; (called the direct sum of Hy and H;) to be the matrix whose upper
left-hand corner matrix is the s; x ¢; matrix Hy, whose lower right-hand corner
matrix is the sy x ¢; matrix Hs and the rest of whose entries consist entirely of
zeros. Thus, for example,

hH fa O

)1 fs fa O
FHAREIRERE
3 g3 0 0 g
0 0 gs

Similarly, let Hy, ..., H, be s; x t; matrices for 1 < i < r. We define H; ® H, ®
-+- @ H, to be the (s; +--- + s,) X (¢, + -++ + t,) matrix with the matrices
Hy,...,H, down the diagonal and zeros elsewhere.

Further, let Hi,..., H, be matrices where, this time, each H; is an s X t;
matrix for 1 < i < r. We define | Hy[Ha|---|H, | as the s x (t1 + -~ + t,)
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matrix whose first ¢; columns are the columns of H;, whose next ¢, columns are
the columns of H,, etc.
For example, using the notation above in the discussion of I N J, let F be the

Ixsmatrix [ fi -~ f, | andlet Gbethelxtmatrix [ g --- g |. If
we let
Yy (1 A -~ f O - 0
H=[drec]=[; & & 0 0,

then the set of first coordinates of Syz(H) is I N J.

As a second illustration of this notation we consider the intersection of more
than two ideals. So let Il,Ig,... ,Ir be ideals in A, Ij = <fjl,fj2,... ,fjtj),
and define the 1 x t; matrix F; = [ fin fjg fjt’. ], for 1 < 7 <r. Let
i be the r x 1 matrix (column vector) all of whose entries are 1. Set H =
[iFi®@ K@ --®F, |. Then, in exactly the same way as above, we see that
the set of first coordinates of a generating set for Syz(H) is a generating set for
L NnI;N...N I, and if the POT order is used on Al*tt+tzt+t 5 compute a
Grobner basis for Syz(H), then the set of first coordinates is, in fact, a Grobner
basis for L NIbN---N1I,.

ExAMPLE 3.8.5. Let A = Q[z,y, z] and consider the term order deglex with
z>y>z Letl) = (z—y,y—2,2—2),Ir = (z—1,y) and I3 = (y+1,z+1,2—1).
To compute I; N I, N I3 we set

1l z—y y—z z—z 0 0 0 0 0
H=]1 0 0 0 z—-1y 0 0 0
1 0 0 0 0 0 y+1 z+1 2-1

We then compute, using the TOP ordering on A3 with e; > ey > es, that
SyZ(H) = ((0,1117 I;O;O;O’an), (a:y— y2’ 0’ “WY —Y%Y—- 1’ Y, Y 0)’ (332 -
V¥-z+y0,y+z-1l,z+2-1, -z, y—1,y+2-3, -z —2+4+3, z—y),
(VPz-y22 -y  +y2,0, —yz+9,0,0, —yz+ 22 +y— 2, ~yz+y+ 22— 2, 0,
yz—y—2), (rz4+y?—22+y—2,0,-y+2z—1,2, —2, —y+2z—1, —y+z+1,
-2,y+1),(0,0,z—2,y—2z, -y, z—1,z—2+2, —y+2z—2, —z+y)), from
which we read off that

LNhLNIz= (zy—y2,m2 —-y2 —:z:+y,y22—yz2 —y2+yz,a:z+y2—2yz+y—z).

We note that this is not a Grébner basis for I; N I, N I3.

‘We next consider the case of the intersection of two submodules M, N of A™.
Assume that M = (f,,...,f,) and N =(g,,...,9;). Then a vector h € A™ is
in M NN if and only if

h=a f, +asfy+:--+a.f; and h =big; +bags +--- + beg,,

for some polynomials ay,... ,as,b1,...,b0; € A. This is the same as the two
conditions that (—h,ay,. .. ,as) is a syzygy of the matrix [ In|fy,--- 5 Fs ] and
(=h,by,... ,be) is a syzygy of the matrix [ Im|g;,... g, | (bere, I, denotes the
m X m identity matrix, and (—h,a,,... ,as) is the vector in A™*+* whose first
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m coordinates are those of —h). It is then easy to put these two conditions into
a single condition for syzygies of vectors in A™+5+, Let

I

-z
(sothat” J =t [ Iy|I,, ]),andlet Fbethemxsmatrix F=[ £, -~ f, ]
a.ndGbethemxtma.i;rixG=[gl gt].SetH=[JIF®G].Then,

as in Proposition 3.8.1, we see that the set of vectors h which are the first m
coordinates of vectors in Syz(H) is M N N. Moreover, the set of vectors which
consist of the first m coordinates of each of the vectors of a set of generators of
Syz(H) is a generating set for M N N.

ExXAMPLE 3.8.6. We again let A = Q[z,y, 2] and consider the term order
deglex with z > y > z. Let M = ((z—y, 2), (z,¥)),and N = {(z+1,y), (z—1, 2)).
So we set

1 0 z—y =z 0 0
H= 01 z Y 0 0

10 0 0 z+1 z-1

01 0 0 y z

Then, using the TOP ordering on A* with e; > e; > e; > €4, we obtain
Syz(H) = (zy—2z+y, > —y—=z, 1, —y+1, —y+1, 1), (z22—222 + 22+ 4x—2y,
Tyz—acy—zz -y +yr+2y+22, -2, —r24+r+y—2-2, ~r2z+c+y—2,
z —y — 2)), from which we read off that

MNON ={(zy -2z +y,5° —y — 2),

(2?2 — 222 + z2 + 42 — 2y, zy2 — 2y — T2 — Y? + yz + 2y + 22)).

In general, if we have r submodules M; generated by the columns of the m x ¢;
matrices F; (1<% <r) and

H=[ [ Inln| - |Im |10 R0 - 0F, |,

[N

Vv

T Coples
where again I,,, denotes the m x m identity matrix, then the set of vectors h
which are the first m coordinates of vectors in Syz(H) is the intersection of the
M;’s. Moreover, as in the case of the intersection of two modules, the set of
vectors which consists of the first m coordinates of each of the vectors of a set
of generators for Syz(H) is a generating set for the intersection of the » modules
M;.

We now turn to the ideal quotient. This can be computed as a special case
of the computation of intersection of ideals as we did in Section 2.3. On the
other hand it is easy to recognize it directly as a syzygy computation. So let
I={(f1,...,fs) and J = (g1,...,9:) be ideals in A. Recall that I: J = {h €

7For a matrix S, we denote its transpose by *S.
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A|RJCI}={h€ A|hg,i=1,...,¢, is a linear combination of fi,..., fs}.
Let g be the column vector g = (g1,-..,9:) and let F' be the row vector F' =
[ fi -+ fs ] In this case, we set

H=[glFoFe®---oF ].

| —
t copies

Then I: J is the set of all first coordinates of Syz(H).
EXAMPLE 3.8.7. We let A = Q|z,y] and consider the term order lex with
z>y. Let I = (z(z +y)?%,y) and J = (z2,z + y). Now consider

z2 z(z+y)? vy 0 0
z+y 0 0 z(z+y)? y

Then using the TOP ordering on A2 with e; > ez, we compute Syz(H) = ((~y,
0, 2% 0, z+y), (~zy— 2%, y, —29%, 0, 2% + 3zy + 29%), (® + 2y~ y°, —z +y,
—zy?, -1, zy + ¥?)), from which we read off that

I J=(—y,—zy — 2%, 2% + oy — ).

Computing a Grobner basis for this ideal (or by simply looking at it), we obtain
I: J = (y,7?), in agreement with the computation of the same ideal in Example
2.3.12.

We will leave the computation of the ideal quotient of two submodules of A™
(Definition 3.6.10) to the exercises (Exercise 3.8.5).

We now consider modules which are given by a presentation as defined in
Section 3.1. Let f,,...,f, bein A™, let N = (f,,..., f,) and consider M =
A™/N. We wish to show how to compute the intersection of two (or more)
submodules of M, find the ideal quotient of two submodules of M and find the
annihilator of M.

We begin with the latter as it is a special case of what we have already done.
We define the annshilator of M to be the ideal

ann(M) = {h € A| kM = {0}}.

Since M = A™/N we see that ann(M) = N: A™. Although we have relegated
the computation of the ideal quotient of two modules to the exercises, in this
special case it is easy to write down the correct matrix whose syzygies allow
us to compute ann(M), and we will do so now. We simply observe that A™ is
generated by the usual standard basis e;, ... , em, and so A € ann(M) if and only
if he; € Nforalli=1,...,m Thusletting F=[ f;, --- f,](anmxs

matrix), and
H=[![%| |em ||FOF® ---0F ],

[ —
m copies
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we see that ann(M) is the set of all first coordinates of Syz(H). (We note that
the matrix ¢ [ ‘e;|---|%m | is the m? x 1 matrix of the vectors e; stacked up
on top of each other.)

EXAMPLE 3.8.8. We consider N = {(z2 + y,zz — ¥), (zy — yz,2 — x)) C A2
and let M = A?/N. So in this case

1 z22+y zy—-yz O 0
H— 0 zz—y z—x 0 0
1o 0 0 2+y zYy—yz
1 0 0 Tz—Y 2—ZX

Then using TOP with e; > ez > e3 > e4 and degrevlex with z > y > 2, we see
that Syz(H) = {(z?yz — xy2? + 2% — zy? — 222+ y?2 +xy —y2,—z + 2, —x2 +
Y, —Zy + yz,2° +y)), from which we conclude that

2

ann(M) = (z%yz — zy2® + 2° — 2? — 22z + ¥z + Ty — y2).

We now consider two submodules M;, M, of M = A™/N and we wish to
compute their intersection. There are submodules K, K2 of A™ such that My =
K, /N and M, = K;/N. We note that, K; = {h € A™ | h+ N € M}, or
alternatively if M; = (g, + N, ... ,9, + N) then

K1=<91,--- ’gt>+N=(gl’”' )gt’fl,"' af3)~

We wish to compute M; N Mz. Clearly M; N M, = (K31 N K2)/N. Since we know
how to compute K; N K, we can compute M; N M,. Alternatively, continuing to
use the notation above, and setting Mz = (h; + N, ... ,h,. + N), we see that a
coset p+ N € M, N M, if and only if there are a;,... ,a: € Aand by,... ,b. € A
such that

t T
P+N=> aig;+N)and p+N =) bi(hi + N).

i=1 =1

This last statement is equivalent to

t s r s
P=) agi+) ojf;andp=) bhi+) bif;
j=1

i=1 j=1 i=1
for some ay,...,a,a},...,a,,b1,... ,b.,b,...b, € A. Thus, setting
F=[f, - £,]1.6=[g - @], H=[M - h]

and I,,, the m X m identity matrix, we see that the set of all such p’s is just the
set of first m coordinates of Syz(S), where
S=[t[InlIn ]I[GIF ]®[ HIF ] ].

The same sort idea will allow one to construct M : M; (Exercise 3.8.8).
We now go on to consider the following question. Let N C M be submodules
of A™. We would like to determine a presentation of M/N (see Definition 3.1.4).
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So assume that M = (f;,...,f,) and N = (g,,...,9,), where we do not
assume that either generating set is a Grobner basis. We define an-A-module
homomorphism

¢: A* — MJ/N
e — f,+N

(for 1 < i < s). It is clear that ¢ maps A* onto M/N since M = (f,,..., f,)-
Let K = ker(¢). Then the desired presentation is A°/K = M/N. So we need to
compute an explicit set of generators for K. We note that h = (hy,... ,h,) isin
K if and only if hy f, + --- + hsf, is in N, which, in turn, is true if and only if
there are polynomials ay,... ,a; € A such that

hafi+- -+ hefs =a19, + - + a:g,.

Let
H=[f, -~ f, @1 - 8]

We have proved

THEOREM 3.8.9. With the notation above, let p,,... ,p, € A**t be a gen-
erating set for Syz(H), and let h; € k[z1,...,z,]° denote the vector whose
coordinates are the first s coordinates of p;, 1 <i < r. Then

K = (hy,... ,h,).

ExAMPLE 3.8.10. Let A = Q[z.y], M = ((zy,7), (-¥,z), (z%,z)) C A% and
N = {(-z%,y), (0,y + z2)). Then, since

(-2%y) = (2,9)+2(~y,2) - z(z* z) and
0y+2%) = (zv,9) +2(-y,2),
we see that N C M. So to determine K C A° such that M/N 2 A3/K, we set

zy -y z2 -z 0
H= 2
Yy T Yy y+zx

and compute
Syz(H) = ((0» 0,z,1, —l)a (1, z,0,0, _1)’ (—.’L‘, 0,,0, 0))

(this last computation was done using TOP with e; > ez > and lex with y > z).
Thus

K= <(0v 0, .'I:), (17 z, 0)1 (—.’L‘, 0, y))
Therefore M/N = A3/K.
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We close this section by generalizing this last result to the case of an affine al-
gebra. In this case we let A = k[z1,... ,zy]/I, for anideal I = (dy,... ,ds) C A.
We again consider N C M to be submodules of A™, but now, of course, the coor-
dinates of the elements of A™ are cosets of I. So, for a vector b = (b1,... ,bm) €
klz1,... ,zn]™, weset b= (b1 + I,... ,bm + I) € A™. So we may assume that
N = (g,...,5;) for g1,...,9; € k[z1,... ,2,)™ and M = (f,,...,f,) for
Fir.-. Fs €k[z1,... ,z,]™. We define an A-module homomorphism

¢: A* — M/N
€ -_f-i+N

(for 1 < i < s). It is clear that ¢ maps A® onto M/N since M = (f,,..., F,).
Let K = ker(¢). Then the desired presentation is A*/K = M/N. So we need to
compute an explicit set of generators of K. We note that b = (hy+1,... ,hs+I)
is in K if and only if (hy + I)f, +---+ (hs + I)f, is in N, which is true if and
only if there are polynomials a;, ... ,a; € k[z1,... ,Z,] such that

(hi+Df1+--+(hs + DFs = (a1 + )Gy + - + (a: + I);.

This last statement is readily seen to be equivalent to the statement that every
coordinate of

hify+:--+hef, — (19, + - + azg;)
is an element of I. Thus in this case, we let ¥ = [ f, --- f,], G =
[91 -+ g ],andD=[dy --- dy ] andset

H=|[ FlGIDoDe®---&D |.

N———
m copies
We have proved
THEOREM 3.8.11. With the notation above, let

P1,---,Pr € k[xl)'" ’xn]s+t+ml

be a generating set of Syz(H), and let h; € k[z1,...,%,)° denote the vector
whose coordinates are the first s coordinates of p; (1 <i<r). Then

K = (hy,... ,h,).

‘We note that all the computations that we have done in this section could be
formulated using Theorem 3.8.11 (see Exercise 3.8.10).

EXAMPLE 3.8.12. We will redo Example 3.8.10, except that we will now as-
sumk that the ring is A = Q[z,y]/I where I = (z® + y?,22). So now M =
((T’l:@?), (—ﬂ,f), (72’f)) C A? and N = ((_53)?)7 (ﬁ)g +§2))' We have that
N C M as before. So to determine K C A3 such that M/N = A3/K, we set

g | @ v 22 -z 0 234y? 2? 0 0
“ly z oz y y+z? 0 0 z3+y% 22



3.8. APPLICATIONS OF SYZYGIES 181

and compute Syz(H) to be generated by (0, 0, z, 1, -1, 0, 0, 0, 0), (1, =, 0, O,
"'11 0? 0) 0, O), (O’ 0) 0’ 1: _1, 0, z, 0, 1), (—ZB, 03 0, 0’ z, 01 Y, 0, —IE), (0) Y, 01
1,-z-1,1,0,0,z+1), (-z,0,%,0,0,0,0,0,0), and (0, 0, 0, 0, y — z2, 0, 0,
—1, z2 +z) (this last computation using TOP with e; > e; and lex with y > x).

Thus
K= ((6’6’ T), (Ta T, 6)) (—§76)6), (ﬁvy) 6): (—-ZI-:, ﬁ; 7, ))-
Exercises
3.8.1. Redo the computation of the intersection of the ideals given in Example

3.8.2.

3.8.3.

3.84.

3.8.5.

3.8.6.

3.8.7.

2.3.6, Exercises 2.3.6 and 2.3.7 using the technique of syzygies presented
in this section.

Redo the computation of the intersection of the modules given in Example
3.6.9, Exercises 3.6.11 and 3.6.12 using the technique of syzygies presented
in this section.

In Theorem 3.8.3 we required that the order be POT. In this exercise, we
show that the TOP ordering would not give rise to a Grobner basis for
the intersection of two ideals. Consider the ideals I = (z2,yz+z,zy? +v)
and J = (y?,z — zy,2? — y) of Q[z,y]. Compute generators for I N J by
computing generators for the syzygy module of

1 z2 zy+z zy’+y O 0 0
H= 9
1 0 0 0 v z—zy -9

using the TOP ordering on (Q[z,y])? with e; > e, and deglex on Q[z,¥]
with ¥ > z. Show that these generators do not form a Grobner basis for
INJ with respect to deglex with ¥ > z. One might think that the problem
comes from the fact that the generators for I and J above did not form
a Groébner basis with respect to deglex with y > z to start with. This
is not the case as is easily seen by repeating the exercise with the ideals
I=(z+y,2z?+1) and J = (3?22 — y) using the same orders as above.
Redo the computation of the ideal quotient given in Example 2.3.12 and
Exercise 2.3.11 using the technique of syzygies presented in this section.
Give the analog of the matrix H used to compute generators for I: J,
where I and J are ideals, in the module case. That is, find H such that
M: N can be obtained from Syz(H), where M and N are modules. Redo
the computation of the ideal quotient of the modules given in Example
3.6.13 and Exercise 3.6.15 using this technique.

Consider the submodule N of (Q[z, y])3,

N = ((zy—y,z,y +z),(zy — z, 2,2y + z), (T + ¥, 9, 2y + ¥))-

Compute generators for ann((Q[z,y])®/N).
Consider the following two submodules of (Q[z,y])3,

K, = ((-’L‘y, z, y), ('-:'hx’z)’ (a:2,a:,'y)) and
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KZ = ((0’ y2+y) y2+y)) (0; 0) $2—2$y_$+y2+y)a (07 T—Y, x—y), (y) Y, y))

a. Prove that N = ((y* +4,0,2> — 2zy +3* —z +y), (0, 2y +z,5° —zy +
z2 4+ y)) is a submodule of K; and Kj.

b. Compute generators for the module (K;/N)N(K2/N) C (Q[z,])3/N.
3.8.8. Give the analog of the matrix H used to compute generators for (K;/N)N
(K2/N) which can be used to compute generators for (K1/N): (K2/N).
Compute generators for the ideal quotient (K;/N): (K2/N), where Kj,

K, and N are the modules of Exercise 3.8.7.
3.8.9. Find the presentation of K3/N, where K; and N are as in Exercise 3.8.7.
3.8.10. Follow the construction of Theorem 3.8.11 to generalize all the compu-
tations performed in this section to the case where A is an affine ring.
Namely, for A = k[z,,... ,z,]/I, where I = {dy, ... ,dg), give the analog
of the matrix H that is used to compute generators for the intersection
of two ideals in A, the intersection of two submodules of A™, the ideal
quotient of two submodules of A™, the annihilator of M = A™/N, the
intersection of submodules of A™/N, and the ideal quotient of two sub-

modules of A™/N.
3.8.11. Let I = {fi,---,fs) C Klz1,-.. ,2n] be an ideal. Show that f + I has
an inverse in k[z1,...,z,])/I if and only if there is an element in the

reduced Grobner basis for Syz(1, f1,... , fs, f), with respect to any POT
order with the first coordinate largest, of the form (1,,, ... ,hs, k). Show
that, in this case, A + I is the inverse of f + I. Redo the computations in
Example 2.1.10 and Exercise 2.1.6 using this technique.

3.8.12. All the computations done in this section can be done using only Theorem
3.8.9. That is, all the computations done in this section can be viewed as
the computations of kernels of certain A-module homomorphisms, where
A =k[zy,... ,Zn]. We illustrate this in the present exercise.

Consider the following diagram of free modules,

Am

AS ¢ Al

‘We define the pullback of this diagram to be the submodule PB of A*®A™
defined as follows

PB = {(g,h) € A°® A™ | ¢(g) = v(h)}-

We get a commutative diagram
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PB Tm__, Am

s i

As ¢ Al

where 7, and 7, are the compositions of the inclusion PB — A°* ® A™

with the projection onto A™ and A® respectively.

a. Show how to compute generators for PB.

b. Show how to compute generators for the intersection of two submodules
of a free module using the pullback.

c. Show how to compute generators for the annihilator of an element of
A% /N using the pullback, where N is a submodule of A°. Then show
how to compute generators for ann(A*/N).

d. Show how to compute generators for M: N, where M and N are two
submodules of A™.

3.9. Computation of Hom. As before we let A = k[z1,... ,z,]. Also, we
consider two A-modules M and N. We are interested in the study of the set of
all A-module homomorphisms between M and N. We define

Hom(M,N) = {¢: M — N | ¢ is an A-module homomorphism }.
We define the usual addition of two elements ¢ and 3 in Hom(M, N):
(¢ +¢)(m) = ¢(m) + ¥(m) for all m € M.

It is easily verified that Hom(M, N) is an abelian group under this addition. We
can also define multiplication of elements in Hom(M, N) by elements of A: for
a € A and ¢ € Hom(M, N), we define a¢ by

(ag)(m) = a(¢(m)) = ¢(am) for all m € M.

Again, it is easily verified that, with this multiplication, Hom(M, N) is an A-
module.

Given two finitely generated A-modules M and N, we wish to “describe”
Hom(M, N). As mentioned earlier, there are two ways one can “describe” an
A-module V (see the discussion following Lemma 3.1.3): by computing a pre-
sentation of V, or, if V is a submodule of some quotient A™ /U, by giving gen-
erators (elements of A™/U) for V. We will first give generators for Hom(M, N)
as a submodule of some quotient A™/U. We will then obtain a presentation for
Hom(M, N) using Theorem 3.8.9.

Since we will need it later on, we first consider the easy case of computing
Hom(A?, A?). Let e;,i = 1,...,s be the standard basis for A°. An element ¢
of Hom(A?®, A?) is uniquely determined by the images ¢(e;) € A4%,i = 1,...,s.
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Then, as in linear algebra, ¢ is given by matrix multiplication by the matrix
whose columns are the ¢(e;)’s. We will denote this matrix by ¢ also. Note that
¢ is a t x s matrix. We further identify the matrix ¢ in Hom(A*, A*) with the
column vector ¢* in A% formed by concatenating the columns of ¢ in order.
This identification gives an explicit isomorphism Hom(A®, A*) & A%, since it is
readily verified that it gives a one to one and onto A-module homomorphism

Hom(M,N) — A%
EXAMPLE 3.9.1. As an example of the above identification, we identify the

matrix [ hofs fs ] with the column vector® (f1, f2, f3, f1, fs, f6)- Or, as an-
fo fa fe

other example, suppose we have
¢: Qlz]” — Q[z]*

given by ¢(f1, f2) = ((2z + 1) /L — 2% f2,zf1 + fo, (2 — z) f2)- Then it is readily
verified that ¢ is a Q[z]-module homomorphism. Moreover, ¢(1,0) = (2z+1, z,0)
and ¢(0,1) = (—z2,1,z2 — z). Hence the matrix associated with ¢ is

2z+1 —z2
T 1
0 2 —z

and so the vector in Q[z]® associated with ¢ is (2z + 1,z,0,~z2, 1,22 — z).

Now, in order to describe Hom(M, N) explicitly, we need to assume that we
are given M and N explicitly. That is, we assume that we are given presentations
of M and N, say

M=A°/L  and N2 AYK.

Then the idea is to compute Hom(A®/L, A*/K) by adapting the ideas in the
computation of Hom(A®, A?) above.

To do this, suppose that we have a presentation of the A-module M, M =
A’ /L. Then we have a sequence of A-module homomorphisms

(3.9.1) 0— L4 A4° - M —0,

where the map i: L — A?® is the inclusion map, and 7: A* — M is the map
which sends the standard basis of A° onto the generating set of M correspond-
ing to the standard basis in the isomorphism M 2 A°/L. Sequence (3.9.1) is
called a short ezact sequence. In general a sequence of A-modules and A-module
homomorphisms

Qitl a
-« — Niy ‘_,Ni_i,Ni_l —_ .

8Recall our space saving notation for column vectors!
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is called ezact if im(a;4+1) = ker(o) for each i. It is easy to check that Sequence
(3.9.1) is exact, which, in this case, means that i is one to one, ker(n) = im(3),
and 7 is onto.

Now we find a presentation of L, say

LA /Ly,
and thus we have another short exact sequence
0— L 24 T 0,
This leads to an exact sequence
0— Ly a5 4s T M,

where I' = i o 7, (the exactness is easily checked). We will only be interested in
the exact sequence
YURRINY LI JEEN)
We use this last sequence, and a similar one for N to compute Hom(M, N). In
order to do this we review the elementary homological properties of Hom. What
we need is summarized in Lemma 3.9.2. We refer the reader to [Hun)].

We assume we are given A-modules M;, M, and N and an .A-module homo-
morphism ¢: M; — M,. We define two maps

Hom(Mp,N) <% Hom(My,N) , , Hom(N,M;) 2% Hom(N,Ms)
] — Yoo P — ¢op.

It is easy to verify that .¢ and @, are A-module homomorphisms. For example,
if My = A, M, = A*?, and N = A%, and the maps are given by matrices, then
o9 and ¢, are given by matrix multiplication, e.g. ¢ =2, Ue.

LEMMA 3.9.2. Assume that we have an ezact sequence of A-modules and A-
module homomorphisms

(3.9.2) MM 5 M —o.
Let P be another A-module. Then the two sequences

(3.9.3) 0 —> Hom(Ms, P) =% Hom(Ma, P) =% Hom(M;, P)

and

(3.9.4) Hom(P, M) SR Hom(P, M) e, Hom(P, M3) — 0
are exact. In particular,

(3.9.5) Hom(Ms, P) = ker(o¢)

and

(3.9.6) Hom(P, M;) = Hom(P, M;)/ ker(vo) = Hom(P, Mz)/ im(¢s).
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We now return to the computation of Hom(M, N) for two A-modules M and
N. From now on, to ease notation, we will identify M and N with their respective
presentations, that is, we will assume that M = A°/L and N = A*/K. (However,
if M and N are not given initially by presentations, we will have to take into
account the isomorphisms between M (resp. N) and A%/L (resp. A*/K).) So,
as noted above, we have the two exact sequences

(3.9.7) Y C R Ry LR IR 7 S|

(3.9.8) A A, o4t LN — 0.

As before, the map I' (resp. A) is given by a matrix which we will also denote
T (resp. A). The columns of I' (resp. A) are easily seen to be the vectors which
generate L (resp. K), since the image of I" (resp. A) is L (resp. K). We have
that I' is an s X s; matrix and A is a ¢ X {; matrix.

Now in Sequence (3.9.3) we let P = N and replace Sequence (3.9.2) with
Sequence (3.9.7) to obtain the exact sequence

(3.9.9) 0 — Hom(M, N) - Hom(A®, N) - Hom(A**, N),
where a =, and y =,I'. Thus from Equation (3.9.5) we see that
(3.9.10) Hom(M, N) £ ker(y).

Thus to get a presentation of Hom(M, N) it suffices to obtain a presentation of
ker(«y). For this we first compute presentations of Hom(A®, N) and Hom(A*!, N),
then compute the map y* corresponding to -y between the two presentations, and
then we can compute ker(y*) using Theorem 3.8.9.

Now in Sequence (3.9.4) we let P = A® and P = A*® respectively, replacing
Sequence (3.9.2) with Sequence (3.9.8) to obtain the exact sequences

(3.9.11)  Hom(A®, A") -2+ Hom(A®, At) -+ Hom(A4®, N) — 0,
where § = A, and p = 7, for P = A® and

(39.12) Hom(A*, A%) - Hom(A4*, A*) X5 Hom(A%, N) — 0,
where §’ = A, and p’ = 7, for P = A*. These give, using (3.9.6)

(3.9.13) Hom(4°, N) zﬂom(A’,At)/im(a) and

Hom(A%, N) Hom(A*:, A?)/im(&').

Since, Hom(A?, A*) & A%, it now suffices to describe im(6) as a submodule
of A% in order to obtain a presentation of Hom(A®, N). Of course, a similar
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statement holds for Hom(A®!, N). The map §: Hom(A%, A®*) — Hom(A?, A?)
corresponds to a map §* which is given by an st x st; matrix S. That is

Ash 5_') Ast
¢: —_— S¢t.

In order to facilitate the statements of the following results, we will adopt the
notation for making new matrices out of old ones presented right after Example
3.8.2.

LeMMA 3.9.3. The matriz S above is the matrix given by A® --- ®A.
N ——

s copies

PROOF. A basis for Hom(A?, A*1) is the set of ¢; x s matrices 9;, whose en-
tries are all zero except for the ij entry which is equal to one. These matrices
correspond to the column vectors ¥j; € AsY obtained, as before, by concatenat-
ing the columns of the matrix 9;;. The vectors %}; form the standard basis of
At = Hom(A®, A). The columns of the matrix S are then the images of the
vectors 9]; under 6*. That is, the columns of S are the vectors obtained from the
matrices 6(1);;) € Hom(A®, A*) by concatenating the columns of §(1/;;). We note
that by concatenating the columns the way we do, we have, in effect ordered the

3;’s (or equivalently the 1);;’s) as follows:

YL Y Yhn ¥z Yha - Vs

Now for each ¢ and 7, 6(v:;) = A o 9;,. Because of the identification of the
homomorphisms A and %;; with the corresponding matrices A and 1;; respec-
tively, we have 8(1,;) = Ae;;, where the right-hand side expression is a matrix
multiplication. Now the ¢ x s matrix As;; is the matrix whose j-th column is
the i-th column of A with all other entries equal to zero. Therefore, after con-
catenation of columns, the matrices AYyy, Ao, ..., Ay, correspond to the
first ¢; columns of A@® --- @ A. Similarly the matrices A2, Aoz, ... , A2

s copies

correspond to columns ¢; + 1 through 2¢; of A®--- ® A. This analysis can be
N, omas?

s copies

continued and we see that S=A®---®A. O
N !

8 copies

Now the image of § is the column space of S; that is, the submodule of A%
generated by the columns of S (in general, we denote the module generated by
the columns of a matrix T by (T")). Thus we have

(3.9.14) Hom(A*, N) X A% /(A®---® A).

s copies
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Similarly
(3.9.15) Hom(A*',N) 2 A /(A®--- D A).

81 copies
Therefore we have a presentation of Hom(A®, N) and of Hom(A*!, N), as desired.
We now return to the map
Hom(A4°,N) %5 Hom(A*,N)
¢ — ¢ol.

It corresponds to a map v*

A% /(AD--- @A) X, A AD---@A).

s copies s1 copies

LeMMA 3.9.4. There is an s;t x st matriz T which defines v* in the sense that

T+ (AD---DA)) =T¢* +{(AD---®A). Moreover, T is the transpose of

s copies 81 copies

the tensor product I' ® I;. The matriz I' ® I, is defined to be the st X s;t matriz
obtained by replacing each entry vi; of I' by the square matriz ;;I;, where I, is
the t X t identity matriz.

PROOF. We first define the map
Hom(A°, At) -L» Hom(A™, AY)
¢ — ¢ol.
Using the isomorphisms A% = Hom(A®, A*) and A*!* = Hom(A®!, A?), we see
that 7 corresponds to a map 7": A% — A1, Let ¢;; and 9}; be defined as in
Lemma 3.9.3. Then %* is given by a matrix T whose columns are the vectors
¥*(¥;;) € A*it. These vectors are obtained by concatenating the columns of

¥(%i5)-

Now from Equation (3.9.13) we have Hom(A®, N) = Hom(A°®, A*)/im(6) and
Hom(A*!, N) = Hom(A®, A%)/im(6’). We next show that the map

7: Hom(A®, N) — Hom(A**, N)
is induced by the map 7; that is, v(¢ + im(6)) = F(¢) + im(6’). To do this, it
suffices to show that F(im(6)) € im(é’). So let ¥ € Hom(A®, A%); then
F(6(¥)) =F(Aoy) = (Aoyp)ol'= (P oT) € im(¥).

Thus v* is induced by ¥* and

V(@ + (A DA =7(¢")+{AB---BA) =T¢" + (AD---DA).

s copies s1 copies s; copies

Hence v* is given by the matrix 7. We now wish to describe T.
As mentioned above, the columns of T are the vectors 7*(3;,) € A*** obtained
from the matrices F(#;;) = v;; o I' by concatenating columns. Again, because of
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the identification of the maps ;; and I" with the matrices 1/;; and I respectively,
we have 7(¢;;) = 4;;T", where the right-hand side expression is a matrix multi-
plication. For each 7 and j, 4;;I is the ¢ x s; matrix whose i-th row is the j-th
row of I'. So if we order the 1;;’s as before, the matrices Y11, 41T, ... ,9ul’
have their respective first, second, etc. row equal to the first row of I'. The cor-
responding vectors in A%t obtained by concatenation of columns are then the
columns of the transpose of the matrix

[ millmell- - Imsle ],

where [ M1 M2 o Ms ] is the first row of I" and I; is the ¢ x ¢ identity
matrix. Similarly, the matrices 95T, ¥22T, . .. , %I correspond to vectors which
form the columns of

[ va1Lelyzalel - - Jasle ],

where [ 721 Y22 -+ 2 ] is the second row of I'. We can continue this anal-
ysis and we see that T is obtained as indicated in the statement of the lemma. O

Recall that Hom(M, N) is isomorphic to ker(v) and hence to ker(v*). So we
now compute the kernel of v*. We first compute the kernel of the homomorphism

A% A/ (AD--- @A)

s1 copies

given by
$*r— T +(AD---DA).
Let U be the matrix whose columns generate this kernel. Thus the columns of
U are given by the first st coordinates of the generators of the syzygy module of
the columns of 7" and those of A® --- @ A (see Theorem 3.8.9).
Therefore

(3.9.16) Hom(M,N) = (U)/(A®--- @ A).

s copies

A presentation of Hom(M, N) can then be computed again using the method
given in Theorem 3.8.9.
To summarize we now state

THEOREM 3.9.5. Let M and N be A-modules given by explicit presentations
M= A*/L and N = A*/K. We compute Hom(M, N) as follows.
(i) Use the generators of L and K as columns to define the matrices T’ and
A respectively;
(ii) Let T = re L)
(1) Compute the matriz U defined by the kernel of the composite map

Ast l)Aslt ———)Aslt/(A@---QA),

s1 copies
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using Theorem 3.8.9. This gives Equation (3.9.16);
(iv) Compute a presentation of Hom(M, N) using Theorem 3.8.9.

To illustrate the Theorem, we now give an example.

EXAMPLE 3.9.6. We let A = Q[z,y, 2] with the lex order with z > y >
z, using TOP with e; > ez > --- on all the modules considered. Let M =
(.fl) f2, .f3’ .f4) g A31 where

Ty Yy 0 Yz
.f1= Tz |, .f2= z i, .f3= 78 - z%2 ) f4=[$2:I,
Yz y z2y — Yz zy

and let N = (g,,9,,95) € A?, where

[ =2 _[=? _ z2z
91 = ¥ |’ g2 = yz |’ g3 = oy +y2? |
We first need to compute presentations of M and N. To do this we use Theorem
3.8.9. Let L = Syz(f,, fo, f3, f4) and compute L to be

L ={(~1,z+2,0,-1),(—z,2%, -1,z — 2)) C A%
We also let K = Syz(g,, 95, 93) and compute K to be
K = ((yz,—yz + yz — 22, —y + z)) C A3.
So we have the presentations

M~A*L and N=x~A%K.

We let
-1 ] vz
2
r= :z:-(l)-z fl and A= [—yz+yz—zz].
-1 z-—=z Ytz
Thus the matrix T is
[-1 0 0 z4+z O 0 0 0 0 -1 0 0 |
0 -1 0 0 z+z 0 0 0 O 0 -1 0
0 0 -1 0 0 z+z 0 0 O 0 0 -1
-z 0 0 22 0 0 -1 0 0 z—z O 0
0 -z O 0 22 0 0o -1 0 0 T—2z 0
[ 0 0 -z 0 0 22 0o 0 -1 O 0 z-2z |

To compute the kernel of the map A2 — A%/(A ® A) given by T composed
with the projection A5 — A%/(A ® A), we compute the syzygy module of the
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columns of T and of

ADA=

yz
—YT + Yz — 22
-y+=z
0
0
0

0
0
0
Yz
—yz +yz — 22
-y+z

The first 12 entries of the generators of that syzygy module are the columns of
the matrix U, where

-1 0 0 =z 0 O 0 ]
0 -1 0 0 z 0 yz—22 —y
0 0 -1 0 0 =z -—-y+=z 0
0 0 0 1 00 -y 0
0 0 0 010 Y 0
U= 0 0 0 o001 0 0
z 0 0 O0 0 O 0 0
0 z 0 00 O 0 yz — 22
0 0 z 000 0 —y+z
1 0 0 =z 0 0 -—y=z -y
0 1 0 020 yz y
|0 0 1 002z 0 0 ]

From Equation (3.9.16) we have
Hom(M, N) = Hom(A*/L, A*/K) 2 (U)/(A® A A A).

Finally to compute a presentation of (U)/{(AG®ADADA) we compute the syzygy
module of the eight columns of U and the four colurons of AGABABA =

[ Yz 0 0 0 ]
—yz + yz — 2° 0 0 0
-y+z 0 0 0
0 yz 0 0
0 —yz +yz — 22 0 0
0 ~y+z 0 0
0 0 Yz 0
0 0 —yz +yz — 22 0
0 0 —y+z 0
0 0 0 Yz
0 0 0 —yz + yz — 22
| 0 0 0 -y+z
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There are 4 generators for this syzygy module and we need the first 8 coordinates
of each of them, which give

0 Y 0 0

0 -y 0 yz — 22

0 0 0 -y+z
_ Y _ 0 0 0
tl— —y ) t2- 0 ’ t3"‘ yz_zz ’ ty= 0
0 0 -y+z 0
1 0 — 0

| 0 | | 1 ] | 0 ] | -z
Therefore

Hom(M, N) = Hom(A%/L, A3/K) = A%/(t,,ta, t3, ta).

‘We now show how to generate A-module homomorphisms from A%/L to A3/K,
and hence from M to N. For @ = (ay, ... ,ag) € A%, the product Ua is a vector
in A2, Using this vector we construct a 3 X 4 matrix whose columns are the
4 consecutive 3-tuples of the vector Ua. This matrix defines & homomorphism
from A*/L to A%/K. The fact that this homomorphism is well-defined follows
from the construction of U.

Let e;,i = 1,...,8 be the standard basis of A%. Then Hom(A*/L, A3/K)
is generated by the matrices obtained from Ue;, i = 1,...,8, that is, by the
matrices obtained from the columns of U.

Therefore Hom(A*/L, A3/K) is generated by the cosets of the eight matrices

10z 1 0 000 0 00 0
d1=] 0 00 0|, ¢o=| -1 02z 1|, ¢3=| 0 0 0 0
0 000 0 000 -1 02z 1

z 1 0 2 0 00O 0 00O
¢4= 00 00O ) ¢5= z 1 0 2 N ¢6 = 0 06 00
0 00O 0 0 00O z 1 0 2

0 -y 0 —yz y O 0 -y
pr=|yz—2> y 0 yz [, ¢g=| -y 0 y2—-22 y |[.
-y+z 0 0 O 0 0 —y+2z 0

It can easily be verified that, for 7 =1,...,8, we have ¢;L C K.
Thus any ¢ € Hom(A*/L, A3/L) can be expressed in terms of the ¢;’s

8
¢ = Z ai¢i,
i=1
where a; € A. We recall that we identify the homomorphism ¢ with the matrix
that defines it.
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To obtain a description of Hom(M, N) from Hom(A*/L, A3/K) we make use

of the isomorphisms

M = AYL A3 /K =5 N
fi — e+L e€+K — g
fo — e+L e4+K +— g,
f3 — e+L e+K +— g3
fs — e+L

where the vectors e;, ez, e3, and e, are the standard basis vectors for A%, and
the vectors €}, e}, and e} are the standard basis vectors for A3. Let ¢ be any
homomorphism in Hom(A4/L, A%/K), say ¢ = 3°5_, ai¢;- Then we define a ho-
momorphism ¢’ in Hom(M, N) as follows. First, it is enough to determine ¢'(f;)
for i =1,2,3,4. But ¢'(F,) is just the image of ¢(e; + L) under the isomorphism
A3/K = N. In particular, ¢'(f,) is the image under the isomorphism A3/K = N
of

8
dler+L) = Y api(er+1L)
i=1
-1 [ 0 0 T
= a 0 +az| -1 { +a3 0 +a4| O
0 | | 0 -1 0
07 [ 0 0 y
+as | z | +as| 0 {+a7 | yz—2% | +as| —y | +K
0 ] |z -y+z 0
—ay + Tag + yag
= —ag + zas + (yz — 2%)ar —yag | + K
—a3 +xas + (—y + 2)az
= (-a;, +zas+yas)(e} + K)
+(—az + zas + (yz — 2%)ar — yag)(es + K)
+(—a3 + zag + (—y + 2)ar)(e5 + K).
That is

¢ (f1) = (—a1+zas+yas)g +(—az + zas + (yz — 2%)ar — yas)g,
+(—a3 + zas + (—y + 2)ar)g;.

The images of f,, f3, and f, can be computed in a similar way.
In particular Hom(M, N) is generated by the homomorphisms ¢ correspond-
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ing to the homomorphisms ¢; which generate Hom(A*/L, A3/K):

i M N v M — N ¢ M — N
F1 -9 fi — -9, fi — —g;
i P 0 fa — O fa — O
fs zg, fs — zg, fa — zg;
fa 9 fa — g fa — g3
¢y: M — N ¢ M — N ¢: M — N
1 — zg, fi — zg; Fi — zg,
f2 — g F2 — g Fa — g;
_f3 — 0 f3 — 0 f3 — 0
fa — 29, fa — 29, fa — 293
#h: M — N ¢g: M — N
fi — (yz—-2%9, fi — 919,
+(—y +2)g5 fa — O
f2 — —yg, +yg, Iz — (yz2—-2%g,
f3 — 0 +(-y+2)gs
fs — -—yzg, +yzg, Fo — -y9,+yg,.
Exercises

3.9.1. Let A=Q|z,y,2], M = A%/L, and N = A*/K, where
L={(z,z+y,2),(z,2%z - 2),(~z2,z — 2,y — 2)) and

K= <($+y,.’t2, zy+yz, y_z)’ (xy) r—2,Y—z2, xz2), (xy, Yy—=2,r—2, yzz))'
Compute generators for, and a presentation of Hom(M, N).
3.9.2. Consider the following modules

M= ((0’ Y, x)a (y, 0, y)’ (yv y,:l}), (:l:, -Y, xy)7 (0, z, x)) - (Q[x: y])3 and

N = ((zya Y, y)s (x2’$’ z, x)) - (Q[.’E, y])4'
Compute generators for, and a presentation of Hom(M, N).

3.10. Free Resolutions. In this section we first show how to compute an
explicit free resolution of a finitely generated A-module, where A = k[z, ... ,Z,)-
We will then use this free resolution to prove a theorem of commutative dlgebra
concerning A. Finally, the free resolution together with the results from the last
section will be used to give an outline of the method for the computation of the
Ext functor.

Let M be a finitely generated A-module. We saw in Section 3.1 that M has a
presentation, that is, M = A% /M, for some sy and some submodule M of A%°.
We also have the following short exact sequence

(3.10.1) 0— My 22 A% ™ M — 0
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to indicate that A% /M is a presentation of M. The map ig: My —» A% is the
inclusion map, and wg: A% — M is the map which sends the standard basis
of A® onto the generating set of M corresponding to the standard basis in the
isomorphism M 2 A% /M.

Now we find a presentation of My, say

My = A% M,
and thus we have another short exact sequence
0— M; 25 4% T4 My — 0.
This leads to an exact sequence
0— My 2 Am 2L goo o, pr o,

where ¢g = g, and ¢; = ig o m; (the exactness is easily checked).
‘We continue this process recursively: at the jth step, we find a presentation
A% [M; of M;_;. We then obtain a sequence of module homomorphisms as in

Figure 3.3.
) 0
M/
~ A% A% —— M 0

Vamkv,
IN N

FIGURE 3.3. Presentations of M, My, and M,

Thus we have obtained an exact sequence
(3.102) - — A%t — A%t — ... 5 A 5 A% 5 M — (.

DEFINITION 3.10.1. The ezact sequence obtained in (3.10.2) is called a free
resolution of the module M.
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In module theory, free modules are the analog of vector spaces. A free resolu-
tion of a module M is used to “measure” how far away from a free module M is
and to give some useful numerical invariants for the module M and the ring A.

If in Sequence (3.10.2) it turns out that there exists an £ such that A% = 0 for
all j > ¢, we say that the free resolution has finite length and that its length is
< £. We will show below that finitely generated A-modules have free resolutions
of finite length. In fact, for each A-module M, there exists a finite resolution
of length at most n, the number of variables in A. We say that A has global
dimension less than or equal to n. We will now use the theory we have developed
so far to prove this result (Theorem 3.10.4). First we have a technical lemma.

Let {g;,.-.,9;} € A™ be a Grobner basis for M = (f,,... , f,) with respect
to some term order on the monomials of A™. Let {s,; |1 <i < j <t} C A’ be
as in Theorem 3.7.3. Recall that it is a Grébner basis for Syz(g,,... ,g,) with
respect to the term order < on monomials of A induced by [ g, - 9 ] , by
Theorem 3.7.13. We note that we are using two different term orders: one in A™
which is used to compute the Grobner basis {g,,... ,g,} for M, and the other
is defined in A* with respect to which the set {s;; | 1 < i < j <t} is a Grébner
basis for Syz(g,, ... ,g,). We will use the same notation for both orders, that is,
we will use < and we will write lm(g;) and lm(8;;). The context should indicate
which module we are working in and which order we are using. In fact, we need
to be careful which order we put on A®. Notice that the order on A* changes if
we reorder the vectors g,, ... ,g,. Also, since we will be using the standard bases
for both A and A™, we will denote by ey, ... ,e; the standard basis for A?, and
by ef,... e}, the standard basis for A™. We will assume that they are ordered
as follows: the g,’s are arranged in such a way that if ¥ < p and Im(g, ) = X, €},
lm(g,) = X,€’; for some power products X,, X, € A and some j € {1,...,m}
(that is, Im(g,) and lm(g,) have the same non-zero coordinate) then X, > X,
with respect to the lex ordering with z; > z5 > - -- > z,, (regardless of the order
that was used to compute the Grobner basis for M).

LEMMA 3.10.2. Leti € {1,... ,n—1}. If the variables 1, . .. ,z; do not appear
in lm(g, ), for some v € {1,...,t}, then the variables z1,... ,;,zit1 do not
appear in lm(s,,), for every p such that v < p < t. So, if z,... ,z; do not
appear in any lm(g,) forv=1,...,t, then z1,... ,Zi, ;11 do not appear in any
Im(s,,) for 1 <v < p <t. In particular, z;, does not appear in any lm(s;,), for
1<j<psit

PROOF. Let v, € {1,...,t}, v < p. If Im(g, ) and Im(g,,) do not involve the
same coordinate, then X,, = 0, and hence s,, = 0, so no variables appear in
8y, at all. Otherwise, let X, = Im(g,) = X, € and X, = Im(g,) = X e for
some j € {1,... ,m}. Then, by Theorem 3.7.13,

Xou

Im(s,,) = X

€y,
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where X, is, as usual, lem(X),, X, ). First, let us assume that z,,...,z; do
not appear in X,. Since X, > X, with respect to the lex term ordering with
T1 > x2 > -+ > Ty, then x3,... ,z; do not appear in X, and the power of z;,,
in X, is at least as large as the power of z;41 in X,. Therefore the power of
Ziy1 in X, is the same as the power of z;;; in X, and hence the variables
vp

Z1,...,%;, Ti+1 do not appear in and so do not appear in lm(s,,). Thus

v
if z1,... ,x; do not appear in any Im(g,), v =1,... ,t, then z1,... ,%;,Zi+1 do
not appear in any lm(s,,), for 1 < v < u < t. The last statement is proved in
exactly the same way. [

ExaAMPLE 3.10.3. As in Example 3.7.5 we let M be the submodule of A3 =
(Q[z,])® of Example 3.6.1. We saw that the vectors g;, g, 93,94, 95, g¢ form a
Grobner basis with respect to the TOP term ordering in A3 with e; > ez > e3
and with lex in A and y > z, where

g9, = ($3 +$1$2 -z, —x)a g:= (x1y+ z? —.’E,O),

93 = (y + x27 0? 0)1 g4 = (xZ, z, y)»
g5 = (22,23, -2%), g = (2? — 2z, —2® + 22,2° — z* — 32 + 2° + 2z).
We re-order the g’s as required in Lemma 3.10.2 with y > z, and we get

91 = (y+2%,0,0), g, = (2° + 7,2° — z,~2),

93 = (xiy + z? — z, O): 94 = (xZ, 337 _zS)’
gs = (2%,2,9), g6 = (z® — 2z,~2% + 22,2° — z* — 32® + 2° + 2z).

The syzygies are now

812 = (373 +z,-y— .'232, z? - z,1, -z, 0)

sy = (2322 —-z-2,2%, —y—2t+z+2 —2%-1)

ss¢ = (22—2z,—x*+ 2%+ 422 -2z — 4, -2 + 2z,

22 +z+2,2% —2* - 32% + 22 + 2z, -y — 2).

Using the order induced by the g’s we have

1m(812) = 1:361
lm(s34) 1:363

lm(sw) = 1:585.

THEOREM 3.10.4. Every finitely generated A-module has a free resolution of
length less than or equal to n, where n is the number of variables in A.
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PROOF. Let M be any finitely generated A-module. Then M has a presen-
tation M 2= A% /M,, where My = (g,,... ,g;) C A%. If My = {0}, then we are
done; otherwise we may assume that G = {g,,...,g;} forms a Grébner basis
for Mp with respect to some term order in A®. Assume also that the g;’s are
arranged as in Lemma 3.10.2. Let z,,... ,z; be the variables that do not appear
in any of the lm(g,)’s (¢ = 0 is possible). We will prove that M has a free
resolution of length less than or equal to n — 1.

CASE 1. n = 4. Then none of the variables z,,... ,z, appear in any of the
Im(g,)’s. We need to show that M = A% /M, is isomorphic to a free module.
Since the leading monomials of the g;’s are of the form ae; for some a € k, and
j € {1,...,s0}, we see that the module Lt(g;,...,g,) is the free submodule
of A% generated by the e;’s that appear in some lm(g;). Let M’ be the free
submodule of A% generated by the other e;’s. We will show that M = M’
Consider the map

w: M — A% /My M
F — F+M,.

It is_easy to see that 7 is an A-module homomorphism. Also, if f € M’ and
f € My, then, by Theorem 3.5.14, Im(f) is divisible by some lm(g;) for some
i € {1,...,t}. But this is impossible unless f = 0, since M’ is generated by
those e;’s which do not appear as leading monomials of any g;. Therefore = is
one to one. Finally, by Proposition 3.6.3, we see that for all f € A%, f+ My =
Ng(f)+ My, where Ng(f) is the remainder of f under division by G. Moreover
N¢(f) € M/, since the monomials of Ng(f) are exactly those monomials which
are not divisible by any e; which appear in some lm(g;). Therefore = is onto,
and hence 7 is an isomorphism.
CASE 2. n — 1 > 0. We construct a free resolution

A5 2 geima Yimh L B2, ge B gso B0, pro g0 pg

recursively as follows. At the jth step, we choose a monomial order on the free
module A% and find a Grobner basis G for ker(¢;). We arrange the elements of
G according to Lemma 3.10.2. We then choose A%+! to be a free module whose
basis maps onto G and we let ¢;;; be the projection map. Note that ker(¢o) =
M, = (g,,-...,9;) and ker(¢,) = Syz(g,,--.,9;)- If 1,... ,2; do not appear
in the leading monomials of the g,’s, then, by Lemma 3.10.2, z1,... ,Z:, Zit1
do not appear in the leading monomials of the elements of the Grobner basis
for ker(¢1). If z1 appears in lm(g;) for some j, then, by Lemma 3.10.2, z; does
not appear in the leading monomials of the elements of the Grébner basis for
ker(¢;). So if we apply Lemma. 3.10.2 recursively, we see that no variables appear
in the leading monomials of the elements of the Grobner basis for ker(¢,~i). By
the case n — i = 0, we see that

Aa"‘i/ker(ﬁsn—t) = ¢n—i(As"")
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is free. Therefore if we replace A®"~* by A®*—i/ker(¢,—;), we get the desired
resolution. [

EXAMPLE 3.10.5. We continue Example 3.10.3. Since the leading term of
812, 834, and 8s¢ involve different basis vectors, we see that Syz(si2, 834, 856) =
(0,0,0). Therefore A% = (s)2, 834, 856) and so we have the following free resolu-

tion for M = @1192)93594195)96) = (fl’ f2’ f31 f4) g A3 :

00— A3 2, 48 %0, 0,
where
do: AS — M
(hl:h2$h37h'41 h’57 h’ﬁ) — Z?=1 h"':gi'
The kernel of this map is Syz(glig2’ 93, g4)95)96)' AlSO,
¢1 : A3 —_— ,146
(31,32,33) — 01812 + £2834 + £3856.
As we saw above, the kernel of ¢, is (0,0,0).

To conclude this section, we use the techniques developed so far to outline the
computation of Ext™ (M, N). We will assume that the reader is familiar with this
concept and we will only give an indication on how to go about the computation.

We begin with a free resolution for an A-module M

T

L s I LR N L G+ Ny e N/ LN VSN )

which we compute as above. For the A-module N we form the usual complex
which at the ith position looks like
.- — Hom(A%+, N) I3 Hom(4%, N) X Hom(A4%-*, N) —

As in Lemma 3.9.2 and Lemma 3.9.3 we can compute presentations of these
Hom modules and using Lemma 3.9.4 we can compute the maps between them
yielding another complex which at the ith spot looks like

. —_ Au""‘/L + T|+1 Au‘/L Au‘"l/L 1 —-

We can use Theorem 3.8.9 to compute ker(T}). Also, im(T,+1) is obtained using
the columns of the matrix that determines T3 ;. Thus we can compute

Ext*(M, N) 2 ker(T3)/ im(Ti+1),
again using Theorem 3.8.9.

Exercises
3.10.1. Compute a free resolution for the module M = ((z, y, 2), (y, z, 2), (, 2, z),

(217, 2, y)’ (9,37 -2, Z), (y’ 2,z — z)) - (Q[m’ Y, z])3






Chapter 4. Grobner Bases over Rings

In the previous three chapters we considered the theory of Grébner bases in the
ring A = k[zy,... ,Z,], where k is a field. We are now going to generalize the
theory to the case where A = R[z;,... ,Z,] for a Noetherian commutative ring
R. Sometimes we will need to be more specific and require R to be an integral
domain, a unique factorization domain (UFD), or a principal ideal domain (PID).
We will give many of the same type of applications we gave in the previous
chapters in this more general context. Moreover, the theory of Grobner bases
over rings will allow us to use inductive techniques on the number of variables;
for example, for a field k, k[z,y] can be viewed as a polynomial ring in one
variable y over the ring k[z] (i.e. k[z,y] = (k[z])[y]). We give an example of this
technique in Section 4.4 where it is used to test whether ideals are prime.

The theory of Grobner bases over rings has complications that did not appear
in the theory over fields. Indeed, many of the results will not hold in this
generality. Moreover, many of the basic techniques will become more complicated
because we now have to deal with ideals of coefficients in the ring R.

In Section 4.1 we give the basic definitions and lay the foundations for the
theory of Grobner bases over rings. An algorithm for constructing Grobner bases
will be presented in Section 4.2. We will have to assume certain computability
conditions on R in order for this algorithm to be effective. We use a method
presented by Moller [M688] to compute the appropriate syzygies needed for
this algorithm. We then give examples of computing Grobner bases over the
rings Z, Zag and Z[v/=5]. In Section 4.3 we give the usual applications including
elimination, computing syzygy modules, and a result of Zacharias [Za] which
gives a method for computing a complete set of coset representatives of A modulo
an ideal. We then go on, in Section 4.4, to discuss questions related to rings of
quotients and use this material to give an algorithm to determine whether an
ideal in A is a prime ideal. Next, in Section 4.5 we specialize the ring R to be
a PID and show that in this case we may again use the notion of S-polynomials
to compute Grobner bases. We conclude that section by giving a structure
theorem of Lazard [Laz85] for Grobner bases in polynomial rings in one variable
over a PID. In the last section, we use Lazard’s result to compute the primary

201
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decomposition of ideals in such rings.

4.1. Basic Definitions. In this section we develop the theory of Grébner
bases for polynomials with coefficients in a Noetherian ring R. As we did for
modules in Section 3.5, we will mimic the constructions of Chapter 1 as much as
we can. We will assume that we have a term order < on the power products in the
variables z,, ... ,Z,. With respect to this term order, we have the usual concepts
of leading power product, leading term, and leading coefficient of a polynomial
in A = R[zy,...,z,). Next, we need the concept of reduction, see Section 1.5
and 3.5. In those sections we required the notion of divisibility of leading terms.
Actually, there we were not concerned about whether we were dividing leading
terms or dividing leading power products since one was a non-zero element of
the field k times the other and this had no effect on the divisibility. When the
coeflicients are not elements of a field, this becomes a very important issue. It
turns out that in order to have a reasonable theory of reduction and Grébner
bases using the same ideas of reduction as in the field case, we need R to be a
PID. We will explore this in Section 4.5. Since we want to define reduction and
Grobner bases in the context of rings more general than PID’s, we must modify
our previous concept of reduction. The correct way to do this is to work with
syzygies in the ring R.

After we define this new concept of reduction, we will be able to pattern our
results again on what we did in Chapter 1. There is one major exception and that
is in the definition of Grobner basis itself. In the case of ideals of polynomials
with coefficients in a field, and also in the case of modules, the definition again
involved the concept of dividing one leading term by another. So we need to
change our very definition of Grobner basis. It turns out that many, but not all,
of the equivalent conditions for a Grobner basis over a field given in Theorem
1.9.1 will work for us in our new situation.

So to reiterate the setup, we assume that we are given a Noetherian coromu-
tative ring R and we let A = R[ry, ... ,Z,]. We then have from the Hilbert Basis
Theorem 1.1.3, that A is also a Noetherian ring. We assume that we have a term
order < on the power products, T", in the variables z1,... ,Z,. Then from The-
orem 1.4.6, we know that < is a well-ordering on T™ (the point here is that this
is a property of the power products T, not of the polynomial ring k[z,... ,z,],
for a field k, even though the proof of Theorem 1.4.6 used the Hilbert Basis
Theorem in k[zy,... ,Z,)). For f € A, f #0, we write f =a; X1+ -+ a,X,,
where a3,...,as € R, a; # 0 and X;,...,X, are power products in z;,...,Z,
with X; > X5 > -+ > X,. We define as before, Ip(f) = X3, le(f) = a; and
1t(f) = a1.X7 (called the leading power product, leading coefficient and leading
term of f, respectively).

We now turn our attention to the concept of reduction. Recall, that in the
case where R = k is a field, given three polynomials f, g,k in k[Z1, ... ,Zn], with
g # 0, we say that f - h, if and only if Ip(g) divides a term X that appears
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in fand h = f — E’fﬁg. The case where R is not a field differs in two ways.
The first difference is that in the case of rings, it is convenient to only reduce
the leading term of f. It is readily seen that all the results on Grébner bases in
Chapter 1, excluding the ones making explicit use of reduced polynomials, are
valid with this restricted concept of reduction. In the case of rings, however, the
results involving reduced polynomials are no longer valid and so reducing terms
that are not leading terms is unnecessary (see Exercise 4.1.6).

With this in mind, we could rephbrase our definition of reduction over a field
k by saying that f %> h, provided that Ip(g) divides Ip(f) and h = f — iz g g
(note that 1t(f) = lt(%g g) and so the leading term of f has been canceled). We
see that this notion requires that we divide by lt(g) = lc(g) Ip(g). The problem
with this is that over a ring R we may not be able to divide by the ring element
lc(g). We could build this into our definition just as we must require that Ip(g)
divide Ip(f), but this turns out to be too restrictive when we are attempting to
divide by more than one polynomial, as, of course, the theory requires. The key
idea in resolving this difficulty is to use a linear combination of the the leading
terms of the divisors, whose leading power products divide lp(f), to eliminate
16(£).

So we now assume that we are considering polynomials f and f;,...,fs in
A = Rzy,...,z,] with fi,...,fs # 0, and we want to divide f by fi,..., fs.
That is, we want to cancel the leading term of f using the leading terms of
fi,--.,fs. We should be allowed to use any f; which has the property that
Ip(f;) divides Ip(f) and so what we desire is that 1t(f) be a linear combination
of these It(f;). We thus arrive at

DEFINITION 4.1.1. Given two polynomials f and h and a set of non-zero poly-
nomials F = {f1,..., fs} in A, we say that f reduces to h modulo F in one step,
denoted

f_')h7

if and only if
h=f- (CIlel +--- +chsfs)

for c1,...,cs € R and power products X,,...,Xs where Ip(f) = X;1p(f;) for
all i such that ¢; # 0 and It(f) = cx X1 6(f1) + - - + cs X I (f5).

EXAMPLE 4.1.2. Let R=Z and let f =zy—1,f; = Tx + 3, fo = 11z% —
2y?2 + 1 and f3 = 3y — 5. We will use the deglex ordering with z < y. So
with F = {fi1, f2, fs}, we see that f N h, where h = —3y — 10z — 1 since
h=f— (yfi —2zf3) and zy = It(f) = ylt(f1) — 2z 1t(f3). (Here c; = 0, as it
must, since Ip(f) = zy is not divisible by Ip(f2) = z3.) So we have done what
we said we wanted to do, namely, we have canceled out the leading term of f
using the polynomials in the set F. Also, f could not have been reduced using
only one of the polynomials fi, fa, fs.
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We draw attention to the condition Ip(f) = X; Ip(f;) for all 4 such that ¢; # 0.
Its purpose is to ensure that each ¢; X; 1t(f;) in the difference b = f — (a1 X1 f1 +
-+ +¢s X5 fs) with ¢; # 0 is actually used to help cancel 1t(f). Because of the
possibility of zero divisors in the ring R, we must be careful about this. For
example, if we only required Ip(f) = Ip(¢; X, fi) for all i such that ¢; # 0, we
could end up with a term clp(f) remaining in h. To see this consider the case
where R = Z,o with deglex and > y and let f =3y, f =522 +y, and fo =y.
Then 1t(f) = 21t(f;) + 31t(f2) and Ip(f) = Ip(2f1) = Ip(3f2) = y whereas
h = f—(2fi + 3f;) = —2y. Having been careful with the definition we have
the following crucial lemma whose easy proof we leave to the exercises (Exercise
4.1.13).

LEMMA 4.1.3. With the notation of Definition 4.1.1 we have Ip(h) < Ip(f).

Let f € Aandlet F = {fi,..., fs} be a set of non-zero polynomials in A. We
now examine how we would determine whether f is reducible modulo F. We first
find the set J = {j | Ip(f;) divides Ip(f),1 < j < s}, which is readily done. We
are restricted to such J by the requirement that Ip(f) = X; Ip(f;) in Definition
4.1.1.Then we must solve the equation

(4.1.1) le(f) = )b, le(f;)

jeJ

for b;’s in R. This equation can be solved if and only if lc(f) € (Ic(f;) | 7 € J)r,
where for a subset C' C R we denote by (C)g the ideal in the ring R generated
by the elements of C. Once we have the b;’s then we can reduce f:

lp(f)
f b
JEEJ ’ lp(f,

EXAMPLE 4.1.4. We put Example 4.1.2 in this context. We have Ip(f) = zy
and so J = {1,3}. Thus we need to solve lc(f) = 1 = by lc(f1) + bsle(fs) =
7by + 3b3. We choose the solution b; = 1,63 = —2 and thus we reduce f as

— (yfi +bszfz) = f — (yh — 2zf3) = —3y — 10z — 1.

It is thus clear that we must be able to solve linear equations in the ring R in
order to be able to reduce in A. This condition is one of two conditions R must
satisfy in order to compute the objects of interest to us in this chapter. We list
these two conditions in the following

DEFINITION 4.1.5. We will say that linear equations are solvable in R provided
that
(i) Given a,ay,...,am € R, there is an algorithm to determine whether
a € {(a1,...,am)r and if it is, to compute by,... ,b,, € R such that
a=a1b +: -+ ambm;
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(ii) Given ay,...,am € R, there is an algorithm that computes a set of
generators for the R-module

Syzg(a1,--- ,8m) = {(b1,... ybm) € R™ [ a1by + - - - + ambm = 0}.

Examples of such rings include Z, Z,, Q|z1, - - - , Zx], Z[i] where i = —1, and
Z[v=-3).

The first condition in Definition 4.1.5 is the one discussed above which we
found necessary in order to make the reduction process computable. The sec-
ond condition is needed to guarantee that the algorithm (Algorithm 4.2.1) to
be presented in the next section for computing Grobner bases in A is actually
implementable. We will always assume that linear equations are solvable in R
when an algorithm is presented. However, as has been the case throughout this
book, we will otherwise be informal about our assumptions on the ring. In par-
ticular, without the assumption that linear equations are solvable in R, what we
present in this chapter is valid, and should be viewed as mathematical existence
statements.

As in the case of ideals and modules where the coefficients lie in a field, we
need to iterate our reduction process.

DEFINITION 4.1.6. Let f,h, and f1,... , fs be polynomials in A, with f1,..., fs
#0, and let F = {fy,..., fs}. We say that f reduces to h modulo F, denoted

f_F-)+ h,

if and only if there exist polynomials hy,... ,ht—y € A such that

JAR P iy S SN i Y

We note that if f —— h, then f — b € {f1,-.. , f)-

EXAMPLE 4.1.7. We continue Example 4.1.2, where R = Z and f = zy —
LA=Tz+3,f =1123—2y% + 1, f3 = 3y—5 and F = {fi, fo, f3}. We see that
f -5, —10z — 6, since f s —3y — 10z — 1 = —10z — 6. The first reduction
is the one noted in the previous example and the second is obtained by simply
adding f3 to —3y — 10z — 1. We note that this reduction could not have been
done in one step.

DEFINITION 4.1.8. A polynomial r is called minimal® with respect to a set of
non-zero polynomials F = {f1,... , fs} if r cannot be reduced.

1In the case of ideals and modules where the coefficients were in a field we required that
every term in 7 could not be reduced. Here we are only requiring that 1t(r) cannot be reduced
modulo F. In the literature this latter concept is sometimes refered to as “reduced”, but we
adopt the word “minimal” so that we are consistent with the similar concepts in the rest of
this book.
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We recall the notation that for a subset W C A, the leading term ideal of W
is denoted

Lt(W) = ({lt(w) | w € W}).
‘We have the following easy

LEMMA 4.1.9. A polynomial r € A, with r # 0, is minimal with respect to a
set of non-zero polynomials F = {f1,..., fs} C A if and only if 1t(r) & Lt(F).

PRrROOF. Ifr is not minimal, then r can be reduced and so from Definition 4.1.1
we have that 1t(r) = ¢ X1 1t(f1) +- - - +¢s X, 1t(f5) for ¢; € R and power products
X;. It immediately follows that It(r) € Lt(F). Conversely, if It(r) € Lt(F'), then
It(r) = ha1 1t(f1) + - - - + hs 1t(f;) for some polynomials ; € A. If we expand this
equation out into its individual terms, we see that the only power product that
can occur with a non-zero coefficient is Ip(r); that is, we may assume that each
h; is a term ¢; X;. It is then clear that r — (1 X1 f1 + -+ + ¢s X f5) is a reduction
ofr. O

Wg note that in Example 4.1.7, the polynomial r = —10z — 6 is minimal with
respect to F' = {fi, f2, f3} since only f; has the property that Ip(f;) divides

Ip(r) = = and le(r) = —10 & {lc(f1))z = (7)z.
We have

THEOREM 4.1.10. Let f, f1,....fs € A with fi,...,fs # 0, and set F =
{f1,..-:fs}. Then there is an r € A, minimal with respect to F, such that

f L»_,_ r. Moreover, there are hy,... ,hs € A such that

f=hfit+ - +hfo+r

with
Ip(f) = max(( max Ip(h:) Ip(£:)), Ip(r))-
If linear equations are solvable in R, then hy,... , hy,r are computable.

PROOF. Either f is minimal with respect to F or f £ 1. Similarly, either
1 is minimal with respect to F' or m; L Continuing in this way we get

F F F
f—rn—rn—--,

where we have, by Lemma 4.1.3, Ip(f) > Ip(r1) > Ip(rg) > --- . This process
must end since the order on the power products is a well-ordering, and so we
obtain the desired polynomial r. We now have
F F F F
f—->r1 — Ty~ —3 Ty ] —T.

By the definition of reduction,
f-rmi=cuXufi+---+c1:X1sfs
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for some c;1, ... ,c1s € R and some power products X3,... ,X1s, where t(f) =
cuXn lt(f1) + - + c1: X1 16(fs) and Ip(f) = Xi;1p(fi), for all i’such that
c1, # 0. This gives a representation of the desired type for f — r;. Similarly,
r1 —re =ca1 X1 f1 + - + c2s X2, fs for some ca1,...,c25s € R and some power
products X, ... ,Xa,, where It(r1) = ca1X21 It(f1) + - -+ + c2,X25 1t(fs) and
Ip(r1) = Xo; 1p(f;), for all ¢ such that cz; # 0. Since Ip(f) > Ip(r1) > Ip(r2), we
get a representation of the desired type for f — 72, namely

f—ra=(cuXu +caXa)fi +--- + (c1sX1s + c2sX25) fs-

Continuing in this way we eventually obtain a representation for f — r of the
desired type. The last statement is clear. [

The method for computing r is given as Algorithm 4.1.1. We note that in
obtaining 1t(r) = ¢; X; + --- + ¢, X, in Algorithm 4.1.1, we are assuming that
¢; = 0 for all i such that lp(f;) does not divide lp(r). Assuming that linear
equations are solvable in R we can determine whether the c;’s exist and compute
them if they do.

INPUT: f, f1,... . fs€ Awith f; #0 (1 <i <)
OUTPUT: h,,... ,hs,r, where f =hy1f1 + -+ hsfs + r with
Ip(f) = max(maxi.cic, (p(k:) Ip(£:)), Ip(r)
and r is minimal with respect to {f1,..., fs}
INITIALIZATION: h; :=0,... ,hs:==0,7:= f
WHILE there is an % such that Ip(f;) divides lp(r) and there
are c1,... ,¢s € R and power products Xi,... ,X;
such that It(r) = c1 X1 W(f1) + - - - + ¢s X5 1t(f5) and
Ip(r) = X; Ip(f;) for all i such that ¢; # 0 DO
ri=r—(aXifi+ - +csXsfs)
FOR i=1to s DO
hi == h; +¢; X;

ALGORITHM 4.1.1. Division Algorithm over Rings

EXAMPLE 4.1.11. We reconsider Examples 4.1.2 and 4.1.7 using Algorithm
4.1.1. The first pass through the WHILE loop was done in Example 4.1.2 and
gaveus T = f— (yfi+(—2x)f3) = —3y—10z—1, hy =y, ha =0, and h3 = —2z.
The second pass through the WHILE was done in Example 4.1.7 and gave us
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r=(—3y—10z—1)— (—f3) = —10z—6, hy =y, hz =0, and h3 = —2z — 1. The
WHILE loop stops, since only Ip(f1) divides Ip(r) but there is no ¢; such that
—10z = 1t(r) = c; It(f1) = e1(7z). Thus, f = yfi + (—2z — 1) f3 + (—10z — 6).

We may now give the first characteristic properties of Grobner bases over
A = R[z,,... ,z,), for aring R.

THEOREM 4.1.12. Let I be an ideal of A and let G = {g1,... ,9:} be a set of
non-zero polynomials in I. Then the following are eguivalent.
(i) Lt(G) = Lt(1).
(i) For any polynomial f € A we have

felifandonlyiff i).,. 0.

(i) Forall fe I, f =hig1+---+hg: for some polynomials hy,... ,hs € A
such that Ip(f) = max1<i<:(Ip(h:) Ip(g:))-

PROOF. (i)== (ii). We know that if f ﬁ»+ 0, then f € I. Conversely assume

that f € I. Then we know from Theorem 4.1.10, that f -, r with r minimal.
If r # 0 then, by Lemma 4.1.9, It(r) & Lt(G). But f € I and f —r € I imply
that r € I and so lt(r) € Lt(I) = Lt(G), which is a contradiction.

(ii)== (iii). This is the special case of r = 0 of Theorem 4.1.10.

(iii)==(i). For f € I we need to show that 1t(f) € Lt(G). We have that
f=hig1+---+ Iug; such that Ip(f) = max1 <i<:(Ip(h:) Ip(g;))- It is then easily
seen that 1t(f) = Y 1t(h;) 1t(f;) where the sum is over all ¢ satisfying Ip(f) =
Ip(h:) Ip(gi). Thus 1t(f) € Lt(G), as desired. O

It is important to notice the form of Statement (iii) in the Theorem. We use
Ip(f) = max;<i<:(Ip(h;) Ip(g:)) instead of Ip(f) = max;<i<: Ip(higi), since over
a ring R with zero divisors, we need not have Ip(h;) Ip(g:) = lp(hig:).

DEFINITION 4.1.13. A set G of non-zero polynomials contained in aon ideal
I is called a Grobner basis for I provided that G satisfies any one of the three
equivalent conditions of Theorem 4.1.12. A set G of non-zero polynomsials con-
tained in A is called a Grobner basis provided that G is a Grébner basis for (G).

EXAMPLE 4.1.14. Let R = Z and A = Z[z,y] with the deglex ordering with
z<y.Let fi =4z+1, f, =6y+1and I = (fi, f2). Then 3yfi—2xfo =3y—2z €
I while 1t(3y — 2z) = 3y & (It(f1),1t(f2)) = (4z,6y), and thus {f1, f} is not a
Grobner basis for I. On the other hand, as another example, let gy = 2z+1,92 =
3y+1 and set I' = (g1, g2). Then by simply looking at all linear combinations of
91 and gy, it is easily seen that Lt(I") = (2, 3y, zy) = (2z,3y) = (1t(g1), 1t(g2)),
and 50 {91, 92} is a Grobner basis for I'.

COROLLARY 4.1.15. IfG is a Grébner basis for the ideal I in A, then I = (G).
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Proor. This is immediate from part (iii) of Theorem 4.1.12. [

We note that the remainder r obtained in Theorem 4.1.10 is not necessarily
unique, even in the case where F is a Grobner basis (see Exercise 4.1.6). We
have, however, in Theorem 4.1.12 that for G a Grobner basis and f € (G), the
only possible remainder for f is 0 with respect to G. That is,

COROLLARY 4.1.16. IfG is a Grobner basis and f € (G) and f —G—>+ r, where
T is minimal, then r = 0.

PROOF. Since f € (G) we have that r € (G) and so, since G is a Grobner
basis, we see that if r # 0 then 7 cannot be minimal by Lemma 4.1.9. [

We further note that the Noetherian property of the ring R, and hence of the
ring R[zy,... ,T,), yields the following Corollary, whose proof we leave to the
exercises (Exercise 4.1.5).

COROLLARY 4.1.17. Let I C R[z,... ,Z,) be a non-zero ideal. Then I has a
finite Grébner basis.

We will develop a method for computing Grébner bases over rings in the next
section. However, in the special case where R = kly], for a field k and a single
variable y, we see from the next theorem that we can compute a Grébner basis
over R using the theory presented in Chapter 1. This result will not be used
until Section 4.5.

THEOREM 4.1.18. If G = {g1,.-. , 9t} is a Grobner basis in k[y,z1,... ,Zn)
with respect to an elimination order with the x variables larger than y, then G
is a Grobner basis in (k[y])[z1,... ,Za)

PROOF. Let f € I = (g1,...,g:). We will denote by Lt(I),1t(f),1p(f), and
lc(f) the leading term ideal of I, the leading term, leading power product,
and leading coefficient of f with respect to the elimination order <, and by
Ltz (1), 1tz (f),1p,(f), and lcz(f) the leading term ideal of I, the leading term,
leading power product, and leading coefficient of f in (k[y])[z1,... , 2] (i.e., here
the order is the one on the z variables alone which we will denote by <.). Note
that lc;(f) € k[y]. We will denote the leading term of a polynomial a € kfy] by
It,(a).

We need to show that Lt (I) = (Itz(g1),- - - ,1tz(g¢)). One inclusion is trivial.
For the reverse inclusion, let f € I. We write g; = a; X;+ lower z terms, where X;
is a power product in the z variables alone and a; € k[y]; so ltz(g;) = a;X;. Since
G is a Grobner basis in k[y, 1, . . . , Z»] we can apply the Division Algorithm (see
Theorem 1.5.9 and its proof) to write

(41.2) [ =y Thgi, + ooy Tagi, + -+ -+ any"" Tngiy,
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where T}, is a power product in the z variables alone, a; € k, for 1 < j < N and,
since Ip(a,y*2 Tjg:,) = y*2T;1p, (e4;) X,

(4.1.3)
¥ T1lpy(as,) X, > ¥ T2 lpy(ai,) X, > -+ - > ¥V TivIpy(aiy ) X.

Since we are using an elimination order with y smallest, we must have
NXi, 2TX;, > 2 TnXiy-

Choose jo least such that TioXijo > 1}0+1Xifo+1’ Then X = Tin, for1 <
J < Jo, and T1 X;, > X for all other  power products, X, appearing in the right

side of Equation (4.1.2). Thus

Jo
(4.1.4) 1t(f) = (Y 09" a3, ) T1 Xy

=1
provided that h = ;:‘_’_:1 a;y*ia;, # 0. But from Equation (4.1.3), looking at the
first jo terms and canceling T;X;, = 71 X;, we get

¥ Ipy(ai,) > y** Ipy(ai,) > --- > y*% Ip, (aiy, ),
and so Ip, (k) = y** Ip,(a;,) # 0. Finally, from Equation (4.1.4) we see

It.(f) = Z%T lpy(a.,’ )Xt, ZO‘JT ltz(gt,)»

Jj=1 =1
as desired. O

The converse of Theorem 4.1.18 is not true as the following example shows.

EXAMPLE 4.1.19. Consider the ideal I = (y(y + 1)z, y?z) C R[z], where R =
kly]. Then {y(y + 1)z,y?z} is a Grobner basis in R[z], since, in that ring, the
polynomials y(y + 1)z and y?z are both terms. However, {y(y + 1)z,y2z} is
not a Grébner basis in k[z,y] with respect to the lex order with z > y (or any
other order for that matter), since the polynomial yz is in I but its leading term
(itself) is divisible by neither lt(y(y + 1)z) = 32z nor lt(y%z) = 32z

Exercises

4.1.1. In Z[z,y), let f = 62> +y+1, fo = 10ry —y — =z, f3 = 159® + z, and
F = {f1, f2, f3}. Consider deglex with z > y.
a. Show that 223y —— —z° — 22y — 27y — 27y,
b. Show that 3y —— 2% + 23y + z%y? — zy® — 232
c. Show that z3y? +5z% +23y — —zy® —z2y— 2212 — 18 —22 — 2zy—1>.
In each case note that the remainder polynomial is minimal with respect
to F. There are many ways one can reduce the above polynomials; the
reductions above are just one possibility.
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In Z[z,y, 2], let fi = 22yz+yz+1, f2 = Sy2®—zy+2, f3 = Tyz—2—Ty—2,

and F = {fi, f2, f3}. Consider deglex with z < y < z.

a. Use the Division Algorithm (Algorithm 4.1.1) on f = —3zy + 2zy°® —
2yz + 222 + 3229222 to write f = hyfi + hafo + hafs + r where r is
minimal with respect to F' and

Ip(f) = max(Ip(h1) Ip(f1), Ip(h2) Ip(f2), Ip(ha) Ip(f3), 1p(r)).

(There are two obvious ways to begin this exercise; try them both.)

b. Show that the set F' is not a Grébner basis.

In Zig[z,y), let fi = 32%y+3z, fo = Tzy’+y, and F = {fi, fo}. Consider

lex with z > 3.

a. Use the Division Algorithm (Algorithm 4.1.1) on f = z3y3 + 5z2y* +
z2y + 1 to write f = hy fi1 + haf2 + 7, where r is minimal with respect
to F and Ip(f) = max(Ip(h1) Ip(f1), Ip(h2) Ip(f2),1p(r)). [One answer
isr=—-z+1]

b. Show that the set F' is not a Grobner basis.

Show that the subset F = {3z%y — z,222 — 2} C Z[z,y,2] is a Grobner

basis with respect to deglex where £ > y > z and is not a Grobner basis

with respect to lex where z > y > 2.

Prove Corollary 4.1.17.

If you attempted to mimic the definition of reduced Grobner basis of

Chapter 1, what would be the significance of the equality of ideals in

Zz,y), (222,3y% + %) = (222, 3y? + 322)? Alternatively think about this

example for the idea of uniqueness of reduction. [Hint: Either set is

a Grobner basis with respect to deglex with y > z. Also, try reducing

6w2y2 _ 4.]
Show that for any polynomials f,g € R[zi,...,Zxs], for any finite set
of non-zero polynomials F' in R[z;,...,%,], and for any power product

X € R[z1, ... ,Zy), we have

a. If f € F, then fg ——, 0.

b. I f —F—>+ g, then X f —F—>+ Xg.

Let {g1,...,9:} C Rl[z1,...,z,] and O # h € R[z1,... ,z,), where R is

an integral domain. Prove that {g1,...,9:} is a Grobner basis if and only

if {hg1,... ,hg:} is a Grobner basis.

Let I be a non-zero ideal in R[z;,... , 5] and let G be a Grobner basis for

I. We say that G is a minimal Grobner basis provided that for all g € G,

g is minimal with respect to the set G — {g}. Prove that every Grobner

basis for I contains a minimal Grobner basis for I.

Let I be a non-zero ideal in R[z),... ,Z,] and let G be a Grobner basis

for I.

a. Prove that G N R generates I N R.

b. Call a generating set F for an ideal J C R a minimal generating set
provided that for all r € F we have (F — {r}) # J. Show that if G
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is a minimal Grobner basis for I (see Exercise 4.1.9), then GN R is a
minimal generating set for I N R.

4.1.11. Let I be an ideal in R[z,... ,Zn] and let 7 denote the quotient map
R[zi,... ,zn) — (R/(IN R)[z4,... ,zx]. Let G C I be given.

a. Show that if G is a Grébner basis for I then 7(G) is a Grobner basis
for w(I). [Hint: For all f € I, f ¢ I N R, write f = fo + f; where
7(fo) = 0 and w(le(f1)) # 0]

b. Show that G is a minimal Grébner basis for I (see Exercise 4.1.9) if and
only if GNR is a minimal generating set for /N R (see Exercise 4.1.10),
(G — GN R) is a minimal Grébner basis for 7(I), and le(g) € IN R
foralge G-GNR.

4.1.12. Let G be a Grobner basis for a non-zero ideal I of R[z,, ... ,z,], where R
is an integral domain. Let K be the quotient field of R. Let J be the ideal
of K[zy,... ,z,) generated by I. Prove that G is also a Grdbner basis for
J with respect to the same order.

4.1.13. Prove Lemma 4.1.3.

4.1.14. Use the ideas in this section and those of Section 3.5 to obtain a the-
ory of Grobner bases for R[z,, ... ,z,]-submodules of R[zy,... ,z,]™. In
particular state and prove the analog of Theorem 4.1.12 for R[z;,... ,Zxs]-
modules.

4.2. Computing Gribner Bases over Rings. In this section we will give
another characterization of Grobner bases (Theorem 4.2.3) which is similar to the
S-polynomial criterion in Theorem 1.7.4, and is the direct analogue of Theorem
3.2.5. Of course, now our syzygy modules are submodules of (R[zy, ... ,Zn])®.
We will then give the analogue of Buchberger’s Algorithm (Algorithm 1.7.1) for
the case of rings (Algorithm 4.2.1). We will conclude this section by giving an
iterative algorithm for computing the syzygy module needed for this generalized
Buchberger Algorithm (see Algorithm 4.2.2).

We note, by Theorem 1.1.3, that R Noetherian implies R[z, ... ,z,] is Noethe-
rian. Moreover, by Theorem 3.1.1, (R[z1,.. . , Z,])* is Noetherian, and hence any
submodule of it is Noetherian and finitely generated.

DEFINITION 4.2.1. Given power products X;,... ,Xs and non-zero elements
C1,...:Cs M R set L = [ aX: - e Xs ] Then, for a power product X,
we call a syzygy h = (h1,... ,hs) € Syz(L) C (R[z1,.-. sZn))® homogeneous
of degree X provided that each h; is a term (i.e. 1t(h;) = h; for all i) and
X;Ip(hi) = X for all i such that h; #0.

‘We have the following easy lemma.

LEMMA 4.2.2. With the notation above, Syz(L) has a finite generating set of
homogeneous syzygies.
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PROOF. As noted above Syz(L) is finitely generated. Thus it suffices to show
that given any syzygy h = (hy,...,hs) € Syz(L) we may write h as a sum of
homogeneous syzygies. Now we know that hyjc; X; + -+ + hscs X; = 0. Then
expanding the polynomials h; into their individual terms, we see that for any
power product X we may collect together all the terms in this last sum whose
power product is X and these must also add to zero, since all the ¢; X; are terms.
This immediately gives the desired representation. []

‘We can now give the following theorem whose proof parallels exactly the proof
of the similar Theorem 3.2.5 (Exercise 4.2.1).

THEOREM 4.2.3. Let G = {g1,...,9:} be a set of non-zero polynomials in A.
Let B be a homogeneous generating set for Syz(lt(g1),... ,1t(g:)). Then G is a
Grébner basis for the ideal (91,... ,g:) if and only if for all (hy,... ,h;) € B, we
have

higs + -+ + hege i’+0-

One can view the expression hjg; + --- + hyg; above as a generalized S-
polynomial, since in that expression the leading terms cancel (this is the basic
idea that was used in Section 3.3). Thus we see how we will go about gener-
alizing Buchberger’s Algorithm. We first must find a homogeneous generating
set for the syzygy module of the leading terms. We then form the generalized
S-polynomials and reduce each one of them using the reduction presented in the
previous section. If one of these does not reduce to zero, we add the reduction
to our set and repeat the procedure.

The next question we must answer is how do we go about constructing a
homogeneous generating set for Syz(1t(g1), .. . ,1t(g:)). Or in general, given power
products X3, ... , X, and non-zero elements c1, . .. ,¢, € R how do we construct a
homogeneous generating set for Syz(c1 X1, ... ,¢sX,)- In view of Equation (4.1.1)
and the surrounding discussion, we make the following

DEFINITION 4.2.4. For any subset J C {1,...,s}, set Xj =lem(X; | j € J).
We say that J is saturated with respect to Xi,... , X, provided that for all j €
{1,...,s}, if X; divides X, then j € J. For any subset J C {1,... ,s} we call
the saturation of J the set J' consisting of all j € J such that X; divides X ;.
(Note that XJ = XJ'.)

EXAMPLE 4.2.5. Let X; = 2y,X; = z2,X3 = y, and X4 = z*. Then if
J = {1,2} we see that X; = 2%y and J is not saturated since 3 ¢ J, while
X3 = y divides X; = z?y. On the other hand, if J = {1,2,3} we see that
X; = z%y and J is saturated since 4 is the only element of {1,2,3,4} not in J
and X4 = z* does not divide X; = z?y. Clearly {1,2,3} is the saturation of

{1,2}.
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We recall the notation for the standard basis vectors
e; = (1,0,...,0),e; = (0,1,0,...,0),... e, = (0,0,...,0,1)
for A°. Given the above notation we are now prepared to state

THEOREM 4.2.6. For each set J C {1,... ,s}, which is saturated with respect
to X3,...,X,, let By ={b1y,... ,b,,;} be a generating set for the R-module of
syzygies Syzg(c, | 7 € J). (Note that each of the vectors b, ; is in the R-module
RV, where |J| denotes the cardinality of J). For each such b, , denote its jth
coordinate, for j € J, by bj, ;. Set

X
8y = ij,,,]y{-ej.
jeJ J
(Note that each of the vectors s, ; is in A®.) Then the set of vectors 8,7, for J
ranging over all such saturated subsets of {1,...,s} and 1 < v < vy, forms a
homogeneous generating set for the syzygy module Syz(c1 X1, ... ,¢sXs)-

PROOF. It is first of all clear that each of the vectors s, ; is homogeneous of
degree X ;. Moreover, 8,7 is a syzygy of [ e1X; --- ¢, X, |, since

X
[ aXy; - X, ]3UJ = [ aXy - cX, ]ij"‘l-)“(—{ej
jeJ 7
X
= > bijvs - ¢iXj =Xy ) bivsc; =0,
J€J J jeJ

by the definition of b, ;. Now, let h = (h1,... ,hs) € Syz(c; X1, ,¢sX5). Since,
by Lemma 4.2.2, Syz(c; X1, - -. ,¢sXs) is generated by homogeneous syzygies, it
suffices to write h as a linear combination of the s,;’s in the case that h is
a homogeneous syzygy, say of degree Y. We write h = (d,Y1,... ,d,Y;) for
di,...,ds € R and power products Yi,...,Y;. Set J = {j | d; # 0} and let
J' be the saturation of J. We have that Y;X; = Y for all j € J, since h is
homogeneous of degree Y. Then, since h is a syzygy of [ c1iXa -+ ¢ X, |,
we have -, d;Y;¢;X; =Y 3. ;djc; = 0. Thus (d; | j € J') is a syzygy of
[ cj|j € J' ] and so by hypothesis

vy

(dj 7€ J,) = Z"vbu.]',

v=1

that is, for each 7 € J',

vy

dj = rubjur,
v=1
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for some r, € R. Now Y;X; =Y for all j € J implies that X; = X divides Y.
It now follows that

vy Vg Y XJ,
er st' = E Zru jll.]'e]

v=1jeJ’
vy
=2 Qo rbus)Yie; =3 diYie; = Zd i€ =h,
JjeJ’ v=1 jeJ’ i—=1

as desired. [

We note that we have reduced the problem of computing a generating set for
Syz(c1 X1, ... ,¢sX,) to computing the subsets of {1,... ,s} which are saturated
with respect to X;,...,X, (an easy task) and computing syzygies in R (see
Definition 4.1.5).

EXAMPLE 4.2.7. We consider R = Z and let ¢; X1 = 2zyz, ;X5 = 5zy2, c3X3
= 85y2, and c4 X4 = 6x2z. We will assume that the reader can solve the el-
ementary linear diophantine equations that occur in this example (i.e. that
the reader can “solve linear equations in R = Z”). One readily checks that
the saturated subsets of {1,2,3,4} are {1}, {3},{4},{1,4},{2,3},{1,2,3}, and
{1,2,3,4}. Since R = Z is an integral domain, the singletons {1}, {3}, {4} do not
give rise to any non-zero syzygy. For J = {1,4} we need to solve in R = Z the
equation 2b; +6b4 = 0 and one ﬁnds a generating set for the solutions of th1s equa-
tion to be {(—3,1)}. Since X; = z2yz, the corresponding syzygy is 3%z e+

zyz
-—,Le4 = (~3z,0,0,y). Now for J = {2,3}, we need to solve 5b; + 8553 = 0
which gives us {(—17,1)} and the syzygy —17%;@ + —%—es (0,-17,z,0).
The set J = {1,2,3} gives the diophantine equation 2b, + 5by + 85b3 = 0. This
may be solved to yield two generators for the solutions, namely, (—40,-1,1)
and (—5,2,0). Then, with X; = zy?2, we obtain the syzygies -40~“5ﬁe1

TYz
—”;,—eg + E‘l:—es = (—40y, —2,z2,0) and —5—7’——6 + 2—2—2—e2 = (—5y,22,0,0).
Finally for J {1,2,3,4}, we get the genera.tors (—40, 1 1,0),(-5,2,0,0) and
(-3,0,0,1). These will give syzygies that have already been obtained, as is read-
ily checked, and so are not needed in our generating set. So we obtain that

Syz(2zyz, 5zy?, 85y, 6222) = ((—3z,0,0,%), (0, —17,z,0),

(—40y, —z, z2,0), (—5y, 22, 0,0)).

Now that we can compute, by Theorem 4.2.6, a homogeneous generating
set for Syz(lt(f1),...,1t(fs)), for any set of polynomials {f1,..., fs}, we can
give Algorithm 4.2.1, the algorithm for computing Grobner bases for ideals in
A= Rzy,...,T,).

THEOREM 4.2.8. If R is a Noetherian ring and linear equations are solvable
in R then Algorithm 4.2.1 produces a Grébner basis for the ideal (fy,... , fs).
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INPUT: F={f1,...,fs} CA=R|z1,... 4]
with f; #0 (1<i<s)
OUTPUT: G = {g1,... ,9:}, a Grobner basis for (fi,--. ,fs)
INITIALIZATION: G :=0,G' .=F
WHILE G’ # G DO
G:=G
Let the elements of G be g1,... ,g:
Compute B, a homogeneous generating set
for Syz(1t(g1),- . . ,1t(g:))
FOR each h = (hy,. .. ,h;) € B DO
Reduce h1g; + - -+ + h:g; i’*+ T
with r minimal with respect to G’
IF r # 0 THEN
G =G U{r}

ALGORITEM 4.2.1. Grébner Basis Algorithm over Rings.

PRrROOF. If the algorithm stops, it clearly, by Theorem 4.2.3, gives a Grobner
basis for the ideal {f1,..., fs). As the algorithm progresses we add to a set of
polynomials G a polynomial r, minimal with respect to G, to obtain a new set
G'. By Lemma 4.1.9, It(r) ¢ Lt(G) and so Lt(G) ¢ Lt(G"). Thus, since the ring
A is Noetherian, the algorithm stops. O

We will give examples of computing Grobner bases shortly, after we have given
a more efficient method for computing the relevant syzygies. We will incorporate
this method for computing syzygies into our Grobner basis Algorithm and so
we will actually use Algorithm 4.2.2 to compute these examples (see Examples
4.2.11, 4.2.12, and 4.2.13)

Méller [M688], has given a method for computing the syzygies that arise
in Algorithm 4.2.1. In particular, this method gives an efficient way to avoid
duplication in the computation of syzygies (see Algorithm 4.2.2). At each stage
of Algorithm 4.2.1 we add one or more polynomials to the generating set for
the ideal (fi,...,fs). So we have to compute a generating set for the syzygy
module of this increased set of leading terms. The idea of Moller is to use the
computations of syzygies already done in order to compute the new syzygies.
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Note that any syzygy of a set of leading terms is automatically a syzygy of a
larger set of leading terms (using zeros for the extra leading terms).

Again consider power products X3, ... , Xs and non-zero elements c;,... ,c; €
R. Let S, = Syz(c1X1,...,c.X,) for 1 < o < 5. We will compute a homoge-
neous generating set of S; = Syz(c; X3,...,¢sXs) by inductively constructing
generating sets for the S,. We note that a homogeneous generating set of S}
consists of a generating set of the ideal {r € R | rc; = 0} of R (called the ann:-
hilator of c; and denoted by ann(c;)) viewed as a subset of A. Also, if we take a
homogeneous syzygy (51Y1,.-.,bsYs) in S,, there are two possibilities. Either
b, = 0 and (b1Y3,... ,bs—1Y5—1) is a homogeneous syzygy in S,_;; or b, # 0
and® b, € (c1,--. ,Co—1)R: {Co)R-

So we proceed as follows. We consider all subsets J of {1,... ,0}, saturated
with respect to X,,...,X,, such that o € J. For each such J let bys,...,b,,s
denote a generating set for the ideal in R, {c; | j € J,j # 0)r: {cs)r- Now for
each b, there are b; € R such that

Z bjc; +buscs =0,
jeJ
j#o

and we define the homogeneous syzygy in S, by

Xy
spJ - ij e] +b“_] e -

jeJ Xo

j#o
(The b;’s may not be unique, but any choice will do.) We also consider a ho-
mogeneous generating set ay, ... , @y, for S,_1, which we assume, by induction,

has been computed. Define for 1 < ¢ < m, (a;,0) to be the homogeneous syzygy
in S, with the coordinates of a; in the first 0 — 1 coordinates and 0 in the last
coordinate. We now can state

THEOREM 4.2.9. The syzygies (a1,0),... ,(am,0) together with the syzygies
8uy for JC{1,... ,0} saturated with respect to X,,... ,X, witho € J, form a
homogeneous generating set for the syzygy module S,.

PROOF. Let d = (1Y],...,d,Ys), for di,... ,d, € R and power products
Yi,...,Y,, be a homogeneous syzygy in S, of degree Y. If d, = 0 it is clear
that d is a linear combination of (ai,0),... , (@m,0). So assume that d, # 0. Let
J’ be the set of all j such that d; # 0 and let J be the saturation of J' inside
{1,... ,0}. Note that X; = X+ divides Y. Thend, € {¢; | j € J,j # o)r: (¢o)r
and so d, = Y%, 7;b;5. Then it is easily checked that

i’: Y
d— rus,—
p=1 X

2Recall that for two ideals I, J C R the ideal quotient, I: J, is defined tobe I: J = {r €
Ri|rJ C I}.
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is a homogeneous syzygy with a zero in its oth coordinate and so is a linear
combination of (a1,0),... ,(@m,0), giving the desired result. [0

EXAMPLE 4.2.10. We will redo Example 4.2.7 using this method. We start
with S1 = Syz(2zyz) = (0). We now consider S, = Syz(2zyz, 5zy?). The only
saturated subset of {1,2} that need be considered is {1,2} itself (actually {2}
is saturated and contains 2 but will only yield the 0 syzygy). We note that
(2)z: (5)z = (2)z giving the syzygy (—5,2) of [ 2 5 ]. Thus Sz = ((—5y,22)).
We now turn to S3 and note that the saturated subsets of {1, 2,3} containing 3
are {2,3} and {1,2,3}. Working with the first one, we note that (5)z: (85)z =
(1)z giving the syzygy (—17,1) of [ 5 85 ] and so the syzygy (0,—17,z) in
S3. For the second set, {1,2,3}, we note that (2,5)z: (85)z = (1)z and we may
use the same syzygy as before. Therefore S3 = {(—5y, 22,0), (0, —17,z)). We
finally turn our attention to S; and note that the saturated subsets of {1,2, 3,4}
containing 4 are {1,4} and {1,2,3,4}. For {1,4} we compute (2)z: (6)z = (1)z
giving the syzygy (—3,1) of [ 2 6 ] and so the syzygy (—3z,0,0,y) in Sq.
Finally for {1,2,3,4} we need to compute (2,5,85)z: (6)z = (1)z and we may
use the same syzygy as we did for {1,4}. So we obtain

Ss= SYZ(2$‘!/2, 537!/2: 85y27 6$2Z) = ((_5ya 22,0, 0)1 (0’ -17,z, O)’ (_3$7 0,0, y))

We note that the syzygy (—40y, —z,z2,0) is not in this list, but was included
in Example 4.2.7. It is not needed, since (—40y, —z,zz2,0) = 2(0,-17,z,0) +
8(—5y,22,0,0).

We give the improvement of Algorithm 4.2.1 which makes use of Theorem 4.2.9
as Algorithm 4.2.2. We leave the easy proof that it is correct to the exercises
(Exercise 4.2.9).

We close this section by giving some examples of Algorithm 4.2.2. Since the
polynomials generated by the algorithm are scattered throughout the text of the
example, we have put boxes around them for easier reference.

EXAMPLE 4.2.11. We continue with R = Z and use lex with z > y in Z[z, ).
Let I = {fi, f2), where |f1 = 322y + Ty | and fo = 4zy? —5:1:.‘ The case 0 = 1
in the algorithm does not generate new polynomials, since {0)z: (3)z = {0} (we
note that, since R = Z is an integral domain, we never need to consider sin-
gleton saturated sets). Now consider the case ¢ = 2. The only non-singleton
saturated subset containing 2 is {1,2}. We compute (3)z: (4)z = (3)z which
gives the syzygy (4y, —3z) in Syz(3z2y, 4xy?). The corresponding S-polynomial,
dyf) — 3zf, = 1522 + 28y%, is minimal with respect to G and so we add
it to G as | f3 = 1522 + 28y°. | To compute new syzygies, we need only con-
sider the saturated subsets J C {1,2,3} containing 3 and they are {1,3} and
{1,2,3}. For {1, 3}, we compute (3)z: (15)z = (1)z giving the syzygy (5,0, —y) in
Syz(3x2y, 4zy?, 1522). The corresponding S-polynomial 5f, —yfs = —28y® +35y
is minimal with respect to G and so we add it to G as| f = —28y° + 35y. | We also
compute the syzygies corresponding to {1,2,3} by computing (3,4)z: (15)z =
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INPUT: F = {fi,... ,fs} C R[z1,... ,Zo] with f; #0 (1 <i < 3)
OUTPUT: G a Grébner basis for (fi,... , fs)
INITIALIZATION: G:=F,0:=1,m:=s
WHILE ¢ < m DO
Compute S = {subsets of {1,... ,0}, saturated with respect to
Ip(f1),--- ,1p(f5), which contain o}
FOR each J € § DO
X = lem(Ip(f;)j € J)
Compute generators b; 5, i = 1,... ,us
for (le(f;)1j € 5 # Vs (e(fo))
FORi=1,...,s; DO
Compute b; e R,j € J,j#0
such that Y b;lc(f;) +bisle(f,) =0
]EJaJ#U
Reduce 35 big st + by
where r is minimal with respect to G

IF r #0 THEN

fJ+bt )fd T,

fm+1 =T
m:=m+1

oc:=0+1

ALGORITHM 4.2.2. Grébner Basis Algorithm in R[z1,... ,z,] using Méller’s
Technigue

(1)z and we may use the same syzygy (5,0, —y) as before. The saturated subsets
of {1,2,3,4} containing 4 are {2,4} and {1,2,3,4}. For the first we compute
(4)z: (—28)z = (1)z which gives the syzygy (0,7y,0,z). The corresponding S-
polynomial is 7yf; + zfy4 = —35zy + 35zy = 0. As before the set {1,2,3,4}
gives no new polynomial. We see now that {f1, f2, f3, f4} is a Grobner basis for
(f1, f2). This is & minimal Grobner basis (see Exercise 4.1.9 for the definition of



220 CHAPTER 4. GROBNER BASES OVER RINGS

minimal Grébner basis).

EXAMPLE 4.2.12. We consider the ideal I in Zo[z,y] (where Zg is the ring
Z/20Z) generated by the polynomials and | fo =322 +y.| We
use the lex term order with z > y. We again follow Algorithm 4.2.2 to compute
a Grobner basis for I. We first consider ¢ = 1. The only saturated subset of {1}
is {1} itself. We compute (0): (4) = (5) (throughout this example we will use
(---) for (---)z,,). This gives rise to the polynomial 5f; = 5z. This polynomial
cannot be reduced so we let | f3 = 5z, | and we add it to G. We next compute
the saturated subsets of {1,2} which contain 2. These are {2}, and {1, 2}. Since
3 is a unit in Zgg, {2} does not give rise to a new polynomial, i.e. (0): (3) = (0).
For the set {1,2} we compute (4): (3) = (4) which gives rise to the polynomial
~3zf1 + dyfo = —3z% + 4y? A, 4y? + y. This polynomial cannot be reduced
so we let | f4 = 4y® + v, | and we add it to G. We now compute the saturated
subsets of {1,2,3} which contain 3. These are {3}, {1,3}, {2, 3}, {1,2, 3}. For the
set {3} we compute (0): (5) = (4) which gives rise to the polynomial 4f3 = 0.
For the set {1,3} we compute (4): (5) = (4) which gives rise to the polynomial
5fi —4yfs =5z 45, 0. For the set {2,3} we compute (3): (5) = (1) which gives
rise to the polynomial 15f; — zf3 = 15y which cannot be reduced. Therefore we
let and add it to G. For the set {1,2,3} we see that (4,3): (5) =
(3): {(6) = (1) and this gives rise to the same polynomial as the set {2,3}. We
next compute the saturated subsets of {1,2,3,4} which contain 4. These are
{4},{1,3,4}, and {1,2,3,4}. For the set {4} we compute (0): (4) = (5) which
gives rise to the polynomial 5f; = 5y 5, 0. For the set {1,3,4} we compute
(4,5): (4) = (1) which gives rise to the polynomial yf; — zf; = 0. The set
{1,2,3,4} does not generate a new polynomial, since (4, 3,5): (4) = (4,5): (4).
We compute the saturated subsets of {1,2,3,4,5} which contain 5. These are
{5},{1,3,5}, {1,2,3,5}, {4,5}, {1,3,4,5} and {1,2,3,4,5}. For the set {5} we
compute (0): (15) = (4) which gives rise to the polynomial 4f5 = 0. For the
set {1,3,5} we compute (4,5): (15) = (1) which gives rise to the polynomial
3yfs—z fs = 0. Note then that {1,2,3,5}, {1,3,4,5} and {1, 2, 3,4,5} do not give
rise to any new polynomials. Finally, for the set {4,5} we compute (4): (15) =
(0): (15) = (4) which does not give rise to a new polynomial. Thus the algorithm
stops and a Grobner basis for I is { f1, f2, f3, fa, f5}- Note that we have also shown
that

Syz(1t(£1), 1t{ f2), 1t(f3), 1t(fa), 16(f5)) =
((5a 0, 0’ Oa O), ("'32:) 4!/, 0, Oa O)a (01 01 4’ 01 0)) (5’ 0) -4% 0; 0)’ (0, 15, -z, 01 0)7

(0,0,0,5,0), (3, 0,0, —z,0),(0,0,0,0,4), (0,0, 3y,0, —z)).

This will be used later.
EXAMPLE 4.2.13. We will now give one more example where the coefficient
ring does not have the property that every ideal is principal. We let R =
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Z[y/=5] = {u + vv/=5|u,v € Z}. % is well-known (see, for example, [AdGo])
that Z[/=5] is not a UFD and so not a PID. Indeed it is not hard to show that
2,3,1 4 v/=5, and 1 — v/=5 are not units and cannot be factored in Z[/=5],
but that 2-3 = (1 + v=5)(1 — v/=5). According to Theorem 4.2.3, in order to
compute a Grobner basis in such a setting we will need to be able to compute
a homogeneous generating set for the syzygies of the leading terms of polyno-
mials. We will follow Algorithm 4.2.2. To do this we need to compute ideals of
the form {c1,- .. ,cp): {c) for c1,... ,ce, ¢ € Z[v/=5] (in this example, of course,
{c1,--- ,ce) means (ci, ... ,Ce)z,/—5)- One can do this either by using some el-
ementary theory of quadratic fields (see [AdGo]) to find generators for these
ideals, or one may proceed as follows. We need to find all o € Z[/=5] such that
ca = c1ay + -+~ + cpoy for some a,... ,ap € Z[+/=5]. Each of the c¢’s and a’s
are of the form u + v+/=5 for integers u,v. So in the desired equation, one can
simply equate the real and imaginary parts and obtain a pair of linear Diophan-
tine Equations. These are discussed in elementary number theory courses (see
Niven, Zuckerman, and Montgomery [NZM]). Many computer algebra systems
have the facility to solve such equations. Of course, this method will give a gen-
erating set for (c;,...,ce): (c) as a Z-module. This generating set is then also a
generating set for {c;,... ,ce): {c) as an Z[v/=5]-module, but some of the gener-
ators might be redundant. In the computations below we will write down only
the non-redundant generators but it is possible to verify that these generators
are correct by the above procedure. We illustrate this more specifically for the
case £ = 1. So in this case we need to solve c;a; = ca for a; and a. We write
1 =u+vvV—b5and c=u+vv/=5 and &y = B + 11 vV—b and a = B+7v/-5,
where u;, v1, 4, v, 81, M1, B, v are all integers. Then taking the real and imagi-
nary parts of the equation ¢;a; — ca = 0, we need to solve the pair of equations
u1 61 — 51y — uB + 5vy = 0 and v, 6; + wvim1 — vB — uy = 0 for the integers
B1,7M, B,7. For an alternative method to do these computations, which is in the
spirit of this book, see Exercise 4.3.1.

Let us consider the ideal I in (Z[/=5])[, y] generated by the two polynomials
fi =2zy+ v-5y|and | f = (1 + V=5)2? — zy. | We use the lex ordering with
z > y. We follow Algorithm 4.2.2 to compute a Grobner basis for I.

Since Z[v/=5] is an integral domain we do not need to consider saturated sets
which are singletons. So the first saturated set we must consider is {1,2}. We
compute (2): {1+ v=5) = (1 — v/=5,2). Since 3-2— (1 — v/=5)(1 + v/=5) =0,
the first generator, 1 — /=5, gives rise to the polynomial 3zf; — (1 —v/=5)yf2 =
(1 — v=5)zy® + 3\/=5zy, and this cannot be reduced any further using f1, fa-
We let | f3 = (1 ~ v=5)zy? + 3v/—5zy. | Also, the second generator,2, gives rise
to the polynomial

(1+V=B)zf1 —2yfs = 229° +V=5(1+vV=5)zy L V=B5(1+v=B)zy—vV=5y>.
We let | f4 = vV'=5(1 + V=5)zy ~ vV—5¢°.
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We now consider the saturated subsets of {1,2,3} which contain 3. They are
{1,3} and {1, 2, 3}. For the set {1, 3} we compute (2): (1—v/=5) = (1++/=5,2).
The first generator gives rise to the syzygy (—3y,0, (1 + +/~5)) and the second
to the syzygy ((1 — v=5)y,0, —2). These give rise to the following polynomials

—3yfi+ (1 + \/—_5)f3 3‘/_(1 + ‘/ﬁ)xy 3\/—y2 fa
—V=5)yfr —2fs = —6y/~5zy+v/=5(1 — vV=5)y?
L, (54 v=B)y? ~ 159

We let Ds = (54 v/=5)y? — 15y. | For the saturated set {1,2,3} we compute
(2,14 +/=5): (1 — +/=5) = (1). This gives rise to the polynomial

asyfi —y*fa—afs = -3vV=bz%y+azy® +v-5z?,

and we let | fo = —3v—5z%y + zy® + vV—bxy’.

We now consider the saturated subsets of {1, 2, 3, 4} which contain 4. They are
{1,4},{1,2,4}, {1, 3,4} and {1,2, 3, 4}. For {1, 4} we compute (2): (—~5++/=5) =
(=14 1/=5,2). These give rise to the polynomials

3V5fi+(-1+vVB)fa = (5+=B)y?—15y L%
(5 —v/=5)f1+2f4 = —2v/=5y%+5(1+v=5)y.

We let | fr = —2v/=5y® + 5(1 + +/=5)y. | For the saturated set {1,2,4} we com-
pute (2,1+ +/=5): (—5 + +/—5) = (1). This gives rise to the polynomial

3zfi —yfat+zfs = (1-+/=5)zy?+3v/=bzy L0

For the saturated set {1,3,4} we compute (2,1 —+/=5): (—5++/=5) = (1). This
gives rise to the polynomial

fi+fs+yfa = 3vV=5zy— V/=5y° +2V/=52,

and we let | fs = 3v/=5zy — vV=5y° + 2v/=5y>. | We note that fg cannot be re-
duced because 3v/—5 ¢ (2, -5 + v/=5). It is easy to see that for the saturated
set {1,2,3,4} we can use the same syzygy as we did for {1,3,4}.

We now consider the saturated subsets of {1,2,3,4,5} which contain 5. They
are {1,3,4,5} and {1,2,3,4,5}. For {1,3,4,5} we compute (2,1 — v/—5,-5 +
V=5): (5+ v/—5) = (1). This gives rise to the polynomial

yfi—fa—afs = 3(5— vV B)ay+3v—By? L0

It is easy to see that for the saturated set {1,2,3,4,5} we can use the same
syzygy as we did for {1, 3,4, 5}.

We now consider the saturated subsets of {1, 2, 3, 4, 5, 6} which contain 6. They
are {1,2,4,6} and {1,2,3,4,5,6}. For {1,2,4,6} we compute (2,1++/~5,—5+
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V=5): (3v/=5) = (2,1+ v/=5): (3y/=5) = (2,1 + v/—5). These generators gives

rise to the polynomials

3v=5zf1 +2f¢ = 2zy3 + 2/=5zy? — 152y
Ly 2y/=Bay? — 150y — By
By 15zy — /TBy + 52
Lo (54 VB + 15y
LN}
WV-Byfe+(1+vV-8)fs = (1+vV-5)zy® - (5+2v/-5)zy?

VR (54 B)ay? ~ VB

J o

For {1,2,3,4,5,6} we compute (2, 14++/=5, 1—/—=5, —54++/=5, 5+1/=5) :(3v/=5)
= (2,14 v/=5): (3v/=5) = (2,1+ +/=5) and so we can use the same syzygies as
in the previous case.

We now consider the saturated subsets of {1,2,3,4,5,6,7} which contain 7.
They are {5,7}, {1,3,4,5,7} and {1,2,3,4,5,6,7}. For {5,7} we compute (5 +
V=5): (=2v=B) = V=B(-1+ v=8): V=5(-2) = (-1+ v=5): (2) = (3,1—
v/=5). These generators give rise to the polynomials (1+ v/—=5)fs +3f7 = 0 and
2fs+(1—+v/=5) fr = 0. For {1,3,4,5,7} we compute (2,1— /=5, —5++/—5,5+
v=5): (—2v/=5) = (1). We obtain the polynomial

V-Syfi+zfr = 51+ v-5)zy— 5y
PO _5(1 - v=B)y? — 15v/ By
5 0.

It is easy to see that for the saturated set {1,2,3,4,5,6,7} we can use the same
syzygy as we did for {1,3,4,5,7}.

We now consider the saturated subsets of {1,2,3,4,5,6,7,8} which contain
8. They are {1,4,8}, {1,3,4,5,7,8}, {1,2,4,6,8} and {1,2,3,4,5,6,7,8}. For
{1,4,8} we compute (2, =5 + v/=5): (3v/=5) = (2, -5 + v/=5). We obtain the
polynomials

3v/=5f1 —2fs = 2v-5y% ~ 4/=5y* — 15y
% (5+V=B)y® — 15y
O
3V=5fs — (=5 +V-D)fs = —5(1 4+ v=85)y® +5(5 + 2v/-5)y?

—yf5_+3yf7 0.

For {1, 3,4,5,7,8} we compute (2, 1—v/=5, —-5+v/—5, 5+1/—5, —2¢/=5) :(3v/-5)
= (2, -5+ v/—=5), and so we may use the same syzygy as in the previous case.

For {1,2,4,6,8} we compute (2,1 + v/=5,—5 + v/=5,—3v/=5): (3v/=5) = (1)
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We obtain the polynomial

fo+zfs = (1-vTB)zy® +3v/Bzy? 2> 0.

It is easy to see that for the saturated set {1,2,3,4,5,6,7,8} we can use the
same syzygy as we did for {1, 3,4, 5,7, 8}.

We now have that the polynomials fy, fa, fs, fa, fs, f6, f7, f¢ form a Grébner
basis for I.

We note that the leading coefficients of f;, f4 and fs form an ideal which
is equal to (1) = Z[V-5], so we can add to the Grobner basis a polyno-
mial whose leading power product is zy and whose leading coefficient is 1. In-
deed, 8- 2+ 3(=5 + v/=5) + (—=1)3v/=5 = 1, and so this polynomial is 87, +
3fs — fo = ay + V-5y° — 5v/=5y® + 8V/—5y = fo.| It can then be shown that
{f2, fs, f2, fo} 15 also a Grobner basis for I (Exercise 4.2.10).

Exercises

4.2.1. Prove Theorem 4.2.3.

4.2.2. Prove the following: Let G = {gi,... , g:} be a set of non-zero polynomials
in A. Let B be a homogeneous generating set of Syz(1t(g1), ... ,lt(g:)).
Then G is a Grobner basis for the ideal (g1,... ,g:) if and only if for all
(h1,-.. ,ht) € B, we have higy + --- + hegs = v1g1 + --- + V:g: Where
Ip(h1g1 + -+ Fzg:) = max(lp(v1) Ip(g1), - . . ,Ip(ve) Ip(gy))- [Hint: See the
proof of Theorem 3.2.5.]

4.2.3. Show that in Moller’s method of computing syzygies of terms (i.e. in
Theorem 4.2.9 and Algorithm 4.2.2), if J C J' C {1,... ,0} with o € J,
such that

(cili€edj#or:(cor={c;|ie€ T ,j#0)r (C)r

and the set J has been used, then the set J' may be ignored.

4.2.4. Show that in Algorithm 4.2.2, if we consider the case where R = k is a
field then we may improve the algorithm as follows: For each o in the
main WHILE loop find the minimal number of distinct j1,..- ,Jr, With
1 < j, < o such that for each J € S there is a j, € J. Then in the
remainder of the WHILE loop we need only compute the reductions of
S(fj,, fs) for 1 < v < r. Use this method to redo Example 3.3.5. Compare
this result to the use of crit2 in Example 3.3.5.

4.2.5. Compute generators for the following syzygy modules.

a. For R = Z compute Syz(3z?y, 522z, 922, 7xy?z). [An answer: {(—5z,
3y,0,0), (-32%,0,22,0), (—4yz,92,0, ), (0,0, = Tzy, 92)}.]

b. For R = Zy5 compute Syz(2z2y, 522z, 922, Tzy*z). [An answer: {(0,3,
0,0), (52,9,0,0), (0,0,5,0), (322,0,22,0), (0, 0, 7zy, 92), (—-yz, —¥, O,
z)}]
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c. For R = Z[i] (where i = —1) compute Syz(3iz2y, (2 + i)x?z, 5y22,
7zy2). [An answer: {(—(2 + i)z, 3iy,0,0), (0, —(2 — 1)yz, 22, 0), (4iyz,
(2 - i)yz’ 0, :L‘), (Oa 0, —7zy, 5yz)}’]

4.2.6. For the ring R = Z compute a Grdbner basis for the ideals generated by

the given polynomials with respect to the given term order.

a. fi =2xy—=z, f, = 3y — 2% and lex with z < y.

b. fi =3z%y - 3yz +y, f2 = 52°2 — 82? and deglex withz > y > 2.
c. fi =622 + 92, f, = 1022y + 2zy and lex with z > y.

4.2.7. For the ring R = Z,5 compute a Grdobner basis for the ideal generated by
the polynomials f, = 2z%y + 3z and f, = 522z + y with respect to deglex
withz >y > 2.

4.2.8. For the ring R = Z[i] (where i = —1) compute a Grobner basis for
the ideal generated by the polynomials f; = 3iz%y + (1 4 4)z and fo =
(2 + i)x2z + y with respect to deglex with z >y > 2.

4.2.9. Prove that Algorithm 4.2.2 terminates and has the desired output.

4.2.10. Show that {fa, fs, f7, fo} forms a Grébner basis as asserted at the end of

Example 4.2.13.
4.2.11. Generalize the results in this section to the computation of Grobner bases
for R[z),... ,z,]-submodules of (R[zy,... ,Zs])™ (see Exercise 4.1.14).

4.3. Applications of Grobner Bases over Rings. We are interested in
applications similar to the ones in the previous two chapters. We have basically
seen in Section 4.1 how to solve the ideal membership problem and we will give
an example of this. We will then show how to compute a complete set of coset
representatives modulo an ideal. This requires more effort than it did in the
case of fields because now one has to take into account the ideals in the ring
R. We will then explore the use of elimination in this context to compute ideal
intersection, ideal quotients and ideals of relations. These applications are very
much the same as before and do not require any serious modifications in their
statements or proofs. We will close this section by showing how to compute a
generating set for the syzygy module of an arbitrary set of polynomials.

So let R be a Noetherian ring in which linear equations are solvable (see
Definition 4.1.5) and let A = R[z1,...,Ts|- Let I be a non-zero ideal of A.
Suppose that I = (fl,'“ ;fa): set F'= {fl,-n ’fs}, and let G = {gl’“' ,gt} be
a Grobner basis for I. Then by Theorem 4.1.12 we know that f € I if and only
if f i)+ 0. Thus we can determine whether or not f € I (ideal membership
problem). Moreover as we saw in Algorithm 4.1.1, if f € I, we can obtain
f = hig1 + .-+ + h:g: explicitly. Also, using Algorithm 4.2.2, we can find a
matrix T such that (g1,...,9:) = T(f1,--- ,fs). We can then substitute in for
the ¢;’s to obtain f as a linear combination of the f;’s, provided f € I.

EXAMPLE 4.3.1. We go back to Example 4.2.11. Recall that a Grébner basis
for the ideal generated by fi = 3z%y + Ty and f, = 4zy? — 5z in Z[z,y] with
respect to the lex ordering with = > y is {f1, f2, f3, fa} where f3 = 1522 4 28y
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and f; = —28y° + 35y. We let f = 2z%y? — 3%y + 522 — 4zy® — 122> + Sy +
15z + 14y? — 7y. First we verify that f € (f1, f2). We have
foEE fo (T ors)
= —32% —302% — 4zy® — 122y® + 5zy + 15z — 56y* + 14y° — Ty
=4 3022 — dzy® — 12zy% + Sy + 15z — 56y + 1497
20 _gzy® — 12212 + Bzy + 15z — 56y* + T0y?
Bl 19042 4+ 152 — 56y + T0y?

2k 56yt + 70
Wl .
Thus we have
f = (-Tzf2+202f3) — i —2f3 — yfo— 3f2 + 2yfs

= —H—(Tz+y+3)f2+(2° - 2)fs + 2yfa.
In Example 4.2.11 we saw that

N 1 0
f2 | _ 0 1 [ h ]
f3 4y =3z’ || fo ]’
Ja -4y +5 3zy

T

Thus f = (2y - )i + (-2 —y - 3)fa.

We now consider the problem of determining a complete set of coset repre-
sentatives for A/I, where I is a non-zero ideal of A. We adapt the method given
in Zacharias [Za]. In order to do this we must assume that given any ideal & of
R, we can determine a complete set C of coset representatives of R/S and that
we have a procedure to find, for all a € R, an element ¢ € C such that a = ¢
(mod ). If this is the case we say that R has effective coset representatives.
Such rings include the integers Z, the finite rings Z/nZ, the polynomial rings
over fields, Z[/=5|, and Z[/—1]. We consider a Grébner basis G = {g1,... ,9:}
for the ideal I. With respect to the set {lt(g1),...,1t(g:)} of leading terms of
G, we consider the saturated subsets J C {1,...,%t} as defined in Definition
4.2.4. However here we also consider J = @ to be saturated. Then for each
saturated subset J C {1,...,t}, we let I; denote the ideal of R generated by
{lc(g:) | ¢ € J} (if J = 0, then I; = {0}). Let C; denote a complete set of
coset representatives for R/I;. We assume that 0 € C;. Also, for each power
product X, let Jx = {i | Ip(g:) divides X}. It is clear that Jx is saturated for
all power products X (in the proof of Theorem 4.3.3 we will need C,, for all
power products X, and of course Jx cauld be equal to @ for some X and that is
why we had to add @ in our list of saturated subsets).
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DEFINITION 4.3.2. We call a polynomial r € A totally reduced provided that
for every power product X, if cX is the corresponding term of v (here, of course,
¢ € R may very well be 0), then c € Cj,. For a given polynomial f € A, we call
a polynomial r € A a normal form for f provided that f = r (mod I) and r is
totally reduced.

It should be emphasized that the definition of normal form depends not only
on the set of polynomials G, but also on the choices of the sets of coset repre-
sentatives C; for the set of saturated subsets J.

The complete set of coset representatives is given by the following

THEOREM 4.3.3. Let G be a Gribner basis for the non-zero ideal I of A.
Assume that for each saturated subset J C {1,... ,t}, we have chosen, as above,
a complete sets of coset representatives Cy for the ideal I;. Then every f € A has
a unique normal form. The normal form can be computed effectively provided
linear equations are solvable in R and R has effective coset representatives.

ProOOF. We will first show the existence of a normal form for f. The proof
will be constructive. (We note that this part of the proof does not depend on
the fact that G is a Grobner basis for I.) The proof will be similar in nature
to the reduction algorithm. We will use induction on lp(f) to obtain a totally
reduced polynomial r with f = (mod I) satisfying Ip(r) < Ip(f). If f = 0 then
the result is clear. Thus we assume the result for all polynomials whose leading
power product is less than lp(f), where we assume that f # 0. To simplify
the notation we set J = Jip5). We may choose ¢ € C; such that lc(f) = ¢
(mod Ij). (Note that ¢ = O if and only if f is reducible.) Then we may write
le(f) — ¢ = 3 ;¢ cile(g:) (this can be done effectively by our assumption that
linear equations are solvable in R). We consider

p(f)
=" Z “p(g)*
Write f, = clp(f) + fi- Then we have that Ip(f;) < Ip(f). Thus, by induction,
there is a polynomial r; which is totally reduced, satisfies Ip(r;) < Ip(f;) and
has the property that f{ = r; (mod I). We now have that

F=1 "(j ))gi+ (cIp(f) +71)

ieJ
=clp(f)+r (modI).

Let r = clp(f) + r1. Noting that Ip(r1) < Ip(fi) < Ip(f), we see that Ip(r) <
Ip(f). Finally, Ip(r1) < Ip(f) implies that r = clp(f) + r; is totally reduced and
so r is a normal form for f, and the induction is complete.

We next show the uniqueness of normal forms. So suppose that 7,72 are
totally reduced, f =, (mod I) and f =72 (mod I). Then we have r; —r € I
and, since G is a Grébner basis for I, we have ), — 7y £>+ 0; in particular,
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if ry # re, we have that r; — rp is reducible. Thus if X = Ip(r; — 72) and
¢ =lc(r; — r2) we have that ¢ € I, . Let d;, d2 be, respectively, the coefficients
of X in r;,72. Then since 7, and r; are totally reduced, d;, d» € Cj, . Thus since
¢ =dy — da # 0 we have that d; and d; represent distinct cosets mod I, and so
their difference cannot represent the 0 coset; i.e. ¢ ¢ I, . This is a contradiction.
Thus ¢ =0 and r; = 72, as desired. [

We note that in the case where R = k is a field, Theorem 4.3.3 asserts that a
k-basis for k[z1,...,Zs]/I consists of all power products X such that Jx = 0.
This is precisely the statement of Proposition 2.1.6.

ExXAMPLE 4.3.4. We go back to Example 4.2.12. Recall that a Grobner basis
for the ideal I = {4zy + z,3x% + y) in Zy[z, y] with respect to the lex ordering
with z > y was computed to be {fi, f2, f3, f1, fs}, where fi = dzy+ =z, f» =
322 +y, f3 = 5z, f4 = 49° + vy, fs = 15y. We wish to describe a complete
set of coset representatives for Zgo[z,y]/I. We follow Theorem 4.3.3 and we use
the notation given there. First note that if X is any power product not 1,z,
or y, then I, = Zz. We also have I;, = {0}, and I;, = I;, = (5). We now
choose a complete set Cj, of coset representatives for Zgg/I;, for each power
product X. Clearly for those ideals I, equal to Zgy, Cj, = {0}. We choose
Cj, = Cy, ={0,1,2,3,4}, and Cj, = Zyo. Therefore a complete set of coset
representatives for Zog[z, y]/I is the set {a+bz+cy | a € Z2, b,c € {0,1,2,3,4}}.

Thus, for example if f = 322y + 2zy + 13y — 5, we have

f o8 f(Boyfs —3zf) =322 + 22y + 13y — 5
L2y omy+12y—5
holy 19y —25 -5
= 2y+3z+15 (mod I).

As we did in Example 2.1.8 we can also construct a multiplication table for

Zyo[z,y]/I. Namely, we have xyf”———':>3 zy—yfs+fi =z, z? LN 2T =-Ty=

3y (mod I), and y? .ty 12 + f4 +yfs = y. Thus we obtain

X|1l|lz |y
1|1z |y
z|z|3yl|=x
ylylz |y
So, for example, (2 + 4z + 2y)(3 + 4z + 4y) = 6 + 14y + 162 + 8y* + dzy =
6+ 14y + 8y + 8y + 4z = 6 + 4z + 10y = 6 + 4z (mod I).

EXAMPLE 4.3.5. We go back to Example 4.2.13. Recall that a Grobner basis
for the ideal I = (2zy+ /=5y, (1 +v/—=5)z2 — zy) in (Z[/=5))[x, y] with respect
to the lex ordering with z > y was computed to be {f2, fs, f7, fo}, where f, =
(1 +v=B)z? ~zy, fs = (5+v=B)y* — 15y, fr = ~2¢/=By*> + (5+5y/=B)y, and
fo = zy + vV=5y® — 5v/=5y? + 8y/—5y. We wish to describe a complete set of
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coset representatives for (Z[v/~5])[z,y]/I. We follow Theorem 4.3.3 and we use
the notation given there. Note first that for every power product X not equal
to 1,2, or y*, v,pu > 1, we have I, = Z[v/-5]. We also have I;, =1I; =1I;, =
{0}, I,, = 1+ V=5) for v > 1, and Ij,. = (5++/=5,-2v=5) = (10,5 +
v/=5) for > 1. We now choose a complete set C;, of coset representatives for
Z[/=5)/I;y, for all power products X. Clearly, for those I, ’s equal to Z[y/=5)
we have Cj, = {0}. We choose C;,, = {0,1,2,3,4,5} for v > 2 (note that
6 € (1+ +/-5) and that a; + az/=5 = a1 — a3 (mod 1+ /=5)). We choose
Cs = {0,1,2,3,4,5,6,7,8,9} for p > 2 (as above we have a; + a2v/—5 =
a; — 5a3 (mod 5 + +/-5), and 10 € I,,.). Therefore a complete set of coset
representatives for (Z[v/—=5))[z,y]/I is

{a+bx+cy+zn:du$"+f:epy“ | a,b,cEZ[\/TS],

v=2 p=2

d, €{0,1,2,3,4,5}, and e, € {0,1,2,3,4,5,6,7, 8,9}}.

We now turn to applications of the method of elimination (see Sections 2.3
and 3.6). The proofs are very similar to the ones in those two sections, so most
of them will be omitted and left to the exercises.

Let y1,... ,¥m be new variables, and consider a non-zero ideal

ICAly,... ,¥m) =RBlz1,. .. 1 Z0, Y1y -+ » Yml-

We wish to “eliminate” the variables 4y, ... , ¥m, i.e. we wish to compute gener-
ators (and a Grébner basis) for the ideal I N A. First, we choose an elimination
order on the power products of Afyi,... ,ym] with the y variables larger than
the z variables (see Section 2.3). The next result is the analog of Theorems 2.3.4
and 3.6.6 and a generalization of Exercise 4.1.10 a.

THEOREM 4.3.6. With the notation set above, let G be a Grébner basis for I
with respect to an elimination order on Aly1, ... ,ym| with the y variables larger
than the = variables. Then GN A is a Grobner basis for IN A.

ProOOF. We will use the notation Lt4 and Lt () for the leading term ideals
in A and Ay, ... ,ym) respectively. Then we need to show that Lt4(GN A) =
Lta(INA). Soif 0 # f € I'N A then It(f) € Ltap(I) = Lty (G) and so
1t(f) is a linear combination of elements 1t(g) such that g € G with coefficients
in Afy1,-.. ,Yml. Since It(f) is a term involving only the z variables, we may
assume each summand is a term and involves only the z variables. Hence for
each g € G appearing in the sum for 1t(f), 1t(g) involves only the z variables and
thus, since we are using an elimination order with the y variables larger than the
x variables, each term in such a g involves only the z variables, i.e. g € GN A.
Thus 1t(f) € Lt4(G N A), as desired. O
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EXAMPLE 4.3.7. We go back to Example 4.2.12. Recall that a Grébner basis
for the ideal I = (4zy + z,3z% + y) in Zy[z, y] with respect to the lex ordering
with z > y was computed to be {4zy+z, 3z%+y, 5z, 4y°+y, 15y}. Using Theorem
4.3.6 and Exercise 4.1.10 a, we see that I N Zyg[y] = (4y% + v, 15y), and that
INZy = {0}.

EXAMPLE 4.3.8. We go back to Example 4.2.13. Recall that a Grobner basis
for the ideal I = (2zy + /=5y, (1 + v=5)z? — zy) in (Z[v/-5))[z, y] with respect
to the lex ordering with £ > y was computed to be

{22y + V=89, (1 + VTB)a? — 2y, (1 - VB)ay? + 3V ey,

V=5(1 4+ V=B)zy — V=542, (5 + V—=5)y° — 15y, —3v/—52%y + zy® + V—5zy?,
—2v/=5y% + 5(1 + V=5)y, 3v—bzy — v—by® + 2ﬁ3y2}-
Using Theorem 4.3.6 and Exercise 4.1.10 a, we see that
IN(ZV=8)[y] = ((5+ v=5)y* — 15y, —2v=5y* + 5(1 + V=5)y)
and 1N Z[y=5] = {0}.

Our first application will be to compute the intersection of two ideals of A
and the ideal quotient of two ideals of A. First, as in the ideal case over fields,
Proposition 2.3.5, and as in the module case, Proposition 3.6.8, we have

PROPOSITION 4.3.9. Let I = (f1,...,fs) and J = (g1,-.. ,g:) be ideals of A
and let w be a new variable. Consider the ideal

L= (wfi,...,wfs,(1—w)g,...,(1 —w)g:) C Alw] = R[z1,... ,Zn,w].
ThenINJ =LNA.

As a consequence of this result we obtain a method for computing generators
for the ideal 7N J C A: we first compute a Grobner basis G for the ideal L in
Proposition 4.3.9 with respect to an elimination order on the power products in
Alw] with w larger than the z variables; a Grébner basis for I N J is then given
by G N A.

EXAMPLE 4.3.10. In Z[z,y], we wish to compute (3z — 2,5y — 3) N (zy — 6).
So following Proposition 4.3.9 and Theorem 4.3.6 we consider the polynomials
fi = 3zw - 2w, fo = S5yw — 3w and f3 = zyw — 6w — zy + 6 and compute
(f1, f2, f3) N Z[z,y). We will outline the computation. We consider the deglex
ordering with z > y on the variables £ and ¥y and an elimination order between
w and z,y with w larger. We follow Algorithm 4.2.2 (observe that much use of
Exercise 4.2.3 is made in this computation). The first saturated set to consider is
{1,2} which gives rise to 5yfi — 3zfo —4 0. The only saturated set containing
3is {1,2,3} and this gives rise to f3 ~2yf +zfs — 4 4wy —8w—zy+6 = f4.
For the saturated sets containing 4 we need to consider {2,4} which gives rise to
—5f4+4f> = 28w+5zy—30 = f;5 and {1,2, 3,4} which gives rise to —z fy+4f3 =
8wz —24w+ %y —4zy—6x+24 = f. For the saturated sets containing 5 we need
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to consider {1,5} which gives rise to 3z fs —28f; — 1522y~ 10zy—90z+60 =
fr, {2,4,5} which gives rise to yfs — 7fs — 4 5zy® — 3zy — 30y + 18 = f3, and
{1,2,3,4,5} which gives the same result as the last set (Exercise 4.2.3). For
the saturated sets containing 6 we need to consider {1,5,6} which gives rise
to fo — 12f + zfs = 62y — 4zy — 36z + 24 = fy and {1,2,3,4,5,6} which
gives the same result as the previous set. For the saturated sets containing 7
we need only consider {1,2,3,4,5,6, 7} which gives rise to wfry — 5zyfi —+ 0.
The remaining cases (only 4 need to be computed) all go to zero and we see that
{fh f2’ f3’ f47 f5= f67 f71f87 fQ} is a Grébner basis for (flv f2’f3)‘ Thus

(3z — 2,5y — 3) N (xy — 6) = (5zy* — 3zy — 30y + 18, 15z%y — 10zy — 90z + 60,
6z%y — 4zy — 36z + 24).

We also note that fio = fr — 2fs = 3z%y — 2xy — 18z + 12 is in (f1, fo, f3) and

we can replace f7, fo by fio so that {fi, f2, fa, fs, fe, f8, f10} is also a Grébner
basis for (f1, f2, f3). We thus obtain the simpler generating set

(3z — 2,5y — 3) N (xy — 6) = (5zy* — 3zy — 30y + 18, 32y — 22y — 18z + 12).

The computation of ideal quotients is almost the same as in the previous cases
except that one must be careful of possible zero divisors in R and hence in A.

PROPOSITION 4.3.11. Let I = (f1,...,fs) and J = (g1,... ,9:) be ideals of
A. Then

t
InJ={feA|fIc}=)I:(g)
=1
Moreover, if
IN{g) ={(hg,... hg)

and g is not a zero divisor in A, then we have
I: (g) = (hl,... ,hg).

PROOF. The proof is exactly the same as in the ideal case over a field, see
Lemmas 2.3.10 and 2.3.11, until we must verify that I N (g) = (h1g,... ,heg)
implies that I: {(g) = (h1,... ,he) which requires that g must be canceled and
this requires that g not be a zero divisor. O

As a consequence of this result we obtain a method for computing generators
for the ideal I: J C A, provided that none of ¢, ... , g: are zero divisors.

EXAMPLE 4.3.12. In Z[z,y], we wish to compute (3z — 2,5y — 3): (zy — 6).
From Proposition 4.3.11 we need to compute (3z — 2,5y — 3) N (zy — 6) and
divide the generators of this ideal by zy — 6. This intersection was computed in
Example 4.3.10 and so dividing the polynomials obtained there by zy — 6 we
obtain immediately that

(3z — 2,5y — 3): (zy — 6) = (5y — 3,3z — 2).
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In Section 2.4 we used elimination to compute the kernel of an algebra homo-
morphism. Sometimes R[zy, ... ,Z,] is called an R-algebra, in order to emphasize
the special role played by the ring R. In a similar vein, a ring homomorphism
between two polynomial rings over R

é: R[ylrn ;ym] — R[ﬂ!l,... ,.’En]

is called an R-algebra homomorphism provided that ¢(r) =7 forallr € R. It is
then clear that ¢ is uniquely determined by

¢: Yi +— fi’

for fi,...,fm € Rlz1,...,Z,]. That is, if we let A € R[y1,... ,ym], say h =
Y, oyt - yum, where ¢, € R, v = (11,..., Vy) € N, and only finitely many
c,’s are non-zero, then we have

¢(h) =D cf - fur =h(fi,-.. , fm) € Rlz1, ..., T0].

Given this setup we have the analogue of Theorem 2.4.2.

THEOREM 4.3.13. With the notation above, let J = (y1 — f1,-- ;¥m — fm) C
Rly1,--- s Ym,Z1,- .- ,Tn). Then ker(¢) = JN R[y1,. .. ,Ym]

Another way to view Theorem 4.3.13 is that JN R[y1, ... ,¥m] gives the ideal
of relations among the polynomials f,... , f;.

EXAMPLE 4.3.14. Consider the Z-algebra homomorphism ¢: Z[u,v,w] —
Z[z,y] defined by ¢: u +— 3z — 2, ¢: v — 5y — 3 and ¢: w > zy — 6. We
wish to find the kernel of ¢. Following Theorem 4.3.13 we let f; =3z — 2 — u,
fo =5y —3—v, and f; = 2y — 6 — w and compute {f1, f2, f3) N Z[u, v, w]. We
consider the term orders deglex with u > v > w on u,v, w and deglex with
z >y on z,y and an elimination order between z,y and u, v, w with z,y larger.
We follow Algorithm 4.2.2. The first saturated set to consider is {1,2} which
gives rise to 5yf; — 3z f, —+ 0. The only saturated set containing 3 is {1,2,3}
and this gives rise to —f3 +2yfi —zfo = vr+3z —2uy —4dy+ w+ 6 = f4.
For the saturated sets containing 4 we need to consider {1,4} which gives rise
to3fs —vfr —4 —6uy — 12y +uv+3u+2v+3w+24 = f5 and {1,2,3,4}
which gives rise to yf; — vfs —4+ —2y%u — 4y? + yu + yw + 8y + vw + 6v = fs.
There are three saturated sets containing 5 but we need only consider (Exercise
4.2.3) {2,5} which gives rise to 5f5 + 6ufs = —uv —3u —2v+ 15w + 84 = f
and {1,2,3,5} which gives rise to zf5 + 6uf; —, 0. All remaining polynomials
arising from saturated sets containing 6 or 7 reduce to zero. Thus we see that
ker(¢) = (uv + 3u + 2v — 15w — 84).

‘We conclude this section by giving a method for computing a set of gener-
ators for the syzygy module, Syz(f,... , fs), for a set of non-zero polynomials
{f1,---, fs}in A. We do this by first computing Syz(g,. .. ,g:) for a Grébner ba-
sis {g1,... ,9:} for the ideal {f1,... , fs). The theorem describing Syz(gi,- .- ,gt)
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is the analogue of Theorem 3.4.1. In our case, we will have to replace Theorem
1.7.4 with Theorem 4.2.3.

Let {g1,... ,9:} be a Grébner basis in A. We let lt(g;) = ¢; X; for ¢; € R and
power products X;. Let B = {hy,... ,hs} be a homogeneous generating set of
the syzygy module Syz(1t(g1),...,lt(g:)) = Syz(c1Xi,...,c:X:). Assume that
for 1 < j < £ we have that h; = (d;1Yj1,...,¢;tYj:) for dj; € R and power
products Yj;, where for each j we assume that h; is homogeneous of degree
Z;; i.e. for all 4,7 such that dj; # 0, we have X;Y;; = Z;. (we assume that
Yj; = 0 if dj; =0.) Then by Theorem 4.2.3, for each j, 1 < j < £ the generalized
S-polynomial 3°;_; d;;Y;:g; has the representation

t t
Z d;iYjigi = E AjvGv,
=1 v=1

where

¢
120%e Ip(a;) Ip(gy) = IP(E d;iYjig:) < max, Y;i Ip(g:).

We now define for 1 < j < ¢,

i=1

8;j=h; — (a,l,... ,@jt) € At
We note that s; € Syz(g1,-..,9:).

THEOREM 4.3.15. With the notation above, the collection {8; |1 < j < £} is
a generating set for Syz(gi,... ,g:)-

PROOF. Suppose to the contrary that there exists (uy, ... ,u;) such that

(ua,...,us) € Syz(g1,... ,9:) — (8; | 1< j < 8).

Then we can choose such a (uy, ... ,u;) with X = max; <i<¢(Ip(u:) Ip(g:)) least.
Let

S={ie{l,...,t}|Ip(w)lp(g:) = X}.
Now for each i € {1,... ,t} we define u; as follows:
o = { w; ifi ¢S
t u; — lt(u;) ifi € S.

Of course we have that for all ¢, Ip(u]) Ip(g:) < X. Now, for ¢ € S, let 1t(u;) =
¢, X]. So for all 2 € S we have X;X] = X. Since (u1,...,u) € Syz(g1,... ,9t),
we see that

Y daXiX, =0,

i€S
and so

Y diXie; € Syz(cr Xy, - .. ,ceXe).
i€S
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Thus, we may write

L
D ciXien=3 vshs,
€S Jj=1
for some v; € A. We note that, we may assume that either v; = 0 or that v; =
b & 7z b; € R. We can see this since, for each i € S, we have ¢, X = 21—1 v;d;; Y

from which we obtain, after multiplying through by X;, ¢.X = Zﬁ=1 vjd;. Z;;
and thus the power products involved are independent of i. Then we have

(u1,...,u) = ZcﬁX{e,+(u’1,...,u;)

tGS
= Eb,z hj + (4}, ... ,ub)
J"'l i
X
ZbJZ 8; + (ul,... ,ut)+ZbJZ (@j1,. .. ,a5¢)-
j=1 j=1

We define

('wl,... ,'wt) = (u;.v . :W)+§bjz (a]17 . aajt)'
We note that (wy,...,w;) is in Syz(gi,...,q) —(8; | 1 < j < ), since
(u1,-..,u) and each s; are in Syz(gs,...,g:) and (u,...,uw) ¢ (s, | 1 <
Jj < £). We will obtain the desired contradiction by proving that

e <t(lp('wu) Ip(9.)) < X.

For each v € {1,... ,t} we have

X
Ip(w,)1p(g,) = Ip(u, +Zb’Z ajv) X,
J=1

IA

max(lp(u,,), 11232{ ( lp(a)u)))xv

But, by definition of u,,, we have Ip(u, )X, < X. Also,

X
Z lp(aJV)X <111<182( Z

Therefore Ip(w,)1p(g,) < X for each v € {1,... ,t} violating the condition that
X = maxi<;<¢(Ip(w:) Ip(g:)) is least. O

X% = x.

We now turn our attention to computing Syz(fi,...,fs), for a collection
{f1,-.., fs} of non-zero polynomials in A that do not necessarily form a Grébner
basis. We first compute a Grobner basis {g1,...,¢:} for {f1,...,fs). Set F =
[f1 cee  fs ] and G = [gl s Gt ].Wecancomputeatxsmatrbcs
and an s X ¢t matrix T with entries in A such that FF = GS and G = FT. (Recall
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that S is obtained using Algorithm 4.1.1 and T is obtained by keeping track
of the reductions in Algorithm 4.2.1 or Algoritbm 4.2.2.) Now using Theorem
4.3.15, we can compute a generating set {s1,..., 8¢} for Syz(G). Then exactly
as we did in Theorem 3.4.3 we have (Exercise 4.3.12)

THEOREM 4.3.16. With the notation above we have
SYZ(fl, s :fa) = <Tsl) cee ,strly LR ,"'3) - Aa;
where r1,... ,75 are the columns of I, — T'S.

ExaMPLE 4.3.17. We go back to Example 4.2.12. Recall that a Grébner
basis for the ideal I = (f1, f2) in Zyoz,y]|, where fi = 4zy + = and fo =
3z2 + y, with respect to the lex ordering with z > y, was computed to be f;,
f2y f3 =5z, f1 = 49y® +y, fs = 15y. We wish to compute a generating set for
Syz(f1, f2, f3, fa, f5) and Syz(f1, f2). As in Theorem 4.3.15, we first compute a
homogeneous generating set for

Syz(lt(fl)) 1t(f2)1 lt(f3): lt(f4): lt(fS)) = SYZ(4-'B‘!/, 3'7:2, 5$: 4y2: 15y)'

In Example 4.2.12 we found that the syzygy module is generated by (5, 0,0, 0,0),
(_3:6) 4‘!/, 07 07 0)’ (0’ 0, 43 0’ 0)) (57 0’ —4% 07 0)’ (0’ 15’ -z, 0: 0): (0’ 0: 0: 5: 0)) (y; 0:
0,-z,0), (0,0,0,0,4), (0,0,3y,0, —z). These syzygies give rise to the following
polynomials

5f1 = b5z =f3

—3zfy +4yfa = —3z%+4? 2, Wr+y=1f1
4f3 = 0

5f1 —4yfs = bz=f3

15f; —~zfs = 15y=fs

5f4 = 5y=3fs

yf—zfs =0

4f5 = 0

yfs—zfs = 0.

Therefore
Syz(f1, f2, f3; fa; J5) =
((5’ 0’ —1’ 0; 0)7 (—313, 4‘!] + 17 0, _‘1’ 0)’ (03 0’ 4’ 0) 0)’ (5’ 07 _4y - 17 0’ 0);

(0,15, —z,0,-1), (0,0,0,5,—3), (y,0,0,—z,0), (0,0,0,0,4), (0,0, 3y, 0, —z)).
To compute Syz(f1, f2), we first compute the matrices S and T" such that

[fi fo f5 fa fs]=[FHA f]T, and
[A R]l=[hH Ff2 fs fa f5]8.
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It is easy to see that

10
01
1 05 -3z -5z
S=|(0 0| andT = [ ] .
0 0 01 0 49y+1 -5
00
‘We have
T(5,0,—1,0,0) = (0,0)
T(-3z,4y+1,0,-1,0) = (0,0)
7(0,0,4,0,0) = (0,0)
T(5,0,—4y —1,0,0) = (0,0)
T(0,15,—=z,0,-1) = (0,0)
7(0,0,0,5,—3) = (0,0)
T(y7 0,0, -z, 0) = (y + 3:52’ —4zy — x)
T(0,0,0,0,4) = (0,0)
7(0,0,3y,0, —x) = (15y + 5z2,5z).
Finally we have
00
nors=[0 0],
Therefore
Syz(f1, f2) = ((y + 322, —4zy — x), (15y + 522, 5z)).
Exercises
4.3.1. In this exercise we give another method for computing the ideals in Exam-

4.3.2.

4.3.3.

ple 4.2.13. We first observe that Z[/=—5] & Z[z]/(z? + 5) under the map
v=5 + z+ (2? +5). Thus to find, for example, (2): (1++/=5), we need
to find the syzygies of the matrix [ 1+z 2 22+5 ] and read off the
coefficients of 1+ . We note that {1+z,2,z%+5} is a Grobner basis and
we can compute a generating set Syz(1+z,2,z2+5) = {(-2,1+z,0), (1-
z,-3,1), (0,22 + 5,—2)} which yields (2): (1 + /=5) = (-2,1 — V/=5).
Verify the statements made so far and then go on to use this method to
compute all of the ideal quotients in Example 4.2.13.

Generalize Exercise 4.3.1 to the case where Z[z]/(z? + 5) is replaced by
R[z,,... ,z,]/I, where R is a commutative ring and I is an ideal in
R[zi,... 5], that is, give a method for computing generators for ideal
quotients in R[zy,...,z,)/1.

As in Example 4.2.12, consider the ideal I C Zgy|z,y| generated by f; =
4zy +z and f; = 3z2 +y. Show that f = 12x3y? — 28y — 102% + 422y —
4z%y — 4zy® — 4zy? + 11zy — 6z € I and write f as a linear combination
of f 1 and f2.
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4.3.4. In Example 4.2.11 compute a complete set of coset representatives for
Z[z,y]/I. Find the totally reduced form of 5x3y3, 323y® and 42313.

4.3.5. Prove Proposition 4.3.9.

4.3.6. In Z[z,y] compute (3z —2, zy — 6) N (5y — 3). [Answer: (15zy— 9z — 10y +
6,5zy% — 48zy + 27z, 10y2 — 96y + 54).]

4.3.7. Prove Proposition 4.3.11.

4.3.8. In Z|z, y] compute (3z—2, zy—6): {5y —3). [Hint: Look at Exercise 4.3.6.]

4.3.9. Prove Theorem 4.3.13.

4.3.10. Consider the Z-algebra homomorphism ¢: Z[u,v] — Z[z,y] defined by
¢: u+—— 3z — 2 and ¢: v — zy — 5. Compute generators for ker(¢).

4.3.11. Consider the Z-algebra homomorphism ¢: Z[u,v,w] — Z[z,y| defined
by ¢:u — 3z -2, ¢: v — 2y — 5 and ¢: w — = — 5y. Compute
generators for ker(¢).

4.3.12. Prove Theorem 4.3.16.

4.3.13. Compute generators for the syzygy module of the GrSbner bases con-
structed in Exercise 4.2.6. Use this to construct the syzygy module for
the original polynomials (of course, by unique factorization, this latter
problem is trivial). Repeat this exercise for Exercises 4.2.7 and 4.2.8.

4.3.14. Compute Syz(f2, fs, f7, fo) for the Grobner basis in Example 4.2.13 (al-
though this problem is quite doable, it is a long, messy computation).

4.3.15. The following exercise depends on Exercises 4.1.14 and 4.2.11. Generalize
the following to the case of R[z,, ... ,Zs]-submodules of R[z,,... ,z,]™.

. Tasks (i) and (ii) at the beginning of Section 3.6.

. Task (iii) at the beginning of Section 3.6.

. Theorem 3.6.6.

. Theorems 3.7.3 and 3.7.6 (of course use the ideas in Theorems 4.3.15

and 4.3.16).
e. As much of Section 3.8 as energy permits.

4.4. A Primality Test. In this section we will give an algorithm that will
determine whether a given ideal I in A = R[z,... ,z,] is prime or not. Recall
that an ideal P is called prime if and only if given any polynomials f,g €
R[z,,... ,z,) with fg € P, we have f € P or g € P. This is easily seen to be
equivalent to the statement that the ring R[z,,... ,Z,]/P is an integral domain.
Prime ideals are basic building blocks like prime integers are building blocks in
Z. Geometrically, prime ideals in k[z1, ... ,Z»], where k is a field, correspond to
irreducible varieties (varieties which are not the union of two proper subvarieties)
(see [CLOS]). Algebraically, any radical ideal is the intersection of prime ideals.
The test for primality that we present in this section is taken from the paper of
P. Gianni, B. Trager and G. Zacharias [GTZ].

Before we give the primality test, we must consider rings of fractions of the
ring A. Although this is not strictly necessary, we will assume when discussing
rings of fractions that R is an integral domain, since that is all that is needed in

o T
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order to obtain the primality test (even in the case where R is not an integral
domain). Then A is also an integral domain. We have the field of fractions

k={irseaq20]

of A. We consider certain subrings of K. Let S C A be a multiplicative set; that
is,1€85,0¢ S, and if f,g € S then fg € S. Examples of multiplicative sets are
S={g9gecA|g+#0},S={ge A|g¢ P}, where P is a prime ideal in A, and
S ={g”|veN}forafixed g € A

Given a multiplicative set S C A we definé the subring S~!4 of K by

S‘1A={§GK|f€Aandg€S}.

It is easy to see that S~'A is a subring of K, which we call the ring of fractions
of A with respect to S. In the three examples above, if S = {g € A | g # 0},
then ST!A=K;if S={g€ A| g ¢ P}, then S~1A is called the local ring at P
and is denoted by Ap; and finally if S = {g” | v € N} then S~14 = {-f— | fe
A and v € N} is denoted by A,. We note that A is a subring of S~1A4, since for
all f € A, we bave f = iandleS by assumption.

Our main concern is the saturation of a non-zero ideal I of A with respect to
S, which is defined to be

S7lInA,

where S~ = {i | f € I and g € S}. It is readily seen that S~!7 is an ideal in
S-1A and is, in fact the ideal in S~1A generated by the set I. It is often also
written as I(S~!A), since every element of $~7 is the product of an element
of I and an element of S—!A. We show that for two multiplicative sets S we
can easily compute generators for the saturation of an ideal I with respect to
S, namely for the cases where S = {¢”|v = 0,1,...} (Proposition 4.4.1) and
S = {r € R|r # 0} (Proposition 4.4.4).

PROPOSITION 4.4.1. Let R be an integral domain. Let g€ A, g £ 0. Let w be
a new variable. Consider the ideal (I,wg — 1) of A{w]. Then

IA,NA=({I,wg—1)NA.

PRrOOF. Let f € IA; N A. Then there is a non-negative integer v such that
g”f € I. Then w¥g” f € I A[w] C (I,wg — 1) and so

f=wg' f+(1-w'g")f €({l,wg~1),
as desired. Conversely, let f € (I, wg — 1) N A. Then,

f=f($1)”- ,27") = ng(xlrn ’zn)hp.(wly--- :2n,w)

u=1

+(wg(zy,... ,2n) — Dho(z1,... ,Zn,w) € A= R[z1,...,2Z4,),
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where g, € I and h, € A[w] for all u. Since the variable w does not appear in
f = f(z1,... ,7,) we may substitute w = %, which shows that f € IA,. O

Proposition 4.4.1 should be compared with Theorem 2.2.13.

Thus, in order to compute generators for the saturation of an ideal ] C A=
R[z,,... ,z,] with respect to S = {¢” | v € N} we consider an elimination order
on the variables z,,... ,z,,w with w bigger than the z variables. We compute
a Grobner basis, G, for the ideal (I,wg — 1) in A[w] = R[z1,... ,Zn,w]. Then
G N A is a Grobner basis for this saturation (Theorem 4.3.6).

‘We will give an example which illustrates Proposition 4.4.1 in Example 4.4.6.

Now let S = R— {0}, and let k denote the quotient field of R (i.e. k = S~1R).
In order to compute generators for the saturation of I with respect to S, we need
two preliminary results.

For an integral domain R, let S be any multiplicative subset of R. We note
that (S~'R)[z1,... ,%s] = S~Y(R|z1,... ,Zn]) (this is an easy exercise). In this
situation we see that Grobner bases are well-behaved.

PROPOSITION 4.4.2. Let R be an integral domain. Let S C R be a multiplica-
tive set and let I C A be a non-zero ideal of A. Let G be a Grébner basis for I
with respect to some term order. Then G is a Grébner basis for the ideal S~'I
in ST1A.

Proor. This follows easily from the third characterization of Grobner basis
in Theorem 4.1.12. Namely, let f € S~1I. Then there is a s € § C R such that
sf € I. Suppose that G = {g1,... ,6:}. Then sf = hig; + - + hsg; such that
Ip(sf) = max;<i<e(Ip(hi) Ip(g:)). Thus f = (2h1)gy +-- -+ (2he)g:. Since R is an
integral domain, we have Ip(sf) = Ip(f) and Ip(1h;) =1p(h;) (1 <i <t). Thus
we have a representation of f in terms of g,,... , g; of the desired type showing
that G = {g1,... ,9:} is a Grobner basis for S~1I. O

We note that in the following lemma we do not need that R be an integral
domain.

LEMMA 4.4.3. Let J C I be ideals in A and assume that Lt(I) C Lt(J). Then
J=1.

ProoF. Of course, since J C I, we have that Lt(J) = Lt(I). We observe that
the proof of Theorem 4.1.12 did not require that the set G be a finite set. Then
we see that J is a (infinite) Grobner basis for I, and hence by Corollary 4.1.15,
J generates I. But J is an ideal and so generates itself, that is, J = 1. O

Recall that for s € R we denote by R, = {5 | r € R,v € N}. We now give
the result which, when combined with Proposition 4.4.1, allows us to compute
generators for the saturation of an ideal I with respect to S = R — {0}.
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PROPOSITION 4.4.4. Let R be an integral domain with k its quotient field. Let
I C A= R[zy,...,z,) be a non-zero ideal and let G = {g1, ... ,9:} be a Grébner
basis for I with respect to some term ordering. Set s = lc(g1)1c(gz) - - lc(gr)-
Then

(4.4.1) Ik[zy,... ,za) N Rz, ... ,Zn] = IRg[z1,- .. ;Zn) N R[Z1,... ,Zn)].

PROOF. We will need leading term ideals in R[zi, ... ,z,], which we denote
by Lt, and in R;[z;,...,zy), which we denote by Lt,. We note that it suffices
to show that

(442) Lt (Ik[z1, ... ,2n] N Relza, ... , 7)) € Lts(IRs[z1, . - ,2n)).

Indeed, if Equation (4.4.2) holds, we have from Lemma 4.4.3, applied to the
ring Rs[z1, ... ,@y], that Ik[z1,... ,Zn] N Rs[z1,. .. ,Zn] = IRs[z1,... ,z,]- The
desired result (4.4.1) follows by intersecting this last equation with R[z;,... ,z,).
CLamM: Lt(D)k[zy,... ,za)NR[21, ... ,Zn] = Lt(D)Rs[z1,. .. ,Za]NR[Zy, ... ,Zn)-

Assuming the Claim, we prove (4.4.2) as follows. We let f € Ik[z;,... ,z,]N
R,[z1,... ,Z,].- We need to show that 1t(f) is in Lt,(IR;[z1,... ,Z,]). Since, by
Proposition 4.4.2, G is a Grobner basis for Ik[z1,... ,Z,], we may write, by
Theorem 4.1.12, f = hyg; + --- + hyg; where h; € k[zi,...,%,] and Ip(f) =
max1<i<t(Ip(h:) 1p(g:))- Let V' = {i | Ip(f) = Ip(h:)Ip(g:)}. Then It(f) =
> icy (i) 1t(g:). Since f € Re[z;,... ,z,) there is an non-negative integer p
such that s*f € R[z,,... ,Z,]. We see that

It(s*f) = th(s“hi) 1t(g:) € Lt(D)k[z1,--. ,Zn) N R[z1,... ,Zn),
1€V
and so from the Claim
lt(S"f) € Lt(I)Rs[xl, P ,xn] ﬂR[a:l, vee ,:l:n].

Thus, recalling that Lt(I) = Lt(G), we may write

t
6(s#f) = Y = X 16(g5),
=12
for a; € R, non-negative integers v;, and power products X;, such that Ip(f) =
X 1p(g:) for all 7 such that a; # 0. Hence

t
It(f) = ;su%‘;xi 1t(g:) € Lts(IRs[z1, ... ,2n]),
since 1t(g;) € Lts(IR;[z1,... ,Zx]), as desired.

Jt remains to prove the Claim. We will show that both sides are equal to the
ideal, (Ip(¢:) | 1 << t) in R[z1,...,%s]. We first note that B, C k and so we
have immediately that Lt(I)Rs[z1, - . . ,Zn]NR[Z1,... , Zn] C Lt(D)k[z1,... ,2,]N
R[z,,... ,z,]. We write lt(g;) = ¢;X; for ¢; € R and a power product X;.
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Then, since s = a;c; for some a; € R, by the definition of s, we have that
X; = %‘(Q‘Xi) € Lt(I)Rs[xl,. .. ,:I:n] and so we see that

(Xi|1<i<t) CL(D)R,[z1,- .- ;Tn] N Rlz1,. -, Zn].

It remains to show that Lt(I)k[z1,... ,Za] N R[Z1,...,22] C(X; |1 < i < B).
Since Lt(I) = Lt(G) we can express each element f of Lt(I)k[z1,...,Zn] N
R[z,,... ,Zn] as a linear combination of the X; with coefficients in k[z1,... ,Z,)].
Let ¢X be a term in f, where ¢ € R and X is a power product. Then in order
for ¢ to be non-zero we must have an X; dividing X and then we see that

Lt(I)k[zl)“- axn] lﬁ"R[-'l:la-” »ZTn] C (Xi |1<i<t),
as desired. [

We note that if R is a UFD, then the element s in Proposition 4.4.4 can be
replaced by s = lem(lc(g;)|1 < i < t) (Exercise 4.4.1).

COROLLARY 4.4.5. Let R be an integral domain in which linear equations are
solvable and let k be its quotient field. Let I C A = R|z\,... ,Zn| be an ideal
Then we can compute generators for the ideal

Ik[zy,- .. ,za] N R[Z1, ... ,Z4].
ProOF. This follows from Proposition 4.4.4 and Proposition 4.4.1. O

EXAMPLE 4.4.6. We consider Example 4.2.11 and compute the saturation
of I = (3z2y + Ty,4xy? — 5z) with respect to Q[z,y]. That is, we compute
IQ[z,y] N Z[z,y]. In that example we computed a Grobner basis for I, with
respect to lex with z > y, to be f, = 3z%y+T7y, fo = 4xy? -5z, f3 = 1522 +28y2,
and f; = 28y® — 35y. Then, following Proposition 4.4.4 and Exercise 4.4.1, we
need to compute IZ,20[z, y|NZ[z, y), since lem(3, 4, 15, 28) = 420 (here, of course,
we are adopting the notation of this section and Zs99 does not mean the integers
mod 420). Then, from Proposition 4.4.1, we need to compute (fi, f2, 420w —
1) N Z[z, y], which we do using Theorem 4.3.6. We, of course, begin with the
polynomials f1, fo, f3, f4 together with fs = 420w — 1 and observe that, since
f1, f2, f3, f1 is a Grobner basis, we may start with 0 = 5 in Algorithm 4.2.2,
provided we use the lex term ordering with w > = > y. We will not go through
the computations, but will note that {fi, fo, f3, fa, f5, 525wz —~ zy?, 784wy +
22, 525wy —13, 980wz + 8, 980wy +x2y, 4y° — 5y, 33 +28zy? — 28z} is a Grobner
basis for (f1, f2,420w — 1), and hence {f1, f2, f3, f1, 44> — 5y, 3z° + 28zy? — 28z}
is a Grobner basis for IQ[z, y] N Z[z, ).

Finally we are ready to discuss the issue of primality in rings. We are no longer
assuming that R is an integral domain. We need two lemmas from commutative
algebra which give criteria for when an ideal in R|z;,... ,z,] is prime.
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LEMMA 44.7. Let I C R[z;,... ,Zn] be an ideal. Then I is a prime ideal if
and only if the image of I in (R/I N R)[z1,... ,Z,] is prime. Moreover, in this
case I N R is prime.

PROOF. For r € R we let 7 = r+IN R be the image of r in R/INR. For f =
2{__1 a;X; € R[zq,... ,z,], with a; € R and power products X;, we write f =
Zf:l @; X, its image in (R/I N R)[z1,-.. ,T,]. We define a ring homomorphism

¢: (R/INR)[zy,...,Zn] — Rlz1,-..,Zn]/]
by

] y;
¢: Y w@Xi— Y aXi+1
=1 =1

That the map is well-defined follows since if Zf=1 @;X; =0, then a; € INR for
all 7 and so clearly Zf=1 a;X; € 1. It is then easy to see that ¢ is onto and ker(¢)
is the image of I in (R/INR)[z;,... ,Z,]. It is now immediate that I is a prime
ideal if and only if the image of I in (R/I N R)[z1,-.. ,Zx] is prime. Finally, it
is trivially seen that if I is prime thensois INR. O

LEMMA 4.4.8. Let R be an integral domain with quotient field k and let I C
R[zy,... ,z,] be an ideal such that I N R = {0}. Then I is prime if and only if
Ik[zy,... ,z,)] is prime in k[z1,... ,z,] and I = Ik[z,,... , 2] N R[z1,... ,Zn].

PROOF. We first assume that I is a prime ideal in R[z1,...,x,]. Let f,g €
k[z1,...,%,] and assume that fg € Ik[zy,... ,Zn]. Then fg = 2 such that
h €I and r € R. Let d,e € R be such that df,eg € R[z,...,Z,). Then
we have r(df)(eg) = deh € I and so r(df) € I or eg € I, since I is prime
in R[zy,...,Z,]. We then have immediately that f € Ik[zi,...,z,] or g €
Ik[z,,... ,Z,], and so Ik[zy,...,Z,] is prime, as desired. Moreover, let % €
Ik[zy,... ,Za] N Rz, ... ,zn) with R € I and 7 € R, r # 0. Then r(2) € I and
sor € I or 2 €I (recall that b € R[zy,... ,zn]). By the hypothesis, INR = {0},
r ¢ I and so 2 € I. The reverse inclusion is trivial.

We now assume that the ideal Ik[zy,...,Zy] is prime in k[z,,... ,z,] and
I = Ik[zy,... ,z,] N R[zy,... ,z,]. Let f,g € R[zy,...,2,] and assume that
fg € I.Then fg € Ik[z,,... ,z,] and so by hypothesis, f € Ik[z;,... ,z,]0rg €
Ik[zy,... ,T,]). We assume that f € Ik[zy,... ,z,]. Then f € Ik[zy,... ,z,] N
R[zy,... ,z,] = I and so we see that I is a prime ideal. O

COROLLARY 4.4.9. Let I C RJz] be an ideal. Then I is prime if and only if
(i) INR is a prime ideal in R and
(ii) if welet R' = R/INR, K’ be the quotient field of R', and I' be the image of
I in R'[z], then I' R'[z] is a prime ideal of R'[z], and I' = I'K'[z] N R'[z].

ProoF. Noting that I’ N R’ = {0}, this follows immediately from Lemmas
44.7and 4.4.8. 0O
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Since R[zy,... ,%Zn] = (R[z1,.-. ;Zn-1])[Zs], Corollary 4.4.9 gives us an in-
ductive technique of determining whether a given ideal in Rz, ... ,Z] is prime.
The idea is summarized in the next paragraph.

For a single variable = and an ideal I C R[z] we want to decide if I is a prime
ideal. By Corollary 4.4.9, we first need to determine whether I N R is prime.
We may compute a generating set for I N R from Theorem 4.3.6 and then,
assuming we can determine whether ideals in R are prime, we can determine
whether I N R is prime. In this case we will consider the integral domain R’ =
R/I N R, its quotient field k', and the ideal I', the image of I in R'[z]. Again
by Corollary 4.4.9, we then need to determine whether I’k’[z] is a prime ideal
for one variable z. Since z is a single variable, k’[z] is a PID and, using the
Euclidean Algorithm (Algorithm 1.3.2) on the known generators of I’, we can
determine a single generator f of I'k’[z]. Now, assuming that we can determine
whether f is irreducible or not in k’[z], we can determine whether I'k'[z] is a
prime ideal or not. Finally, by Corollary 4.4.5 we can determine whether or not
I' = I't'[z] N R[z].

Thus we see that in order to have an algorithm determining the primality
of ideals in R[z),...,Zy], we must assume that we can do similar things in
R. Specifically, we must assume that we can determine when an ideal in R is
prime. Moreover, we must assume that we can determine, given a prime ideal
P of R[z,,... 25|, whether polynomials in one variable with coefficients in the
quotient field of R[z,,...,z,]/P are irreducible or not. For example Z and Q
have these properties.

The algorithm for determining the primality of an ideal is given as Algorithm
44.1.

EXAMPLE 4.4.10. We now give an example of Algorithm 4.4.1. Let I C
Q|z, ¥, z] be the ideal generated by f; = zz—y?, fo = 28 —yz and f3 = 2%y — 2%
As we saw in Exercise 2.5.5, this is the ideal of relations among the three poly-
nomials 3,#4,¢% and hence must be a prime ideal (since then Qlz,y,z]/I is
isomorphic to a subring of the integral domain Q[t]). In this example we will
show that I is prime using Algorithm 4.4.1. We use the notation established in
that algorithm. We first compute a Grobner basis G for I using the lex order-
ing with £ > y > z and get G = {f1, f2, f3, fa, fs}, where fs = zy® — 2° and
fs=9y>—2*. Wehaven =3, Jy = J3 = {0), Jo = (¢° — 2%), and J; = I. We
first note that the case i = 4 in the algorithm is trivial.

The next case to consider is i = 3. We have J, = I NQy, 2] = (¥° — 24).
Thus, R = R3/J3 = Q[z], J' = JoR'[y] = (¥° —2*)Qly, 2], and?® k¥’ = Q(z). Then
J'K'[y] = (v°—2*)Q(2)[y] and so f = y® —z*. Here f is viewed as a polynomial in
y with coefficients in Q(z). We use “brute force” to see that f is irreducible over
Q(2): It cannot have a root in Q(z), since there cannot be a rational function
in Q(z) whose fifth power is the fourth power of the prime z € Q[2], because of

3Here Q(z) denotes the field of rational functions in 2, that is, the quotient field of Q2]
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INPUT: I, an ideal of R[zy,... ,z,]
OUTPUT: TRUE if I is a prime ideal, FALSE otherwise
Set R; := R|[z,,... ,z5) fori=1,... ,n,and Rnpy; ;=R
Compute J; :=INR; fori=1,... ,n+1
IF J,4+1 is not a prime ideal of R THEN
result:=FALSE
ELSE
result:=TRUE
ii=n+1
WHILE : > 1 AND result:=TRUE DO
R = R;/J;
J = Ji_1R'[xi1]
k' := quotient field of R/
Compute the polynomial f such that J'&'[z;—1] = (f)
IF f is not zero or irreducible over ¥’ THEN
result:=FALSE
ELSE
Compute J'¥'[z;_1] N R'[z;_1]
IF J'K'[zi-1] N R'[zi—1] # J' THEN
result:=FALSE
ELSE
i:=1—1

RETURN result

ALGORITEM 4.4.1. Primality Test in R[zq,... ,Zn)

unique factorization in Q[z]. Moreover, it cannot be the product of a cubic and
a quadratic in Q(z)[y]. One way to see this is as follows. If f = y° — 2* were the
product of a cubic and a quadratic in Q(z)[y], then we would have a system of 5
polynomial equations in 5 unknowns which would have to have a solution in Q(z).
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If one computes a Grébner basis for these polynomials one finds that there would
- have to be a rational function e(z) € Q(z) satisfying e® = 28 (use lex with e > 2
being the smallest variables where e is the constant term of the quadratic) and
again this is impossible. It is then trivial to check that (y°—2*)Q(z)[y] "Qly, 2] =
W° - 2)Ql, 2] (f (45 — ) B 2 (2)y” € (5° — 24)Qly, 2] with 0, (2) € Q2),
then a simple induction shows that a, (z) € Q[z]). Thus we have completed the
WHILE loop for i = 3 with “result=TRUE”.
We now consider the case ¢ = 2. In this case J; = I. We have R’ = Q[y, z]/{y°—
24, J' = I((Qly, 2]/ (¥° - z*))[z]) and ¥’ = quotient field of R'. For polynomials
f € Q[z,y, 2] we denote by f the polynomial in R'[z] = (Qly,2]/(y° — #*))lx]
obtained by reducing the coefficients of the powers of = (these being polynomials
in Q[y, 2]) modulo (° — 2*); i.e. we have a homomorphism

Qlz,y,2l — (Qly,21/(° - 2*))la]
f— f

We also denote the image of an ideal K C Q[z,¥, 2] in R'[z] by K. We first must
find a generator for J'k'[z], where J' is the ideal generated by f,, fa, f5, f4 €
R'[z]. It is, in fact, easy to see that f,, f3, f4 are multiples of f, in ¥'[z]. For
example, ignoring the “bar” notation for the moment, viewing the following
equation as being in ¥’[z], and noting that z, 22, and 2% are non-zero in R’, we
see that z° —yz = (zz —y%)(22® + L2z + %y*); that is, |, is a multiple of f,.
Thus f = f, and it is irreducible over K/, since it is of degree 1 in z. It remains to
show that J'k'[z] N R'[x] = J'. We will apply Proposition 4.4.4 and Proposition
44.1.

So we first need to compute a Grobner basis for the ideal J' = (f;, f2, f3, f4) C
R'[z]. We will use Algorithm 4.2.2. We make the following general observation
which is easily proved: if K is an ideal of Q[z,y, 2| containing y® — 2* and
g € Q[z,y,2], then K: (g) = K: {g). We consider the saturated subset {1,2}
for which we need to compute (2): (1) = {2} and the corresponding syzygy is
(z?,—%) which gives the S-polynomial z2f, — Zf, = —7°z2 + y22 22, 0. Now
the saturated subsets of {1,2,3} containing 3 are {1,3} and {1,2,3}. For {1,3}
we compute (2): (¥) = (2,45 — 2%): ) = (z,5% — 2%): (y) = (2,4 (vote that
this latter is just a computation in Q[y,2] and so can be done using Lemma
2.3.11). The two syzygies are (Jz, —z) and (z%z,—7*). The first gives the S-

polynomial gzf, — Zf3 = —5°z + 2 24 0. The second gives the S-polynomial

2zf, — 75 = (22 — y¥)z? — y223z + yi2? 71, 0. The saturated set {1,2,3}
and the saturated subsets of {1,2,3,4} containing 4 can be handled in the same
way. After this computation, we see that a Grobner basis for the ideal J’ is just
the original generating set {f, f2, f3, f4}- o .
Then, as in Proposition 4.4.4, we set s = lc(f;) 1c(f,) lc(f3) 1e(f,) = z1gy3 =
¥*z, and we need to show that J'R,[z]NR'[z] = J'. We do this using Proposition
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4.4.1. Thus we need to compute

<J’swzy4 - 1) n R’[.'E] = (fl) f27 f3> f47 y5 - Z4,wzy4 - 1) ﬂQ[x, Y, Z].

This latter computation can be done in Q[z, ¥, 2, w]. Using lex with w > z > y >
z, we compute that a Grobner basis for the ideal (f, fa, f3, f1,¥° — 2%, wezy? —1)
consists of the 6 polynomials listed above together with wy®23 —z2, wyz*—z, and
wz®—y. Thus (f1, fo, f3, f4,¥° — 2%, wzy' —1)NQ[z, y, 2] = {f1, fa, f3, fa, 4° —2%)
and so (J',wzy* —1) N R'[z] = (f1, f2, f3, fa, ¥® — 24wzt — 1) NQ[z,y,2] =
(f1, f2, f3, f4) = J' and the algorithm terminates with “result=TRUE.”

Exercises

4.4.1. Prove that if R is a UFD then in Proposition 4.4.4 we can let s =
lcm(lc(gl), 10(92), Tt lc(gt))’

4.4.2. Compute the saturation of the following ideals in Z[z,y] with respect to
Q|z, y] using Proposition 4.4.4.
a. (622 + y2, 1022y + 2zy).

.b. (3z%y — 3yz +y,5z%z — 82?).

4.4.3. Using Algorithm 4.4.1 and lex with z > y > z, show that the ideal (zz —
¥3,yz — 2%) C Q[z,, 2] is not prime.

4.4.4. Using Algorithm 4.4.1, show that the ideal (y* — 23,92 — z2, 2y — 22,22 —
z) € Qlz,y, 2] is prime.

4.5. Grobner Bases over Principal Ideal Domains. In this section we
specialize the results of the previous sections to the case where the coefficient ring
R is a Principal Ideal Domain (PID). Recall that an integral domain is a PID if
every ideal of R is principal, that is, if every ideal of R can be generated by a
single element. We note that such rings are also Unique Factorization Domains
(UFD) (see [Go, He, Hun]). We will make extensive use of this fact in this
section and in Section 4.6. Examples of such rings include Z, Z[v/2], Z[i], where
i2 = —1, and k[y], where k is a field and y is a single variable. Of course the
theory that we have developed so far in this chapter applies to these rings. But,
because of the special properties of PID’s, we will show that we may construct
Grébner bases using S-polynomials as we did in the case of fields (Algorithm
4.5.1). We will then define strong Grobner bases which are similar to Grébner
bases when the ring R is a field, and we will show how to compute them in
Theorem 4.5.9. We will also describe the structure of strong Grobner bases in
the case of a polynomial ring in one variable over a PID. This will give us a lot
of information about the given ideal as we will see in Section 4.6. We will also
specialize the ring R to k[y], where k is a field and y is a single variable, and
we will describe the relationship among the different notions of Grébner bases
in this case.

Recall that in order to compute a Grébner bases for (fi,...,fs) in A =
R[z,,... 5], we need to compute a homogeneous generating set for the syzygy
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module, Syz(lt(f),... ,1t(fs)) (Theorem 4.2.3). When R is a field, we saw that a
generating set B for Syz(1t(f1),... ,1t(fs)) exists such that every element of B has
exactly two non-zero coordinates (these syzygies correspond to S-polynomials;
see Proposition 3.2.3).

DEFINITION 4.5.1. A generating set B of Syz((t(f1),... ,1t(fs)) is called an
S-basis if every element of B is homogeneous and has ezactly two non-zero coor-
dinates.

In general, when the coefficient ring is not a field, there is no S-basis for
Syz((1t(f1),--- ,1t(fs)) (see Example 4.5.4). However, when R is a PID such a
generating set exists as the next proposition shows. We assume that s > 1 in
this entire section, because the case s = 1 is trivial, since any single polynomial
is automatically a Grobner basis (note that this is not the case if R has zero
divisors; e.g. {2z + 1} is not a Grdbner basis in Zg[z]). We first prove the
following identity*.

LemMMA 4.5.2. Let R be a PID and let a,a,,... ,a¢ be in R~ {0}. Then

£
(1,--- ,ae)r: (a)r =Y ({a)r: (a)r)-

i=1
PRrOOF. Since R is a PID, we have (see Proposition 1.3.8 for the case where
R = klz])
{(a1,...,a0)r = (ged(ay, ... ,ae))r

and (see Lemma 2.3.7 for the case of polynomial rings)

(ai)r N {(a)r = (lem(a;,a))g for all i =1,... L
Moreover, it is easy to show that in any UFD we have

lem(ged(ay, - - - ,ae),a) = ged(lem(ay, a), . .. ,lem(ae, a)).

Thus

(a1,-.. ,a0)r N (a)r = (gcd(as, - - sae))r N (a)n

= (lem(ged(as, - - - ,ae),0))r = (ged(lem(ay, @), . .. ,Jem(ag, a)))r

£ £
= (lcm(a'la a)’ SRR lcm(ab a‘))R = Z(lcm(aﬂ a))R = z(a’i)R n (a)R'

=1 i=1

The result now follows easily as in Lemma 2.3.11 and Proposition 4.3.11. O

PROPOSITION 4.5.3. Let R be a PID and let f1,... , fs be non-zero polynomi-
als in R[z1,... ,Ty), with s > 1. Then Syz((1t(f1),--. ,1t(fs)) has an S-basis.

4For ideals I1, - .. , I; in a ring R we define the ideal Zf=1 I; to be the ideal in R generated

by the ideals I, ... ,I. That is, > +_, i = (I1,..- , I). It is easy to see that every element
feY i L canbewritten as f = fi +--- + fo where i € L; for each i =1,... ,¢



248 CHAPTER 4. GROBNER BASES OVER RINGS

Proor. For i = 1,...,s let It(f;) = ¢;X;, where ¢; € R and Ip(f;) = X;
For any subset J of {1,...,s} we define, as before, X; = lem(X; | j € J).
We use the notation and technique presented in Theorem 4.2.9 to construct the
desired generating set. Let S, = Syz(c; X3,...,¢,X,) for 1 < o < 5. We will
show by induction on o that every S, has an S-basis. Our mductlon sta.rts at
o = 2. Then it is easy to see that S; is generated by the syzygy gl-y; =% X),
where ¢ = lem(cy, ¢2), and X = lem(X);, X;). Now let o > 2 and assume by
induction that we have computed an S-basis B,_; for S,_;. We now construct
an S-basis B, for S,. Recall from Theorem 4.2.9 that B, consists of two groups
of elements. First, to each element a of B,_; corresponds the element (a,0) in
B,. Clearly (a,0) has only two non-zero coordinates by the choice of B,_1. The
other elements in B, are obtained from the ideal {c; | j € J,j # ¢)r: (Co)r,
where J is a saturated subset of {1,...,0} containing . From Lemma 4.5.2 we
have

(cjli€dj#0)r: (co)r =D (ci)r: (Co)r-
j€J
Jj#o
Now for j € J, j # o, let d; be a generator of the ideal (c;)r: (Co)r. Therefore
(c;1i€dj#o)r:{co)r=1{dj|j€Jj#0)r
Moreover, as in Theorem 4.2.9, associated to each d; we have the element

djco X
6= X 'd’x

since djc, € (c;). Clearly the element s;; has only two non-zero coordinates.

By Theorem 4.2.9 the vectors s;7, where j € J,j # o, and J ranges over all
saturated subsets of {1,... ,0} which contain o, together with the vectors (a,0),
where a ranges over all elements of a generating set for S,_, forms a generating
set for S,. Therefore S, has an S-basis. [J

We now give an example which shows that S-bases do not exist for rings which
are not PID’s.

EXAMPLE 4.5.4. Consider the ring R = Z[z]. R is not a PID, since, for exam-
ple, (2, z) is not principal. We note that R is a UFD. Now consider the following
polynomials in (Z[2])[z,y]

h=2y+y, fo=22%y+z, fi=(Q+2)zy+1
We use the lex order with z > y. Then we have
W(f1) =222, 1(f2) = 22y, 1(f3) = (2 + 2)zy.

The homogeneous elements of Syz(1t(f1), 1t(f2),1t(f3)) with exactly two non-zero
coordinates are multiples of 8, = (—z2z,2y,0),82 = (—(2 + 2),0,2y), or 83 =
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(0, ~(2+ 2), zz). However, the vector (—z, —y, zy) is in Syz(1t(f1), 1t(f2), 1t(f3)),
and so, if 81, 82, 83 generated Syz(1t(f1),1t(f2), 1t(f3)), we would have

(—x, -y, xy) = hl ('—Z:B, 23/) 0) + h2("'(2 + z)’ 0: 2y) + h3(0’ —(2 + z)a Z.’B),

for some hy, ha, hs € (Z[2])[z,y]. Then zy = 2yh, + 2zhs. Note that hy = asx
and h3 = agy, for some ay,a3 € Z[z,y, z]. But then 1 = 2a5 + za3, and this is
impossible. So Syz(lt(f1),1t(f2),1t(f3)) does not have an S-basis.

In fact, it can be shown that if R is a UFD and if Syz(lt(fy),--.. ,1t(fs))
has an S-basis for every ideal I = (f,...,fs) in R[z1,...,%,], then R is a
PID (see Exercise 4.5.14). However, there are rings which are not UFD’s for
which Syz(1t(f1),...,1t(fs)) has an S-basis for every ideal I = (fi,...,fs) in
R[z,,... ,z,] (see Exercise 4.5.15).

We note that the syzygies obtained in Proposition 4.5.3 are the analog of the
syzygies used to define the S-polynomials in the case where the coefficients are in
a field. Indeed, if It(f;) = ¢;X;, 1t(f;) = ¢; X, where ¢;,¢; € R, then the syzygy
with exactly two non-zero coordinates corresponding to these two polynomials
is

s X, X
i a X; 1 ¢; Xj 31
where ¢ = lem(c;, ¢j), and X = lem(X;, X;). We define the S-polynomial of f;
and f; as

c X c X

(45.1) S(fi, fi) = ax X

fi-

Proposition 4.5.3 can then be used to modify Algorithm 4.2.1 to obtain an
algorithm for computing Grobner bases in R|[z,,...,z,), where R is a PID.
This algorithm is presented as Algorithm 4.5.1. We note that Algorithm 4.5.1 is
similar to the algorithm given in the case of R = k, a field (see Algorithm 1.7.1).

‘We now give an example of how Algorithm 4.5.1 is applied.

ExaMPLE 4.5.5. We go back to Example 4.2.11 and use Algorithm 4.5.1 to
recompute a GrGbner basis with respect to the lex term ordering with =z > y for
I =(fi, fa), where | f = 3%y + Ty, || f2 = 421® — 52| and R = Z. We initialize
G = {h, f2} and G = {{f1, [2}}- Since G # 0, we choose {f1, f2} € G, so that
now G = 0. We compute ¢ = lem(3,4) = 12, X = lem(z?y, zy?) = 2232, so that
the corresponding S-polynomial is S(f1, f2) = 4yf1 — 3z f = 1522 + 28y2. This
polynomial cannot be reduced and we add | f3 = 1522 + 28y? | to the basis, so
that now G = {f1, f2, f3} and G = {{f1, fa},{J2, f3}}- Since G # @ we choose
{h, f2}, so that G = {{f2, f3}}. In this case we have ¢ = 15 and X = 22y, so
that the corresponding S-polynomial is S(fi1, f3) = 5f1 — yfs = —28y3 + 35y.
This polynomial cannot be reduced and we add | fs = —28y> + 35y | to the basis,
so that G = {fl: J2, f3, f4} and G = {{f2:f3}’ L1, f4}, {fzaf4}l 35 f4}} Since
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INPUT: F={f1,...,fs} C Rlz1,... ,x5] with f; #0 (1 <i < s)
OUTPUT: G ={g1,...,8:}, a Grobner basis for (fi,..., fs)
INITIALIZATION: G :=F, G :={{f,9} | f # 9 € G}
WHILE G # § DO

Choose any {f,g} € G. Let It(f) = c; X5,1t(g) = ¢, X,

G:=6-{{fg}}
Compute ¢ = lem(cy, ¢y) and X = lem(Xy, X,)
é%f— é—;——g —4 h, where h is minimal with respect to G
IF h # 0 THEN
G:=GU {{u,h}| forall u € G}
G:=GU{h}

ALGORITHM 4.5.1. Grébner Basis Algorithm over a PID

g # 0 we choose {f2’ f3}, so that g = {{fl’f4}1{f2,f4}s {f3’ f4}}' In this case
we have ¢ = 60 and X = z2y2, so that the corresponding S-polynomial is

S(fa, f3) = 15z f, — 4y’ f = —T5z% — 112y* LN —112y* + 1404 ELN

Since g 74 07 we choose {fl: f4}, so that g = {{f2’f4}’ {f3, f4}} In this case,
c =84, and X = 2?13, so that the corresponding S-polynomial is

S(f1, fa) = 282 f1 + 322 f4 = 1052y + 196y I% 196y — 245y 2% 0.

It is easy to see that the other two elements of G also give rise to polynomials
which reduce to zero and so do not contribute new polynomials to the basis.
Therefore we get (as we did in Example 4.2.11) that {f1, fa, f3, f4} is a Grébner
basis for I.

We note that this computation required more steps than the computation
of this Grobner basis did in Example 4.2.11 using Algorithm 4.2.2. In order
to improve the efficiency of Algorithm 4.5.1, Moller gave an analogue of crit2
which eliminates many S-polynomial computations. The interested reader should
consult [M&88].

Recall that we defined Grobner bases in R[zi,...,z,] the way we did in
Definition 4.1.13 because of the problem of dividing by elements of the coefficient
ring R. In the case when the coefficient ring is a PID, there is a stronger version
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of Grébner bases which is similar to the one we gave when the coefficient ring
was a field.

DEFINITION 4.5.6. Let G = {g1,.-. ,9:} be a set of non-zero polynomials in
R[z,,... ,Zy]. Then we say that G is a strong Grobner basis for I = (gy,... ,g:)
if for each f € I, there exists ani € {1,... ,t} such that 1t(g;) divides 1t(f). We
say that G is o minimal strong Grobner basis if no 1t(g;) divides lt(g;) fori # j.

Note that this definition does not in itself require that R be a PID. However
strong Grébner bases exist only in the case when R is a PID (Exercise 4.5.16).

EXAMPLE 4.5.7. Let R = kly, 2|, where k is a field. Consider the ideal I =
(z,9y,2) in R[z]. This ideal does not have a (finite) strong Grobner basis. This
is because there are an infinite number of non-associate irreducible polynomials
in the two variables g, z in I. If a strong Grébner basis G existed, then each of
these irreducible polynomials would have leading term (which is the irreducible
polynomial itself) divisible by the leading term of an element of G. This would
force an infinite number of elements in G, which violates the definition of a strong
Grobner basis.

The following result is immediate and its proof is left to the reader (Exercise
45.6).

LemMa 45.8. If G={q1,-.. ,9:} C R[z1,-.. ,Zy] i3 a strong Grobner basis,
then it is a Grobner basis.

‘We now show how to construct a strong Grobner basis from a given Grébner
basis. So let {f1,...,fs} be a Grobner basis for an ideal I in R[zi,...,Zs)].
Let It(f;) = ¢: X, where ¢; € R and Ip(f;) = X;. For each saturated subset
Jof {1,...,s}, let cj = ged(c; | 5 € J) and write ¢; = };;a;c; (any such
representation will do). Also, let X; = lem(X; | j € J). Consider the polynomial

X
fr= zaj‘f{‘fj-
jeJ J
THEOREM 4.5.9. Let R be a PID, and I be an ideal of R[z,,. .. ,Z,]|. Assume
that {f1,--., fs} 18 a Grébner basis for I. Then the set

{fs | J is a saturated subset of {1,... ,s}}

18 a strong Grébner basis for I. In particular, every non-zero ideal in R[z1, . .. ,Zyz)
has a strong Grobner basis.

PROOF. Let 0 # f € I. Then 1t(f) € Lt(fy, .. , fs) = (t(f1),. .. ,16(fs)). Let
J={ie{l,...,s}| X; divides Ip(f)}. It is clear that J is saturated and that
X divides Ip(f). We also have 1t(f) € (1t(f;) | 7 € J) and so Ie(f) = 3 ;¢ ; djc;
for some d; € R, from which we conclude that c; divides lc(f). Therefore 1t(f;)
divides It(f). O
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We leave it to the exercises to show that every ideal has a minimal strong
Grobuoer basis (Exercise 4.5.9).

Together with the concept of strong Grébner bases, we could also define the
concept of strong reduction. Reduction of f modulo a set F = {f1,...,fs} is
performed if 1t(f) € {1t(f1),-.. ,1t(fs)) (see Definition 4.1.1). Strong reduction
would require instead that an It(f;) divides It(f). One can show that for a set

G of non-zero polynomials in R[z,... ,z,], we have that every element in (G)
strongly reduces to zero if and only if G is a strong Grobner basis (Exercise
45.1).

Theorem 4.5.9 gives us a method for computing strong Grdébner bases. We
give an illustration in the next example.

EXAMPLE 4.5.10. We go back to Example 4.5.5. We saw that a Grobner basis
for the ideal I = (3z2y + 7y, 4zy? — 5z) C Z[z,y] with respect to the lex term
ordering with z > y is {f17f27f3)f4}7 where fl = 3a:2y + 7y, f2 = 43?/2 — 5z,
f3 = 1522 + 28y2, and fy = —28y® + 35y. Following the proof of Theorem 4.5.9
we first compute all the saturated subsets of {1,2,3,4}: J; = {2}, J2 = {3},
Js = {4}, Jo = {1,3}, Js = {2,4}, Js = {1,2,3}, Jy = {1,2,3,4}. The sets Jj,
J2, and J; give rise to the original polynomials f;, = fa, f1, = f3, f1, = fa-
Associated with Jy we have ¢, = ged(3,15) = 3, and X, = 22y, so fi, = fi.
Associated with J5 we have cj, = ged(4, —28) = 4, and X, = zy3. Therefore,
J1s = yfa. Associated with the set Js we have c;; = gcd(3,4,15) = 1, and
Xy, = z%y?. Therefore f;, = zfa — yfi = z2y? — 522 — Ty?. Associated with
the set J; we have c;, = gcd(3,4,15,—28) = 1 and X, = z?y°. Therefore
f5, =zyfo—¥2fL = yfs,- We see we do not need f;, and f;, and therefore, a
strong Grobner basis for I is

{4zy? — 5z, 1522 + 28y%, —28y® + 35y, 322y + Ty, z2y® — 522 — Ty?}.

To conclude this example we give an example of determining ideal membership
using strong reduction. Consider the polynomial f = 7z?y? — 1522y — 3522 —
28zy® + 352y — 56y* — 28y> + 21y%. Then we have

7,
oo 1502y — 9824 + 350y — 56y — 284° + 07
Sy —28zy° + 35zy — 56y* — 28y° + 70y% + 35y

e _peyt 98y + 7042 + 35y

Wl 98y + 35y —H 0.
Thus f = 7fs, — 5f1 — Tyfa + (2y — 1)f4 and since fj, = zf> — yfi we have
f=(-Ty—5)f1 + (Tz — Ty) fo + (2y — 1) fs. We note that the first reduction
above could not have been done with a single polynomial from fi, fa, fa, fa-

We now consider the case where R = kly], with k a field and y a single

variable. In this setting we have three concepts of Grébner bases: Grobner bases
in k[y,z1, ... ,Zn] (as defined in Section 1.6), Grébner bases in (k[y])[z1,. . , Za)
(as defined in Section 4.1), and strong Grobner bases in (k[y])[z1,... ,Zx] (as
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defined in Definition 4.5.6). Clearly the ring k[y,zi,...,Z,] is the same as
the ring (k[y])[z1,--. ,Zn], but, in the latter ring, polynomials are viewed as
polynomials in the variables z1, ... ,z, with coefficients in k[y]. We have seen in
Lemma 4.5.8 that if {g1,...,¢:} is a strong Grébner basis in (k[y])[z1,- .. ,Zn)
then it is a Grobner basis in (k[y])[z1,... ,Za). Moreover, we saw in Theorem
4.1.18 that if {g1, ... , g:} is a Grobner basis with respect to an elimination order
with the z variables larger than the y variable in k[y,zi,...,Zx), then it is a
Grobner basis in (k[y])[z1, ... ,Zn]. The next theorem strengthens this result
considerably. We will first need a lemma.

In both results we assume we have an elimination order with the z vari-
ables larger than y. We need a notation to distinguish between leading terms
in kfy,z1,... ,7n] and (K[y])[z1,--- ,Zn]- We use lt,1p,lc for their usual mean-
ings in kly,z,,..- ,Zy,], and we will use It;,lp,,lc, for corresponding objects
in (k[y])[z1,... Ta). So, for example, if f € k[y,z1,...,zy], then lc(f) is
a polynomial in y. Finally for a € k[y] we use lt,(a) for the leading term
of a. Note that because of the chosen order, for f € k[y,z1,... ,Z,] We have

1t(f) = Ity (lez(£)) Ip. (f)-

LeMMA 4.5.11. Let R = k[y]. Then G = {g1,...,9:} C R[z1,...,Zs] i5 @
strong Grobner basis if and only if
(i) G is a Grobner basis in Rlz,,... ,z,] and
(i) for every J C {1,...,t}, saturated with respect to {Ip,(g1), .- ,1Pz(9:)},
there ezists i € J such that lc,(g:) divides Ic,(g;) for allj € J.

ProOF. Let I = (g1,...,g:). We first prove that (i) and (ii) imply that G is
a strong Grébner basis in R[z;, ... ,2,] (this proof is very similar to the proof of
Theorem 4.5.9). Let f € I. Since G is a Grobner basis in R[z,, ... ,Z,], we have
ltz(f) € (ltz(gl)’-“ ,ltz(gt))' Let J = {j € {17’“ ,t} | lpz(gj) divides lpz(f)}'
Then J is saturated. Moreover we have

b(£) = Y aj1tz(g,),

jedJ

for some a; € R[z1,-.. ,Zs), which we may assume are terms with respect to the
variables zy,. . . ,zn With Ip;(f) =1Ip.(a;)Ip,(g;) for all j € J such that a; # 0.
Then

leo(f) = Z Iez(a;) lez(g;)-
jeJ
Now choosing i € J as in (ii) we get lc,(g;) divides lc,(f) and so, by definition
of J, we get 1t (g:) divides 1t,(f) as desired.
Conversely, let G be a strong Grobner basis in Rz, ... ,z,]. Then, by Lerama
4.5.8, G is a Grobner basis in R[zy,...,Zy]. Let J be a saturated subset of

{1,...,t}. Let ¢ = ged(lez(g;) | 5 € J) and write ¢ = 3. ; d; lcz(g;), for some



254 CHAPTER 4. GROBNER BASES OVER RINGS

d; € R =k[y]. Also, let X =lecm(lp,(g;) | 7 € J)- Now consider the polynomial

F=) di—

jeJ lpz g])

Note that It;(f) = c¢X and f € I. Since G is a strong Grobner basis there is a
gi € G such that lt;(g;) divides It,(f). Therefore ¢ € J since lp,(g;) divides X.
Moreover, lc;(g:) divides c and we are done. [J

THEOREM 4.5.12. Let R = kiy]. Then G = {g1,... ,9:} is a Grébner basis in
kly,z1,. .. ,zn) with respect to an elimination order with the = variables larger
than y if and only if G is a strong Grébner basis in (k[y])[z1,--. ,Zn)-

PROOF. Let us first assume that G = {g1,...,g:} is a GrGbner basis in
kly,z1, ... ,z,] with respect to an elimination order with the = variables larger
than y. By Theorem 4.1.18 we see that G is a Grobner basis in (k[y])[z1,. .. , Zn).
Thus by Lemma 4.5.11 it suffices to show that given a subset J of {1,...,t},
saturated with respect to {lp.(91),...,1p;(g:)}, there exists ¢ € J such that
lcz(g:)* divides lcz(g;) for all § € J. So let J be such a saturated set. Let
c = ged(lez(g;) | 7 € J) and X = lem(lp,(g;) | 7 € J). We can write ¢ =
2_jes bilcz(g;), for some b; € k[y]. Now consider the polynomial

f=2 b (J)yﬁ(yl, ,9¢)-

jes

Note that lt,;(f) = cX. Moreover, 1t(f) = lt,(c)X, since we have an elimination
order with the z variables larger than the y variable. Since G is a Grobner
basis in k[y,z1,...,%n], there exists g; € G such that 1t(g;) divides lt(f) =
lty(c)X. But then i € J since lp_(g;) divides Ip,(f) = X. Also, lt,(lcz(g:))
divides lt, (lc;(f)) = 1ty (c). Therefore, deg(lc;(g:)) < deg(c) and so the fact that
c divides lc;(g;) implies that c is a non-zero constant in k times lc;(g;), which
immediately gives the desired result.

Conversely, let us assume that G is a strong Grébner basis in (k[y])[z1, - - - , Z»)-
Let f € I. Then there exists g; € G such that It;(g;) = lcz(g:) Ip;(g:) divides
1t (f) = lez(f) Ip.(f). So Ip,(g:) divides lp,(f) and lcz(g:) divides lez(f). But
then 1t(g;) = lty(lcz(g:)) Ip,(g:) divides lt( f) = Ity (lez(f)) Ip,(f). Therefore G
is a Grobner basis in k[y, z1,... ,Zns).

We now go back to the case of an arbitrary PID R and conclude this section
by giving a characterization of strong Grobner bases in R[z], where z is a single
variable. This will be used in Section 4.6 to give the primary decomposition of
ideals in R[z]. From Lazard [Laz85] (see also Szekeres [Sz]), we have

THEOREM 4.5.13. Let R be a PID and let = be a single variable. Assume that
G = {q1,...,9:} is a minimal strong Grobner basis for an ideal I of R[z] and
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let Ip(g;) = . We further assume that we have ordered the g;’s in such a way
that vy <1, < -+ <. Let g=ged(gs, ... ,9t)- Then

[} = QG203 ---0t9
g2 = az---athag
gi = aiy1---athig
g—1 = athiag

gt = htga

where a; € R, It(h;) = 2%, v, < <--- < 1, and
hit1 € (hi,aihi—y,... ,a3---aih2,a2a3 - - - a;),
fori=2,... &
PRrOOF. From Exercise 4.5.11, we have that {g1,... ,g;} is a strong Grobner
basis if and only if g—l, SN % is a strong Grobner basis. Thus we may assume

that ged(g1, ... ,9:) = 1. Let It(¢;) = c;z¥%, wherec; € R (1< i <¢t).

CLAM 1. y <y <--- < .

PROOF. Assume to the contrary that we have an i, 1 < i < ¢, such that v; =
Vit1. Let ¢ = ged(c;, ¢i+1) and write ¢ = bie; + bi+1c¢i41, for some b;,b;11 € R.
Consider the polynomial h = b;g; + bi+19i+1- Then h € I and 1t(h) = cz*:. Since
G is a strong Gr&bner basis, there exists a j € {1,... ,t} such that lt(g;) = c;z*
divides 1t(h) = cz*:. Then v; < v;. But then lt(g;) divides 1t(g;), and so, by our
assumption that G is minimal, we have that i = j. Hence ¢ = ¢;, and lt(g,)
divides 1t(g,+1). This contradicts our assumption that G is minimal.

CLAM 2. ¢;4 divides ¢;, fori =1,... ,t— 1.

PrOOF. Let i € {1,...,t —1}. As in Claim 1, let ¢ = ged(c;,ci+1) and
write ¢ = b;¢; + bir1ci+a, for some b;,b;1; € R. Now consider the polynomial
h = bz¥+17ig; + b;y19i+1 € I. Note that It(h) = cx¥+1. Since G is a strong
Grébner basis, there exists a j € {1,... ,t}, such that 1t(g;) = c;z*/ divides It(h).
Thus v; < vi41, and so j < i+ 1, and ¢; divides ¢, and so 1t(g,) divides 1t(gi41).
Since G is minimal, we have that j = i+ 1, and so ¢;4; = ¢ = ged(cs, Ciq1)-
Therefore ¢;;; divides c;.

CLamM 3. ig,-.,.l €{(g1,---,gi), fori=1,...,t—1.

Cit1

Proor. Let h= q—ci~g;+1 — ¥+ 7% g, Note that A € I and that Ip(h) <
i+1

1p(g:+1)- Since Ip(gi+1),- - - ,1p(ge) are larger than lp(h), and since h i».,. 0, the
only polynomials that can be used to reduce h to zero are g;,... ,gi- Therefore
h € {g1,...,9:), and hence so is G Git1-

Ci+1
CLAM 4. g; €R.
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PrOOF. Let c(g1) € R be the greatest common divisor of the coefficients of
the powers of z that appear in g;. Then g, = c(g1)p(91), where p(g1) € R[z]
and the greatest common divisor of the coefficients of p(g;) is 1. We show by
induction on ¢ that p(g,) divides g;. The case 2 = 1 is clear. Now assume that

p(g1) divides g1, 92, ... ,9;- Since o gi+1 € {g1,--. ,9:) by Claim 3, we see that

p(g1) divides --—g.,+1 But ged (c,— (gl)) =1, since any common factor of
+

c,-i and p(gl) would have to be in R and would have to be a factor of the
coz;ﬁcients of powers of z appearing in p(g1). Therefore p(g:1) divides g;+1. Now,
since p(g;) divides every g;, p(91) must be 1 because of the assumption that the
g:'s have no factor in common. Therefore g; = c(g:) € R.

CLAamM 5. ¢; divides g; foralli=1,... ,tand c; = 1.

ProoOr. We use induction on . The case 7 = 1 is clear, since g; = ¢;. Assume
that c; divides g, co divides gs,... ,¢; divides g;. Then, by Claim 2, we have
that ¢; divides g¢1,¢2,...,9;. Since c‘_—Hg,-H € (g1,--.,9i) by Claim 3, we see

that ¢; divides f:'—'g,-...l. Therefore c;+1 divides g;11. Now, since ¢; divides g;

+
for each %, and since c; divides ¢; for each %, we see that ¢; divides g; for each 2.
Therefore ¢; = 1 because of the assumptlon that the g;’s are relatively prime.
Now set a;4+1 = &G and h; = =. Then we have
Cit1 Cz

g = chi=h o
-1
g1 = G-l = ctTht—l = ath:
Ct—2 C¢—
g2 = Ci—ohi o= Ct——-lht—z = 0¢_1athe—2
Ct—1 Ct
gi = @i410i42 - Gt_16:h;
g2 = a3z---ai-10:hy
9 = @203---0Gq.

CLAM 6. hiyy € (hs,a5hi1,... ,03 - 0ihg, a2 a3).
Proor. By Claim 3 we have c‘igi+1 € {g1,--- ,9i), that is,
i+1

Qit1Git+2 " Gthiy1 € (@41 - Gehis @i aghig, ... a3 agha, 000~ ag).

The result follows after dividing by ai41 - - - a;- The Theorem is now completely
proved. [J

We note that the converse is also true. That is, any set of polynomials
g1,--- ,9: in R[z] which satisfies the conditions in Theorem 4.5.13 is a strong
Grobner basis and is minimal if no a; is a unit (Exercise 4.5.12).
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COROLLARY 4.5.14. Let k be a field and let y,xz be variables and set A =
k[y, z]. We assume that we have the lex term ordering with y < z. Let G =
{91,.-.,9:} be a minimal Grébner basis for an ideal I of k[y, z] and let 1p,(g;) =
. We assume that we have ordered the g;’s in such a way that vy < vy <--- <
v Let g = ng(gl, s ’gt)‘ Then

[ = a203'‘-0:g
g2 = a3---athog
g = Giy1---0thig
g1 = athi_1g

g = Mg,

where a; € kly], W(hi) =¥, 1 < <--- <14, and
hiya € (hi,aihi_y,... a3+ - a;ho,a2a3 -+ - @),
fori=2,...,t

Proor. We have from Theorem 4.5.12, that G is a strong Grobner basis in
(k[y])[=] and so the result follows immediately from Theorem 4.5.13. O

EXAMPLE 4.5.15. We consider the ring R = Q[y] and the ideal I = {(z +
¥)(y? +1),22 — z + y + 1) in R[z]. We compute a strong Grdbner basis for
I by computing a Grobner basis for I viewed in Q[z,y] with respect to the
lexicographic order with z > y (Theorem 4.5.12). We find

g = ¥+2°8+22 + 29+ 1= (y+1)%(1® + 1) = a2a3
92 = w’+z+¥+y=(*+1)(z+y) =ashs
g3 = z2—z+y+1=h;s.

EXAMPLE 4.5.16. Consider the three polynomials in Z[z]

fi = 630x—630=9-5-14(z — 1) = azasg
fo = 7022+ 70z ~ 140 = 5(x + 2) - 14(z — 1) = azhag
fz = 14z* + 7023 + 19622 — 70z ~ 210

= (23 + 622+ 20z +15) - 14(z — 1) = hag.

It can be easily verified using Lemma 4.5.11 that {f;, f2, f3} is a strong Gribner
basis. We also note that the f;’s have the form required in Theorem 4.5.13,
gince h3 =23+ 622 +20z +15 = (z+ 1)(z +2)(z +3) +9(z + 1) € {9,z + 2)
and so it also follows from the converse of Theorem 4.5.13 (Exercise 4.5.12) that
{f1, f2, f3} is a strong Grobner basis.
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Exercises

4.5.1.

4.5.2.

4.5.3:

4.54.

4.5.5.

4.5.6.
45.7.

4.5.8.

4.5.9.

4.5.10.

4.5.11.

We define strong reduction in R[zi,...,2,], for R a PID, with respect
to a set F = {f1,...,fs} of non-zero polynomials in R[zi,...,z,] as
follows. For f,g € R[zi,...,Zs] we write f L, g provided that for
some 4,1 < i < s we have It(f;) divides 1t(f) and g = f — j¥5) f;. We

write f —-F—>+,, g, as usual, when we iterate the preceding. Show that the
following are equivalent for a set G = {g1,... , g:} of non-zero polynomials
in R[zy,... ,z,) where we set I = (G).

a. G is a strong Gribner basis for 1.

b. For all f € I we have f —-(’;>+,s 0.

Show that in Exercise 4.5.1 the following statement:

for all ¢, we have S(g;, g;) ~£*+,3 0

(see Equation (4.5.1)) does not imply that G is a strong Grébner basis.
[Hint: Look at the polynomials fi =2z +1 and fo = 3y + z in Z[z,y].]
Prove the converse of Theorem 4.5.9. That is, prove that if the set of f;
defined there is a strong Grobner basis for I then {fi,... , fs} is a Grobner
basis for 1.

Let f,g € R[z1,... ,Zy], with f,g # 0, and let d = ged(f, g). Prove that
{f.g} is a Grobner basis if and only if ged(1t(4),1t(3)) = 1. (This is the
analog of critl.) [Hint: Follow the proof of Lemma 3.3.1.]

For the ring R = Z use Algorithm 4.5.1 to compute a Grébner basis for
the ideals generated by the given polynomials with respect to the given
term order.

a. fi =2zy—z, f> = 3y — z2 and lex with z < y.

b. fi =3z% —3yz+y, fo = 522z — 822 and deglex with z > y > z.

c. fL =6z +y?%, fo = 1022y + 22y and lex with = > y.

Prove Lemma 4.5.8.

For the ring R = Z use Theorem 4.5.9 to compute a strong Grobner basis
for the ideals generated by the given polynomials with respect to the given
term order in the exercises in Exercise 4.5.5.

Compute a strong Grobner basis for the ideal in Z[é][z,y, z] in Exercise
4.2.5.

Prove that every non-zero ideal of R|z,, ... ,Z,], where R is a PID, has a
minimal strong Grobner basis.

Show that for the strong Grobner basis constructed in Exercise 4.5.7 (for
Exercise 4.5.5 part c), —30z3y? + 6% — 522y — 622y% + 1622y + 52° +
zy? + 2zy — 5y° + y° strongly reduces to zero.

Prove that if {g1, ... ,9:} is a set of non-zero polynomials in Rz, ... ,Zx]
where R is a PID and g = gecd(g1,--. ,9t), then {g1,...,9:} is a strong
Grdbner basis if and only if {Z,..., %} is a strong Grobner basis.
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4.5.12. Prove the converse of Theorem 4.5.13 as stated immediately after the proof
of Theorem 4.5.13.

4.5.13. Verify that the Grobner bases for (—z2 — zy + z%y? + zy3, —5y + by —
3zy? + 3z2y?) C Q[z,y] with respect to the lex ordering with z > y has
the form stated in Corollary 4.5.14.

4.5.14. Prove that if R is a UFD and if for every {f1,..., fs} C Rlz1,... ,z,] we
have that Syz(lt(f1),...,1t(fs)) has an S-basis, then R is a PID. [Hint:
If R is not a PID, then there exist a,b € R such that ged(a,bd) = 1 and
1 ¢ {a, b). Note that (1,1, —1) € Syz(a, b,a + b).]

4.5.15. Show that if R is a Dedekind Domain, then for every {fi,...,fs} C
R|z1,... ,zs] we have that Syz(1t(f1),...,1t(fs)) has an S-basis. [Hint:
Prove the identity in Lemma 4.5.2 and follow the proof of Proposition
4.5.3 (note that more than one d; may be needed).]

4.5.16. Prove that if R is a UFD and if for every non-zero ideal I C R[z1,... ,Zn),
I has a strong Grobner basis, then R is a PID. [Hint: Use the idea in
Example 4.5.7. Assume the facts that if every prime ideal in a UFD is
principal then it is a PID, and that every non-principal prime ideal in a
UFD contains an infinite number of non-associate irreducibles.]

4.6. Primary Decomposition in R[z] for R a PID. In this section we
follow Lazard [Laz85] and use the results of Section 4.5 to “decompose” ideals
in R[z], where R is a PID and z is a single variable. The decomposition we have
in mind is one similar to the decomposition of natural numbers into products
of powers of prime numbers. In our setting, the analog of a product is an ideal
intersection, and the analog of a prime integer is a prime ideal. Recall that an
ideal P in a commutative ring A is prime if fg € P implies that either f € P or
g € P, or equivalently, if the set § = A — P is a multiplicative set (see Section
44).

We will need the following elementary fact about Noetherian rings.

LEMMA 4.6.1. Let A be a Noetherian ring and let S be any non-empty set of
ideals of A. Then S contains a marimal element, i.e. there is an ideal I € S
such that there is no ideal J € S such that I C J.

We first consider the decomposition of the radical VT for an ideal I in A.
Recall from Definition 2.2.4 that

VI={fcA|f elforsomerveN}.
LEMMA 4.6.2. Let I be an ideal in a Noetherian ring A. We have
vVi= | P.

ICP
P prime ideal
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PROOF. The inclusion v7 c ﬂ P follows from the fact that if a prime
ICP
P prime ideal

ideal P contains I, it also contains v/7.

We now consider the reverse inclusion. So let us assume that there is an
element f in ﬂ P — V/T. Consider the set S = {f* | v =0,1,...}. Note that

P priﬁ: ideal

SN VT = @, for otherwise, if f € VT for some v € N, then (f*)* = f*# ¢ I,
for some u € N, and this implies that f € v/, which is a contradiction. Now
consider the collection S of all ideals of A which contain +/7 and have empty
intersection with S. Clearly S is non-empty, since vI € S. By Lemma 4.6.1,
there exists an ideal M € S which is maximal in S. In particular, VI C M and
M NS = 0. We now prove that M is a prime ideal. Let gh € M and assume
that neither g nor h is in M. By maximality of M we have

( M)NS #0 and (R, M)NS #0.
Therefore there exist v,/ € N, m,m’ € M, and a,a’ € A such that
ag+m=f*and dh+m' = f“.

But then
v = (ag +m)(a’h +m’) = (aa’) (gh '+ (@R)ymeMNS,
f (ag + m)(a’h +m') = (aa) (¢ )+§ay+m)fri+(a ym
€S €M eM

which is a contradiction, and so M is prime. Now we have a prime ideal M which
contains v/T and hence I, so f € ﬂ P C M by assumption. But M NS = 0,
ICP
P prime ideal
and we obtain a contradiction. [

In view of the above lemma, one might think that any ideal in R[z] can be
decomposed as the intersection of powers of prime ideals. This is not the case
as the following example shows.

EXAMPLE 4.6.3. Consider the ideal Q = (4, z2) in Z[z]. Any prime ideal which
contains @ must contain both 2 and z, and hence must be equal to M = (2, z),
since M is a maximal ideal of Z[z] (since Z[z]/(2, z) & Z3). Therefore, if Q were
the intersection of powers of prime ideals, it would be a power of (2,z). But
M?®* C Q & M2, So Q cannot be a power of M.

The correct analog to powers of primes is the following.

DEFINITION 4.6.4. An ideal @ of A is called primary if Q # A and if fg € Q
then either f is in Q or some power of g is in Q.

It is easy to see that prime ideals are primary. However, powers of prime
ideals need not be primary (see [AtMD)]) although, using Lemma 4.6.13, we see
that powers of maximal ideals are primary.
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ExaMPLE 4.6.5. The ideal Q given in Example 4.6.3 is primary. To see this,
let fg € Q = (4,22), and let f ¢ Q. It is easy to see that we can write f = hs+ry,
and g = hy + g, where hy,hy € Q, and vy = ayx + by, g = agZ + by, where
af,aqg,b5,by =0,1,2, or 3 (note that r¢ and ry are the totally reduced remainders
of f and g as defined in Definition 4.3.2). Moreover, since f ¢ Q, we have that
either a5 or by is not equal to 0. Since fg € Q, 4 divides asb, + agbs and byb,.
Note that if by = 0, then g% € Q, and we would be done. So we may assume
that by # 0. If by = 0 then 4 divides asby, and so since ay and by are non-zero,
we have ay = b, = 2 giving g> € Q. Otherwise, bs # 0 and so by = by = 2, so
again we have g2 € Q.

LEMMA 4.6.6. If Q is a primary ideal in a Noetherian ring A, then /Q is a
prime ideal. Moreover \/Q is the smallest prime ideal containing Q.

PROOF. Let fg € /@. Then (fg)* = f¥¢” € Q and so f € Q or (¢¥)* =
g"* € Q. Therefore f € \/Q or g € +/Q and /@ is a prime ideal. The second
statement follows from the fact that any prime ideal containing @ also contains
Vv@. O

DEFINITION 4.6.7. If Q is primary and /@ = P, we say that Q is P-primary.
We can now define what we mean by decomposition.

DEFINITION 4.6.8. Let I = (Y;_, Qi, where Q; is P;-primary for each i. We
call (i, Qi o primary decomposition of I. If, in addition, the P; are all distinct
and for alli, 1 < i < r, we have ﬂj# Q; € Q:, we call the primary decomposition
irredundant. In this latter case, the ideal Q; is said to be the primary component
of I which belongs to P,, and P; is said to be a prime component of I.

It is easy to prove that if @,...,Q, are all P-prmary then ;_, Q; is also
P-primary. Given this, and the obvious statement that we can remove super-
fluous Q;, we see that any ideal that has a primary decomposition also has an
irredundant primary decomposition.

We note that in Lemma 4.6.2 we gave a primary decomposition of v/I. Also,
in Example 4.6.5, the ideal @ was primary, and thus was its own primary de-
composition. In general, we have

THEOREM 4.6.9. Every ideal in a Noetherian ring A has a primary decompo-
sition.

PROOF. The key to the proof is the concept of irreducible ideals. An ideal
I is irreducible if I = I; N I; implies that I = I; or I = I3. The proof of the

theorem is done in two steps. First we prove that every ideal in A is a finite
intersection of irreducible ideals, and then we show that every irreducible ideal

is primary.
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Let S be the collection of all ideals in A which are not the intersection of a
finite number of irreducible ideals. Assume to the contrary that S is not empty.
By Lemma 4.6.1 there exists a maximal element M in S. Now, since M is in S,
M is not irreducible. Therefore there exist ideals M; and M such that M # M;,
M # M, and M = M; N M. Thus M ¢ My, Ms. By the maximality of M, we
have that M; and M; are not in S. Therefore they are both a finite intersection
of irreducible ideals. But then M is also a finite intersection of irreducible ideals.
This is a contradiction, and therefore S = .

Now let I be an irreducible ideal. We will show that I is primary. So let
fg €I andlet f ¢ I. Consider the ascending chain

I:(g)CI: (g C---CI: (g C---

Since A is Noetherian we have that for some £, I': (g¢) = I: (g*+!).

Coam. (I+{N)NI+(f))=1.

PrOOF. Clearly I C (I + (¢%)) N (I + (f)). For the reverse inclusion, let
a+rgt =B+sf e I+ (D)) NI+ (f), where o,8 € I, r,s € A. Then
rg*t! = —ga+gB+ sfg € I. Therefore r € I: (g¢t1) = I: (g%). But then

7 e
a+ g%r € I, and the Claim is proved.

Now by the assumption that I is irreducible, either I = I+(f) or I = I+{g®).

Since f ¢ I, we have I = I + (g*), and hence g* € I. Therefore I is primary. O

We note that the preceding Theorem is purely existential, that is, it gives
no indication how to go abeut computing the primary decomposition of a given
ideal in some specific ring. There has heen much work done on this problem,
see [GTZ, EHV]. The main purpose of this section is to use Theorem 4.5.13
to show how to do this explicitly in the ring R[z], where R is a PID in which
certain computability assumptions must be made. Namely, we assume that linear
equations are solvable in R, that we can factor in R, and that given any prime
element » € R we can factor in (R/(u})[z]. Examples of such rings include Q[y],
Z and (Z/pZ)[y] for a prime integer p.

Let I # R[z], {0} be an ideal in R[z] and let {g,...,g:} be a minimal strong
Grobner basis for I. For simplicity we will assume that g = ged(g1,... ,9:) = 1.
In this case we say that the ideal I is zero-dimensional®. It follows from Theorem
2.2.7 and Corollary 4.5.14 that this definition coincides with the one given before
for the special case of Q[z, y]. We will be using Theorem 4.5.13 and the notation
set there.

5For certain PID’s, R, this definition is more restrictive than the one usually found in the
literature.
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That is, we have
/)1 = Q203°--0a¢
g2 = ag---athy
g = Gip1'c-ahg
gt-1 = aihyy
gt = ht)

where a; € R, It(h;) =z, 1o <13 < --- <1, and
hit1 € (hi,aihi—y, ... a3 - aihg, aza3 - - - as),

fori=2,...,t
We first show how to compute all of the prime ideals containing I.

THEOREM 4.6.10. Let I, P be ideals in R[z] with I zero-dimensional and P
prime. Then, with the notation above,
(i) I C P if and only if there exists i > 2 such that {a;, h;) C P;
(i) Leti € {2,...,t}. If (as, h;) C P then P = (u,v), where u is an irre-
ducible factor of a; and v is an irreducible factor of h; modulo u;
(iii) If I C P, then P is mazimal.

PRrROOF. To prove (i), let I C P. Then g1 = azasz‘--a; € P, so that there
exists ¢ > 2 such that a; € P, and we choose i largest with that property. Now
gi = Giy1---ath; € P, but a;41---a; ¢ P by the choice of %, and so h; € P.
Therefore {a;, ;) C P. For the converse, let 4 > 2 and assume that a;, h; € P.
First note that for all j = 1,... ,i we have g; € {ai, h;). Now we show that for
j=1+l,... ,twehaveg; € (as, hi). Since hj € (hj_l,aj_lhj_z, ceu,G20 0 G5-1),
it is an easy induction on j to show that for j =7+41,... ,f we have

(hj~1,85-1hj—2,... a2~ aj-1) C (@i, hs).

Thus, since g; is a multiple of h; we have g; € {(a;, hi) for j =i +1,...,t. We
now see that I C (a;, ;). So, since (a;, h;) C P, we have I C P.

We now prove (ii). Let {a;, h;) C P. Since a; € P, an irreducible factor of a;,
say u, is in P. Note that the ideal (u) is now a maximal ideal of R, and hence
R=R/(u)isa field and Rlz] is a PID. Let P be the image of P in R[a::l Then,
since h; € P, P # {0} and so P is a maximal ideal of Rz]. Since Rz] is a
PID we see that P i is generated by an irreducible polynomial ¥ € R[:z:], that is,

= (v). Thelmagehtofh,lsmP andsovlsanlrreduclblefa.ctorofh Let
veR[a:] be a pre-image of 9. Since 9 € P, and since u € P, we see that v € P.
Therefore (u,v) C P. We also have

Riz]/(u, )  Rlz]/P = Rs]/(®).
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Since R[z]/P is a field, we have that R[z]/(u,v) is a field and so (u,v) is a
maximal ideal. Therefore P = (u,v).
Statement (iii) is now immediate. [J

LEMMA 4.6.11. Let I be an ideal in a Noetherian ring A such that every prime
¢

ideal containing I is mazimal. Let I = n Q; be a primary decomposition of I,
Jj=1

where Q; is primary and /Q; = M; is mazrimal. Then for any mazimal ideal

M such that I C M, there exists j € {1,... ,&} such that M = M.

PROOF. We have

[ £ ¢
Vi= ,|ﬂQ,~= V@ =) M
i=1 j=1 j=1

Since I C M, we have
£ 14
[ < (M cm

i=1 =1
Therefore there exists j € {1,... ,£} such that M; C M. But M; is maximal, so
M=M; O

Therefore, to compute the primary decomposition of the zero-dimensional
ideal I C R[z], we first have to determine all the maximal ideals containing 1.
To do this we find all maximal ideals which contain (a;, h;), foreachi =2,... ,t.
Theorem 4.6.10 gives an explicit method for finding all such maximal ideals:
given {g1,...,9¢} a strong Grobner basis for I as in Theorem 4.5.13, for each
i=1,...,t

(i) compute the irreducible factors of a;;
(ii) for each u computed in (i), compute the irreducible factors of h; modulo
u;
(iii) each u, v computed in (i) and (ii) respectively gives rise to a maximal
ideal containing I, namely M = (u, v).

Note that the method presented above gives, in fact, a way to compute the
primary decomposition of /7 for a zero-dimensional ideal I (combining Theorem
4.6.10 and Lemma 4.6.2). We give an example to show how this method is used.

EXAMPLE 4.6.12. We go back to Example 4.5.15 where R = Qy] and I =
((z+y)(y®+1),2%2 -z +y+1). We computed a strong Grobner basis for I to be

a = ¥ +288+ 27+ 29+ 1= (y+ 1)’ (3> +1) = azas

@2 = z¥+tz+’+y=("+1)(z+y) =ashs

g3 = z2—z+y+1=h;.
Note that the greatest common divisor of g1, g2 and g3 is 1. We find all maximal
ideals containing I. So we find those maximal ideals which contain (a3, h2) =
((y +1)%,z + y) and those which contain {a3,hs) = (y> + 1,22 ~z +y +1).
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Mazimal ideals which contain ((y+ 1)%,z +y): The only irreducible factor of
(y+1)2isu=y+1. Also,z+y =z — 1 (mod y + 1) is irreducible. We let
v =z — 1. Therefore the only maximal ideal which contains {(y + 1),z + ) is

M =(y+1,z-1).

Mazimal ideals which contain {(y? + 1,22 —z+y+1): Clearlyu =y® + 1 is
irreducible in Q[y]. Now we find the irreducible factors of 22 — z +y + 1 modulo
u, or equivalently, we find the irreducible factors of the image of 22 —z + y + 1
in the ring R[z], where

E=R/(w) = Qly)/(y* +1) = Qli],
where i = /=1. The image of 22 — z + y + 1 in (Q[¢])[z] is the polynomial
z2 — z+1i+ 1. It is easy to see that this last polynomial can be factored as
22—z+i+1=(z—i)(z+i-1),

and each of the factors in the right-hand side polynomial is irreducible in (Q[s] }[z].
We find pre-images of these factors in R[z] and we have

2—z+y+l=(z—y)(z+y~1) (mody?+1).
Therefore we have two maximal ideals in R[z] containing (3% + 1,22 —z+y+1):
My=(*+1,z—9y), and Mz = (4> + 1,z +y—1).
We now have the primary decomposition of v/T:
VI=MinMyNMz={y+Lz-1)N{E+L,z—y) Ny +1,z+y—1).

Since we now can compute all the maximal ideals containing I, we need to find
the primary ideals which correspond to each maximal ideal in order to compute
the primary decomposition of I. We do this in two steps. We first give a criterion
to determine whether a given ideal Q is M-primary. We then give a criterion to
determine which of the M-primary ideals belong to the primary decomposition
of I.

LEMMA 4.6.13. Let A be a Noetherian ring. Let M be a mazimal ideal of A
and let Q C M be an ideal of A. Further assume that for each m € M there
exists v € N such that m¥ € Q. Then Q is M -primary.

PROOF. We first prove that /Q = M. Since M is prime and Q C M, we have
v/@ C M. Moreover, if m € M then m € /@, since a power of m is in Q, and
thus M C /Q as well.

It remains to show that Q is primary. Let fg € Q and f ¢ Q. We show that
g € M. Suppose to the contrary that g ¢ M. Then there exist h € Aand m € M
such that hg +m =1, since M is maximal. Let v € N such that m* € Q. Then

1=1"=(hg+m)" =h g+m",
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for some B’ € A. Then f = h'gf + m’f € Q, a contradiction. Therefore
geEM. O

LEMMA 4.6.14. Let A be a Noetherian ring and let I be an ideal of A. Let
e

I= ﬂ Q: be a primary decomposition of I such that Q; is M;-primary with M;

i=1

moazimal. Then for j=1,...,¢
Q;i={feA|I:(f) ¢ M;}.

PROOF. Let j € {1,...,£}. We denote {f € A | I: (f) ¢ M;} by @;. Let
f € Q). Then there exists g € A such that g ¢ M; = /Q; and fg € I C Q;.
Since Q; is primary, either f € Q; or a power of g is in Q;. But since g ¢ /Q;,
we must have f € Q;. Therefore @} C Q;.

For the reverse inclusion let f € Q;. For each ¢ € {1,... , ¢}, i # j, there exists
s; € M; — M;, since M; and M; are distinct maximal ideals. Since M; = /@,
there exists v; € N such that s}* € Q;. We define

] e
s= Hs’{" € H Q.
b R =
2 ]
Note that s ¢ M; by construction. Then fs € HQ*' Cc ﬂ Q; = 1. Therefore

s€l:(f)and s¢ Mj,sothat f€Q};. D

We now return to the case where A = R[z] where R is a PID. We will use the
above to give a method for computing the primary decomposition of I. So let
M = (u,v) be a maximal ideal which contains (a;, h;), as obtained in Theorem
4.6.10. Then u is an irreducible factor of a; and so u divides g1 = a3 ---a;. Let
m be the largest integer such that u™ divides g; (so m > 1). Now, we know that
the image 9 of v in the ring (R/(u))[z] is an irreducible factor of the image h; of
h;. Therefore 7 divides the image g; of g:, since g; = h; € (a;, i) and u divides
a;. Let n be the largest integer such that 9™ divides §; (note that n > 1). Then
we have g; = v"w (mod u), for some w € R[z], such that the image @ of w is
not divisible by 7.

i=1 i=1

THEOREM 4.6.15. We use the notation above. Let V,W € R[z| be such that
g =VW (modu™), V=v" (modu), and W =w (mod u).

Then Q = (u™, 92,... , 911, V) is M-primary and is the M-primary component
of I.

PROOF. We first note that I C Q. Indeed, we can write g; = VW + hu™, for
some h € R[z], and so g; € Q. Moreover g; € @, since u™ divides g,. Therefore
ICQ.



4.6. PRIMARY DECOMPOSITION IN R[z] FOR R A PID 267

We now show that @ is M-primary using Lemma 4.6.13. Clearly Q C M,
since u™, V, and go,...,9:—1 are in M (recall that we noted in the proof of
Theorem 4.6.10 that g3,...,g:—1 € {ai, ki) € M). To conclude, it is sufficient
to show that some power of u and v are in Q. Clearly u™ € Q. Now we can
write V = v™ + h'u, for some h’ € R[z]. Therefore v = V — h/u, and hence
"™ = (V-huw)™eQ.

We now show that @ is the M-primary component of I using Lemma 4.6.14.
We define @ = {f € R[z] | I: (f) ¢ M}.Let f€ @ andlet g € I: (f) - M.
Then fg € I C Q. Since Q is M-primary, either f € Q or g* € @, for some
v € N. But if g” € Q, then g € /@ = M, a contradiction. Therefore f € Q, and
QcQ.

‘We now prove the reverse inclusion. First note that 5_111; is relatively prime to
u because of the choice of m. Therefore 5—:‘ ¢ M, for otherwise, since u € M,
we would have 1 € M (recall that g; and u are in R and that R is a PID). Also,
5—11,‘u'"=gl € I, and so u™ € Q. Now let j be such that 2 < 7 <t — 1. Then
1¢ M, and 1g, € I, so that g; € Q. It remains to show that V € Q'. To see
this we note that W ¢ M, for otherwise, W = hu + h' v for some h,h’ € R[z],
and so w = W = h’'v (mod u). But this means that ¥ divides @, and this is a
contradiction. Then W 5—'1” ¢ M and VW = g; — hju™ for some h; € R[z] imply

g1
VWj—,ln = (g — hlu"')j—,ln =g —hg €.
Therefore V € Q'. .00

The last thing that remains to be done, in order to compute the primary
decomposition of I, is to compute the polynomials V' and W required in the last
theorem. This is always possible and it follows from a result known as Hensel’s
Lemma. We will state the result and show how it is used in examples, but we
will not provide a proof of it. The interested reader should consult [Coh].

THEOREM 4.6.16 (HENSEL'S LEMMA). Let u be an irreducible element of the
PID R and let f € R|z]. Let gV, k() € R|z] be two polynomials such that their
images in (R/(u))[z] are relatively prime and such that

F=gMr®  (mod u).
Then for any m there exist polynomials g™ and h(™ in R|z] such that
F=g"n™  (mod u™), ¢ =¢™ (modu), A =r® (mod u).
If linear equations are solvable in R then these polynomials are computable.

We will now illustrate the technique presented in this section in three exam-
ples. These examples will also illustrate how the Hensel lifting technique works.
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EXAMPLE 4.6.17. We go back to Example 4.6.12. We found that I = {(z +
¥)(¥% +1),22 — z + y + 1) C (Q[y])[z] has the following strong Grobner basis

g o= yP+28+22 42+ 1= (y+1)2% +1) = asas
g = xy2+x+y3+y=(y2+1)($+3l)=a3h2
g3 = $2—$+y+1=h3)

and that the maximal ideals which contain I are
M, = (y+ 1,$_1)1M2 = (y2+1,x—y),M3 = (y2+17$+y—1)'

We now find the primary components @;, @2, and @3 corresponding to M, Mo,
and M3 which belong to I. We use Theorem 4.6.15 and the notation set there
to find Ql: Q2’ and Q3-

Primary component which corresponds to M;: In this case we have u =y +1
and v = z — 1. The largest integer m such that u™ divides g; = (y+1)?(y* + 1)
is m = 2. Now we need to factor g5 modulo . We have

p=zl-z+y+l=2-z=(z—1)z (mody+1).

Therefore the largest 7 such that v™ divides g3 modulo u is 7 = 1. We also have
w = z. Now we need to find V and W such that

VW=z?—z+y+1 (mod(y+1)?), V=z-1 (mody+1),

and W=z (mody+1).
To do this we find polynomials h and A’ in Q[z,y] such that

V=(@-1)+(y+1)hand W =z + (y+ 1)K,
and which satisfy the congruence

g3 = -z+y+1
z(z—-1)+ (y+1)
VW (mod (y +1)3)
z(z—1)+z(y+1)h+ (- 1)(y+ 1)1
+(y +1)2hA’ (mod (y + 1)?)
= z(z-1)+zy+1h+(x—-1)(y+ 1) (mod (y+1)3).
Therefore y + 1 = z(y + 1)h + (z — 1)(y + 1) A’ (mod (y + 1)2), or equivalently

1=2zh+ (z—1)h' (mod y + 1). One obvious solution to this equation is h =1
and k' = —1. Therefore we have

V=@E-1)+@y+l)=z+y, and W=z—-(y+1)=z—y—1.

By Theorem 4.6.15 the primary component of I which corresponds to the max-
imal ideal M, is

Q= 26,V)=(y+1)%E+1)(z+y)z+y) = (¥ +1)%,z+y).
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Primary component which corresponds to M,: In this case we have u = > +1
and v = z — y. The largest integer m such that 4™ divides g; = (y +1)%(y% +1)
is m = 1. Now we need to factor g; modulo u. We have

B=r'—z+y+l=(z—y)(z+y—1) (mody®+1).

Therefore the largest n such that v™ divides g3 modulo % is n = 1. We also have
w=z+Yy—1. Since m = 1 we may let V = v and W = w. Therefore the primary
ideal corresponding to M; and which belongs to I is

Q=" +1L,02+1)(z+y),z—y) =M.

Primary component which corresponds to M3: This computation is the same
as the previous one and we get that the primary ideal corresponding to M3 and
which belongs to I is

Q= +1,0" +1)(z+y),z+y—1) = Ms.

Therefore we have

I = ((z+y)(?+1),22—2+y+1)=Q1NQ2NQ3
= ((y+1)4z+ NP +Lz-yNnHP+Lz+y—1).

The next example illustrates how the Hensel lifting technique is applied re-
peatedly.

EXAMPLE 4.6.18. In this example we again consider the ring R = Q[y]. Let I
be the ideal ((z + y)?(y — 1),z + z + y) of R[z]. Again, to compute the strong
Grébner basis for I we compute the Grobner basis for I viewed as an ideal in
Q[z, y] with respect to the lex term ordering with z > y. We get

g = ¥-y=y'(y—1)=az0;3
g2 = sy-z+2 -’ —y=(@-D+2° +y’ +y) =ash,
93 = z2+z+y=hs

Note that the greatest common divisor of g1, g2, and g3 is 1. As in Example 4.6.12
we first compute the maximal ideals which contain I. We find those maximal
ideals which contain (az, ko) = (3%, + 2y® + ¥® + y) and those which contain
(as,ha) = (y— 1,22 + =+ y).

Mazimal ideals which contain (y*,z + 2y® + y2 + y): The only irreducible
factor of a; = y* is u = y. The only irreducible factor of = +2y® + y? +y modulo
y is v = . Therefore the maximal ideal which contains (y*,z +2y® +y% + v) is

M, = (y,:t).

Mazimal ideals which contain {(y — 1,22 + z + y): It is easy to see that the
only maximal ideal that contains (y — 1,22 + z +y) is

M2=(y——1,:z:2+:z:+1).
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That is, we have v =y — 1 and v = z2 + z + 1, since z2 + z + 1 is irreducible
in the ring R[z], where R = R/(u) = Q[y]/(y — 1) = Q. So the original ideal
{y— 1,22 + z + y) = M is itself maximal.

Thus, the primary decomposition of /T is

VI=MOM,={y,z)N(y—1,2° +z+1).

‘We now find the primary components that belong to I and which correspond
to M; and M,. We use Theorem 4.6.15 and the notation set there to find @,
and Qz.

Primary component which corresponds to M;: In this case we have u = y and
v = z. The largest integer m such that u™ divides g; = y*(y — 1) is m = 4. Now
we need to factor g3 modulo u. We have

g=z’+z+y=z>+z=z(x+1) (mody).

Therefore the largest n such that v™ divides g3 modulo u is n = 1. We also have
w =z + 1. Thus we need to find V and W such that

VW=z’+z+y (mody*), V=z (mody), and W=z+1 (mody).

To do this we use the Hensel lifting technique three times to find V), W® such
that at each stage we have

VWO =224 z+y (mod '), VI =z (mody), WH=z+1 (mody),

for i = 2,3,4. This is done inductively by constructing v+ and WGH) in
terms of V¥ and W respectively. We start with lifting modulo %2. To do this
we must find polynomials A(?) and A’ @ in Q[z, y] such that

V® =24+ yh® and WD =z + 1+ yi'®,
and which satisfy the following congruence

g = T +z+y
= VOW® (mod ?)
= 2+z+(z+1)ya® + 2y’ ® (mod 4?).

Therefore we have y = (z + 1)yh? + zy r'? (mod y2), or equivalently 1 =
(x+1)A® 4z 4 @ (mod ). An obvious solution to this congruence is h(®) =1
and h'®® = —1. Therefore we have

VA =z 4+yand WP =z —y+1.
To lift modulo 43, we find £® and A'® such that
VO =V 4+ 28O =z +y + 28O,

W(3) — W(2) + y2hl(3) =z—-y+1 +y2h.’(3)
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and which satisfy the congruence

?4z4y
= VOW® (mod y°)
= Z24z+y—-y2+(z+ y)y2h’(3) + (& —y+1)y2h® (mod »3).

Canceling %2 we have
E+ D +(z—y+1)r® =1 (mod y).

g3

A solution to this congruence is A® =1 and A’ @) = _1. Therefore we have
VO =z 4y +yand WS =z -2 —y+1.
Finally we lift modulo y*. We find A(4) and A’ such that
V=V® =V 4+ 3h® =z 4 4% +y+4°h®),
W=WO=w® 4280 =z —y? —y+1+4°w@
and which satisfy the congruence

gz = 2 +z+ ]

VAOW® (mod y*)
P2+z+y-28+ (@ +y? +y) @
+(z —¥% —y+1)5*r® (mod y*).

Canceling 3°® we have
@+ P+ + (- -y + DD =2 (mod y).
A solution to this congruence is h{9) = 2 and A’ @ = _2_ Therefore we have
V=vV® =z 4+2° +y? +yand W=WW =z - 2> ¢ _y+1.

Now that we have V and W we can find the primary ideal @; corresponding to
M, and which belongs to I,
Qi ={@"0V) = Gu-De+2’+¥* +y) 2+ 27+ +y)
= Whz+2° +97 +y).

Primary component which corresponds to Ma: In this case we have u =y — 1
and v = 22 + z + 1. The largest integer m such that «™ divides g; = y*(y — 1)
is m = 1. We thus have that @, = (y — 1,22 + 2 + 1) = M,.

Therefore the primary decomposition of I is

I=nM={z+2°8+2 +y)n{y~ 1,22 + 2 +1).

We conclude this section with an example in Z[z)].
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EXAMPLE 4.6.19. The polynomials

a = 45=9-5=a2a3
g2 = 5z+10=>5(z+2)=azh;
g3 = z°+622+20z+15= hs.

form a minimal strong Grobner basis in Z[z]. We will compute the primary
decomposition of I = (g1, g2,93). We first compute the maximal ideals which
contain (ag, hy) and (ag, hs) respectively.

Mazimal ideals which contain (9,z + 2): The only irreducible factor of 9 is
u = 3. Also, v = z + 2 is irreducible modulo 3. Therefore there is only one
maximal ideal which contains (9, z + 2), and it is

M, =3,z +2).

Mazimal ideals which contain (5,z2 + 6x2 + 20z + 15): The only irreducible
factor of 5 is u = 5. Also,

22 +622+20z+15=23+ 22 =2%(x +1) (mod 5).

Therefore there are two irreducible factors modulo 5, namely z and z + 1. Thus
there are two maximal ideals which contain (5, x3 + 622 + 20z + 15),

M, = (5,z) and M3 = (5, + 1).
The primary decomposition of v/T is
VI=MiNnM;N Mz = (3,z+2)N(5,z)N(5z+]1).

Now we find the primary component for each of these maximal ideals.

Primary component which corresponds to M;: In this case we have u = 3 and
v = = + 2. The largest integer m such that 4™ divides g; = 45 is m = 2. Now
we need to factor g3 modulo u. We have

g3=x2+622420z+15=2*+2x=2(z> +2)=z(z+1)(z+2) (mod 3).

Therefore the largest n such that v™ divides g3 modulo u is n = 1. We also have
w = z(z + 1). Now we need to find V and W such that

VW =2%4622+20z+15 (mod9), V=z+2 (mod3),

and W=z(z+1) (mod 3).

As before we use the Hensel lifting technique. We find polynomials h and A’ in
Z[z] such that

V=(x+2)+3hand W =z(z+ 1)+ 34/,
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and which satisfy the following congruence
95 = 23462 +20z+15

VW (mod 9)
= 2°+322+22+3z(z+1)h+3(z +2) k' (mod 9).

i

Therefore we have 3z2 + 6 = 3z(z + 1)h + 3(z + 2) &’ (mod 9), or equivalently,
z2+2=z(z+ 1)h+ (z +2) A’ (mod 3). A solution to this congruence is h = 0
and k' = z + 1. Thus we have

V=z+2and W=2z2(z+1)+3(c+1) =2 +4z +3.

We now can find the primary ideal @, corresponding to M; and which belongs
to I,
Q1= (u",92,V) =(9,5(z +2),2+2) = (9,2 +2).
Primary component which corresponds to Ms: In this case we have u = 5 and
v = z. The largest integer m such that v™ divides g; = 45 is m = 1. Now we
factor g3 modulo u. We have

B=22+622 +20z+15=23+2° =2%(x +1) (mod 5).

Therefore the largest n such that v™ divides g3 modulo u is n = 2. We also have
w =z + 1. Since m = 1 we may let V = v and W = w. The primary ideal Q.
corresponding to M, and which belongs to I is

Q2= <um’ gQ’V) = (5,5(:1:+ 2),:122) = (5’ '772)’

Primary component which corresponds to M3: In this case we have u = 5 and
v = z+1. As above the largest integer m such that «™ divides g; = 45ism =1.
Also, as above g3 = z2(x+1) (mod 5), and so the largest n such that v™ divides
g3 modulo u is n = 1. We also have w = z2. As above we can choose V and W
equal to v and w respectively, and so the primary ideal @3 corresponding to My
and which belongs to I is

Q3= (u™, g, V) =(5>5@z+2),z+1) =(6,z+1).
Therefore we have the following primary decomposition of I
I=Q1NQ2NQs3=(9,z+2)N {5z N{5z+1).

Exercises

4.6.1. Consider the following three polynomials in Q[z, ]
o = @P-y+1)%(y-1)=aza
92 = (¥-1)(="+y) =ashs

g3 = 2842 +3c* +2®—y+1=hs.
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Let I = (g1,92,93) € (Qlz])[y]. Verify that {g;, g2, g3} is a strong Grébner
basis for I and find the primary decomposition of I.

4.6.2. Consider the following three polynomials in Z[z]
g1 = 4-T=aoa3
g2 = Tz*+1)=ashy
g3 = z*442+3=nh;.

Let I = (91,92,93) C Z[z]. Verify that {g;, 92,93} is a strong Grébner
basis for I and find the primary decomposition of I.



Appendix A. Computations and Algorithms

Computations. There are many Computer Algebra Systems which have a
Grébner basis package, for example AXIOM, MAPLE, and MATHEMATICA. There
are other packages which are entirely devoted to computing in polynomial rings
and which have an extensive list of commands to perform some of the computa-
tions presented in this book. In particular, we mention COCOA and MACAULAY.
Most of the computations in the examples and exercises in this book (except in
Chapter 4) were performed using COCOA. Many of these computations could
not have been done with the other systems listed above. MAPLE and MATHE-
MATICA do not allow computations in modules and have only a limited choice of
orders. These systems allow the user to program and the algorithms presented
in this book are, in principle, programmable. However, any practical implemen-
tation of these algorithms requires a lot of material not included in this book
and many hours of work. MACAULAY computes only with homogeneous polyno-
mials and focuses on computations applied to algebraic geometry. Most of our
examples are non-homogeneous. Some of the computations could still be done
using MACAULAY, but with care (see Exercises 1.4.9 and 1.6.18). None of the
above systems have an implementation for the computation of Grobner bases
over rings which are not fields. Of course the algorithms over rings could also,
in principle, be implemented using some of these systems.

CoCOA provides commands for the algebraic manipulation of polynomials
in k[z1,-...,Zn], ideals of k[z1,...,%Z,], and submodules of the free modules
(k[z1, ... ,zs]))™, where k is a field. Moreover, the user can choose among pre-
defined term orders or define a custom ordering. The algebraic procedures in-
clude the computation of the intersection of ideals and modules, ideal quotients,
normal forms, syzygy modules, elimination ideals and modules, free resolutions,
and, of course, Grobner bases for ideals and modules. When starting a compu-
tation with COCOA the user specifies the characteristic of the field. Even when
computing over Q, COCOA performs arithmetic modulo a large prime number,
so errors may occur and the user must keep this in mind.

CoCOoA was developed at the University of Genova, Italy, by Antonio Capani,
Alessandro Giovini, Gianfranco Niesi, and Lorenzo Robbiano. To obtain a copy
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of COCOA send a message to the developers at
cocoa@dima.unige.it.

Algorithms. The algorithms in this book are presented in pseudo-code, and
the format is as follows. We always start our algorithms by specifying the in-
put (which follows the word INPUT) and the output (which follows the word
OUTPUT). We then always specify how we initialize the variables involved in
the algorithm (this follows the word INITIALIZATION).
When we need to assign an expression to a variable we use the instruction
variable := expression

For example, if the current value of the variable £ is 4 and the current value of
the variable G is {1, 2, 3}, and if the instructions

G:=Gu{¢}
=041

are executed, then the operation {1,2,3}uU{4} = {1, 2,3, 4} is performed, and G
takes on its new value {1,2,3,4}, and then the operation 4+1 = 5 is performed,
and £-takes on its new value 5.
We use the following conditional structure:
IF condition THEN
action 1
ELSE
action 2
This means that if condition is true, then action 1 is performed, and if condition
is false then action 2 is performed. Note that the truth of condition depends
on the current value of the variables in the algorithm. Sometimes we omit the
ELSE statement which always means that action 2 is simply “do nothing.”
The indentation always indicates what action 1 and action 2 are and when the
conditional structure terminates.
We also use two loop structures:
WHILE condition DO
action
and
FOR each item in a set S DO
action
In the WHILE loop, action is repeated as long as condition holds and is not
performed if condition does not hold. In the FOR loop, action is performed
once for each item in the set S. Note that, in many instances, an order on the
set S is prescribed, and the FOR loop must be executed in that order. No other
instruction is executed until the entire WHILE or FOR loop is completed. The
indentation always indicates what the action is and when the loops terminate.



Appendix B. Well-ordering and Induction

In this book we use a form of “proof by induction” which may be unfamiliar to
the reader. It is the purpose of this appendix to briefly describe this process.

We consider a non-empty set T which we assume has a total order “<” on
it. That is, we assume we have a relation “<” on T satisfying the following
properties:

o the relation < is reflexive: forallt € T, t < ¢;

o the relation < is transitive: for all s,t,u € T, if s < t and ¢ < u then
s<u

o the relation < is antisymmetric: for all s,t € T, if s <t and £ < s then
s=t;

o the relation < is total: for all s,t € T, either s <tort <s.

We say that a total order < is a well-ordering provided that we have the
additional property

e Let S C T such that S # 0. Then S contains a smallest element. That
is, there is an s € S such that for all £ € S we have s < t.

We will use two examples of well-ordered sets. There is, of course, the one
familiar to most people, the set of natural numbers N = {0,1,2,...}. The one
we will use most in this book is the set T of power products in the variables
Z1,... ,Tn on which we will put various orders (see Section 1.4); all of them will
be well-orderings.

Let T be a well-ordered set. Since T is a subset of itself, it has a smallest
element which we will denote by 1 (of course, in N this element is 0).

We assume that we are given a set {P; | t € T’} of statements to be proved.
We go about this in one of two ways.

e We argue by contradiction. If one of the statements is false, we can let
S be the set of all ¢ € T such that P; is false. Since S # @ we may
choose s € S least. Another way to say this is that if some of the P;’s
are false then we may choose a smallest s € T for which P; is false. The
idea then is to find ¢ < s for which P; is also false and so arrive at a
contradiction and conclude that all P;’s are true.

e The second way to proceed is in the more traditional “induction argu-
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ment” style (commonly referred to as strong induction). We assume
that

(l) P, is true;

(ii) For all ¢ € T the truth of P; for all s < ¢ implies the truth of P;.
‘We conclude from this that all of the P;’s are true.

The validity of the first method of reasoning is obvious. Moreover the proof
that these two forms of induction are equivalent proceeds exactly as it does in
the case T = N.
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coefficients in the field &k
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over a ring, 227
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normal selection strategy, 130 module, 116
Nullstellensatz, 62 ring, 5
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elimination, 69 module case, 150
induced by a matrix, 166 polynomial over a field, 27
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square free, 75 local, 238
symmetric, 25, 88 localization, 89
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leading, 21, 202 quotient,
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Schreyer, 165
Seidenberg, 78 well-ordering, 18, 277
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square free polynomial, 75 Zachariss, 201, 226, 237
standard basis, 32 Zariski closure, 90
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Grdbner basis, 251 zero-dimensional ideal, 64, 262
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reduction, 252, 258
subalgebra, 39
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symmetric polynomial, 25, 88
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and Groébner bases, 121
applications of, 171
homogeneous, 121, 212
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module of, 232, 246
Szekeres, 254

tensor product of matrices, 189
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order
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