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Preface

We wrote this book with two goals in mind:
(i) To give a leisurely and fairly comprehensive introduction to the definition

and construction of Grobner bases;
(ii) To discuss applications of Grobner bases by presenting computational

methods to solve problems which involve rings of polynomials.
This book is designed to be a first course in the theory of Grobner bases suitable
for an advanced undergraduate or a beginning graduate student. This book is
also suitable for students of computer science, applied mathematics, and engi-
neering who have some acquaintance with modern algebra. The book does not
assume an extensive knowledge of algebra. Indeed, one of the attributes of this
subject is that it is very accessible. In fact, all that is required is the notion of the
ring of polynomials in several variables (and rings in general in a few places, in
particular in Chapter 4) together with the ideals in this ring and the concepts of
a quotient ring and of a vector space introduced at the level of an undergraduate
abstract and linear algebra course. Except for linear algebra, even these ideas
are reviewed in the text. Some topics in the later sections of Chapters 2, 3, and 4
require more advanced material. This is always clearly stated at the beginning of
the section and references are given. Moreover, most of this material is reviewed
and basic theorems are stated without proofs.

The book can be read without ever "computing" anything. The theory stands
by itself and has important theoretical applications in its own right. However,
the reader will not fully appreciate the power of, or get insight into, the methods
introduced in the book without actually doing some of the computations in the
examples and the exercises by hand or, more often, using a Computer Algebra
System (there are over 120 worked-out examples and over 200 exercises). Com-
puting is useful in producing and analyzing examples which illustrate a concept
already understood, or which one hopes will give insight into a less well under-
stood idea or technique. But the real point here is that computing is the very
essence of the subject. This is why Grobner basis theory has become a major
research area in computational algebra and computer science. Indeed, Grobner
basis theory is generating increasing interest because of its usefulness in pro-

ix
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viding computational tools which are applicable to a wide range of problems in
mathematics, science, engineering, and computer science.

Grobner bases were introduced in 1965 by Bruno Buchberger' [Bu65]. The
basic idea behind the theory can be described as a generalization of the theory
of polynomials in one variable. In the polynomial ring k[x], where k is a field,
any ideal I can be generated by a single element, namely the greatest common
divisor of the elements of I. Given any set of generators {fi,... , fs } C k [x]
for I, one can compute (using the Euclidean Algorithm) a single polynomial
d = gcd (f l )... , fs) such that I = (f',... , f s) = (d). Then a polynomial f E k [x]
is in I if and only if the remainder of the division of f by d is zero. Grobner
bases are the analog of greatest common divisors in the multivariate case in the
following sense. A Grobner basis for an ideal I C k [x1, ... , xn] generates I and
a polynomial f E k[xl,... , x,,] is in I if and only if the remainder of the division
of f by the polynomials in the Grobner basis is zero (the appropriate concept of
division is a central aspect of the theory).

This abstract characterization of Grobner bases is only one side of the theory.
In fact, it falls far short of the true significance of Grobner bases and of the
real contribution of Bruno Buchberger. Indeed, the ideas behind the abstract
characterization of Grobner bases had been around before Buchberger's work.
For example, Macaulay [Mac] used some of these ideas at the beginning of
the century to determine certain invariants of ideals in polynomial rings and
Hironaka [Hi], in 1964, used similar ideas to study power series rings. But the
true significance of Grobner bases is the fact that they can be computed. Bruno
Buchberger's great contribution, and what gave Grobner basis theory the status
as a subject in its own right, is his algorithm for computing these bases.

Our choice of topics is designed to give a broad introduction to the elemen-
tary aspects and applications of the subject. As is the case for most topics in
commutative algebra, Grobner basis theory can be presented from a geometric
point of view. We have kept our presentation algebraic except in Sections 1.1
and 2.5. For those interested in a geometric treatment of some of the theory we
recommend the excellent book by D. Cox, J. Little and D. O'Shea [CLOS]. The
reader who is interested in going beyond the contents of this book should use our
list of references as a way to access other sources. We mention in particular the
books by T. Becker and V. Weispfenning [BeWe] and by B. Mishra [Mi] which
contain a lot of material not in this book and have extensive lists of references
on the subject.

Although this book is about computations in algebra, some of the issues which
might be of interest to computer scientists are outside the scope of this book.
For example, implementation of algorithms and their complexity are discussed
only briefly in the book, primarily in Section 3.3. The interested reader should
consult the references.

Z Wolfgang Grobner was Bruno Buchberger's thesis advisor.
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In Chapter 1 we give the basic introduction to the concept of a Grobner basis
and show how to compute it using Buchberger's Algorithm. We are careful to
give motivations for the definition and algorithm by giving the familiar examples
of Gaussian elimination for linear polynomials and the Euclidean Algorithm for
polynomials in one variable. In Chapter 2 we present the basic applications to
algebra and elementary algebraic geometry. We close the chapter with three
specialized applications to algebra, graph theory, and integer programming. In
Chapter 3 we begin by using the concept of syzygy modules to give an improve-
ment of Buchberger's Algorithm. We go on to show how to use Grobner bases to
compute the syzygy module of a set of polynomials (this is solving diophantine
equations over polynomial rings). We then develop the theory of Grobner bases
for finitely generated modules over polynomial rings. With these, we extend
the applications from the previous chapter, give more efficient methods for com-
puting some of the objects from the previous chapter, and conclude by showing
how to compute the Hom functor and free resolutions. In Chapter 4 we develop
the theory of Grobner bases for polynomial rings when the coefficients are now
allowed to be in a general Noetherian ring and we show how to compute these
bases (given certain computability conditions on the coefficient ring). We show
how the theory simplifies when the coefficient ring is a principal ideal domain.
We also give applications to determining whether an ideal is prime and to com-
puting the primary decomposition of ideals in polynomial rings in one variable
over principal ideal domains.

We give an outline of the section dependencies at the end of the Preface.
After Chapter 1 the reader has many options in continuing with the rest of the
book. There are exercises at the end of each section. Many of these exercises
are computational in nature, some doable by hand while others require the use
of a Computer Algebra System. Other exercises extend the theory presented in
the book. A few harder exercises are marked with (*).

This book grew out of a series of lectures presented by the first author at the
National Security Agency during the summer of 1991 and by the second author
at the University of Calabria, Italy, during the summer of 1993.

We would like to thank many of our colleagues and students for their helpful
comments and suggestions. In particular we would like to thank Beth Arnold,
Ann Boyle, Garry Helzer, Karen Horn, Perpetua Kessy, Lyn Miller, Alyson
Reeves, Elizabeth Rutman, Brian Williams, and Eric York. We also want to
thank Sam Rankin, Julie Hawks and the AMS staff for their help in the prepa-
ration of the manuscript.
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Chapter 1. Basic Theory of Grabner Bases

In this chapter we give a leisurely introduction to the theory of Grobner bases.
In the first section we introduce the reader to the kinds of problems we will be
interested in throughout this book. In the next two sections we motivate the
method of solution of these problems by presenting the method of solution in
two familiar special cases, namely the row reduction of matrices of systems of
linear polynomials, and the division algorithm for polynomials in one variable.
The basic method in both cases is to use the leading term of one polynomial to
subtract off a term in another polynomial. In Section 1.4 we introduce what we
mean by the leading term of a polynomial in n variables. In Section 1.5 we go
on to generalize the ideas in Sections 1.2 and 1.3. This leads us in Section 1.6 to
defining the central notion in this book, namely the notion of a Grobner basis. In
Section 1.7 we present the algorithm due to Bruno Buchberger which transformed
the abstract notion of a Grobner basis into a fundamental tool in computational
algebra. We refine the definition of a Grobner basis in an important way in
Section 1.8 and summarize what we have done in Section 1.9.

1.1. Introduction. Let k be any field (e.g., the rational numbers, Q, the real
numbers, R, or the complex numbers, C) . We consider polynomials , f (x1, ... , x,,)
in n variables with coefficients in k. Such polynomials are finite sums of terms of
the form a E k, and' /3 E N, i = 17.. . , n. We call x#l ...
a power product. For example, f = x1 +x2 -1 axed g = x -- 3x2 - -

2
xi x3 are poly-

nomials in three variables. We let k [x 1, ... , xn] denote the set of all polynomials
in n variables2 with coefficients in the field k. Note that in k[xl,... , xn] we have
the usual operations of addition and multiplication of polynomials, a n d w i t h re-
spect to these operations k [x 1, .. _ , xn] is a commutative ring. Also, k [x 1, ... , x7L]

is a k -vector space with basis the set, Tn, of all power products,

Tn = {x4' - . x n 1 ,8 i E N,i ` 1,... ,n}.

1 We denote by N the set of non-negative integers, that is, N = { 0, 1, 2, 3,. .. }.
2Most of the time,'from now on, whenever we work with just one, two, or three variables,

we will not use variables with subscripts, but instead will use the variables x, y, or z as needed.
For example, f = z2 -I- y2 --1 is a polynomial in Q[x, y] and g = x - 3y2 + 2 xz is a polynomial
in Qfx, y, z) .

1



2 CWAPTER 1. BASIC THEORY OF GRGBIVER BASES

For a positive integer n we define the affine n-space

kn= {(al,...,an) j(For

example, if k = IR, then kn = Jn is the usual Euclidean n -space.) A
polynomial f E k[xl,. - . , xn] determines a function kn -+ k defined by

(ar,... , an) f(al, ... , an), for all (al, ... , an,) E kn.

This function is called evaluation. We thus have two ways of viewing a poly-
nomial f E k[xl,... , xn]. One is as a formal polynomial in k[xl,... x.,,] and
the other is as a function kn -p k (it should be noted that if k happens to be
a finite field then two different polynomials can give rise to the same function;
however this need not concern us here).

This "double identity" of polynomials is the bridge between algebra and ge-
ometry. For f E k [x 1, ... , xn] we define V (f) to be the set of solutions of the
equation f = 0. More formally,

VW is called the variety defined by f. For example, V (x2 + y2 _ 1) C R2 is the
circle in the xy-plane with center (0, 0) and radius I.

More generally, given fl, ... , f, E k [x 1, ... , x,,] , the variety V (fl, ... , f8) is
defined to be the set of all solutions of the system

(1.1.1) fx=0,f2=0,...,fs=0.
That is,

V(f1, ... , fs) _ {(ai,... , an) E k n J fi(a17 ... , an) = 0,i = - 1 2, . . . 551-

Note that V (f l , ... , f,) = n:=, V (f i) . For example, the variety V(x2 + y2 --

1, x - 3 y2) C ]R2 is the intersection of the circle x2 + y2 = 1 and the parabola
x = 3y2 in the xy-plane. More generally still, if S C k[xi,... , xn], we define

V (S) = {(a,,. .. , an) E kn I f (a1, ... ,an) = 0 for all f E S}.

There are many numeric algorithms for solving non-linear systems such as
These algorithms solve for one solution at a time, and find an "approx-

imation" to the solution. They ignore the geometric properties of the solution
space (the variety), and do not take into consideration possible alternate de-
scriptions of the variety (using a different system). Indeed, as we will see below,
a variety can be the solution set of a number of systems such as (1.1.1), and
the computation of the solutions can drastically improve if the given system of
equations is transformed into a different system that has the same solutions but
is "easier" to solve. To illustrate this, recall that the Gauss-Jordan elimination
method transforms a system of linear equations into the so-called row echelon
form (see Section 1.2). The system thus obtained has exactly the same solu-
tions as the original system, but is easier to solve; this example will be discussed
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more thoroughly in the next section. We will develop an analogous procedure
for System (1.1.1) which will give us algebraic and geometric information about
the entire solution space of System (1.1.1).

The method for obtaining this information is to find a better representation for
the corresponding variety. This will be done by considering the ideal generated
by polynomials fl, ... , f s , denoted (Ii,...

$

(11,... Ifs) _ uifi 1u2 E k[xl,... , xn], i = 1, ... is .

s=1

It is easy to check that I = (1"... , f S } is an ideal in k [x 1 i ... ,x]; that is, if
f, g E I, then so is f + g and if f E I and h is any polynomial in k [x1, ... , xn],
then h f E I. The set {f',... , fs I is called a generating set of the ideal I. The
desired "better" representation for the variety V (f 1, ... , f $) will be a better
generating set for the ideal I = (f',... , f8).

To see how this might help, we consider the variety V(I), that is, the solutions
of the infinite system of polynomial equations

(1.1.2) f = 01f E I;

and contrast it with the solutions of the finite system

(1-1-3) f1=0,f2=0,...,Is=0-

A solution of System (1.1.2) will clearly be a solution of System (1.1.3), since
f f E I for i = 13... , s. Conversely, if (a17... , an) E kn is a solution of System
(1.1.3), and if f is any element of I, then f (a1, ... ,an) = 0, since f = E'=1 uiA.1

for some uz E k [x 1, ... , x,, ] . Hence (ai,... , cam,) is a solution of System (1.1.2).
Thus we have that V(I) = V (f l , ... , f8). We note that an ideal may have
many different generating sets with different numbers of elements. For exam-
ple, in k [x, y], (x + y, x) = = (x, y) = (x + xy, x2 , y2 , y + xy). Now, if we have
I = (fi,... , fs) = (f,... , ft), then V(f1,... , f3) = V(I) = V(fi, ... , ft).

This means that the system f, = 0, ... , f, = 0 has the same solutions as the
system fl' = 0, ... , f, = 0, and hence a variety is determined by an ideal, not
by a particular set of equations. So, if we obtain a "better" generating set for
the ideal I = (fi,... , f3), we will have a "better" representation for the variety
V (f,7... , f S) . And by "better" we mean a set of generators that allows us to
understand the algebraic structure of I = (11,.-. , f s) and the geometric struc-
ture of V (fl, ... , f s) better. The remainder of this chapter is devoted to finding
this "better" generating set for I (which will be called a Grabner basis for I).
In the case of linear polynomials this "better" generating set is the one obtained
from the row echelon form of the matrix of the system.

We will now look at the problem from a different perspective. Consider a col-
lection, V, of points of the affine space V. We define the set I (V) of polynomials
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in k [x l , ... , x,] by

I(V) _ If E k[xi,... , xn] I f (al, ... , an) = 0 for all (a1,... , an) E V}.

It is easy to verify that the set I (V) is an ideal in k [x 1, ... , x7z] . It would seem that
this ideal is very different from the ideal (fi,... , fe). The latter ideal is defined
algebraically as the set of all linear combinations of fl, ... , f, with polynomial
coefficients, while the former ideal is defined by the geometric condition that f is
in I (V) if and only if f (a , , ... , an) = 0 for all (a1,.. - , an) E V. We will examine
the exact relationship between these two descriptions later. For now, we note
that the ideal I(V) can be put in the form (fi, . - . , f.) for some fl, ... , f, E
k [x i , ... , x.,,]. Indeed, the Hilbert Basis Theorem (Theorem 1.1.1) states that
any ideal I in k [x 2 , ... , x,] (in particular the ideal I (V)) has a finite generating
set. We will prove the Hilbert Basis Theorem at the end of the section. Another
consequence of this result is that if A is an infinite set and for all A E A we have
a polynomial f X E k [x x , ... ,x}, then the solution set of the infinite system

fa=O,aEA

is, in fact, the solution set of a finite system, namely, of a finite generating set
for the ideal (fx I A E A) (this ideal is defined to be the set of all finite linear
combinations of the fA, A E A, with polynomial coefficients).

The construction of the ideal I(V) above is a very important one. It is the
bridge from geometry back to algebra since, in addition to the map

{ Subsets of k [x i , ... , xn] } -p { Varieties of kn }
S V(S),

we now have a map

{ Subsets of kn} -) {Ideals of k[xl,... , xn]}
I(V).

Understanding the relationship between these two maps allows us to go back
and forth between algebraic and geometric questions. In particular, we will be
interested in the exact relationship between the ideal I and the ideal I (V(I)). It
is easy to see that I C I (V(I)), but equality does not always hold. For example,
if I = (x2, y2) c k [x, V1, then V(1) = {(0, 0) }, and so x and y are in the ideal
I (V(I)), but they are not in I. For more on the relationship between I and
I (V (I)), see Section 2.2.

In order to find the "better" generating set discussed above, we will need to
determine whether two finite sets of polynomials in k [x 1, ... , xn] give rise to the
same ideal. More specifically, given fl, ... , fs E k [x 1 i ... , xn] , and f117 ... , ft' E
k [xl , ... , x,,], we will need to determine whether (f',... , f.) = (fi,... , ft'y . For
this reason and many others, it is desirable to solve the following problems: given

I = (.f1,- , fs) and f E k[xj,... ,xn],
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PROBLEM 1. Determine whether f is in I. This is the so-called "ideal mem-
bership problem."

PROBLEM 2. If f E I, determine u1, ... , u8 E k [x1, ... , xn] such that f =
ulf1 + u2f2 + . -+-' usfs.

REMARK : In this book, the word "determine" is informally understood to
mean that one can give an algorithm that can be programmed on a computer.

The discussion above is related to another problem that deals with a certain al-
gebraic construction. Let I be an ideal of k[x1, ... , xn], and let f E k[x1, ... , xn].
We saw earlier that f determines an evaluation function kn -* k defined by
(ai,... , a,) f (a 1, ... , an). We now consider the restriction of this function
to VV); that is, we consider the evaluation function V(I) -' k defined by
(ai,... , an) i 4 f (ai, ... , an) for all (a1,... , an) E V(I).

We would like to answer the following question: for f, g in k[x1,... , xn], when
are the corresponding evaluation functions V(I) -' k equal? We note that this
is related to the ideal I (V (I)) introduced earlier. Indeed, if f - g is in the ideal
I (V (I) ), then the evaluation function V(I) - k defined by f - g is identically
zero, and hence the evaluation functions V(I) -i k determined by f and g are
equal. Recall that given f and gin k[x1, ... , xn], and an ideal J of k[x1,... , xn],
we say that f is congruent to g modulo J, denoted f g (mod J), if f - g E J.
Observe that "=" is an equivalence relation on k [x 1, ... , xn] . We denote the set
of equivalence classes by k [x 1, ... , xn] / J. Elements of k [xi, ... , xn] / J are of the
form f + J and are called cosecs of J. Also, k[xl, ... , xn]/J is a commutative
ring with the usual operations of addition and multiplication inherited from
k[x1, ... , xn] and is called the quotient ring of k[x1, ... , xn] by J. It is also a
vector space over k.

In connection with this construction, we would like to solve the following
problems:

PROBLEM 3. Determine a set of coset representatives of k[x1, ... , x.,, J.
PROBLEM 4. Determine a basis for k [x 1, ... , xn] / J as a vector space over k

(which may or may not be finite).
We now turn our attention to the Hilbert Basis Theorem. This result is

crucial in everything we will be doing throughout this book. It guarantees the
termination of our algorithms and also, as pointed out above, it guarantees that
every variety is the solution set of a finite set of polynomials.

THEOREM 1.1.1 (HILBERT BASIS THEOREM). In the ring k[x1,... , x,a] we
have the following:

(i) If I is any ideal of k [x1, ... ,x], then there exist polynomials fl,. .. , f s E
k[x1, ... , xn] such that I = (fi,... , f8).

(ii) If Il C 12 C 13 C ... C In C . is an ascending chain of ideals of
k [x 1, ... , x, ] , then there exists N such that IN = IN+ 1 = IN+2 = .. .

Before we go on to the proof we would like to make a couple of definitions.
An ideal I in a general ring R which satisfies Condition (i) is said to be finitely
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generated, or to have a finite generating set. Condition (ii) is sometimes referred
to as the Ascending Chain Condition, and any commutative ring R satisfying
that condition is called a Noetherian ring.

In the next two sections we will illustrate the discussion of this section using
two examples: linear systems and polynomials in one variable. These will be
fundamental motivations for the general constructions we will develop in the
remainder of this chapter.

The remainder of this section is devoted to the proof of Theorem 1.1.1. The
reader may skip the proof and proceed directly to the next section.

It turns out that if either of the two conditions in Theorem 1.1.1 holds, then
the other also holds; this is the content of the next theorem.

THEOREM 1.1.2. The following conditions are equivalent for a commutative
ring R:

(i) If I is any ideal of R, then there exist elements fl, ... , ,f 9 E R such that
I={fl,-..,fs).

(ii) If I1 C 12 C 13 C ... C In C ... is an ascending chain of ideals of R.
then there exists N such that IN = IN+1 = IN+2 = - -

That is, the ring R is Noetherian if and only if every ideal in R has a finite
generating set.

PROOF. Let us first assume Condition (i), and let

I 1 CI2 CI3 C ... C I n C-...

be an ascending chain of ideals of R. Consider the set I = Uco 1 In. Since the
ideals In are increasing, it is easy to see that I is an ideal of R. By Condition
(i), I = (f',... , fe), for some fx, ... , fs E R. Since for i = 1, ... , s, ff is in I,
there exists Ni such that f i E INi . Let N = maxi <i<s N1; then f i E IN for all
i = 1, .. - , s, and so I C IN. Thus I = IN, and Condition (ii) follows.

For the reverse implication, assume to the contrary that there exists an ideal
I of R that is not generated by a finite set of elements of R. Let f j E I. Then
there exists f2 El with f2 0 (fr). Thus (fi) C (fi, f2). We continue in this
fashion, and we get a strictly ascending chain of ideals of R which contradicts
Condition (ii). D

We now state and prove a more general version of the Hilbert Basis Theorem.

THEOREM 1.1.3. If R is a Noetherian ring, then so is R[x].

PROOF. Let R be a Noetherian ring, and let J be an ideal of R[x] . By Theorem
1.1.2, it is enough to show that J is finitely generated. For each n > 0, define
In = jr E R I r is the leading coefficient of a polynomial in J of degree n } U {o}
(that is, r is the coefficient of xn). It is easy to see that In is an ideal of R and
that In C In+1, for all n > 0. Since R is Noetherian, there exists N such that
In = IN for all n > N. Also, by Theorem 1.1.2, each iz is finitely generated,
say Ii = (r11,... , rit,). Now for i = 1, ... , N and j = 1, ... , t2, let f1j be a
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polynomial in J of degree i with leading coefficient ra3. To complete the proof of
the theorem it suffices to show that J = (fj I 1 < i < N,1 < 3 < ti) .

So let J* = (fij I 1 < i < N,1 < j < to) . Clearly J* C J. Conversely, let
f E J, and let the degree of f be n. We prove by induction on n that f E J.
If f = 0 or n = 0, then f E Io, and hence f E P. Now let n > 0, and assume
that all the elements of J of degree at most n -1 are in J* . Let r be the leading
coefficient of f. If n < N, then, since r E In, we have r =

E R. Then the polynomial g = 1=
1 sjfnj is of degree n, has leading

coefficient r, and is in P. Thus f - g has degree at most n - I and is in J. By
induction, f - g is in J*, and hence f is also in J* . If n > .N, then r E In = IN,
and r = E'j'=jsjrNj, for some s; E R. The polynomial g = Ety 1 s j xn ' f N j
has degree n, leading coefficient r, and is in J*. Thus f - g has degree at most
n - 1 and, by induction, f - g E P. Therefore f is in P.

Using a simple induction on n and the above result, we can easily show that
k[x1, ... , xn] is Noetherian (first noting that the field k is trivially Noetherian).
That is, Theorem 1.1.1 is true.

1.2. The Linear Case. In this section we consider the system

(1.2.1) f, = 0, ... , f a = 0, where each f i is linear.

In this case, the algorithmic method to answer all the questions raised in
Section 1.1 is the well-known row reduction which changes System (1.2.1) to row
echelon form. Consider the following examples.

EXAMPLE 1.2.1. Let f, = x + y - z and f2= 2x +3y+ 2z be linear polynomials
in R[x, y, z]. We consider the ideal I = (f1, f2) and the variety V (f 1, f2), that is,
the solutions to the system

(1.2.2)
fx+ y - z = 0

2x - 3y + 2z = 0.
We now perform row reduction on the matrix associated with this system:

1 1 --1 1 1 -1
2 3 2 0 1 4

The last matrix is in row echelon form. The solutions of System (1.2.2) are
the same as those of the following system

(1.2.3)
Jx + y - z --- 0

Y + 4z = 0.

and are easily obtained parametrically as: x = 5z and y = -4z.
The row reduction process is, in fact, a method to change a generating set for

the ideal I = (Ii, 12) into another generating set. We subtracted twice the first
row from the second row and replaced the second row by this new row. This
amounts to creating a new polynomial, f3 = f2- 2f, = y + 4z, and replacing f2
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by f3. The original ideal I is equal to the ideal (fl, f3). Indeed, since f3 = f2-2 fl
we see that f3 E I = (Ii, f2)> and since fz = 2f1 + fa we see that fs E (fj, f3)
and so I = (fl, f2) _ (fl, f3). This process simplifies the generating set of the
ideal I and allows for an easy resolution of System (1.2.2), that is, it makes it
easy to determine V(I).

The process by which the polynomial f2was replaced by f3 using fl is called
reduction of f2 by fl, and we write

f2 -f3
The new polynomial f3 that was created can be viewed as a remainder of

a certain division: we used the first term of fl, namely x, to eliminate a term
from f2, namely 2x. Since this first term of fl cannot eliminate any other terms,
the division stops and the remainder is exactly f3. This can be written in long
division form

2

x+y-z 2x+3y+2z
2x+2y-2z

y + 4z
which gives us f 2= 2f, + f3.

When the system has more than two equations, the division (or reduction) of
a polynomial may require more than one polynomial.

EXAMPLE 1.2.2. Let f1 = y - z, f2 = x + 2y + 3z, and f3 = 3x-4y+2z
be linear polynomials in Q [x, y, z]. We consider the ideal I = (/1, f2, f3) and the
variety V (f, 7 f2, f3), that is, the solutions to the system

(1.2.4)

y - z = 0
+ 2y + 3z 0

- 4y + 2z = 0.

The row reduction is as follows:

o 1 -1
1 2 3

3 -4 2

1 2 3 --- 1 2 3

0 -10 -7 0 0 -17
This says that a new generating set for I = (Ii, f2, ,f 3} is {fl,f2, -17z}. Note
that the polynomial -17z is obtained by the following reductions:

(1.2.5)

This amounts to a division, similar to that in Example 1.2.1, of f3 by 12 and f,
in succession.

Repeated use of the reduction steps, as in the above, will be denoted by
f

f3 + -17z.
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Note that we have

(1.2.6) f3 = -lOfi +3f2 -17z.

The coefficient "3" of f2 is the multiple of f2 used in the first reduction in (1.2.5)
and the coefficient "-10" of f, is the multiple of f, used in the- second reduction
in (1.2.5).

We would like to "extract" from these examples some general ingredients
that will be used in the general situation of non-linear polynomials. We will
concentrate on Example 1.2.2.

First, we imposed an order on the variables: we chose to eliminate x first
from the third equation of (1.2.4) and then we chose to eliminate y from the
new third equation. That is, when we row reduce a matrix there is an order on
how to proceed to introduce zeros: first we introduce zeros into the first column
(that is, we eliminate x), and then we introduce zeros in the second column (we
eliminate y) etc. We could have written the variables in the polynomials in a
different order, say fl = -z + y, f2 = 3z + 2y + x and f3, = 2z -- 4y + U. We
would have used the same row reduction method, but would have eliminated z
first, then y. We would have wound up with a different set of equations in row
echelon form, but they would have been just as good for our purpose of solving
System (1.2.4). So the order does not matter, but there must be an order. This
issue becomes essential in our generalization of these ideas. We note that in our
example the order is such that x is first followed by y and then z and so the
leading term of f, is y, the leading term of f2 is x, and the leading term of f 3 is
3x

Second, the reductions in (1.2.5) were obtained by subtracting multiples of f,
and f2. This had the effect of using the leading terms of f, and f2 to eliminate
terms in f3 and in -loy - 7z leaving the remainder of -17z and giving us
Equation (1.2.6). Note that -17z cannot be reduced further using the leading
terms of fi and f2.

The process of row reduction viewed in this light gives us a way to solve the
problems posed in Section 1.1. Let us concentrate on Example 1.2.1. First, we
have a very clear description of the solution space:

V(I) = V (fl s f2) = V 1f1, f3) = {A(5, -4, 1) I A E 1};

it is a line in R3. We next turn to the question of determining whether a poly-
nomial f E k [x, y, z] is in I and, if so, express it as a linear combination of the
elements in the generating set. In our case, because the leading term of f, is x
and the leading term of f3 is y, any polynomial f can be reduced to a polynomial
in z alone by the division process using both f, and f 3 in a way similar to that
used in (1.2.5). Also, any polynomial in z alone cannot be reduced using division
by f i and f3. The division process allows us to write f as a linear combination
of f, and f3 plus a remainder in a similar fashion to Equation (1.2.6) (the re-
mainder is in z alone). It is not too hard to see that f E I = (fi, f2) = (fi, f3) if
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and only if this remainder is zero. Finally one could also check that the basis of
the vector space k[x, y, z]/I is the set of all cosecs of powers of z. The statements
made in this paragraph may be a little difficult to verify or appreciate at this
point but will become clear later.

Exercises
1.2.1. Prove the last statement made about Example 1.2.1 in the last paragraph

of the section. Namely, prove that a basis of the vector space Q [x, y, z] /I
is the set of all cosecs of powers of z. Assume that we now eliminate z
first, then x, then y. What is the row echelon form of the matrix? Use
this to give another basis for the vector space Q [x, y, z] /I.

1.2.2. Following what was done for Example 1.2.1, solve the problems posed in
Section 1.1 for Example 1.2.2. Repeat this eliminating y first, x second
and z last.

1.2.3. Consider the following polynomials in Q[x, y, z, t], f, = x --- 2y + z + t,
f2 = x+y+3z+t, f3= 2x - y---z--t, and f4- 2x+2y+z+t. Solve
the problems posed in Section 1.1 for this set of polynomials.

1.2.4. Let A be an s x n matrix with entries in a field k. Let 1"... , fs be the
linear polynomials in k [xi, ... , xn] corresponding to the rows of A, as in
Example 1.2.2. Let B be a row echelon form for the matrix A and assume
that B has t non zero rows. Let gl, ... , gt be the polynomials correspond-
ing to the non zero rows of B. Prove that { fl, ... , f,) = (gi,... , gt) .
Use the polynomials gl, ... , gt to obtain a basis of the k-vector space
k[xl,...

1 xn1N11 ... , fs).

1.3. The One Variable Case. In this section we consider polynomials in
k[x], that is, polynomials in one variable. In this context we will use the well
known Euclidean Algorithm to solve the problems mentioned in Section 1.1. In
doing this we will present some of the standard material concerning k[x] but will
present this material using notation that will be more immediately generalizable
to the study of polynomials in many variables. The theory of polynomials in one
variable is a good illustration of the more general theory that will be presented
in the remainder of this chapter.

For 0 f E k [x], we recall that the degree of f , denoted deg (f ), is the largest
exponent of x that appears in f. The leading term of f, denoted It (f ), is the
term of f with highest degree. The leading coefficient of f, denoted lc (f) , is the
coefficient in the leading term of f. So, if f = anxn + an_xx'z-1 + - + aix + aa,
with ao,... , an E k and an 0 0, then deg(f) = n, lt(f) - anxn and lc(f) = an.

The main tool in the Euclidean Algorithm is the Division Algorithm (also
known as long division of polynomials) which we illustrate in the next example.

EXAMPLE 1.3.1. Let f = x3-2X2 +2x+8, and g = 2x2 + 3x + l be in Q[x].
We divide f by g to get the quotient 2 x - 4 and the remainder 27X + i9 as

follows:



1.3. THE ONE VARIABLE CASE

2x2 -I- 3x -I-1 x3 - 2x2 -F- 2x + 8

x3 + 2 xa -F
2
x

-2x2 +!x+8
Z

4x+ 49

11

and so we have f =(2x- )g+(x+ 49).

Let us analyze the steps in the above division. We first multiplied g by 2 x
and subtracted the resulting product from f. The idea was to multiply g by
an appropriate term, namely 2 x, so that the leading term of g times this term
canceled the leading term of f. After this first cancellation we obtained the first
remainder h = f -

a
xg = - 2x2 +

a
x + 8. In general if we have two polynomials

f = anx' +an-Ixn--1 +... +aj.x+aac and g = bmxm+bm_lxzn_I +...+blx+bo,

with n = deg(f) > m = deg(g), then the first step in the division of f by g is to
subtract from f the product b Using the notation introduced above, we

note that the factor of g in this product is iWf) and so we get h = f -
it

f g as
9 s

the first remainder. We call h a reduction of f by g and the process of computing
h is denoted

f-h.
Going back to Example 1.3.1, after this first cancellation we repeated the

process on h = _x2+ 3 x + 8 by subtracting It(h) x2 - 21 x - 7 from h to2 2 y gltgg- 2 4

obtain the second (and in this example the final) remainder r = 4 x + 2-9. This
can be written using our reduction notation

f-h- r.
Repeated use of reduction steps, as in the above, will be denoted

f .+ r.
We note that, in the reduction f -- h, the polynomial h has degree strictly

less than the degree of f. When we continue this process the degree keeps going
down until the degree is less than the degree of g. Thus we have the first half of
the following standard theorem.

TxEOPLEivt 1.3.2. Let g be a non-zero polynomial in k[x]. Then for any f E
k[xJ, there exist q and r in k[x] such that

f = qg + r, with r = 0 or deg(r) < deg(g).

Moreover r and q are unique (q is called the quotient and r the remainder).
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PROOF. The proof of the existence of q and r was outlined above. The proof
of the uniqueness of q and r is an easy exercise (Exercise 1.3.3).

Observe that the outline of the proof of Theorem 1.3.2 gives an algorithm for
computing q and r. This algorithm is the well known Division Algorithm, which
we present as Algorithm 1.3.1.

INPUT: f,g E k[x] with g; 0

OUTPUT: q, r such that f = qg + r and
r = 0 or deg(r) < deg(g)

INITIALIZATION: q := 0; r := f

WHILE r # 0 AND deg(g) < deg(r) DO

It{r)q:=q+ 1t(9)

lt(r)r:=r- 1t(9)g

ALGORITHM 1.3.1. One Variable Division Algorithm

The steps in the WHILE loop in the algorithm correspond to the reduction
process mentioned above. It is repeated until the polynomial r in the algorithm
satisfies r = 0 or has degree strictly less than the degree of g. As mentioned
above this is denoted

f -L+ r.
EXAMPLE 1.3.3. We will repeat Example 1.3.1 following Algorithm 1.3.1.

INITIALIZATION: q := 0, r := f = x3 -- 2x2 + 2x + 8
First pass through the WHILE loop:

q0+=3

= 2x
r (x_2x2+2x+8)_(2x2+3x+1) = r-Zx2+ 2x+8

Second pass through the WHILE loop:
7X 2

q := 2x + 2 = 2x
_ 1,2(_ZX2 + .x+8)----(2x2+3x+1) =

2 2 4 4
The WHILE loop stops since deg(r) = 1 < 2 = deg(g).

We obtain the quotient q and the remainder r as in Example 1.3.1.
f g, itNow let I g) and suppose that f h. Then, since h = f - it(g)

is easy to see that I = (h, g), so we can replace f by h in the generating set
of I. This idea is similar to the one presented for linear polynomials studied in
Section 1.2. Using this idea repeatedly (that is, using Theorem 1.3.2 repeatedly)
we can prove the following result.
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THEOREM 1.3.4. Every ideal of k [x] is generated by one elements.

PROOF. Let I be a non zero ideal of k [x]. Let g E I be such that g 0 0
and n = deg(g) is least. For any f E I we have, by Theorem 1.3.2, that
f -- qg + r for some q, r c k[x], with r = 0 or deg(r) < deg(g) = n. If r 54 0, then
r = f - qg E I, and this contradicts the choice of g. Therefore r = 0, f -= qg,
and I C (g). Equality follows from the fact that g is in I.

Observe that the polynomial g in the proof of Theorem 1.3.4 is unique up to
a constant multiple. This follows from the fact that if I = (g1) = (ga), then gi
divides g2 and 92 divides gl.

We see that the polynomial g in the proof of Theorem 1.3.4 is the "best"
generating set for the ideal I = (1'... , f3). For example, the system of equations

(1.3.1) fi=0,...,fs=6with ffEk[x],i=1,...,s,
has precisely the same set of solutions as the single equation g = 0, where
(11) ... ,fs) = (9).

We now investigate how to compute the polynomial g of Theorem 1.3.4. We
will, first focus on ideals I C k [x] generated by two polynomials, say I = (fi, f2),
with one of fi , f2not zero. We recall that the greatest common divisor of f, and
f2, denoted gcd(fl, f2), is the polynomial g such that:

g divides both f j and f2;
if h E k[x] divides fl and f2, then h divides g;
lc (g) = I (that is, g is monic).

We further recall

PROPOSITION 1.3.5. Let fl, f2 E k[x], with one of f1, f2 not zero. Then
gcd(f1, f2) exists and (fl, f2) = (gcd(fl,f2)).

PROOF. By Theorem 1.3.4, there exists g E k[x] such that (11,12) (g).
Since g is unique up to a constant multiple, we may assume that lc (g) = W 1. We
will show that g = gcd (f l , f2). Since fl, f2 E (g), g divides both f, and f2- Now,
let h be such that h divides both f 1 and f2. Since g is in the ideal (11,12), there
exist u1, u2 E k [x] such that g = u 1 f 1 + 72212. Thus h divides g, and we are
done.

As a consequence, if we have an algorithm for finding gcd's, then we can
actually find a single generator of the ideal (/1,12)- The algorithm for computing
gcd's is called the Euclidean Algorithm. It depends on the Division Algorithm
discussed above and the following fact.

LEMMA 1.3.6. Let fl, f2 E k[x], with one of fl, f2 not zero. Then gcd(fl, f2)
gcd(f1 -- qf2, f2) for all q E k [x] .

3R,ecall that an ideal generated by one element is called a principal ideal, and an integral
domain for which every ideal is principal is called a principal ideal domain, or PID. Therefore
Theorem 1.3.4 says that k[x] is a PID
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PROOF . It is easy to see that (11, f2y = (fl - qf2, f2). Therefore, by Propo-
sition 1.3.5,

(gcd(f1,f2)) = {.fl, f2) = (fi - qf2, f2) = (gcd(fi - q.f2, f2)).

Thus since the generator of a principal ideal is unique up to constant multiples,
and since the gcd of two polynomials is defined to have leading coefficient 1, we
have gcd(fi, f2) = gcd(fi - qf2, .f2)- E3

We give the Euclidean Algorithm as Algorithm 1.3.2. The reader should note
that the algorithm terminates because the degree of r in the WHILE loop is
strictly less than the degree of g, which is the previous r, and hence the degree of
r is strictly decreasing as the algorithm progresses. Also, the algorithm does give
gcd(f l , f2) as an output, since at each pass through the WHILE loop, we have
gcd(f, 1 i f2) = gcd(f,, g) = gcd(r, g), by Lemma 1.3.6, as long as g 54 0. When
g - 0, then gcd(f 1, f2) = gcd(f , 0) = f f. The last step in the algorithm
ensures that the final result has leading coefficient 1 (that is, is monic).

INPUT: fl, f2 E k [x], with one of fl, f2 not zero

OUTPUT: f = gcd(f 1, f2)

INITIALIZATION: f := f,g := f2

WHILE g 0 DO

f - + r, where r is the remainder of the division of f by g

f := g

g:=r

f==f,f
ALGORITHM 1.3.2. Euclidean Algorithm

To illustrate this algorithm, consider the following
EXAMPLE 1.3.7. Let f, = x3 - 3x + 2 and f 2 = X2- 1 be polynomials in Q [x] .

INITIALIZATION: f : = x3 - 3x + 2, g : = x2
First pass through the WHILE loop:

2

x3 3x + 2 ---} -2x + 2
f:=x2-1
g:=-2x+2

Second pass through the WHILE loop:
x2-1-- x-1^2 0

f -2x+2



1 3. THE ONE VARIABLE CASE 15

g:=0
The WHILE loop stops

1 _ i x ._ 1

Therefore gcd(f 1, f2) = x --1.
We now turn our attention to the case of ideals generated by more than two

polynomials, I with not all of the fz's zero. Recall that the
greatest common divisor of s polynomials fl, ... f . , denoted gcd(f l , ... , f s) , is
the polynomial g such that:

g divides f Z, i = 1,... , s;
if h E k [x] divides ft, i = 1, ... , s, then h divides g;
lc(g) = 1 (that is, g is monic).

PROPOSITION 1.3.8. Let fl, ... , fs be polynomials in k[x]. Then
(i) fs) = (gcd(fi,... ,fs));

(ii) ifs > 3, then gcd(fl, ... , fs) = gcd(fl, gcd(f2, .. , f5))

PROOF. The proof of statement (i) is similar to the proof of Proposition 1.3.5.
To prove statement (ii), let h = gcd(f2, ... , fe). Then, by (i), ff2,... , fs) = (h),
and hence ff',... , f a) = (fi, h). Again, by (i),

gcd(fi, ... , fs) = gcd(fi, h) = gcd(fi, gcd(f2,...

as desired. D

With the ideas developed in this section we can now solve all the problems
raised in Section 1.1 for the special case of polynomials in one variable. As noted
before, to solve System (1.3.1) we first compute g = gcd (f l , ... , f S) . It then
suffices to solve the single equation g = 0. The computation of gcd (f 1, ... , f')
is done by induction, a polynomial at a time, as is easily seen from part (ii)
of Proposition 1.3.8. To decide whether a polynomial f is in the ideal I =
(Ii,... , f8), we first compute g = gcd(f, i , ... , f,). We then use the Division
Algorithm to divide f by g. The remainder of that division is zero if and only if
f is in the ideal I = (fi,... , f. } = (g). Using the notation introduced earlier:

f E I = (g) if and only if f -+ 0.

Also, the coset representative of the element f + I in the quotient ring k [x] If
is r + I, where r is the remainder of the division of f by g (that is, f + r,
with r = 0 or deg(r) < deg(g)). Finally, the cosets of 1, XI X2, ... , xd-1 where
d = deg (g) , form a basis for the k-vector space k[x]II (Exercise 1.3-6).

In the last section (the linear case) we saw that there were two ingredients for
our solution method: a reduction algorithm (in that case it was row reduction)
and an order among the terms. In the current section we saw that the concept
of reduction leading to the Division Algorithm (Algorithm 1.3.1) was the key
to solving the problems mentioned in Section 1.1. We have not yet stressed the
importance of the ordering of the terms in the one variable case, even though we
have already used the notion of ordering in the concepts of degree and leading
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term. In effect, the ordering is forced upon us. Indeed, in the Division Algorithm,
when we compute r - it(T g, the terms that we introduce (corning from

it
T g)

(9 9
must be smaller than the leading term of r which has been canceled, in order for
the algorithm to terminate. This can only occur if the powers of x are ordered so
that x7z < xm if and only if n < m (Exercise 1.4.2). We note that the condition
n < m is equivalent to the statement that xn divides xm .

ExercLses
1.3.1. Follow Algorithm 1.3.1 (as in Example 1.3.3) to divide f = 2x5 -- 4x3 +

x2 -x±2 byg=x2+x+1.
1.3.2. Find a single generator for the ideal I = (x6 -1, x4 + 2x3 + 2x2 - 2x - 3).

Is x5 + x3 + x2 - 7 E I? Show that x4 + 2x2 -- 3 E I and write x4 + 2x2 - 3

as a linear combination of x6 - 1 and x4 + 2x3 + 2x2 - 2x -- 3.
1.3.3. Prove that q and r obtained in Theorem 1.3.2 are unique.
1.3.4. Compute gcd (fl, f2, f3) using Proposition 1.3.8, where fi = x5 --- 2x4 - x2 +

2x, f2 = x7+x6-2x4-2x3+x+1, and f3 = x6-2x5+x4-2x3+x2- 2x.
1.3.5. Modify Algorithm 1.3.2 to output f, u1, u2 E k[x] such that f = gcd(f 1, f2)

=and f = = Ui f 1 + u2 f 2 . Apply your algorithm to the polynomials f,
xs -1, f2 = x4 + 2x3 + 2x2 - 2x -- 3 E Q[x] of Exercise 1.3.2.

1.3.6. Let g E k [x] be of degree d. Prove that {1 + (g),x+ (g),... , xd-1 + (g) }
is a k -vector space basis for k[x]/(g).

1.3.7. Show that in k[x, y], Theorem 1.3.4 is false. In particular, show that the
ideal (x, y} C k [x, y] cannot be generated by a single element. Show that,
in general, k[xl, ... , x,,] is not a PID.

1.3.8. Prove that a system of equations f = 0, g = 0 with two relatively prime
polynomials f,g E k [x, y] has at most finitely many solutions. [Hint:
View f and g in k(x) [y] and use the Gauss Lemma: f and g are relatively
prime when viewed in k[x, y] if and only if they are relatively prime in
k(x) [y], where we recall that k(x) denotes the field of fractions of k[x], i.e.
k(x) _ {b 1 a, b E k[x],b0 0}-]

1.3.9. Let g E k [y] be irreducible, and let f E k [xl , ... , xn, y] be such that
f 0 (g). Prove that (f,g) rl k [x 1, ... , x7z] 0 {0}. [Hint: Use the hint of
Exercise 1.3.8 with k(x1, ... ) xn) [y], where we recall that k(x1i ... , xn)
denotes the field of fractions of k[x1, ... , xn], i.e. k(x1, ... , xn) IS I
a, b E k[xl, ... , xn], b 0}.]

1.3.10. Let f, g E C [x, y] . Prove that if f and g have a non-constant common
factor in C[x, y], then V(f, g) is infinite. That is, show that if h E C[x, y]
and h is not in C, then the equation h = 0 has infinitely many solutions.
Generalize this exercise to the case where h E C[x1, ... , xn], for n > 2.

1.3.11. Let 11,12, h E k [x]. We consider the equation u1 f 1 + u2 f2 = h, with
unknowns u1, u2, to be polynomials in k [x] .
a. Show that the above equation is solvable if and only if g = gcd (f l , f2)
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divides h.
b. Prove that if g = gcd(fl, f2) divides h, then there exist unique ul, u2 E

k[x] that satisfy the equation above and such that deg(uF) < deg(f2) -
deg(g).Moreover, if deg(h) < deg(f1)-{-deg(f2) -deg(g), then deg(u2) <
deg(fl) - deg(g). Give an algorithm for computing such ul and u2.

c. Let fl = x3 - 142 = x2 +x - 2,h = x2 - 4x -F 3 E fi[x]. Find ul, u2
which satisfy b.

d. Use b to show that if fl and f2 are relatively prime, then for every
h E k[x] such that deg(h) < deg(fl) -I-deg(f2), there exist ul, u2 E k[x]
such that

h ul U2

fif2 ,fl + f2
with deg(ul) < deg(fl) and deg(u2) < deg(f2). (This is the partial
fraction decomposition of rational functions.)

e. Use d to compute the partial fraction decomposition of

x--3
x3 +3x2 +3x +2.

f. Generalize a and b to the case of s polynomials f, , ... , f s E k [xJ.
1.3.12. when the coefficients of polynomials in one variable are not in a field

k, the Division Algorithm (Algorithm 1.3.1) has to be modified. In this
exercise we present a "pseudo" division algorithm for polynomials in R[x],
where R is a unique factorization domain (UFD).
a. Let f , g E R[x] be such that g 0 and deg(f) > deg(g). Prove that

there exist polynomials q, r E R[x] such that lc(g)if = gq + r, where
r = 0 or deg(r) < deg(g), and £ = deg(f) - deg(g) + 1.

b. Give an algorithm for computing q and r. The polynomials q and r are
called the pseudo-quotient and the pseudo-remainder respectively.

c. Use this algorithm to find q and r in the following cases:
(i) f = 6x4 -- 11x3 - 3x2 + 2x, g = 1Ox3 - 23x2 - lox - 3 E Z[x];

(ii) f = (-2 + 4i)x3 + (5 + 3i)x2 2ix + (-1 + i), g = 2x2 + (1 +
i)x + (1 + i) E (Z[i])[x], where i2 = -1.

d. A polynomial f E R[x] is called primitive if its coefficients are relatively
prime. Let f, g be primitive polynomials in R[x], and let lc(g) f =
gq + r be as in a. Prove that gcd(f , g) = gcd(g, r'), where r' is the
primitive part of r; i.e. r = ar', a E R and r' primitive.

e. Use d to give an algorithm for computing gcd(f, g).
f. Use e to compute gcd(f, g) for the examples in c.

g. Use the above to give an algorithm for computing gcd(f, , g), where
f,gER[xl,... ,xn], RaUFD.

h. Use g to compute gcd(f, g), where f = (y2 + y)x3 + (.--y3 - y + 1)x2 +
(-y3 + y2 - 2)x + (...y2 + 2y), g = (y2 + 2y + 1)x2 + (y3 + 3y2 -- 2)x +
(y3 -- y2 - 2y) E Z[x, y].
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1.4. Term Orders. It was important in the last two sections to specify an
order on the power products. In the linear case, we computed with x first, then y,
etc. The particular order used was unimportant but did have to be specified. In
the one variable case we used the highest degree term first and this was required
by the procedures used. In more than one variable we need an order analogous
to the ones used in these two special cases and this will be the focus of this
section.

First recall that the set of power products is denoted by

Tn :G,1...An 1)3i EN,i=1,...,n

Sometimes we will denote xnn by xfl, where f3 = (131, ... , C3n } E Nn.
We would like to emphasize that, throughout this book, "power product" will

always refer to a product of the xi variables, and "term" will always refer to
a coefficient times a power product. So every power product is a term (with
coefficient 1) but a term is not necessarily a power product. We will also always
assume that the different terms in a polynomial have different power products
(so we never write 3z2y as 2x2y + x2 y).

There are many ways to order Tn. However, we already know some properties
that a desirable order must satisfy. For example, the orders in the linear and
one variable cases were used to define a division (or reduction) algorithm, thus
the order had to extend divisibility relations (see the discussion at the end of the
previous section). That is, if x' divides x3, then we should have xa < x°, or
equivalently, if az < 13i for all i = 1, ... , n, then x°` < x-5. Also, in the divisions
described in Sections 1.2 and 1.3, we arranged the terms of the polynomials
in increasing or decreasing order, and hence we must be able to compare any
two power products. Thus the order must be a total order, that is, given any
xa, xfl E T'n, exactly one of the following three relations must hold:

xa <,P, xa= orxa>x0.

Moreover, the reduction - + described in Sections 1.2 and 1.3 must stop after a
finite number of steps. Recall that whenever we had f -!-*+ r, the polynomial r
was such that its leading power product was less than the leading power product
of g: in Section 1.2, that meant that the reduced polynomial r was obtained
by eliminating a leading variable using g; in Section 1.3, that meant that the
remainder polynomial r had degree less than that of g. Therefore, for the reduc-
tion to be finite, we need that the order be a well-ordering, that is, there is no
infinite descending chain aca1 > xa2 > xa3 > ... in Tn. An order that satisfies
all these conditions is called a term order, and it turns out that these conditions
are captured in the following definition (this will be justified in Proposition 1.4.5
and Theorem 1.4.6).

DEFINITION 1.4.1. By a term order on Tn we mean a total order < on Tn
satisfying the following two conditions:
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(i) 1 < xO for all XP E Tn, xS 1;

(ii) If xa < x13, then Zax'Y < XPX_', for all xl' E Tn.

Before we prove that the basic properties we discussed above follow from the
conditions in Definition 1.4.1, we give three examples of term orders. The easy
verification that they are term orders will be left to the exercises (Exercise 1.4.3).

DEFINITION 1.4.2. We define the lexicographical order on Tn with x1 > x2 >
.. > xn as follows: For

a = (at,... ,an),f = (thy... , fan) E Nn

we define

the first coordinates ai and ,3z in a and j3
from the left, which are different, satisfy ai < 8j.

So, in the case of two variables x1 and x2, we have

1 <x2 <x2 <x2 < ... <x1 <x2x1 <x2x1 < ... <x1 < ... .

As noted before, when we do examples in a small number of variables, we will
usually use x, y, or z instead of the subscripted variables above. It is important
to note that we need to specify the order on the variables. For example, if we
use the lexicographic order with x < y, then we have

1<x<x2 <x' <... <y<xy<x2y< <y2 <...

(We deliberately altered the order of x and y from what was probably expected
to emphasize the point that an order on the variables must be specified.)

Note that, for this order, xi is always greater than x2 , for all non-zero 1u, v c N.
This will be of importance later on (see Section 2.3). We will always denote this
order by "lex". We emphasize again that we always need to specify the order on
the variables.

DEFINITION 1.4.3. We define the degree lexicographical order on Tn with
x1 > x2 > - > xn as follows: For

of = (al,... ,an),0 = (01,... ,13n) E Nn

we define

L.ri-=1 aZ <

X
or

En
1az = Ej=JA and x0 < x13

with respect to lex with x1 > x2> .>xn.
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So, with this order, we first order by total degree and we break ties by the lex
order. In the case of two variables x1 and x2, we have

1 < x2 < x1 < x2 < x1x2 < xi < x2 < x1x2 < xIx2 < xa <

Or, using the degree lexicographic ordering in k [x, y] with x < y, we have

1 <x <y <x2 <xy < y2 <x3 < x2y <xy2 <y3 < --

We will always denote this order by "deglex". Again, we always need to
specify the order of the variables.

DEFINITION 1.4.4. We define the degree reverse lexicographical order on Tn
with x1 > x2 > . > Xn as follows: For

Cl = (a1,... ,an),0 = (,Q1,... ,On) E Nn

we define

xa < XP

>1oi < ,Z x jz
or

E=1 ai = E=16j and the first coordinates ai and (3z in
a and /C3 from the right, which are different, satisfy aj > fli.

{

We will always denote this order by "degrevlex". It is easy to see that in the
case of two variables deglex and degrevlex are the same orders (Exercise 1.4.4).
However, if there are at least 3 variables, this is not the case anymore, as the
following example shows:

x2 jx2x3 > x1x2 with respect to deglex with x1 > x2 > x3

but
x2 Jx2x3 < x1x2 with respect to degrevlex with x1 > X2 > x3.

This order turns out to be extremely good for certain types of computations.
The important property that this order possesses is given in Exercise 1.4.9.

Note that the term "right" in Definition 1.4.4 refers to the smallest variable.
That is, we have x1 > x2 > ... > xn. This must be especially kept in mind when
we consider examples involving x, y, z (see Exercise 1.4.1) .

There are many other orders on T' which we will see later in both the exercises
and the text. The three examples given above are the ones we will use the most.
We will see that each order has different properties and which order we use will
depend on the problem we want to solve.

We now return to the general definition of a term order. We want to observe
that a term order, as defined in Definition 1.4.1, has all the properties discussed
before that definition. That is, we need to prove that any term order extends
the divisibility relation and is a well ordering.

PROPOSITION 1.4.5. For xa, x0 E Tn, if xa divides x-8 then x' < xp.
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PROOF. By assumption there is an x'f E Tn such that x0 = = xa ae'y. By
Condition (i) in Definition 1.4.1 we have x1f > 1 and so by Condition (ii) we
have xP = xa x'y > x", as desired.

Now from the Filbert Basis Theorem (Theorem 1.1.1) we can prove

THEOREM 1.4.6. Every term order on T' is a well-ordering; that is, for every
subset A of Tn, there exists xa E A such that for all x3 E A, x°C < x1 .

PROOF. Suppose to the contraxy that the given term order is not a well
ordering. Then there exist x"E T, i = 1, 2, ... such that

(1.4.1) xai > 2:112 > xa3 > .. .

This defines a chain of ideals in k [x l , ... , xn]

(1.4.2) (a1) c (', xa2) C (a1 xa2 , xa3) C ... .

We first note that (x°" , ... , x°ti) 0 (, xa:+1), since if we had equality,
then

xat+1 -- E ujxacj

,

j=1

where u; is a polynomial in k[xi,... ,x], j 1i... , i. If we expand each u3 as a
linear combination of power products, we see that each term in u? xai is divisible
by xaj . Thus every term of the right-hand side of Equation (1.4.3) is divisible
by some xaf,1 < j < i. But x' 1 must appear as the power product of a term
on the right-hand side of Equation (1.4.3). Therefore xai+1 is divisible by some
xa3 ,1 < j < i, and hence xa=+1 > xai for some j, 1 < j < i, by Proposition
1.4.5 and this contradicts (1.4.1). So if we go back to the chain of ideals (1.4:2),
we now see that this chain is a strictly ascending chain of ideals in k [x 1, ... , x,,] .

This is a contradiction to the Hilbert Basis Theorem (Theorem 1.1.1).

Theorem 1.4.6 will be used throughout this book for many proofs in a manner
described in Appendix B.

To finish this section, we fix some notation. First we choose a term order4 on
k jx 1, ... , x,,,]. Then for all f E k [x 1, ... , x,,], with f 0 0,we may write

f = a,xal +a2xa2 +...+a,,x r7

where 0 36 aj E lv, xai E Tn, and x" > x°`2 > ... > xar . We will always try to
write our polynomials in this way. We define:

lp(f) = xa1, the leading power product of f ;
lc (f) = a 1, the leading coefficient of f;
lt(f) = alxa', the leading term of f.

4 W e will s a y that w e h a v e a term order on . . . . . . . . . X } when we have a term order on T' .



22 CHAPTER 1. BASIC THEORY OF GROBNER BASES

We also define lp(O) =1c(0) = It(O) = 0.
Note that lp, lc, and It are multiplicative; that is, lp(fg) = lp(f) lp(g), lc(f g)

= lc(f) lc(g), and lt(f g) = lt(f) lt(g). Also, if we change the term order, then
lp{ f ), Ic(f ), and It(f) may change. For example, let f = W yz + 3xy3 - 2x3

if the order is lex with x > y > z, then lp(f) = x3, ic(f) _ -2, and
it(f) = -2x3;
if the order is deglex with x > y > z, then lp(f) = z2yz, lc(f) = 2, and
It(f) = 2x2yz;
if the order is degrevleac with x > y > z, then lp(f) .- xy3, lc(f) = 3,
and lt(f ) = 3xy3.

Exercises
1.4.1. Consider the polynomial f 3x4 z - 2x3 y4+7x2 y2 z3 - 8xy3 z3 E Q [x, y, z] .

Determine the leading term, leading coefficient, and leading power product
of f with respect to deglex, lex, and degrevlex with x > y > z. Repeat
the exercise with x < y < z.

1.4.2. In the polynomial ring in one vaxiable, k[x], let < be a term order. Show
that it must be the usual one, i.e. the one such that

1<x<x2<x3<....

1.4.3. Show that lex, deglex and degrevlex are term orderings.
1.4.4. Show that in k [x, y] , deglex and degreviex are the same orders.
1.4.5. Given polynomials I',... , f s and u1, ... , us in k[x 1, ... , X.1, show that

lp(fful + ... + fsus) < max i<i<s(lp(fz) lp(uj)). Does equality necessarily
hold? (Prove or disprove.)

1.4.6. Let < be a total order on T' satisfying condition (ii) in Definition 1.4.1,
and assume that < is also a well ordering. Prove that for all xa 1 in
Tn, we have 1 < xa . (This is a partial converse of Theorem 1.4-6).

1.4.7. Let x1,... , x t, be variables, and let m < n. Prove that any term order
on power products in the variables x1, ... , x,n is the restriction of a term
order on power products in the variables x1, ... , xn. [Hint: Use the idea of
lex, grouping the variables x1, ... , xm together, and using the given term
order on them.]

1.4.8. Let f E k [x1, ... , xn] and consider the lex order with x 1 > x2 > - . > x.
Let i E {i,... , n}. Prove that f E k [xi, ... , x,z] if and only if It (f) E

xz,..., x'n.k[ ]

1.4.9. We call a polynomial f E k[x1,... , x,,] homogeneous provided that the
total degree of every term is the same (e.g. x2 y2 z + xy4 --- z' is homoge-
neous since every term has total degree 5, while x3y2 - x2yz2 +y2z is not
homogeneous; the latter polynomial is the sum of the two homogeneous
polynomials x3y2 - x2yz2 and y2z, called the homogeneous components of
x3y2 - x2yz2 +y2z) . Let f be a homogeneous polynomial and let the term
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ordering be degrevlex with xi > x2 > ... > xn. Prove that xn divides f
if and only if x7, divides It (f) . Show more generally that f E (xi,... , x,,)
if and only if It (f) E (xi,... , xn) .

1.4.10. The reviex ordering is defined as follows: For a = (a1,... , as), j3 =
(fl,... ,13) E Nn we define xa < x0 if and only if the first coordinates
a2 and /33 in a and 0 from the right which are different satisfy ai > 8i .
Show that revlex is not a term order on k [xl, ... , xn] .

1.4.11. Let I C k [x 1, ... , xn] be an ideal generated by (possibly infinitely many)
power products (such an ideal is called a monomial ideal). Prove that
there exist a 1, ... , a n E Nn such that I = (x,... , xam) . [Hint: First
show that a polynomial f E I if and only if each term of f is in I.]

1.4.12. (Dickson's Lemma) Prove that the result of Exercise 1.4.11 is equivalent to
the following statement: Given any A C Nn, there exist al, ... , E A
such that

M

A c U (ai + Nn).
i=1

(Bya+Ntm wemean{a+-yy ENtm}.)
1.4.13. Prove that every monomial ideal I (see Exercise 1.4.11) contains a unique

minimal generating set. That is, prove there is a subset G C I such that
I = (G) and for all subsets F C I with I = (F) we have G C F. [Hint:
Prove first that if I= (xal,... ,x°`m) then for0 ENn we have x-3 EIif
and only if there is an i such that xai divides xa.]

1.4.14. (Mora-Robbiano [MoRo]) Let

?r61 = (u11,u12,... 7 2Lln ,... ,um = (V.ml,Um2,... ,Umnz E Qn.

We define an order in Q'''' as follows: (a1,... , a,,,) < (/31, ... , f3m) if and
only if the first az, fi from the left which are different satisfy ai < ,i. (Note
that this is just lex on Q"'.) Now we define an order <u in k [xl , ... , xn]
as follows: for a, 0 E Nn,

xa <UxJ9 * ,a.um) < (/3.u1,... ,/3 Um),

where a ui is the usual dot product in Q".
a. Prove that <u is a transitive relation.
b. Prove that xa <, x,6 implies xax'f <u x°x'y for all a,#, -y E N'1.
c. Prove that if the vectors ul, ... , Um span Qn, then the order, <u, is

a total order.
d. Prove that if the vectors u1, ... , um span Q", then <u is a term order

if and only if for all i, the first u j such that u3, 54 0 satisfies uji > 0.
e. Let ui,... , um be vectors satisfying: for all i, the first u3 such that

uji 54 0 satisfies uji > 0. Show that the partial <u can be extended to
a term order, <u' 5 that is, xa <u xO implies xa <u' xO.
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1.4.15. What vectors ui,... , u,, E Q' in Exercise 1.4.14 give rise to the lex, to
the deglex, and to the degrevlex term orderings with x1 < x2 < . < x ?
Same question with x1 > xz > ... > xn.

1.4.16. Let f = 2x4y5 + 3x5y2 + x3 Z, f 9 E Q[x, y]. Show that there is no term
.ordering on Q[x, y] such that lp(f) = x4y5

1.4.1?. (*) Let Xi = x i1 xni», i = 17... , r, be power products in 1 [x1, ... , xn]
and let f_ Ei= ciXi, where ci E k -- {0}, for i = 12... , r. Assume
that there is a term order < such that lp(f) = X1. Consider the vectors
ai = (a1,... , azn) E Nn, i = 1,... , r. In this exercise we show that there
exists a vector u = (u1,... , un) E Qn such that ui ? 0 for i = 1, ... , n
and ax . u En a13 U, > ? ai3 u3 = a, - u for all £ = 2,... , rj=1 =1
(compare with Exercise 1.4-14). We will use the following result from
linear algebra (see, for example, [Ga]):

THEOREM. Let A be any r x n matrix with rational entries, then
exactly one of the following two alternatives holds:

there exists a row vector v E Qr with non negative coor-
dinates such that the coordinates of the vector vA are all
negative or zero;
There exists a column vector u E Qn with non-negative co-
ordinates such that the coordinates of the vector Au are all
positive.

a. Use the above result to show that there is a vector u E Qn with non
negative coordinates such that a I u > at - u for £ = 2, ... , r. [Hint:
Consider the matrix A whose rows are the vectors a1 -- at.]

There is a geometric way to view the linear algebra theorem used above.
First w e define the convex hull of the vectors al, _ .. , ar as follows:

r r
conv(al,... , ar) ciai I cz > 0, i = 11 ... , r, and q = 1

z=1 Z=i

Also, let {ei,... , en} be the standard basis for Qn, that is, ei is the
vector in Qn with all coordinates equal to 0 except the ith coordinate
which is equal to 1.

b. Show that the first alternative in the linear algebra theorem above is
equivalent to the condition that the zero vector is in the convex hull
of the rows of A together with the vectors ei, i = 1, ... , n_ Note that
the second alternative implies that there is a vector u which makes an
acute angle with every row of A; i.e. the hyperplane, L, orthogonal to
u has all the rows of A on one side, and so L has the convex hull of
the rows of A and the ei's on one side.

c. Conclude that X, is the leading term of f with respect to some term
order if and only if the zero vector is not in the convex hull of the
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vectors a, --- az, i = 2, ... , r and e3, j = 1, ... , n. [Hint: See Exercise
1.4.14, part e.]

d. Use the above to determine all the possible leading terms of f =
2x4y5 + 3x5y2 + x3y9 - x'Ty.

1.4.18. In this exercise we prove the Fundamental Theorem of Symmetric Poly-
nomials. Recall that a polynomial f E k [x1, ... , x,,] is called symmet-
ric provided that when the variables of f are rearranged in any way,
the resulting polynomial is still equal to f. For example, for n = 3,
x1 + X2 + x3, x1x2 + x1 x3 + x2x3 i and X1X2x3 are symmetric. For general
n, let a, = x1+x2+-..+xn,t72 =x1x2+.X1X3+...+xn-1xn,... ,0n =
xix2 . xn. These polynomials are called the elementary symmetric poly-
nomials. The theorem states that every symmetric polynomial is a polyno-
mial in the elementary symmetric polynomials. Fix the lex term ordering
on k[xi, ... , xn] with x1 > x2 > . - > xn. Let f E k[xj, ... , xn] be a
symmetric polynomial. We need to show the existence of a polynomial
h E k[x1, ... , xn] such that f = h(o1,... , o'n).
a. Let 1W) = cx' where a = (a1,... , an) E Nn and c E k. Show that

b. Let
g

-o-cal -a2qa2 -a3 ... 0an- IL
1 2 n-1 n

Show that lp(g) = x'.
c. Now observe that lp(f - cg) < lp(f) and that f - cg is a symmetric

polynomial. Use the well ordering property of term orders to com-
plete the proof of the existence of h and so to prove the Fundamental
Theorem of Symmetric Polynomials.

d. Note that the above proof yields an algorithm for computing h given
the symmetric polynomial f. Use it in the case n = 2 to write x4 + x2
as a polynomial in ai = x1 + X2 and o2 = xlx2.

1.5. Division Algorithm. In this section we study the second ingredient
in our solution method for the problems mentioned in Section 1.1: a division
algorithm in k [x 1, ... , xn] . In Sections 1.2 and 1.3 we had a division algorithm,
also referred to as a reduction process. We will define a division algorithm in
k [x 1, ... , xn] that extends both of the algorithms seen in the previous sections.

The basic idea behind the algorithm is the same as for linear and one vaxi-
able polynomials: when dividing f by fl, ... , f8, we want to cancel terms of f
using the leading terms of the A's (so the new terms which are introduced are
smaller than the canceled terms) and continue this process until it cannot be
done anymore.

Let us first look at the special case of the division of f by g, where f, g E
k[xi,... , xn]. We fix a term order on k[xl,... , xn].
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DEFINITION 1.5.1. Given f, 9, h in k[xi, ... , x,], with g 0, we say that f
reduces to h modulo g in one step, written

h,

if and only if Ip(g) divides a non-zero terrra5 X that appears in f and

X
h f - F--t (g) g.

It must be strongly emphasized that in this definition we have subtracted
from f the entire term X and we have replaced X by terms strictly smaller than
X. (We observe that in the special cases presented in Sections 1.2 and 1.3 we
considered only the case where X = It(f) ).)

For example, let f = 6x2y --- x + 4y3- 1 and g = 2xy + y3 be polynomials in
Q[x, y] . If the term order is lex with x > y, then f -- h, where h = --3xy3 -
x + 4y3 -1, since, in this case X = 6x2y is the term of f we have canceled using
It(g) = 2xy; in fact X = lt(f). (We are not allowed to cancel, say, only 4x2y.
Another way of saying this is that we are not allowed to write f = 4x2y + 2x2y -
x + 4y3 _ I and just cancel 4x2y) . We now consider the term order deglex with
x > y so that now It(g) = y3 and so f -L h, where now h = 6x2y - 8xy - x --1.
We note that in this latter case we canceled the term X = 4y3 from f which is
not the leading term of f.

We can think of h in the definition as the remainder of a one step division of
f by g similar to the one seen in Section 1.3. We can continue this process and
subtract off all terms in f that are divisible by It (g) .

EXAMPLE 1.5.2. Let f = y2x + 4yx - 3x2, g = 2y + x + 1 E Q[x, y]. Also, let
the order be deglex with y > x. Then

-1x2 + 7 x - 2 9 1 3 7+ 7 x - 11x2 -- p 1x3 - 9x2 - 7X.f
2y 2y 4 2y 4 4 2 4

Note that in the last polynomial, namely
4

x3 - 2x2 - 7 x, no term is divisible by
lp(g) = y and so this procedure cannot continue. We could write this reduction
process in long division format as

5From now on we will use capital letters, usually X, Y or Z, to denote power products or
terms instead of the more cumbersome x°t or axa unless we need to make an explicit reference
to the exponent a. We will also say X > Y, for term X, Y, provided that lp(X) > lp (Y) .
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2y+x+1
2yX - 4x2+4x
y2x + 4yx - 3X2

y2x +
2

yX2 f
2
yx

-1 yx2 +
2

yx -- 3x2

2 yx2 - 4x3 _ 4x2

4x3+2yx- 4x2

2yx+ 4x2 + 4x

27

4x3 2x2 _ i7

In the multivariable case we may have to divide by more than one polynomial
at a time, and so we extend the process of reduction defined above to include
this more general setting.

DEFINITION 1.5.3. Let f j h, and f, , ... , fs be polynomials in k[xl, ... , xn],
witty f i 00 (1 <i< s), and let F = { f l , ... ,f8}. We s ay that f reduces to h
modulo F, denoted

f F-+ h,
if and only if there exist a sequence of indices i1, i2, ... , it E {1,. . . , s} and a
sequence of polynomials h1, ... ,ht-1 E k[x1,... , x7z] such that

_.
f-t-+

h2
123

. . .
fit-1 fitf.itp h1 -f ._ _ - t ? h.ht

EXAMPLE 1.5.4. Let fI = yx - y, f2 = y2 - x E Q [x, y]. Let the order be
deglex with y > x. Let F = {fi, f2}, f = y2x. Then

since

y2x - y2 f2 ? X.

DEFINITION 1.5.5..A polynomial r is called reduced with respect to a set of
non-zero polynomials F = = {fl, ... , f, } if r = 0 or no power product that appears
in r is divisible by any one of the lp(ff), i = 1,... , s. In other words, r cannot
be reduced modulo F.

DEFINITION 1.5.5. If f --- + r and r is reduced with respect to F, then we
call r a remainder for f with respect to F.

The reduction process allows us to define a division algorithm that mimics
the Division Algorithm in one variable. Given f, fl, ... , fs E k [xl , ... , xn] with
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fi 0 0 (1 < i < s), this algorithm returns quotients u1, . _ . , us E k [xl, ... , xn],
and a remainder r E k[xl, ... , x1 ], such that

f=u1.fi+...+u3!3+r.

This algorithm is given as Algorithm 1.5.1.

INPUT: f, f1, ... , f3 E k[x1, ... , xn] with fZ 0 (1 < i < s)

OUTPUT: u1, ... , us, r such that f = u1 f 1 + ... + u5 f f + r and
r is reduced with respect to {fi,... , f3} and

max(lp(u1) lpW.f1), ... , lp(u5) lp(fs), lp(r)) = lp(f )

INITIALIZATION: ul : = 0, U2 : = 0, ... , us : = 0, r : = 0, h := f

WHILE h 0 0 DO

IF there exists i such that lp(fi) divides lp(h) THEN

choose i least such that lp(f1) divides lp(h)

It (h)
uz

=
uz ft(f)

h:=h- lt(h)
It f i(.fz)

ELSE

r:= r + It(h)

h:= h - lt(h)

ALGORITHM 1.5.1. Multivariable Division Algorithm

Note that in Algorithm 1.5.1 we have, in effect, assumed an ordering among
the polynomials in the set {f,... , ,f 81 when we chose i to be least such that
lp(f2) divides lp(h). This is an important point and will be illustrated in Example
1.5.10.

It is informative to consider the similarities between Algorithm 1.3.1, the one
variable Division Algorithm in Section 1.3, and Algorithm 1.5.1, the multivari-
able Division Algorithm. The quotients u 1, ... , u5 in Algorithm 1.5.1 correspond
to the single quotient q in Algorithm 1.3.1; we have s different quotients in Al-
gorithm 1.5.1 because we are dividing f by s different polynomials fl, ... , fs
as opposed to dividing f by a single polynomial g in Algorithm 1.3.1. The re-
mainders, denoted by r in both algorithms, have the same definition: no term
of r is divisible by the leading term of any divisor. In Algorithm 1.3.1, once the
leading term of r is not divisible by lt(g), we also know that no other term of r
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is divisible by lt(g), and we have obtained the remainder. So in Algorithm 1.3.1
we start with r f and subtract off multiples of g until this occurs. This simple
property is not true in the multivariable case, necessitating the introduction of
the extra polynomial h in Algorithm 1.5.1. So we start with h = f and r = 0
and subtract off the leading term of h when we can or add the leading term of
h into r when we cannot, and so build up the remainder.

EXAMPLE 1.5.7. We recompute Example 1.5.2 but now we follow Algorithm
1.5.1. Let F = {fj}, where f 1 = 2y + x + 1 E Q [x, y] . The order is deglex with
y > x. Let f = y2x + 4yx - 3x2.

INITIALIZATION: ul := 0, r := 0, h := y2x + 4yx - 3x2
First pass through the WHILE loop:

y = 1p(fl) divides lp(h) = y2x
u1 := u1+ Z-x = YX2V 2

It(h)h : = h- it(h) f l

(y2x+4yx-3x2)- 1(2y+x+l)
y

=-2yx2+2yx-3x2
Second pass through the WHILE loop:

y =1p (f 1) divides lp(h) = yx2

U1 := 2Z +
I x - I .T2

1 1 2y - 2y 4

h h - lth
1

t;x= (-yx2 + 2yx - 3x2) -- ( 2y + x +1)
= 4x3 + 2yx _ 4x2

Third pass through the WHILE loop:
y =1p(f 1) does not divide lp(h) = x3

r :=r+lt(h) = 4x3
h:= h - lt(h) = Zyx- 4x2

Fourth pass through the WHILE loop:
y = lp(f ,) divides lp(h) = yx

ul:=ux+ h-X = 1yx-- Xx2+7x
2y 2 4 4

it(hh.-h-ltfxfl
7

=(2yx_ 4x2)- 2yx(2y+x+1)
----2x2- 4x

Fifth pass through the WHILE loop:
y = lp(fl) does not divide lp(h) = x2

r :=r+lt(h) = 4x3 - 2x2

xh:= h -- lt(h) --- -Ix
Sixth pass through the WHILE loop:

y = lp(f1) does not divide lp(h) = x
r:= r+lt(h)= 4x3- 2x2- 4x
h := h - lt(h) = 0
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The WHILE loop stops, and we have

F 1 3 2f ---a+ 4 x --
2 x

-- x

and

1 --+x 2 +x+1 + x_-.f (yx
4 }{ y } {4 2

ix).

Note that these are the same steps we used in Example 1.5.2.
EXAMPLE 1.5.8. Let F = {fI, f}, where f, = yx y, /2 = y2 - x E Q [x, y]

The order is deglex with y > x. Let f = y2x.
INITIALIZATION: ul := 0, u2 := 0, r := 0, h := y2x
First pass through the WHILE loop:

yx = lp(f1) divides 1p(h) = y2x
U1 := U1 + 2tIt hh = y
h:= h - h =y2X - .x (yx __ y) y2itfl y x

pass through the WHILE loop:
yx =1p(fl) does not divide lp(h) = y2
y2 = lp(f2) divides 1p(h) = y2

u2:=u2+1t f2 = 1
2h:=h-It f2 f2=y2- (y2() if

Third pass through the WHILE loop:
yx = lp(fl) does not divide 1p(h) = = x
y2 -- 1p(f2) does not divide lp(h) = x

r:= r+lt(h) = x
h:=h-lt(h)=0

The WHILE loop stops, and we get

and

f = Yf1 + f2 + x.

THEOREM 1.5.9. Given a set of non-zero polynomials F = {f',... , f., } and f
in k[xi, ... , xn], the Division Algorithm (Algorithm 1.5.1) produces polynomials
ul, ... us, r E k[xl,... , xn] such that

.f =u1f1 +...+usfs+r,

with r reduced with respect to F and

lp(f) = max( max (1p(uj) 1p (fi)), 1p(r))
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PROOF. We first observe that the algorithm terminates. At each stage of
the algorithm, the leading term of h is subtracted off until this can no longer be
done. That is, we get a sequence hl, h2, ... of the h's in the algorithm, where hi+1
is obtained from hi by subtracting off It (h,) and possibly some smaller terms:
hz+1 = hi - (lt(h) + lower terms). This is because we compute hz+1 from hi
by subtracting off It = It ) + lower terms (in case some l (,f;) divides' It f, .
lp(hi )) or by subtracting off lt(h,) (in case no lp(f,) divides lp(hi) ). So we have
that for all i, lp(h2+1) < lp(hi). Thus, since the term order is a well ordering
(Theorem 1.4.5), the list of the hi's must stop.

To prove the second part, we note that from what we did above, and since
h - f at the beginning of the algorithm, we have at any stage in the algorithm
lp(h) < lp (f) . Now, for each i, we obtain ui by adding terms it s) f, where it f i

cancels the leading term of h. It is then immediate that lp(ui) lp(fi) < lp( f
Moreover, r is obtained by adding in terms It(h) and so lp(r) < lp(f ), as well.

With f written as in Theorem 1.5.9, we have f - r E (Ii,... , f s) . Therefore,
if r = 0, then f is in (Ii,..- However, the converse is' not necessarily true;
that is, f may be in the ideal (f',... , f3), but the remainder of the division of
f by fl , ... , f, may not be zero as the following example shows.

EXAMPLE 1.5.10. Consider the polynomial f = y2x - x E Q[x, y], and the
ideal I = (f, I /2) C Q[x, y], where fl = yx - Y, 12 = y2 - x. Set F = {fi, f2}.
Using the deglex term order with y > x and the Division Algorithm, we see that

f -fl+ y2 - x -p 0, that is, f -+ 0 and indeed, f = y f 1 + f22 and hence
f E I. However if we reverse the order of f 1 and f2 (that is, we use f2 first in
the Division Algorithm) then f -+ x2 - x, and x2 -- x is reduced with respect
to F. So the remainder of the division of f by F is non zero, but f is in the ideal
(f1, f2).

This difficulty already occurred in the one variable case. For example, if
f = x, f, = x2 and f2 = x2 -x, then f is reduced with respect to {fi, f2}, whereas
1=/i - f 2 E (fi, f2). The difficulty was resolved by finding a better generating
set for (fi, f2), namely x = gcd (x2)x2 - x) . To do this in the multivariable case
is the subject of the next section.

Exercises
1.5.1. Let f = x3y3 + 2y2, 2xy2 + 3x + 4y2, f2 = y2 - 2y - 2 E Q[x, Y1.

Using lex with x > y, divide f by fl, f2 to obtain a remainder r and an
expression as in Theorem 1.5.9. Repeat this exercise reversing the role of
f, and f2.

1.5.2. Let f = x2y2 - w2, f1 = x -- y 2W, f2 = y - zw, /3 = z - w3, f4 = w3 - w E
Q[x, y, z, w] . Using lex with x > y > z > w, divide f by f1, f2, f3, f,j to
obtain a remainder r and an expression as in Theorem 1.5.9. Repeat this
exercise reversing the role of f, , f2, f3, f4, i.e. using f4, f3, f2, fl.

1.5.3. Prove that given a set of non zero polynomials F C k [x x , ... , x,], there
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can be no infinite chain 91 -p g2 -F
93 ... , [Hint: The new point

here that did not occur in Theorem 1.5.9 is that we may not be subtracting
off leading terns in gi gz+1.]

1.5.4. Show that for any polynomials 1'9 E k [x 1, ... , x,,], for any finite set
of non zero polynomials F C k[xi, ... ,x,], and for any power product
X E Tn, we have
a. If f E F, then f g -F- F+ o.
b. If f F)F + 9, then X f --F- + X g.

1.5.5. Let f, g, h, r, s E k[xx , ... , xn] and let F be a collection of non-zero poly-
nomials in k [x 1 , ... , xn]. Disprove the following:

a. If f ...)+rand g--F'+s, then f+g--F-)+r+s.
b. If f -)+ r and g s, then f g )+ rs.
c. If f +9 + h, f -+ r, and g -F + s, where h, r, s are reduced with

respect to F, then r + s = h.
1.5.6. Let F = {fl , ... , fs } C k [xl, ..E's. , xn], with fI L 0 (1 < i < s), and let f E

k[xl,... , x7,] such that f = >1ufi with lp(f) = max1<z<3 lp(uafi).

Give an example that shows this does not imply that f - + 0. [Compare
with Theorem 1.6.2 part (iii) .]

1.6. Grobner Bases. In this section we finally define the fundamental object
of this book, namely, a Grobner basis.

DEFINITION 1.6.1. A set of non-zero polynomials G = {gi,... , gt } contained
in an ideal I, is called a Grobner basiss for I if and only if for all f E I such
that f 54 0, there exists i E {1,... , t} such that lp(gg) divides lp(f}.

In other words, if G is a Grobner basis for I, then there are no non zero
polynomials in I reduced with respect to G. We note that it is not clear from
this definition that Grobner bases exist. We will prove this in Corollary 1.6.5.

We first present three other characterizations of a Grobner basis. In order to
do this we need to make the following definition. For a subset S of k[xx,... , xn],
we define the leading term ideal of S to be the ideal

Lt(S) = (it(s) I S E S).

THEOREM 1.6.2. Let I be a non-zero ideal of k[xl,... , Xnj- The following
statements are equivalent for a set of non-zero polynomials G = {gi,... , gt} C I.

(i) G is a Grobner basis for I.
(.ii) f E I if and only if f a + 0.

(iii) f E I if and only if f = E'_1 it=9; with 1P(f) = maac1<ti<t(1P(M 1P(94)).
(iv) Lt(G) - Lt(I).

6Another term which is commonly used in the literature is standard basis.



1.6 GROENER BASES 33

PROOF. (i) = (ii). Let f E k[xl,... , x7z]. Then, by Theorem 1.5.9, there
exists r E k[xi, ... , x7z], reduced with respect to G, such that f -- o+ r. Thus
f-rElandsofElifandonlyifrEl. Clearly, if r = 0 (that is, f+ o),
then f E I. Conversely, if f E I and r 54 0 then r E I and by (i), there exists
i E {1,... , t} such that lp (g2) divides lp (r) . This is a contradiction to the fact
that r is reduced with respect to G. Thus r = 0 and f -+ 0.

(ii) = (iii). For f E I, we know by hypothesis that f -+ 0, and since the
process of reduction is exactly the same as the Division Algorithm, we see that
(iii) follows from Theorem 1.5.9.

(iii) = (iv) .Clearly, Lt(G) C Lt (I) . For the reverse inclusion it suffices to
show that for all f E I, It (f) E Lt (G) , since the It (f )'s generate Lt (I) . Writing
f as in the hypothesis, it immediately follows that

It(f) = > It(hi) It(gi),
i

where the sum is over all i such that lp(f) = lp (hi) lp(gi) . The result follows
immediately.

(iv) = (i). Let f E I. Then It(f) is in Lt(G), and hence
t

(1.6.1) It( f ,

f o r some h , E k[x1, ... , x,z]. If we expand the right-hand side of Equation (1.6.1),
we see that each term is divisible by some lp(gi). Thus lt(f ), the only term in
the left-hand side, is also divisible by some lp(gi), as desired. p

COROLLARY 1.6.3. If G = {gi,... , gt } is a Grobner basis for the ideal I, then
I=(gl,...,gt).

PROOF. Clearly (g,... , gt) C I, since each gZ is in I. For the reverse inclu
sion, let f E I. By Theorem 1.6.2, f -+ 0, and hence f E (91,... , gt) . Ci

For the next corollary we first need some information about the special nature
of ideals generated by terms.

LEMMA 1.6.4. Let I be an ideal generated by a set S of non-zero terms, and
let f E k [x x , ... , x,z] . Then f is in I if and only if for every term X appearing
in f there exists Y E S such that Y divides X. Moreover, there exists a finite
subset So of S such that I = (So).

PROOF. If f E I, then

(1.6.2) f=>hjXj,

where hi E k[x1, ... , x, ] and Xi E S, for i = 1, ... , I. If we expand the right-
hand side of Equation (1.6.2), we see that every term is divisible by some term
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XZ in S, and hence every term of the left-hand side must also be divisible by
some term Xz E S.

Conversely, if for every term X appearing in f there exists a term Y E S such
that Y divides X, then each such X is in I = (S), and hence f is in I.

In order to prove the last statement we note that, by the Hilbert Basis Theo-
rem (Theorem 1.1.1), I has a finite generating set. By the first part of the lemma
each term in each member of this generating set is divisible by an element of S.
The finite set, So, of such divisors is clearly a generating set for I. C1

COROLLARY 1.6.5. Every non-zero ideal I of k[xl,... , x,,] has a Grobner ba-
sis.

PROOF. By Lemma 1.6.4 the leading term ideal Lt (I) has a finite generating
set which can be assumed to be of the form {lt(g1),... , It (gt) } with g1, ... , gt E
I. If we let G = {g,,... , gt }, then we have Lt (G) = Lt (I) and hence G is a
Grobner basis for I by Theorem 1.6.2.

We now give a fifth characterization of a Grobner basis. We will expand our
terminology a little.

DEFINITION 1.6.6. We say that a subset G = {g,,... , gt } of k [x, , ... , xn ] is
a Grobner basis if and only if it is a Grobner basis for the ideal (G) it generates.

THEOREM 1.6.7. Let G = {g',... , gt } be a set of non-zero polynomials in
k[xl, ... ,xn]. Then G is a Grobner basis if and only if for all f E k[x,, ... , xn],
the remainder of the division of f by G is unique.

PROOF. We first assume that G is a Grobner basis. Let f + r1 and
f+ r2, with r1 and r2 reduced with respect to G. Since f - rl and f - r2
are both in (G) = (g,,... , gt), so is r 1 -- r2 . Moreover r1 - r2 is reduced with
respect to G. But then r1 - r2 = 0, by Theorem 1.6.2 (ii).

Conversely, assume that remainders upon division by G are unique. We will
prove condition (ii) in Theorem 1.6.2. So let f E (C). Suppose that f --+ r
such that r is reduced. We must show that r = 0. (Of course, we know, by
hypothesis, that r is unique.)

CLAIM: If c E k is non-zero, X E TT is a power product, and g E k [x 1, ... , xn]

is such that g -+ r, where r is reduced, then, for each i E {1,... , t}, g -
cX g'. G -) + r. (Note that we have not assumed that cX It (gj) actually cancels a
term in g.)

We note that if the claim is true we are done. To see this, since f E I, we
can write f = =1 c,, is in k and is non-zero and X,, E T and
each i,, E {1,... , t} (this can be done by writing f higi and writing
each hz as a sum of terms). Then, applying the claim to g = f , we see that
f - cl X 1 gz, )+ r. So now we can apply the claim to g = f - c1 X 1 g21 to
obtain f - c,Xlgj1 - c2X2gz2 -+ r. Thus, using induction, we see that 0 =
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cvXvgi1,
G + r. That is, 0 r which immediately implies thatf + Y:1V=1

r = 0, as desired.
PROOF OF THE CLAIM: Define d by letting dlc(gi) be the coefficient of

X lp(gj) in g. We will consider three cases.
Case 1. d = 0. Then the coefficient of X lp(gi) in g - cXgg is -c 1c(gi)
which is non zero and so g - cX gi '-3 g 4+ r which is the desired
result.
Case 2. d = c. Let r1 be reduced and assume that g -- cXgi )+ r1.
Then, since d = c 0 0 we see that g - g - cX gi -+ r. Thus, since
we know g G )+ r also, we see r = rl, as desired (by the assumption
that the remainder is unique) .
Case 3. d 0 and d c. Set h = g - dX gg . Then the coefficient of
X lp(gi) in h is 0. Since d 0 we have g -- 9 h. Also, since d 0 c we
have g - cX g2 -g--+ h. So if h )+ r2, such that r2 is reduced, we get
g h --'+ r2 and so r2 = r, since the remainder. is unique. And so
g - CXgj -p h G + r, as desired.

The theorem is now proved.

Although we have in Theorem 1.6.7 that remainders are unique for division by
a Grobner basis, we saw in Exercise 1.5.2 that the quotients are not necessarily
unique (we will see in Exercise 1.6.2 that the polynomials in Exercise 1.5.2 do
form a Grobner basis) .

EXAMPLE 1.6.$. We continue Example 1.5.10. So let f = y2x -- x, f 1 = yx - x
,J. We use deglex with y > x. We showed inand f2 = y2 -- x. Let F = {fi, f9

Example 1.5.10 that f -+ 0 and f -- ) + x2 - x, the latter being reduced with
respect to F. Thus by Theorem 1.6.7, F is not a Grobner basis. We can see this
in another way. Namely, since f = y f 1 + f2 E (fi, f2) and f -+ x2 -.T we
have x2 - x E (fi, f2). But x2 = lp(x2 - x) is not divisible by either lp (f 1) = x y
or lp(f2) = y2. Thus by the definition of a Grobner basis (Definition 1.6.1), F is
not a Grobner basis.

EXAMPLE 1.6.9. Consider the polynomials g1 = z + x, g2 = y - x E Q [x, y, z].
Let G = {g,, g2}, I = (g1, g2). We use the lex term order on Q [x, y, z] with
x < y < z. We will prove that G is a Grobner basis for I. Suppose to the
contrary that there exists f E I such that It (f) 0 (lt(g1), It (g2)) = (z, y) . Then,
z does not divide It (f) , and y does not divide It (f). Thus, because of the lex
term order, z and y do not appear in any term of f, and so f E Q [x] . Let
f = (z + x)hl + (y - x)h2, where hl, h2 E Q[x, y, z]. Since y does not appear in
f, we may set y = x, and we have f = (z + x)hl (x, x, z), and hence z + x divides
f, a contradiction to the fact that the only variable occurring in f is x.

We will give a more systematic way of proving that a set of polynomials is a
Grobner basis in the next section.

We observe that if we have a Grobner basis G = {g',... , gt} for an ideal I,
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then we can solve some of the problems posed in Section 1.1 in a fashion similar
to what we did in the one variable case. To decide whether a polynomial f is
in I, we use the Division Algorithm and divide f by G. The remainder of the
division is zero if and only if f is in I. Also, by Theorem 1.6.7, the representative
of the element f + I in the quotient ring k [x i , ... , x,z] /I is r + I, where r is
the remainder of the division of f by G. Also, a basis for the k-vector space
k[x1, ... ,xn] /I is the set of all cosets of power products that are not divisible
by some 1t (9j) (Exercise 1.6.10). All of these applications will be discussed fully
in Chapter 2.

We note that a Grobner basis with respect to one term order may not be a
Grobner basis with respect to a different term order. For example, if we use the
lex term order with x > y > z in Example 1.6.9, then {g1, g2} is not a Grobner
basis for I (Exercise 1.6.3).

Clearly, the question now is how do we compute a Grobner basis for an ideal
I? The results in this section only prove existence, and the proofs of these results
do not indicate any method for finding Grobner bases. We will give Buchberger's
Algorithm for their computation in the next section.

However, we have already computed (without knowing it!) Grobner bases for
two special cases. In the linear case, the polynomials obtained from row reducing
the matrix of the original linear polynomials to row echelon form constitute a
Grobner basis for the ideal generated by these original polynomials, the variables
being ordered according to the position of their column in the matrix of the sys-
tem of equations (Exercise 1.6.5). In the one variable case, G = {gcd(fj,... , f,) }
is a Grobner basis for the ideal I = (fi,... , f8), by Theorem 1.6.2(ii) (Exercise
1.6.6). In both cases we do have an algorithm for computing the Grobner basis.

Exercises
1.6.1. Show that the polynomials Ii = 2xy2 + 3x + 4y2, f 2 = y2 -2y-2 E Q [x, y],

with lex with x > y do not form a Grobner basis for the ideal they generate.
(See Exercise 1.5.1.)

1.6.2. Show that the polynomials f, = x - y2 w, f 2 = y - zw, f 3 = z - w3, J4 =
W3 - w E Q [X1 y, z, w] in Exercise 1.5.2 form a Grobner basis for the ideal
they generate, with respect to lex with x > y > z > w. [Hint: Follow
Example 1.6.9.] Show that they do not form a Grobner basis with respect
tolexwithw>x>y>z.

1.6.3. Show that the polynomials gi, g2 in Example 1.6.9 do not form a Grobner
basis with respect to lex with x > y > z.

1.6.4. Let < be any term order in k[x, y, z] with x > y > z. Show that the
polynomials f, , f2, f3 in Example 1.2.2 do not form a Grobner basis for I,
whereas fi, f2,-17z do.

1.6.5. Let fl, ... , fm be non-zero linear polynomials in k[xi, ... , x,,] which are
in row echelon form. Show that they form a Grobner basis for the ideal.
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they generate with respect to any order for which the variables are ordered
according to the corresponding columns in the matrix.

1.6.6. In the polynomial ring in one variable, k [x] , consider a set of non zero
polynomials F = {f',... , f s } C k [x]. Let d = gcd (f, , ... , f3). Prove that
F is a Grobner basis if and only if cd E F, for some c E k, c 54 0.

1.6.7. Generalize Exercise 1.6.6 to principal ideals in k [x l , ... , x,]. That is, show
that if I = (d) is a principal ideal in k[x1, ... , x,z], then F C I is a Grobner
basis for I if and only if cd E F, for some c E k, c 0.

1.6.8. Let I be an ideal in k[x1, ... , xn]. Prove that Lt(I) is the k-vector space
spanned by {lp(f) I f E I},

1.6.9. Let I C k [x1, ... , xn] be an ideal generated by a set G = {X1,... , XS} of
non zero terms. Prove that G is a Grobner basis for I.

1.6.10. Let I be an ideal of k[xl, ... , xn] and let G = {g,... , gt } be a Grobner
basis for I. Prove that a basis for the k-vector space k [x 1, ... , x,, ] f I is
{X+IIXETandlp(g) does not divide X for all i = 1, ... , t}.

1.6.11. In this exercise we give another equivalent definition of a Grobner basis.
Let I C k[xl, ... , xn] be an ideal. For a subset S C k[x1, ... , xn] set
£p(S) = {lp(f) I f E S}. (Note that we have just taken the set of all lp(f )
not the ideal generated by the lp(f )'s.) Set I* = I - {0}.
a. Show that Tn is a monoid; that is, T' is closed under multiplication.
b. Show that £p(I*) is a monoideal of T7z; that is, show that for all

X E L p(I*) and Y E Tn we have XY E Cp(I*). (Note: this is just
Exercise 1.7.6.)

c. Prove that F C 1* is a Grobner basis for I if and only if £p(F) gener-
ates Cp(I*) as a monoideal. (We say that £p(F) generates £p(I*) as
a monoideal if and only if for all X E £p(I*) there exists Y E Fn and
Z E £p(F) such that X = YZ. )

1.6.12. In this exercise we give another equivalent definition of a Grobner basis.
Let G C k[xl, ... , x,] consist of non zero polynomials. We call the reduc-
tion relation "+" Confluent provided that for all f, g, h E k [x 1i ... , x,]
such that f -+ g and f -+ h, there exists an r E k[xl,... , x,z] such

that h + r and g -+ r. Prove that G is a Grobner basis if and only
if "-++" is confluent. [Hint: Use Theorem 1.6.7.]

1.6.13. Let {g,... , gt} C k[xi, ... , xn] and let 0 54 h E k[xl,... , xn]. Prove that
{9i,... , gt} is a Grobner basis if and only if {hgj,... , hgt} is a Grobner
basis.

1.6.14. Let G be a Grobner basis for an ideal I of k[xl, ... , xn] and let K be an
extension f i e l d of k. Let J be t h e i d e a l of K[xl, ... , x, ] generated by I.
Prove that G is also a Grobner basis for J.

1.6.15. Let G be a Grobner basis for an ideal I and let r, f E k [x1, ... , xn], where

r is reduced with respect to G. Prove that if f - r E I, then f G )+ r.
1.6.16. Let G and G' be two Grobner bases for an ideal I C k[x,,... , xn] with
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respect to a single term order. Let f E k [x1, ... , x,]. Assume that f ----G- +

r and f G'+ r' where r is reduced with respect to C and r' is reduced
with respect to G'. Prove that r = r'.

1.6.17. Let I be an ideal of k[xl, .. - , xn]. Assume that we are given two term
orderings, say < i and <2 . Let {g,... , gt } be a Grobner basis for I with
respect to <1 . Assume that It<! (gz) = It<Z (gz), for i = 1, ... , t. Prove
that {g,... , gt} is also a Grobner basis for I with respect to <2 .

1.6.18. Let I be an ideal in k [x 1, ... , xn] and let G = {gj,... , gt } and G' _
gt, } be subsets of I of non zero polynomials where we assume

that G is a Grobner basis for I. Assume that for all gZ E G we have
gj = _1 aijg3 where lp(gz) = max,<Z<t' (lp(a3) lp(gj)). Prove that G'
is also a Grobner basis for I, with respect to the same term order.

1.6.19. Let f E k [x1, ... , xn] have total degree d, and let w be a new vari-
able. We define the homogenization of f to be f h = wd f (MI XXL7... , ) E
k [x1, .. _ , xn, w]. Note that f h is homogeneous (see Exercise 1.4.9). For
an ideal I of k[x1, ... , xn], we define Ih to be the ideal of k[x1, ... , x,, w]
defined by Ih = (fh I f E 1). Also, for g E k [x1, ... , x, , w] we define
94 = 9(xl, ... ) xn,1) E k[xi, ... , xn].
a. Give an example that shows that there is an ideal I = (I',... , fs )

of k [x1, ... , x,] such that Ih is strictly larger than (fe,... , fs) C
k[x1, ... , xn, w].

b. Let < be the deglex or degrevlex order in k [x 1i ... , xn] . Let <h be the
order defined by extending < to k[x1, ... , xn, w] as follows:

xI ... xn WV <h xi' xn wV if and only if

{
x1l ... xn < x1 I'L ...xn or

XV3L ...Xn andv<v'.

Prove that < h is a term order in k [x 1, ... , xn, w] and that lt< h (fh) _
lt(f).

c. Let I be an ideal of k [x 1, ... , xn] and let G = {g,... , gt I be a Grobner
basis for I with respect to deglex or degrevlex. Prove that Gh =
{g,... , gt } is a Grobner basis for Ih with respect to <h . [Hint: It
suffices to show that Lt<,L (I h) = (lt<h (g),... , it<h (gt)) . If f e Ih,
then we may assume that f is homogeneous. Prove that f = wv (fh) h,
for some v > O and that fh E I.)

d. Use c to compute a set of generators for Ii, where I = (yx - x, y2 -- X)
by first showing that G = {yx - x, y2 -- x, x2 - x} is a Grobner basis for
I with respect to deglex with x > y. [Hint: Show that if f is reduced
with respect to G and in I, then f = ax + by for some a, b E k, and
f = hi(yx -- x) + h2 (y2 - x) + h3 (x2 - x). Then successively set x = 0
then y=1.]
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1.6.20. This material is taken from Robbiano and Sweedler [RoSw]. By a k-
subalgebrr A C k[x1,... , xn] we mean a subring which is also a k-vector
space. For a subset F = {fi,... , fs} C k [x 1, ... , x7,] we denote by
k[F] the k-subalgebra of k [x1, ... , xn] generated by F, that is k [F] _
{,, c , f i 1 - - f S e c,,, E k and v = (u1,... , v5 ) E Ns and only finitely
many c,,'s are non zero}. Fix a term order on k[x1, ... , xn]. We will define
a reduction procedure that answers the "algebra membership problem"
for k-subalgebras of k [x 1, ... , xn]. This is the problem of determining, for
f E k [x1, ... , xn], whether f E k[F]. (This problem will be solved using
Grobner bases in Section 2.4.)
a. For F C k[xl, ... , xn], let Lp(F) = {lp(f) I f E F}. (Note that

we have only taken the set of all lp (f) .) For a k-subalgebra A C
k[xx, ... , xn] show that £p(A) is a multiplicative submonoid of Tn.
We call F a SAGBI basis for A = = k[F] provided £p(F) generates
£p(A) as a monoid. (SAGBI stands for Subalgebra Analog to Grobner
Bases for Ideals. In Robbiano and Sweedler [RoSw], an algorithm for
computing SAGBI bases is given.)

b. For F = {f1,... , f3} C k[xl,...,x, ] and v = (v1,... ,vs) E NS
denote by F1' = fl" ... f, 's . For g, h E k[x1, ... ,x,] we write g h
to mean there is a c E k (c 0 0) and v E Ns such that lt(cF1) is a
term in g and h = g - cF1. If we have g g1 4g2 =4 ... = h
we write =4+ h. Show that g =+ h implies that g - h E k [F] .

c. Show that F C k[x1, ... , xn] is a SAGBI basis for k[F] if and only if
for all f E k[F] we have f =+ 0.

d. Show that if F consists entirely of terms then F is a SAGBI basis for
k [F] .

e. Prove that F = {x2,y2,xy + y, xy2 } is a SAGBI basis for Q [F] C
Q[x, y] for deglex with y > x. [Hint: For f = 1: cv(x2)vl(y2)v2(xy +
y) v3 (xy2)"4 E Q[F], expand out the xy + y term and show that it suf-
fices to prove that xnym is in the monoid generated by {x2, y2, x y, xy2 }
forn<m.]

1.7. S-Polynomials and Buclaberger's Algorithm. In this section we
first lay the theoretical foundation for the algorithm for computing Grobner
bases by presenting Bucbberger's Theorem [Bu65, Bu85]. This result is given
in Theorem 1.7.4. We then present his algorithm.

Let I (f I, ... , fs be an ideal of k [xl, ... , xn], and let F _ { f 1i ... , fs },

where we assume that f i j4 0 (1 < i < s). In the previous section we defined F
to be a Grobner basis if and only if for all f E I, there exists i E {1,... , s} such
that lp (f,) divides lp (f) . So a difficulty arises with elements of I whose leading
power products are not divisible by any lp (f i) . But if f is in I, f = E'=, hi f i,
for some hi E k [x 1, ... , xn] . Hence the difficulty occurs when the largest of the
lp(hz f i) = lp(hi) lp(fz)'s cancel. The simplest way for this to occur is in the
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following.

DEFINITION 1.7.1. Let 0 54 f, g E k[x1, ... , x7,]. Let7 L = lcm(lp(f), lp(g)}.
The polynomial

L L
S (f 7 9) = Fu-) f - It g

is called the S-polynomial of f and g.

EXAMPLE 1.7.2. Let f = 2yx -- y, g = 3y2 _ x E Q[x, y], with the deglex term
ordering with y > x. Then L = y2x, and S(f, g) = 2 f - 3 'g = 2 y f - 3 xg =

y y
2 y2 + 3x2. Moreover lp (2 y f) = y2x lp (3 xg) have canceled in S (f , g) .
There is another way of viewing S-polynomials. Namely, in the division of f

by /',... , f3, it may happen that some term X appearing in f is divisible by
both lp(fz) and lp(f3 ) for i 0 j (hence X is divisible by L = lcm(lp(f ), lp(f3 )}.
If we reduce ,fusing f i, we get the polynomial hl = f --

-1t-}U
fi, and if we

reduce f using f;, we get h2 = f - ltdf, ,fj. The ambiguity that is introduced is

... L Z 7 f? )'h2 - hl It i A - It f f\J
EXAMPLE 1.7.3. Let f = y2x + 1, f 1 = yx - y, f2 = y2 x E Q[x, y] with

the deglex term ordering with y > x. We consider the term X = y2x in f.
We have that f y2 + 1 = f - y f i , and f -- x2 + 1 = f - x f 2 . Note
that X = L = lcm (lp (f 1), lp (f 2)) = y2x, and that the ambiguity introduced is
-y2 + x2 = y f1 - x,f2 = S(f1, f2). Also, note that S(f1, f2) E (fi, f2), and that
it can be reduced: S(f l , f2) f2 ) x2 - x. The polynomial x2 _ x is now reduced
with respect to {fi, f2 }, but is not zero.

Now that we have introduced S-polynomials as a way to "cancel" leading
terms and to account for the ambiguity in the Division Algorithm, we can go
ahead with a strategy for computing Grobner bases. It turns out that the S-
polynomials account for all ambiguities we need to be concerned about as the
next result shows.

THEOREM 1.7.4 (BUCHEERGER). Let G = {gi,... , gt} be a set of non-zero
polynomials in k [xi, ... , x,] . Then G is a Grobner basis for the ideal I _

54(91,... , gt) if and only if for all i

S(g , 9a
) G

)
+0.

Before we can prove this result, we need one preliminary lemma.

LEMMA 1.7.5. Let f1, ... , fs E k[x1, ... , x7z] be such that lp(fi) = X 0 0 for
all i = 1, ... , s. Let f = 1:8= 1 ci f i with ci E k, i = 11... , s. If lp(f) < X, then f
is a linear combination, with coefficients in k, of S (f i, f,), 1 < i < j < s.

7Recal that the least common multiple of two power products X, Y is the power product
L such that X divides L. Y divides L and if Z is another power product such that X divides
Z and Y divides Z then L divides Z. We denote L by lcm(X, Y).
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PROOF. Write fi = aiX+lower terms, ai E k. Then the hypothesis says that
E=j ciai = 0, since the ci's are in k. Now, by definition, S (fz 7 f,) _ fz - l f

since lp(f2) = lp(f3) = X. Thus

f CIA l +... -+- Cs f s
clal(a s,fs}
clai( fl f2) + (ciaj + c2a2)( zf2 - 3f3) + .. .Al a2
+(cial +.... + cs-las-i)(4a,

1 fs-i -- ifs) + (cai + ... + csas) s f8
c1a1S(fi,12) + (cia1 + c2a2)S(f2, f3) + .. .
+(ciai + ... + cs-1as-1)S(fs-1, fs),

since cia1 + ... + csas = 0.

We are now ready to prove Buchberger's Theorem.
PROOF OF THEOREM 1.7.4. If G = {g,... , gt } is a Grobner basis for I =

(g1,... , gt), then S(gi, 9j) -+ 0 for all i 34 j by Theorem 1.6.2, since S(9i, gj) E
I.

Conversely, let us assume that S(g27 gj) G ) + 0 for all i j. We will use
Theorem 1.6.2(iii) to prove that G is a Grobner basis for I. Let f E I. Then f
can be written in many ways as a linear combination of the 9i's. We choose to

higa, withwrite f = > L
X = max (1p(h2) lp(gi))

1<i<t

least (here we use the well ordering property of the term order). If X = lp(f),
we are done. Otherwise, lp(f) < X. We will find a representation of f with a
smaller X, and this will be a contradiction. Let S = f i lp(hi) lp(gi) = X}. For
i E S, write hi . ciXi + lower terms. Set g = cjXi9i. Then, lp(X1gi) = X,
for all i E S, but 1p(g) < X. By Lemma 1.7.5, there exist dj E k such that

9 = > c jS(XX9i, Xjgj).
ijES1i j

Now, X = lcm(lp(Xigi), lp(Xi93)), so

S (Xig2, Xjgj) = X X
X=gi - -X3-g-

lt(X;g;,) lt(X9gi)
X X X

9 )9 ,3z
1

93X..9Z3It(9Z) Z

where Xi j = lcra(lp(gi ), lp(g j )) . By hypothesis, S(gi, g j) + 0, and so we see

from this last equation that S(Xigi, X393) + 0 (See Exercise 1.5.4). This
gives a representation

t
S(Xigi, x393) = 1: hijugv,
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where, by Theorem 1.5.9,

max (lp(h23,.jlp(g,,)) = 1p(S(Xa9ao Xi9s))1<v<t

< max(lp(X2gi), lp(Xjg,)) = X.

Substituting these expressions into g above, and g into f, we get f = Et=1 hzgi,
with maxl<i<t(lp(h) lp(g )) < X. This is a contradiction.

We have as an immediate Corollary of the proof of Theorem 1.7.4, the fol-
lowing additional equivalent condition for a subset G of k [x 1, ... , xn] to be a
Grobner basis.

COROLLARY 1.7.6. Let G = {gi,... , 9t} with gg 0 (1 < i < t) . Then G is
a Grobner basis if and only if for all i 54 j (1 < i, j < t), we have

t

S(92, g3) = >hjj1,g11, where lp(S(gi, 9j)) = max (lp (hi3v) lp(g)) .
i<v<tv-i - -

We note that Buchberger's Theorem (Theorem 1.7.4) gives a strategy for
computing Grobner bases: reduce the S-polynomials and if a remainder is non
zero, add this remainder to the list of polynomials in the generating set; do this
until there are "enough" polynomials to make all S-polynomials reduce to zero.
Let us first look at an example.

EXAMPLE 1.7.7. Let f, = xy - x, f2= x2 y E Q [x, y] with the deglex term

order with x < y. Let F = If,, f2}. Then S(f1i f2) = xf1 -- yf2 = y2 - x2 -
y2 - y, and f3 = y2 - y is reduced with respect to F. So we add f3 to F, and
let F' = {fj, f2, f3}. Then S(.fi) f2) --) 0. Now S(ff, f3) = yfi -- x.f3 =0, and

'(.f2, f3) = y2,f2 - 2 f3 = --y3 +x2y --} x2y - y2 F1 0. Thus {fl,f2,f3} is a
Grobner basis.

We give Buchberger's Algorithm to compute Grobner bases as Algorithm
1.7.1.

THEOREM 1.7.8. Given F If,, , f,I with fi j4 0 (1 < i < s), Buch-
berger's Algorithm (Algorithm 1.7.1) will produce a Grobner basis for the ideal
I _ {fi, ... , fs).

PROOF. We first need to show that this algorithm terminates. Suppose to
the contrary that the algorithm does not terminate. Then, as the algorithm
progresses, we construct a set Gi strictly larger than Gi_1 and obtain a strictly
increasing infinite sequence

G1cC2C ,-r3C...

Each Gi is obtained from G_1 by adding some h E I to G_1, where h is the
non-zero reduction, with respect to G;_1, of an S-polynomial of two elements of
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INPUT: F={fl,...,fs}Ck[x1,...,xn}with ft 34 0 (1<i<s}

OUTPUT: G = = {g,... , gt }, a Grobner basis for (Ii,... , f s }

INITIALIZATION: G:= F, G:= If f3} I fi fj E G}

WFE G:1- 0 DO

Choose any {f,g} E 9

G:=9-{{f,g}}
S(f, g) -+ h, where h is reduced with respect to G

IF h # 0 THEN

9:=9u{{u,lt}j foralluEG}

G:=GU{h}

ALGORITHM 1.7.1. Buchberger's Algorithm for Computing Grobner Bases

43

Gi_1. Since h is reduced with respect to Gti_1, we have that lt(h) V Lt(G$_1).
Thus we get

Lt(G1) C Lt(G2) C Lt(G3) C ... .

This is a strictly ascending chain of ideals which contradicts the Filbert Basis
Theorem (Theorem 1.1.1).

Now we have F C G C I, and hence I = (fi,... ) f.9) C (gi,... , gt) C I. Thus
G is a generating set for the ideal 1. Moreover, if gi, g3 are polynomials in G,
then S(gz1 gj) + 0 by construction. Therefore G is a Grobner basis for I by
Theorem 1.7.4.

EXAMPLE 1.7.9. Let fl = xy - x, f2 = -y + x2 E Q[x, y] ordered by the lex
term ordering with x < y.

INITIALIZATION: G {fj., f2}, {{f, f2}}
First pass through the WHILE loop

g:= 0
S(fl, f2) + x3 - x = h (reduced with respect to G)
Since h yl- 0, let f3 := x3 - x

19 := {{fl,f3},{f2,f3}}
G:= {fl,f2,f3}

Second pass through the WHILE loop
9 := {{f2,fs}}
S(fjjf3) G)+O=h

Third pass through the WHILE loop
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g._.._0

S(f2,f3)')-{-O=h
The WHILE loop stops, since 9 = 0.

Thus {fi, /2, f} is a Grobner basis for the ideal (/1,12).
We will conclude this section by giving two more simple examples which il-

lustrate Buchberger's Algorithm.
EXAMPLE 1.7.10. Let Ii = y2 + yx + x2 , f2 = y + x, and f 3 = y E Q [x, y]

Let us use the lex term order with y > x to compute a Grobner basis for I =
(11, f2, f3).

INITIALIZATION: G := {fi, f2, f3}
9 := {{fi, f2}, {fl, f3}, {f2, f3}}
First pass through the WHILE loop

9 := {{ fl, f3}, {f2, f3}}
S(fl, f2) = x2 (reduced with respect to {/i, f2,13})
let f 4 := x2

G:= {{fl, f3}, {f2, f3}, {f1, f4}, {f2, f4}, {f3, f4}1
G := {fi,f2,f3,f4}

Second pass through the WHILE loop
9 : {{f2, f3}, {fl, f4}, {f2, f4}, {f3, All
S(f1,f3) ' 0

Third pass through the WHILE loop
9 := {{f1, f4}, {f2, f4}, {f3, f4}}
S(f2, f3) = x (reduced with respect to {/, f2, f3, f4 })
fs := x

{{/1,f4},{12,f4},9 {f3, f4}, {fl, f5}, {f2, f5}
{f3, f5}, {f4, All

G:= {fI,f2f3,f4,/}
Fourth pass through the WHILE loop

G:= {{f2, f4}, {f3, f4}, {f1, f5}, {f2, f5}, {f3, f5}, {f4, f5}}
5(fl, f4) )+ 0

Fifth pass through the WHILE loop
JC' = {{f3, f4), Lfi7 f5}, {/2i f5}, {f3, f5}, {f4, All
S(f2,f4) )10-

The sixth through tenth executions of the WHILE loop will also give 9-
polynomials which reduce to zero (Exercise 1.7.4) and thus {fi, f2, f3, f4, f5 }
is a Grobner basis for (f, , f2 7 f3).

So far, in our examples, we have used the field Q. The theory developed so far
is valid for any field k. To illustrate this point, in our next example we compute
a Grobner basis in the case when k is a finite field.

EXAMPLE 1.7.11. In this example we consider the field k = Z,5 = Z/5Z. Let
= x2 + y2 + 1 and f2 = x2 y + 2xy + x be in Z5 [x, y] . We use the lex term

ordering with x > y to compute a Grobner basis for I = (fi, f2) C 74[x, y] .
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INITIALIZATION: G: = {fi, f2}, G:_ {{fl, f2}}
First pass through the WHILE loop

G:= 0
S(fl, f2) = yfl - f2= 3xy + 4X + y3 + y

(reduced with respect to G}
Let f3:=3xy+4x+y3+y

:= {{fi, f3b {f, f3jI
G:= {fjjf25 f3l

Second pass through the WHILE loop
'= {{f2,f3}}

S(.fi, fs) = y.fi -ifs -)+ 4315 + 3y4 + yz + y + 3
(reduced with respect to G)

Let f4 := 4y5 +3 y4 + y2 +y+3
C1 ' {{f27 f3b {fi, f4}, {f2, f4}, {f, f4}}
G := {fl,f2,f3,f4}.

The third through the sixth executions of the WHILE loop give S-polynomials
that reduce to zero (Exercise 1.7.4) and thus G = I fj 7 f2, f3, f4} forms a Grobner
basis for (fl, fa} C Z5 [X, Y1 -

Exercises
1.7.1. Compute the S-polynomials of the following pairs in Q[x, y, z] with respect

to the lex, deglex, and degrevlex orderings with x > y > z :
a. f = 3x2yz - y3z3 and g = xy2 + z2.
b. f = 3x2yz - xy3 and g = xy2 + z2.
c. f = 3x2 y - yz and g = xy2 + z4 .

1.7.2. Use Theorem 1.7.4 to show that the polynomials given in Exercise 1.6.2
do form a Grobner basis with respect to lex with x > y > z > w.

1.7.3. You should do the following exercises without a Computer Algebra Sys-
tem.
a. Find a Grobner basis for (x2y + z, xz + y) C Q[x, y, z] with respect to

deglex with x > y > z. [Answer: x2y + z, xz + y, xy2 _ z2, y3 + z3.]
b. Find a Grobner basis for (x2y + z, xz + y) C Q[x, y, z] with respect to

lex with x < y < z. [Answer: z + x2y, xz + y, x3y - y.]
1.7.4. Finish the computation in Examples 1.7.10 and 1.7.11 without a Computer

Algebra System.
1.7.5_ In Example 1.7.11 we obtained G using arithmetic modulo 5 throughout

the computation. The reader might think that G could also be obtained
by first computing a Grobner basis G' for I = (fi, f 2) viewed as an ideal
in Q [x, y], where we assume that the polynomials in G' have relatively
prime integer coefficients, and then reducing this basis modulo 5. This is
not the case as we will see in this exercise.
a. Compute the Grobner basis G' for I = (11,12) 9 Q [x, y] with respect
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to the lex ordering with x > y.
b. Reduce G' modulo 5 to obtain G5 and compare with Example 1.7.11.

1.7.6. Assume that we have fixed a term order on T' . For 0 34 f E k[xi,.. - , x92]

define the multidegree of f by deg(f) = a where lp(f) = Xa with a E Nn.
Of course, this definition of deg depends on the term order in use. Define
deg(S) = {deg(f) f E S} for subsets S 9 k[xx, ... , x,z] not containing 0.
a. Let I be an ideal in k[xi, ... , xn]. Let G = {gi,... , gt} be a Grobner

basis for I. Assume that deg(gz) = az for 1 < i < t. Prove that

t
deg(I*) U (C,, + Nn)

4=1

where I* = I --- {0} (see Exercise 1.4-12).
b. In Q [x, y] let I = (x2y - y + x, x y2 -- X). Show that, with respect to

the deglex ordering with x < y, deg(I*) is represented by the shaded
region in the diagram given below:

c. Draw the region which represents deg(I*) if we use lex with x < y.
1.7.7. Show how the steps in the Euclidean Algorithm (Algorithm 1.3.2) parallel

the steps in Buchberger's Algorithm (Algorithm 1.7.1).
1.7.8. Show how the steps in Gaussian Elimination (see Section 1.2) parallel the

steps in Buchberger's Algorithm (Algorithm 1.7.1).
1.7.9. Assume that F = {fi,... , f. ,j C k [xl, ... , x,,] and each fj is a difference

of two power products. Prove that, with respect to any term order, (F)
has a Grobner basis consisting of differences of power products.

1.8. Reduced Grobner Bases. In the last section we saw how to compute
Grobner bases. However, the Grobner basis obtained from Buchberger's Algo-
rithm might not be unique. In this section we show that by putting certain
conditions on the polynomials in the Grobner basis, we obtain uniqueness.
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In Buchberger's Algorithm there are two places where choices are made. First,
there is the order in which the polynomials are inputed and this affects the ap-
plication of the Division Algorithm. Second, in the WHILE loop of Buchberger's
Algorithm where we compute S-polynomials, we choose {f, g} E G at random.
So, if we were to change either of these choices, we might end up with a different
Grobner basis.

For example, in Example 1.7.10 if we had computed S(f2, f3) = x first, the 5-
polynomial S(f 1, f2) would have reduced to zero, and would not have appeared
in the Grobner basis. So we would have obtained a different Grobner basis. Note
that even after we have computed the Grobner basis G = {fi , f2 7 f 3l f4, f} for I,
we can observe that f4 = x2 can be removed from G, that is, {fi,f2,f3,f5}isalso
a Grobner basis for (f', f2, f3). This is because any term divisible by It (f4) = x2
is also divisible by It (f5) = x. The set {fi, f2, f 3j f51 is the Grobner basis for I
we would have obtained had we computed S(12, f3) = x before S(f l , f2).

This leads to the following definition.

DEFINITION 1.8.1. A Grobner basis G = {gi,... , gt} is called minimal if for
all i, lc(gi) = 1 and for all i 34 j, lp(gi) does not divide lp(g, ).

LEMMA 1.8.2. Let G = {gi,... , gt} be a Grobner basis for the ideal I. If
lp(g2) divides lp(gl), then {g2,... , gt} is also a Grobner basis for I.

PROOF. Clearly, if a polynomial f is such that Ip(f) is divisible by lp(gi),
then it is also divisible by lp (g2) . Therefore, using Definition 1.6.1, {92,... , gt }
is a Grobner basis for I. 0

As a direct consequence of this lemma, we now see how a minimal Grobner
basis can be obtained from a Grobner basis.

COROLLARY 1.8.3. Let G = {gi,... , gt} be a Grobner basis for the ideal I.
To obtain a minimal Grobner basis from G, eliminate all gi for which there exists
j i such that lp(g3) divides lp(gi) and divide each remaining gg by lc(gi).

In Example 1.7.10 above, a minimal Grobner basis for I can be obtained from
{fl,f2,f3,f4,f5}, by removing fl, f2, and f4- We could also remove fl, f3, and
f4. So minimal Grobner bases are not unique, but, as the following proposi-
tion shows, all minimal Grobner bases for an ideal I have the same number of
elements, and the same leading terms.

PROPOSITION 1.8.4. If G = {gi,... , gt} and F = {f,... , f9} are minimal
Grobner bases for an ideal I, then s = t, and after renumbering if necessary,
lt(fi) = lt(gz) for all i = 11. - - , t.

PROOF. Since f, is in I and since G is a Grobner basis for I, there exists i
such that lp (gi) divides lp (f 1) . After renumbering if necessary, we may assume
that i = 1. Now g, is also in I, and hence, since F is a Grobner basis for I,
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there exists j such that lp (f?) divides lp (g1) . Therefore lp (f 3) divides lp (f 1) , and
hence j =1, since F is a Grobner basis. Thus 1p(f1) =1p(gi) .

Now f2 is in I, and hence there exists i such that lp (gj) divides lp (f2 ), since G
is a Grobner basis. The minimality of F and the fact that lp(g1) = lp(f x) imply
that i 0 1, and, after renumbering if necessary, we may assume that i = 2. As
above we get that lp(g2) = lp(f2). This process continues until all f's and g's are
used up. Thus s = t and after renumbering lp(fz) = lp(gj) for all i = 1,... , t.

As we mentioned after Corollary 1.8.3, minimal Grobner bases are not unique.
To get uniqueness, we need to add a stronger condition on the polynomials in
the Grobner basis.

DEFINITION 1.8.5. A Grobner basis G = {9i,... , gt } is called a reduced
Grobner basis if, for all i, lc(ga) = 1 and gi is reduced with respect to G - {g}.
That is, for all i, no non zero term in gz is divisible by any lp(g,) for any j i.

Note that a reduced Grobner basis is also minimal. We now prove that reduced
Grobner bases exist.

COROLLARY 1.8.6. Let G = {gi,... , gt} be a minimal Grobner basis for the
ideal I. Consider the following reduction process:

g1 -+ h1, where h1 is reduced with respect to H1 = gt }

g2 1+ h2, when h2 is reduced with respect to H2 = {hl, g3,... , gt }

g3 -+ h3, where h3 is reduced with respect to H3 = {hl, h2, 94, ... , 9t}

gt -+ ht, where ht is reduced with respect to Ht = {hl, h2, ... , ht_ 1 }.
Then H = {hj,... , ht} is a reduced Grobner basis for I.

PROOF. Note that, since G is a minimal Grobner basis, we have that lp(hz) =
lp (gg) for each i = 1, ... , t. Therefore, H is also a Grobner basis for I (in fact, it
is a minimal Grobner basis). Since the division of flu by hl,... , ha_1, gi+1, ... , gt
is done by eliminating terms of gZ using lp(h1),... , lp(1j__1), lp(gi+x ), ... , lp(gt),
and since lp(h3) = lp(g3), for all j, H is a reduced Grobner basis. 0

THEOREM 1.8.7 (BUCHBERGER). Fix a term order. Then every non-zero
ideal I has a unique reduced Grobner basis with respect to this term order.

PROOF. We proved in the previous result that every ideal has a reduced
Grobner basis. Thus we only need to prove uniqueness. Let G = {g,... , gt} and
H = {h1,... , ht I be reduced Grobner bases for I. We note that by Proposition
1.8.4, since a reduced Grobner basis is minimal, both G and H have the same
number of elements and we may assume that, for each i, It (g1) =1t (hi). Let i be
given, 1 < i < t. If g2 0 h1, then gz -- hz E I implies that there exists j such that
lp(h3) divides lp(gz - h,-). Since lp(gz - hi) < lp(h1), we see that j 54 i. But then
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lp(h,) = lp(g3) divides a term of gi or h,-. This contradicts the fact that G and
H are reduced Grobner bases. So gi = hj. El

EXAMPLE 1.8.8. Let us go back to Example 1.7.10. We have seen right after
Corollary 1.8.3 that {fa, f5j and {f2, f5l are both minimal Grobner bases for the
ideal I. Since f3 = y and fs = x, we see that {f, f5l is a reduced Grobner basis
for I. Since f2 = y + x, we see that f2 can be reduced to y using f5- So {f2, f5}
is not a reduced Grobner basis. Of course, the reduced Grobner basis obtained
from {f2, f5} is in fact {f, f5}, since the reduced Grobner basis is unique.

EXAMPLE 1.8.9. We go back to Example 1.7.11. There we showed that a
Grobner basis for I = (x2 + y2 + 1, x2 y + 2xy + x) C Z5 [x, y] with respect to the
lex ordering with x > y is {x2+y2+1,x2y+2xy+x,3xy+4x+y3+y,4y5+3y4+
y2+y+3}. By Corollary 1.8.3, {x2-+2+1, xy+3x+2y3+2y, y5+2y4+4y2+4y+2}
is a minimal Grobner basis for I. In fact it is easy to see that it is the reduced
Grobner basis for I.

Exercises
1.8.1. Compute the reduced Grobner basis for the ideal in Example 1.7.9.
1.8.2. Compute the reduced Grobner basis for the ideals in Exercise 1.7.3.
1.8.3. Let I C k [x i , ... , xn] be an ideal. We call I a homogeneous ideal provided

that I = (fi,... , f a) where each f i is homogeneous (see Exercise 1.4.9) .

Fix an arbitrary term order on k [xi, ... , xnj.
a. Show that I is homogeneous if and only if for all f E I, each homoge-

neous component off is also in I.
b. Show that any homogeneous ideal has a Grobner basis consisting of

homogeneous polynomials.
c. Prove that I is a homogeneous ideal if and only if the reduced Grobner

basis for I consists of homogeneous polynomials.
d. Prove that a subset G of a homogeneous ideal I is a reduced Grobner

basis with respect to the lex ordering if and only if G is a reduced
Grobner basis with respect to the deglex ordering.

1.8.4. Let F C k [xi, ... , xn] and let I = (F). Find an algorithm that will deter-
mine a subset F' C F such that I = (F') and for which no proper subset
of F' generates I.

1.8.5. We use the same notation as in Exercise 1.6.19. Let < be any order on
k [xl, ... , xn]. We let <h be as in Exercise 1.6.19. Let I = (Ii,... , f3)
be an ideal of k[xi, ... , x,,]. Let G = {9i,... , gt } be a Grobner basis for
(fh,... , fh) swith respect to <h . We may assume that the polynomi
als in G are all homogeneous. Prove that Gh = {(gi),,... , (g),} is a
Grobner basis for I. [Hint: First note that even without the assumption
that G is a Grobner basis we have (Gh) = (fh f E (fey... , f8h)) = I.
Then note that It<h (f )h = lt(fh) for every homogeneous polynomial in
k[xi, ... , xn, w]. Prove that S((gz)h, (g,)h) = S(ga, 9j) h- Prove that given
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-)+ g, then fh Gh
"+ gh ]f,g E xl, ... , xn, W1, if f G

1.8.6. (*) As mentioned before, a Grobner basis with respect to one term ordering
might not be a Grobner basis with respect to another term ordering. In
this exercise we show that for a given ideal there are only finitely many
possible reduced Grobner bases. Let I be an ideal of k[xj, ... , xn].
a. Let T be the (infinite) set of all possible term orderings on k[xl, ... , xnj.

Let R = {reduced Grobner bases for I with respect to the term orders
in T}, and let C = {leading term ideals of I with respect to the term
orders in T1. Prove that there is a one to one correspondence between
R and C.

b. Prove that C is finite. [Sketch of the proof ([MoRo]): Suppose to the
contrary that C is infinite. For each leading term ideal in ,C, choose a
term ordering which gives this leading term ideal. Let To C T be the
infinite set of these chosen term orderings. Also, let I be generated by
{fi,... , f, } . Since there are only finitely many terms which appear in
the A's, there exist terms ml, ... , ms and an infinite set T C To such
that It (ff) = mi for each term order in 71. Consider the two possible
cases: either (mi,... , ms) is the leading term ideal for I with respect
to one term order in T1, or it is not. In the first case, use Exercise
1.6.17 and in the second add a polynomial to f l , ... , f 9 and repeat the
argument.]

c. Conclude that there are only finitely many reduced Grobner bases for
a given ideal.

d. A set F which is a Grobner basis for an ideal I with respect to every
term order is called a universal Grobner basis. Use c to show that
every ideal has a universal Grobner basis. An example of such a basis
is given in Exercise 1.8.7.

1.8.7. Find a universal Grobner basis for the ideal (x -y2, xy-x) C Q [X5 y] . [Hint:
At each stage of Buchberger's Algorithm, consider all possible choices of
leading terms.] (Answer: {x - y2, xy - x, y3 --- y2, x2 - x}.)

1.9. Summary. We conclude this chapter by giving a summary of the most
important results that we have seen so far. The first theorem lists all the equiv-
alent conditions that we now have for a set G {gj,... , gt } to be a Grobner
basis.

THEOREM 1.9.1. The following statements are equivalent for a set of non-zero
polynomials

G {gi,... , gt } and I = (G).

(i) For all f E I, there exists i such that lp(gi) divides lp(f), that is, G is
a Grobner basis.

(ii) Lt (G) = Lt(I).
(ni) f E I if and only if f -+ 0.



1.9. SUMMARY 51

(iv) For all f E k[x1, ... , x1 ], if ,f -+ r1, f - G + r2, and r1, r2 are reduced
with respect to G, then r1 = r2.

(v) For all i ; j, S(gg, g,) -'+ 4.
(vi) For all f E I, there exists hl, ... , ht E k[xl, ... , xn] such that f =

h191 + ... + htgt and lp(f) = maxl<,<t(ip(hv) lp(gv)).

(vii) For all i 34 j (1 < i, j < t), we have S(91, 93) = hjtgt such
that ip(S(gi, gj)) = max,<v<t(ip(h- - lp(gu)).%.?I/)

The proofs that all of these conditions are equivalent are contained in Theo-
rems 1.6.2, 1.6.7, and 1.7.4, and Corollary 1.7.6.

THEOREM 1.9.2. Fix a term order on k [x 1, ... , xn] . Then every ideal I has
a reduced Grobner basis with respect to this term order. This Grobner basis
is effectively computable once I has been given as generated by a finite set of
polynomials. Moreover this reduced Grobner basis for I (with respect to the
given term order) is unique.





Chapter 2. Applications of Grobner Bases

This chapter is devoted to giving a number of applications of the theory de-
veloped in Chapter 1 to computations in polynomial rings. We also give some
applications to computations which use polynomial rings. In Section 2.1 we give
methods for doing basic computations in k[xi, ... , xn] and k[xi, ... , xn]/I, e.g.
determining if one polynomial is a member of an explicitly given ideal. In Sec-
tion 2.2 we introduce the Hilbert Nullstelleusatz and use it to connect Grobner
bases to some elementary questions in algebraic geometry. In the next section
we give a method for eliminating variables in systems of polynomial equations
and use it, for example, to compute generators for the intersection of ideals. In
Section 2.4 we study homomorphisms between polynomial rings. In particular
we determine generators for the kernel of such a homomorphism and we give a
method to determine whether it is onto. We then generalize these results to the
case of polynomial rings modulo an ideal (mule algebras). In the next section we
give more applications to algebraic geometry, e.g. we show how to find the ideal
corresponding to the projection of a variety, and to a parametrically given vari-
ety. The last three sections present applications of Grobner bases to problems
in computational mathematics: determining minimal polynomials of elements in
field extensions, determining whether graphs can be colored by three colors, and
finding solutions to integer programming problems.

2.1. Elementary Applications of Grobner Bases. Let I -- (Ii,... , f
be an ideal of k[xi, ... , xn]. In this section we want to show how to perform
effectively) the following tasks:

(i) Given f E k[xi, ... ,xn], determine whether f is in I (this is the ideal
membership problem), and if so, find v1, ... , vs E k[xl, ... , xn] such
that f = v1 f f + ... + vsfs

(ii) Determine whether two ideals 1, J of k [x x , ... , x z] are equal;
(iii) Find cosct representatives for every element of k [x x , ... , xn] /1;
(iv) Find a basis of the k-vector space k [x! , ... , xn] A

l We remind the reader that by "perform effectively" or by "determine" we mean that one
can give an algorithm than can be programmed on a computer.

53
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(v) Determine the operations in /c [x I, ... , x,,,] /I;
(vi) Find inverses in k [x I , ... , x,z] II when they exist.

We begin with Task (1). Let F = {fi,... , f 3 } and let G - {gi,... , gt } be
a Grobner basis for I = (1"... , f,) with respect to a fixed term ordering. We
have already seen in Theorem 1.9.1 that

f E1 f - +0.

So the ideal membership question is answered. Moreover, applying the Division
Algorithm to f E I yields Ux , ... , ut such that

(2.1.1) f =u191+...+utgt-

Also, Buchberger's Algorithm can be implemented so as to keep track of the
linear combinations of the ft's that give rise to the g,'s. This can be seen as fol-
lows: during Buchberger's Algorithm (Algorithm 1.7.1) for the computation of a
Grobner basis, a new polynomial g is added to the basis if it is the non-zero re-
mainder of the division of an S-polynomial by the current basis, say {h1,... , h1}.
That is,

L

g=S(hv,h,2) - wzhz,

for some v, p E {1, 2,... , t} and some polynomials w2 which are explicitly com-
puted in the Division Algorithm. This procedure is illustrated in Example 2.1.1
below. So we can obtain as an output of Buchberger's Algorithm not only the
Grobner basis {gi,... , gt } but also a t x s matrix M with polynomial entries
such that

sl fF

92
M

,fa

9t J L. fB8

Thus Equation (2.1.1) can be transformed to give the polynomial f as a linear
combination of the original polynomials fl, ... , f,:

.f = vifx + ... + vs fs.

EXAMPLE 2.1.1. In this example we consider k = Q. Let f i = = x2 y - y + x,
f2 = xy2 - x, and I = (1', f2). We use the deglex term ordering with x < y.
We follow Algorithm 1.7.1 given in Section 1.7, but we keep track of the linear
combinations that give rise to the new polynomials in the generating set.

INITIALIZATION: G := {fl,f2},c := {{ fl, f2}}.
First pass through the WHILE loop

g:=0
S(.fi, f2) = yfi - 42 = -y2 + xy + x2

(reduced with respect to G)
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Let f3 := -y 2 + xy + x2
Note that fs = yfi - xf2

:= {{fl,f3},{f2,f3}}
G:= Ifil f27 f3j

Second pass through the WHILE loop
9 := {{12,f3}}
Slfl , f3) - Y.fl + Xa.f8 = X3y + x¢ - y2 + xy

x4 - y2 + 2xy - x2
x4 -#- xy - 2x2

(reduced with respect to G)
Let f4 := x4 + xy - 2x2
Note that f4 = (yfi +x 2f3) - Xfl - f3

= (x2y - X)fl + (-X3 + X)f2

{{f2, f3I i {fi, .f4I > {f2, .f4I i {f, All
G:= Ifi 5 f25 f3i Al

Third pass through the WHILE loop
9 := {{fl,f4},{f2,f4},{f3,f4}}
SU27 f3) - f2 -I- X.f3 = x2FI +X3- x ---> 23 'I- j/ - 2x

(reduced with respect to G)
Let fs := x3 + y - 2x
Note that f5 = (/2 + xf3) - fl = (xy -- 1) fl + (-x2 + 1)12

{{fl,f4},{f2,f4},{f3,f4},{fl,f5},
{f2, AI i {13, /5), {14, f}}

G := {fl,f2,f3,f4,f5}
The reader can verify that all the remaining S-polynomials reduce to zero,

and hence G = {fi, f2, f3, f4, fs} is a Grobner basis for I. It is also easy to see
that {fl,f3, f5} is a Grobner basis for I, since It(f2) is divisible by It(f3) and
lt(f4) is divisible by lt(f5). In fact {fj, f3, f5j is the reduced Grobner basis for
I with respect to the deglex term ordering with x < y. Moreover, in the above
computation we kept track of the linear combinations of fl and f2 giving rise to
hand fs and this gives us the following:

(2.1.3)
fl 1 0

.1f31=I y x 1f2LI5] xy L-i _X2 + 1

Now consider the polynomial

f = X4 4f - 2x 5 -F' X24,/2 - 223RD - 2x 4 - 2y 3 + 4xy 2 -3X2 + 2x3 - y + 2x.
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We shoes that f E Y:

f
--2x2,.fs

2y,fl

-2y s

-2x, s

2yjf3

So we see that

-2x5 + 2x2y2 - 2x3y - 2x4 - 2y3 + 4xy2 -- 2x2y + x3 --- y + 2x

2x2y2 - 2x3y - 2x4 - 2y3 + 4xy2 - 3x3 -- y -+- 2x

-2x3y-2x4 -2y3 +4xy2 --- 3x3+2y2 - 2xy - y + 2x

-2x4 - 2y3 + 4xy2 --- 3x3 + 4y2 - 6xy - y + 2x

-2y3 + 4xy2 - 3x3 + 4y2 - 4xy - 4x2 - y + 2x

2xy2 - 2x2y -- 3x3 + 4y2 - 4xy - 4x2 - y + 2x

-x3+4y2-4xy-4x2 -y+2x
4y2 -- 4xy - 4x2

0.

f = XZfi - 2z2fs + 2Jfi - 2yf5 - 2x f5 + 2Jf3 - 2xf3 - fs - 4f3
,5.(x2+2y)fi + (2y - 2x - 4)f3+(-2X2 - 2y - 2x - 1)f

Using Equation (2.1.3) we have

f = (X Z + 2y).fl + (2y - 2x - 4)(V.fi -ifs)
+(-2x2 - 2y - 2x - 1)((xy - 1) fl + (-x2 + 1)f2)

= (-2x3y - 2xY2 - 2x2y + 2y2 - 3xy + 3x2 + 2x + 1) f 1

+(2,X4 + 2x2y + 2x3 - 2xy + X2 - 2y + 2x -1)f2-

EXAMPLE 2.1.2. We give another illustration of this for k = Z5. We go back to
Example 1.8.9. Recall that the reduced Grobner basis for I = (f l , f2) C Z5 [x, y] ,

where f, = x2 + y2 + 1 and f2 = x2 y + 2xy + x, with respect to the lex ordering
with x > y, is {g, g2 , 931, where 9i = fl, 92 = 2f3 = xy + 3x + 2y3 + 2y, and
93 = 4f4 = y5 + 2y4 + 4y2 + 4y + 2. It is easy to keep track of how g2 and 93 are
generated during the algorithm, and we get

92 = 2yf1 + 3f2

93 = 4(y + 3)gl + 2(3x + 4y2 + 3y)92

(2xy + y3 + 2y2 + 4y + 2) f i + (3x + 4y2 + 3Y) f25

2It is convenient, when we are trying to keep track of the linear combinations in the reduc-
tion process, to include in the notation the term by which we multiply the polynomial we are

using for reduction. That is, if f, g, h E k[xj, . . , xn], and X is a term, then f h means
that h= f --Xg.
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and so

91 1 d

2 3

]['].92 3 y 2 f2

93 2xy+y +2y2+4y+2 3x+4y +3y
The second task, determining whether two ideals I, J are equal, is a conse-

quence of Theorem 1.8.7. That is, I = J if and only if I and J have the same
reduced Grobner basis. In particular, we note that for a given ideal I, we have
that I = k[xl,... , x,,] if and only if the reduced Grobner basis for I is {1}.
Alternatively, I = (fj,... , f.) C J if and only if fl,... , f., E J, and we know
how to determine whether this is true; so, to determine if I = J, we may simply
check whether IC J and JCI.

We now consider Task (iii), that is, finding coset representatives for every
element of k [x 1, ... , xn] /I. We keep the notation from the beginning of the
section: I = (G), where G = {g17... , gt} is a Grobner basis for I. We know that
for all f E k [x 1, ... , x7z] there exists a unique element r E k [x 1:... , xn] , reduced

with respect to G, such that f + r (Theorem 1.6-7).

DEFINITION 2.1.3. The element r above is called the normal form of f with
respect to G, and is denoted Nc (f) .

PROPOSITION 2.1.4. Let f, g E k[xl,... , x,,]. Then

f ` g (mod I) if and only if NG(f) = NG(g).

Therefore {NG(f) I f E k [xi, ... , xn] } is a set of cosec representatives for
k[xl,... , xn]/I.Moreover, the map NG : k[xl,... , xn] - k[xl, ... ,xn] is k-
linear.

PROOF. From the Division Algorithm, there exists q E I such that f =
q+1Vc(f), so that f - NG(f) E I. Thus f + I = Nc(f) + I in k[xl,... ,xnJ/I.

Also, for any cl, c2 E k, and for any fl, f2 E k[xl, ... , Xn], clfl -F C2 f2 -
(ciNc(fi) + c2NG(f2)) E I and c1NG(f1) -I-c2NG (f2) is reduced with respect to
G. Therefore NG(clfl -1-cZf2) = c1NG(fl) + c2NG (f2) (see Exercise 1.6.15) and
so the map NG: k[x1i... ,xn] -> k[xl,... , x,,,] is k-linear.

Now f - g (hood X) if and only if there exists q E I such that f = q + g.
Thus No (f) =1Vc(4) + NG (9). But NG (q) = 0, since q E I, so 1VG (.f) = Nc (g).
Conversely, if Nc(f) = Nc(8), then f - g = (f - No (f)) - (g - Nc(9)) E I and
hence f - g (mod X).

EXAMPLE 2.1.5. We go back to Example 2.1.1. We note that

x3 A. -y + 2x.

Since -y + 2x is reduced, we have N0(x3) = -y + 2x. Also,

x2y+y -- 2y-x.
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Since 2y -- x is reduced, we have NG (x2y+y) = 2y-x. Moreover, since NG (x3)
NG (x2 y + y), we see that x3 # x2 y + y (mod I).

The next task we want to consider is Task (iv), that is, we wish to find a basis
of the k-vector space k[x1, ... , xn]/I. We keep the same notation as above.

PROPOSITION 2.1.6. A bass for the k-vector space k [x 11 ... ,x0] /I consists of
the cosecs of all the power products X E T' such that lp(gz) does not divide X
for all i=1,2,...,t.

PROOP. We have seen that for any f e k [x1, ... , xn], f +.r = NG (f) + I in
k [x 1, ... , xn] /I. Since .NG (f) is reduced with respect to G, it is, by the definition
of reduced, a k--linear combination of power products X E Tn such that lp(gz)
does not divide X f o r a l l i = 1, 2, ... , t. Finally, the cosets of such power products
are linearly independent by the uniqueness of the normal form.

EXAMPLE 2.1.7. Again, we go back to Example 2.1.1. A Grobner basis for
I with respect to deglex with x < y is G = {x2 y -- y + x, -y2 + xy + x2, x3 +
y - 2x}. So a basis f o r Q[x, y]/I consists of the cosets of 1, x, Y I X 2, xy and so
dirnQ(Q[x, y]/I) = 5.

We are now able to complete Task (v), that is we can now give a multiplication
table for k[x1, ... , xn,] /I. The representative of the coset of f times the coset of
g will be the normal form of f g.

EXAMPLE 2.1.8. We go back to Example 2.1.7 and give a multiplication table
for Q [x, y] /I. The representative of the coset y + I times the coset x y + I is the
normal form of xy2. Since xy2 -+ x, and x is reduced with respect to G',
we have NG (xy2) = x and so (y + I) (xy + I) = x + I. The other products are
computed in a similar fashion and we obtain the following multiplication table for
the representatives 1, x, y, x2, xy of the Q-basis {1 + I, x + I, y + I, x2+1 )xy + I }
for Q[x, y] II.

X x y x xy

1 1 x y x xy

X x x2 xy -y+2x y -- x
y y xy xy + x2 y- x x
x2 x2 ---y+2x y-x -xy+2x2 xy-x2
xy xy y -- x x xy-x2 x2

So, for example, (2x2 + y) (3xy - 5) = 6x3y -1Ox2 + 3xy2 -- 5y = 6(xy - x2) --
lOx2+3x-5y = 6xy-16x2 -5y+3x (mod I) and so (2x2+y+I)(3xy-5+I) _
6xy ---16x2 - 5y + 3x + I.

EXAMPLE 2.1.9. We go back to Example 1.8.9. Recall that the reduced
Grobner basis for I = (11, f2) C 7Ls [x, y] , where f 1 = x2 + y2 + 1, and f2
x2 y + 2x y + x, with respect to the lex ordering with x > y, is {g1,g2,93}, where
91 = f1, 92 = xy + 3x +2y3 + 2y, and 93 = y5 + 2y4 + 4y2 + 4y + 2. So a basis for
Zs [x, y] /I consists of the cosets of 1, x, y, y2, y3 5

y4, and so dimz5 (Zs [x, y] /I) = 6-
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To conclude this section, we consider Task (vi), that is, we want to determine
whether an element f + .I of k [x 1, ... , xn] /I has an inverse and, in the case when
f + I has an inverse, we want to compute that inverse. of course, given a k-basis
and the multiplication table, this problem translates into an exercise in linear
algebra provided the k-basis is finite (see Theorem 2.2-7). We illustrate this in
the following example.

EXAMPLE 2.1.10. Using Example 2.1.1 again, we would like to determine
whether y + x + 1 + I is invertible, and, if so, determine its inverse. So we
need to find a, b, c, d, e E Q such that

(axy+bx2+ey+dx+e)(y+x+1)1 (mod 1).
Now,

(axy+bx2+cy+dx+e)(y+x+1)

= axy2 -I- axe y + axy -I- bx2y -I- bx3 -I- bx2 -I- cy2 + c cy

+cy +dxy +d,X2+dx+ey+ex +e
ox+ a(y-x)+a,xy +b(y-x)+b(-y+2x)+bx2
-I-c(xy + X2) + cry -F cy + dxy -I- dx2 -I- dx -I- ey + ex +e (mod I)

_ (a+2c+d)xy+(b+c+d)x2+(a+c+e)y+(b+d+e)x+e.
So (axy + bX2 + cy + dx + e) (y + x + 1) __ 1 (modl)ifandonlyif

a + + 2c + d = 0
b + c + d = 0

a + c + e = 0
b + d + e = 0

e = 1,

since the cosets of I, x, y, x2, xy form a basis of the Q-vector space Q[x, y]/I.
These equations are easily solved to yield a = -2, b = -1, c 1, d = 0, and

+y+ 1) +I is an inverse of y +x+ 1 +I in Q[x, y]/I.e = 1. Hence (-2xy - x2
Of course if we had started with an element of Q[x, y]/I that did not have an
inverse, these equations would have had no solution.

An alternative approach to the method used in Example 2.1.10, which does
not suffer from the defect that k [xl , ... , xn ] /I must have a finite kbasis, is to
recognize that f + I has an inverse in k [xl, ... , x, j /I if and only if the ideal
(I, f) is, in fact, all of k [xl , ... , xn] , since f9 - I E I if and only if 1 E (I, f) .
Thus, given an ideal I = (fi,-.. , f.) and a polynomial f E k [xl, ... , xn] , to
determine if f + I has an inverse in k[xj, ... , xn]/I and to compute that inverse,
we first find a reduced Grobner basis H for the ideal ff,... , f3, f). If H {1},
then f + I does not have an inverse in k [xl, ... , xn] /I. If H = {1}, then, as in
the solution to Task (i), we can express 1 as a linear combination of fl, .. - , f8, f,

1 =hif1+...+hs.f3+gf.
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The polynomial g is then the inverse of f modulo I.
EXAMPLE 2.1.11. We go back to Example 2.1.10. We first compute a Grobner

basis for the ideal (fi, f3, f5, y + x + 1) with respect to the deglex order with x < y,
keeping track of the multipliers as we did in Example 2.1.1. Letting f6 = y+x+-1
we compute that S(f1, f6) -+ -x2 - x = f7, S(f3, f6) )+ -2x ----1 = f8. The
S-polynomials S(f5, f6), S(f1, fr), S(f5, f7), S(f6, .f7), S(f1, .f8), and S(f3, f23) all
reduce to zero. Finally, S(f5, f8) 4 . At this point we stop, since all other
S-polynomials must reduce to zero using the polynomial 4. working backwards
we compute

I = 4f5 - 4.f6 - 2f7 + (22 - 5).f8

= (-2X2 + 3)fl + (2x2 - 5)f3+(-2X2 + 7)f5
-(2x4 + 2x2y - 4z3 - 5x2 - 5y + 10x -I-1) fs,

giving us the inverse (2x4 + 2x2y - 4x3 - 5x2 _ 5y + 10x + 1) + I. Using the
multiplication table of Example 2.1.8 we readily see that this is the same answer
we obtained in Example 2.1.10.

Exercises
2.1.1. You should do this exercise without the aid of a Computer Algebra System.

Let f = xy4 + 2x3 y2 _ xy2 + 2x2 y _ x3 - y. In Example 2.1.1 show that
f E I and write f as a linear combination of fl, f3, f5 and also as a linear
combination of fl, f2-

2.1.2. Compute the multiplication table for Example 2.1.9.
2.1.3. Consider Example 2.1.8. Let f = ---1 +x2 +x y. Show that for all g E k[x, y]

such that g(0) = 0 we have f g E I. [Hint: Note that it suffices to show
that x f, yf E I.]

2.1.4. Show that din- (Q[x, y, z]/{y4 + 3y2z + z2, x2 + z) xy + y2 + z)) = 00.
2.1.5. In Q[x, y, z], let I = (x2 + z, xy + y2 + z) xz -- y3 - 2yz, y4 + 3y2z + z2)

and J= (x2 + z, xy + y2 + z, x3 _ yz). Determine which of the following
(ifany)aretrue:IcJ,JcI,orl=J.

2.1.6. In Example 2.1.9 determine which of the cosets, y2 + I, x + I, 2 + x + y2 + 1
has an inverse. For those that do have an inverse find it.

2.1.7. Rationalize the denominator of
1

Hint: Consider the idealx+f+ 25
I = (Y2

i
- 3, y4 _ 5) C Q(x) [y1, y2]. Note that jy2i - 3, y2 - 51 is a Grobner

basis for 1. Follow the technique used in Example 2.1.10, keeping in mind
that the field is Q(x).]

2.1.8. Show that in Q[x, y]/I, where I = (x2 + y, y2 +x), the coset xy + y + a + I,
for a E Q, has an inverse if and only if a 0 0.

2.1.9. Let I C k [x 1i ... , x7z] be an ideal.
a. Devise a method similar to that used in the first solution of Task (vi)

for determining whether for f E k[xi, ... , x7z], f + I is a zero divisor in
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k [x 1 ... , x,]11- (Recall that in a commutative ring A, a E A is called
a zero divisor provided that a 54 0 and there is a 8 0 0 in A such that
a# = 0.)

b. Show in Example 2.1.8 that xy + I is a zero divisor.
c. Show in Example 2.1.8 that if J = {g + I E k[x1,... , x,,,]/I' I (g +

I) (x2 + I) = 0}, then J is the set of all multiples of -1 + x2 + xy + I
by elements of k.

2.1.10. In Q[x, y, z], let I = (x + y2, x2y + z). Show that I is a prime ideal (that
is, Q [x, y, z] /I contains no zero divisors) . [Hint: Note that for lex and
z > x > y, the generators for r form a Grobner basis.]

2.2. Hilbert Nullstellensatz. In Section 1.1, we saw that there was a cor-
respondence between subsets of k [x1, ... , x,] and subsets of kn. The purpose
of this section is to analyze this correspondence further. We need to expand
somewhat the notions given there.

Let K be an extension field of k, that is, K is a field such that k C K. Given
a subset S C k [x 1, ... , x,], we define the variety, VK(S), in Kn by

VK(S)={(ax,...,an) EKn I f(a1,... ,an)=0 for all f ES}.

We note that, as in Section 1.1, if I = (f',... , f,) C k [x 1, ... , xn] then

VK(I) = {(ai,... , atz) E Kn I fi(a1,... , an) = 0,1 < i < s} = V '(.fl1 ... , fS).

We emphasize that the variety is in K'm and the ideal is in k [x1, ... , xn] . (It
makes sense to evaluate ,f E k[x1, ... , xn] at a point (al,... , a z) E Kn since
k C K.) Also, given a subset V C Kn we define the ideal, I(V), in k [x 1, ... , xn]
by

I(V) = {f E k[xi,... ,xn] I f(a1,... an) = 0 for all (ax,... an) E V}.

So now we have the correspondences

{ Subsets of k[x1, ... , x,,]} ---; { Subsets of Kn}
2 2 1( . . )

and

(2.2.2)

S F VK(S)

{ Subsets of Kn } -i { Ideals of k [x 1, ... , xn1 }
V 1(V).

The reason for introducing this extended notion of a variety is that the set of
solutions of a system of equations depends on the field K. That is, the field K
will affect the properties of the maps above. This is illustrated in the following
two examples.

EXAMPLE 2.2.1. For K = R we have VR (x2 + y2) = VR (x, y) ` {(0,0)} C g2.
On the other hand for K = C we have that VV (x2 + y2) is the union of the two
lines y = ±ix, where i = , while Vc (x, y) is still { (0, 0) }.
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EXAMPLE 2.2.2. Consider the polynomial f x2 + y2 + 1. Then for K =
we see that VR(f) = 0, whereas Vc(f) has an infinite number of points. The
situation is similar for f = x4 + y4 +1. In fact there are infinitely many ideals
of R[x, y] whose corresponding variety in R2 is empty.

Examples 2.2.1 and 2.2.2 show that a system of equations may have "too few"
solutions in kn to give us insight into the algebraic and geometric properties of
I and VK (I) . In Example 2.2.1, the ideals (x2 + y2) and (x, y) give rise to the
same variety over Iii, but are "essentially different". The same situation occurs
in Example 2.2.2. By enlarging the field R to C, "essentially different" ideals
will give rise to different varieties. This will be clarified later and the key result
for this is the Hilbert Nullstellensatz3 given below.

In order to state the Nullstellensatz, we consider the algebraic closure of the
field k, denoted Recall that a field K is algebraically closed if for every poly-
nomial f E K [x] in one variable, the equation f = 0 has a solution in K. Every
field k is contained in a field k which is algebraically closed and such that every
element of k is the root of a non-zero polynomial in one variable with coefficients
in k. This field is unique up to isomorphism and is called the algebraic closure
of k (see [Hun, Lan]). For example, the algebraic closure of R is C. For the
remainder of this section we will consider the correspondences (2.2.1) and (2.2.2)
with K =.

The Hilbert Nullstellensatz has many forms and we will present two of them
below in Theorems 2.2.3 and 2.2.5. We will not include the proofs of these
theorems. The interested reader can find them in [AtMD, Hun].

THEOREM 2.2.3 (WEAK HILBERT NULLSTELLENSATZ). Let I be an ideal con-
tained in k[xl, ... , xn]. Then Vk(I) = 0 if and only if I -= k[xi, ... ,x,z].

Note that the result is clear for one variable since the field k is algebraically
closed. Before we go to the next form of the Nullstellensatz, we need a definition.

DEFINITION 2.2.4. For an ideal I of k[xi,... , x7z] we define the radical of I,
denoted vd, by

V'7_ _{ If E k[xl, ... 2n,1 I there exists e E N such that f e E I}.

It is easily checked that vfl- is an ideal in k [xl, ... , xn] . Moreover, we have
that I and 0- give rise to the same variety; that is, for all fields K D k,

Vl< (1) = VK ('#'/I) -

THEOREM 2.2.5 (STRONG HILBERT NULLSTELLENSATZ). Ift(I)) = ,,fI for
all ideals I of k[zl, ... , xn].

3The word "Nullstellensatz" is a German word for "zero point theorem". The theorem is
given this name because, as we see in Theorem 2.2.3, it gives information about the zero set,
i e. the variety, of an ideal.
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Theorem 2.2.5 implies that two ideals I and J correspond to the same variety,
i.e. V (I) = Vk (J), if and only if their radicals are equal, i.e. v/7- = v/-J-. This
allows us to make more precise what we meant earlier by "essentially different"
ideals. Two ideals are "essentially different" if and only if they have different
radicals. In Example 2.2.1, note that V(-x-, y} = (x, y) and (x2 + y2) = (x2 +
y2) and so are "essentially different" and correspond to different varieties in C 2.

We now consider some applications of the above results. Let I = (fi,... , f 9 )

be an ideal of k[x1, ... , xn], and let G = {gi,... , gt} be the reduced Grobner
basis for I with respect to a term ordering.

THEOREM 2.2.6. V1(I) = 0 if and only if 1 E G. (i. e., given polynomials
fi,... , f3, then there are no solutions to the system f f = 0, f2 = 0, ... , f s = 0
in k n if and only if G=111.)

PROOF. By Theorem 2.2.3, VI(I) = 0 if and only if 1 E I. But the last
condition is equivalent to G = {1}, since G is the reduced Grobner basis. D

THEOREM 2.2.7. The following statements are equivalent.
(i) The variety V (I) is finite.

(ii) For each i = = 1, ... , n, there exists j E {1,... , t} such that lp(g,) = xz
for some vEN.

(iii) The dimension of the k-vector space k[x1, ... ,xn]/I is finite.

PROOF. (i) = (ii). Let V (I) be finite. If Vk (I) is empty, then, by Theorem
2.2.3, I = k[x1 i ... , xn] and hence G = {1} and (ii) is trivially satisfied. So we
may assume that V (I) is not empty. Fix i E {1,... , n}. Let aid , j = 1, ... , I
be the distinct ith coordinates of the points in Vk (I). For each j,1 < j < t, let
0 fj E k [xi ] be such that f; (ai j) = 0 (this can be done by the definition of k) .
Let f = f2 f2 .. ff E k[xi] C k[xl,... , xn]. Then we see that f E I(V (I)), and
hence, by Theorem 2.2.5, there exists e such that f' E I. Since lp(f e) = xc m for
some natural number m, and since the leading power product of every element
of I is divisible by the leading power product of some element of G, there exists
a polynomial in G whose leading power product is a power of xz alone. This is
true for every i = 1, ... , n.

(ii) = (iii). We saw in Section 2.1 that a k-basis of k [x 1, ... ,xn] /I is the
set of cosets of power products reduced with respect to G. Since for every i E
{ 1, ... ,n} a power of xi is a leading power product of some g3 , there are only
finitely many power products which are reduced with respect to G, and hence
dimk k [xl , ... , xn] /I is finite.

(iii)==(i). We will show that for any i = 1, ... , n, there are only finitely many
distinct values for the ith coordinate of points in VI(I). Fix i E {1,... , n}. Since,
by assumption, k[xi, ... , xn]/I is a finite dimensional k -vector space, the powers
1, xi, x?, ... of xi are linearly dependent modulo I. Therefore there is an integer
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m and constants c., E k, 0 < j < m, not all zero, such that

cjxi EL
j=o

Since the above polynomial can only have finitely many roots in k, there are only
finitely many values for the ith coordinates of the points of V(I).

An ideal I k[xl, ... , x,,] that satisfies any one of the equivalent conditions
in Theorem 2.2.7 is called zero-dimensional. This terminology is adopted because
V- (I) consists of only finitely many points.

EXAMPLE 2.2.8. In Example 2.1.1 we saw that a Grobner basis for the ideal
I = (xy - y + x, xy2 - x) in Q[x, y] with respect to the deglex term or-
dering with x < y is G = {x2y - y + x, -y2 + xy + x2, x3 + y - 2x}. We
see that x3 and y2 appear as a leading power product of elements of G, and
hence VT (I) is finite. In fact it is easy to solve the equations to get Vq(I)
{(0, 0), (a, --1), (-a, 1), (a') -1), (--a',1)}, where a and a' are the roots of the
equation z2-z-1=0.

We note that a Grobner basis for I with respect to the lex term ordering with
x < y is G' = {x5 - 3x3 + x, y + x3 -- 2x}, and again we have that some power
of x and some power of y appear as leading power products of elements of G'.
These equations may easily be solved to yield the same answer as above.

EXAMPLE 2.2.9. We go back to Example 2.1.9. Recall that the reduced
Grobner basis for I = (11, f2) C Z5 [x, Y1, where f j = x2 + y2 + I and f2 =
x2y + 2xy + x, with respect to the lex ordering with x > y, is {91,g2, 93}, where
91 = fl, 92 = X y -+- 3x + 2y3 + 2y, and g3 =V5+2 y4 + 4y2 + 4y + 2. We see that
x2 and y5 appeal as leading power products and hence V5 (I) is finite. We note
that not all of the solutions are in Z.5; some are in the algebraic closure Z5 of Z5 .

EXAMPLE 2.2.10. As a third example we again let k = Q and consider the
intersection of the circle f, = (x _ 1) 2 + y2 _ 1 = 0 and the ellipse f2 == 4(x -
1) 2 + y2 + x y 2 = 0. Using the lex term ordering with x > y we see that the
Grobner basis for the ideal (fl,f2) is {91,92}, where g, = 5y4 -- 3y3 - 6y2 + 2y + 2
and g2 = x - 5y3 + 3y2 + 3y - 2. Since lp(gl) = y4 and lp(g2) = x, we see that
Theorem 2.2.7 implies that the number of points in the intersection is finite.
Also, clearly g, = 0 has at most four solutions and for each solution of gl = 0 we
get precisely one solution of 92 = 0. Thus we see in this case the geometrically
obvious fact that the intersection of a circle and an ellipse can consist of at most
four points.

We note that in the last example the form of the Grobner basis was partic--
ularly convenient for determining the points in the variety. That is, the first
polynomial contained only the y variable, and the leading power product of the
second polynomial was a power of x. We will now show that, in the case of zero-
dimeasional ideals, this type of structure in the Grobner basis is always present
when the lex term ordering is used.
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COROLLARY 2.2.11. Let I be a zero-dimensional ideal and G be the reduced
Grobner basis for I with respect to the lex term order with xa, < x2 < ' ' <
xn . Then we can order g1, ... , gt such that gl contains only the variable x 1, 92
contains only the variables xa, and x2 and lp(g2) is a power of x2, 93 contains
only the variables x1, x2 and x3 and lp(g3) is a power of x3, and so forth until
gn.

PROOF. This follows immediately from Part (ii) in Theorem 2.2.7. That
is, we may reorder the g3 such that lp(g,) is a power of x3 . It then follows,
because of the lex ordering, that the only variables that may appear in g3 are
x17027... ,x3.

We see that the Grobner basis for a zero-dimensional ideal I is in "triangular"
form (this is similar to the row echelon form in the linear case), Thus, in order
to solve the system of equations determined by a zero-dimensional ideal I, it
suffices to have an algorithm to find the roots of polynomials in one variable.
That is, we first solve the equation in one variable gx = 0. For each solution a
of g1 = 0, we solve the equation 92 (a, x2) = 0. We continue in this manner all
the way until g9, = 0. The solutions obtained in this way are the only possible
solutions. We still have to test them in the equations 9n+1 = 0, ... , gt = 0 (in
the case when t > n) in order to obtain the set of solutions of the full system of
equations. The techniques for finding the roots of polynomials in one variable
are not part of the theory of Grobner bases. The interested reader should consult
[Coh]. These ideas will be illustrated in the following example.

EXAMPLE 2.2.12. Consider the ideal I = (z2y+z2,x3y+x+y+1,z+x2+y3)
in Q[x, y, zj. We compute4 the reduced Grobner basis G for I with respect to
the lex ordering with x > y > z. We get G- {z4 _ z3, y11 + 3y8z - 2y7 --
4y4z+y3 +y2 +2y+z3 _ Z2 +z+ 1,x2 +y3 +z,yz2 +z2,xy+x+y7+
2y4z-y3-z2-z,xz+y10 _y9+y8+3y7z y7_2yez-y6+2y5z.+y5-
2y4z -- y4 -2 y3Z + y3 + y2z _ yz + y -- z3 + 5z2 + z + 1}. So using the notation
of Corollary 2.2.11, we have 91 = z4 --- z3 is a polynomial in z alone. Also,
92 =Y11 + 3y8z - 2y7 - 4y4z + y3 + y2 + 2y + z3 - z2 + z + 1 is a polynomial in y
and z alone whose leading power product is lp(92) = yl1. Finally g3 = x2 +y3 + z
is a polynomial in x, y, z whose leading power product is lp (g3) = x2 . So to f nd
the solutions of the original set of equations, we first note that z = 0 or z = 1.
Then in order to find the corresponding y values, we would have to solve the
11th degree equations 92 (y, 0) = 0 and g2 (y, 1) = 0. We continue this way as
described above.

4For the remainder of this chapter and following chapters, Grobner basis computations will,
most often, not be done explicitly in the text and will often require the use of a Computer
Algebra System. The reader who wants to verify the computations stated in the text should
avail themselves of such a system. The authors usually used CoCoA, but other systems could
have been used for some of the computations. This is discussed in the Appendix.
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We have seen in Theorem 2.2.5 the importance of computing V. For zero-
dimensional ideals we will show how to do this in Exercises 2.3.23 and 2.3.24.
But this is a difficult task, in general, which is beyond the scope of this book.
The interested reader should consult [EHV, GTZ]. However we can now give
an easy criterion for membership in Vf1_.

THEOREM 2.2.13. Let I = (fl, ... , fs) be an ideal in k[x1 5... , xn]. Then f E
if and only if 1 E (I',... , f.9, I -- w f) C k[x1 i ... , xn, w], when w is a new

indeterminate.

PROOF. By Theorem 2.2.5, VrY = I(I)), and hence f E VI_ if and only if
f (al, ... , an) = 0 for all (a1,... , an) E V (I). Let f E %/f. If (aj,... , an, b) E
VT (f1,... ,fs31- wf)), then

f2(a1,... ,an) 0foralli=1,2,...,sand 1-bf(a1,... ,a,)=0.

But then (a1,... , an) E Vy(I), and hence f (a1, ... , an) = 0, which is a contra-
diction. Therefore V ((f l , .. - , f , 1 -- wf)) = 0, and by Theorem 2.2.3, we have
lE (j,... , f8, I - wf). Conversely, let1E(f1,...,fs,1-wf).Then

I = hifz+h(1--wf),

for some hi, h E k[x1,... , xn, w]. Then for every (a1,... ) an) E V(I), we have

1 = (1-wf(a1,... ,an))h(a1,.. ,an,w).

Note that the right-hand side is a polynomial in w. If f , an) 54 0, then we
can set w f ai , . Qn to obtain a contradiction Therefore n) = 03
and so f E v.

So the radical membership question can be answered by deciding whether I
is in an ideal. Thus, as we showed in Section 2.1, to decide whether f is in VIT,
we first compute a reduced Grobner basis G for the ideal ,1- w f) . If
I E G, then f E VI, otherwise, f V'7.

EXAMPLE 2.2.14. Let I = (xy2 +2 y2 Ix4 - 2x2 + 1) be an ideal of Q[x, y]. We
would like to determine whether f = y -- x2 + 1 is in /. So let us consider the
ideal (xy2 + 2y2, x4 - 2x2+1

1
1 -w(y - x2+1)) in the ring Q[x, y, w]. A Grobner

basis for this ideal with respect to the deglex term ordering with x < y < w can
be computed to be {1}, so that f is indeed in -vFI. Since f E V, we know that
f e E I for some e, and we may want to determine the smallest such e. To do this
we first compute a Grobner basis for I. For example, with respect to the deglex
term ordering with x < y, we have G = = {y2, x4 - 2x2 + 1}. We use this Grobner
basis to compute the normal form of f' for i = 1, 2,... until the first time
that normal form is zero. For example, we can compute that Nc(f) = f 0 o,
No- (f 2) = - 2yx2 + 2y 0, but Nc (f 3) = 0, so that f3 E I.
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Theorem 2.2.13 gives a method for determining whether two ideals I and
J have the same radical and therefore correspond to the same variety in kn.

Let I = (fi,... , f8) and J = (91,... , gt). Using Theorem 2.2.13 we can decide
whether each f i is in vfJ-. If so, then ICJ and hence VY C vrJ-. The reverse
inclusion is checked similarly.

EXAMPLE 2.2.15. Let l- (x2 z2 +x3 , xz4+2x2z2+x3, y2z--2yz2+z3, x2y+y3)
and J = (xz2+x2,yz2-z3,x2y-x2z,y4-z3,x4z-x3z,z6+x4,x5-x4) be ideals
in Q[x, y, z] . The reader can easily verify by the method above that vrY = v7.

Exercises
2.2.1. Consider the system of equations over C

{
x10---22x6+51x4-48x2+18
x1°--22x6+51x4-30x2+18
x12_9x10+32x8-57x6+51x4_18x2

-18y
18z

0.

Obtain an explicit solution involving C and (2 where 1, (, and (2 are the
three cube roots of unity. [Hint: Use lex with x > y > z. There are 11
solutions.]

2.2.2. Use Lagrange Multipliers to maximize the function f = x2 + y2 + xy
subject to the constraint x2 + 2y2 = 1. (At least find explicitly the 4
points where the maximum could occur.)

2.2.3. Show (using a Computer Algebra System) that the function f (x, y, z) _
(x2 + y2) (x2 + y2 -1)z + z3 + x + y has no real critical points (i.e. places
where the three partial derivatives vanish simultaneously).

2.2.4. In Q[x, y, z], let I = (x4y2 + z2 - 4xy3z - 2y5z, x2 + 2xy2 + y4). Let
f = yz - x3. First show that f E . Then find the least power of f
which lies in I.

2.2.5. Verify the assertions made in Example 2.2.15.
2.2.6. Show that the following are equivalent for an ideal I C k [x 1, ... , xn] .

a. I is zero-dimensional.
b. For all i, 1 < i < n, there is a polynomial f E I such that f contains

only the variable xi.
2.2.7. Let I be a zero-dimensional ideal of k [x 1 i ... ,x]. Corollary 2.2.11 gives

one way to compute the monic generator of I n k[xi] . In this exercise we
present a more efficient way to compute this polynomial, for i = 1,. . . , n.

We will assume that we have a Grabner basis G for I with respect to
some term order (any order will do). This method will not require any
new Grobner basis computation, instead it will use simple techniques of
linear algebra applied to the vector space k[x1, ... , xn]/I.
a. Let m be least such that {1 + I, xi + I, ... , xr + I J is a set of linearly

dependent vectors in k[xl, ... , x7z]/I. Let >.J a,xz 0 (mod I).
] .Prove that f = (E a,, x) is the monic generator of I n k [xZv=0 v i ]



68 CHAPTER 2. APPLICATIONS OF GROBNER BASES

In view of this, we need a method for determining whether I 1 #-- I', xz +
I, ... , xm + 11 is linearly dependent in k[xi, ... , x.,,] /I and,' if so, for
finding a linear combination Eln 0 avxz in I. Consider m + 1 new
variables yo, yl, ... , y. and the polynomial g - vQ yvNG (xZ) E
k[x1,... , xn, yo, ... , yn]. We view g as a polynomial in k[xl,... , x,,,]

with coefficients in k [yo, ... , y,n] (which we note are all linear), and we
let J be the ideal in k[yo, ... , y,,,] generated by the coefficients of g.

b. Prove that {1 + I, xz + I, ... , xm + I j is a linearly dependent subset
of k[x1, ... , xn]/I if and only if Vk(J) ; {o}.

c. Prove that if (ao,... a E Vk l )(rJ then f - Ea x' E I.> m) v-o v a

d. Use the above to give an algorithm that inputs a Grobner basis G for
I and outputs the manic generator of I n k[xz].

e. Use the algorithm above to find In k [x] and I n k [y] in Examples 2.2.8,
2.2.9, and 2.2.10. Verify your answers by computing the appropriate
Gro-bner bases.

2.2.8. Gianni, Lazard, Mora [FGLM]) Let I be a zero-dimensional
ideal of k [x1, ... , x,]. Let G1 be a Grobner basis for I with respect to a
term order <j, and let <2 be another term order. The technique presented
in Exercise 2.2.7 can be used to compute a Grobner basis, G2, for I with
respect to <2 using only linear algebra.
a. Let X1, ... , X, be power products in k [x 1, ... , x,]. Use the technique

of Exercise 2.2.7 to give a method for determining whether {X1 +
I, ... , X,. + I} is linearly dependent or not.

b. Assume that all the the power products in k[x1, ... , xn] are ordered
using <2 as follows

1<2X1 <2X2 <2X3 <2... .

Modify a to give a method for deciding whether there exists a polyno-
mial f in I whose leading term with respect to <2 is Xr.

c. Use the above to find an algorithm that inputs a Grobner basis, G1,
for I with respect to <1 and outputs a Grobner basis, G2, for I with
respect to <2 . (Note that any power product X E k[x1, ... , xn] is
either reduced with respect to G2, a leading power product of some
polynomial in G2, or a multiple of the leading power product of some
polynomial in G2. Moreover, eventually in the algorithm, every power
product not yet examined will be a multiple of a leading power product
already generated.)

d. Why does the method of this exercise not work for ideals which are
not zero-dimensional? [Hint: Think about the stopping condition in
c.]

e. Use this algorithm to compute a Grobner basis for I in Example 2.2.8
with respect to degrevlex with x < y.
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2.2.9. Let I be a zero-dimensional ideal in k[xi:... , xn] . For i = 1, ... , n, let pi
be the degree of the monic generator of I fl k [xz] .
a. Prove that V (I) has at most /112 - elements.jan

b. Prove that dimk(k[xl, ... , x,a]/I) < /21/L2 .. lLn.

2.3. Elimination. In the previous section we saw the advantage of comput-
ing Grobner bases with respect to the lex term order. In this section we present
a far reaching generalization of this idea.

Consider two sets of variables {x1,... , xn} and {Yi,... , y n } . Assume that
the power products in the x variables and the power products in the y variables
are ordered by term orders <,,, <, respectively. We define a term order < on
the power products in the x, y variables as follows.

DEFINITION 2.3.1. For X1, X2 power products in the x variables and Y1, Y2
power products in the y variables, we define

X1 <, X2
X1Y1 < X2Y2 s or

X1 = X2 and Y1 <y Y2.

This term order is called an elimination order with the x variables larger than
the y variables.

Elimination orders have the following fundamental property whose proof we
leave to the exercises (Exercise 2.3.2).

LEMMA 2.3.2. The elimination order defined in Definition 2.3.1 is a term
order. Moreover, if Y is a power product in the y variables and Z is a power
product in the x, y variables such that one of the xz appears to a positive power
in Z, then Y < Z.

EXAMPLE 2.3.3. If the orders <x and <, are lex term orderings, then the
elimination order defined in Definition 2.3.1 is the lex term ordering on all the
variables with the y variables smaller than the x variables (Exercise 2.3.3).

The elimination order is "like" a lexicographic term ordering between the x
and y variables. The advantage of this order is that when one is interested in
properties that the lexicographic term ordering between the two sets of variables
is advantageous for, the order within the two sets is unimportant. It is a fact that
computations using the lexicographic term ordering are slow (see, for example,
[Bu83, GMNRT]) and it is better to have as "little lexicographic ordering as
possible". There is a great advantage to the elimination order as the following
result shows.

THEOREM 2.3.4. Let I be a non-zero ideal of k [yx , ... , Ym, x 1, ... , xn] , and
let < be an elimination order with the x variables larger than the y variables.
Let G = {gi, ... , gt} be a Grobner basis for this ideal. Then G fl k[y1, ... , ym]
i s a Grobner basis f o r the ideal I Cl k [y1, ... , y n] .
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The ideal I n k[yi , ... , y,,] is called an elimination ideal since the x variables
have been "eliminated".

PROOF. Clearly G n k [yl , ... , y,,,,] is contained in I n k [y1, ... , y?, ] . Now let
0 f (yi , ... , ynz) E I n k [yl , ... , y,,,]. Since G is a Grobner basis for I, there
exists i such that lp (gz) divides lp (f) . Moreover, since f has only y variables,
we see that lp(gj) involves only the y variables and so, from Lemma 2.3.2, every
term in gz involves only y variables, i.e. 9i E G n k [yl , ... , Y.]. Thus, for every
f E I n k [y1, ... , yn 1, there exists gi E G n k [y1, ... , yam] such that lp (gy) divides
lp(f), and hence G n k[yl, ... , ym] is a Grobner basis for I n k[y1, ... , y,,].

As a first application of Theorem 2.3.4 we now present a method for finding
generators for the intersection of two ideals.

PROPOSITION 2.3.5. Let I, J be ideals in k [x i , ... , x,,], and let to be a new
variable. Consider the ideal (wI, (1--- w)J) in k[x1, ... , xn, w]. Then

i n i = (wi, (1 - w)j) nk[xi,... )Xnl.

REMA RK : If I = (fi,... , fs) , and J = (fi,... , fp') , then a set of generators
for the ideal (wI, (1 w)J) is {wf1,... , wfs, (1- w) fl, ... , (1- w) fp}.

PROOF. Let f E I n J. Since

f=wf+(1-w)f,

we have f E (wI, (1-w)J)flk[xi,... , z,,]. Conversely, suppose that f E (wI, (1-
w)J) n k[xl,... , xn]. Then, since f E (wI, (1-- w)J) C k[x1, ... , xn, w], we have

f(x1,... ,xn)
S

wfi(x1, .. .
i=I

xrn)hi(xl, ... , xn, w)

P

+ (1 - w)fj (xl, ... , xn)hj (x1, ... , xn, w).
3=1

Since to does not appear in f (x 1 i ... , xn ), we can let w = 1 and get f E I, and
then let w= 0 and get f E J. D

As a consequence of the above result we obtain a method for computing
generators for the ideal I n J- First we compute a Grobner basis G for the ideal
(wI, (1 - w) J) C k [x 1, ... , xn, , w] using an elimination order with x j, ... , x,,
smaller than to. We then obtain a Grobner basis for I n J by computing G n
k [x 1, ... , Xn] , which is done simply by inspection. A similar technique can be
used to compute the intersection of more than two ideals (see Exercise 2-3.8).
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EXAMPLE 2.3.6. Consider the following ideals in Q[x, y]:

I=(x2+y3-1,x-yx+3) andJ=(x2y-1).

We wish to compute I fl J. We compute a Grobner basis G for the ideal

(w(x2 + y3 - 1), w(x - yx + 3), (1 - w)(x2y -1)) c Q[x, Y, W]
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using the deglex term ordering on the variables x and y with x > y and an
elimination order with w greater than x, y. We get

G= {x3y2 _x3y--3x2y-xy+x+3,x2y4+x4y-x2y-y3 -x2+1,

12853w +118x4y + 9x2y3 -357X3 y - 972x2y2 +2152X2 y - 118x2 - 9y2 + 357x

+972y - 2152, x5y + 3x24 f3 + 3x27, f 2 - x3 + My - 3y2 - 3?,/ ---- 3}.

So a Grobner basis for the ideal I n J is

{x3y2-x3y-3x2y-xy+x+3,x2y4+x4y-x2y-y3-x2+1,

x5y + 3x2y3 -i- 3x2y2 _ x3 + 3x2 y --- 3y2 -- 3y -- 3}.

Fix a term order on k[xl,... , x,,]. For f, g E k[xi,... , x,z.], both non zero,
we define the greatest common divisor of f and g, denoted gcd(f, g), to be the
polynomial d such that (i) d divides both f and g; (ii) if h divides both f and
g then h divides d; (iii) lc (d) = 1. Dually, we define the least common multiple
of f and g, denoted by lcxn(f,, g), to be the polynomial £ such that (i) f and g
both divide £; (ii) if f and g both divide a polynomial h, then I divides h; (iii)
lc(t) = lc(f) lc(g). It may be shown that lcm(f, g) and gcd(f, g) exists and that

f,g = lcm(f, g) gcd(f, g) -

We now show that Proposition 2.3.5 can be used to compute least common
multiples and greatest common divisors of polynomials in k [x 1, ... , x7z] .

LEMMA 2.3.7. For f, g E k[xx, ... , xn], both non-zero, we have

(f) n (g) = (lcm(f,g)).

PROOF. Let £ = lcm(f, g). Then I E (f) n (g), by the definition of I. Con
versely, if h E (f) n (g), then h = a f = by for some a, b E k[xl,... , xn]. Hence f
divides h and g divides h, and thus £ divides h by the definition of lcm(f, g), so
that hE(s).

5' he reader should recognize t h a t this is d u e to the f a c t that k [xi, ... , Xn] is a unique
factorization domain (UFD) (see [dun].)
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Therefore to compute the lcm and then the gcd of two non-zero polynomials f
and gin k [x 1, ... , xn ], we first compute the reduced Grobner basis G for the ideal

(wf, (1-- w)g) with respect to an elimination order with xl, ... , xn smaller than
w. Then lcm(f, g) is the polynomial in G in which w does not appear. To obtain

gcd(f, g), we use the Division Algorithm to compute gcd(f, g) fg
lcm( f , 9)

To compute the lcm and gcd of more than 2 polynomials, we use the above
method repeatedly and the fact that

1CIY1(f1i f27 f3) =ICIrilf12 ICYri(f2i M) , and

gcd(fi , fz, fs) = gcd(fi, gcd(fa, fa))
(Alternatively we could note that (Ii) fl (f2) fl (f3) = (lcm(fj, f2, f3)) and apply
Exercise 2.3.8).

EXAMPLE 2.3.8. Let f = x22 - y2 + x2 - 1 and g = xy2 - y2 - z + 1
be polynomials in Q[x, y]. To compute lcm(f, g), we first compute the reduced
Grobner basis G for the ideal (wf, (1 - w)g) = (w(x2y2 - y2 +X 2 - 1}, (1 -
W) (xyz - y2 - x + 1) y C Q [x, y, w] using the lex term ordering with to > x > y to
get G = {22/4 - x2 - Y 4+1 7-WXY 2+wx+wy2 - w -I-xy2_x-y2 + 1,2wx2 -2w+
x2yz-xZ-yZ+l}. Therefore lcm(f, g) = 1-x2-y4-f-x2y4 To compute gcd(f, g),
we use the Division Algorithm to divide f g by lcm(f, g) to get a quotient equal
to x - 1, and this is gcd(f, g).

Proposition 2.3.5 has another application: the computation of ideal quotients.
We will discuss the geometric significance of these ideals after Proposition 2.5.1.

DEFINITION 2.3.9. Let I and J be ideals in k[x1, ... ,xn]. The ideal quotient
J : I is defined to be

J: I={gEk[x1,...,x7,] I gIcJ}.

LEMMA 2.3.10. Let I = f1, ... , f s } and J be ideals in k [x 1, ... , x,,,]. Then
S

J: I = n j: (Ii).
i=1

PROOF. If g E J: I, then gI C J, so in particular g fi E J for i = 1, ... , s,
n Is

1 J : (fi), then g(fa) C J forand hence g E n!=1 J : (f2). Conversely, if g E
i=1,... ,s, and hence glC J, so that g E J: I. 0

We have seen a method for computing intersections of ideals, so, in view of
the all ve lemma, we only need to concentrate on computing J : { f) for a single
polynomial f.

LEMMA 2.3.11. Let J be an ideal and f 0 0 be a polynomial in k [x 1, ... , xn]
Then

j: (f) = 1
(1 n
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PROOF. If g E (in (f)), then g f E J, and hence g E J: (1). Conversely, ifI
E J: them E J, and hence E J n so that 9 E {J n9 9f 9f { f } {p} cif
EXAMPLE 2.3.12. Let 91 = X (X + y) 2, 92 = y, f 1 = x2, and f2= x + y in

Q[x, y] . Consider the ideals I = (fi, f 2) and J = (91,92). We wish to compute
J : I. By Lemma 2.3.10 we have

i: I = (j: (m) n (j: (m),
and so by Lemma 2.3.11

J:I=-(jn(f,))n (iny2))-
A f2

First we compute J n (fl) by computing a Grobner basis Gl for the ideal
(wg, w92i (1 - W) fl) C Q[x, y, w] with respect to the lex term ordering with
w > x > y to obtain

G1 = {x2w-x2,wy,x3,x2y},

so that fl (J n (fr)) = (x, y). Second we compute J fl ff2) by computing a

Grobner basis G2 for the ideal. (wg, w92, (1- W)h) C Q[x, y, w] using the same
order as above, and we obtain

G2 = {wx - x - y, wy, x3 + y3 , xy + y2 },

(Jnff2))=(x2_xy+y2,y). Y P { y} { y +so that 1 Finallwe com ute x n x2 -- x2
y2, y) by computing a Grobner basis G for the ideal (wx, wy, (1--- w)(x2 -- xy +
y2), (1- w)y) C Q[x, y, w] with respect to the lex ordering with w > x > y, to
obtain

G = {wx,x,y}.

Therefore J : I--%- (x2;Y).

Exercises
2.3.1. Assume that we have the lex ordering on x, y with x > y and the degrevlex

ordering on u, v, w with u > v > w. Use the e ' 'nation order with the
variables x, y larger than the variables u, v, w to write the polynomial
f =XU 2 vw+ 3y3u2vw - 6xuvw -100x2yuv2 + 2xu3w - x2yu2w + 9xuw2 E
k [x, y, u, v, w] in order of descending terms.

2.3.2. Prove Lemma 2.3.2.
2.3.3. Verify the assertion in Example 2.3.3.
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2.3.4. In this exercise we generalize the concept of elimination orders. Let S and
T be subsets of {x,... , x.,,) such that S U T = {x1,... , xn} (S and T
may overlap). For a power product X = xi 1 xnn E k[x1, ... , xn] we
define Xs (resp. XT) to be FLES xr (resp. FLET xas) . Let <s and <T
be term orders on the variables in S and T respectively. We define a new
order < as follows: for power products X and Y in k[xl, ... , xn],

X < Y <S YS or (XS = Ys and XT <T YT).

a. Prove that < is a term order.
b. Let n = 3 and the variables be x, y, z. Let S ` {x, y} and T = {x, y, z}.

Let <S be deglex with x < y, and let <T be lex with x > y > z. Order
the following power products according to <:

x2y2z, xy3z, xz4, x2y3, y2z3, xyz, z5.

2.3.5. Let <P be a relation on T' satisfying
for allX,Y ETn, X<pYorY<pX;
<P is reflexive and transitive;
1 <p X for all X E Tn;
X <p Y implies X Z <p YZ, for all X, Y, Z, E Tn.

a. Prove that there is a term order < which extends <,, . That is, if
X < Y, then X <p Y. [Hint: Use the idea of an elimination order to
combine <.p with any term order.]

b. Ler u = (ui,... , u,) E Rn be a vector with non negative coordinates.
Define <p on T" as follows. For X = x" 11 ... xn», and Y = x'8l xn» E
Tn, X <p Y if and only if E ujaz < E- ui 31. Show that <p
extends to a term order on Tn.

c. Construct the deglex ordering using b.

2.3.6. Without the use of a Computer Algebra System, compute (x, y) fl (x --
1, y) c Q [X' y] -

2.3.7. Compute the intersection, I fl J, where I = (x2y -- z - 1)xy + y + 1) and
J= (X-Y,Z 2 - x) 9 Q [x, y, z] .

2.3.8. In this exercise, we extend Proposition 2.3.5. Let 11, ... ,1,n be ideals of
k [x 1, ... , xn] . For each i = 17... , m, consider a new variable wz. Let J =
(1- (w1 + W2 + .. + Wm), Wl.li, ... , Wznlm) C k[x1, - - Xf, wI, ... , Wrnj.
a. Prove that I1 f12 Jflk[xl,... ,xn].
b. Use a to give a method for computing generators of I l fl I2 fl f1 Imo.

c. Use b to compute generators for the ideal (x, y) fl (x -1, y) fl (x - 2, y --
1) c Q[x, y]

2.3.9. Verify the assertions in Example 2.3.8.
2.3.10. In Q[x, y] compute gcd(x3 - x2y-3x2 + xy - y2 - 3y, x3y

-4- xy2 + 2x2 + 2y).
[Answer: x2 + y.]
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2.3.11. In Q [x, y], compute generators for I : (1 - x2 - x y) , where I is the ideal
defined in Example 2.1.8. (See Exercise 2.1.3.)

2.3.12. In Q[x, y, z] compute generators for 1: J and J: I where I = (x2y - y +
x, xy2 _ x) and j = (x2 +y2, x3 + y). [Answer: I : J = (y2 --1, x2 +xy -1) .]

2.3.13. Let glxn, ... , g,xn, 9v+1, . - . , gt be homogeneous polynomials (that is,
every power product occurring in each gi has the same total degree)
where x, does not divide any of 9v+1, ... , gt. Consider degrevlex with
x1 > x2 > ... > xn. Prove that if g1xn, ... , 9vX, , 9v+1, ... , gt is a
Grobner basis for the ideal I, then gi, ... , gt is a Grobner basis for the
ideal I : (x). [Hint: See Exercise 1.4.9.]

2.3.14. Let I be an ideal of k [x 1, ... , xn] , and let f E k [x 2 , ... , xn] . We define
00

I: f°° = U I: (f).

i=1

(The ideal I : f "O can be thought of as the ideal defining the points in V(1)
which do not lie on the hyper-surface defined by f = o; see the discussion
following Proposition 2.5.1.)
a. Show that I =1: (1) C I : (f) C I : (f2) C - . Conclude that I : f °O

is an ideal of k[x1,... , x].
b. Prove that 1: f00 = I : (fm) for some m.
c. Let w be a new variable, and let J = (1,1 - w f) C k [xl , ... , xn, W1_

Prove that I : f °° = Jn k [x 1, ... , xn] . (Compare with Theorem 2.2.13.)
d. Let {f,... , f3 } be a generating set for r and {g,... , gt I be a gener-

ating set for J n k [xi, ... , x,]. Now write 9i = (1- w f )hi + E'= uz3 f5
for i = 1, ... , t. Define m = maxz3 (degw (uj,)) . Prove that I : f °° _
I: (ftm).

e. Compute generators for I: fl, where I and f are as in Exercise 2.2.4.
2.3.15. Let I be an ideal of k[x1, ... , x7z]. Prove that if {x'g1,... , x"gt} is a

Grobner basis for I with respect to the degrevlex ordering with x1 > x2 >
... > Xn with gl, ... , gt homogeneous and with no gz divisible by x., then
{gi,... , gt} is a Grobner basis for I: x°°. [Hint: Recall Exercise 1.4.9.]

2.3.16. In this exercise we show how to compute the generator for the radical of
a principal ideal.
a. For a polynomial f E k[x1, ... , xn] write f = pv' pz2 - pn where the

polynomials p1, p2i ... , p n are irreducible. Set f* = p1p2 p,,, called
the square free part of f. Show that Of ) = (f*).

b. Let k be a field of characteristic zero. Show that in k [x1, ... , xn]

*_ f
gcd(f7 Sx;,... , exn)

c. Find the radical of the ideal (-x2y2 + x3y2 + 2x4y2 - 2x5y2 - x6y2 +

x7y2-2xy3+4x2y3-4x4y3+2xsy3--y4+3xy4--3x2y4+x3V 4) C Q[x, y]-
[Answer: (x3y - y2 + xy2 _ xy) .]
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2.3.17. In this exercise, we compute the solutions to a system of congruence equa-
tions. More precisely, let Il, ... , I,,, be distinct ideals in k[xj, ... , X,], and
let fl) ... , fn E k [x1, ... , xn] . We wish to compute the set of solutions
f E k[x1,... , x7,] of the system

(2.3.1) f =_ f; (mod Ii), 1 < i < m.

As in Exercise 2.3.8, let wl, ... , vim be new variables, J = (1 - (tvl +
.. -+- wm), w1I1, ... , wmIm), and G be a Grobner basis for J with respect

to an elimination order with the w variables larger than the x variables.
Finally, let g = E', wi f i .

a. Prove that System (2.3.1) has a solution if and only if g -+ h, where
hEk[xl,...,x9z].

b. Prove that if h = NN (g) and h E k[x1,... , xn], then the set of solutions
of System (2.3.1) is given by h+ fl.1 ii. In particular, prove that
u E k [x1, ... , xn] is a solution of System (2.3.1) if and only if h _
NGnk[x, ,.. ,x,=] (u)

c. Show that the following system of congruence equations has a solution
and compute the set of solutions.

f x -1 (mod (x, y))
f x (mod (x -1, y))
f y (mod (x-2,y-1)).

Prove that if we replace (x, y) by (x2, y), then the system above has
no solution.

2.3.18. In this exercise we use the Chinese Remainder Theorem (see [Hun]) which
states that if all the ideals Ii are maximal then System (2.3.1) always has
a solution. Let a1, ... , a,, E k' be distinct, and let al, ... , a,,,, E k be
given.
a. Prove that there exists f E k [x 1, ... , x,,] such that f (a,) = ai for

i = 1, ... , M. [Hint: Use Exercise 2.3.17.]
b. Give a method for computing such an f.
c. Find a polynomial f in Q[x, y] which satisfies f (0, 0) - -1, f (1, 0) = 1,

andf(2,1)=1.
2.3.19. Let f E k [x 1, ... , xn] be a homogeneous polynomial. Consider the ideal

I C k[x1,... , x7z] generated by all power products X which appear in f
and such that lp(f) = X with respect to some term order. Prove that
f E v#rl-. [Hint: First show that if X and Y have the same total degree,
and if X divides Y, then X = Y. Then show that if xi appears as a term
in f, then any term in f with xi is in So we may assume that no
power of any single variable xz appears in f . Use the same argument for
terms in f of the form xjx j . Use Exercise 2.3.4.1
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2.3.20. (Lakshmau [Lak]) Let Qj be a zero-dimensional ideal of k[x1, ... , xnj
(1 < i < r) and let < be a term order on k [x1, ... , x7z] . Let Gz be a
Grobner basis for Q27 i = 1,... , r. Let I = Q1 n Q2 fl ... n Q,.. We will
compute a Grobner basis for I with respect to < using linear algebra
techniques only.
a. As in Exercise 2.2.8, write all the power products in k[x1, ... , xn]

ordered by <: 1 < X1 < X2 < - . Modify the method of Exer-
cise 2.2.8 to give a method for deciding whether there exists a poly-
nomial f in I whose leading term with respect to < is X',.. [Hint:
I 1-f + 1, X 1 + I, ... , X,. + I) is linearly dependent if and only if 11 +
Qj, X1 + Qt, ... , X,. + Qj is linearly dependent for each i.]

b. Use a to give an algorithm that inputs a Grobner basis Gi for each Qj
with respect to < and outputs a Grobner basis for I with respect to

c. Use b to compute generators for the intersection Q1 fl Q2 in the fol-
lowing cases:

(i) Q1 = (x, y), Q2 = (x - 1, y) 9 Q[x, y]
(ii) Q1 = (xy+ 1,x2 --- 1), Q2 = (x2 + y, y + x) C Q [x, y] . [Answer:

Forlexwith x> y, (y3-y,x+y).]
2.3.21. (Lakshman [Lak]) Let I be a zero-dimensional ideal of k [x1, ... , xn], and

let G be a Grobner basis for I with respect to some term order < . Let
J = (h1.....h5) be an ideal of k [xl, ... , xn] . We wish to compute a
Grobner basis for I : J using lineax algebra techniques only.
a. As in Exercise 2.2.8, write all the power products in k[x1, ... , xn] or-

dered by <: 1 < X1 < X2 < . . - . Modify the method of Exercise
2.2.8 to give a method for deciding whether there exists a polyno-
mial f in I: J whose leading term with respect to < is Xr. [Hint:
{1 + (I: J) , X 1 + (I: J) , ... , X,. + (I: J) } is linearly dependent if and
only if {hj + I, X1 h,- + I, ... , X,. hi + I j is linearly dependent for each
i. 1

b. Use a to give an algorithm that inputs a Grobner basis G for I with
respect to < and a generating set for J and outputs a Grobner basis
for I: J with respect to < .

c. Use b on the following example: I = (2xy - 2x - y2 + y) y3 - 3y2 +
2y, x3 -- 2x2 - x - y2 + 3y), j = (y - x2, x2 - y2) c Q[x, y]. [Answer:
forlexx>y,I: J= (x+y----3,y2-3y+2).]

2.3.22. (Lakshman [Lak]) Let

k[x1,... , z ] - -+ k[yi,... , yam,]
n

xg
E

j=X dZ3y9

where az3 G k be a non-singular linear transformation. For an ideal I of
k [x i i ... , xn] , note that 0 (I) is an ideal of k [y1, ... , yn] . We will consider
a zero-dimensional ideal I. Let Gs be a Grobner basis for 0(I) . We wish
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to compute a Grobner basis for I with respect to some term order < using
linear algebra techniques only.
a. As in Exercise 2.2.8, write all the power products in k[x1,... , x,]

ordered by <: 1 < X1 < X2 < - . Modify the method of Exer-
cise 2.2.8 to give a method for deciding whether there exists a poly-
nomial f in I whose leading term with respect to < is Xr. [Hint:
{1 + I, X1 + I,_ , X,. + I} is linearly dependent if and only if {q5(l) +-
W), q(X1) + (I),... , q5(X -) + 0(1) } is linearly dependent.]

b. Use a to give an algorithm that inputs a Grobner basis G for 0(1) and
outputs a Grobner basis for I with respect to < .

c. Use b on the following example: Consider the map

0: Q[x, y] -p Q[u, v]
x 0 2u-v
y I --' -u+v

and let I = (x3 + 3x2y + 3xy2 + y3 + x2 + 3xy + 2y2, x2 + 4xy + 4y2 +
2x + 3y). Use deglex with x > y.

2.3.23. (*) (Seidenberg [Se]) Let chax(k) = 0 and let I be a zero-dimensional ideal
of k [x 1, ... , x,]. Assume that for each i = 1, ... , n, I contains a square-
free polynomial gi E k [xz].
a. Prove that I = -.17. [Sketch of the proof: Use induction on n. For

n > 1, let gl = p1... pr, with p3 E k[xi] irreducible and pairwise non-
associate. Prove that I = fl1(I, pj), and so it suffices to show that

F(I , p3) = (I,p3) for j = 1, ... , ,r. Consider the map

q53 : (k[xi])[x2,... , xn] o (k[xi]/(p3))[x27... , xn].

Use Exercise 2.3.16 to observe that a polynomial f is square-free if and
only if gcd(f, f) = 1 and the fact that gcd's are invariant under field
extension to conclude that the images of gz, i = 2,. .. , n are square-free
in (k[x1]/(p))[x27... , xn] . By induction hypothesis, 0-3J((I,p3))
Oj((I,p,)). Conclude that (I, p?) _ (I,p,).]

b. Conclude that a zero-dimensional ideal I of k[xl, ... , xn] satisfies v/I
I if and only if it contains a univariate square-free polynomial in each
of the variables.

c. Use this to give an algorithm which inputs a zero-dimensional ideal I
and outputs TRUE if VT = I and FALSE otherwise.

d. Give an example that shows that part a is not necessarily true if
cbax(k) 0 0.

e. Use the above to determine whether I = where I _ (x2y _ x -
y, xy + x + z - yz)z2 - y) C Q[x, y, z]

2.3.24. Let char (k) = 0 and let I be a zero-dimensional ideal of k [x l , ... , xn] . For
i = 1, ... , n, let gi be the monic generator of I fl k[xz], and let gg be its
square-free part.
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a. Use Exercise 2.3-23 * g* ... g).to prove that V1 = (I, g1, 2 , , n
b. Use a to give an algorithm for computing generators for /J, where I

is a zero-dimensional ideal.
c. Compute generators for the radical of I = (x2y -- x - y, X y + x + z ---

xy) z4 --2yz2 +yz+y2 -xy+z-x) C Q[x,y,z}.
2.3.25. Let char(k) = 0 and let I be a zero-dimensional ideal of k [xl, ... , xn]

Assume that v7 = I. Also, let K be an extension field of k. Let J be
the ideal of K[xl, ... ,xn] generated by I. Prove that VJ = J. Give an
example that shows that this is not necessarily the case if char(k) 0 0.
[Hint: Use Exercises 2.3.15 and 2.3.23.]

2.3.26. (*) Let char(k) = 0 and let I be a zero-dimensional ideal of k[xl, ... , xn].
a. Prove that the number of points in V (I) is less than or equal to

dimk(k[xl, ... ,xn]/I). [Sketch of the proof: Let G be a Grobner ba-
sis for I and let J be the ideal of [xi,... , x,j generated by G. Use
Exercise 1.6.14 to prove that J is zero-dimensional and that

dimk(k[xl, ... , xn]II) = dimkAx1, ... , x,]/J).

For each point a = (a1,... , an) E V7 (I), consider the ideal Ja =
(x1 - a1, ... , xn - an) C k[xi, ... , xn]. Prove that f + J. = f (a) + Ja
for all f E k [x1, ... , xn] . Consider the map

4): k[xl,... ,xn]

f
-4 flaEV;k[21_ , xn]/Ja
1--4

(f`a)+Ja1aEV).

Using Exercise 2.3.18 show that 0 is surjective. show that 0 induces a
map

0: k[x1, ... , xn]/J --- I [x1,... , xn}/Ja.
aEV

Since [x1,... , xn]/Ja ^' k, we see that 0 is a k-vector space homo-
morphism.]

b. Prove that if f = I and char(k) = 0, then equality holds in a.
[Hint: If = I, then = J by Exercise 2.3.25. Prove that J =
flaEV(J) Ja, and conclude that 0 above is a bijection.]

c. Compute the dimension of Q [x, y] / I and the number of points in VC(I)
where I = (x2 y - x - y, xy + X). [Answer: dim = 3 and there are 3
points.]

d. Compute the dimension of Q [x, y] /I and the number of points in VC(1)
where I = (x2 y - x --- y, x2 + x y + 2x2 + y + y2) . [Answer: dim = 6 and
there are 3 points.]

2.4. Polynomial Maps. In this section we are interested in k-algebra ho-
momorphisms between the polynomial rings k [yi , ... , ym] and k [x 1, ... , x.,]. We
recall that such a k-algebra homornorphism is a ring homomorphism

0: k [yl , ... , y,,] ) k [xl, ... , xn]
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which is also a k-vector space linear transformation. Such a map is uniquely
determined by

(2.4.1) 0: yZ N ? fz,

where f z E k [x i , ... , xn],1 < i < m. That is, if we let h E k [VI, ... , y"'] , say
h = E., c,y 1 y , where c1, E k, v = (v1,... , vzn) E Nm, and only finitely
many cv's are non zero, then we have

(2.4.2) cb(h) = Ecvf" ... f.vin = h(fl,... , fm) E k[x1, ... , xn].
V

Also, conversely, given any such assignment (2.4.1), we get a k-algebra homo-
morphism from formula (2.4.2).

Recall that the kernel of 0 is the ideal

ker(4') = Ih E k[yl,... , yn] 14'(h) = 017

and the image of 0 is the k-subalgebra of 1[x1, ... , xn],

im(q5) = If E k[xi, ... , xn] I there exists h E k[yl,... , ym] with f = qb(h)}.

This subalgebra is denoted by k [ f l , ... , fm]. We know from the theory of abelian
groups that

k[y1, ... , ym] / ker(4') ^_' k[fi, ... , .fm]

as abelian groups under the map

k[yi,... ,y.]/ker(0) -- + k[fi,... ,fm]

defined by
g + ker(4') '----+ fi(g).

This map is, in fact, a k* algebra homomorphism, as is easily seen, and thus
is a k -algebra isomorphism. This is called the First Isomorphism Theorem for

k-algebras. Another way to think of ker(q5) is that h E ker(b) if and only if
h(f 1i ... , fn) = 0 and so ker(q5) is often called the ideal of relations among the
polynomials fi, . , f,,, -

We will use the theory of elimination presented in Section 2.3 to determine
the following:

(i) The kernel of 0 or more precisely, a Grobner basis for the kernel of 0;
(ii) The image of 0 or more precisely, an algorithm to decide whether a

polynomial f is in the image of 0 and an algorithm to decide whether 0
is onto.

Before we give a characterization of the kernel of the map 0, we need a tech-
nical lemma.

LEMMA 2.4.1. Let al, a2 i ... , an, b1, b2, ... , bn be elements of a commutative
ring R. Then the element ala2 .--an - blb2 ... bn is in the ideal (a1 -- b1, a2
b2,... ,an-bn).
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PROOF. The proof is easily done by induction using the fact that

a 1 a2 ... a. _ b1 b2 ... bn = ax (a2 ... an - b2 ... bn) + b2 .. bn (a1 - bi).

81

THEOREM 2.4.2. Let K = (y1 - f1, ... , ym - fm) 9 k[y1, Y m, x1, ... , xn].
"henker(qS) =Kflk[y1,... ,ym]

PROOF. Let g E K fl k[yj, ... , V n]. Then

9(Y1, ... , Yin) = >(yi _ fz (xi, ... , xn))h (y1, ... , yrn, xi, ... , xn),
z=1

where hi E k [y1, ... , yrn, x 1, ... , xn] . Therefore g is zero when evaluated at
(y',... , yrn) = (fi,... , f n) and hence g E ker(o).

Conversely, let g E ker(q5). We can write

9=2cvyli...ym ,

V

where q, E k, v = (v1,... , i'm) E Nm, and only finitely many cv's are non zero.
Therefore, since g (fl, ... , 0, we have

9=9_9(f1,...,fm) =>Cv(y11 ...ym -
v

By Lemma 2.4.1, each term in the sum above is in the ideal K, and hence
g E Kflk[y1,... ,ym]

We now have an algorithm for computing a Grobner basis for the kernel of q5.
We first compute a Grobner basis G for the ideal K = (y1 - fi,... , y7z - fm)
in k [y1, ... , ym, 011 ... , xn ] with respect to an elimination order in which the x
variables are larger than the y variables. The polynomials in G without any x
variables form a Grobner basis for the kernel of 0.

EXAMPLE 2.4.3. Let 0: Q[r, u, v, w] -p Q[x, y] be the map defined by

We first compute a Grobner basis G for the ideal

K = (r-x4,u--x3y,v-xy3,z,v-y4) C Q[r,u,v,w,x,y]

with respect to the deglex term ordering on the x, y variables with y > x and the
degrevlex term ordering on the r, u, v, w variables with r > u > v > w, with an
elimination order between them with the x, y variables larger than the r, u, v, w
variables. We get G = {x4 - r,x3 y - u,xy3 -- v,y4 - w,yv -- xw,yr - xu,y2u -
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x2v,x2y2w - v2,uv - rw,v3 - uw2,rv2 - u2w,yuw -- xv2,u3 - r2v,yu2 _ xrv}.
Therefore a Grabner basis for ker() is

Gflk[r,u,v,w] = {uv - rw,v3 -uw2,rv2 u2w,u3 rev}.

We now turn our attention to the second question posed at the beginning of
the section, namely, the question of finding an algorithm to determine whether
an element f E k [xl, _ .. , xn] is in the image of the map 0 and an algorithm to
determine whether 0 is onto. This material has been adapted from D. Shannon
and M. Sweedler [ShSw].

THEOREM 2.4.4. Let K = {y1 - fl). .. , Y m - .fm) c k [y1, ... , ym, x l , .. , xn]
be the ideal considered in Theorem 2.4.2, and let G be the reduced Grobner basis
for K with respect to an elimination order with the x variables larger than the y
variables. Then f E k [xl , ... , xn] is in the image of 0 if and only if there exists
h E k[y1, ... , ym] such that f -G )+ h. In this case, f = 0(h) = h(f1, ... , fm).

PROOF. Let f E k[xl,. _ . , xn] be in im( i). Then f = g(fl, ... , ,f77z) for some

g E k[y1, ... , Yin]. Consider the polynomial

f(xi,... ,xn) -g(yl,... ,yin) E k[y1,... ,x,z].

Note that f (xl, ... , xn) - 9(y1, - - , ym) = 9(fi, ... , fm) - 9(y1, ... , Ym), and
hence, using Lemma 2.4.1, we see that f(xj,... , xn) - 9(Y1 7 ... , y,n) is in K.
Therefore, by Proposition 2.1.4, g -+ h, and f -+ h, where h = NG (g) _
NG (f) . But, since g E k [y1 , ... , ym], g can only be reduced by polynomials in
G which have leading terms in the y variables alone. Since the x variables are
larger than the y variables in our elimination order, the polynomials used to
reduce g are in k [yx, ... , yn] . Therefore h E k [y1, ... , ym].

Conversely, let f -- + h, where h E k [yl, ... , y,n]. Then f -- h E K, so

.f (x1, ... , xn) h(y1,... ,ym)
ECH

_...' EMY11 ... 9 ym7 x11... , xn)(ya - filx1, - , xra)).
i=1

If we substitute fz for y2, we see that f = h(f1, ... , fm) = (h), and f is in the
image of 0. C]

The following Corollary shows that the result of the preceding theorem gives
an algorithmic method for determining whether f is in the image of 0.

COROLLARY 2.4.5. With the notation of Theorem 2.4.4, f E k[xl,... , xn] is
in the image of 0 if and only if N( ;(f) E k[y1,...

PROOF. If NG (f) E k[yj , ... , y,.,], then, since f -+ No (f), we have f E
im(gi) by the Theorem. Conversely, if f E im(o), then by the Theorem f -G'+ h
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with h E k [y1, ... ,y,,]. By Proposition 2.1.4, NO (f) = NG(h) and as in the
proof above we see that h E k [yx, - .. , y,,] implies NG (h) E k [yl , ... , ym].

EXAMPLE 2.4.6. Let 0: Q[u, v] --) Q[x] be the map defined by

u x4+x
V x3 .

We would like to determine if x5 is in the image of 0. We first compute a Grobner
basis G for the ideal

K= (u-x4 _x,v-x3) c Q[u,v,x]

with respect to the lex term ordering with x > u > v to get

G = {u3-v4-3v3-3v2-v,xv+x-u,xu2--v3 -2v2 -v,x2U---v2 -41,x3 _V)-

We now reduce x5 using G to get

5 x3-v 2 XV+X-u 2x _) x v - ) -x + xu,

and -x2 + XU is reduced with respect to G. Since NG (x5) = --x2 + xu V Q[u, v],
we have, by Corollary 2.4.5, that x5 is not in the image of 0.

Now that we have an algorithm to determine whether a polynomial f is in
the image of 0, we can determine whether 0 is onto. We simply check whether
x1, ... , x,z E im(q5). In the next result we see that we can do this simply by
inspecting the Grobner basis.

THEOREM 2.4.7. Let K = (Yl - fx, ... , ym - .fm) C k[yl, ... , ym, xl, . - - , xn]
be the ideal considered in Theorem 2.4.2, and let G be the reduced Grobner basis
for K with respect to an elimination order with the x variables larger than the
y variables. Then 0 is onto if and only if for each i = 1, ... , n, there exists
gi E G such that gi = xi - hi, where hi E k [yi, ... , Ym ] . Moreover, in this case,
xi = k.( 1) ... , fm).

PROOF. Let us first assume that 0 is onto. Also, without loss of generality,
let us assume that the order is such that x, < ... < xn . Then by Theorem 2.4.4,
since x1 is in the image of 0, there exists h' E k[yl,... , y,n] such that x1 - + MI.

Therefore x1 - hi E K, and hence there exists g1 E C such that lp(gl) divides
lp(xi - h') = x1. Therefore, since the only terms strickly smaller than xl are
terms in the y variables alone, gl = x1-- h1 for some h1 E k [y1, ... , ym] . Similarly,

since x2 is in the image of 0, there exists h2 E k [yl , ... , y n ] such that x2 +
hl , and hence there exists g2 E G such that lp (g2) divides lP (x2 - ham) = X2-2

Since the only terms strictly smaller than x2 are terms involving xl and the y
variables only, and since G is the reduced Grobner basis and any term involving
x1 could be reduced using ga, = x1 - hl, we must have g2 = X2- h2 for some
h2 E k[y1, ... , y,,]. We proceed in a similar fashion for the remaining xi's.
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For the converse we first note that 0 is onto if and only if xz E im(q5) for
I < i < n. Since xi - hi E G, we have xi -G )+ hi. Since hi is a polynomial in
the y variables alone, we have that xz is in the image of 0 by Theorem 2.4.4, and
hence 0 is onto. Again by Theorem 2.4.4, we see that xi = hz (fl) ... , fm) .

The above result gives an algorithm for determining whether the map 0 is
onto or not. We first compute the reduced Grobner basis G for the ideal K,
and, by inspection, we check whether there exists gi = xi --- hz E G for each
i - 1, . . . , ni, with hi E k [y, 7. .. , ym] .

EXAMPLE 2.4.8. We have seen in Example 2.4.6 that the map 0 was not onto,
since x5 was not in the image of 0. Also, the Grobner basis G did not have a
polynomial of the form x --- h(u, v). Now consider

* Q[ ] Q[ ]:q5 u,v,w x
4+U xx

3V x

w x5.

We want to determine whether 0* is onto. We first compute a Grobner basis G*
for the ideal

K* = (U-X 4 - XI V - x3, w - x5) 9 Q[u, v, w,
x],

with respect to the lex term ordering with x > u > v > w to get

G* _ {x-uv2+uv-u+w2,v5 -w3,-uw+v3+v2,-uv3+vw2+w2,

-u2v + v2w + 2vw + w, u3 - v4 - 3v3 - 3v2 _ v}

Since we have x - uv2 + uv - u + w2 E G*, the map c* is onto. In fact we have
x = 0*(uv2 _... uv + u - w2) = (x4 + x)(x3)2 - (x4 + x)x3 + x4 + x - (x5)2.

We now extend the preceding results to quotient rings of polynomial rings.

DEFINITION 2.4.9. An k-algebra is called an a line k-algebra if it is isomorphic
as a k-algebra to k[x1, ... , x,,,] /I for some ideal I of k[xi, ... ,z,].

Clearly the polynomial ring k[x1, ... , xn] is an affine k-algebra. Moreover, if
A7. .. , fm E k[x1, ... , xn], then, as we saw at the beginning of this section, the
image, k [ fl , ... , f m] , of the map

0: k[y1i... ,ym] --' k[xl,... xn]

which sends yj to fi is isomorphic to k [Vi, ... , y n] / ker(0) and hence is an affine
k-algebra.

We now want to study k-algebra homomorphisms between affine k-algebras.
Let J be an ideal of k [y1, ... , ym] and let I be an ideal of k [x1, ... , xn] . Consider
a k-algebra homomorphism

0: k[yl,... , ?,gym,]/ J) k[x1, ... , xn]/I.
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Let us assume that
O:y1+Ji--off+I.

We note that the map 0 is well-defined if and only if the following condition
is satisfied:

ifJ=(g1,...,gt),then,

This condition can be checked easily using a Grobner basis for I and Theorem
1.6.2.

Generalizing Theorem 2.4.2 we have

THEOREM 2.4.10. Let K be the ideal of k[yi,... , y?z, x1, ... , xn] whose gen-
erators are those of I together with the polynomials yj - fz71 i < m, that is,
K = (I, y1 -- fl, ... , ym - fm)_ Then ker() = K fl k[yi, ... ,ym] (mod J). That
is, if Kflk[y1,... ,ym] = (fi,... ,fp), then ker(q5) = U11 +J,... Al + J).

PROOF. Let f E K fl k [yl , ... , yn]. Then we can write

f'(yl, ... , Ym) = E(yz - A (x1, ... , xn))hi(y1, ... ;y, xx,... , xn)
i=1

+w(y1,... ,ym,x1, ... ,xn),

where

w(yi, ... ) Ym, x17... , xn) _ >2 uy(yl, ... , Ym, x1) ... , Xn)vv(xl, ... , xn)
v

with v. E I, and his Uv E k[y1,... , ym7 x17... , xn]. When

O(f+J)f'(fi,...,fm)+IW(fl,...,fm,Xl,...,Xn)+I=0,
since

w(f17 - 7 fm7 X1, ... , xn) = E 2Lvlf1, ... 7 fm7 xi, ... , x,.z)vy(x1) ... , xn) E I,
V

since each vv E I.
Conversely, let f E k [y1, ... , ym] with 0(f' + J) = 0. Then f' (f 1, ... , f m) E I.

Let f ' (yl, ... , ym) = E,, cvy" .. - &, where v = (U1:... , v n) E N'n, c,, E k,
and only finitely many cv are non zero. Then

f'(yi,... , Yin) = (f'(y,... , Ym) - f"(f, 1, ... , .fm)) + .f t(f1, ... ) fm)

cv(y13L ...ym - fig ...Jm )+f'(fx,... , fm}.
v

By Lemma 2.4.1,
cv /i ... Ym - fit ... f )

is in the ideal (yj -- fl,... , ym - fm) and hence

f'(y1,... 7ym) E (I, y1 -- f1,... ym - fm) = K,



86 CHAPTER 2. APPLICATIONS OF GROBNER BASES

since f(f l , ... , f m) El. Therefore f' (yl , ... , ym) E K n k [y1, ... , y n] .

We now prove the analog of Theorem 2.4.4.

THEOREM 2.4.11. Let K = (I, y1-f 1, ... , y,,,-f,,,) be the ideal as in Theorem
2.4.10, and let G be a Grobner basis for K with respect to an elimination order
with the x variables larger than the y variables. Then f + I E k[x1, ... , xn]/I is
in the image of 0 if and only if there exists h E k [yl, ... , ym.] such that f + h.
In this case f + I = O(h + J) = h(f x , ... , f,.,,) + I.

PROOF. Let f + I be in the image of 0. Then there exists 9 E k[y1 i ... , Ym]
such that f - g (f l )... , fm) E I. We consider the polynomial f (x 1, ... ) xn) --

9(y1,... Yrn) E k[y1,... ,ym,xi,... ,xn]. Since f(x1i... ,xn)--9(Y1,... ,ym) _
9(fi, ... , fm) - 9(91, ... ,ym) + (f(x,... ) xn) - 9(.f1, ... , fm)), we have, using
Lemma 2.4.1, that f (x1 i ... ) x,) --- g(y,,... , ym) is in K. The argument proceeds
as in the proof of Theorem 2.4.4 (Exercise 2.4-8).

Conversely, let f E k [x 1, ... , xn] be such that f -+ h with h E k [yI , .
Then ,f -- h E K, and hence

f(x1,... ,xn) -- h(yl,... ,ym)

M

)ym,x1,...

i=1

where

3xn)(yi - fi(x1,... ,xn)) +w(y1,- ,Ym,x1,..

w(y1, ... ) ym, 51, ... , xn) -= >2th'(Yi,... , Ym) x1, ... , xn)Vv(XI, ... , xn)

with vv E I and where gi, u, E k[yi, ... , Y, x17... , xn]. If we substitute fi for
y2 7 we see that f - h(f l , ... , fm) E I, and hence f + I = ci(h + J) . 0

As before we have

COROLLARY 2.4.12. Continuing the notation of Theorem 2.4.11, we have that
f+1 E k [x l , ... , xn] /I is in the image of 0 if and only if NG (f) E k [y1, ... , ym] .

We finally determine whether the map 0 is onto, again in a fashion similar to
Theorem 2.4.7.

THEOREM 2.4.13. Let K be the ideal as in Theorem 2.4.10, and let G be
the reduced Grobner basis for K with respect to an elimination order with the
x variables larger than the y variables. Then 0 is onto if and only if for each
i = 1, ... , n there exists a polynomial gi = xi -- hz E G, where hi E k [yl , ... , yn].

PROOF. The proof is similar to the one of Theorem 2.4.7 and is left to the
reader (Exercise 2.4-9).
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EXAMPLE 2.4.14. Consider the following Q-algebra homomorphism

0: Q[u, v, w] /J -i Q[x, y] /I
u+ J
v+J
w+J

--; x+y+I
x--y+I
Zxy +I,
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where J = (uv -- w, u2 - v2 - w2 - 2w) C Q [u, v, w] , and r = {x2 - 2xy, y2) C
Q [x, y]. We first note that the map 0 is well-defined, since

0(,4v - w + J) = (x + y)(x - V) - 2xy + I
x2 - - 2xy + I = 0,

and

O(u2 - v2 - w2 - 2w + J) = (X+Y)2_(X_Y)2-4x2 Y 2 - 4xy + I
= -4x2Y 2 +1 =0.

We now compute the kernel of 0 as in Theorem 2.4.10. So let

K = (x2 - 2xy, y27u-(x + y), v - (x - y), w - 2xy) C Q[x, y, u, v, w]

We compute the reduced Grabner basis G for K with respect to the lex order
with x > y > u > v > w to get

G= {u2 - 2w,v2 --u+Ivx-1u-1vuv-wvwuww2 .'y 2 2 2 2 '

By Theorem 2.4.10, we have

ker(b) _ (u2-2w+J,v2±J,uv-w+J,vw+J,uw-I-J,w2+J)
(u2-2w+J,v2+J,vw+J,uw+J,w2+J)=L/J,

where L = (u2 - 2w, v2) vw, uw, w2, uv - w, u2 r-- v2 - w2 - 2w) (recall that
uv - w E J). Also, by Theorem 2.4.13, we see that the map 0 is onto, since
x --- a u - 2 v and y -

a
u +

Z

v are in G. In fact we have

x+I = 20(u+v+J) amd y+I = 2O(u-v+J).

To conclude, note that, by the First Isomorphism Theorem, we have

(Q[u, v, wj1J)1(L1J) -3='Q[u, v, wl/L,

and hence
Q[u, v, w] /L r. Q [x, y] /.I,

where the isomorphism is obtained from 0.
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Exercises
2.4.1. Without using a Computer Algebra System, use the method of Example

2.4.3 to find ker (O) , where c : Q [u, v] -b Q[x] is defined by 0: u ' - ' x2
and 0: v x3.

2.4.2. Compute generators for ker () , where 0: Q [u, v, w] ---- Q [x, y] is defined
by q5: u x2 + y, 0: v @ ) x + y and 0: w j x --- y2. Is onto?

2.4.3. Determine whether the map 0 is onto, where 0: Q [r, u, v, w] -' Q [X, y]
is defined by 0: r '---} x2 + y, 0: is ' x + y, 0: v x - y2, and

.0: w i-, x2 +Y2
2.4.4. (Shannon and Sweedler [ShSw]) This exercise assumes that the reader

is familiar with the definition of the minimal polynomial of an algebraic
element over a field. Let f, fl, ... , E k[xl,... , xn]. Consider the ideal
K (y - f) yl - f17... ,ym. -- fm) in Iym,xj,... ,xn]. Let G
be the reduced Grobner basis for K with respect to the lex ordering with
x1 > " - > xn > Y > y1 > > ym. Let Go be the set of all polynomials
in G involving only the variables y, y1, ... , yn and in which y actually
appears.
a. Show that f is algebraic over k(f 1 , ... , fm) if and only if Go 0. [Hint:

In the case where we assume that f is algebraic over k (f 1, ... , fm), we
can find h = >ih(yi,... , yrn)yL such that h(f, fl,. .. , f n) = 0 and
ho (f 1, ... j fm) 54 0. We have h + 0. Analyze this reduction.]

b. In the case that Go 54 0 let go E Go be such that lp(go) is least. Show
that go (y, fl,... , fm) is a minimal polynomial for f over k (f 1, ... , fm).

2.4.5. A polynomial f E k[x1, ... ,x,] is called symmetric if

f (X,,... , x,) = f (x0.(1), ... , xa(ri)),

for all permutations a of {1,... , n}. In Exercise 1.4.18 we saw that the
set of symmetric functions is a k-algebra generated by the following n
functions:

a1 x1+x2+...+.2n

a2 = 21x2 +x123 +...+xlxn +22x3 +...+xn-lxn

an = x122 ... xn

Use Theorem 2.4.4 to give a method for deciding whether a given function
f E k[x1, ... , xn] is a symmetric function. Use this method to check your
answer in Exercise 1.4.18, part d.

2.4.6. (Shannon and Sweedler [ShSw]) In this exercise we extend the results of
this section to maps f r o m subrings of k(y1, ... , y n) to k(x1, ... , xn), where
k(y1, ... , Y,,) and k(xl,... , xn) are the fields of fractions of k[yl, , yn]
and k [x 1, ... , xn] respectively.
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a. We consider the following map

0: k[yi,... ,ym] k[x1,... xn]
yi ---4 f i .

Let P - ker(o). Prove that 40 can be extended to a k-algebra homo-
morphism

0: k[y1, ... , ym]P -4 k(xi,... ) xn),
where k [yi, ... , y,.,,] P = fit f, g E k [yl, ... , ym] and g P}. Note
that k [y1, ... , ym] P is a subring of k (yl, ... , ym) . It is called the local-
ization of k[yl, ... , tim] at P.

b. Give a method for computing generators of ker(b).
c. Prove the following analog of Theorem 2.4.7. Let K be the ideal of

k [y,7 ... x ... xn] generated by yi-, i = 1,... m. Let G
be a Grobner basis for K with respect to the lex term order with
xl > x2 > ... > xn > yl > - > ylz. Then 0 is onto if and only
if for each i = 1, ... , n there exists gi E G such that gi = azxi - [3 ,

where az P, ai E k [yi, , ym] and f i E k [xi+i, ... , xn, Y17 ... , ym ] .
[Hint: If xi is in the image of b, then xi = si

p , 'fmJm) for some
6%, ' yj E k [VI, ... , ym] such that yi 0 P. Choose -yz such that lp (7j) is
the smallest possible. Consider ti = -yi(yi, ... , ym)xi - ( (yi, ... , ym).
Prove that ti E K. Prove that there exists a polynomial gi E G such
that lp(gi) = y" - y,,,s x2, and so conclude that gi is of the required
form. For the converse, first prove that xn is in the image, then xnr.l,
etc.]

d. Consider the map 0: k [u, v] -+ k [x] defined by u -,-- x4 + x and
v j ) x3. Compute generators of P and determine whether i is onto.

e. Consider the map 0: Q[u, v, w] -- Q[x, y] defined by u x2 + y,
and v '-- + x +y and w j x - y2. Compute generators of P and
determine whether 0 is onto.

2.4.7. Let 0: Q [u, v] ----- Q[x] be defined by q5: u -- x4 + x2 +x and 0: v
x3- X.

a. Using Theorem 2.4.7 show that 0 is not onto.
b. Show that x3 is not in the image of 4).
c. Show that the map,0, corresponding to the one given in Exercise 2.4.6,

is onto.
2.4.8. Complete the proof of Theorem 2.4.11.
2.4.9. Prove Theorem 2.4.13.

2.4.10. Let 0: Q[u, v, w] /J ---} Q[x, y] /I be defined by 0: u + J x2 + y + I,
4): v+J x+y+I, and 4): w+J !-- x3+xy2+I and where J = (uv-w)
and I= (xv+y).
a. Prove that 0 is well defined.
b. Find the kernel of 0.
c. Show that 0 is onto.
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2.4.11. For those who have the appropriate algebra skills, generalize Exercise 2.4.6
to the case of

k[yx, ... , Ym]/J -4 k[x1,. , xn]/I
yz + J 1 .fA + I,

where we assume that J, I are ideals in the appropriate rings and I is a
prime ideal.

2.5. Some Applications to Algebraic Geometry. In this section we will
apply the results of the previous sections to study maps between varieties.
Throughout this section, for I an ideal in k [x 1, ... , xn] , we will consider the
variety Vi(I) C in as we did in Section 2.2. We will abbreviate this variety
more simply by V(I).

We begin by considering projection maps

(2.5.1)
7r : im+n TM

`al,... ,a.,bi,... ,bn) (a,,... ,am,).

If we apply this map to a variety V, we may not obtain a variety. For example,
the variety V(xy -1) projects onto the x-axis minus the origin, and this is not a
variety. We are interested in finding the smallest variety containing 7r (V) . Before
we do this we give the following general proposition.

PROPOSITION 2.5.1. If S C k", then V(I(5)) is the smallest variety contain-
ing S. That is, if W is any variety containing S, then V(I(S)) C W. This set is
called the Zariski closure of S.

PROOF. Let W = V(J) C in be a variety containing S, where J is an ideal
k[x1,... ,ten]. Then I(W) C I(S) and V(I(S)) C V(I(W)). But V(I(W)) _

V (,rJ-) = V(J) = W, by Theorem 2.2.5. Therefore V (I (S)) C W.

As a simple example of the above proposition, consider two varieties V and
W contained in In. Then V - W need not be a variety, and its Zariski closure
is V(I(V - W)). We note that I(V - W) = I(V): I (W) (Exercise 2.5.2). Recall
that we showed how to compute the ideal quotient in Lemmas 2.3.10 and 2.3.11.

EXAMPLE 2.5.2. Consider the varieties V = V (x (y - z) , y(x - z)) and W =
V (y - z) in C 3. Then V consists of the four lines y = z = 0, x = z = o, x =- y = 0,
and x = y = z. Moreover W is the plane y z which contains just two of these
lines, namely y = z = 0 and x = y = z. Thus V - W consists of the union of
the two lines x=z=0and x=y=0excluding the origin. We use the above
method to compute the smallest variety containing V - W, namely V (I (V - W))
(although it is geometrically obvious that this variety is the union of the two
lines including the origin). By the above we have I(V - W) = I(V): 1(W).
Also, it is easy to see that I(V) = (x(y - z), y(x - z)) and I(W) = (y - z),
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since J(x(y - z), y{x - z)) = (x(y - z), y(x - z)) and J(y - z) = (y - z) . We
compute I(V): I(W) using Lemma 2.3.11 to get

(x(y - z),y(x - z)): (y - z) = (x,yz).

Therefore the smallest variety containing V - W is, as we observed above, the
union of the two lines x z = 0 and x = y = 0.

We now return to the projection map (2.5.1).

THEOREM 2.5.3. Let I be an ideal in k[yl, ... , ym, x1,... , xn]. The Zariski
closure of x(V(I)) is V(I n k[yi,... , y,,]).

PROOF . Let V = = V (I) and I,= I n k [yl, ... , ym] . Let us first prove that
ir(V) C V(II). Let (ai,... , am, bl) ... , bn) E V, so that (ai,... , am) E 7r(V). If
f E Iy,then f(al,... ,am,b1,... ,bn) = 0, since f E I, and thus f(a1,... ,a,,) =
0, since f contains only y variables. Therefore -x(V) E V(I). In view of
Proposition 2.5.1, to complete the proof of the theorem we need to show that
V (Iv) C V(I(r(V))). We first show that I(ir(V)) c V/1-y. Let f E I(ir(V)),
so that f (a,,. . - , a,,,) = = 0 for all (ai,... , am) E ir(V). If we view f as an
element of k[y1, ... , ym, xl,... , xn], then f (al, ... , am, b1,... , bn) = 0 for all
(a1,.. , am) b1, ... , b9z) E V. By Theorem 2.2.5, there exists an e such that
f' E I. But, since f involves only yl, ... , yn, f' E Iy, and hence f E Iy.
Now we have V (1y) = V(J7) C V (I (7r(V ))) . This complete the proof of the
theorem. 0

We now turn our attention to an application of Theorems 2.3.4 and 2.5.3.
We consider a map

n )km

given by x1> ... xn > ... > fmx1> ... xn ,w) = here the f's
> -' f1(x1,... >

are in k [x 1, ... , xn] . One can think of this as a subset of k ' parametrized by
A)-..,fm:

yi = f1(xl, ... , xn)

Y2 = f2(xl, ... , xn)

Um

These equations define a variety in k m+n, namely

V = V(yl - f1, ... , ym --- f m).

(We note that V is, in fact, the graph of Sp.) We want to convert the parametric
equations into polynomial equations in the y variables alone. This process is
called implicitization. One has to be careful, since parametric equations do not
always define a variety and so we will find the Zariski closure of im(So).
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Consider the projection

,ym,x1,... ,xn) F (7/i,... ,y,n).

Then we can see that 7r(V) is the image of gyp, and so we apply Theorem 2.5.3.
That is we let

I = (yl - fl, ... , ym - fm) 9 k[yl, ... , ym, x1, ... , xn].

Then the Zariski closure of -7r(V) is V (I n k [yi , ... , y n]) . Note from Theorem
2.4.2 that the Zariski closure of the image of W is defined precisely by the ideal
of relations of the polynomials A7 - , fm

Therefore, to find a set of defining equations for that variety, one computes a
Grobner basis C for I with respect to an elimination order with the x variables
larger than the y variables. The polynomials in G which are in the y variables
only are the desired polynomials.

EXAMPLE 2.5.4. Consider the map

C2 C4

(x,y) (x4,x3y,xy3,y4)

so that the parametrization is given by:

(2.5.2)

r = x4

U = x3y
V = xy3

w y4

The Grobner basis for the ideal I = (r-x4,u-x3y,v--xy3,w-y4) with respect
to the lex term ordering with x > y > r > u > v > w is G = {uw2 - v3, rw -
uv, -rv2 + u2w, -rev + u3, -y4 + w, -xw + yv, -xv2 + yuw, -xu + yr, xrv --
yu2, --xy3 + v, -x2v + y2u, -x2y2r + u2, -x3y + U, -x4 + r}. The polynomials
that do not involve x or y are those that determine the smallest variety containing
the solutions of the parametric equations (2.5.2):

uwe -v3,rw-uv,-rve +u2w,--rev+u3.

More generally, we consider maps between two varieties V C k ?Z and W C k 7z
given by polynomials; i.e.,

a : V - - 'Vii'

(ai,. . . , an) i- (f1(a1,. - - , an,), ... , f m(al, ... an)),

where f1, ... , f, E k[xi, ... , xn].
Such a map a gives rise to a k -algebra homomorphism a* between the affine

k-algebras k[yi, . - . , y,,]/I(W) and k[xi,... , xn]/I(V) as follows:

a* : k[yl,... , y.]/I(W) + k[xi, ... , xn]/I(V)
yz+I(W) '-' fz+I(V).
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To see that a* is well defined, we need to show that for all g E I(W), we have
g(f 1, ... , fm) E 1(V). But for all (a1,... , an) E V, we have a(a1,... , an,) E W,
and hence

0 = 9(a(a1,... , an)) = g(ff,... , f n)(a1, ... , an),

as desired -
We have then that a* is a k-algebra homomorphism. Note also that if the

map a is the identity map of the variety V onto itself, then the corresponding
map a* is the identity of the affine algebra k[x1, ... , xn]/I(V) onto itself (this
follows since the field k is infinite).

Thus the study of the map a between varieties might be done by studying
the corresponding map a* between the corresponding affine k-algebras. We will
give two examples illustrating this idea: determining the image of a variety and
determining whether a given map is a variety isomorphism.

Suppose that we have a variety V in k n and a map a into k in given by
polynomials fl,... f E k[xl,... , xn]:

a: V km
(a1,... , an) (fi(ai,... , an), ... , fm (al, . , an))

We would like to determine the Zariski closure of the image of the map a. In
the case when V = k n we did this at the begining of this section. We can find
.l(im(a)) by considering the corresponding map

a* : k[yi, ... , Ym] k[xl, ... ,xn]/I(V)
vi '--? fi + I(V).

PROPOSITION 2.5.5. A polynomial g E k[yl,... , Yin] is in I(im(a)) if and
only if g E ker(a*).

PROOF. Let g E I(im(a)). Then for any (a1,... , az) E V, g(o!(al,... , an)) =
0, and hence g(ct(xl,... , xn)) E 1(V), so that a* (9) = 0 and g E ker(a*). The
argument is clearly reversible. D

This proposition together with Theorem 2.4.10 gives us an algorithm for com-
puting the ideal I(im(a)), and hence for determining the smallest variety con-
taining im(a).

EXAMPLE 2.5.0. Let V be the variety in C' defined by x2 + y2 -1 (a circle in
the x, y plane). Consider the map a given by the polynomials f 1 = x2, f2 = 2
and f3 = xy; i.e.

a V -' C3
(x, y) (x2, y2, xy).
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The corresponding map a* is

a* : C[u, v, w] cC[x, y]/(x2 + y2 -1)
u x2+(x2+y2 - 1)
V y2+(x2+y2--1)
w ,- xy+(x2+y2-1).

To find L(im(a)), we consider the ideal K = (x2 + y2 -1, u - x2, v - y2, w - xy)
and find a Grobner basis G for K with respect to the lex term ordering with

x>y>u>v>wtogetG={x2+v-1,xy-w,xv-yw,xw+yv-y,y2-

v, u + V -1,V2 - v + w2 }. Therefore

L(im(a)) = ker(a*) = K fl (C[u, v, w] = (u+v-1,v2-v+ui2).

Geometrically, the equation u + v -- 1 = 0 is the equation of a plane parallel to
the w axis. The equation v2 _ v + w2 = 0 is the equation of a cylinder whose
axis is parallel to the u ate. The intersection of these two surfaces is an ellipse.

The second example illustrates how a* can be used for determining whether
two varieties are isomorphic.

DEFINITION 2.5.7. Two varieties V C k n and W C k tm are said to be isomor-
phic over k if there are maps a : V -p W and ,t3: W --- ) V given by polynomials
with coefficients in k such that a o,3 = idw and /3 o a - = idv, where idv and idyy
are the identity maps of V and W respectively.

THEOREM 2.5.8. The varieties V C k I and W C k m are isomorphic over k
if and only if there exists a k-algebra isomorphism of the affine k-algebras

k[yl, ... , y.]/I(W) and k[xj,... , xn]/I(V).

PROOF. First let a and /3 be inverse polynomial maps. Suppose that

a: V -' W

where fl,...

,Q :

(a,,... ,az) --) (f1(aj,. . . ,an,),... 7.fm(ai, an)),

fm E k[x17 ... , xn], and suppose that

W - V
(b17... , bm) I- (g1(b17... , bm), . . - )g (b1, ... , bm)),

where g] , ... , gn E k [VI, ... , y,]. Note that the map ([3o a) * is defined by
xi MY,, ... , fm) while the map a* o,8* is defined by

xi I gin g (f1, . ..
7 .+m)7

and so, (/30 a)* = a* o O*. Now, since f3 o a = idv, (/3o a)* =
and hence a* 0/3* is also the identity of k[xi, ... , x.,,] 11(V) onto itself. Similarly,
we have that 8* o a* is the identity of k [y1, ... , ym ] /L (W) onto itself. Therefore
a* is a k-algebra isomorphism
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For the converse, we assume that we have a k-algebra isomorphism

e: k[y1, ...7y,,]/I(W) -+ k[x1, - - . , xn]/I(V).

We will see that G = a* for a map a between the varieties V and W which is
given by polynomials and such that a-1 exists and is also given by polynomials.

Let e(yi + 1(W)) = fi + 1(V), where fi E k[x1, ... , xn] for i = 1, ... , m,
and let 8-1 (xj + 1(V)) = g3 + 1(W), where g, E k[yx, ... , ym] for 9 = 1, ... , n.
Consider the maps

a V ----; W
(ai,.. . ,c,) '---4 (fi(ai,. . . ,an),... ,Jm(al,... jan)),

and

/3: W -- V
(bi,... ,bn) (gj(b1,... ,bm)) ... ,bn)).

It is readily seen that a maps V into W, # maps W into V, and that a and 8
are inverse maps.

Therefore, to determine variety isomorphism, we need to check whether a* is
a k-algebra isomorphism. We have seen in Theorem 2.4.10 how to compute the
kernel of a* and in Theorem 2.4.13 how to determine whether a* is onto.

ExAMPLE 2.5.9. Consider the variety V C C 2 defined by the equation x2 -
yx + 1 in the x, y plane. Also, consider the variety W C C 2 defined by the
equation u4+u3 + 2u2v + v2 + uv + 1 in the u, v plane. Finally consider the map

a : V -- W
(x,y) (y, -y2 - x).

We will show that this gives an isomorphism of the varieties V and W.
First we show that a maps V into W. So let (x, y) E V. Then if we replace u

and v by y and -y2 - x respectively in the equation defining W we get

y4+y3+2y2(-y2 -x)+(-y2 --x)2+y(-y2-x)+1 =x2 -xy+1 =0,

since (x, y) E V.
Now consider the corresponding map

a*: C[u, v]/J ---> C[x, y]/I
.f + J f(y, -y2 - x) + I,

where J = (u4+u3+2u2v+v2+uv+1) and I = (x2 - yx + 1) (see Exercise 2.3.16
part a to see why I = I (V) and J = J(W)). Let K = = (x2-yx+1,u-y,v+y2+x)
be the ideal in C [u, v, x, y] as in Theorem 2.4.10. We compute a Grobner basis
for K with respect to the lex term ordering with x > y > u > v to get

G- {x+u2 +v,y-u,u4 +u3 +2u2v+uv+v2 + 1}.

Thus K fl k[u, v] = (u4 + u3 + 2u2v + uv + v2 + 1) = J, and hence ker(a*) = 0
by Theorem 2.4.10 and so a* is one to one. Also, since x + u2 + v and y - u
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are in G, the map a* is onto by Theorem 2.4.13. Therefore a* is a C -algebra
isomorphism and, so by Theorem 2.5.8, a gives an isomorphism of the varieties
V and W. Note that the inverse map is given by ce-I (u, v) = (-u2 - v, u), for
(u,v)EW.

If the reader is interested in studying further the ideas presented in this section
we strongly recommend the book of Cox, Little, and O'Shea [CLOS].

Exercises
2.5.1. Show that in C 3, if the plane defined by x = 1 is removed from the variety

V = V (xy2 + xz2 - X Y - y2 - z2 + y, x2 + x y - 2x - y + 1), the Zariski
closure of what remains is an ellipse. Conclude that V is the union of this
ellipse and the given plane.

2.5.2. Let V and W be varieties in k n. Prove that I(V - W) = I (V) : I(W) .

2.5.3. a. Find the equation in C 2 for the curve parametrized by x = t3, y =
t2 + 1.

b. Find the equation in C 2 for the curve parametrized by x = t3 + 17y =
t2.

c. Find the ideal for the intersection of these two varieties and then de-
termine all points on this intersection.

d. Do part c by solving the equations directly.
2.5.4. Show by the method of this section that the variety in C3 parametrized

by x = u + uv -+- w, y = u + v2 + w2, z = u2 -+- v is all of C 3. [[lint: If
you try to compute this example using lex, your computer may not be
able to complete the computation. However, if you use deglex on the
u, v, w variables and also on the x, y, z variables with an elimination order
between them, you should encounter no difficulties.]

2.5.5. Consider the variety V parametrized by x = t3, y = t4, z = t5 in C 3.
a. Show that I (V) = (y5 - z4, -y2 + xz, xy3 z3, x2y - z2, x3 - yz). [Hint:

Use lex with x > y > z.1
b. Verify that also I (V) = (xz - y2, x3 - yz, x2y - z2) .

c. Show that the tangent variety of V is pa rametrized by x = t3+3t2u, y =
t4 + 4t3u, z = t5 + 5t4u. [Hint: The tangent variety is defined to be
the union of all the tangent lines of V. So this exercise is done using
elementary multivariable calculus.]

d. Compute generators for the ideal of the tangent variety of V. [Answer:
(15x4y2 -48 V5 - 16x5 z + 80xy3 z - 30x2 yz2 _ z4) .]

2.5.6. Let V be the variety in C3 defined by x2 + y2 - z2 = 0 and x3 + y = 0.
Define a : V -+ C4 by (a, b, c) i---i (a2,a+b,c2 + a, c). Find the ideal
of the image of a.

2.5.7. In C [x, y, z] let J = (-2y-y2+2z+z2,2x-yz-z2) and in C [u, v] let I =
(uv+v). Define the map a : V(I) - V (J) by (a, b) i (a2+b, a+b, a-b).
Prove that a defines an isomorphism between V(I) and V (J) (you may
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assume that I (V (J)) = J).

2.6. Minimal Polynomials of Elements in Field Extensions. In this
section we will use the results of Section 2.4 to find the minimal polynomial of
an element algebraic over a field k. We will assume that the reader is familiar
with the most elementary facts about field extensions [Go, He]. The results of
this section will not be used in the remainder of the book and may be skipped.

Let k C K be a field extension. Recall that if a E K is algebraic over k, then
the minimal polynomial of a over k is defined to be the monic polynomial p in one

variable, with coefficients in k, of smallest degree such p(a) = 0. Alternatively,
considering the k-algebra homomorphism 0: k[x]p k (a) defined by x i + a,
we have that ker(o) _ (p) . Moreover, the map 0 is onto, since a is algebraic,
and so

(2.6.1) k[x]/(p)
k(a),

under the map defined by x + (p) a.
We first consider the case where K = k (a) , with a algebraic over k, and our

goal is to compute the minimal polynomial of any i3 E K. We note that in order
to compute in k(a) it suffices, by Equation (2.6.1), to compute in the aae
k -algebra k [x] f (p) . We assume that we know the minimal polynomial p of a.

THEOREM 2.6.1. Let k C K be a field extension, and let a E K be algebraic
over k. Let p E k[x] be the -minimal polynomial of a over k. Let 0 =,A 8 E k(a),
say

ao -}.- ala + ... + anal
bo+.bla+...+b.. a""

where az7 b, E k, 0 < i < n, O -<j < m. Let f (x) = a0 + alx + ... + anx'z and
g(x) = by + bjx + - - + b,.,,xm be the corresponding polynomials in k[x]. Consider
the ideal J = (p, gy - f of k[x, y]. Then the minimal polynomial of 6 over k is
the monic polynomial that generates the ideal J fl k [y] .

Note that J n k[y] is generated by a single polynomial, since this is true for
every ideal in Ic[y] (i.e. k[y] is a principal ideal domaiu).

PROOF. Note that since k[x]l(p) is a field, and g(a) 0 0 (it is the denominator
of 0), there is a polynomial$ E k[x] such that gi -1 (mod (p)), that is gt - 1 E
(p). Let h = ft. Note that h(a) _ 8. Now consider ¢, the composition of the
affine algebra homomorphisms

k [y] k [xj / (p) k (a)
y d h -1- (p} -- ,(i.

Note that q is in the kernel of 0 if and only if q(/j) = 0. Therefore to find the
minimal polynomial of fl, we find the generator of the kernel of ¢. By Theorem
2.4.10, the kernel of the map ¢ is (p, y-h) flk[y]. Therefore it suffices to show that
(p, y - h) = (p, gy - f). First note that y - h = y - ft - e(gy - f) {mod (p)},
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and hence y - h E (p, gy - f) so that (p, y - h) C (p, gy - f) . Conversely,
gY - f g(y -fe) = g(y - h) (mod (p)). Therefore gy - f E (p, y - h), and
(p)gy-f)9(p5y-h). 0

The above result gives an algorithm for finding the minimal polynomial of an
element /3 in k(a): given a and 3 as in the theorem, we compute the reduced
Grobner basis G for the ideal (p, gy - f) of k [x, y] with respect to the lex term
ordering with x > y. The polynomial in G which is in y alone is the minimal
polynomial of /3.

EXAMPLE 2.6.2. Consider the extension field Q(a) of Q, where a is a root of
the irreducible polynomial x5 - x --- 2. Now consider the element 8 = 1- a 2a3 E
Q(c ). We wish to find the minimal polynomial of /3. We consider the ideal J =
(x5 - x - 2, xy + 2x3 + -- x -1) in Q[x, y]. We compute the reduced Grobner basis
G for J with respect to the lex term ordering with x > y to obtain

G= 1438 4 2183 3 + 10599 2 8465 101499

45887 45887y 45887y
- -

45887y
4,5887

5 +
11 4+4y3 -5 5Y2 + +259 .Y Zy y y

Therefore the minimal polynomial of /3 is y5 + 2 y4 + 4y3 - 5y2 + 95y + 259.
This technique can be extended to a more general setting of field exten-

sions of the form K = k(a1, ... ,a,,,). For this we need the following nota-
tion which we use for the remainder of this section. For i - 27... , n and
p E k(al , ... , az_ 1) [xi], we let p be any polynomial in k[x1, ... , xi] such that
P{al , ... , ai_ 1) x2) = p. We note that p is not uniquely defined, but every ap-
plication we will make of p will not depend on the particular choice we have
made.

We now determine the minimal polynomial of any element /3 of k (a 1, ... , an )
using the following result, which is similar to Theorem 2.6.1.

THEOREM 2.6.3. Let K = k(al, ... , an) be an algebraic extension of k. For
i=11 ... , n, let pi E k(011, ... , az_1)[xZ] be the minimal polynomial of ai over
k(ai, ... , ai_1). Let 13 E k(al,... , an), say

f (al,- an)
JQ = g(al,... ,an)

where f, g E k[x1, ... ,xn]. Consider the ideal J = (-p , - , pn, gy - f) contained
in k [xl , _ .. , xn, Y1. Then the minimal polynomial of /Q over k is the monic poly-
nomial that generates the ideal J f1 k [y] .

PROOF. We first show that

k[xi, ... , xn]/(pl, ... , p,) 2-4 k(al, ... , an)
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using the map

On : k[xl,... , xn] -- k(cr1,... an)
xi I --' ai.

We note that On is onto, since a,,.. - , a, are algebraic over k. It remains to show
that ker(/n) = (h,... , pn) . For this we use induction on n. The case n = 1 is
Equation (2.6.1 ). The fact that p1, ... , pn, E ker(gin) is immediate. Now let
f E k[xl,... , xn] be such that f (a1, ... , an) =0. Let

h(xn) = f (al,... , a,,-,, xn) E k(al, ... , an-1) [xn],

and note that h(an) = 0. Therefore pn divides h, by definition of pn. Say h =
pnin , for some In E k(1,... , an-1) [xn] . Consider f - pn?n E k [x 1, ... , xn] and
write

f - pnQn = A,(xl, ... ,xn-1)x vn.

Then, since

(f -pn?n)(al,... ,c _1,x,.z) = h - Pntn= 0,

we see that for all v, g1, (a1, ... , an _ 1) = 0. Therefore gx, (x1, ... , xn_ 1) is in the
kernel of

on-1: k[x1,.. ,xn-l] ---) k(a1, .. ,an-1),
and hence

gy(x1, ... , xn_1) E (Pis ... Pn---1)2

by induction. Thus f -- pn?n E (h,... , pn-1) , and f E (h,... , pn) . Thus
ker(On) = (h,... , pn) as desired. The proof now proceeds as in Theorem
2.6.1. 0

EXAMPLE 2.6.4. Consider the field extension Q C Q(4 s 5). The minimal
polynomial off over Q is p1 = X2 - 2 E Q[x1] and the minimal polynomial
of 3 5 over Q(V) is p2 = x2 - 5 E Q(v ) [x2] . We wish to find the minimal
polynomial of + 05-- We compute the reduced Grobner basis G for the ideal

(p,p2, y - (x1 + x2)) = (x1 - 2, x2 - 57y- (x1 +X2)) C Q[xl, x2, y]

with respect to the lex term ordering wih x1 > x2 > y to obtain

G = {1187x1 - 48y5 - 45y4 + 320y3 + 780y2 - 735y + 1820,

1187x2 + 48y5 + 45y4 - 320y3 - 780y2 - 452y -1820,

y6 - 6y4 - 1ft3 + 12Y2 - 60y + 17}.

Therefore the minimal polynomial of h + 3 5 over Q is y6 - 6y4 -10y3 + 12y2-
60y + 17.

We also see that V2- + -M5- has degree 6 over Q and hence Q(/ + 3 5) _
Q(/, ;Y5-).
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EXAMPLE 2.6.5. The minimal polynomial of 2 over Q is pl = xi -2 E Q[xi].
All the roots of this polynomial generate the extension Q(4 2, i), where i the

complex number such that i2 = -1. We consider the element 1 + 2 . We4 cs

wish to find the minimal polynomial of 8 over Q. First, the minimal polynomial
of i over %4(2) is p2 = x2 +1. Then p1 = pl, and p2 = p2. We consider the ideal
J= (x1 4-27X 2 + 1, x1y - (x1 + x2)) of Q[x1i X2, y]. The reduced Grobner basis
for J with respect to the lex term ordering with x1 > x2 > y is computed to be

G = {X1 2 3x -}- Qx2 - x -}- 2x x+ 1 4 - 4y3 + fi 2 --- 4 +2 2 2, 2 ,y 2

Therefore the minimal polynomial of /3 is y4 - 4y3 + 6y2 - 4y +.I .

Alternatively, Q(4 2, i) = Q(4(2-, iA4(2-). The minimal polynomial of i 4 2 over
Q (Y2} is p2 = x2 + v. Thus P2 = x2 + X2. We again want to compute the

minimum polynomial of /3 = 1 + We consider the ideal J = (x4 - 2,x2 +4 s

x1, xi y - (X2
i

+ X2)). The reduced Grabner basis for J with respect to the lex
term ordering with xi > X2> y is computed to be

G-= x2+2 2-4 +21X2+2 - 2+6-2 4_4y3 +62_4 - .1 y y
Y3

y y y y 2

So we obtain the same result as before.
Since the degree of /3 over Q is 4, and since the degree of Q(4 2, i) over Q is

8, we see that Q(,8) is a subfield of Q(' 2, i), but is not equal to it.
In the preceding two examples, we used a degree argument for deciding

whether k(/3) is equal to k(a1,... , a,,). We will give another method for de-
termining this which has the added advantage of expressing the ai's in terms of
f3. This algorithm is a consequence of the following theorem.

THEOREM 2.6.6. Let al , ... , an and p1, ... , pn be as in Theorem 2.6.3. Let

E k(a'X> an), sayN 6 = f (ai, ... , an) , with f, g E k[xl>... xri]. Let J be as
> >

g(al,... , an)
in Theorem 2.6.3, and let G be the reduced Grobner basis for J with respect to an
elimination order with the x variables larger than y. Then k(a1, ... , an) = k(3)
if and only if, for each i = 1, ... , n, there is a polynomial gi E G such that
gi = xi - h2, for some hz E k [y]. Moreover, in'this case, az = hZ (fl) .

PROOF. Let I = (-pl I ... , pn}, and let I E k[xi, ... , xn] be such that gt----1 E I.
Set h = f f, and note that h(ai, ... , an) = 3. Consider

k[y] 26) k[x1,... , xn]/I - k(a1, .. .
y h + I /3.

an)

Then k(ai,... , an) = k(j3) if and only if 0 is onto. We conclude by using
Theorem 2.4.13 and the fact that J = (I, y - h). D
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EXAMPLE 2.6.7. In Example 2.6.4, the Grobner basis G contained the follow-
ing polynomials

1187x, - 48y5 - 45y4 + 320y3 + 780y2 - 735y + 1820,

11872 + 48y5 + 45y4 - 320y3 - 780y2 - 452y - 1820.

This gives another proof that Q(V2- + $ 5) = Q(V2-, g 5). Moreover, we have

(2.6.2)

= 1187 (48(-,f2- + g(5-)5 + 45(-*,f2- + 9(5-)4 - 320(V2 + V5)3

---7800 + 3 5)2 + 735(vf2- + 9 5) -1820 ,

and

(2.6.3)

$ 5 187 1-48(f + N-)5 - 45( + V5-)4 + 3200 + g(5-)3

+7800+ 35)2+452(x+ a5}+1820
.

However, in Example 2.6.5, no polynomial of the form xl -- hl exists in G
with hl E k [y], and this gives another proof that Q(,6) 0 Q(4(2-, i).

Finally, we also note that in Example 2.6.2 we have Q 1- a
a3

= Q(a) and

a
1 + 2183a3 -10599 2+ 8465 .+ 101499

45887 45887 45887 45887 45887

where

Exercises
2.6.1. Compute the minimal polynomial of the following over Q.

a. 3'2- 3(4-

b.
vf2- +7

V2-+
c. .+3where a3-a--1=0.

2.6.2. Compute the minimal polynomial of the following over Q.
a. V2- + V2- + 5.
b. 32+ 45+5.
C. V2- + 0- + V5-.

2.6.3. Show that Q(ax, a2) _ Q((3} and express al and a2 in terms of where

a3_a -1=0 a2=5and _.
ala2+1
a1 +a2

2.6.4. In Theorem 2.6.3 we required that pi+1 E k(al, ... , az)[xz+x] be the min-
imal polynomial of ai+1 over k(aj, ... , as). The minimal polynomial of
az+1 over Ic would not do as the following example shows. Let K =
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of

Q(,`(21 i ' 2) and Q = ° 2 + 4(2- 2. We wish to find the minimal polynomial

0
a. Use Theorem 2.6.3 to compute the minimal polynomial of 8 over k.
b. Instead of the minimal polynomial of i d 2 over Q(4 2), use the min-

imal polynomial of i 4 2 over Q in the method described in Theorem
2.6.3, and see that, now, the method does not give the correct minimal
polynomial of 0 over Q.

2.6.5. Find, explicitly, the quadratic subfield of Q(() where (is a primitive 7th
root of unity. [Hint: Using the method of the text, note that the minimal
polynomial of ( is X-1 and that this quadratic subfield is the fixed field
of the automorphism defined by (u (2.]

2.6.6. Complete the proof of Theorem 2.6.3.

2.7. The 3-Color Problem. In this section we want to illustrate how one
can apply the technique of Grobner bases to solve a well known problem in
graph theory: determining whether a given graph can be 3-colored. (The same
technique would work for any coloring.) This material is based on a portion of
D. Bayer's thesis [Ba]. The material in this section will not be used elsewhere
in the text and may be skipped.

Let us first state the problem precisely. We are given a graph 9 with n vertices
with at most one edge between any two vertices. We want to color the vertices in
such a way that only 3 colors are used, and no two vertices connected by an edge
are colored the same way. If 9 can be colored in this fashion, then is called
3-colorable. This can be seen to be the same as the 3-color problem for a map:
the vertices represent the regions to be colored, and two vertices are connected
by an edge if the two corresponding regions are adjacent.

First, we let = e 2V E C be a cube root of unity (i.e. 3 = 1). We represent
the 3-colors by 1, , 62, the 3 distinct cube roots of unity. Now, we let xx, ... , xn
be variables representing the distinct vertices of the graph 9. Each vertex is to
be assigned one of the 3 colors 1, e, e2. This can be represented by the following
n equations

(2.7.1) x3-1`0, 1<i<n.
Also, if the vertices xi and xj are connected by an edge, they need to have a
different color. Since x3 x , we have (x. - xj) (xZ

+
xaxj + x2) = 0. Therefore

xz and xj will have different colors if and only if

(2.7.2) xi + xix3 + x? = 0.

Let I be the ideal of C[xl, ... , x,,] generated by the polynomials in Equation
(2.7.1) and for each pair of vertices xi, x3 which are connected by an edge by the

polynomials in Equation (2.7.2). We will consider the variety V(I) contained in
C 1. The following theorem is now immediate.

TxEOttElvt 2.7.1. The graph 9 is 3-colorable if and only if V(I) 34 0.
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We have seen in Section 2.2 that we can use Grobner bases to determine
if V(I) = 0. We first compute a reduced Grobner basis for 1. If 1 E G, then
V(I) = 0 and otherwise V(1) ; 0 (see Theorem 2.2.6).

EXAMPLE 2.7.2. Consider the graph 19 of Figure 2.1.

xs

FIGURE 2.1. The graph Q

The polynomials corresponding to 9 are:

xZ -1, for i = 1, ... , 8

and

x? + xzx3 + for the pairs (i, i) E {(1, 2), (1, 5), (1, 6), (2, 3), (2, 4),

(2, 8), (3, 4), (3, 8), (4, 5), (4, 7), (5, 6), (517), (6, 7), (fit 8) }.

We compute a Grobner basis G for the ideal I corresponding to the above poly-
nomials. Keeping in mind Corollary 2.2.11, we use the lex term ordering with
x1 > X2> > x8. We obtain

G ={X1 - x7, x2 + x7 + x8, x3 - x7, X4 - x8, X5 + X7 + x8

X6 - x8 x7 + X7X8 + x8, x8 -1}.

Since 1 V G, we have that V(1) 0, and hence, by Theorem 2.7.1, 19 is 3-
colorable. We can use the Grobner basis G to give an explicit coloring, since
the system of equations represented by G turns out to be easy to solve. Let us
assume that the 3 colors we are using are blue, red, and green. We must first
choose a color for x8, say red, since the only polynomial in one variable in G is
x8 - 1. We then must choose a different color for x7, say blue, because of the
polynomial x7 + x7x8 + x8 E G. Then we have that x1 and x3 must be blue
because of the polynomials x1--- x7, x3 - X7 E G, and x4, x6 must be red because
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of the polynomials X4 - X8 7 xs -- x8 E G. Finally x2 and x5 have the same color,
which is a different color from the colors assigned to x7 and x8, so X2 and x5 are
green; this is because the polynomials x2 + x7 + x8, and x5 + x7 + x8 are in G.

We note that it is evident from the Grabner basis in Example 2.7.2 that there
is only one way to color the graph G, up to permuting the colors, and so it should
not be too surprising that solving the equations determined by the Grobner basis
is easy. However, if there is more than one possible coloring, the Grabner basis
may look more complicated. This is illustrated in the following example.

EXAMPLE 2.7.3. Consider the graph G' in Figure 2.2.

xg

FIGURE 2.2. The graph

The polynomials corresponding to 9' are:

xz -- 1, for i = 1, ... , 9

and

x Z + xix5 + for the pairs (i,j) E {(1, 2), (1, 4), (1, 5), (1, 6), (2, 3), (2, 5),

(2, 7), (3, 4), (3, 6), (3, 9), (5, 6), (6, 8), (7, 8), (8, 9) }.

We compute a Grobner basis G' for the ideal I' corresponding to the above
polynomials using the lex term ordering with x1 > x2 > ... > x8 > xg to obtain

' 3-1 x +x x +x (x7 x x +x +x= {x9 38 ) g} 7 8 9
X6 + x7 + x8, (-x5 + x7)(-x5 + x8),

(x6 - x9)(x4x7 + X4 X8 + X7X8 + X4 X9 + X7 X9 + XS X9),

(x4 - x5)(x4 + X7 + x8), X3X7 + x3x8 - x7x8 + X3X9 + xg

x3x4 + X4X5 -- X4X7 + X5X7 -- X4X8 + X5X8 - x3XJ - X295

X
3

+x3xg + x9,x2 +x7 +x8,xx +x5 - X7 -x8}.
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Since 1 V G', we have that V(I'') 0 0, and hence, by Theorem 2.7.1, g' is
3-colorable. This Grabner basis looks much more complicated than the one in
Example 2.7.2. This reflects the fact that there are many possible colorings of
this graph. In fact, it is easy to 3-color the graph 9' by trial and error.

Exercises
We note that we have tried to keep these problems small, without making

them too trivial looking, but your Computer Algebra System may still have
trouble doing the computations.

2.7.1. Show that if we add an edge between x2 and x5 in the graph of Figure
2.1, the graph is no longer 3-colorable. (This can be done either by com-
puting a Grabner basis for the new ideal, or by observing what was done
in Example 2.7.2.)

2.7.2. Show that if we add one edge between vertices x1 and x3 in the graph g'
of Figure 2.2, then 9' is still 3-colorable. Show that now the 3-coloring is
unique except for the permutation of the colors.

2.7.3. Generalize the method given in this section to the case of determining
whether graphs are 4-colorable.

2.7.4. Use the method of Exercise 2.7.3 to show that in the trivial example where
there are 4 vertices, each pair of which is connected by an edge, the graph
is 4-colorable and show that the equations imply that all 4 vertices must
be colored a different color.

2.7.5. Show that in principle (by this we mean that the computations would
probably be too lengthy to make the scheme practical) the method in this
section could be generalized to giving a method to determine whether a
graph is m-colorable for any positive integer m.

2.8. Integer Programming. The material in this section is taken from P.
Conti and C. Traverso [CoTr]. No use of this section will be made elsewhere in
the book.

The integer programming problem has the following form: let az j E 7, bb E Z,
and cj E R, i = 1, ... , n, j = 1, ... , m; we wish to find a solution (ai, U2, ... , am)
in Nm of the system

(2-8-1)

alla1 + a12 0'2 + ... + aio. = b,

a21a1 + a22o2 + ... + a2mam = b2

an1al + an2o2 + ... + anmum = bn7

which minimizes the "cost function"

m
(2.8.2) C(a1,a2,... ,crm) _ >cjaj.

j=1
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This problem occurs often in scientific and engineering applications. There
are many books on the subject which the reader may consult, see, for example,
[Schri]. Our purpose here is to apply the results of Section 2.4 to indicate a
solution method to this problem.

Our strategy is to:
(i) Translate the integer programming problem into a problem about poly-

nomials;
(ii) Use the Grobner bases techniques developed so far to solve the polyno-

mial problem;
(iii) Translate the solution of the polynomial problem back into a solution of

the integer programming problem.
In order to motivate the general technique presented below, we will first start

with the special case when all azj's and bz's are non-negative integers. We will
also concentrate first on solving System (2.8.1) without taking into account the
cost function condition (Equation (2.8.2)).

We introduce a variable for each linear equation in (2.8.1), say x1, x2, ... , xn,
and a variable for each unknown u1, say yi , y2 , ... , y,n. We then represent the
equations in (2.8.1) as

xai1Ql+'-+dsm,Qm - xbs
g i ,

for i = 1, ... , n. Then System (2.8.1) can be written as a single equation of
power products

xi11 Q1.+...+a1m a'1n ... xn 1 Q1 +... +a sm Qua xii x22 . . . Xbn

or equivalently,

(2.8.3) (XallXa2l , , XQn1 0i . . . (X1mX2maa... xa'nm Cr7n = Xbi b2 . . . xbn' .
1 2 n) 1 2 n ) 1 Z n

We note that the left-hand side power product in Equation (2.8.3) can be viewed
as the image of the power product yl 1 y2 2 ym under the polynomial map

k[yl, . , y,n]

yj -- k[xl,... xn]
a15 xa23 xan3X1 2

n

The following lemma is then clear.

LEMMA 2.8.1. We use the notation set above, and we assume that all a23 's and
bi's are non-negative. Then there exists a solution (a,, 02, ... , am) E N'n of Sys-
tem (2.8.1) if and only if the power product xilx22 xbn is the image under 0 of
a power product in k [yi, ... , ym]. Moreover if xbi x2 ... xnn = cb (yl ' y2 2 ... y z
then ((Ti, U2, ... , gym) E Ntm is a solution of System (2.8.1).

We have presented in Section 2.4 an algorithmic method for determining
whether an element of k[xz, ... , xn] is in the image of a polynomial map such
as 0 (see Theorem 2.4.4). However the above lemma requires that the power
product xii x22 - . xnn be the image of a power product, not a polynomial. But,
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because the map 0 sends the variables y3 to power products in k[x1, ... , Xn], we
have

LEMMA 2.8.2. We use the notation above, and we assume that all aZ3 's and
bb 's are non-negative. If xi1 x22 . xnn is in the image of 0, then it is the image
of a power product yl 1 y2 2 .. yM E k [y1, ... , ym] .

PROOF. Let K -== {y3 -x11' x22 ... xnj j = 1, . - . , m} be the ideal considered
in Theorem 2.4.4. Let G be a Grobner basis for K with respect to an elimination
order with the x variables larger than the y variables. Then, by Theorem 2.4.4

xbx x22 ... xnn E im(4) xb1 x22... xnn --- - + h with h E k[yl,... , y n] .

Moreover, if xi1 x2 . xnn -G + h with h E k[yj, ... , y.] then xbl x2 - Xbn

q5(h)-
We first note that the polynomials that generate K are all differences of two

power products. Therefore, during Buchberger's Algorithm to compute G (see
Algorithm (1.7.1)}, only polynomials which are differences of two power products
will be generated. Indeed, the S--polynomial of two polynomials which are both
differences of two power products is itself a difference of two power products,
and the one step reduction of a polynomial which is a difference of two power
products by another polynomial of the same form produces a polynomial which
is itself a difference of two power products. Therefore the polynomials in G are
all differences of two power products. Now if xx1 x2 xnn is in the image of 0,
then it reduces to a polynomial h E k[y1, ... , y,n]. But the one step reduction
of a power product by a polynomial which is a difference of two power products
produces a power product. Therefore h is a power product and we are done. D

The proof of Lemma 2.8.2 gives us a method for determining whether System
(2.8.1) has a solution, and for finding a solution:

(i) Compute a Grobner basis G for K = (yj -- x11' x221 .. . xn ' j =
1) ... , m} with respect to an elimination order with the x variables larger
than the y variables;

(ii) Find the remainder h of the division of the power product xi1 x2 . xbn

by G;
(iii) If h V k[yl, ... , y n,], then System (2.8.1) does not have non negative in-

teger solutions. If h = yi 1 y22 ... y n , then (a1, 92 , ... , am) is a solution
of System (2.8.1).

To illustrate the ideas presented so fax, we consider a simple example.
EXAMPLE 2.8.3. Consider the system

3o1 + 2o-2 + 0'3 + (74 = 10
4o1 + 0.2 + a'3 = 5.

We have two x variables, x1, x2, one for each equation. We also have four y
variables, yx, y2, y3, y4, one for each unknown. The corresponding polynomial
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map is

Q[Y1,y2,y3,y41 -- Q[x1,x2]
Yl xix2
Y2 x], x2

y3 x1x2

y4 1} xi
and so K = (y, - x1x2, y2 - x2Jx2, y3 - x1x2) y4 - xl) C Q[y1, y2, y3, y4, x1, x2]
The Grobner basis for K with respect to the lex order with x1 > x2 > yl >
Y2 > y3 > y4 is G = If,, f2, f3, f4, f5}, where fi = xl - Y4, f2 = X2Y4 - y3,
f3 ~ x2y3 y1, f4 = Y2 - Y3Y4, f 5 = y1y4 - y3. Then

10 5 5 5x1 x2 y3 y4,

and h = y3 y4 is reduced with respect to G. Using the exponents of h we get that
(0, 0, 5, 5) is a solution of System (2.8.4).

Now we turn our attention to the more general case where the a13's and b1's in
(2.8.1) are any integers, not necessarily non-negative. We still focus our attention
on determining whether System (2.8.1) has solutions and on finding solutions,
that is, we still ignore the cost function condition (Equation (2.8.2)). We will
proceed as before, except that we now have negative exponents on the x variables.
Of course, this cannot be done in the polynomial ring k[x1, ... , x,,]. Instead, we
introduce a new variable w and we work in the affine ring k[xl, ... , x,z7 2U] /I,
where I = (XIX2 . xnw - 1). We may choose non negative integers a j ,

for each j = 1, ... , m and i = 1,... , n such that for each j = 1,... , m we have

(a13,a2,,... ,an,) any) +a3(-1,--1,...

For example, (-3, 2, -5) (2,7,0) + 5(-1, -1, -1). Then in the mine ring
k[xl, ... , xn, w] /I we can give meaning to the coset xi l j x22? - xnj +I by defin-
ing

xal1 xa2j ... xan + I = xa1jx4 3 ... xn2 Waj +
1 2 n 1

Similarly, (b1, b2, ... , bn) _ (b1, b2, ... , bn) +#(-11 -11 ... , -1), where bb and /3
are non negative integers for i = 1, ... , n, and define

x 1 x22... X n + I , = x2 ... X Wa + '.

Therefore we have the following equation which corresponds to Equation (2.8.3)

(2.8.5)
all a 1 al Ql alsn a:L7ri a?r? Qrr bi bn

tup(xl ...xn w ... (xI ...xn +.I=xl ...x" -- I.

We therefore proceed as before, and we note that the left-hand side of Equation
(2.8.5) can be viewed as the image of the power product y11 y2 2 . y n under
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the algebra homomorphism

k[yl,... , ym]

yj

4,--.- 3 k[xx, ... xn, w]/I

a1?
at I

x wa? +.xanj1 2
. n

As before we have

LEMMA 2.8.4. We use the notation set above. Then there exists a solution
b' 12... xnnw1 +1 is theam) E Nm of System (2.8.1) if and only if x11 x2

image under 0 of a power product ink [yx, ... , y,,]. Moreover if x21 x22 - xnn wfl+
0(y0'1 012. °'m )then (uI,o2,... , 6,n) is a solution of System (2.8.1).I _ 1 2 ym

We have presented in Section 2.4 an algorithmic method for determining
whether an element of k[xi, ... , xn, w]/I is in the image of an affine algebra
homomorphism such as 0 (see Theorem 2.4.13). As in the first case we consid-
ered, the above lemma requires that xi1 x22 xnn wp + I be the image of a power
product, not a polynomial. As before we have

LEMMA 2.8.5. We use the notation set above. Ifx11 x22 ... xn' w# + .I is in the
image of 0, then it is the image of a power product yi z y2 2 ' ' ' ym E k [Y I, ... Yam].

PROOF. As in Theorem 2.4.13, let K C k [yi, ... , yn, x1, ... , x,,, w] be the
at at al

ideal generated b y x1x2 ... xnw-1 a n d {yj_x13x 221 .. x 'wa, I j = 1, ... , m}.
Let G be a Grobner basis for K with respect to an elimination order with the x
and w variables larger than the y variables. Then, by Theorem 2.4.13,

b1nxi1 x22 . . . x1 w'8 + I E im( ) x11 x22 ... x, w'- -'+ h E k[y1, . y.].

Moreover, if x 1' x22... xn'l w'3 -+ h with h E k [y! , ... , then

xi' x22 ... xnn wa + I = 0(h)

As in Lemma 2.8.2, the polynomials that generate K are all differences of
two power products, therefore, the argument used in the proof of Lemma 2.8.2
can again be applied. That is, the polynomials in G are all differences of two
power products, and the reduction by G of a power product produces a power
product.

EXAMPLE 2.8.6. We consider the following system

3a1 - 292 + a'3

4a2 + Or2 - (73

04 = ---1

= 5.

We have two x variables, X1, x2, one for each equation. We also have four y vari-
ables, YI, y2, y3, y4, one for each unknown. We consider the ideal I = (xlx2w ----1)
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of Q[x1, x2, w] and the algebra homomorphism

[y17 Y2, y3, y4] } Q[x1, x2, w]/1
Y1 '-.- x1 x2+1
Y2 ---"' x2w2 -f -' I

Y3 xiw+I
Y4 }- 4 x2w -f- I'.

Thus K (y1 --- x1x2, y2 - 4w2,y3 - 4w,y4 - x2w, x1x2w -- 1). The Grobner
basis for K with respect to the lex order with x1 > x2 > w > yx > y2 > y3 > y4
is G = {fl, f2, f3, f4, f5, f6, f7,18, f9}, where fl = x1 - Y1 Y34 f2 = X2 - y33y46

,

f3 = W - y3y47 f4 = yly3y4 - 1, f5 = Y1Y3y4 - Y2, A = yiy3y4 - y2, f7 =
y1y3y4° - y2 , Is = y1y41- Y24, f9 = Y2 Y3 - y4 - We now reduce the power product

I)+x2w by G (note that xl 1x2 -}- I =x2w-+

x2w Y1Y39J4$

y1Y3y47

and yly2y4 is reduced with respect to G. Observing the exponents of the different
power products obtained during the reduction, we have the following solutions
of System (2.8.6)

(6, 0,19, 38), (5, 0,15, 31), (4, 0,11, 24), (3, 0, 7,17), (2, 0, 3,10), (1) 1, 0, 2).

We return to the original problem. That is, we want to find solutions of
System (2.8.1) that minimize the cost function c(o1, 0'2, ... , °m) . = M

x coo

(Equation (2.8.2)).
As we mentioned before, the only requirement on the term order in the method

for obtaining solutions of System (2.8.1) described above, is that we have an
elimination order between the x, w and the y variables with the x and to variables
larger. Our strategy for minimizing the cost function is to use the c j's to define
such a term order.

DEFINITION 2.8.7. A term order <c on the y variables is said to be compatible
with the cost function c and the map 05 if

S(yi"yaZ ... ym ) yM )
and yi 1 y2 2 ... 4r <c Y1 Y2 Z ... y°z

C(u1, ... , Qm) < C(o'1, ... , 0m )
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Term orders on the y variables which are compatible with c and 0 are exactly
those orders which will give rise to solutions of System (2.8.1) with minimum
cost as the next proposition shows.

PROPOSITION 2.8.8. We use the notation set above. Let G be a Grobner basis
for K with respect to an elimination order with the x and w variables larger
than the y variables, and an order <,; on they variables which is compatible with
the cost function c and the map q5. If x 1 x22 ... xn ' wQ + y3' . . . ym , where

y71. ... y is reduced with respect to G, then (ar,... , cr,,,,) is a solution of System
(2.8.1) which minimizes the cost function c.

r

b1
PROOF . Let xi' x22... xnnW,6 + y1' ... ym , with yi 1 ... ym reduced with

respect to G. Then (cm7... , orm) is a solution of System (2.8.1) by Lemma
2.8.4. Now assume to the contrary that there exists a solution (os,... , cr'n)
of System (2.8.1) such that E7nj cjorb < F7n 1 c3 cr .Consider the correspond

ing power product y1; ... ym . Note that 0(yi i ... ym) (y 1 . . . ym) _
x2i x22 ... xnn w# + I. Therefore yi ... y - yi ... yrn E ker (4) . By Theorem

2.4.10, ker(gb) C K, so that yi 1 .. ym .- y ... ym E K. Hence ii ... yam -
r i

l
atyi i ... ym )+ 0. Since yi 1 .. ym >c y ... ym by assumption, we have

It(y... ym - yi ... y;m) = yi 1 ... ya . But yx 1 - . ym is reduced with re-1

spect to G, and therefore yi 1 ... ym - yi 1 . . yam cannot reduce to 0 by G. D

We note that a different minimal solution may be obtained if we use a different
order, as long as we have an elimination order with the x and w variables larger
than the y variables, and as long as we use an order on the y variables compatible
with the cost function c and the map 0.

For some cases, the term order <c is easy to obtain, however the general case
is more involved. We refer the reader to the original paper [CoTrJ.

One particular simple case is when the cost function only involves positive
coefficients, that is cj > 0 for j = 1, ... , m. Then the following order is a
term order compatible with the cost function and the map 0: first order power
products using the cost function, and break ties by any other order (see Exercise
2.3-5). The following illustrates this idea.

EXAMPLE 2.8.9. We go back to Example 2.8.6 but we now consider the cost
function

c(a1, U2, 0'3, 0r4) = 100091 + art + 03 + 100ar4.

We use the lex order on w and the x variables with xl > X2> w. The power
products in y are first ordered using the cost function and ties are broken by

r r ! r

lex with yl > Y2 > y3 > Y4. That is y11 y2 2 y , 3 y4 4 < yi i y2 2 y33 y4 4 if and only if
=1000ar1 + ore + ar3 + 10094 < 10000r1 + 92 ' + a'3 4+ 100ar or 1000a l + r2 -+- a3 + 100a4

r r r r

1000' + (T' + CI' + 100o and °i Q2 s a4 < ai 2 a3 a4 , Finally we use
1 2 3 4 y1 y2 y3 y4 e y1 y2

ay3
y4
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an elimination order with w and the x variables larger than the y variables. The
reduced Grobner basis for K is

G = {w y2y4, y4 - Y2Y3, x1 - Y1Y Y °, X2 - Yly2Y3, Y1Y 11 1 - 1}.2 3

We have x2 w yl y2 y3 which gives the solution (1,3,2,0). This solution is
of minimal cost.

Exercises
2.8.1. Use the method of Lemma 2.8.1 to solve the following system of equations

for non negative integers.

3a1 + 2Q2 + 63
4a1 + 3Q2 + 63

10

12.

2.8.2. Use the method of Lemma 2.8.1 to solve the following system of equations
for non negative integers.

3471 + 2472 + 473 = 10
4ax + 3472 + U3 = 4.

2.8.3. Use the method of Lemma 2.8.1 to solve the following system of equations
for non negative integers.

3Q1 + 292
4a, + 392
2a1 + 4v2

+ 63 + 2474 = 10

+ ff3 = 12

+ 2cr3 + 474 = 25.
2.8.4. Use the method of Lemma 2.8.1 to solve the following system of equations

for non negative integers.

347x + 2472 + a3 + 2474 = 10

4y + 3C F2 473 = 11

12(71+4(72+2(73+ 94 = 10-

2.8.5. Prove Lemma 2.8.4.
2.8.6. Use the method of Lemma 2.8.4 to solve the following system of equations

for non-negative integers.

247x + Cr2 - 3O3 (74 = 4

-3c+ 202 - 21T3 - (74 = -3.
2.8.7. In Example 2.8.9 replace the cost function by

c(91472, 473, 074) = 1000 1 + a2 + 473 + 474 .

2.8.8. In Example 2.8.9 replace the cost function by

C(071, Cr2, 473, 474) = 0.1 + 1000472 + (73 + 474.



Chapter 3. Modules and Grobner Bases

Let k be a field. In this chapter we consider submodules of k[x1, ... , x."] m and
their quotient modules. In Section 3.1 we briefly review the concepts from the
theory of modules that we require (see [Hun]). Then in Section 3.2 we define
the module of solutions of a homogeneous linear equation with polynomial, co-
efficients (called the syzygy module) and use it to give yet another equivalent
condition for a set to be a Grobner basis for an ideal. In Section 3.3 we fol-
low Buchberger [Bu79] and show how to use this new condition to significantly
improve the computations of Grabner bases. In Section 3.4 we show how to com-
pute an explicit generating set for the syzygy module of a vector of polynomials.
We then generalize the definition of Grobner bases and the results of the previous
two chapters to modules (Section 3.5) and show that the same type of applica-
tions we had for ideals are possible in the more general context of submodules
of free modules (Section 3.6). In Section 3.7 we generalize the results of Section
3.4 to systems of linear equations of polynomials. In Section 3.8 we show how
this theory can be applied to give more efficient methods for the computations
of Chapter 2 that required elimination. In the next to last section we explicitly
compute Horn. That is, we compute a presentation of Hom(M, N) given two
explicitly presented modules M and N. Finally, in the last section we apply the
previous material to give results on free resolutions and outline the computation
of Ext(M,N).

3.1. Modules. In this section we let A be any commutative ring. The ring
that will be of interest to us in later sections is A = k[xx,... , z,.]. We will
consider the cartesian product

Am =
a1

a2EA,i=1,...,m
L am

That is, A' consists of all column vectors with coordinates in A of length m.
Although we will always consider the elements of Am as column vectors (which
we will enclose in square brackets), in the interest of saving space in the book

113
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we will usually write the elements of A' as row vectors enclosed in parentheses.
In other words, we will often use

(ai,... , an) instead of

The use of column vectors is necessitated by the desire to have function compo-
sition match the usual notation used in matrix multiplication.

The set A' is called a free A-module. A set M is called an A-module provided
that M is an additive abelian group with a multiplication by elements of A (scalar
multiplication) satisfying:

(i) for all aE Aand for all mE M, amE M;
(ii) for all a E A and for all m, m' E M, a (m + m') = am + am';

(iii) for all a, a' E A and for all m E M, (a + a')m = am + a'm;
(iv) for all a, a' E A and for all m E M, a(a'm) = (aa')m;
(v) forallmEM, 1m =m.

Scalar multiplication in A' is done componentwise; that is,

or using our space saving notation, a(a1:... , a.) = (aal, ... , aam), for a E A
and (a1,... , az) E Am. The module A" is called free because it has a basis,
that is a generating set of f linearly independent vectors. For example,

el=(X,4,... 1 0),e2=A1,01 ...70}7 ... e.=(0,0,...,0,1)

is a basis which we will call the standard basis for Am. In other words, every
element a = (a j , ... , a.) of A' can be written in a unique fashion

m

a= E aj ei, where ai E A.
%=I

Note that an ideal of A is an A-module, and in fact a submodule of the A
module A = A' . A submodule of an A-module M is a subset of M which is an
A -module in its own right. For example, if a1, _ .. , a3 are vectors in Am, then

is a submodule of Am. We denote this submodule by (ai,... , a8) C Am, and we
call {a1,... , as} a generating set of M.

The concept of an A-module is similar to the one of a vector space, except that
the set of scalars in the module case is the ring A which is not necessarily a field.
Submodules of Am are used for linear algebra in Am in the same way subspaces of
km are used for linear algebra in km. For example, let M = (al,... , as) 9 Am.
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If we think of the vectors az's as the columns of an m x s matrix S, then M is
the "column space" of the matrix S, that is,

bl

M= Sbj b= EAe
be

So, given a E Am, the system of m linear equations (with unknown the coordi-
nates of b E A3) determined by the matrix equation

(3.1.1) Sb = a

can be translated into the question of whether the vector a is in M or not.
In the case where m = 1, that is, M is an ideal of A, and System (3.1.1) has
only one equation, then this problem is the ideal membership problem discussed
in Section 2.1. Other linear algebra problems in Am can also be translated this
way into a module theoretic question. In this chapter we will develop algorithmic
tools to answer these questions in the case where A = k [x 1, ... , xn] .

We first go back to the general theory of modules. Since we are mainly
interested in the ring k [x 1, ... ,x9z] which is Noetherian by the Hilbert Basis
Theorem (Theorem 1.1.1), we will assume that the ring A we are considering is
Noetherian. We have the following

THEOREm 3.11. Every submodule M of A' has a finite generating set.

PROOF. Let M be a submodule of Am. We use induction on m. If m = 1,
then M is an ideal of A, and the result follows from the Hilbert Basis Theorem
(Theorem 1.1.1). For m > 1, let

I = {a E A I a is the first coordinate of an element of ,M}.

Then I is an ideal of A, and hence, using the Hilbert Basis Theorem, I is finitely
generated. Let

I={aj,...,at).
Let ml,... , mt E M be such that the first coordinate of mz is az. Now consider

M' = {(b2,... ,bm) I (O,b2,... ,bm) E M}.

Note that M' is a submodule of Am` 1 and so, by induction, is finitely generated,
s a y b y n'1, . _ . , n' E ,M' C Am` . For i = 1, ... , £, let ni be the element of A'
with 0 in the first coordinate and the coordinates of ni in the remaining m r- 1
coordinates. Note that nz E M. To conclude, we show that

M _ (rn1,... ,mt,?'t1,... ,ni).
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Let M E M. Then the first coordinate m1 of m can be written as m1 =
t a . Now consider m' = m -- t mi. Then m' E M and its firsti=1 Ei=1

coordinate is zero. Therefore m' = Ej=j cini. So,

t I t
m = rn' + di mi = ci ni + di mi

i.-l z=x z=1

as desired.

DEFINITION 3.1.2. An A-module M is called Noetherian if and only if every
submodule of M is finitely generated.

Thus Theorem 3.1.1 states that if A is a Noetherian ring then A?z is a Noethe-
rian module for all m > 1 and, in fact, any submodule of A'n is a Noetherian
module. Definition 3.1.2 is equivalent to saying that if

M1cM2c...cM, C...

is an ascending chain of submodules of M, then there exists no such that Mn
Mno for all n > no . That these two statements are equivalent is proved in exactly
the same way as Theorem 1.1.2 was proved.

Now for N any submodule of the A -module M, we define

MIN={m+NImEM}.

MIN is the quotient abelian group with the usual addition of cosets. We make
MIN into an A-module by defining

=am+N, for allaEA,mEM.

It is an easy exercise to see that this multiplication is well-defined and gives
MIN the structure of an A -module. We call MIN the quotient module of M by
N.

For M and M' two Amodules, we call a function 0: M -- i M' an A-module
homomorphism provided that it is an abelian group homomorphism, that is,

¢(m + era') = 0(rra) + 0(m') for all m, m' E M,

which satisfies

aq (m) = 0 (am), for all a E A, m E M.

The homomorphism 0 is called an isomorphism provided that 0 is one to one
and onto. In this case we write M M'.

Let N = ker(o) = {m E M I 0(m) = o}. Then, it is easy to see that N is a
submodule of M. Also, we note that O(M) is a submodule of W. We know from
the theory of abelian groups that

M/N = O(M)



3.1. MODULES 117

as abelian groups under the map

M/N --} (M)
m + N gy(m).

This map is, in fact, an A-module homomorphism as is easily seen and thus is
an A-module isomorphism. This fact is referred to as the First Isomorphism
Theorem for modules.

As in the theory of abelian groups, the submodules of M/N are all of the
form L/N, where L is a submodule of M containing N.

Now, let M be an A -module, and let ml , ... , ms E M. Consider the map
0: A8 ---- ) M defined as follows:

(ai,... , a8) _ aiini.

It is easy to prove that 0 is an A -module homomorphism. Moreover, the image
of 0 is the submodule of M generated by ml, ... , m8. Hence if ml, ... , rr s
generate M, then 0 is onto.

Letting e1, ... , e3 denote the standard basis elements in A8, we note that 0 is
uniquely defined by specifying the image of each ei E AS, namely by specifying
c5(ei) = mi. We will often define homomorphisms 0 from A8 by simply specifying
cb(ei), for i = 17... , s.

Now given generators m1, ... , m8 of the A -module M, we define 0 as above.
Since m1, ... , m5 generates M we see that 0 is onto. Let N be the kernel of 0.
Then, by the First Isomorphism Theorem for modules, we have

M N A8/N.

So we conclude

LEMMA 3.1.3. Every finitely generated A-module M is isomorphic to A8IN
for some Positive integers and some submodule N of A5.

Our purpose in this chapter is to do explicit computations in finitely generated
modules over A. So the first question we have to answer is what do we mean when
we say that we have an explicitly given finitely generated A -module M? The
first way is to be given N = (ai,... , am) for explict a1, ... , am E A8 such that
M A$ /N for some explicit isomorphism. Lemma 3.1.3 ensures the existence
of such an s and N.

DEFINITION 3.1.4. If M ^_' A8 IN, then we call A8 IN a presentation of M.

The second way to have an explicitly given module M, provided that M
is a submodule of A5, is to have explicit ml,... , rnt E As such that M =
(mi,... ) re) . Or, more generally, if we have an explicitly given submodule N
of As, the submodule M = (ml + N, ... , mt + N) of A8/N is explicitly given.
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It is also useful sometimes to have a presentation of M in the last two cases, and
we will show how we can obtain this in Section 3.8.

COROLLARY 3.1.5. Every finitely generated A-module M is Noetherian.

PROOF. By Lemma 3.1.3, M As/N, for some s and some submodule N of
As. The submodules of AS IN are of the form L/N, where L is a submodule of
As containing N. Since As is Noetherian (Theorem 3.1.1), we have that every
submodule of As is finitely generated, and hence every submodule of AS IN is
finitely generated. Therefore As /N and hence M is Noetherian.

3.2. Grobner Bases and Syzygies. In this section we let A be the Noethe`
rian ring k [x 1, ... , x, ] . Let I = (fr,... , f s) be an ideal of A. We consider the
A-module homomorphism 0 defined in Section 3.1,

0:As-iI
given by

(h1,... ,hs)hzfi
z=1

As we have seen in Section 3.1,

(3.2.1) X _2h! A8/ keir(¢), as A-modules.

DEFINITION 3.2.x. The kernel of the map 0 is called the syzygy module of
the 1 x s matrix [ fl ... fs . It is denoted Syz(fi,... , f8). An element
(h1,... , h8) of SYz(fi ... fs) is called a syzygy of [ fi ... ,f8 ] and satisfies

h1.l1+...+hsfs =o.

Another way to say this is that Syz(f 1, ... , fs) is the set of all solutions of
the single linear equation with polynomial coefficients (the ft's)

(3.2.2) fix1+...+fsx.=0,

where the solutions Xi are also to be polynomials in A.
We note that the map 0 can also be viewed as matrix multiplication:

h1
$

cb(h1, ... , hS ) -- [ .f1
... f I = >hjfj.

L h.,
i=1

hX

That is, if F is the 1 x s matrix [ f 1 . f, ]jandh- E As, then

L hs J
0011... , hs) = Fh and Syz (fl, ... , f s) is the set of all solutions h of the linear
equation Fh = 0.
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EXAMPLE 3.2.2. Let A = Q[x, y, z, w], and

I= (x2 - yw, xy - wz, y2 - xz).

The map 0 is

given by

0:A3-'I

(hi,h2,h3)-hi(z2-yw)+h2(xy-wz)+h3(y2-xz).

Then (y, -x, w) and (-x, y, -x) are both syzygies of

[x2-yw erg/ - wx y2 -xz
since

and

y(X 2 - ,yw) - x(xy - wz) + w(y2 - xz) = 0

119

-z(x2-yw)+y(xy-wz) -x(y2 -xz) =0.
We will show later (see Example 3.4.2) that in fact these two syzygies generate
Syz (x2 - yw, xy - wz, y2 - xz), that is,

Syz(x2 - yw, xy - wz, y2 - xz) = ((y, -x, w), (-z, y, -x)) C A3.

Because of the given in Equation (3.2.1), the ideal I can be
described as a quotient of a free A-module and Syz (f l , ... ,f). Moreover, we
can view Syz (f 1, ... , f.) as the set of all linear relations among fl,... , f3. Also,
homogeneous systems such as Equation (3.2.2) or, more generally, such systems
in A7z play a central role in the theory of rings and modules, similar to the role
they play in the usual linear algebra over fields. Finally Syz(f, 1, ... ) f5) will play
a critical role in the theory of Grobner bases; in particular, its use will lead to
improvements of Buchberger's Algorithm (see Section 3.3).

For these reasons and others, Syz(f 1, ... , fS) is a very important object in
commutative algebra.

We note that Syz (f, , ... , f,) is finitely generated, since it is a submodule of As
(Theorem 3.1.1) . One of our goals is to compute generators for Syz (fl, ... , f8).
The next lemma shows how to compute these generators in a special case (the
general case is presented in Section 3.4).

PROPOSITION 3.2.3. Let c1, ... , cs E k - {4} and let X1, X2, ... , XS be power
products in A. For i 0 j E {1,... , s}, we define XZj = = lcm(XX, X3 ). Then the
module Syz(c1X1, ... , c8Xs) is generated by

xiei-xi eEAs 1<i< <s
Xi c Xj

where e1, ... , es form the standard basis for AS :
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PROOF. First note that for all i ' we have Xi e: - - Xij e j is a syzygy of
cX -ci z j ,

I cj Xj c2X2 ... c5X3 ] , since'

CIX1 C2X2 ... cX (05... 01 7 07... 0 -Xi' 01... o =0.
CA cj X3

ith jth
coord coord

Therefore

Xz1 e ---
XSJ

e 1< i<'< s C S (c X ... c X .

To prove the converse, let (h1,... , h3) be a syzygy of [ c1Xj c5X3 ] ,

that is,
hxc1X1 + +h5c3X5 = 0.

Let X be any power product in T7Z. Then the coefficient of X in h1 c1 Xx + - - - +
hscsX3 must be zero. Thus it suffices to consider the case for which hi = ciXi,
i = 1, ... , s, and where c = 0 or XZX2 = X for a fixed power product X.
Let cl , ... At, with it < i2 < . - . < it, be the non-zero cg's. Then we have
c'Ic1 + 4C2 + - - - + c''3cs = czi cz1 + - - - + c'it cjt = 0. Therefore, using the same
technique as in Lemma 1.7.5, we have

(hi,.. . , h3) = (d1X', ... , csXs') ci1 X j', ej1 + - . - + cit Xic ejt

C1 Ci1
1

Xs1 ez1 + ... + cit cit tXXst eit

_ ( X51=2 - Xs1 t2
"Z1 L XiI i2 \ Ci1 XiI eil 2 Xi2 eZ2 !

+ (c , C.i 1 + c'ti2 Cat XX (cX2 e2 - Xe23) +
213 % 13

_. X r Xst-1st(1 1
... ...czt-lit-1)Xit-1ft

`fit-iXit-1 eit-1

+ (Ct1ailL + ... + cit Cit
CitX{t

=0

al
1 Recall that (a I, ... , as) stands for the column vector

as

and so

al

bl bs ] (al,... , as) bi bg ] = blal -I- - -

as

- Xit-1st
eZ,

)
Cit Xs= t

+ bs as,

as in the usual matrix multiplication. We have adopted this awkward looking convention
instead of the usual "dot product" because it will be consistent with the notation of computing
syzygies of column vectors of matrices later.
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as desired.

We observe that if c1X1,... , c9X5 are the leading terms of the polynomi-
als fi, ... , fs, and if (h1,... , h5) E Syz(c1X1:... , csXs), then E'=, haft has a
leading term strictly smaller than

max lp (hi) lp(fi).
i<i<s

In particular the syzygy $X 1 e - X ii e j of I c1 Xi ... cs X.
J gives rise to

Xz cjxj
the S-polynomial of fi and f3, since

[11 ... f8
cxz

ej -

fl

X=j
ej)

cj Xj

xtij Xij... fS ](07... 303 )0)0-- - 0)

ith jth
coord coord

Xij -
fa

Xij
f? = S(fz: h).C Z cj3

This last observation and Proposition 3.2.3 seem to indicate that the syzygy
module of [ It (fl) .. It (f s) ] might be relevant to the computation of a
Grobner basis for { f , ... , f s } . In order to implement this idea we need the
following definition.

DEFINITION 3.2.4. Let X1, ... , X3 be power products and ci,... , cs be in
k -- {0}. Then, for a power product X, we call a syzygy h = (h1,... , h5) E
Syz (c1 X 1, ... , c5 Xs) homogeneous of degree X provided that each hz is a term
(that is, It (hi) T for all i) and X z lp (h2) = X for all i such that hz 0 0. We
say that h E Syz(c1X1, ... , c3XS) is homogeneous if it is homogeneous of degree
X for some power product X.

Note that the generating set given in Proposition 3.2.3 consists of a finite set of
homogeneous syzygies. The next theorem presents another equivalent condition
for a set to be a Grobner basis.

THEOREM 3.2.5. Let G = {g,... , gt} be a set of non-zero polynomials in A.
Let B be a homogeneous generating set of Syz (It (gl ), ... , It (gt)) . Then G is a
Grobner basis for the ideal (gl, ... ,gt) if and only if for all (h1,... , ht) E B, we
have

h1g1+.--+htgt +0.
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PROOF. If G is a Grobner basis, then by Theorem 1.6.2,

h1g1+...+ htgt+0

for all h1,... ht.
Conversely, let g E (91,... , gt), say

(3.2.3) g = ulg1 +- ... + utgt.

Choose a representation as in Equation (3.2.3) with

X - max (lp(ui) lp(gi))
1 <i<t

least. Since, by Theorem 1.6.2, we need to show that g can be written as in
Equation (3.2.3) with X = lp(g), we may assume that lp(g) < X and show that
then we can obtain an expression such as (3.2.3) for g with a smaller value for
X. Let S = {i E {1, ... , t} lp(ui) lp(gi) = X}. Then

E lt(uj) lt(gi) = 0.
iES

Let h = EiES lt(ui)ei (where e1, ... , et is the standard basis for At). Then
It E Syz(lt(g1),... , lt(gt)) and It is homogeneous. Now let B = {h1,... , he},
where for each j = 1, ... , £, h, ` (h13,... , htj). So It a- hj, where, since
It is a homogeneous syzygy, we may asssume that the ad's are terms such that
lp (a3) lp (hz,) lp (gi) = X for all i, j such that aj hip 54 0. By hypothesis, for each

j, Eti=l h?gi -+ 0. Thus by Theorem 1.5.9 we have for each j = 1, ... ,1
t t

hij gi V is gi,

such that
t

msx 1P(vi?) lp(9i) = lp(E ll,jgi) < max 1P(haj)lP(9+)
I<t<L

The latter strict inequality is because Ei=1? It (gi) = 0.
Thus,

9 ui9z + ... + ut9t

E It{ui}91 + E (u; - lt(u,i))9: + E ui9s
iES :ES

terms lower than X

E 1: u, hi3gi + terms lower than X
j=1 i=1

E a,vijgi + terms lower than X .

j=1 i=1
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We have

raxlp(a3) lp(vz,) lp(gi) < rnaxlp(aj) Ip(hz,) lp(gi) = X.

We have obtained a representation of g as a linear combination of the gz's such
that the maximum leading power product of any suxnmand is less than X. Thus
the theorem is proved.

In Exercise 3.2.1 we will give an example which shows that the hypothesis
that the generating set of syzygies be homogeneous is necessary.

We observe that the above proof uses an argument similar to the one used in
the proof of Theorem 1.7.4. In fact, as a corollary to the above result, we can
recover Theorem 1.7.4.

COROLLARY 3.2.6. Let G = {g,... , gt} be a set of non-zero polynomials in
A. Then G is a Grobner basis if and only if for all i, j = I, ... , t, S(gi, g,) + 4.

PROOF. Let G be a Grobner basis. Then, since S(gi, gj) is an element of the
ideal (gi,... , gt), we have S(g, g3) 2+ 0.

For the converse, we first use Proposition 3.2.3 to see that the set

B= Xz e-- Xi3 e- 2< i =1 ... t CAt
flt(g') z It }

(g? )

is a homogeneous generating set of the syzygy module of [ W91) . . . It (gt) .

As we have noted after Proposition 3.2.3, each element of B gives rise to an S-
polynomial, which reduces to zero by hypothesis. Therefore, by Theorem 3.2.5,
G is a Grobner basis.

Exercises
3.2.1. In Theorem 3.2.5 the generating set B of Syz (1t (gl ), ... , It (gt)) was re-

quired to be homogeneous. In this exercise we show that this hypothesis
is necessary.
Consider the set G = {gi, 92 }, where gl = x + y, g2 = x + 1 E Q[x, y] . We
will use lex with x > y.
a. Prove that G is not a Grobner basis for the ideal it generates.
b. Prove that the set {(x + 1, -x -- 1), (x, -x) j is a generating set for

Syz(It(gr), It (92))
Gc. Prove that (x + 1)g} + (-x - 1)g2 '0)+ 0 and that xgj -X92 )+0.

3.2.2. Give another example that shows that the hypothesis that B be homoge-
neous in Theorem 3.2.5 is necessary.

3.2.3. Let G = {g,, ... , gt} be a set of non zero polynomials in A. Let B be a
homogeneous generating set of Syz (It (gx ), ... , It (gt)). Prove that G is a
Grobner basis for the ideal (gi,... , gt ) if and only if for all (h,,... , ht) E
B, we have

hrgx +htgt = vigi +. - +vtgt,
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where

lp(hig1 + ... + htgt) = max(lp(vj) lp(g1), ... , lp(vt) lp(gt))

[Hint: See the proof of Theorem 3.2.5.]
3.2.4. At this point we do not know yet how to compute generators for the

syzygy module of [ f - - f S I . We will see in Section 3.4 how to do
this. However, in certain instances we can easily find some elements of
Syz (f l , ... , f8). Let I be the ideal of k [x, y] generated by fl, f2, f3, the
2 x 2 minors of the 2 x 3 matrix S, where

X y x
1 x y

a. Give a method for finding elements of Syz(f 1, f2, f3). [Hint: Think of
3 x 3 matrices whose determinant must be zero, and obtain 2 syzygies
this way.]

b. Generalize this idea to the case of m x (m + 1) matrices with entries
in k[xl, ... , xn].

3.3. Improvements on Buchberger's Algorithm. So far we have not dis-
cussed the computational aspects of Buchberger's Algorithm presented in Section
1.7 (Algorithm 1.7-1). A careful look at this issue is outside the scope of this
book (see, for example, [BaSt88, Bu83, GMNRT, Huy, MaMe, Laz91]).
However the computational complexity of Buchberger's Algorithm often makes
it difficult to actually compute a Grobner basis for even small problems and

,this limits, in practice, the scope of the applications of the theory. So we will
now discuss improvements in the algorithm for computing Grobner bases. We
note that the results of this section are rather technical and will only be used
occasionally in some of the exercises and examples in the remainder of the book.

Some algebraic results, such as the results presented below, can be used in con-
junction with some simple heuristic observations to improve significantly Buch-
berger's Algorithm (see [Bu79]). It can also be shown (but we shall not do
it here) that certain algebraic (respectively geometric) properties of the ideal I
(respectively of the variety V(1)) have a direct influence on the difficulty of the
computation of a Grobner basis for I (see the references above).

Recall that the algorithm has two steps: the computation of S-polynomials
and their reduction. A problem that arises is the potentially very large number of
S--polynomials that have to be computed. Indeed, as the computation progresses,
the number of polynomials in the basis gets larger, and therefore, each time a new
polynomial is added to the basis, the number of S-polynomials to compute also
increases. Since the algorithm does terminate, the proportion of S-polynomials
which reduce to zero eventually increases as we get far in the algorithm. A huge
amount of computation might be performed for very little gain, since few new
polynomials are added to the basis. In fact, at some point before the algorithm
terminates, the desired Grobner basis is obtained but we do not "know" it.
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At that point, the computation of S-polynomials and their reductions are all
together useless except for the fact that they verify that we do have a Grobner
basis. One way to improve this situation is to "predict" that some S-polynomials
reduce to zero without actually computing these S-polynomials or reducing them.
The following results are the basis for two criteria for a priori zero reduction of
9 -polynomials.

LEMMA 3.3.1. Let f, g E A k[xl,... , x,,], both non-zero, and let d =
gcd( f ) g) - The following statements are equivalent:

(i) lp(d) and lp(a) are relatively prime;

(ii) S(f, 9) {f--- i + 0.
In particular, {f, g} is a Grobner basis if and only if lp(g) and lp(a) are relatively
prime.

PROOF. (i) ==* (ii). Assume first that d = gcd(f, g) = 1. We write f =
aX + f', g = by +g', where It(f) = aX, It(g) = bY, a, b E k, and X, Y are power
products. Then X = Q (f - f'), and Y = b (g -

CASE 1. f = g' = 0. Then f and g are both terms and S(f, g) = 0.
CASE 2. f' = 0 and g' :A 0. Then, since gcd(lp(f),1P(g)) = 1, we have

S(f7 9} = aYf - 6Xg = b(9 - 9')f = a fg = -bg'f. We see that (Exercise
4) S(f1 5 f 0, g). . ) + .

CASE 3. f' 0 0 and g' = 0. This is the same as Case 2.
CASE 4. f' 96 0 and g' 0. Then, since gcd(lp(f), lp(g)) =1, we have

SY19) = bX9 = (9 - 9').f - ab(.f - f')9 ab19 - 8'f)

If lp(f'g) = lp(g'f), then 1P(f')1p(9) = lp(f'g) = lp(g'f) = and
since gcd(lp(f), lp(g)) = 1, we have lp{ f }divides lp(f') and lp(g) divides lp(g').
This is a contradiction, since lp(f') < lp(f) and lp(g') < lp(g). Therefore
lp(f'g) # lp(g' f ), and the leading term of (f'g - g' f) appears in f'g or g' f
and hence is a multiple of lp(f) or lp(g). If lp(f'g) > lp(g' f ), then

S(f, 9) 9 ' ab lt(f'))g - 9'.f)

If lp(f'g) < lp(9'f), then

SY, Wg (g1' (g))f).ab

Using an argument similar to the one above, we see that the leading term of
a ((f - lt(f'))9 - 9'f) or b (f'9 (g' - lt(g'))f) is a multiple of lp(f) or lp(g).
Therefore this reduction process continues using only f or g. At each stage of
the reduction the remainder has a leading term which is a multiple of lp(f)
or lp(g). We see that we can continue this process until we obtain 0, that is,

(f,91
S(L 9) + 0.
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Now assume that d = gcd(f,, g) # 1. Then gcd( , a) = 1. By assumption we
have gcd(lp(a),lp(a)) = 1, and hence, by the case above, I d, d} is a Grobner
basis. Thus {d, d} is also a Grobner basis (Exercise 1.6.13). By Theorem

1.7.4, 5`( f2 9) If -1-941+ 0.
(ii) ==* (i). Let us first assume that gcd(f, g) = 1. We need to show that

lp(f) and lp(g) are relatively prime. Let lp(f) = DX and lp(g) = DY, where
D, X, and Y are power products in A, gcd(X, Y) = 1. Then

Y X
sY, 9) - lc(f) f

g.

By assumption we have S(f, g) if + 0, and hence there exist u, v E k f xl, .. .
such that

(3.3.1) SU2 9) = lcW f - 1c(g) 9
= Uf + v9,

where lp(u f } < lp(S(f, g)) and lp(vg) < lp(S(f, g)). From Equation (3.3.1), we
obtain

X Y)+V)9_(f)U)f.
Therefore f divides (ices + v), and g divides f u), since f and g are
relatively prime. Also,

lp(u)DX = lp(uf) <_ lp(S(f, g)) < X lp(g) = Y lp(f) = DXY.

Thus, lp(u) < Y, and hence lp(g f - u) = Y. But g divides (UY - u), so
lp(g) DY divides lp( f - u) = Y, and hence D = 1. Therefore lp(f) and
lp(g) are relatively prime.

Now assume that d = gcd (f, g) 3L 1. Then gcd (d , d } = 1. It is easy to prove

that if S(fj g) Lf)-9+1+ 0, then 1 S(f, {--} 0 see Exercise 3.3.3. It is also
easy to prove that d S (f, g) = S( , a } , since d is manic (see Exercise 3.3.3).
Therefore, by the above, we have lp(d) and lp(2) are relatively prime as desired.

The last statement of the lemma is an immediate consequence of Theorem
1.7.4. El

Lemur 3.3.1 gives a criterion for a priori zero reduction: during Buchberger's
Algorithm, whenever f and g are such that lp (g) and lp (d) are relatively prime,
then it is not necessary to compute S(f, g), since S(f, g) will reduce to zero
using f and g alone, and hence S(f, g) will not create a new polynomial in the
basis. We note that if lp(f) and lp(g) are relatively prime, then d = 1 and so

S(f , g) {- f}+ 0. This is the form in which we will use the criterion below (see
critl).

Now we turn our attention to another criterion that turns out to be remarkably
effective in improving the performance of Buchberger's Algorithm.
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LEMMA 3.3.2. Let X1, X2,... , Xs be power products in A = k[xl, ... , xn]
and let cl, ... , C. E k --- {Q}. For i, j = 1, ... , s, define Xjj = lcm(Xi, X j), and
let

C- As
c

z c3x , ,CA
where e1, ... , es is the standard basis for As. For each i, j, I = 1, .. .
Icm(XZ7 X,, Xt). Then we have

X ZitT . + X zit T .t -{- X zit 0.z tz
zj X jt X&

,s letXz;t=

Moreover, if Xt divides Xaj, then -ri j is in the submodule of As generated by Tjt
and T,ez.

PRooF. We have

X ti's r -I- X j3iTit + X iji -
S.? Tti

Xij 1i

Xijt xzj Xij xi xjt Xjt X. -t xti x1iez - e j) + et) + - ei)Xj y+ei
1 c,?- .? ctx'* x1i cat cixz

= Xi3t - Xz?t+ X--t -- XZit e+ Xi t -- Xz't
X

Z e
cz

=QXe j ccXt t ctxt
ot ez

cjXj c3X
e3

Xz

Now if Xt divides Xi j, then Xi je - = Xz;, and we have

Xz; Xi j
Tip+X_ Tjt+ Ttz=Q.

3t tZ

Hence Tij is in the submodule of As generated by Tit and Ttz. 0
COROLLARY 3.3.3. We continue to use the notation of Lemma 3.3.2. Let

B C {Tzj 1 < i < j < s} be a generating set for Syz(c1Xi,... , c5Xs). Sup-
pose we have three distinct indices i, j, £ such that Tj, rjt, rij E B, and such
that Xt divides XZj = lcm(XX, X,). Then B - {r1} is also a generating set for
Syz(ciXi, ... , c8Xs).

We will use Corollary 3.3.3 to improve Buchberger's Algorithm in the following
way. Let {fi,... , fs } be a set of generators for an ideal I in k [x 1, ... , xn] . Let
ciXi = It (f,) and use the notation above. We begin by letting B _ {r3 I 1 <
i < j < s}. Of course, B generates Syz(It(f 1), ... , It(fS)). We apply Corollary
3.3.3 to eliminate as many of the rij E B as possible obtaining a possibly smaller
set of generators for Syz (It (fl), ... , It (f s)) . We then compute the S-polynomial,
S.(fi, fi), corresponding to one of the Ti.? remaining in B and reduce it as far as
possible; we add the reduction to the set {f,... , fs } if it does not reduce to zero,
calling it f8+'. We enlarge B by the set {r,8i 11 < i < s} to obtain a new set B
which now generates Syz (lt (f 1), ... , It (f s ), It (f S+1)) . We again apply Corollary
3.3.3 to eliminate as many of the -ri j E B as possible obtaining a possibly smaller
set of generators for Syz (lt (f 1) , ... , It (f s ), It (f s+ 1)) . We again compute an S-
polynomial corresponding to a TZ j remaining in B. We continue this process until



128 CHAPTER 3. MODULES AND GROBNER BASES

all of the S-polynomials corresponding to elements in x3 have been computed and
reduced to zero, always maintaining 13 as a basis of the current syzygy module.

In order to keep track, in the algorithm, of those T, E x3 whose corresponding
S-polynomial has been computed and reduced we break up the basis B into two
parts. We also use just the indices. So we will use NC for the set of all indices
{i, j) of r E B at any given time for which the S-polynomial has not been
computed and use C for the set of all indices {i,j} of Ti j E 8 at any given time
for which the S-polynomial has been computed. We note that at any time in the
algorithm after NC has been initialized, {T3 I {i,j} E NC U C} is a generating
set of the syzygy module of the current set of leading terms (see the proof of
Proposition 3.3.4). So we continue the algorithm until NC = 0.

We now give an improved version of Buchberger's Algorithm as Algorithm
3.3.1. We note that the purpose of the fiirst WHILE loop is to initialize JVC.

The commands used in the algorithm are defined as follows.
The command, critl (i, j), returns "TRUE" if and only if lp(f i) and lp(f,) are

relatively prime. If critl (i, j) = TRUE, then, by Lemma 3.3.1, we know without
computing it, that S (f i, f3) reduces to zero. Nevertheless Tz3 must be added to
C.

The command crit2(NC, C, s) is given as Algorithm 3.3.2.
Algorithm 3.3.2 is an implementation of the ideas in Corollary 3.3.3 and the

ensuing discussion. We now make a few technical points about this algorithm.
The basic idea is to find triples of indices ii, j, p such that {v, }, {v, p}, {p, p}
are in NC U C and Xv divides icrn(XM, XX). Because of the way we call this
procedure in the main algorithm (Algorithm 3.3.1), we need only consider the
cases where one of v, p, p is s. This is because the cases of all triples with v, IL, p
all less than s were checked before. Since 1A, p are interchangeable, it is enough
to consider the cases p = s and v = s. These two cases are the two main WHILE
loops in Algorithm 3.3.2. Moreover, we note that a pair of the form {i, s} cannot
lie in C (this explains why checking membership in NC U C was often just done
by checking membership in NC). Finally, we only check, in the second main
WHILE loop, whether {i, j J is in NC since we are only interested in eliminating
it from NC.

PROPOSITION 33.4. Given a set of non-zero polynomials F = {f,... , f'},

the Improved Buchberger's Algorithm (Algorithm 3.3.1) will produce a Grobrrer
basis for the ideal I = (F).

PROOF. Let G = {fi,... , f,} (t > s) be the output of Algorithm 3.3.1.
We first note that the S-polynomials corresponding to every pair in C reduce
to zero. It then suffices to show that {r,I{i, j} E C} is a generating set for
Syz (it (fl) , ... , lt(ft) ), and for this it suffices to show that at any stage of the
algorithm {Tjj{i,j} E NC U C} is a generating set for the syzygy module of
current leading terms. We see this as follows. At each stage of the algorithm
there is one of two possibilities. Either the S-polynomial reduces to zero, and
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INPUT: F={fi,...,fs}9k[x1,...,x,z]with fz 00(1<i<s}
OUTPUT: A Grobner basis G for

INITIALIZATION: G := F
C.=O
JVC:= f f Is 211
i.=2

WHII,Ea<sD0

NC := crit2(NC, C, i + 1)

a.-i+i
WHILE NC # 0 DO

Choose {i,j} E NC

ArC:= ArC - Ili, ill

C:= C U f {i2ill

IF critl(i,j) = FALSE THEN

S(f$, f9) G )+ h, where h is reduced with respect to G

IF h 36 0 THEN

f8+x := h

s:=s+1

NC := crit2(NC, C, s)

ALGORITHM 3.3.1. Improved Buchberger's Algorithm

129

.NCUC does not change, or a polynomial is added to G, and the relevant pairs are
added to NC U C and so the set of T$?'s corresponding to this updated NC U C is
a generating set for the syzygy module of the new set of leading terms. Then we
apply crit2 to the new NC which does not alter this last statement by Corollary
3.3.3.

The algorithm stops for the same reason Algorithm 1.7.1 stopped. 0

We note that in Algorithm 3.3.1 we do not give a rule for choosing the pair
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INPUT: NC, C, s from Algorithm 3.3.1

OUTPUT: NC with pairs deleted using Corollary 3.3.3

INITIALIZATION:. := 1

WHILE I < s Do

IF {I, s} E JIIC THEN

i -- 1

Ei<sDO
IF {i, £'} E NC U C AND {i, s} E NC THEN

IF Xe divides 1cm(Xz, X3) THEN

NC := NC -- {{i,s}}

a.=1

WHILE i < s DO

IF {i,s} E NC THEN

j.-i+1
WHILE j < s DO

IF {j,s} E NC AND {i,j} E NC THEN

IF X. divides lcm(X=,Xj) THEN

Arc: =./Vc - {jij j 11

+l

ALGORITHM 3.3.2. C9it2(NC,C,S)

{i, j I E NC for which we compute the corresponding S-polynomial. Some stud-
ies have shown that this choice is of vital importance. Often the S-polynomials
are computed in such a way that S(fz, f3) is computed first if lcm(lp(fZ), lp(f?)
is least (with respect to the current term order) among the lcm(lp(f ), lp(f, )).
This procedure is called the normal selection strategy. Experimental results
show that this works very well for degree compatible term orders. It is not so
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good for the lex term ordering. This can be explained as follows: if at some
point the basis contains polynomials fl,... , fe in which the largest variable (say
xn) does not appear, then the normal selection strategy will first consider only
f 1, ... , f$, disregarding the ones in which x,z appears; in effect, a Grobner basis
for (11,... , f e) will be computed. Experimental and theoretical results show
that this Grobner basis subcomputation can be worse than the original Grobner
basis computation. There are techniques to get around this problem but they
are beyond the scope of this book.

There is another technique that is used to improve the performance of Buch-
berger's Algorithm. Namely, the polynomials fi's are inter-reduced at the be
ginning, and the basis is kept inter-reduced as the algorithm progresses. Even
though this may require a lot of computation, it helps to avoid an unmanageable
growth in the number of polynomials in the basis, and in the number of divisions
necessary throughout the computation. This method is discussed in Buchberger
[Bu85].

We conclude by noting that the use of critl and crit2 help to reduce the
number of S-polynomnials that have to be computed. In fact, empirical evidence
shows that if N is the number of S-polynomials that would be computed without
these criteria, the use of these two criteria reduces that number to about
(see, for example, [Cz}).

To illustrate Algorithm 3.3.1 we consider the following example. Since the
polynomials generated by the algorithm are scattered throughout the text of the
example, we have put boxes around these polynomials for easier reference.

EXAMPLE 3.3.5. Consider polynomials 11 = x2312 - z2 f2 = xy2x - xyx,

and 1f3 = xyz3 - xz2 in Q [X, y, Z1. We use the deglex term order with x < y < z.
We follow Algorithm 3.3.1. However, we will not trace the algorithm crit2 except
for one significant example at the end.

We start with G {f, f2, f3}, C = 0, and NC = {{1, 2}, {1, 3}, {2, 3}}. We
see that we do not have to consider {1, 31, that is, we have NC = crit2(NC,C,3) =
{{1, 2}, {2, 3}}. We choose the pair {1, 2}, changing NC to {{2, 3}} and C to
{{1, 211, and compute S (f f , f2) = x2 yz - z3 which is reduced with respect to G.

Thus we add f 4 = x2 yz - z3 to G. We update NC to include the pairs with 4
in them and then we use crit2 to compute the new NC = {1213} 5 {1, 4}, {3, 4}}.
We now choose the pair {1, 4}, changing NC to NC = {{2, 3}, {3, 4}} and C
to C = {{1, 21,117 4} }, and compute S (f l , f4) = yz3 - z3 which is reduced with

respect to G. Thus we add f 5 = yz3 z3 j to G. After applying crit2 again we ob-
tain NC = {{2,3},{3,4},T5J}. We choose the pair {3, 5}, so that now NC =
{{2, 3}, {3, 4}} and C = {{1, 2}, {1, 4}, {3, 5}}, and we compute S(f3, f5) =
xz3 - xz2 which is reduced with respect to G. Now we add
to G. Applying crit2 again we get NC = {{2, 3}, {3, 4}, {3, 6}}. Next we choose
the pair {3, 6}, update NC and C = {{1, 2}, {1, 4}, {3, 5}, {3, 6}}, and we com-
pute S (f..3, f(j) = xyz2 - xz2 which is reduced with respect to G. Thus we add
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f7 = xyz2 - xx2 to G. Applying crit2 again we get NC = {{2, 7},{3, 7},{4, 7}}.
Now we choose the pair {4, 7} and compute S(f4, f7) = --z4 + x2 z2 which is
reduced with respect to G. Thus we add f8 = -z 4 +X 2 z2 to G. After apply-
ing crit2 we have NC = {{2, 7}, {3, 7}, {2,8}, {4,8}, {5,8},{6,8}}. Now we
choose the pair {2, 7} and observe that S(f2, f7) = 0. We choose next the pair
{3, 7} and see that S(f3, f7) )+ 0. Then we choose the pair {6, 8}, we update
NC = {{2, 8}, {4, 8},{5, 8}} and C = {{1, 2}, {1, 4}, {3, 5}, {3, 6}, {4, 7}, {2, 7},
{3, 7}, {6, 8}}, and compute S(f6, f8) = x322 - xz3 which is reduced with re-

spect to G. Thus we add f9 = x3z2 - xz3 to G. After applying crit2 we have
NC = {{2, 8}, {4, 8},{5, 8 , {4, 9 , {6, 911 . The S-polynomials corresponding to
the remaining pairs in NC all reduce to zero. Thus G = {f., f2 , f37 A7 f5,

A7

f7, f8, fg} is a Grobner basis for I =Y17 f2, f3).
We now give one example of crit2. We consider the situation right after

adding f6 to G. There we started with NC = {{2, 3}, {3, 4}, {1, 6}, {2, 6}, {3, 6},
{4, 6}, {5, 6}} and C = {{1, 2}, {1, 4}, {3, 5}}. For £ = 1 we first note that {1,6}
is in NC and we must consider the pairs {2, 6} and {4, 6} (we do not consider
the pair {3, 6} because the pair {1, 3} 0 NC U C, and we do not consider the
pair {5, 6} because {1, 5} 0 NC U C). For {2, 6} we see that 1p(fl) = x2y2 does
not divide lcm(lp(f2), lp(f6)) = xy2z3, and for {5,6} we see that lp(fl) = x2y2
does not divide lcm(1p(f 5 ), lp(f6)) = xyz3. So we eliminate no pairs from NC.
For £ = 2 we note that {2, 6} E NC and we only consider {1, 6} and {3, 6}.
For {1,6} we note that lp(f2) = xy2z divides lcm(lp(fi), lp(f6)) = x2y2z3 and
so we eliminate the pair {1, 6} from NC. We may not eliminate 13,61. Now
NC = {{2, 3}, {3, 4}, {2, 6}, {3, 6}, {4, 6}, {5, 6}}. For £ = 3 we consider {2, 6},
{4, 6} and {5, 6} and all three of them are eliminated giving us NC = {{2, 3 },
{3, 4}, {3, 6}}. We do not need to consider £ = 4, 5, since {4, 6}, {51610 NC.
We do not need to consider £ = 6, since there is only one pair with 6 in it left in
NC. So we finally arrive at NC = {{2, 3}, {3, 4}, {3, 6}}.

Although it might appear in this example that no real saving in computation
time has been gained in using crit2, we recall that, in practice, the most time
consuming part of Buchberger's Algorithm is the reduction of S-polynomials and
we have avoided most of these reductions by using the current algorithm. Indeed,
we computed a total of 13 S-polynomials, 6 of which generated elements of the
Grobner basis. Had we not used crit2 we would have had to compute and reduce

988 = 36 S--polynomials. Note that the computations in crit2 are always trivial.2
To conclude this section, we mention two other difficulties that arise during

the computation of Grobner bases, namely, the possible rapid growth of the
degrees and coefficients of the S-polynomials. Even though the degree and/or
size of the coefficients of the original polynomials and the Grobner basis may
be of modest size, the intermediary polynomials generated by the S-polynomial
computations and reductions can become quite large. This can dramatically slow
down the computation. Doing computations with large coefficients can be very
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costly because of the large amount of arithmetic that becomes necessary. As
an example of this situation, the reduced Grobner basis for the ideal {4x2y2 +
3x, y3 + 2xy, 7x3 + 6y) with respect to the lex order with x > y is {x, y}, while
the coefficients during the computation grow as large as 108. This can be seen
by expressing x as a linear combination of the three original polynomials f j
4x2y2 +. 3x, f2= y3 + 2xy, and f3 = 7x3 + 6y:

x _ 72 5 _ 401408 10 _ 1835008 9 9604 8 - 43904 7

kjx 4y 56428623
y

56428623
y 18809541y

18809541 y

200704 6 +
7x3 6 + 1605632 2 9 + 7340032 2 8

18809541y+ 3
)fi 27 y 56428623" y 56428523

Y

+ 38416
x2

7
+

175616 x2 6 + 401408
x 7 --- 2 XY + 917504 8

18809541 y 18809541 y 18809541 y 3 18809541y
+ 4802 7 + 21952 6 + 100352 5 + 1 3

6269847 y 6269847 y 6269847 y
3 y

f2

1
s (917504y5 + 14406y4 + 65856y3 + 6269847)f3.

112$57246y

There are techniques to try to get around this problem, but again they are
beyond the scope of this book.

To illustrate the growth in total degree, consider the ideal I = (x7 + xy +
y)y5 + yz + z, z2 + z + 1) C Q [x, y, z] . The generators of this ideal have maximum
total degree 7. However the reduced Grobner basis for I with respect to lex with
z > y > x contains a polynomial of degree 70. The problem with polynomials
with large total degree is the fact that they can have a very large number of
terms. For example, the reduced Grobner basis for the ideal I above has 3
polynomials with 58, 70, and 35 terms respectively. Again, a large number of
terms make any computation very costly.

Exercises
3.3.1. Compute a Grobner bases for the following ideal using Algorithm 3.3.1

without using a Computer Algebra System.
a. (x2y - y + x, xy2 - x) C Q[x, y] using deglex with x < y. Compare with

Example 2.1.1.
b. (x2y + z, xz + y) C Q [x, y, z] using deglex with x > y > z. Compare

with Exercise 1.7.3.
c. (x2y+z,xz+y,y2z + 1) C Q[x, y, z] using lex with x > y > z.

3.3.2. The following exercise may tax your Computer Algebra System. If so,
try to make up your own more modest example that illustrates the same
point. Let I = (x7 + xy + y, y5 + yz + z, z2 +Z+ 1) C Q[x, y, z] .
a. Find the reduced Grobner basis for I with respect to lex with x > y >

z. (No computation is needed!)
b. Compute the reduced Grobner basis for I with respect to lex with

z > y > x. Compare the two bases.



134 CHAPTER 3. MODULES AND GROBNER BASES

c. Can you give a reason for the difference between the bases in a and b?
d. Use c to give a method for generating polynomials fl, ... , f. in n vari-

ables whose total degree is small, but such that the reduced Grobner
basis for (fi,... , fs) with respect to a certain lei order has polynomi-
als of very high degree. [Hint: In the given example, note that there
are 2 solutions for z, and for each such solution, there are 5 solutions
for y, etc.]

e. Give examples of polynomials which satisfy d.
f. Experiment by changing the degree of the x, y, z terms in the polyno-

mials above, but keeping lei with z > y > x. How does it affect the
computing time?

g. Experiment by changing the term order and the order on the variables
for the examples in this exercise. How does it affect the computation
and the computing time?

3.3.3. Let f, g, d E k [x1, ... , x7z] such that d divides both f and g.
a. Show that S{a, a) = aS(f, g).

} 1 S
{l

U.b. Show that if S(f5 g) + 0, then d (f, g) mi +

3.4. Computation of the Syzygy Module. In this section we show how
to compute Syz (fl, ... , f,) for f j , ... If, E A = k [x 1, ... , xn] . This is done in
two steps. We first compute a Grobner basis G = {gj,... , gt } for (fr,... , f S)
and compute Syz (g1, ... , gt). For convenience, we will assume that g1, ... , qt are
monic. We then show how to obtain Syz (f l , ... , f,) from Syz(gl, ... , gt). We
will assume that we have a fixed term order on A.

Let {gi,... , gt } be a Grobner basis, where we assume that the g2's are rnonic.
For i E {1,... , t}, we let lp(gz) = Xz and for i 0 j E {1,... , t}, we let XXj =
lcm(XZ, X,). Then the S-polynomial of gz and g: is given by

= XZ Xzj .

(9z"gj) Xi
gz-g

3

By Theorem 1.6.2, we have

t

S(9i, 99) = 1: 1`tjvgy,
v=1

for some hz3v E A, such that

max (lp(hij,,) lp(g,,)) = lp (S(gi, gj))

(The polynomials h1 y are obtained using the Division Algorithm.) We now
d e f i n e f o r i, j = 1, ... , t, i 0j,

s _ Xz: e X19 -- t: X : jFej (4j j1 , ... , hzjt) E A
z
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We note that s$ j E Syz(gl , ... , gt ), since

91 9t Si gt j )XZ Xj

- 91 ... 9t I (h31,... ,hj)
t

S(gi, 9j) - E hijg. = 0.
V=1

THEOREM 3.4.1. With the notation above, the collection {z1 J 1 < i < j < t}
is a generating set for Syz(g1, ... , gt).

PROOF. Suppose to the contrary that there exists (U1, ... , ut) such that

(Ui,... ,Ut) ESyz(gi,...,gt)-(szj I <i< j fit).

Then we can choose such a (u1,... , ut) with X = maxi<i<t(lp(ui) ip(gi)) least.
Let

S = {a E {1,... , t} I lp(uri) lp(g=) = X}.

Now for each i E {1,... , t} we define ui as follows:

ui if i v s
uz

ui - It (ui) if i E S.

Also, for i E S, let lt(ui) = ciXX, where ci E k and XX is a power product. Since
(ui,... ) ti) E Syz(gi, ... , gt), we see that

1: czXX Xi = 0,
iES

and so

EcjXejESyz(X, liES).
iES

Thus, by Proposition 3.2.3 we have

Xz j j
i ei az `

.` - )c.Xe3.

iES i<7
i,jES

for some aij E A. Since each coordinate of the vector in the left-hand side of the
equation above is homogeneous, and since XX X i = X, we can choose aij to be a
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constant multiple of
XX

. Then we have
i

(ul

i<,
iJ ES

$ 2

ail sz3 + (ui,... , 2Gt) +

7 ut) >2cjX,ei+(t4,... ,
u1t)

iES XX.
ai j (

2.
ei ---

2, e j) + (ui , ... , ut )Y X

i<J i<7
i,jES s,jES

a-3(h2j1) - . , hijt).

We define (v1,... , vt) _ (z4,... , ut) + i<, aij (hi j 1,- , ha,t) . We note that
z,3 ES

(v17... , vt) E Syz(gl, ... , 9t) (S1,
I

1 < i < j < t), since (ul, ... , ut), s2j E
Syz(91, . - - , gt) and (u1,..., ut) (sij I I < i < i < t). We will obtain the
desired contradiction by proving that maxl <j/ <t (lp(v,) lp(gv)) < X. For each v E
{1,... , t} we have

lP(VV) IP(9,.) lp(uv + 1: aij -jv)X
:,3 ES

< max(lp(uv), rnax(lp(a23) lP( jv)})Xy.

i<j
i,jES

But, by definition of uy , we have lp (uv) Xu < X. Also, as mentioned above, a1 j

is a constant multiple of
X

and hence for all i, j E S, i < we have
X23

L = X 1P(hjfr)xv -

< X
lP(s(92,9,)) <X.lP(aj,) lP(h,, )X

Ti

Therefore lp(vu) lp(g,) < X for each v E {1,... , t} violating the condition that
X = maxl<,<t(lp(u1,) lp(g )) is least. C3

EXAMPLE 3.4.2. We return to Example 3.2.2. Let 9i = x2-Wy, 92 = xy-wz,
and 93 = y2 - xz. These form a reduced Grabner basis with respect to the
degrevlex ordering with x > y > z > w. Using the notation of the above result,
we have:

Xl = X2, X2 = xy, X3 = y2, X12 = x2y, X13 -== x2y2, X23 = xy2-

Now S(91, 92) = -wy2 + xwz = -wg3, so h121 = h122 = 0 and h123 = -W-
Therefore

312 =
X12

e l -
X X12

X e2 - (h121, h122 7 h123) = (y,-x,w).12
,X X2
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Also, 8(91, 93) -x 3Z - yaw = xz91 - yW93, so that h131 = xz, h132 = 0 and
h133 = -yw. Therefore

813 =
X13e X13

(h131,- h132,h133) = (y2 - xz, 0, ---x2 + YW).1 3
X1 X3

Finally, S(,92,93) = x2z - yzw = zg1 i so that h231 = z, h232 = 0 and h233 = 0.
Therefore

X23 X23
323 -

2
e2 - x3

(h231,h232,h233)3

By Theorem 3.4.1,

Syz(91, 92, 93) = ((y, -x, w), (y2 - xz, 01-X
2 + yw), (-'z, y, -x))

We note that 813 = Y812 + X823, so we have, in fact, that

Syz(91, 92,93) = ((y, -x, w), (-z, y, --x)).

We now turn our attention to computing Syz (fl, ... , f3), for a collection
{fi,... , f.1 of non zero polynomials in A which may not form a Grabner basis.
We first compute a Grobner basis {gi,.-. , gt } for (11,... ,f8) . We again assume
that g1, ... , gt are monic. Set F = [ f j ... f q ] and G = [ g1 gt I .
As we saw in Section 2.1, there is a t x s matrix S and an s x t matrix T with
entries in A such that F = GS and G = FT. (Recall that S is obtained using the
Division Algorithm, and T is obtained by keeping track of the reductions during
Buchberger's Algorithm.) Now using Theorem 3.4.1, we can compute a gener-
ating set {s1,... , sr } for Syz(G) (the si's are column vectors in A'). Therefore
for each i = 1, ... , r

0 = Gs= = (FT)s2 = F(Tss),

and hence
(Tsi i = 11... , r) C Syz(F).

Moreover, if we let Is be the s x s identity matrix, we have

F(Is-TS) =F-FTS=F--GS=F-F=O,
and hence the columns r 1, ... , r9 of Is - TS are also in Syz (F) .

THEOREM 3.4.3. With the notation above we have

sSyZ fi, ... , fs = (Ts,... , Tsr, rl, ... , r5) 9 A .

PROOF. Let s = (ai,... , as) E Syz (.f 1, ... , f.). Then 0 = Fs = GSs, and
hence Ss E Syz (g1, ... , gt) . By the definition of s 1, ... , Sr, we have Ss =

:i= 1 hi si for some hi E A. Thus we have TSs = Ei=1 hi (Tsi ). Finally,

r S r
s = s - T S.9 + T Ss = (Is - TS) s + hi (Tai) airi + hz (Tsi).

i =1 z=1 i=1
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Therefore Syz(f 1, .. , fs) C (Tsi,... , T sr, r1, ... , r8) . The reverse inclusion
has already been noted. El

EXAMPLE 3.4.4. Let fi = x2y2 - x3y, f2 = xy3 x2y2, and f3 - y4 _.T3. Let

F ~ [ A f2 f3 1. We first compute a Gro-bner basis G with respect to the lex
term ordering with x < y for (fi, f2, f3). We find2 G = [ 91 92 93 94 95 ] ,
where gi ~ y4 - x3, 92 = xy3 - x3y, 93 = x2y2 - X3 Y5 94 = x4y - x4, and
g5 = x5 - x4. Moreover we have

[91 92 93 94 95 ] _

[ r=

-
0 1 1 -(x + Y) -(x + Y)

f2 f3 ] 0 1 0 -y -y(y -}-1) and
1 0 0 X -x2 -I- xy +x

T

Eli f2 f3 ] _ [ sl 92 93 94 95

0 1

0 1 0

1 --1 0

0 0 0

0 0 0

S

To compute generators for Syz (gl , g2, 931g4, g5) we need to reduce all S (gz7 g j )'s
for 1 < i <j < 5 using gi, 92, 93, 94, 95 (Theorem 3.4.1). In view of Corollary
3.3.3 and Exercise 3.4.4, it is enough to reduce S (g1, g2), S (92, 93)) S (g3, 94) , and
S(94, g5) which give the following respective syzygies:

sl = (x, --y) -x, -1, 0), 82 = (0, x, -x - y) 0, 0),

s3 (0,0, x2, -y, y), 84 = (0, 0, 0, x --1, -y + 1).

By Theorem 3.4.1, we have

Syz(91, 92) 93) 94, 95) _ {81i S2? 337 84}.

Then
X

-Y 0

T -x - 0 T
-1 1 0- 0

00

0

X -y
-x-y = x

0 0

0

2We will often use the same letter for a finite set and a row vector corresponding to it,
when the context is clear.
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T

0
2 -x2 + Y2X 0

-y3 , T 0 = -xy + y3
-x2y + Xy2 x - 1 x2y - xyz

L -y+T
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We note that (--x2 + y2, -xy + y3 , x2y _ xy2) is in the submodule of A3 generated
by (-y, x, 0) and (x2,-y3,--x2y+xy2).

Finally, it is easy to verify that

000
I3-TS= 0 0 0

0 0 0

Therefore

SyZ(fl, f2, f3) = ((-y, x, 0), (x2, -y3, _'x2y + xy2)).

Using the notation of Theorem 3.4.3, we note that in Example 3.4.4 the rows
of 1s - TS did not give any syzygies that were not already in the submodule
(Tsi,... , Ts,.) of A-. This is not always the case (see Exercise 3-4.2). However
it is easy to see (Exercise 3.4.3) that if the polynomials fl, ... , f., appear in the
list gl, ... , gt, then Syz (fl, ... , fs) = (Ts,,... , Tsr) . If the Grobner basis for
(fi,... , f S } is computed using Buchberger's Algorithm (Algorithm 1.7.1) or by
the improved Buchberger's Algorithm (Algorithm 3.3.1), then the polynomials
fl, ... , f, do appear in the list g1, ... , gt . However, if a reduced Grabner basis
is computed, as is done in all Computer Algebra Systems, then the polynomials
Ii, ... , f s may not appear in the list g', ... , gt .

Exercises
3.4.1. Compute generators for Syz (fl, ... , f5) in the following examples:

a. f2 =x2y+z, fz =xz+y E Q[x,y,z].
b. fi =x2y -- y + x, f2 = xy2 - x E Q[x, y]
c. fl= S2Y +Z, f2=xz+y, f3=y2z+1 E Q[x,y,z].

3.4.2. In Theorem 3.4.3 we had to include the columns of the matrix 1s - TS
in the set of generators for Syz (fl, ... , f 5) . In this exercise, we show that
these vectors are necessary. Consider the polynomials fl = xy + 1, f2 =
xz+1, and f3=yz+1EQ[x,y,z]
a. Verify that the reduced Grobner basis for I (fi, f2, f3) with respect

to lex with x > y > z is G ={91, 92, 93 ),where gl = y - z, 92 = x - z
and g3 = z2 +1. Also, show that

[ 9x

-z -z z2

92 83 fl .f2 f3 Y 0 -Yz .

0 x 10 x 1
N of

T
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b. Compute the matrix S such that [ fl f2 f3 ] = [ 91 92 93 ] S-
C. Compute the 3 generators, say 91, 82, s3, for Syz(g1, 92s 93).
d. Compute 13 - TS. This matrix has 2 non-zero columns, say r1, r2.
e. Verify that (Ts1,Ts2,Ts3) 54 (Ts1,Ts2,Ts3,ri,r2).

3.4.3. Assume that {fi,... , fs } C {gi,... , gt} and {g,... , 9t} is a Grobner
basis for I _ (fi,... , f s) . Prove that, with the notation of Theorem 3.4.3,
Syz (fl, (Ts1,... , Ts,), that is, the columns of the matrix Is -
TS are not necessary.

3.4.4_ Generalize Theorem 3.4.1 as follows: Let {9i,... , 9t} be a Grobner basis
and let r,, be as in Section 3.3. Let S C {T, I 1 < i < j < t} be a
generating set for Syz (lt (gi) , ... , It (gt)) . Prove that {s, I r23 E L3} is a
generating set for Syz (g1, ... , gt).

3.4.5. Apply Exercise 3.4.4 and Corollary 3.3.3 to the computations in Exercise
3.4.1.

3.4.6. Let fl, ... , f s , g E k[x i , ... , xn] and consider the linear equation

hjf1 +h2f2+...+hsfs
=97

with unknowns h1, .. _ , hs E k[xx, ... ,xn]. Let S be the set of solutions;
i.e.

S={(h1,... ,hs) EAs I t1fi+h2f2+.....{._hsfs -91.

a. Prove that S is not empty if and only if g E (Ii,... , f S ).
b. Prove that if S 0 then S = h + Syz (f 1, ... , f g) = jh + s I s E

Syz(fi, ... , fs)}, where h is a particular solution. Give a method for
computing h.

c. Use the above to find the solution set for the equation

h1(x2y2 - x3y) + h2 (xy3 - x2y2) + h3 (,y4 - x3) = y7 - y6.

3.5. Grobner Bases for Modules. As before, let A = k[x1, ... , x.,,] for
a field k. We have seen in the previous sections of this chapter that certain
submodules of A'n are important. In this section, we continue to study such
submodules, but now from the point of view adopted for ideals in the earlier
parts of this book. Namely, we will generalize the theory of Grobner bases to
submodules of A. As a result we will be able to compute with submodules of
A' in a way similar to the way we computed with ideals previously.

The idea is to mimic the constructions we used in Chapter 1 as much as
possible. Let us recall the ingredients for the methods we used before for ides.
First, in Section 1.4 we defined the concept of a power product and theil defined a
term order on these power products, that is, a total order with special properties
with respect to divisibility (we will need to define a concept of divisibility). Using
th ...e ideas, in Section 1.5 we defined the concept of reduction which in turn led
to the Division Algorithm. Then in Section 1.6 we defined the concept of a
Grobner basis, giving the equivalent conditions for a Grobner basis in Theorem
1.6.2 (and further in Theorem 1.9 1). The next issue, discussed in Section 1.7,
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was how to compute Grobner bases, and for that we developed S-polynomials and
Buchberger's Algorithm. We will follow this development very closely. Indeed
many of the proofs in this and the next two sections are very s' . ax to the
corresponding ones for ideals and will be left to the exercises.

We again need the standard basis

el = (1,0,... ,0),e2 = (0,1,0,... ,0),... ,em = (0,0,... ,0,1)

of Am. Then by a monomial3 in A' we mean a vector of the type Xei (1 < i <
m), where X is a power product in A. That is, a monomial is a column vector
with all coordinates equal to zero except for one which is a power product of A.
Monomials in Am will replace the notion of power products in the ring A. So,
for example, (0, x2Jx3, 0) and (0, 0, x2) are monomials in A3, but (0, x1 + X2, 0)
and (0, x2, x1) are not. If X = Xei and Y = Yea are monomials in Am, we say
that X divides Y provided that i = j and X divides Y. Thus in A3 we see that
(0, xix3 i 0) divides (0, xix3, 0), but does not divide (0, x1x3, 0) or (x4, 0, 0).
We note that in case X divides Y there is a power product Z in the ring A such
that Y = ZX . In this case we define4

Y=Y=Z.X X
So, for example

(0,x4,0) _ x
(0,x1x3,0) xix3

x3.

Si 'laxly, by a term, we mean a vector of the type cX, where c E k- {0} and X
is a monomial. Thus (0, 5xix3, 0, 0) = 5X, where X = (0, xix370)0) - xix3e2,
is a term of A4 but not a monomial. Also, if X = cX ei and Y = dYe3 are
terms of Am, we say that X divides Y provided that i = j and X divides Y. We
write

Y dY
X cX

So, for example,
(01 5xix3) 0) _ 5xix3 _ 5

(0, 2X2 X3, 0)
_

2x2x3 2

We now can define a term order on the monomials of Am.

DEFINITION 3.5.1. By a term order on the monomials of A''" ' we mean a total
order, <, on these monomials satisfying the following two conditions:

(i) X < ZX, for every monomial X of Am and power product Z 0 1 of A;

3In the case that m = 1 we have now called a monomial what we referred to before as a power
product. From now on in the book we will use monomial and power product interchangeably
for such elements in the ring A.

4Be careful about what we are doing here. We are "dividing" two vectors in An to obtain
an element in A; but we are only doing this in the very special case where each of the vectors
has only one non zero coordinate in the same spot which is a power product and one power
product divides the other. The "quotient" is defined to be the quotient of those two power
products.
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(ii) If X < Y, then ZX < ZY for all monomials X, Y E A7z and every
power product Z E A.

Looking at Definition 1.4.1 we see that Conditions (i) and (ii) there correspond
to Conditions (i) and (ii) in Definition 3.5.1. Condition (i), specialized to the
case of m = 1, simply says that Z > 1, since the monomial X can be cancelled.
This is Condition (i) of Definition 1.4.1. The corresponding second conditions
are exactly parallel.

If we are given a term order on A there are two natural ways of obtaining a
term order on A'. These are given in the following two definitions.

DEFINITION 3.5.2. For monomials X = X ez, and Y = Yej of Am, we say
that

1X<Y
X < Y or

X=Yandi<j.
We call this order TOP for "term over position", since it places more importance
on the term order on A than on the position in the vector.

So, for example, in the case of two variables and m = 2, using deglex on the
power products of A with x < y, we see that

(x,O) < (0, x) < (y, 0) < (xy,O).

DEFINITION 3.5.3. For monomials X = X ei and Y = Yea of A', we say
that

i < jX<Y' or
i=jandX<Y.

We call this order POT for "position over term", since it places more importance
on the position in the vector than on the term order on A.

So in this case we have, again for the case of two variables and rn = 2, using
deglex on the power products of A with x < y,

(x,O) < (y,O) < (xy,O) < (0, x).

It is easily verified that these two orders satisfy the two conditions of Definition
3.5.1 (Exercise 3.5.1). Of course, each of these two orders could just as well have
been defined with a different ordering on the subscripts {1,... , m}. In order to
indicate which order we are using we will write, for example, el < e2< - < em.
There are many other examples of orders and we will use an order different from
either one of the above in the next section.

We note that we are using the symbol "<" in two different ways, both for a
term order on the power products of A and for a term order on the monomials
of A'. The meaning will always be clear from the context.

In analogy to Theorem 1.4.6 we have the following
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LEMMA 3.5.4. Every term order on the monomials of A' is a well ordering.

PROOF. The proof of this lemma is exactly the same as the proof of Theorem
1.4.6 except that the Hilbert Basis Theorem (Theorem 1.1.1) used there must
be replaced by Theorem 3.1.1 (Exercise 3.5-2). D

We now adopt some notation. We first fix a term order < on the monomials
of Am. Then for all f E Am, with f 54 0, we may write

f = a1X1 + a2X2 + ... + QTXT,

where, for 1 < i < r, 0 ai E k and Xi is a monomial in A' satisfying
X 1 > X2 > - > X,.. We define

lm(f) = X 1, the leading monomial of f ;
lc(f) = ax , the leading coefficient of f ;
lt(f) = a1X1, the leading term of f .

We define It(0) -- 0, lm(0) = 0, and lc(0) = 0.
Note that, consistent with using monomials in Asz instead of the power prod-

ucts in A, we now use leading "monomials" instead of leading "power products",
and use the symbol "lm" instead of "lp" .

EXAMPLE 3.5.5. Let f = (2x3y - y3 + 5x, 3xy2 + 4x + y2) E A2, with the lex
ordering on A = Q x, y] with x < y. Then in the TOP ordering with e1 < e2 of
Definition 3.5.2 above, we have

f = -y3 e 1 + 3xy2e2 + y2e2 + 2x3ye 1 + 4xe2 + 5xe 1,

and so lm(f) = y3e1, lc (f) = -1, and It(f) = -y3e1. On the other hand, in the
POT ordering with ei < e2 of Definition 3.5.3 above, we have

f = 3xy2e2 + y2e2 + 4xe2 - y3e1 + 2x3ye1 + 5xe1,

and so lm(f) = xy2 e2, lc(f) = 3 and It(f) = 3xy2e2.
We note that lm, lc and It are multiplicative, in the following sense: lm(fg)

lp(f) Im(g), lc(fg) = lc(f) le(g), and It (f g) = It(f) lt(g), for all f E A and
9 E A' (Exercise 3.5.6).

We now move on to the second ingredient in our construction of Grobner bases
for modules, namely, reduction and the Division Algorithm. It should be em-
phasized that now that we have defined monomials (in place of power products),
divisibility and quotients of monomials, and term orders, the definitions can be
lifted word for word from Section 1.5. The basic idea behind the algorithm is
the same as for polynomials: when dividing f by f 1, ... , f.7 we want to cancel
monomials of f using the leading terms of the f i's, and continue this process
until it cannot be done anymore.

DEFINITION 3.5.6. Given f , g, h in Am, g 0, we say that f reduces to h
modulo g in one step, written

f -4 h,
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if and only if It (g) divides a term X that appears in f and h = f - g.

We can thi of h in the definition as the remainder of a one step division of
f by g similar to the one seen in Section 1.5. Observe that the terms introduced
by subtracting 1ts g from f are smaller than the term X subtracted out of f .
We can continue this process and subtract off all possible terms in f divisible
by lt(g).

EXAMPLE 3.5.7. Let f = = (-y3 + 2x3y, 3xy2 + y2 + 4x) and g = (x + 1, y2 + x)
be in A2. We use the lex ordering on A = Q[x, y], with x < y, and TOP with
e1 < e2 in A2. Then, It(g) = (07y2) = y2e2, and

f - (_y3 + 2x3y - 3x2 - 3x, y2 -- 3x2 + 4x)

(-y3+2x3y-3x2 - 4x -1, -3x2 + 3x).

DEFINITION 3.5.8. Let f , h, and f 1, ... , f s be vectors in A', with f 1, ... , f s
non-zero and let F = If 1, ... , /}. We say that f reduces to h rrr odul o F,
denoted

f F )+ h,

if and only if there exists a sequence of indices i1, i27 ... , it E {1,. . . , s} and
vectors h1, ... , ht -I E Am such that

fil f st- h-4...f h1
a ht-1 h.

EXAMPLE 3.5.9. Let f 1 = (zy - y, x2), f 2 = (x, y2 - x) E A2. We use the
lex ordering on A = [x, y], with x < y, and TOP with el < ea in A2. Let
F= {f1,f2} and f = (y2 + 2x2y, y2). Then

f -+ (y2 + 2y - x, -2x3 -- 2x2 + x),

since

f = (Y2+2X2

J, X12)
(Y2 -f- 2x2 y - x, x)

(y2 + 2xy - x, -2x3 + x) - (y2 + 2y - x, --2x3 - 2x2 + x).

Notice that this last vector h = (y2 + 2y - x, - 2x3 -- 2x2 + x) cannot be
reduced further by f 1 or f2. This is because lm(f 1) = (xy, 0) and no power
product in the first coordinate of h is divisible by xy and lm(f 2) = (0, y2) and
no power product in the second coordinate of h is divisible by y2.

DEFINITION 3.5.10. A vector r in A' is called reduced with respect to a set
F = {f 1, ... , f., I of non-zero vectors in Am if r = 0 or no monomial that
appears in r is divisible by any one of the Im(f z), i = 1, ... , s.If f )+ r and
r is reduced with respect to F, then we call r a remainder for f with respect to
F.
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The reduction process allows us to give a Division Algorithm that mim-
ics the Division Algorithm for polynomials. Given f , f1, ... , f., E A"m, with
f1, ... , f, 54 0, this algorithm returns quotients a1, . - . , a5 E A = k [x 1, ... , xn] ,

and a remainder r E A', which is reduced with respect to F, such that

f = a1 f1 + ... + as f 5 + r.

This algorithm is given as Algorithm 3.5.1.

INPUT: f,f,...,f6EA7nwith fi0O(1<i<s)
OUTPUT: a1,... ,a5 E A, r E A' with f =a1f1

and r is reduced with respect to If, I ... , f.1 and

max(lp(a1) lm(f 1), ... , lp(a5) Ixn(f 5), lm(r)) = lm(f)

INITIALIZATION: a1 := 0, a2 := 0, ... , a5 := 0, r := 0, g := f

WHILE g 0 DO

IF there exists i such that lm(f) divides lm (g) THEN

Choose i least such that lm(f j) divides lm(g)

ai =ai+ It(g)
:=

lt(fz)

9:=9
it(g)- f.-
lt(fz) a

ELSE

r:= r + It(g)

g:=9-lt(9)

ALGORITHM 3.5.1. Division Algorithm in A'n

Note that the step r := r + It (g) in the ELSE part of the algorithm is used to
put in the remainder the terms that are not divisible by any It (f Z) and the step
g : = g --- It (g) is used to continue in the algorithm to attempt to divide into the
next lower term of g.

EXAMPLE 3.5.11. We will redo Example 3.5.9 going step by step through
Algorithm 3.5.1.

INITIALIZATION: al := 0, as := 0, r := 0, g := (y2 + 2x2y, y2)
First pass through the WHILE loop:

(xy, 0) lm(f 1) does not divides lrn(g) _ (0, y2)
(0, y2) = lm(f 2) divides lm(g) = (0, y2)



146 CHAPTER 3. MODULES AND GROBNER BASES

a2 := a2 + it(f = 1
y2)9 := 9 --- ltt f f 2 = (y2 + 2x2y, y2) - fQi4 (x, y2 - x)

2)

= (y2+2x2y-x,x)
Second pass through the WHILE loop:

Neither l n(f 1) nor lm(f 2) divides lm(g) _ (y2, 0)
r := r + lt(g) = (y2, 0)
g:= g -- lt(g) = (2x2y-x) x)

Third pass through the WHILE loop:
(xy, 0) = lm(f a) divides lm(g) = (x2y, 0)

a1 := al + ittts = 2x
f1

2

x
,oO (XY

y, x2 )g:= (2x2 y - x, x) - 2(VY
_ (2xy - x, -2x3 + x)

Fourth pass through the WHILE loop:
(xy, 0) = lm(f 1) divides lm(g) = (xy, 0)

al := a1 + litf = 2x + 2
g :_ (2xy x, -2x3 -}- x) _ XV2) (xy --- y, x2)

_ (2y-x,-2x3 -2x2+x)
Fifth pass through the WHILE loop:

Neither lm(f 1) nor hn(f 2) divide lrn(g) = (y, 0)
r := r + lt(g) = (y2 + 2y, 0)
9 g-lt(g) _ (-x,-2x3 -2x2 +x).

The remaining four passes through the WHILE loop, one for each of the four
remaining terms in g, will be similar to the last one, since neither lm(f 1) nor
lm (f 2) divides any of the remaining terms of 9. So we finally get, as we did in
Example 3.5.9, that

f ,
+ (y2 + 2y - x, -2x3 - 2x2 + x) = r

and, moreover

f = (2x + 2)f 1+ f2 + r'

THEOREM 3.5.12. Given a set F = {f1, ... , f,, I of non-zero vectors and
f in Am, the Division Algorithm (Algorithm 3.5.1) will produce polynomials
a1,... , a5, E A and a vector r E A' such that

f =aifi+...+aBfR+r,

with r reduced with respect to F, and

!m(f ) = max{lp(al) lm(f i ), ... , lp(ag) lm(f R)+im(r))
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PROOF. The proof is exactly the same as the proof of Theorem 1.5.9 except
that we use Lemma 3.5.4 instead of Theorem 1.4.6. D

We now have what we need to define Grobner bases in modules. So let M be
a submodule of Am.

DEFINITION 3.5.13. A set of non-zero vectors G = {gi,... , contained in
the submodule Af is called a Grobner basis for M if and only if for all f E M,
there exists i E {1,... , t} such that lm(g,) divides lm(f ). We say that the set
G is a Grobner basis provided G is a Grobner basis for the submodule, (G), it
generates.

We now give the characterizations of a Grobner basis analogous to those in
Theorems 1.6.2 and Theorem 1.6.7. The proof is basically the same as the one
for the ideal case and is left to the exercises (Exercise 3.5.9). We first define, for
a subset W of Am, the leading term module of W to be the submodule of A"=,

Lt(W) = (lt(w) I w E W) CAm.

THEOREM 3.5.14. The following statements are equivalent for a submodule
M C A7z and G = 191,... , gt} C M with gz a (1 < i < t).

(i) For all f E M, there exists i such that lm(g,) divides lm(f) (that is, G
is a Grobner basis for M).

(ii) f E M if and only if f G
?+ O.

(iii) F o r all f E M, there e x i s t s hl, ... , h t E A such that f = hlg1 +- - +hrtgt
and lm(f) = maxi <z<t(lp(hi) lm(gz)).

(iv) Lt(G) = Lt(M).
(v) For all f E Am. if f r1, f --+ r2, and r1, r2 are reduced with

respect to G, then rl = r2.

For completeness sake, we note the Corollaries of this result which correspond
to the Corollaries of Theorem 1.6.2 (Exercises 3.5.10 and 3.5.11).

COROLLARY 3.5.15. If G = {g1,... , gt} is a Grobner basis for the submodule
M of Am, then M = (g1,... , gt).

COROLLARY 3.5.16. Every non-zero submodule M of Am has a Grobner basis.

We will now introduce the analogue of S-polynomials. We continue to em-
phasize that we need only copy what was done in the polynomial case, except
that it is not yet clear what the least common multiple of two monomials should
be. So let X = X e., and Y = Y e3 be two monomials in Am. Then by the least
common multiple of X and Y (denoted lcm(X, Y)), we mean

0,ifi54 j;
Le, where L = lcm(X, Y), if i = j.

For example, lcm((x2yz, 0), (xy3, 0)) = (x2y3z, 0) and lcm((x2V, 0), (0) xy3)) _
(0, 0).



148 CHAPTER 3. MODULES AND GROBNER BASES

DEFINITION 3.5.17. Let 0 # f , g E A"i. Let L = lcm(lm{ f }, lm(g)). The
vector

S(f 9) = f ft -(g-) g

is called the S-polynomial5 of f and g.

The motivation for this definition is the same as the one used for the defi-
nition of S-polynomials in Definition 1.7.1. Namely, we are interested in linear
combinations of f and g in which the leading monomials cancel out. This can-
not happen if hn(f) and 1i(g) have their respective non zero entries in different
coordinates and so, in this case, we define their least common multiple to be the
zero vector making their S--polynomial the zero vector. On the other hand, if
lm(f) and lm(g) have their respective non zero entries in the same coordinate,
then S(f , g) is set up to cancel out these leading monomials in the most efficient
way.

EXAMPLE 3.5.18. We consider A Q[x, y] with the deglex ordering with
x < y and A2 with the TOP ordering with e1 < e2. Then,

S((x2 -t-1, 5xy3 -I- x), (x2y, 3x3J + F!)) _

(Ox3Y3)(2 + 1, 5xy3 + x) -
(01 X3!/ 3) (X2I .'r y, 3x3J + y) _(0, 5xy3) (0, 3x3y)

x2
(x 2 + 1, 5xy 3 +x) - I(x2y,2 3x3y+y) = ( x4 + _ 2

y
3

, x3 _
5 5 3 5 3

Note that the leading monomial of each of the suxmnands is (0, x3y3) while the
leading monomial of the S-polynomial is (x2y3, 0) < (0, x3 y3) .

THEOREM 3.5.19. Let G = jg1s ... , gt } be a set of non-zero vectors in A"".
Then G is a Grobner basis for the submodule M = (gi,... , ti) of A' if and
only if for all i 0 3,

S(92, 92)
G

) + 0.

We will leave the proof of this Theorem to the exercises (Exercise 3.5.13) ; it
follows the proof of Theorem 1.7.4 exactly.

This last Theorem allows us to give the analog of Buchberger's Algorithm,
Algorithm 1.7.1, for computing Grobner bases. It is given as Algorithm 3.5.2.
Although this algorithm is exactly the same as Algorithm 1.7.1, we will restate
it here for the convenience of the reader. The proof of the correctness of the
algorithm is left to the exercises (Exercise 3.5.14).

5We use the term "S-polynomial" even though the result is clearly a vector with polynomial
coordinates.
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INPUT: F={f1,...,f6}9 Am with f254 0(1<i<s)

OUTPUT: G = {9i, , 9t}, a Grabner basis for (f12 ... '18)

INITIALIZATION: G :_ F, 9 := {{f, f, I f fi f, E G}

WHILE G 54 0 DO

Choose any{f,g}E9

g :_ g - {{f,g}}

S(f , g) ).+ h, where h is reduced with respect to G

IF h 0 THEN

g:=GUflu, h} I for all uEG}

G := G U {h}
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ALGORITHM 3.5.2. Buchberger's Algorithm for Modules

EXAMPLE 3.5.20. Consider the following vectors of (Q[x, y])3:

f1 = (O,y,x), f 2 = (0,x,xy - x), f3 = (x, y2, 0), f 4 = (y,0,x).

We use the deglex term order on Q[x, y] with x > y and the TOP order
on (Q[x, y]) 3 with e l > e2 > e3. We compute a Grobner basis for M =
Y,424344) using Algorithm 3.5.2. Let G =U1424344). The only S-
polynomials with non zero L in Definition 3.5.17 are the ones corresponding to
9 = {{f1, f2}, {f1, f4}, {f2, f4}}. We compute

S(f 14 f 2) = yf 1 -f2 = (0,y2 - x, x) -{- (-x, -x - y, O).

This vector is reduced with respect to G, so we set f 5 = (-x, -x - y) 0), and we
add it to G. Next,

S(f 1) f4) = fl - f4 = (-y, y, 0).
Again, this vector is reduced with respect to G, so we set f6 = (-y, y) 0), and
we add it to G. One readily sees that S(f 2, f 4) G?+ 0. The new vectors h5
and f 6 generate only one S-polynomial that needs to be considered,

`(fs, fs) yfs - xfs = (0, -2xy - y2, 0) G }+ (o, --2xy - x - y, 0).

This vector is reduced with respect to G, so we set f7 = (0, -2xy - x -- y, 0),
and we add it to G. This new vector generates only one S-polynomial that needs
to be considered,

S= 2x f3 =(2x 2 -X Y 2 0) (0, ---2x2 + + o .1 2 2
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We set f8 = (0, -2x2 +
2

x + 2 y, 0) and add it to G. This new vector generates
two S-polynomials we need to consider,

S(f3l f8) = 2x2 f3 + y2f8 = (2x3 xy
2

+
1

y 3 50) -G)+0
2 2

and

S(f7= f8) =
xf

7 - yfs (01
-x2 - 3xy _

2 v
1 .2 0) +0.

Therefore G = {f1, f2, f3 , f4, /5,16, f-17 f 8} is a Grobner basis for M.
Finally, we conclude this section by noting that the results in Chapter I

concerning reduced Grobner bases hold in this context as well. We will not
prove the results here as, again, they exactly parallel the ones in Chapter 1, but
we will state the main Definition and Theorem here for completeness. The proof
will be left for the exercises (Exercise 3.5.17).

DEFINITION 3.5.21. A Grobner basis G = {g,... , gt } C Am is a reduced
Grobner basis if, for all i, gi is reduced with respect to G - {g} and lc(gi) = I
for all i = 1, ... , t. Thus for all i, no non-zero term in gi is divisible by any
lm(g3) for any j i.

THEOREM 3.5.22. Fix a term order. Then every non-zero submodule M of
A' has a unique reduced Grobner basis with respect to this term order. This
Grobner basis is effectively computable once M has been given as generated by a
finite set of vectors in Am.

EXAMPLE 3.5.23. We go back to Example 3.5.20. In that example we had
that G = {f1 , f 2' f 3, f 4, f 5, f 6, f 7, f} is a Grobner basis for M. We first
observe that since lm(f 1) divides l(f 2} and lm.(f4) we may eliminate f 2 and
f4 from G and still have a Grobner basis. Moreover, f 3 ---'+ (0, v2 - x - y, 0).
Therefore the reduced Grobner basis for M is

(O,y,x), (0,y2 - x - 0)1 (0,x2 - x- I Y, 05
4 4

1
1(0,xy+x+y,0), (y,-y,0), (x,x+y,0)

Exercises
3.5.1. Prove that the POT and TOP orders of Definitions 3.5.3 and 3.5.2 are

term orders on Am.
3.5.2. Complete the proof of Lemma 3.5.4.
3.5.3. Prove the analog of Proposition 1.4.5: Let < be a term order on Am. For

X1 Y monomials in A'n, if X divides Y, then X < Y.
3.5.4. Prove the analog of Exercise 1.4.6: Let < be a total order on the monomials

of Atm satisfying Condition (ii) of Definition 3.5.1, and assume that < is
also a well ordering. Prove that X < ZX for every monomial X of ,Atm
and power product Z , of A.
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3.5.5. Write the following vectors as the sum of terms in decreasing order ac-
cording to the indicated term orders:
a. f = (x2 y-xy2 , x3+1, y3 ---1), with the deglex term order on A = Q [x, y]

with x > y, and the TOP ordering on A3 with el > e2 > e3. Then
change the order to deglex with y > x and the POT ordering with
el < e2 < e3. Finally, change the order to lex with y > x and the
TOP ordering with e1 < e2< e3.

b. f = (x2 + xy, y2 + yz, z2 + xz), with the degrevlex term order on
A = Q [x, y, z] with x > y > z, and the TOP ordering on A3 with
el < e2< e3. Then change the order to degrevlex with z > y > x and
the POT ordering with e1 > e2 > e3. Finally, change the order to lex
with z > y > x and the TOP ordering with el < e2 < e3-

3.5-6. Prove that It, lm., and lc are multiplicative. Namely, prove that for all
f E A and g E Am we have 1t(fg) = It(f) It(g), m(fg) = lp(f) lm(g),
and lc( f g) = lc(f) le(g).

3.5.7. Complete the proof of Theorem 3.5.12.
3.5.8. As in Example 3.5.11, follow Algorithm 3.5.1 to find the quotients and

remainders of the following divisions:
a. Divide f = (x2y + y, xy+y27 xy2 +x2), by F = {f 1, f 2, f 3, f4}, where

f1=(x2,xy,y2), f2=(y) 0,x),f3=(O) x,y),and f4=(y) l,0). Use
lex with x > y on A = Q[x, y] with the TOP ordering on A3 with
e1>e2>e3.

b. Divide f = (x2y+y,xy+y2 , xy2 + X2) 7by F =If1, f2) f 3, f 4}, where
f l = (xy, 0, x), f2 = (y, x, 0), f3= (x + y, 0) 0), and f4 = (x, y, 0).

Use deglex with x > y on A = Q [x, y] with the POT ordering on A3
with e1>e2> e3-

3.5.9. Prove Theorem 3.5.14.
3.5.10. Prove Corollary 3.5.15.
3.5.11. Prove Corollary 3.5.16.
3.5.12. Prove the analog of Exercise 1.6.13: Let {gi'... , gt I be non zero vectors

in A' and 0 h E A. Prove that gt } is a Grobner basis if and
only if {hg1,... , hgt} is a Grobner basis.

3.5.13. Prove Theorem 3.5.19.
3.5.14. Prove that Algorithm 3.5.2 produces a Grobner basis for (f
3.5.15. Compute the Grobner bases for the following modules with respect to

the indicated term orders. You should do the computations without a
Computer Algebra System.
a. M = Y1424344) c A3, where f l = (x2,xy,y2), f2 = (VAX)l

f3= (0, x, y), and f 4 = (y, 1, 0) . Use lex on A = Q [x, y] with x > y
and the TOP ordering on A3 with e1 > e2 > e3.

b. M = (f1,f2,f3,f4/ 9 A3, where f1 = (x- y,x,x), f2 = (yx,y,y),
f 3 = (y, x, x), and f 4 = (y, x, 0). Use deglex on A = Q[x, y] with y > x
and the TOP ordering on A3 with el > e2 > e3.
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3.5.16. Give an example that shows that the analog of Lemma 3.3.1 is false in
the module case; that is, Grit 1 of Section 3.3 cannot be used in Algorithm
3.5.2.

3.5.17. Prove Theorem 3.5.22.
3.5.18. Find the reduced Grobner bases for the examples in Exercise 3.5.15.
3.5.19. In this exercise, we will take a different view of the module Am which

allows us to implement Grobner basis theory in Computer Algebra Sys-
tems that don't have a built-in module facility. Let el, e2,..- , em be new
variables and consider the polynomial ring k [xl, ... , xn , e17... , em] . We
identify Am with the A-submodule of k [x1, ... , xn, el , ... , em] generated
by e-1, e-2, ... , e,n simply by sending (fj,... , fs) to f1 e 1 + ... + fmem E
k[xi, ... , xn, el, . - . , Fix a term order on k[x1, ... , xn]. Consider any
order on the variables e1, e2, ... , em such that el < e2 < < em. Prove
the following:
a. Consider an elimination order between the x and e variables. Then,

in the above correspondence, if the x variables are larger than the e
variables we have the TOP ordering in A' and if the e variables are
larger than the x variables we have the POT ordering in AM .

b. Note that division and quotient of monomials in A' just mean the
usual division and quotient in k[x1, ... , xn, e1, ... , em] . Then note
that Definitions 3.5.6, 3.5.8, and 3.5.10 become the usual ones in
k [x x , ... , xn , e1, ... , em] . Show that the Division Algorithm for mod-
ules (Algorithm 3.5.1) corresponds directly to the polynomial Division
Algorithm (Algorithm 1.5.1).

c. Show that the usual Buchberger's Algorithm (Algorithm 1.7.1) per-
formed in k [x1, ... , xn, e1, ... , em] can be used to compute Grobner
bases in A` with the following modification: In the definition of the
least common multiple, we must set lcm(Xe2, Yet) = 0 for power prod-
ucts X and Y in the x variables when i j.

d. Redo the computations in Exercise 3.5.15 using the above method.

3.6. Elementary Applications of Grobner Bases for Modules. Let
M = (f1,... , f.,)S) be a submo dule of A7n . As in the case of ideals in A (see Section
2.1), we show in the present section how to perform effectively the following tasks:

(i) Given f E Atm, determine whether f is in M (this is the module
membership problem), and if so, find h l , , h3 E A such that f =
hif +...+hs#.I S}

(ii) Given M', another submodule of Atm, determine whether M' is contained
in A and if M' C M, whether M' = M;

(iii) Find coset representatives for the elements of Am/M;
(iv) Find a basis for the k-vector space Am/M.

Moreover, we show how the theory of elimination we introduced in Section 2.3
is carried over to the module setting.
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Let F = {f1,... , fj } be a set of non zero vectors in Atm and let M =
(f1 , ... , f S ) . Let G = {gi'... , gt} be a Grobner basis for M with respect to
some term order.

We start with Task (i) . Let f E A' . We have already noted in Theorem
3.5.14 that

f E M S f -+ 0.

So we can determine algorithmically whether f E M or not. Moreover, if f E M,
we apply the Division Algorithm for modules presented in Section 3.5 (Algorithm
3.5.1) to get

(3.6.1) f = hlgl + ... + ht9t-

As in the ideal case, we can find an s x t matrix T with polynomial entries
such that, if we view F and G as matrices whose columns are the f z's and
the g3's respectively, we have G = FT. (T is obtained, as in the ideal case,
by keeping track of the reductions during Buchberger's Algorithm for modules.)
Therefore Equation (3.6.1) can be transformed to express the vector f as a linear
combination of the vectors f 1, ... , f'9 .

EXAMPLE 3.6.1. Let A = Q[x, y]. We consider the submodule M of A3 gen-
erated by F =If1,, where

f l = (xy,y,x), f 2 = (x2
+ x, y `i - x2 , y),

f3 - (-y,x,y), f4 = (x2,x,y).
We use the lex term ordering on A with x < y and TOP with el > e2 > e3 on
A3. To indicate the leading term of a vector we will underline it; e.g.

f 1 = (xy,,x), f`2 = (x2 + x, y + x2'
y),

f3 - (-y, x, y), f4 = (x2
7 x, y)

The reduced Grobner basis for M is G =191,92,93,94,95,1961, where

91 = (13 + x, x2 - x, _X), 92 = (x,y+ x2 - x, 0)

93 = (y+ x21010), 94 (x2, x, y),

95 = (x2, x3, -x3 ), 96 = (x2 - 2x, -x2 + 2x, x5 - x4 - 3x3 + x2 + 2x).

Consider the vector f = (-2x, x --1, x y + x). To determine whether f is in M,
we perform the Division Algorithm presented in Section 3.5 (Algorithm 3.5.1)'B:

f E -2x,_'x2+x 1,x)

(,-1,0).
Since xe1, and e2 cannot be divided by any lm(gz), the vector (-x, -1, 0) is
reduced with respect to G, and hence f is not in M.

6We remind the reader that when we write f h we mean that h = f -- Xg.
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Now consider the vector g = (yx5 - yx + x, yx4 + y + 2x2 --- x, x5 + yx). Again
we perform the Division Algorithm:

s

9 x'93 (-yx-x7+x,yx4+y+2x2 _x,yx+x5)
X 4

)92 (-yx - x7 _ X5 + x,y- x6 + x5 + 2x2 - x, xy+ x5
793 (-x7 - x5 +x3 +x,y ----xs +x5 + 2x2 -x,xy +x5)

X29 (_X7 -x5 +x,y-x6 +x5 +x2 ---x,x5)
1 (-x'7-x5,-x6 + x5, x5-1

(0,0,0).

Therefore g is in M. Moreover, we get

9 = x583 + x492 - X93 +X94 +92 -X4
91

-x492 + (x4 + 1)92 + (x5 - x)93 +X54.

We now want to express g as a linear combination of the original ft's.
consider the matrix T that transforms G into F. We have

(3.6.2) [ 91 92 93

_ [ fx .tz fs f4

where

(3.6.3)

94 9s 9s

-1 0 0 0 -x2 - y hl
1 1 0 0 x+y h2

-x 0 -1 0 x(1- y) h3

x-1 -1 1 1 xy-y-x h4
T

h1 y2+2x2y--xy-2y+x4-x3 -3x2+x+2
h2 -y2 -x2y+2y-2x2+x-2
h3 = xy2 + x3y ---- x2y - 3xy - 2x3 + x2 +4x
h4 -xy2 +y2 --x3y+2x2y+ 2xy - 2y- 2x2 - 3x + 2.

Therefore we have

9 -x49x + (X4 -I- 1)g2 + (x5 - x)Sa + xSa

-x4(-f1+.f2Jxfg+ (2-1)f4) + (24+1)(f2-.t4)
+(x5 - x)(-f3 + M + xf4
X 4f1+f2+Xf3-f4

So we

Now we turn our attention to Task (ii). Let M' be another submodule of A',
say M' Then M' C M if and only if f' E M for i = 1, ... , t. This
can be verified algorithmically using the method described above. Moreover, if
M' C M, then M' = M if and only if M C M', and this, again, can be verified
algorithmically using the above method. Alternatively, we can compute reduced
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Grobner bases for M and M' and use the fact that reduced Grobner bases for
submodules of Am are unique (Theorem 3.5.22) to determine whether M = M.

EXAMPLE 3.6.2. We go back to Example 3.6.1. Let M' be the submodule of
A3 generated by {f2, f3, f4, g}. M' is a submodule of M, since we showed in
Example 3.6.1 that g E M. However, using the same order we did in Example
3.6.1, the reduced Grobner basis for M' is given by {g1, g'2, g3, g4, g5, gs}, where

gi = (x,y+x2 _ x, 0), g2 = (yx2,O,O)

93 (x6, x7, -x7), 94 = (x7 + x5, x6 - x5I _x5),

95 = (x2, x, y), 96 = (x6 - 2x5, --x6 + 2x5, x9 -- x8 --- 3x7 + x6 + 2x5).

Since the reduced Grobner basis for M' is not equal to the one for M, the modules
M and M' are not equal.

Now if we consider the submodule M" of A3 generated by {f, f2, f 3, g}, then
again M" is a submodule of M. Moreover, we can compute that the reduced
Grobner basis for M" is the same as the reduced Grobner basis for M, and
therefore M" = M.

We next turn our attention to Task (iii), that is, we find cosec representatives
for the quotient module Am/M. Let G be a Grobner basis for M and let f G Am.
We know from Theorems 3.5.12 and 3.5.14 that there exists a unique vector
r E Am, reduced with respect to G, such that

f -+ r.
As in the ideal case, we call this vector r the normal form of f with respect to
G, and we denote it by NG (f) -

PROPOSITION 3.6.3. Let f and g be vectors in A"`. Then

f+M=9+ManA'"/M 4=* 1Vc(f)=Nc(9)-

Therefore {NG(f) I f E Al"I is a set of cosec representatives for the quotient
module A"`/M. Moreover the map

f '-' Nc(f}
is k-linear.

The proof of this result is similar to the one for the ideal case (Proposition
2.1.4) and is left to the reader as an exercise (Exercise 3.6-4).

As in the ideal case (Proposition 2.1.6), we have the following Proposition
whose proof we also leave to the exercises (Exercise 3.6.5). It solves Task (iv).

PROPOSITION 3.6.4. A basis for the k-vector space A'nlM consists of all the
cosecs of monomials X E A"s such that no lm(gti) divides X.
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EXAMPLE 3.6.5. We again go back to Example 3.6.1. The leading terms of
the reduced Grobner basis are:

3 3 5X e1,ye2,ye1,ye3,x e2,x e3.

Therefore a basis for the Q-vector space A3 /M is

{e1, xe1, x2e1, e2, xe2, x2e2, e3, xe3, x2e3, x3e3, x4e3}.

To conclude this section, we consider the theory of elimination presented in
Section 2.3, but now in the module setting. Again the proofs are very similar to
the ones for the ideal case and, except for the proof of Theorem 3.6.6, are left to
the reader.

Let y1, ... , ye be new variables, and consider a non zero module

M C (A[y1, ... , ye])m = `k[xl, .. , xn, y1, ... , yt])m.

As in the ideal case (Section 2.3), we wish to "eliminate" some of the variables.
For example, we wish to compute generators (and a Grobner basis) for the
module M n Am, that is, we wish to eliminate the variables yr, ... , ye. First,
we choose an elimination order on the power products of A[yl, ... , yy] with the
y variables larger than the x variables (see Section 2.3). The next result is the
analog of Theorem 2.3.4 in the module context (in fact Theorem 2.3.4 is the
special case m = 1 in Theorem 3.6-6).

THEOREM 3.6.6. With the notation as above, let G be a Grobner basis for M
with respect to the TOP monomial ordering on (A[yi,... , ye] )m . Then G n Am
is a Grobner basis for M n Am .

PROOF. Clearly (G n Am) C M n A' . So let 0 0 f E M n Am. Then there is
a g E G such that lm(g) divides lm(f ). Since the coordinates of f involve only
the x variables, we see that lm(g) can only involve the x variables as well. Then
since we are using an elimination order with the y variables larger than the x
variables we see that the polynomial in the coordinate of g giving rise to lm(g)
can contain only x variables. Finally, since the order is TOP on Am we see that
the polynomials in all of the coordinates of g must contain only x variables.

We will give an example in the exercises where the above result is false if the
TOP ordering is replaced by the POT ordering on Am (see Exercise 3.6-8).

EXAMPLE 3.6.7. In Example 3.6.1 we saw that the reduced Grobner basis for
M has three vectors in x alone, namely g j, g,5, and g6 . Therefore by Theorem
3.6.6, M n (Q[x])3 is generated by 1g1, g5, g6}.

We can use this result to compute intersection of submodules of Am and ideal
quotients of two submodules of A'. First, as in the ideal case (Proposition 2.3.5)
we have
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PROPOSITION 3.6.8. Let M - (f17... , f,,) and N = (gi,... ) gt) be submod
ales of A' and let w be a new variable. Consider the module

L = (tof l)... , wf (1 - w)9x, ... , (1 - w)gt) C (A[w])m.

Then MnN=LnAm.

We note that in Proposition 3.6.8, neither f f 1, ... , fa } nor 1.9 17 ... ,gt} need
be a Grobner basis.

As a consequence of this result we obtain a method for computing generators
for the module M f 1 N C A': we first compute a Grobner basis G for L with
respect to the TOP ordering on monomials of (A [w]) m, using an e ' ation order
on the power products in A[w] with to larger than the x variables; a Grobner
basis for M fl N is then given by G n Am.

EXAMPLE 3.6.9. Let M be the submodule of A3 of Example 3.6.1, and let N
be the submodule of A3 generated by the vector g1 = (y, x, xy). The reduced
Grobner basis for (wf1, W f 2, w f 3, w f 4, (1 - w)g1) C (A[w])3 with respect to
the TOP term ordering with el > e2 > e3 using the lex ordering in A[w] with
to > y > x has 8 vectors, two of which are in A3:

hl = (9y2 - 7yx6 + 2yx5 + 25yx4 + 7yx3 - 9yx2 - 9yx,
9yx - 7x7 + 2x6 + 25x5 + 7x4 -- 9x3 - 9x2 ,

9y2x - 7yx7 + 2yx6 + 25yx5 + 7yx4 - 9yx3 - 9yx2)
Iz2 = (yx7 - yxs - 3yx5 + yx4 + 2yx3, x8 - x7 -- 3x5 + x5 + 2x4

yx8 _ yx7 - 3yx6 + yxs + 2yx4) .

Therefore M fl N = (hl, h2)C A3.

DEFINITION 3.6.10. Let M and N be two submodules of A'. The ideal quo-
tient N : M is defined to be

N: M={f EAR fMCN}CA.

Note that N : M is an ideal in A.
As in the ideal case (Lemmas 2.3.10 and 2.3.11) we have

LEMMA 3.6.11. Let M = (f 1, ... , f,) C Ain and let N be any other submod-
ule of Am. Then

3

N: M = fl N: (ft).
i=1

Since we have a method for computing intersection of ideals (Proposition
2.3.5 or equivalently Proposition 3.6.8 with m 1), we only need to show how
to compute N : (f) for a single vector f E Atm .
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LEMMA 3.6.12. Let N be a submodule of A' and let f be a vector in A'.
Then

N: (f)=jaEAjg=af ENn(f)).
Thus we may compute N : (f) by first computing a set of generators for N fl (f)
and dividing these generators by f using Ow Division Algorithm. The quotients
obtained are then a set of generators for N: (f).

EXAMPLE 3.6.13. In Example 3.6.9 we saw that

M n (gl) = (hi) h2) -

Note that

h, = (9y - 7x6 + 2x5 + 25x4+7X3 - 9x2 - 9x)91

h2 = (x7 - x6 - 3x5 + x4 + 2x3 )g 1 .

Therfore, by Lemma 3.6.12,

M: (91) = (9y -7x6+2x5+25x4+7x3-9x2-9x,17--x6-3x5+x4+2x3) C A.

Now let g2 = (y + x2 , y, x2) E A3. We wish to compute M : (91,92). By Lemma
3.6.11, we first need to compute M : (92). We proceed as in Example 3.6.9 using
the same term order, and we find

M n (92) = (h3, h4),

where

h3 = (x7 - xs 3x5 + x4 + 2x3 )92

h4 = (9y+2x6-7x5-2x4+16x3+9x2-9x)g2.
Therefore, by Lemma 3.6.12,

M : (92) = (x7-x6-3X5 +X4+ 2x3 , 9y + 2x5 - 7x5 - 2x4 + 16x3 + 9x2 - 9x) C A.

Now, by Lemma 3.6.11,

M: (91,92) = (M: (g1)) fl (M: (92)).

To compute this intersection, we find the Grabner basis for the ideal

(w(9y - 7x6 + 2x5 + 25x4 + 7x3 - 9x2 --- 9x), w(x7 - xs - 3x5 + x4 + 2x3),

(1-w)(x7-x6-3x5+x4+2x3),(1---w)(9y+2x6-7x5-2x4+16x3+9x2-9x))
of A[w] with respect to the lex term ordering with w > y > x. The Grobner
basis has five polynomials, three of which do not contain the variable w,

U1

U2 =

U3

x7-x6-3x5+x4+2x3
9yx-5x6+4x5+14X4 - 5x3 -9x2
3y2 x6 + 2x5 + x4 - 2x3 - 3x2.

Therefore M: (91'92) = (u1,u2,u3) C A.
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Some of the computations we have performed in this section can also be done
more efficiently using the syzygy module of the matrix [ f 1 - - f.9 ] , where
f i E A'. In the next section, we introduce these syzygies, and then, in Section
3.8, we give these applications.

Exercises
3.6.1. Consider the following 3 vectors in (Q [x, yj) 2 :

f 1 = (sy _ x, y), f2 = (x7 y), f3 = (y7 xy2).

You should do the following without the use of a Computer Algebra Sys-
tem.
a. Let f = (-x, ---x3y2 +. 2xy - y2 +y). Show that f E Y14243)'

Moreover, express f as a linear combination of f 1 , f2, and f3 .
b. Let g = (-x, x3 y2 + 2xy -- y2 + y) . Show that g 0 (f 1, f 2) f s) .
c. Clearly we have(f219) C (fi' f 2, g). Prove that this inclusion is strict.

3.6.2. Consider the following vectors in (Q[x, y]) 3

1 = (Oy,x)
7 f2 (O,x,xj-x), f3 --- (Y' xi) 0)7 4 = (Y2, y7 0).

You should do the following without the use of a Computer Algebra Sys-
tem.
a. Compute a Grobner basis for M = (f 1 , f 2 , f 3, f 4) with respect to the

TOP ordering on (Q[x, y])3 with e1 > e2 > e3, using deglex on Q[x, y]
with x > y. Use this to compute the matrix T which gives the Grobner
basis vectors in terms of the original vectors.

b. Use a to show that the vector (x2y - y2 +xy2, xy2 - y2 + x2 + 2xy - x -
y, x2y + xy2.3xy + x) is in M and express it as a linear combination
off17f27f37f4-

3.6.3. Consider the following two submodules of (Q[x, y, z])3:

M = ((x2 -- y) y, xz -- y), (xz + x, yx + y, yz + z), (x,
0, x)) and

M' = ((-y) y7 zx - x2 - y), (y2 + y, yx2 - y2 r+' 2xy - y, yx2 - x3 + y2 + y),

(x,0,x),(0,xy+ y, -xz - x + yz + z)).
Determine whether any of the following holds:

MCM',M'CM,M=M'.
3.6.4. Prove Proposition 3.6.3.
3.6.5. Prove Proposition 3.6.4.
3.6.6. Consider the module M of Example 3.6.1. Determine whether f + M =

g + M for the following examples:
a. f = (2x, y2x + y2 + yx + 2y - 3x, -y + x), g = (-y2 + x - y7 y3 +

2y27y 2 -- x).

b. f =
(y3+y2+x_y,y2+y7y+x)7:J

`(x,y3+2y2-yx-x,0).
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3.6.7. Find a Q-basis for the vector space A3 /M for each module M in Exercise
3.5.15.

3.6.8. In Theorem 3.6.6 we required that the order be TOP. In this exercise
we show that this is necessary. Consider the vectors f I = (y, xy), f 2 =
(0, x+1) E (Q[x, y])2. We use the POT ordering on (Q[x, y])2 with el > e2
and lex on Q[x, y] with x > y.
a. Prove that G = {f1, f 2 } is a Grobner basis and note G n (Q[y])2 = 0.
b. Prove that M n (Q[y])2 contains a non-zero vector.

3.6.9. Consider the submodule M of (Q[x, y, z])3:

M = ((x,xz,z2), (x,x2,x+y),(y,0,x),(x,0,z)).

Compute generators for the following modules:
a. m fl (Q [x, y]) 3 .
b. M n (Q[y, z])3.
c. M fl (Q[x, z])3.

3.6.10. Prove Proposition 3.6.8.
3.6.11. Compute generators for the intersection of the following two submodules

of (Q[x,y])3

M = ((x, x2, x + y), (y, 0, x)) and N = ((x2, xy, y2), (x _ y, x, x)).

3.6.12. State and prove the analog of Exercise 2.3.8 for the computation of the
intersection of more than two submodules of A'n. Use this to compute gen-
erators for the intersection of the following three submodules of (Q[x, y])3 :
.M1 = ((x,x,-y), (x, y, -x)), M2 = ((x, y, y), (x) x, x)), 1113 = ((y, y, y),
(y, x,x)).

3.6.13. Prove Lemma 3.6.11.
3.6.14. Prove Lemma 3.6.12.
3.6.15. Compute generators for M: N, where M = ((0, y, x), (0, x, xy-x), (y, x, 0),

(y2, y, 0)) and N = ((y, x, x), (x,y,y)) c (Q[x,y])3.

3.6.16. Consider module homomorphisms 0: As ) At and y: Am _+ At, such
that im(fy) C im(q). A theorem of Module Theory states that there exists
a "lifting", that is, a homomorphism : A'n -p As such that 0 o 0 = y;
i.e. the following diagram commutes.

Am

a. Show how to compute 0. That is, show how to compute b (e, ), i =
12... , M. [Hint: Let {gj,... , gt} be a Grobner basis for im(O) and
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apply the method used to solve Task (i) at the beginning of the section.]
b. Compute b in the following example. Let A = Q jx, y] . We define

-y: A -- A3 by 'Y(1) = (x2y2 + x2, y3 + xy + y2, xy2 _ 1), and we define

0: A3 - + A3 by O(ei) _ (x2 + xy, y2, xy 1), q5(e2) _ (x2y _ x, y2 +
x, xy x), and O(e3) = (y2 + x + y, x2, x -- y). You should first verify
that ixn(-y) C im(o).

3.7. Syzygies for Modules. We now turn our attention to computing the
syzygy module of a matrix [ f 1 . . f S I of column vectors in Am. This
computation is very similar to the computation of the syzygy module of the
1 x s matrix [ f1 - fu I of Polynomials in A (see Section 3.4).

Recall that in Section 3.1 we defined the map 0: AS Am by q5 (h1 , ... , h.9)

Fa1 hi f i . As in the case where in = I (see Section 3-2), the kernel of this
map is called the syzygy module of [ f 1 .. fs ] and is a submodule of A'.
More formally we have

DEFINITION 3.7.1. Let f, I ... , f, E Am. A syzygy of the m x s matrix F _
[ f 1 .. fa ] is a vector (h1,... , h5) E As such that

hifi=0.
z=1

The set of all such syzygies is called the syzygy module of F and is denoted by
f5) or by Syz(F).

In other words Syz(F) = Syz (f 1, ... , fj can be viewed as the set of all
polynomial solutions h E A3 of the system of homogeneous linear equations
Fh = 0 with polynomial coefficients. That is, if f 1 = (In,... , f mi), ... , f8 =
(fin,... , fms), then Syz(f 1, ... , f S) is the set of all simultaneous polynomial
solutions X1, ... , x8 of the system

fiixi++fisxs
f21X1++f2sXs

frnlXl + ' ' . + fmsXs =

0

0

0.

As in the case of the syzygy module of a 1 x s matrix [ fl fs J of
polynomials in A, the computation of Syz(f 1, ... , f,,) is done in two steps.
W e f i r s t compute a Grobner basis {gi,... , gt } f o r (f1,... If s) C A'm and
compute Syz(g1,... , gt) C At. We then obtain Syz(f 1, ... , f s) C AS from
Syz(g1,... ,gt).

So let us first start with G = [91 ... gt ] . As we did in the polynomial
case, we assume that lc(gj = 1. We follow closely the construction we used for
the ideal case (see Section 3.4). Let i 0 j E {1,... , t}. Let lm(gi) = Xi and
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Xz j = lcm (X i , X3). Then the S-polynomial of gi and 9, is given by

S' (gj,9,)-

By Theorems 3.5.12 and 3.5.19, we have

t

S(9i,gj) = E k-3vgv"
V=1

for some hi jv E A, such that

(3.7.1) max (lp(hj)1m(g)) jY=1m{S(9ar9j)}.

1<v<t

For i, j E {1,... , t}, we define

s z = X zj ez - Xz? e? -- (h,Xz ... hzit} E At.
X3 j1>

We easily see that si j E Syz(g1, ... ,gt) .

We first state the analog of Proposition 3.2.3.

PROPOSITION 3.7.2. Syz(Xi,... , X5) is generated by

XijeE A$ i E ...{1> >s}X z X j

a 9

We now give the analog of Theorem 3.4.1. The proof is identical except that
instead of Proposition 3.2.3 we use Proposition 3.7.2. We leave the proofs of
both the Proposition and the Theorem as exercises (Exercises 3.7.4 and 3.7.5).

THEOREM 3.7.3. With the notation above, the collection fsij I I < i < j < t}
is a generating set for Syz(G) = Syz(g1, ... ,gt).

EXAMPLE 3.7.4. We go back to Example 3.5.23. Recall that the set {g1, g2,
93,94595,961 is a Grobner basis with respect to the deglex term order on Q[x, y]
with x > y and the TOP order on (Q[x,y])3 with el > e2 > e3, where

91 = (0, y, X)5 92 = (0, y2 - x - y, 0),

93 = (x,x + y, 0), 94 = (y,-y,O),

r= x+1 0), 9(0, x2_ --1 a).(0,xy+
2 2y 4 4y

To obtain the generators for Syz (g 1, 9 2, 93 , 94 , 95, 96) , we follow Theorem 3.7.3
and so we compute and reduce all S-polynomials. The S-polynomials we need
to compute are S(92,95), S(92, 96), S(96, 96) and S(93,94). For example, since
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S(93,94) = Y93 - x94 = 92 + 2g5, we have 834 = (0, -1, y, -x, -2, 0). The other
syzygies are computed in a similar way (Exercise 3.7.2) to obtain

825 = 325 (0,x+,0,0,-y+,1)

556 = -10ox--3--s6 (0, 4' 4) y 2}

Note that we have not included 826 because it is in (s34, 825, 856) (See Exercise
3.7-7).

EXAMPLE 3.7.5. We consider the submodule M of A3 = (Q[x,y])3 of Example
3.6.1. We saw that {g1, g2, 93, 94, 95, 96} forms a Grobner basis with respect to
the TOP term ordering in A3 with e1 > e2 > e3 and with lex in A with y > x,
where

91 =
(13+X,X2 - x, -x) 92 =

(x,y+x2 -x,0),
93 = (y + x2, 0, 0), 94 = (x2, x, y),

95 = (x2 3x3 ) -x3) , 96 = (x2 -- 2x, -x2 + 2x,x5 - x4 3x3 + x2 - 2x).

The syzygy module Syz(g1, 92, 93, 94, 95, 96) can be computed using Theorem
3.7.3. For example

S(91193) -- y91 - x393

(yx x5, yx2 - yx, -yx)
2

)92 5-x 3-x-x4
+

x3-x(yx-x ) y}
x

-X I92

-x,94

2
2

1

(-x5 - 2x3, -yx - x4 + x3, -yx)

(-x5 - 2x3 +- x2, -x4 +- 2x3 - x2, -?,fix)

_x5 - x3 + x2, -x4 + 2x3, 0)

(x2,x3, -x3)

(0,0,0).

So S(91, 93) = y91 - x393 = x292 + X93 - X92 - X94 - x291 + 95 , and therefore

813 = (y + x2,
_x2 + x, --x3 - x, x, -1, 0).

The other generators of the syzygy module are obtained similarly (Exercise
3-7.3):

825

846

(-x2+x+2,-x3,-x2,x3,y+x2 -x-2,1)
(X4_ x3 - 4x2 + 2x + 4,x2 - 2x, -x2 + 2x,

-x5 +X4 + 3x3 - x2 - 2x, x2 _ x -- 2, y + 2).

These are the only generators needed, since the remaining S-polynomials are all
zero.
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We now consider the computation of Syz(f 1, ... , f 5), for a non zero matrix
F = [ f 1 ... f., ] of column vectors in A. We first compute a Grabner
basis {gi,... gt} for (F) and set G= [9i - gt ]. As in the ideal case,
there is a t x s matrix S and an s x t matrix T with entries in A such that
F = GS and G = FT (S is obtained using the Division Algorithm and T is
obtained by keeping track of the reductions during Buchberger's Algorithm for
modules.) As in the ideal case we compute generators of SYrz (gj , . _ . , gt ), say
811 ... , 8r and w e let r1 i ... , r3 be the columns of the matrix 1, - TS, where
i is the s x s identity matrix. The proof of the following result is similar to the
one for the ideal case (Theorem 3.4.3) and we leave it to the reader (Exercise
3.7.9).

THEOREM 3.7.6. With the notation above we have

Syz(f 1, ... , fa) = (Tsi,... , 's,., r3, ... , r8) C A5.

EXAMPLE 3.7.7. We go back to Example 3.7.5. Recall from Example 3.6.1
that the original vectors are

f 1 = (XYI Y, X), f2 = (X
2 +x5y+x2

) Y)I

f3 = (-y, x, y), f4 = (x2, x, y).

The Grobner basis G for (f1f2f3, f4) given in Example 3.7.5 consists of
the six vectors gz, i = 1)... , 6. Also, in that example we saw that a basis
for Syz (g1) 92 7 93, 94 7 95,96) is 813 , -525, and 346. Recall also that the matrix T
which gives G in terms of F is given in Example 3.6.1 in Equations (3.6.2) and
(3.6.3). To compute Syz (f1, f 21 f 3, f 4) we use Theorem 3.7.6 and compute

T813

Ts2z

Ts46

(0,0,0,0)

(0,0,0,0)
(y3 + 2y2x2 ..... y2x + yx4 - yx3, _y3 - y2x2 + yx2 + x4,
y3x + y2x3 - y2x2 - y2x - yx3 _ x5 + x4 + x3,
-y3x + y3 - y2x3 + 2y2x2 - yx3 - x4 - x3).

Now we need the matrix S that expresses F in terms of G. We have

.f i f2 .t3 f4 I = [91 92 93 94 96 96

-1 0 0 0

1 1 0 0

x 0 -1 0
0 1 1 1

0 0 0 0

0 0 0 0

S
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Then

Therefore

0 0 0 0

j4 _ TS _ 0 0 0 0

0 0 0 0

0 0 0 0

Syz(f 17 f23 f3, f4) = (Ts46) c A4.

In the last example, the rows of the matrix 1 - TS did not contribute to
the syzygy module Syz(f 1, f 2, f3 7 f 4) . It is not true in general that the Ts; in
Theorem 3.7.6 give a complete set of generators for Syz(F) as the next example
shows.

EXAMPLE 3.7.8. Let A = Q [x, y] and let f 1 = (y + 2x2 + x, y), f 2 = (--y +
x, V), and f.3 = (x2 + x, y) be vectors in A2. Then the reduced Grobner basis G
for (f 1, f2, f3) with respect to the TOP term ordering on A2 with e l > e2 and
the lex ordering on A with y > x is {gi, g2 }, where

91

92

(Y + X" 0)
(X2 + X, y).

Since lm(91) _ gel and lm(92) = ye2,we see that Syz(91, 92) =((0,0)}. Also,
we have

[9i 92 1 _ [ .f 1 f2 f 3
0 0

-1 0 ,

1 1

T

and
1 -1fi f2 92 1[1 1 1]

S

We have

Therefore

1 0 0
I3-TS= 1 0 0

2 0 0

SyZ(f1) f 2, f3) = 111, 1, -2))9A3.

We conclude this section by showing that the generators for Syz(g1,... , gt)
computed in Theorem 3.7.3 (or in the polynomial case Theorem 3.4.1) form
a Grobner basis for Syz(g1,... , gt) with respect to a certain order which we
define next (see Schreyer [Schre]). This result is technical and will only be used
in Section 3.10.
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LEMMA 3.7.9. Let g1, ... , gt be non-zero vectors in A"z and let < be a term
order in A"'. We define an order < on the monomials of At as follows:

lm(Xgi) < hn(Yg j) or
X ei < 'e3 4==>

lm(Xgi) = lm(Ygj) and ' < i.

Then < is a term oredernng on Am.

The reader should note that when lm (Xgi) = l m(Ygj) in the lemma, we
have X ez < Ye j when j < i, that is, the j and i are reversed. Note that the
hypotheses of the lemma do not require that {g,... , gt} be a Grobner basis.

DEFINITION 3.7.10. The term order defined in Lemma 3.7.9 is called the order
on At induced by [ gl ... gt ] (and of course, implicitly, by the term order
< on Am).

PRooF OF LEMMA 3.7.9. We first show that < is a total order. Let X, Y
be power products in A. First, if i 0 j E {1,... J1, then either lm(Xgz) =
lm(Yg j) and one of i < j or j < i holds, or one of lm(X gi) < lm(Yg j) or
lm(Yg j) < lm(Xgi) holds. In any case, one of Xea < Ye., or Yet < Xe2
holds. If i = j E {1,. t}, and X Y, then one of lm(Xgz) < lm(Yg2) or
lm(Ygi) < lm(Xgi) holds, for otherwise, if lm(Xgi) = lm(Ygi), then

X lm(gi) = lm(Xgz) = lm(Ygz) = Y lm(gi),

and hence X = Y, since gi 0 0. Therefore, we have one of Xez < Yep or
Yez < X ei .

We now verify that < is a term order as defined in Definition 3.5.1. Let X, Z
be power products in A such that Z 0 1. Let i E {1,... , t}. Then lm(Xgi) <
Zlm(Xgi) = lm(ZXg,), and hence Xez < ZXe3. Finally, let X, Y, Z be power
products in A, and let i, j E {1,... , t}. Assume that Xei < Ye,. If lxn(Xg1) <
lm(Yg3 ), then

lxn(ZXgi) = Zlm(Xgi) < Zlm(Yg,) = lm(ZYg?),

and hence ZX ei < ZYe3. If lm(Xgi) -== lm(Yg;) and j < i, then

lm(ZXgz) = Z lm(Xgi) = Z lxn(Yg3) = lm(ZYg3 )

and j < i, so ZXei < ZYe3. 0
EXAMPLE 3.7.11. We first consider the case where m = 1 and polynomials

gl = x2 y2 _ x3 y, 92 = xy3 _ x2y2, and 93 = y4 - x3. We use the lex term ordering
in Q [x, y] with x < y. In the notation of Lemma 3.7.9, we have

xe2 < yex < xe3,

since
lP(x92) = lp(y91) = x2y3 < xy4 = lp(xg3).

Note that < is neither TOP nor POT as defined in Section 3.5.



3.7. SYZYGIES FOR MODULES 167

EXAMPLE 3.7.12. Let us use the six vectors gi 7 i = 1, ... , 6 of Example 3.7.5.
These vectors determine a term ordering on A6 as described in Lemma 3.7.9. In
order to distinguish the basis vectors ej in A3 and A6, we will use e3i and e6i for
the ith basis vector in A3 and A6 respectively. In A3 we are using lex with y > x
and TOP with e33 < e32 < e31. Using the order induced by [ g1 g6 ] we
have

xe6g < e62< xe64< yesl>

since Wxg6) = X 6e33, Im.(92) = Ye32> IM(X$4)- xye33, and lm(y91) = yx3esi,
and

x6e33 < ye32 < XYe33 < YX3e31

THEOREM 3.7.13. Let G = {g1,... , 9t} be a Grobner basis. With the nota-
tion of Theorem 3.7.3, the collection jsjj 11 < i < j < t} is a Grobner basis for
Syz(g1, ... ,gt) with respect to the term order < on monomials of At induced by

ij) ej= ?-ej for each 1 < i < j:5 t.91 ... 9t . Moreover lna s
Xi

PROOF. We first prove that for 1 < i < j < t, we have lm(s;3) =

Note that we have lm X (Lg)lm (ig) = X . Thereforez X. ,Z3
a 9

Xjj
0 X 3

Z,

Xi' ez
Xj

since i < j. Now let Xe,1 be a monomial that appears in (h11,... , hzjt). Then

lrn(X9t)<- hn(S(9z,9j}), by Equation (3.7.1). But Im(S(9z -,9j)) < Ira 2.7x. 9i :
a

z3 e -.therefore Xej < Xi
We now show that Jsjj 11 < i < j < t} is a Grobner basis for Syz(g1, ... , gt)

with respect to < . Let s E Syz(g1, ... , gt). By Defintion 3.5.13 we need to show
that there exist i, j such that 1 < i < j < t and lm(si3) divides lm(s). First we
write s = Et,-_1 atel, where al E A. Let Ye = lp(at) and ce = Ic(al). Note that
we have Im (s) = Y e z for some i E {1,... , t} . For this i define

S = {t E {1,... , t} I lm(Yi9e) = (Yj9i)}

We observe that if I E S, then £ > i, by the definition of < . Define a new vector

s' = c1Y,1e,1.

IES

Since s is a syzygy of [ gi gt ] , we have

c1Y1lt(g1) = 0.
IES
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Therefore s' is a syzygy of [ It (g 1) It (gt) ] . Noting that the indices of the
non-zero coordinates of s' are in S, we have, by Proposition 3.7.2, that s' is in the

7%r Y
submodule of At generated by B = -em{1ei --- E At m E < m .y x m>@ m
Thus we have

1: a xeme - lm
e_MS' =

I,mES
Xi X m

I<m
for some aim E A. Now lm(s') lm(s) _ and thus, since j > i for all
j 54 i E S, we see that

cjYZZ e = It s' E It) -- (azj) 2,
xz

e

where the sum is over all j E S, j i such that Y = lp(aij) X . It follows

immediately that for some j E S, ei = lm(sz3) divides lm(s') - lm(s) as
desired.

We might hope that a result similar to Theorem 3.7.13 holds for finding a
Grobner basis for Syz (f1, ... , f s) , where the corresponding order on monomi-
als of AS would be the one induced by [ f 1 ... f. ] where {f1,... , f.91
is not necessarily a Grobner basis. We saw in Theorem 3.7.6 how to com-
pute generators for Syz (, f 1, ... , f j } . These generators do not form, in general, a
Grobner basis with respect to the order induced by [ f 1

.. f s ] (see Exer-
cise 3.7.15). So, to obtain a Grobner basis for Syz (f x , ... ,f), we would use the
algorithm presented in Section 3.5 (Algorithm 3.5.2) starting with the generators
of Syz(f 1, ... , f,,) given in Theorem 3.7.6.

Exercises
3.7.1. Let f, fi,... , fs E k[x1,... , xn]. Show that f E (I',... , fs) if and only

if in the Grobner basis, G, of Syz (f , fl,. .. , f,) with respect to the POT
ordering with the first coordinate largest, there is a vector (u, ul ) ... , U.S)

G with u 0 and u E k. In this case we obtain f = --I F,' ut
U z=1

3.7.2. Complete the computations in Example 3.7.4.
3.7.3. Complete the computations in Example 3.7.5.
3.7.4. Prove Proposition 3.7.2.
3.7.5. Prove Theorem 3.7.3.
3.7.6. State and prove the analog of Theorem 3.2.5 in the module case; that

is, give a definition of Grobner bases for modules in terms of the syzygy
module of the leading terms.

3.7.7. State and prove the analog of Corollary 3.3.3, and use it to describe how
crit2 can be implemented in Algorithm 3.5.2. Note that we have already
seen in Exercise 3.5.16 that critl cannot be used in the module case.

3.7.8. Use Exercise 3.7.7 to state and prove the analog of Exercise 3.4.4 in the
module case (generalizing Theorem 3.7.3).
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3.7.9. Prove Theorem 3.7.6.
3.7.10. Compute generators for Syz(f1, f2, h, f4) in the following examples. You

should do this without the use of a Computer Algebra System.

a. h = (XY+Y,X), f2 = (-Y+X,y), f3=(x,y+x),f4=(--x,y)E

(Q[x,y])2.

b. f1 = (zy - x, y), f 2 = (x2 - y, x), f3 = (x3 - T, y + x2), f4
(-x+y27y) E (Q[x,y])2.

3.7.11. State and prove the analog of Exercise 3.4.3 in the module case.
3.7.12. Consider the following analog of Exercise 3.4.6. Let fl, g E Am .

We consider the linear equation

h1f1 +h2f2 +... +h8J s = 9,

with unknowns hl,... , he E A. Let S C AS be the set of all solutions
(h1,... , h6).
a. Prove that S is not empty if and only if g E (f1,...
b. Prove that if S 0 0 then S = h + Syz (f 1, ... , f,,) = Ih + s I s E

Syz(f 1,... , f3)}, where h is a particular solution. Give a method for
computing h.

c. Use the above to find the solution set for the equation

h, (x + y, y, x) + h2 (x, y, x) + h3 (-x, -x + y, x) + h4 (x, x, y) = (y,O, x3) .

3.7.13. Consider gl = (x2, y), 92 = (xy + y, y3), and 93 = (x2, --x + y3) E
(Q[x, y])2. We use the lex order on Q [x, y] with x > y and the POT order-
ing on (Q[x, y])2 with e1 > e2. Consider the vector f = (xy2 + y3, x2y +
yx2, y3 + x2 y) E (Q [x, y]) 3 - Write f as the sum of terms in descending
order according to the order on (Q[x, y])3 induced by [.g1 92 93 ] .

Repeat the exercise using deglex with x > y on Q[x, y] .
3.7.14. Verify that the following vectors form a Grobner basis with respect to the

indicated term order, compute generators for Syz (g 1, ... , gt ), and verify
Theorem 3.7.13.
a. 9x = (0) x2), 92 = (y) x), 93 = (2x, x), 94 = (0, 2y + x). Use the deglex

order on Q[x, y] with y > x and the POT ordering on (Q[x, y])2 with
e1 > e2.

b. 91 = (0, x2), 92 = (y2 - y, x), 93 = (0, xy), 94 = (x - y, x - y),
95 = (0, y2) . Use the deglex order on Q [x, y] with x > y and the POT
ordering on (Q[x, y] )2 with el > e2 .

3.7.15. We mentioned at the end of the section that a result similar to Theorem
3.7.13 does not hold for the generators of Syz(f 1, ... , f.) obtained in
Theorem 3.7.6. Namely, the generators for Syz (f1, ... , f.) obtained in
Theorem 3.7.6 do not, in general, form a Grobner basis for Syz(f 1, ... , f 8)
with respect to the order induced by [ f1, ... , fe ] . Consider the vectors

fI=(X+Y,Y,X), .f2 = (x -y,x,y), f 3 = (x+y)x,y),
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f4 = (-x +y,y,x), f5 = (x,x,x) E (Q[x,y])3.
a. Verify that the reduced Grobner basis for (f1, f 2, f3, f 4l f 5) with re-

spect to the TOP ordering with e1 > e2 > e3 and lex on Q[x, y] with
y > x is given by the vectors

91 = (0, y, x), 92 = (0, 0, y - x), 93 = (0, x, x),

94 = (y, 0, 0), 95 = (x, 0, 0).

b. Verify that Syz(91, 92, 937 94, 95) = ((-x, -x, y, 0, 0), (0) 0, 0, -x, y)).
c. Verify that Theorem 3.7.6 gives

Syz(f17 f2, f3) /4, f5) _ ((-x, -x, -x, -x, 2y + 2x), (y, x, -x, -y, 0)).

d. Verify that the two vectors given in c do not form a Grobner basis with
respect to the order induced by [ f x f 2 f 3 f 4 f5 ]

Let M = (f1,... , f.) be a submodule of A? n. Assume that we have a
cgenerating set for Syz(f 1, ... , f.), say Syz(f 1, ... , f.) = (si,... 181)

As . Now consider vectors gi = Es
_ 1 ai3f 3 , for some a23 E A, for i =

` 1, ... , t.
a. Use Theorem 3.5.22 to give a method to decide if M = (g1,... , gt).

If so, give a method to find bz3 E A such that fz = t_1 bz3g3. Use
the proof of Theorem 3.7.6 to find a generating set for Syz (g1, ... , g,).
(Note that the proof of Theorem 3.7.6 has nothing to do with the
theory of Grobner bases.)

b. Apply the methods given in a to the following example. Consider

f 1 = (xy,y,x), f2 = (x,y+x,y), f 3 = (-y,x,y), and f 4 = (x, x, y) E
(Q[x, y] )3. It is easy to v e r i f y that S y z (f 1, f2, f3, f 4) = ((y3 + y2x,
-y3 - y2x +yx2

+x37

y3x -
yx21

-y3x + y3 - yx2 - x3)) . Now consider
the polynomials g1 = (0, y, 0) = f 2 - h) 92 = (-y- x, 0, 0) = f3 - f4,
93 = (r,x,y) = f4, 94 = (-x2,0,z) = f1 - f2 +xf3 + `-x+ 1)f4,
g5 = (0,x2,-x2+x) = (-x--y+1)f1-i-(x+y-1)/2+(-yz+x)f3+
(yx-y-x+1)f4, and96 = (-x2, --2,x3) = (x2-y2+y)f1+(-2x2+
y2 - Y) f2 + (yx2 _ xy2 + xy) f 3 + (-x2y + xy2 + 2x2 y2 - x + y)f4.
You should first verify that

M= (/1,12,13,/4) = (g1,g2,g3,g4,g5,g6).

3.7.17. (Mailer In this exercise, we give a more efficient way to solve
the problem raised in Exercise 3.7.16. We have the same hypotheses
as in Exercise 3.7.16: we are given a generating set f f 1, ... , f, } for
a submodule M of Am (not necessarily a Grobner basis), a generating
set {s,... , sj} C AS for Syz(f 1) ... , f8), and a collection of vectors
{9i,..- 7 9t} such that 9a 3 f3, for some aZ2

3 E A, for i = 17 ... 7 t.' Ej'=,
As in Exercise 3.7.16, we wish to determine whether M _ (91,... 9t)
and if so to find generators for Syz(gl , ... , 9J. Let e81, i = 1,... , s and



3.8. APPLICATIONS OF SYZYGIES 171

etj, j = 1, ... , t be the standard basis for As and At respectively. Finally,
( a i l , . . . C = A - 9 1 I , , i t .

a. Let W = {(u, v) E As+t I u = (u1,... , us) E As, v = (Vi,... , Vt) E
tAt,, ui f i j=1v.,g5}. Prove thatj= E

{(ai,eti),. . . , (at, ett), (s,O),. . . , (s.e, U)}

generates W.
b. Prove that M = (g1,... , gt) if and only if there are b1, ... , bs E At

such that (e52, bi) E W, for i = 1, ... , s.
c. Fix an order <S and an order <t in As and At respectively. Consider a

new order < on As+t defined as follows: for u1, u2 E A' and u1, v2 E
At

s

(ui,vi) < (u2, v2)
u1 <s u2 or
ZL1 - 'a2 and v1 <t v2.

Prove that M = (Oi,... 7.9t) if and only the reduced Grobner basis
for W with respect to < is the union of the two sets {(e6, bb) I i =
1, ... , s} and {(a, ti) I i = 1, ... , Q}. Prove that the set {(o, ti) i z =
1) ... , 1} is a generating set for Syz(g1, . - - ) 9t)

d. Redo the computation in Exercise 3.7.16 b using this method.

One can think of the vectors ai as the rows of a matrix A which defines a
linear transformation T : M ---? M. This exercise answers the question of
whether T is onto and whether there is a linear transformation T'.- M ---
M defined by a matrix B such that (T'oT)(M) = M (B is an "inverse" of
A in the sense that BA-Is C Syz(f x, ... , f s), where 1s is the s x s identity
matrix) . The method presented here is a generalization of a linear algebra
method to compute the inverse of the matrix of a linear transformation.
In linear algebra over fields, to compute the inverse of an s x s matrix
A, one reduces the matrix [ A I Is ] to the row reduced echelon form
[ Is I B I , where IS is the s x s identity matrix. The matrix B is then
the inverse of A. In the case of a module M, we use the Grobner Basis
Algorithm to transform the matrix

A lIt
5yz{fI,... 4s) 0

into the matrix
B

Syz(91, ... , 9t

3.8. Applications of Syzygies. The purpose of this section is to reconsider
and solve more efficiently various problems, such as computing the intersection
of submodules of Am (where, again, A = k [xl , ... , xn,] for a field k). These
problems were solved previously using elimination. As we have noted before,
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the lex term ordering (or more generally, any elimination ordering) is very in-
efficient from a computational point of view. Indeed, much effort in the theory
of Grabner bases has been expended in order to avoid the use of elimination in
computations involving Grobner bases. Here, we will show how the computation
of intersections, ideal quotients and kernels of homomorphisms can all be done
using syzygies, where the latter may be computed using any term order what-
soever. Even in A (when m = 1) these computations using syzygies turn out to
be more efficient than using elimination orders in A.

We begin by considering the simplest case, the intersection of two ideals in
A. This case, nevertheless, contains all of the essential ingredients of the most
general situation. Let I and J be ideals in A. Assume that I = = (fi,... , f8) and
J = (si,... , gt) (we will not assume that either {fi,... , f s I or {gl, . - . , gt} is a
Grobner basis). Then a polynomial h is in I fl J if and only if

h = al f, + a2 f 2 + ... + as fs and h = b1g1 + b2g2 + .. - + btgt

for some polynomials a1,... , as, b1, ... , bt E A. This is the same as the two
conditions that (- h, a1, ... ,as) is a syzygy of the matrix I 1 f, ... f-5 I
and (---h, b1, ... , bt) is a syzygy of the matrix [ 1 g1 ... gt ] . It is then
easy to put these two conditions into a single condition for syzygies of vectors in
A2. Let

2 =
0

E

iJ,fz= 113...,fa=
J

Then it is easily seen that h is in I fl J if and only if there are polynomials
a1, ... , as, b1, ... , bt E A such that

(3.8-1)

is a syzygy of

(-h,ai,. . - ,bt)

f1 .., fs 91 ... 9t ] = 1 f1 ... fs

1 0 ... 0

0 ... 0

91 ... 9't

Thus we have essentially shown

PROPOSITION 3.8.1. Using the notation above,

I n J = {h I there exist polynomials a1, ... , as, bl, ... , bt such that

(h,a1,... bt) is a syzygy of i f1

Moreover, if h 1> ... h, is a generating set or i I f ... fs) 91 1... , 9t} and- for 1> >

the first coordinate of hi is hz for 1 < i < r, then {h1,... , h,. } is a generating
set for I fl J.
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PROOF . F o r the first statement w e simply note that h E I n j if and only if
-h E I n J, and this accounts for the difference between the statement of the
proposition and Expression (3.8.1). The second statement follows from the first
statement, since if a vector is a linear combination of other vectors, then the first
coordinate of the vector is a linear combination of the first coordinates of the
other vectors.

EXAMPLE 3.8.2. We will consider the following ideals in Q [x, y] :

I= (xy - x - y - 1,x2 + 1) and j = (--x2 + xy, x2y + y) y3 + x).

We wish to compute I n J. We use the deglex ordering with x > y in A. So we
let

I,'1=[x-y-1],'2=L
r x2o 1 1

0 0 _ 0
91 _ -x2 + xy )92- x2y + y

193 = y3 + x

Then we can compute that the module of syzygies with respect to TOP and
eI > e2 is generated by (x2y + y, 0, -y, 0,_1, 0), (xy3 + xy2 + 3y3 - x2 + xy +
y2 +x+3y,2xy2+y2 +2y+ 1,-2y3+2y2 +1,2xy2 3y - 1, 2xy - 2y2 -
y-37- 1), (x3 + 2y3 + 2X2-2 y2 + x + 2y, xy2 - 2xy + y2 + x -1, -y3 + 3y2 - x -
3y -1, xy2 - 2xy +x -- y + 2, xy -- y2 -- 2x + 2y - 2, -1), and (-4xy2-lOij3-4x-
by, x2y2 -x2y-5xy2+3xy-4y2 -2x-4y-2, -xy3+2xy2+6y3-xy--8y2+4y-
2, x 2 y2 -x2y - 6xy2 + x y+ 2y2 + 9y -1, x2 y - xy2 - x2 - 5xy + 6y2 +x + 1 o, -x+4).
So the first coordinates of these vectors form a generating set for I n J, that is,

I n J = (x2y + y, xy3 `}- xy2 + 3y3 - x2 + xy + y2 + x + 3y,

x3 + 2y3 + 2x2 - 2y2 + x + 2y, -4xy2 - 10y3 - 4x - 10y).

These polynomials do not form a Grobner basis for InJ with respect to the given
term order. Computing a Grobner basis for this ideal from the given generators,
we get the much simpler generating set

in J = (xy2 + x, y3 + y, x2 - y2) .

We note that in Proposition 3.8.1, as we just saw, we only obtained a generat-
ing set for In J. Of course, we could obtain a Grobner basis for In J by applying
Buchberger's Algorithm to this set of generators. Alternatively we have

THEOREM 3.8.3. We use the same notation as above. Assume we have a fixed
term order < on A and consider the corresponding POT order on A'+-9+t with e1
largest. Let {h1,... , h7.} be a Grobner basis for Syz(i, f 1, ... , fs, 9x, ... , 9t)
Assume that the first coordinate of hi is h, for 1 < i < r. Then {h1,... , hT} is
a Grobner basis for I n J with respect to < .
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PROOF. We need to show that (lt(h1),... , lt(hr)) = Lt(I fl j). One contain-
ment is clear, so let h E IfJ, where we may assume that h 0. From Proposition
3.8.1 we can choose

h=(h,a1,...,as,b1,...,bt)ESyz(i,f1,...,f3)91,...,gt).

Since h1, ... , h, is a Grobner basis for this module, we can find polynomials
cl, ... , cr such that h = Ei=1 czhi and lm(h) = maxi<i<r(lp(ci) lna(hi)). Then,
since the order is POT, h 0 0, and the first coordinate is largest, we see that
(lt(h), 07. .. , 0) ` lt(h) _ E lt(ci) lt(hi), where the sum is over all i such that
lm (h) = lp(cz) lm(hi). It is then clear that we have lt(h) = E It (q) lt(hi) where
i ranges over the same i's as before. This gives the desired result.

We note that in Theorem 3.8.3, as should be evident from the proof of the
theorem, we made essential use of the POT ordering. In particular, the TOP
ordering would not work, as an example in Exercise 3.8.3 shows.

EXAMPLE 3.8.4. We redo the computation of the previous example. For sim-
plicity we use the Grobner bases for the ideals I and J with respect to deglex
with x > y. We compute that I = (x+y,y2+1) and J= (y3 + y, x - y) . So
using

X+Y

we compute a Grobner basis for Syz (i, f 1, f2191192) with respect to POT with
e1 > e2 > e3 > e4 > es, and obtain (O,O,0,x-y, -y3-y), (0, y2+1) -x-y, 0, 0),
(y3 + y, 0, -y, -1, 0), (xy2 + x) 0, ---x, -1, -y2 -1), (x2 - y2, -x + y) 0, 0, -x _y).
Reading off the first coordinates of these vectors, we obtain the same Grobner
basis we did in the previous example.

At this point it is convenient to compactify the notation. Let H1 be an s1 x t1
matrix and H2 be an s2 x t2 matrix. We define the (s1 + s2) x (t1 + t2) matrix
H1 E) H2 (called the direct sum of H1 and H2) to be the matrix whose upper
left-hand corner matrix is the Si x t1 matrix H1, whose lower right-hand corner
matrix is the s2 x t2 matrix H2 and the rest of whose entries consist entirely of
zeros. Thus, for example,

r fl :I[]L 3
ED 92

93

0 00 0

Similarly, let H1, ... , H,. be .6i x ti matrices for 1 < i < r. We define H1 ED H2 9
- ® Hr to be the (s1 + - - + Sr) x (t1 + + tr) matrix with the matrices

H1, ... , Hr down the diagonal and zeros elsewhere.
Further, let H1, ... , H,. be matrices where, this time, each Hi is an s x tz

matrix for 1 < i < r. We define [ H1 IH2 f . - JHr ] as the s x (t1 + . + t,.)
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matrix whose first t1 columns are the columns of H1, whose next t2 columns are
the columns of H2, etc.

For example, using the notation above in the discussion of I n J, let F be the
I x s matrix [ fl - fs ] and let G be the 1 x t matrix [ gl gt ]. If
we let

H=[ilFEDG]=L 1 f1
...

f5
0

1 0 -. 0 gi

0

9t

then the set of first coordinates of Syz(H) is in J.
As a second illustration of this notation we consider the intersection of more

than two ideals. So let 11, 125... , lr be ideals in A, I; = (fi, f j27 ... , ft3 ),
and define the I x tj matrix Fj = [fyi f3 2 ... f jt, ]7forl < j < r. Let
i be the r x 1 matrix (column vector) all of whose entries are 1. Set H =

ilFi E-D F2 ED - - - ED Fr ] . Then, in exactly the same way as above, we see that
the set of first coordinates of a generating set for Syz(H) is a generating set for
Il n 12 n ... n Ir, and if the POT order is used on A1+t1+t2+"'+tr to compute a
Grobner basis for Syz(H), then the set of first coordinates is, in fact, a Grobner
basis

EXAMPLE 3.8.5. Let A = Q [x, y, z] and consider the term order deglex with
x > y > z. Let I1 = (X-y,y-Z,Z-X),12 = (x-1,y) and I3 = (y+1,x+1,z-1).
To compute llnl2ni3 we set

1 x-y y-z z-x 0 0 0 0 0
H= 1 0 0 0 x-1 y 0 0 0

1 0 0 0 0 0 y+l x+1 Z-1
We then compute, using the TOP ordering on A3 with e1 > e2 > e3, that
Syz(H) = ((O,1,1,1,O,O,0,0,0),(xy-y2, 0, y, y, -y) y -- 17 y, -y, 0), (x2-
y2-x+y,0,y+z-l,x+z-l,-x,y-1,y+z-3,-x-z+3,x-y),
(z-yz2-y2+yz, 0, - yz + y, 0, 0, - yz + z2 +V-z, -- yz + y + 2z - 2, 0,
yz-y-2), (xz+y2 -2yz+y-z, 0, -y+z-1, z, --z, -y+2z--1, -y+z+1,
-z, y+ 1), (0,0, x-z, y-z, -y, x- 1, x--z+2, --y+z---2, -x+y)), from
which we read off that

I1ni2ni3 = (xy-y2,x2-y2--x+y,y2z-yz2-y2+yz,xz+y2-2yz+y-z).

We note that this is not a Grobner basis for Ia, n I2 n I3.
We next consider the case of the intersection of two submodules M, N of A.

Assume that M = (f1,... , f s) and N = (gi'--- , gt). Then a vector h E Ain is
in m n N if and only if

h a1f1 +a2f2+...+asfs and h---=blgl +b2g2+...+btgt,

for some polynomials a1, ... , as , b1, ... , bt E A. This is the same as the two
conditions that (-h, a, , ... , a3) is a syzygy of the matrix [ i n I f 1, ... , f5 ] and
(-h, bI, ... , bt) is a syzygy of the matrix [ IM Ig1, ... , gt ] (here, Im denotes the
m x m identity matrix, and (-h, a1, ... , a3) is the vector in Am+s whose first
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m coordinates are those of -h). It is then easy to put these two conditions into
a single condition for syzygies of vectors in Am+s+t. Let

(so that's J = t [ Im I Im ] ), and let F be the m x s matrix F = [ f 1 ... fs I
and G be the n x t matrix G = [ g1 ... gt ].SetH= [ JI F EDG ].Then,
as in Proposition 3.8.1, we see that the set of vectors h which are the first m
coordinates of vectors in Syz(H) is M n N. Moreover, the set of vectors which
consist of the first m coordinates of each of the vectors of a set of generators of
Syz(H) is a generating set for M n N.

EXAMPLE 3.8.6. We again let A = Q[x, y, zJ and consider the term order
deglex with x > y > z. Let M = ((x-y, z), (x, y)), and N ((x+1, y), (x-1, z)).
So we set

1 0 x-y x 0 0
0 1 z y 0 0H_-
1 0 0 0 x+ 1 x---1
0 1 0 0 y z

Then, using the TOP ordering on A4 with el > e2 > e3 > e4, we obtain
Syz(H) = ((xy-2x+y, y2-y-z, 1, -y+1, -y+1) 1), (x2z-2x2+xz+4x-2y,
xyz-xy--xz-y2+yz+2y+2z, x-2, -xz+x+y-z-2, -xz+x+y-2,
x - y - 2) ), from which we read off that

M n N _ ((xy-2x+y,y2-y-z),

(x2z -2x2 +xz+4x- 2y,xyz--xy-xz- y2 + yz+2y+2z)).
In general, if we have r submodules MZ generated by the columns of the m x tj

matrices Fz (1 < i < r) and

H =

r copies

where again Im denotes the m x m identity matrix, then the set of vectors h
which are the first m coordinates of vectors in Syz(H) is the intersection of the
M2's. Moreover, as in the case of the intersection of two modules, the set of
vectors which consists of the first m coordinates of each of the vectors of a set
of generators for Syz(H) is a generating set for the intersection of the r modules
Ai

We now turn to the ideal quotient. This can be computed as a special case
of the computation of intersection of ideal as we did in Section 2.3. On the
other hand it is easy to recognize it directly as a syzygy computation. So let
1 _ (ft,... , f8) and J = (g',... , gt) be ideals in A. Recall that 1: J = {h E

7For a matrix 8, we denote its transpose by tS.
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A I hJ C I} = {h E A hgi, i = 1, ... , t, is a linear combination of fl, ... , fs}.
Let g be the column vector g = (gi,... , gt) and let F be the row vector F =
[Ii ,fs I . In this case, we set

H=[g!FeF®...EF].

t copies

Then I : J is the set of all first coordinates of Syz (H) .

EXAMPLE 3.8.7. We let A = Q[x, y] and consider the term order lex with
x > y. Let I = (x(x + y)2, y) and j = (x2, x + y). Now consider

H= x2 x(x+y)2 y 0 0
[x+y 0 0 x(x+y)Z y

Then using the TOP ordering on A2 with e l > e2, we compute Syz(H) = = ((-y,
0, x2, 0, x + y), (-xy --- 2y2, y, -xy2, 0, x2 + 3xy + 2y2), (x2 + xy - y2, -x + y,
--xy2, --1, xy + Y')) , from which we read off that

X: J = (-y, -zy - 2y2, x2 -1- xy - y2).

Computing a Grobner basis for this ideal (or by simply looking at it), we obtain
I : J = (y, x2) , in agreement with the computation of the same ideal in Example
2.3.12.

We will leave the computation of the ideal quotient of two submodules of Atm
(Definition 3.6.10) to the exercises (Exercise 3.8.5).

We now consider modules which are given by a presentation as defined in
Section 3.1. Let f 1, ... , f, be in A', let N = (f1,... , fs) and consider M =
Am/N. We wish to show how to compute the intersection of two (or more)
submodules of M, find the ideal quotient of two submodules of M and find the
annihilator of M.

We begin with the latter as it is a special case of what we have already done.
We define the annihilator of M to be the ideal

ann(M) = f h E A I hM = f 01}-

Since M = Am/N we see that ann(M) = N : Am. Although we have relegated
the computation of the ideal quotient of two modules to the exercises, in this
special case it is easy to write down the correct matrix whose syzygies allow
us to compute ann(M), and we will do so now. We simply observe that A'n is
generated by the usual standard basis e1, ... , em, and so h E ann(M) if and only
ifhei ENforalli=1,...,m.ThuslettingF= [ f1 ... fS ] (anmxs
matrix), and

H= [t[teiI...Item]IFF...F1,
m copies
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we see that anu(M) is the set of all first coordinates of Syz(H). (We note that
t h e matrix t [ tel I . I te. ] is the m2 x 1 matrix of the vectors ez stacked up
on top of each other.)

EXAMPLE 3.8.8. We consider N = ((x2 + y, xz -- y), (xy - yz, z - x)) C A2
and let M = A2/N. So in this Case

1 x2+y xy_ yz 0 0

H- 0 xz- y z - x 0 0

0 0 0 x2+y xy-yz
1 0 0 xz - y z -- x

Then using TOP with el > e2 > e3> e4 and degrevlex with x > y > z, we see
that Syz(H) = = ((x2yz - xyz2 + x3 - xy2 - x2z + y2z + xy - yz, -x + z, -xz +
y, -xy + yz, x2 + y) ), from which we conclude that

ann(M) = (x2yz - xyz2 + x3 - xy2 - x2z + y2z + xy - yz).

We now consider two submodules M1, M2 of M = Am/N and we wish to
compute their intersection. There are submodules K1: K2 of A" such that M1 =
K1 IN and M2 = K2 /N. We note that, K1 = = Jh E A" I h + N E M1 } , or
alternatively if M1 = (g1 + N,... , gt + N) then

K1 = (g1,.. ,9t) +N = (g1,... gt, f1,... ,fs).

We wish to compute M1 n M2. Clearly M1 n 1VM2 = (K1 fl K2) IN. Since we know
how to compute Kx fl K2 we can compute M1 n M2. Alternatively, continuing to
use the notation above, and setting M2 = (h1 +N7 ... , h,. + N), we see that a
coset p + N E M1 fl M2 if and only if there are a1, ... , at E A and b1, ... , b,. E A
such that

t r
p + N - _ > az (9a + .N) and P + N = > bi (hi + N).

Z=1 Z
This last statement is equivalent to

t s r s

P az9ii +Eajfj and p= bzhi +Ebjfj
i--1 j.-1 s=1 j=1

for some al, ... , at, al , ... , as, b,7.-- , br, b1) ... Ys E A. Thus, setting

F_[f1 ... fs],G91 9t],H=[hi ... hT]

and im the m x m identity matrix, we see that the set of all such p's is just the
set of first m coordinates of Syz(S), where

S-- [ t [ ImlIm ] I [ GIG' ] ®[ HIS' ] ]
The same sort idea will allow one to construct M1: M2 (Exercise 3-8.8).
We now go on to consider the following question. Let N C M be submodules

of A7z . We would like to determine a presentation of M/N (see Definition 3.1-4).
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So assume that M = (f1,... , f s) and N = (gi' , gt ), where we do not
assume that either generating set is a Grabner basis. We define an - A-module
homomorphism

A3 - + M/N
ej ) fi + N

(for 1 < i < s) . It is clear that 0 maps AS onto M/N since
Let K = ker(o). Then the desired presentation is As/K ^' M/N. So we need to
compute an explicit set of generators for K. We note that h = (h1,... , h3) is in
K if and only if h1 f 1 + - - + hs f 3 is in N, which, in turn, is true if and only if
there are polynomials a1, ... , at E A such that

h1 f1 + ... + hs f3 = a1g1 + ... + atgt

Let

g = [ fl ... fs 9i ... gt I .

We have proved

THEOREM 3.8.9. With the notation above, let p1, ... , p,, E At be a gen-
erating set for Syz(H), and let hi E k[x1,... , x,j denote the vector whose
coordinates are the first s coordinates of pi, 1 < i < r. Then

K = (hl, . . . , hr).

EXAMPLE 3.8.10. Let A = Q[x. y], M = ((xy, y), (-y, x), (x2, x)) C A2 and
N = ((-x3, y), (0, y + x2)). Then, since

(-x3, y) = (xy,y)+x(-y,x)-x(x2,x)and
(01Y+X') (XY'Y)+X(-Y'X)'

we see that N C M. So to determine K C A3 such that M/N cA3/K, we set

xY -y x2 -x3 0
H

Y x x y y+x

and compute

Syz(H) = ((0,0,x,1, -1), (1,x,0,0,-1), (-x,0,y,0,0))

(this last computation was done using TOP with e1 > e2> and lex with y > x).
Thus

K = ((0,0,x), (1,x,0), (-x,O,y)).

Therefore M/N c-he A3/K.
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We close this section by generalizing this last result to the case of an affine al-
gebra. In this case we let A = k [x i , ... , xn] /I, for an ideal I = (d1,... , d j) C A.
We again consider N C M to be submodules of Am, but now, of course, the coor-
dinates of the elements of A' are cosets of I. So, for a vector b = (b1,... , bn) E
k[xl, ... , xn]in, we set b = (b1 + I, ... , bm + I) E Am. So we may assume that
N = (h,... , 9t) for g1, ... , gt E k[xl, ... , xn]"A and M = J, 7... , 7,,) for
f 1, ... , fs E k[xi, ... , xn]'. We define an .A-module homomorphism

0: AS --) M/N
j ) fa +N

(for I < i < s). It is clear that 0 maps AS onto M/H since M = { f 1, ... , 3Fs

Let K ker(q5). Then the desired presentation is AS/K "' MIN. So we need to
compute an explicit set of generators of K. We note that h = (hi + 1,. . . , hs + 1)
is in K if and only if (hi + 1)11 + ... + (h3 + 1)7.0 is in N, which is true if and
only if there are polynomials a1, ... , at E k[xi, ... , xn] such that

(h1 + i)Ji +...+(hs+I)fs = (ax +I)g1 +...+ (at +I)gt

This last statement is readily seen to be equivalent to the statement that every
coordinate of

is an element of I. Thus in this case, we let F f ... fa ] , G =
[.g1 ... gt ] , and D = [ d1 ... dd ] and set

H= [ FIGIDE)DO...OD ].

m copies

We have proved

THEOREM 3.8.11. With the notation above, let

pi, , pr E k [x 1:... , xnja+t+mf

be a generating set of Syz(H), and let hi E k[x1,... , xn]s denote the vector
whose coordinates are the first s coordinates of pi (1 < i < r). Then

K = {hl, ... , h,.}.

We note that all the computations that we have done in this section could be
formulated using Theorem 3.8.11 (see Exercise 3.8.10).

EXAMPLE 3.8.12. We will redo Example 3.8.10, except that we will now as-
sume that the ring is A = Q[x, y] /I where I = (x3 + y2, x2) . So now M =
((, y), (-y, x), (Y21 T)) C A2 and N = ((-x3) y), (0, y + y2)). We have that
N C M as before. So to determine K C A3 such that MIN ^' A3/K, we set

H = r XY -Y X 2 -x3 0 X3 +Y 2 x2 0 0

L y x z Y y+ x2 0 0 x3 + y2 x2
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and compute Syz(H) to be generated by (0, 0, x, 1, -1, 0, 0, 0, 0), (1, x, 0, 0,
--1,0,0,0,0), (0,0,0, 1, -1,0,x, 0, 1), (-x, 0, 0, 0, x, 0) y, 0, -x)7 (0, y7 0)

1,-x-1,1)0707x+1),(-x, 0, y, 0, 070, 0, 0, 0), and (0,0,0,0, y-x270)0,
-1, x2 +X) (this last computation using TOP with ex > e2 and lex with y > x).
Thus

K = ((0, Q, x), (1, Y7 V), (-x, V, U) 7 (0-7117 U) 1 (-Ys, Us V,

Exercises
3.8.1. Redo the computation of the intersection of the ideals given in Example

2.3.6, Exercises 2.3.6 and 2.3.7 using the technique of syzygies presented
in this section.

3.8.2. Redo the computation of the intersection of the modules given in Example
3.6.9, Exercises 3.0.11 and 3.6.12 using the technique of syzygies presented
in this section.

3.8.3. In Theorem 3.8.3 we required that the order be POT. In this exercise, we
show that the TOP ordering would not give rise to a Grobner basis for
the intersection of two ideals. Consider the ideals I = (x2, yx + x, xy2 + y)
and J = (y2, x - xy, x2 - y) of Q [x, y] . Compute generators for I n J by
computing generators for the syzygy module of

_ 1 x2 xy+x xy2+y 0 0 0H
1 0 0 0 x --- x X2-y2 y y

using the TOP ordering on (Q[x, y]) 2 with e l > e2 and deglex on Q [x, y]
with y > x. Show that these generators do not form a Grobner basis for
In J with respect to deglex with y > x . One might think that the problem

comes from the fact that the generators for I and J above did not form
a Grobner basis with respect to deglex with y > x to start with. This
is not the case as is easily seen by repeating the exercise with the ideals
1= (x + y, x2 + 1) and j = (y2, x2 - y) using the same orders as above.

3.8.4. Redo the computation of the ideal quotient given in Example 2.3.12 and
Exercise 2.3.11 using the technique of syzygies presented in this section.

3.8.5. Give the analog of the matrix H used to compute generators for I: J,
where I and J are ideals, in the module case. That is, find H such that
M : N can be obtained from Syz(H), where M and N are modules. Redo
the computation of the ideal quotient of the modules given in Example
3.6.13 and Exercise 3.6.15 using this technique.

3.8.6. Consider the submodule N of (Q[x, y])3,

N = ((xy-y,x,y+x),(xy-x,x,xy+x),(x+y,y,xy+y)).

Compute generators for ann((Q[x, y])3/N).
3.8.7. Consider the following two submodules of (Q[x, y])3,

Kl = ((xy,x,y),(-y,x,x),(x27x,y)) and
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K2 = ((0, y2+y, y2+y), (0, 0, x2 -2xy-x+y2+y), (0, x-y, x-y), (y, y, y)).

a. Prove that N - r ((y2 + y) 0) x2 - 2xy + y2 - x + y), (0, xy + x, y2 - xy +
x2 + y)) is a submodule of K1 and K2.

b. Compute generators for the module (K1 /N) n (K2 /N) C (Q[x, y])3/N.
3.8.8. Give the analog of the matrix H used to compute generators for (K1 /N) n

(H2/N) which can be used to compute generators for (KilN): (K2/N).
Compute generators for the ideal quotient (K1/N): (K2 /N), where K1,
K2 and N are the modules of Exercise 3.8.7.

3.8.9. Find the presentation of K2/N, where K2 and N are as in Exercise 3.8.7.
3.8.10. Follow the construction of Theorem 3.8.11 to generalize all the compu-

tations performed in this section to the case where A is an affine ring.
Namely, for A = k [x 1, ... , x,z] /1, where I = (d1,... , dt), give the analog
of the matrix H that is used to compute generators for the intersection
of two ideals in A, the intersection of two submodules of Am, the ideal
quotient of two submodules of A', the annihilator of M = At/N, the
intersection of submodules of AM/N, and the ideal quotient of two sub-
modules of AM/N.

3.8.11. Let I = (Ii,... , f S) 9 k [x1, ... , x, l be an ideal. Show that f +I has
an inverse in k [x j , ... , x7z] /I if and only if there is an element in the
reduced Grobner basis for Syz (1, f, , ... , f, f), with respect to any POT
order with the first coordinate largest, of the form (1, hl, ... , h5, h) . Show
that, in this case, h + I is the inverse of f + I. Redo the computations in
Example 2.1.10 and Exercise 2.1.6 using this technique.

3.8.12. All the computations done in this section can be done using only Theorem
3.8.9. That is, all the computations done in this section can be viewed as
the computations of kernels of certain A -module homonmorphisms, where
A = k[xl, ... , xn]. We illustrate this in the present exercise.
Consider the following diagram of free modules,

Am

7

As At

We define the pullback of this diagram to be the submodule PB of AS (DAM
defined as follows

PB = {(g, h) E A's ED AM I 0(g) = -y(h)j-

We get a commutative diagram
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PB 7rm .- Am

irs

As 0

7

At

where irm and 1rS are the compositions of the inclusion PB ---- AS 6) A'
with the projection onto Am and AS respectively.
a. Show how to compute generators for PB.

b. Show how to compute generators for the intersection of two submodules
of a free module using the pullback.

c. Show how to compute generators for the annihilator of an element of
A8I N using the pullback, where N is a submodule of A$. Then show
how to compute generators for ann(As/N).

d. Show how to compute generators for M : N, where M and N are two
submodules of A'.

3.9. Computation of Hom. As before we let A = k[xl,... , x,z]. Also, we
consider two A-modules M and N. We are interested in the study of the set of
all A -module homomorphisms between M and N. We define

Hom(M, N) = {cb: M -3 N 10 is an A-module homomorphism }.

We define the usual addition of two elements 0 and 0 in Hom(M, N) :

(4,+'b)(m)=4,(m)+(m) for all m E M.

It is easily verified that Hom(M, N) is an abelian group under this addition. We
can also define multiplication of elements in Hom(M, N) by elements of A: for
a EAand 0EHom(M,N), we define acbby

(ao)(m) = a(4,(m)) = d(am) for all m E M.

Again, it is easily verified that, with this multiplication, Hom(M, N) is an A
module.

Given two finitely generated A-modules M and N, we wish to "describe"
Horn(.M, N). As mentioned earlier, there are two ways one can "describe" an
A -module V (see the discussion following Lemma 3.1.3): by computing a pre-
sentation of V, or, if V is a submodule of some quotient Am/U, by giving gen-
erators (elements of Am/U) for V. We will first give generators for Hom(M, N)
as a submodule of some quotient Am/U. We will then obtain a presentation for
Hoxn(M, N) using Theorem 3.8.9.

Since we will need it later on, we first consider the easy case of computing
Hom(A8, At). Let ez} i = 1, ... , s be the standard basis for A6. An element 0
of Hom(As, At) is uniquely determined by the images cb(e%) E At, i 1, ... , s.
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Then, as in linear algebra, 0 is given by matrix multiplication by the matrix
whose columns are the 0(ei)'s. We will denote this matrix by 0 also. Note that
0 is a t x s matrix. We further identify the matrix 0 in Hom(A5, At) with the
column vector q* in Ast formed by concatenating the columns of 0 in order.
This identification gives an explicit isomorphism Hom(As, At) Ast, since it is
readily verified that it gives a one to one and onto A-module homomorphism

Hom(M, N) ) A.

EXAMPLE 3.9.1. As an example of the above identification, we identify the

matrix f 1 ,f3 5

.f2
with the column vector8 (fi

A
7 f27 f3i f45 f55 f6). Or, as an-

other
!$

other example, suppose we have

0: Q[X]2 0 Q[X]3

given by 0(.fi, fa) = ((2x + 1)fi - x2.fz, x.fi + f21 (X2 - x)f2). Then it is readily
verified that 0 is a Q[x]-module homomorphism. Moreover, 0(1, 0) _ (2x+1, x, 0)
and x(0,1) = (-x2, 1, X2 - x). Hence the matrix associated with is

2x + 1 -x2
x 1

0 x2 -x

and so the vector in Q[x]6 associated with 0 is (2x + 1) x, 0, --x2,1, x2 - x).
Now, in order to describe Hom(M, N) explicitly, we need to assume that we

are given M and N explicitly. That is, we assume that we are given presentations
of M and N, say

M c-te As/L and N : At/K.

Then the idea is to compute Hom(A8/L, At/K) by adapting the ideas in the
computation of Hom(As, At) above.

To do this, suppose that we have a presentation of the A -module M, M
As/L. Then we have a sequence of A -module homomorphisms

(3.9.1) 0 ---> L i As --7' M -+ 0,

where the map i : L - As is the inclusion map, and ii : AS -- ) M is the map
which sends the standard basis of AS onto the generating set of M correspond-
ing to the standard basis in the isomorphism M As/L. Sequence (3.9.1) is
called a short exact sequence. In general a sequence of A-modules and A-module
homomorphisms

GYiNj+j

8Recall our space saving notation for column vectors!
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is called exact if im(ai+1) = ker(az) for each i. It is easy to check that Sequence
(3.9.1) is exact, which, in this case, means that i is one to one, ker(7r) = im(i),
and it is onto.

Now we find a presentation of L, say

L_As1IL1,

and thus we have another short exact sequence

O- L1 As' 2 - 1 . ) ,L) 0 .

This leads to an exact sequence

0 L1 BAs'r, As71 ) M`-"40,

where F = i o wi (the exactness is easily checked). We will only be interested in
the exact sequence

r ) As 'r M -----r} 0.As'

We use this last sequence, and a similar one for N to compute Hom(M, N). In
order to do this we review the elementary homological properties of Hom. What
we need is summarized in Lemma 3.9.2. We refer the reader to [Hun].

We assume we are given A-modules M1, M2, and N and an A -module homo-
morphism 0: M1 --- M2. We define two maps

Hom(M2, N) -°+ Hom(Ml, N) and Hom(N, MI) -+ Hom(N, M2)
l 000 P Oop.

It is easy to verify that .0 and 0. are A-module homomorphisms. For example,
if M1 = A-91, M2 = As2 , and N = At, and the maps are given by matrices, then
.0 and 0. are given by matrix multiplication, e.g. V 1 *0 )00.

LEMMA 3.9.2. Assume that we have an exact sequence of A-modules and A-
module homomorphisms

(3.9.2) M1 -M2 - -; M3 )0-

Let P be another A-module. Then the two sequences

(3.9.3) 0 --- Hom(M3, P) 20) Hom(M2, P) - Hom(Mi,P)

and

(3.9.4) Hom(P, M1) -- Hom(P, M2) '02-) Hom(P, M3) 40

are exact. In particular,

(3.9.5) Hom(M3, P) ker(oq5)

and

(3.9.6) Horn(P, M3) ^' Hom(P, M2)/ ker( o) = Hom(P, M2)/ n(4o).
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We now return to the computation of Hom(M, N) for two A-modules M and
N. From now on, to ease notation, we will identify M and N with their respective
presentations, that is, we will assume that M = A' IL and N = At/K. (However,
if M and N are not given initially by presentations, we will have to take into
account the isomorphisms between M (resp. N) and AS/L (reap. At/K).) So,
as noted above, we have the two exact sequences

(3.9.7) As]. -r--3 As - - M -} 0

(3.9.8) At, .° At + N -' 0.
As before, the map IF (resp. A) is given by a matrix which we will also denote
F (resp. A). The columns of IP (resp. A) are easily seen to be the vectors which
generate L (resp. K), since the image of I' (reap. Q) is L (reap. K). We have
that IP is an s x s1 matrix and 0 is a t x t1 matrix.

Now in Sequence (3.9.3) we let P = N and replace Sequence (3.9.2) with
Sequence (3.9.7) to obtain the exact sequence

(3.9.9) 0 -p Hom(M, N) - -> Hom(A5, N) _ Hom(Asi , N),

where rx =0ir and y =0f . Thus from Equation (3.9.5) we see that

(3.9.10) Hozn(M, N) ' ker(-y).

Thus to get a presentation of Hom(M, N) it suffices to obtain a presentation of
ker(-y) . For this we first compute presentations of Hom(A8, N) and Hom(AS1, N),
then compute the map y* corresponding to y between the two presentations, and
then we can compute ker (y*) using Theorem 3.8.9.

Now in Sequence (3.9.4) we let P = AS and P = AS1 respectively, replacing
Sequence (3.9.2) with Sequence (3.9.8) to obtain the exact sequences

(3.9.11) Honn(A8, At') -L Hom(AS, At) - `-> Hozn(A3, N) 0,

where S = A. and p =7r0 for P = As and

(3.9.12) Hom(Asi , At") - Hom(AS1, At) Hom(Asl , N) -- 0,

where S' = Do and p' =7r , for P = As' . These give, using (3.9.6)

(3.9.13)
Hom(AS, N) Hom(AS, At)/ im(S) and
Hom(AS', N) Hom(As', At)/ im(S').

Since, Hom(As, At) ^_' Ast, it now suffices to describe im(S) as a submodule
of Ast in order to obtain a presentation of Hom(A3, N). Of course, a similar
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statement holds for Hom(A$1, N). The map S: Hom(As, At') -- ) Hom(As, At)
corresponds to a map b* which is given by an st x st1 matrix S. That is

Ast1 Ast
so.

In order to facilitate the statements of the following results, we will adopt the
notation for making new matrices out of old ones presented right after Example
3.8.2.

LEMMA. 3.9.3. The matrix S above is the matrix given by o ... ®A A.

s copses

PROOF. A basis for Hom(A8, At") is the set of t1 x s matrices Oz3 whose en-
tries are all zero except for the 23 entry which is equal to one. These matrices
correspond to the column vectors oil E Asti obtained, as before, by concatenat-
ing the columns of the matrix i,, . The vectors j form the standard basis of
Asti Hom(As, At'). The columns of the matrix S are then the images of the
vectors j under b*. That is, the columns of S are the vectors obtained from the
matrices S('bz,) E Hom(As, At) by concatenating the columns of S( ij ). We note
that by concatenating the columns the way we do, we have, in effect ordered the

j's (or equivalently the ' b 's) as follows:

111,21,... Ipt11702)... ,17t12,... , Y1tls.

Now for each i and j, S(ib ) - A o b23. Because of the identification of the
homomorphisms A and V)ij with the corresponding matrices 0 and iz j respec-
tively, we have S('a3) = Aoi , where the right-hand side expression is a matrix
multiplication. Now the t x s matrix L 'b is the matrix whose j-th column is
the i-th column of 0 with all other entries equal to zero. Therefore, after con-
catenation of columns, the matrices A01 1, x021, ... , ©bt11 correspond to the
first ti columns of 0 ... (D A A. Similarly the matrices ib12, QIP22, ... , D t12

s copies
correspond to columns t1 + 1 through 2t1 of A ... 6) A . This analysis can be

s copies
continued and we see that S = A (D 0 0

e copies

Now the image of 6 is the column space of S; that is, the submodule of Ast
generated by the columns of S (in general, we denote the module generated by
the columns of a matrix T by (T)) . Thus we have

(3.9.14) Hom(A8, N) ^_' Ast f 0 ®... @ A .

s copies
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sirrui laxly

(3.9.15) Hom(A8' , N) Asst/ Ha ... E$ Q

s2 copies

Therefore we have a presentation of Hom(A5, N) and of Hom(Asl, N), as desired.
We now return to the map

Hom(A8, N) Hom(A31, N)

0 F--- q5 o F.

It corresponds to a map y*

Aatl(L-,@ A A-93-tI(L 11

s copies si copies

LEMMA 3.9.4. There is an s1t x st matrix T which defines -y* in the sense that
y*( *+ ()) =TO*+ dDd . Moreover, T is the transpose of

s codes si copies
the tensor product r 0 It . The matrix r ® it is defined to be the st x s It matrix
obtained by replacing each entry 7ij of r by the square matrix YYjIt, where It is
the t x t identity matrix.

PROOF. We first define the map

Hom(As, At) -- Hom(Asl, At)
0 -.- 0 o ]C.

Using the isomorphisms Ast Hom(A5, At) and Asst " ' Hom(A31, At), we see
that y corresponds to a map y* : Ast -} A-91 t. Let 7pz,; and 0z- be defined as in
Lemma 3.9.3. Then y* is given by a matrix T whose columns are the vectors
y* (1 j) E A-91 t . These vectors are obtained by concatenating the columns of
%1pij).

Now from Equation (3.9.13) we have Hom(A5, N) Hom(A3, At)/ im(S) and
Hom(Asl, N) Hom(Asl, At)/ im(S'). We next show that the map

y : Hom(A3, N) ) Hom(A8' , N)

is induced by the map y; that is, y(o + im(o)) = y(q5) + im(o'). To do this, it
suffices to show that y(im(S)) C im(o'). So let 1P E Hom(A8, At'); then

= y(A o (A o 0) o r = 6'(0 o F) E im(S').

Thus y* is induced by =y* and

-Y* W + (DA = TO* + A
a copies s 1 copies s 1 copies

Hence 'y* is given by the matrix T. We now wish to describe T.
As mentioned above, the columns of T are the vectors y* (c ,) E As1 t obtained

from the matrices y(b,,) = t i j o IF by concatenating columns. Again, because of
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the identification of the maps of and r with the matrices oij and r respectively,
we have =y(baj) 'b F, where the right-hand side expression is a matrix Multi-
plication. For each i and j, '/ I` is the t x sx matrix whose i-th row is the j-th
row of r. So if we order the 1z j's as before, the matrices 11 i I', X21f', ... , Ot1I~
have their respective first, second, etc. row equal to the first row of r. The cor-
responding vectors in As1t obtained by concatenation of columns are then the
columns of the transpose of the matrix

I 'Y11It I'Y121t I ... I'YlsIt 1

where [ 1y11 'Y12 .. 'Yls 1 is the first row of F and It is the t x t identity
matrix. Similarly, the matrices b12r, 022F, ... , Ot2F correspond to vectors which
form the columns of

'YziIel'Yzaltl''' F72s1t

where [ -y2x -y22 -yes ] is the second row of 1P. We can continue this anal-
ysis and we see that T is obtained as indicated in the statement of the lemma. D

Recall that Hom(M, N) is isomorphic to ker{^y} and hence to ker(-y*). So we
now compute the kernel of ' y* . We first compute the kernel of the homomorphism

Ast A81t/ O®...®O

Si copies

given by

0
*m oT0*+(AE)---EDA)-

Let U be the matrix whose colons generate this kernel. Thus the columns of
U are given by the first st coordinates of the generators of the syzygy module of
the columns of 2' and those of A ® ... E8 A (see Theorem 3.8.9).

Therefore

(3.9.16) Hom(M, N) {U} / (.. @ 0 .

s copies

A presentation of Hom(M, N) can then be computed again using the method
given in Theorem 3.8.9.

To summarize we now state

THEOREM 3.9.5. Let M and N be A-modules given by explicit presentations
M As/L and N At/K. We compute Hom(M, N) as follows.

(i) Use the generators of L and K as columns to define the matrices r and
A respectively;

(ii) Let T = t(r ®it);
(iii) Compute the matrix U defined by the kernel of the composite map

Ast As1t Aslt/ 0
- 1 1

A ,

Si copies
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using Theorem 3.8.9. This gives Equation (3.9.16);
(iv) Compute a presentation of f Hom(M, N) using Theorem 3.8.9.

To illustrate the Theorem, we now give an example.
EXAMPLE 3.9.6. We let A = Q[x, y, z] with the lex order with x > y >

z, using TOP with el > e2 > ... on all the modules considered. Let M _
(f 11 f2 7 f3, f4) C A3, where

Xy

fl = xz
yz

and let N =(91,92,93)c A2, where

0
x3 -- x2z
x2y-xyz

yz

f4 = X
2

xy

We first need to compute presentations of M and N. To do this we use Theorem
3.8.9. Let L = Syz Y1I f 2, h,, f 4) and compute L to be

L ((-1,x+z,O,-1),(-z,z2,-1,cc-z)) C A4.

We also let K - Syz(g1, g2, g3) and compute K to be

K= ((yx,-yx+yz-z2,-y+z)) C A3.

So we have the presentations

Mr='A4/L and N^_'A3/K.

We let

A =and
YX

-yx + Yz - z2
-g+z

Thus the matrix T is

-1 0 0 x+z 0 0 0 0 0 -1 0 0

0 -1 0 0 x+ z 0 0 0 0 0 -1 0

0 0 -1 0 0 x+z 0 0 0 0 0 `1

-z 0 0 z2 0 0 -1 0 0 x- z 0 0
0 -z 0 0 z2 0 0 -1 0 0 x- z 0

0 0 -z 0 0 z2 0 0 -1 0 0 x --- z

To compute the kernel of the map A12 -p A6/(,& q) 0) given by T composed

with the projection A6 -p A6/( ED 0), we compute the syzygy module of the
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columns of T and of

yx 0

- yx .+. yz - z2 0

-y + z 0

0 yx
0 - yx + yz - z2
0 -y+z

The first 12 entries of the generators of that syzygy module are the columns of
the matrix U, where

U=

-1 0 0 x 0 0 0 y
0 -1 0 0 x 0 yz - z2 -y
0 0 -1 0 0 x --y + z 0

0 0 0 1 0 0 -y 0

0 0 0 0 1 0 y 0

0 0 0 0 0 1 0 0

x 0 0 0 0 0 0 0

0 x 0 0 0 0 0 yz--z2
0 0 x 0 0 0 0 --y+ z
1 0 0 z 0 0 -yz -y
0 1 0 0 z 0 yz y
0 0 1 0 0 z 0 0

From Equation (3.9.16) we have

Hom(M, N) ^_' Hom(A4/L, A3/K) ^_' (U)/(L ED 4 ED D e O).

Finally to compute a presentation of (U)/( 0ED 0(D 0E) 0) we compute the syzygy
module of the eight columns of U and the four columns of D ED O ED O (D D

yx 0 0 0

-yx+yz-z2 0 0 0

-y+z 0 0 0

0 yx 0 0

0 --yx+yz-z2 0 0

0 -.y+z 0 0

0 0 yx 0

0 0 -yx + yz - z2 0

0 0 -y+z 0

0 0 0 yx

0 0 0 -yx+yz-z2
0 0 0 -y+z
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There are 4 generators for this syzygy module and we need the first 8 coordinates
of each of them, which give

tI =

Therefore

0
1 l y

0

0

y
_y

0

1

0

, t2

-y

0

0

0

0

0

1

, t3 =

fo
0

0
, t4 =

0 1

Hom(M, N) Hom(A4/L, A3/K) A8/(t1, t2, t3, t4).

We now show how to generate A -module homomorphisms from A4/L to A3/K,
and hence from M to N. For a = (a,,... , as) E As, the product Ua is a vector
in A12. Using this vector we construct a 3 x 4 matrix whose columns are the
4 consecutive 3-tuples of the vector Ua. This matrix defines a homomorphism
from A4 /L to A3 /K. The fact that this homomorphism is well-defined follows
from the construction of U.

Let ez7 i = 1, ... , 8 be the standard basis of As. Then Hom(A4/L, A3/.K)
is generated by the matrices obtained from Uez7 i = 1, ... , 8, that is, by the
matrices obtained from the columns of U.

Therefore Hom(A4/L, A3/K) is generated by the cosets of the eight matrices

-1 0 X 1 0 0 0 0 0 0 0 0

¢1= 0 0 0 0 02= -1 d x Z 03= 0 0 0 0

0 oao o aoo -ioxi
X 1 0 z 0 0 0 0 0 0 0 0

¢4 = 0 0 0 U 05 = x 1 d z 06 = 0 0 0 0
0 0 0 0 0 0 0 0 x 1 0 z

0 -y 0 -yz
07' = yx - za J 0 YZ

-y/+z 0 0 0

Y 0 0 -Y

08 = -y 0 YZ - x2 y
0 0 -y +z 0

It can easily be verified that, for i = 1,- , 8, we have 4 L C K.
Thus any 0 E Hom(A4/L, A3/L) can be expressed in terms of the Oz's

s

0 = az0Z,
s=1

where aZ E A. We recall that we identify the homomorphism 0 with the matrix
that defines it.
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To obtain a description of Hom(M, N) from Hom(A4/L, A3/K) we make use
of the isomorphisms

M --+ A4/L A3/K -4
f ei + L ei + K i

f2 e2+L e3 +K F---)
t---- e3 + L e3 + K F---*

f4 e4 + L

N
91

92

93

where the vectors el, e2, e3, and e4 are the standard basis vectors for A4, and
the vectors e1, e2, and e3 are the standard basis vectors for A3. Let 0 be any
homomorphism in Hom(A4/L, A3/K), say 0 = E8, ai0i. Then we define a ho-
momorphism 0' in Hom(M, N) as follows. First, it is enough to determine 0' (f z )
for i = 1, 2, 3, 4. But q51(f2) is just the image of O(ez + L) under the isomorphism
A3 /K N. In particular, q' (f x } is the image under the isomorphism A3 /K N
of

8

0(el + L) ajoi (e,1 + L)

-1 0 0 x
al 0 + cat -1 + as 0 + a4 0

0 0 -1 0
a

1-

0 0 0 y
+a5 x +o,6 0 + a7 g/z - z2 + as -y + K

0 x -y -I- z 0-J L

-al + xa4 -f- ya8
--a,2+ xa5 + (yz - zz)a7- ya$ + K

-a3 + xag + (-y + z)a7
(-al + xa4 + yas) (ei + K)
+(-a2 + xa5 + (yz - z2)a7- ya8)(e2 + K)

+(-a3 + xa6+ (-y + z)ar)(e-' + K).3

That is

(-al + xa4 + ya8)9i + (-a2 + xa5 + (yz - z2)a'r - ya8)92
+(-a3 + xft + (-y + z)a7)93.

The images of 12, f 3, and f 4 can be computed in a similar way.
In particular Hom(M, N) is generated by the homomorphisms Oi correspond-
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mg to the homomorphisms q5Z which generate Hom (A4 /L, A3/K):

'
M
f1

f2

f3

f4

N
-91
0

x91

91

04: M -p N
f1 x91
f 2 ~? 91
f3 0

f 4 h-4 z91

' M7
f1 f->

f2

f3

f4

fz

f3

f4

N
(yz - x2)g2
+(-y + x)9a
-Y9i + J92
0

-Yz91 + yx92

N

i

I>

N
-92
0

X92

92

¢3: M
fi

f2

f3

f4

0 N
_93
0

X93
93

N 4s : M -' N
X92 fl x93
92 f 2 ~. 93
0 f3 a

Z92 f 4 Z93

f4

N
Y91 Y92
0
(yz - z2)g2
+(-y + x)g3
-Y91 + Y92-

Exercises
3.9.1. Let A = Q [x, y, z], M = A3 IL, and N = A4 /K, where

L = ((x,x+y,z),(x,x2,x - z),(-xz,x - z,y - z)) and

K = ((x+y,x2 , xy + yz, y - z) , (xy, x - z, y - z, xz2) , (xj,y-z,x-z, yz2)) .

Compute generators for, and a presentation of Hom(M, N).
3.9.2. Consider the following modules

M = ((0, y, x)) (y, 0) y), (y,
y)

x), (x) -y, xy), (0, x, x)) C (Q[x, y])3 and

N = ((xy,y,y,y),(x2,x,x,x)) C (Q[x,y])4.

Compute generators for, and a presentation of Hom(M, N).

3.10. Free Resolutions. In this section we first show how to compute an
explicit free resolution of a finitely generated A-module, where A = k [x 1, ... , xn,J.

We will then use this free resolution to prove a theorem of commutative algebra
concerning A. Finally, the free resolution together with the results from the last
section will be used to give an outline of the method for the computation of the
Ext functor.

Let M be a finitely generated A -module. We saw in Section 3.1 that M has a
presentation, that is, M Aso /M0 for some so and some submodule M0 of A"'.
We also have the following short exact sequence

(3.10.1) 0 .._....-i M0 Z Aso - M -- )0
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to indicate that Aso /Mo is a presentation of M. The map is : Mo -i No is the
inclusion map, and xo : A80 --p M is the map which sends the standard basis
of A8° onto the generating set of M corresponding to the standard basis in the
isomorphism M Aso /Mo.

Now we find a presentation of M0, say

Mo N A8I /M1

and thus we have another short exact sequence

0-MMI AS1 M0 -)0.-14

This leads to an exact sequence

0 - M1 A-91
01 As° -MAO,

where 00 =no, and 01 = io o 7r, (the exactness is easily checked).
We continue this process recursively: at the jth step, we find a presentation

AS? /M, of Mj_ x . We then obtain a sequence of module homomorphisms as in
Figure 3.3.

0 0

A32 Asx lo. Aso - Bob M 0

M2

FIGURE 3.3. Presentations of M, Mo, and M1

Thus we have obtained an exact sequence

(3.10.2) ... .., Ast -+ Ast -' .... ... .; As' -+ Aso M .10.

DEFINITION 3.10.1. The exact sequence obtained in (3.10.2) is called a free
resolution of the module M.
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In module theory, free modules are the analog of vector spaces. A free resolu-
tion of a module M is used to "measure" how far away from a free module M is
and to give some useful numerical invariants for the module M and the ring A.

If in Sequence (3.10.2) it turns out that there exists an £ such that A8J = 0 for
all j > £, we say that the free resolution has finite length and that its length is
< £. We will show below that finitely generated A-modules have free resolutions
of finite length. In fact, for each A -module M, there exists a finite resolution
of length at most n, the number of variables in A. We say that A has global
dimension less than or equal to n. We will now use the theory we have developed
so far to prove this result (Theorem 3.10.4). First we have a technical lemma.

Let {g1,... , gt } C A' be a Grobner basis for M = (fr,... , f,) with respect
to some term order on the monomials of A'. Let {s23 I I < i < j < t} C At be
as in Theorem 3.7.3. Recall that it is a Grobner basis for Syz (g l , ... , gt) with
respect to the term order < on monomials of At induced by [ g1 - gt ] , by
Theorem 3.7.13. We note that we are using two different term orders: one in A'
which is used to compute the Grobner basis {g,... , gt } for M, and the other
is defined in At with respect to which the set {a, 1 1 < i < j < t} is a Grobner
basis -for Syz (gl, ... ,gt). We will use the same notation for both orders, that is,
we will use < and we will write lm (gi) and lm (a j) . The context should indicate
which module we are working in and which order we are using. In fact, we need
to be careful which order we put on At. Notice that the order on At changes if
we reorder the vectors g1, ... , gt- Also, since we will be using the standard bases
for both At and Alz, we will denote by e1, ... , et the standard basis for At, and
by e-,. .. , en the standard basis for A'. We will assume that they are ordered
as follows: the gi's are arranged in such a way that if v < it and lm(g,,) = XLeV
lm(g,) = Xoe? for some power products X, X, E A and some j E {1,... , m}
(that is, lm (g,,) and Im (g.) have the same non zero coordinate) then X. > X,4
with respect to the lex ordering with xl > X2> - > x9z (regardless of the order
that was used to compute the Grobner basis for M).

LEMMA 3.10.2. Let i E {1,... , n-1}. If the variables xl, ... , xi do not appear
in lm(gy ), for some v E {1,... , t}, then the variables xl, ... , xi 1 xi+x do not
appear in lmfor every p such that v < p < t. So, if x1, ... , xi do not
appear in any lua(gu) for v = 1, ... , t, then x1, ... , xi7 xi+ 1 do not appear in any
lm(s,,,,) for I < v < A < t. In particular, xx does not appear in any lm(s1o), for
1<j<ju<t.

PROOF. Let v, IA E {1,... , t}, v < p. If lm(gy) and lm(g,) do not involve the
same coordinate, then X,, = 0, and hence sy , = 0, so no variables appear in
8r,, at all. Otherwise, let X,, = lm(g,) = Xe and X,4 = lm(g1 } = XMe for
some j E {1,... , m}. Then, by Theorem 3.7.13,

lms =Xv e(

v
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where Xv,, is, as usual, lcm(XM, Xv). First, let us assume that xl, ... , xi do
not appear in X,. Since Xv > Xj, with respect to the lex term ordering with
x1 > x2 > > x ,, then x1, ... , xz do not appear in X. and the power of xi+1
in X,, is at least as large as the power of xz+1 in XM. Therefore the power of
xi+x in Xv,, is the same as the power of xi+1 in Xv, and hence the variables

xi> > xz, xa+1 do not appear in X and so do not appear in lm s . Thus
V

if x1, ... , xz do not appear in any lm(gv), v = 1, ... , t, then x1, ... , xi, xi+1 do
not appear in any lm(s,,), for 1 < v < it < t. The last statement is proved in
exactly the same way. 0

EXAMPLE 3.10.3. As in Example 3.7.5 we let M be the submodule of A3 =
(Q[x, y])3 of Example 3.6.1. We saw that the vectors g1, 92 939495'96 form a
Grobner basis with respect to the TOP term ordering in A3 with e1 > e2 > e3
and with lex in A and y > x, where

91 = (x3 + x, x2 _ x)-x), 92 = (z,y + x2 - x, 0)7

93 = (V`+X
2

1 0, 0), 94 = (x2, x, y) l

95 =
(x2,

x3, -x3), 96 - (x2 -- 2x, -x2 + 2x, x5 - x4 - 3x3 + x2 + 2x).

We re-order the g's as required in Lemma 3.10.2 with y > x, and we get

91 = (y+x2,0,0), 92 = (x3 + x)x2 - x, -x)

93 = (x,y+x2 - x, 0), 94 = (x2' x3, -x3),

9,5 = (x2) x, .y), 96 = (x2-2x,-x2+2x,x5-x4-3x3±x2+2x).

The syzygies are now

912

934

856

(x3+x,-y-x2,x2 --x,1, --x,0)
(x2,x2 _X2 +x+2,--x3,--1)
(x2 - 2x, --x4 + x3 + 4x2 - 2x - 4, -x2 + 2x,
-x2 + - x + 2)x5 - x4 -- 3x3 + x2 + 2x, -y - 2).

Using the order induced by the g's we have

IM(812)

1m(834 )

1m(s,%)

x3e1
x3

e3

x5 e5 .

THEOREM 3.10.4. Every finitely generated A-module has a free resolution of
length less than or equal to n, where n is the number of variables in A.
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PROOF. Let M be any finitely generated A -module. Then M has a presen-
tation M As° /Mo, where MO = (g1,... , gt) C Aft. If Mo = {O}, then we are
done; otherwise we may assume that G = {g1,... , gt } forms a Grobner basis
for Mo with respect to some term order in A50. Assume also that the gz's are
arranged as in Lemma 3.10.2. Let x1, ... , xi be the variables that do not appear
in any of the lm (gv )'s (i = 0 is possible). We will prove that M has a free
resolution of length less than or equal to n -- i.

CASE 1. n = i. Then none of the variables x1, ... , xn appear in any of the
lm(g3 )'s. We need to show that M ^' As0 /Mo is isomorphic to a free module.
Since the leading monomials of the gi's are of the form ae3 for some a E k, and
j E {1,... , so }, we see that the module Lt (g1, ... , gt) is the free submodule
of A30 generated by the e3's that appear in some lm(gi). Let M' be the free
submodule of Aso generated by the other e3's. We will show that M M'.
Consider the map

it : M' -- A8° /Mo ^--' M
f F---) f + Mo.

It is easy to see that 7r is an A-module homomorphism. Also, if f E M' and
f E Mo, then, by Theorem 3.5.14, lm(f) is divisible by some lm(gi) for some
i E {I,... , t} . But this is impossible unless f = 0, since M' is generated by
those e3's which do not appear as leading monomials of any gi. Therefore w is
one to one. Finally, by Proposition 3.6.3, we see that for all f E A'0, f + Mo
No (f) + .1M o, where Nc (f) is the remainder off under division by G. Moreover
Nc (f) E M', since the monomials of Nc (f) are exactly those monomials which
are not divisible by any e3 which appear in some lm(gi) . Therefore it is onto,
and hence it is an isomorphism.

CASE 2. n -- i > 0. We construct a free resolution

Ni 7 Asi -1 ....4 AS' - 01 A50 ± M ^' As0 IMO - 0

recursively as follows. At the jth step, we choose a monomial order on the free
module As-7 and find a Grobner basis G for ker{4? ). We arrange the elements of
G according to Lemma 3.10.2. We then choose As-7+1 to be a free module whose
basis maps onto G and we let 47S?+1 be the projection map. Note that ker(Oo) =
Mo = (g1,... ,gt) and ker(01) = Syz(g1, - .. , gt). If x1, ... , xi do not appear
in the leading monomials of the gv's, then, by Lemma 3.10.2, x1, ... , xi, xi+1
do not appear in the leading monomials of the elements of the Grobner basis
for ker(cl). If x1 appears in lm(g3) for some j, then, by Lemma 3.10.2, x1 does
not appear in the leading monomials of the elements of the Grobner basis for
ker(01). So if we apply Lemma 3.10.2 recursively, we see that no variables appear
in the leading monomials of the elements of the Grobner basis for ker(cn_z). By
the case n - i = 0s we see that

A s,t-=/ ker(4n-z) ^--' On-i(As,i-{ }
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is free. Therefore if we replace Asn-i by Asn-i / ker(On_i), we get the desired
resolution.

ExAMPLE 3.10.5. We continue Example 3.10.3. Since the leading term of
312 , 834 , and 856 involve different basis vectors, we see that Syz (S 12, 834, 856) =
(0,0,0). Therefore A3 ^ (812,834, 356) and so we have the following free resolu-

tion for M = (91, 92, 93, 94)95, 96) = (f1,f2,f3,f4} C A3:

0-+113 -4A6 -4M-+0,
where

00: A6 --. M
1 9a.(h1,h2,h3,h4,h5,h6) H E6

The kernel of this map is Syz(91, 92, 93) 94, 95, 96). Also,

A3 - A6

4, t3) } £1812 + 12834 + 4856.
As we saw above, the kernel of 01 is (0,0,0).

To conclude this section, we use the techniques developed so far to outline the
computation of Exth (M, N) . We will assume that the reader is familiar with this
concept and we will only give an indication on how to go about the computation.

We begin with a free resolution for an A -module M

... r Asi+i I Ass .+ As'-' , ... A3' Aso --3 M -) 0

which we compute as above. For the A -module N we form the usual complex
which at the ith position looks like

- .. .... o Hom(Asi+l , N) ' 4 Hom(A9i, N) -- 74 Hom(Asi-I , N)

As in Lemma 3.9.2 and Lemma 3.9.3 we can compute presentations of these
Hom modules and using Lemma 3.9.4 we can compute the maps between them
yielding another complex which at the ith spot looks like

Au'-x /Lz_1 ----- ... .Aui+1 /4+1
T-

Aui /L. Ti

We can use Theorem 3.8.9 to compute ker(T1). Also, im(T,+1) is obtained using
the columns of the matrix that determines Tj+1. Thus we can compute

Extz(M, N) ^' ker(TT)/ irn(Ti+1),

again using Theorem 3.8.9.

Exercises
3.10.1. Compute a free resolution for the module M = ((x, y, z), (y, x, z), (y, z, x),

(x, z, y), (y, x -- z, z), (y, z, x - z)) 9 (Q[x, y, z])3.





Chapter 4. Grobner Bases over Rings

In the previous three chapters we considered the theory of Grobner bases in the
ring A = k[xx, ... , x,,], where k is a field. We are now going to generalize the
theory to the case where A = R[x1, ... , x,z] for a Noetherian commutative ring
R. Sometimes we will need to be more specific and require R to be an integral
domain, a unique factorization domain (UFD), or a principal ideal domain (Pm).

We will give many of the same type of applications we gave in the previous
chapters in this more general context. Moreover, the theory of Grobner bases
over rings will allow us to use inductive techniques on the number of variables;
for example, for a field k, k [x, y] can be viewed as a polynomial ring in one
variable y over the ring k[x] (i.e. k [x, y] = (k[x])[y]). We give an example of this
technique in Section 4.4 where it is used to test whether ideals are prime.

The theory of Grobner bases over rings has complications that did not appear
in the theory over fields. Indeed, many of the results will not hold in this
generality. Moreover, many of the basic techniques will become more complicated
because we now have to deal with ideals of coefficients in the ring R.

In Section 4.1 we give the basic definitions and lay the foundations for the
theory of Grobner bases over rings. An algorithm for constructing Grobner bases
will be presented in Section 4.2. We will have to assume certain computability
conditions on R in order for this algorithm to be effective. We use a method
presented by Moller to compute the appropriate syzygies needed for
this algorithm. We then give examples of computing Grobner bases over the
rings Z, 720 and Z[ . In Section 4.3 we give the usual applications including
elimination, computing syzygy modules, and a result of Zacharias [Za] which
gives a method for computing a complete set of coset representatives of A modulo
an ideal. We then go on, in Section 4.4, to discuss questions related to rings of
quotients and use this material to give an algorithm to determine whether an
ideal in A is a prime ideal. Next, in Section 4.5 we specialize the ring R to be
a PID and show that in this case we may again use the notion of S-polynomials
to compute Grobner bases. We conclude that section by giving a structure
theorem of Lazard [Laz85] for Grobner bases in polynomial rings in one variable
over a PID. In the last section, we use Lazard's result to compute the primary
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decomposition of ideals in such rings.

4.1. Basic Definitions. In this section we develop the theory of Grobner
bases for polynomials with coefficients in a Noetherian ring R. As we did for
modules in Section 3.5, we will mimic the constructions of Chapter 1 as much as
we can. We will assume that we have a term order < on the power products in the
variables x 1, ... , x,z . With respect to this term order, we have the usual concepts
of leading power product, leading term, and leading coefficient of a polynomial
in A = R[xl, ... , x,]. Next, we need the concept of reduction, see Section 1.5
and 3.5. In those sections we required the notion of divisibility of leading terms.
Actually, there we were not concerned about whether we were dividing leading
terms or dividing leading power products since one was a non-zero element of
the field k times the other and this had no effect on the divisibility. When the
coefficients are not elements of a field, this becomes a very important issue. It
turns out that in order to have a reasonable theory of reduction and Grobner
bases using the same ideas of reduction as in the field case, we need R to be a
PIE). We will explore this in Section 4.5. Since we want to define reduction and
Grobner bases in the context of rings more general than PID's, we must modify
our previous concept of reduction. The correct way to do this is to work with
syzygies in the ring R.

After we define this new concept of reduction, we will be able to pattern our
results again on what we did in Chapter 1. There is one major exception and that
is in the definition of Grobner basis itself. In the case of ideals of polynomials
with coefficients in a field, and also in the case of modules, the definition again
involved the concept of dividing one leading term by another. So we need to
change our very definition of Grobner basis. It turns out that many, but not all,
of the equivalent conditions for a Grobner basis over a field given in Theorem
1.9.1 will work for us in our new situation.

So to reiterate the setup, we assume that we are given a Noetherian commu-
tative ring R and we let A = R[xl, ... , x,,]. We then have from the Hilbert Basis
Theorem 1.1.3, that A is also a Noetherian ring. We assume that we have a term
order < on the power products, T, in the variables x1, ... , x,,. Then from The-
orem 1.4.6, we know that < is a well ordering on T' (the point here is that this
is a property of the power products T', not of the polynomial ring k [xi, ... , x7z] ,
for a field k, even though the proof of Theorem 1.4.6 used the Hilbert Basis
Theorem in k [xl , ... ,x,]). For f E A, f 54 0, we write f = a1 X 1 + . - - + a5Xs,
where a1,... , as E R, ai 54 0 and X 1, ... , X. are power products in x 1, ... , xn
with X 1 > X2 > ... > X,. We define as before, lp (f) = X1, lc (f) = a 1 and
It(f) = a1X1 (called the leading power product, leading coefficient and leading
term of f, respectively).

We now turn our attention to the concept of reduction. Recall, that in the
case where R = k is a field, given three polynomials f, g, h in k [x l , ... , xtz] , with
g 54 0, we say that f -- h, if and only if lp(g) divides a term X that appears
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in f and h = f - is g. The case where R is not a field differs in two ways.
The first difference is that in the case of rings, it is convenient to only reduce
the leading term of f. It is readily seen that all the results on Grobner bases in
Chapter 1, excluding the ones making explicit use of reduced polynomials, are
valid with this restricted concept of reduction. In the case of rings, however, the
results involving reduced polynomials are no longer valid and so reducing terms
that are not leading terms is unnecessary (see Exercise 4.1.6).

With this in mind, we could rephrase our definition of reduction over a field
k by saying that f -!L+ h, provided that lp(g) divides lp(f) and h = f -

it

f g

g) and so the leading term off has been canceled). We(note that It (f) = It (it(g)
see that this notion requires that we divide by lt(g) = lc(g) lp(g). The problem
with this is that over a ring R we may not be able to divide by the ring element
1c(g). We could build this into our definition just as we must require that lp(g)
divide lp(f), but this turns out to be too restrictive when we are attempting to
divide by more than one polynomial, as, of course, the theory requires. The key
idea in resolving this difficulty is to use a linear combination of the the leading
terms of the divisors, whose leading power products divide lp(f ), to eliminate
lt(f).

So we now assume that we are considering polynomials f and fl,. . . , f., in
A = R[xl, ... , x,,] with A,- , fs 0 0, and we want to divide f by fl,... , fs
That is, we want to cancel the leading term of f using the leading terms of
A, , ... , f6. We should be allowed to use any f i which has the property that
lp (f i) divides lp(f) and so what we desire is that It (f) be a linear combination
of these It (f i) . We thus arrive at

DEFINITION 4.1.1. Given two polynomials f and h and a set of non-zero poly-
nomials F = { fl, .. .
denoted

, f.} in A, we say that f reduces to h modulo F in one step,

f -h
if and only if

h = f - (ciXifl + ... + c5XSf9)

for cl,... , cs E R and power products X1, ... , X. where lp(f) = Xz Ip(f1) for
all i such that ci ; 0 and It(f) = c1X1 It(fl) + . - - + csXs it (M.

EXAMPLE 4.1.2. Let R = Z and let f = xy - 1, f, = 7x + 3, f2 = 11x3 -
2y2 + 1 and f3 = 3y - 5. We will use the deglex ordering with x < y. So
with F = If, , /2, f3 }, we see that f -p h, where h = -3y r- lox - 1 since
h = f - (fi - 2x f 3) and xy = It(f) = y It (f 1) -- 2x It (f3) . (Here c2 = 0, as it
must, since 1p(f) = xy is not divisible by lp(f2) = x3.) So we have done what
we said we wanted to do, namely, we have canceled out the leading term of f
using the polynomials in the set R. Also, f could not have been reduced using
only one of the polynomials fl, f2, f3.
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We draw attention to the condition lp(f) = Xi lp(fi) for all i such that ci ; 0.
Its purpose is to ensure that each ci Xi It (f f) in the difference h = f - (c1X1f1 +
... + c3 X8 f s) with ci 54 0 is actually used to help cancel It(f) . Because of the
possibility of zero divisors in the ring R, we must be careful about this. For
example, if we only required lp(f) = lp(cjXi fi) for all i such that ci 54 0, we
could end up with a term c lp(f) remaining in h. To see this consider the case
where R = Z10 with deglex and x > y and let f = 3y, f, = 5x2 + y, and f2 = y.
Then It(f) = 21t(f1) + 31t(f2) and lp(f) = lp(2 f1) = lp(3f2) = y whereas
h = f - (2fi + 3f2) = -2y. Having been careful with the definition we have
the following crucial lemma whose easy proof we leave to the exercises (Exercise
4.1.13).

LEMMA 4.1.3. With the notation of Definition 41.1 we have lp(h) < lp(f ).

Let f E A and let F = {fi,... , f, } be a set of non-zero polynomials in A. We
now examine how we would determine whether f is reducible modulo F. We first
find the set J = fj I lp(f3) divides lp(f ), 1 < j < s}, which is readily done. We
are restricted to such J by the requirement that lp(f) = X2 lp (f f) in Definition
4.1.1.Then we must solve the equation

(4.1.1) lc(f) = 1: b,7 lc(fj)
jEJ

for b,'s in R. This equation can be solved if and only if lc(f) E (lc(f,) I j E J)R,
where for a subset C C R we denote by (C) R the ideal in the ring R generated
by the elements of C. Once we have the b,'s then we can reduce f :

E b'
IPW

(fi)f1f f
EXAMPLE 4.1.4. We put Example 4.1.2 in this context. We have lp(f) = xy

and so J = { 1, 3}. Thus we need to solve lc(f) = 1 = b1 lc(f 1) + b3 lc(f3) =
7b1 + 3b3. We choose the solution b1 = 1, b3 = -2 and thus we reduce f as
h = f - (b1yf1 + b3xf3) = f - (yff -- 2x f3) .:= -3y - 10x - I.

It is thus clear that we must be able to solve linear equations in the ring R in
order to be able to reduce in A. This condition is one of two conditions R must
satisfy in order to compute the objects of interest to us in this chapter. We list
these two conditions in the following

DEFINITION 4.1.5. We will say that linear equations are solvable in R provided
that

(i) Given a, a,,. . - , a n E R, there is an algorithm to determine whether
a E (a1,... , am) R and if it is, to compute b1, ... , b n E R such that
a=alb, +---+ambm;
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(ii) Given a,,. - - , E R, there is an algorithm that computes a set of
generators for the R-module

SyzR(al, ... , am) _ {(b1, ... , bm) E Rm I a1b1 + ... + ambm = 0}.

Examples of such rings include Z, Zm, Q [x1, ... , x,z], Z[i] where i2 = -1, and
Z[ V_--5].

The first condition in Definition 4.1.5 is the one discussed above which we
found necessary in order to make the reduction process computable. The sec-
ond condition is needed to guarantee that the algorithm (Algorithm 4.2.1) to
be presented in the next section for computing Grobner bases in A is actually
implementable. We will always assume that linear equations are solvable in R
when an algorithm is presented. However, as has been the case throughout this
book, we will otherwise be informal about our assumptions on the ring. In par-
ticular, without the assumption that linear equations are solvable in R, what we
present in this chapter is valid, and should be viewed as mathematical existence
statements.

As in the case of ideals and modules where the coefficients lie in a field, we
need to iterate our reduction process.

DEFINITION 4.1.6. Let f, h, and fl, ... , f. be polynomials in A, with Ii,... , f,
0, and let F = {fi,... , f}. We say that f reduces to h modulo F, denoted

f F-+ h,
if and only if there exist polynomials h1, ... , ht_ 1 E A such that

F.) h1 3 h2 ... ht-1 Ff + h.

We note that if f --- ++ h, then f - h E { f l , ... , f3) .
EXAMPLE 4.1.7. We continue Example 4.1.2, where R = Z and f = xy -

1,f1 =7x+3, f2 =11x3-2y2+1,f3=3y-5andF={fl,f2,f3}. We see that
f 4+ -10x -- 6, since f - -3y -10x - 1 F - lox -- 6. The first reduction
is the one noted in the previous example and the second is obtained by simply
adding f3 to -3y - 10x - 1. We note that this reduction could not have been
done in one step.

DEFINITION 4.1.8. A polynomial r is called mWimal1 with respect to a set of
non-zero polynomials F = I fl, ... , f. } if r cannot be reduced.

11n the case of ideals and modules where the coefficients were in a field we required that
every term in r could not be reduced. Here we are only requiring that lt(r) cannot be reduced
modulo F. In the literature this latter concept is sometimes refered to as "reduced", but we
adopt the word "minimal" so that we are consistent with the similar concepts in the rest of
this book.
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We recall the notation that for a subset W C A, the leading term ideal of W
is denoted

Lt(W) = (Ilt(w) I W E WI).

We have the following easy

LEMMA 4.1.9. A polynomial r E A, with r 0 0, is minimal with respect to a
set of non-zero polynomials F fj C A if and only if It(r) §t Lt(F).

PROOF. If r is not minimal, then r can be reduced and so from Definition 4.1.1
we have that It (r) = c1 Xi It (fl) + - - -}- c3 X8 It (f.) for ci E R and power products
Xz. It immediately follows that It (r) E Lt (F) . Conversely, if It (r) E Lt (F) , then
It (r) = h1 It(fl) + - - . + hs It (f S) for some polynomials hi E A. If we expand this
equation out into its individual terms, we see that the only power product that
can occur with a non-zero coefficient is lp(r); that is, we may assume that each
hi is a term ci Xi . It is then clew that r (ciXifi + - + cs Xs f 8) is a reduction
ofr. 0

We note that in Example 4.1.7, the polynomial r = -10x - 6 is minimal with
respect to F = {fi, f2, f3j since only f j has the property that lp (fi) divides
lp(r) = x and lc(r) _ -10 §t (lc(fi))z = (7)z.

We have

THEOREM 4.1.10. Let f, fi, ... , f.9 E A with fx, ... , f8 54 0, and set F =
{fi,... , f8}. Then there is an r E A, minimal with respect to F, such that
f )+ r. Moreover, there are h1, ... , hs E A such that

f = hi f1 + ... + h3 f8 +r

with

lp(f) = max(( max lp(hz) Ip(fi)), lp(r)).

If linear equations are solvable in R, then h1, ... , h8, r are computable.

PROOF. Either f is minimal with respect to F or f - r1. Similarly, either
r1 is minimal with respect to F or Ti -- r2. Continuing in this way we get

f - F ri r2

where we have, by Lemma 4.1.3, lp(f) > lp(r1) > lp(r2) > - . This process
must end since the order on the power products is a well-ordering, and so we
obtain the desired polynomial r. We now have

-F- -i r2 F - F r.

f -r1 =c11X11fx +...+ci8Xiaf9
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for some c11, ... , c13 E R and some power products X11, ... , X1s, where lt(f) =
C11X11 It(f1) + . - - + c1sXXs It(fs) and lp(f) = X1i lp(fi), for all i "such that
Cit :A 0. This gives a representation of the desired type for f - r1. Similarly,
rl - r2 = C21X21f1 + - . + c23X23f5 for some c21, ... , c2s E R and some power
products X21,... , X2s, where It(r1) = 021X21 lt(f1) + - - + C2sX2s It(fs) and
lp(r1) = X2Z lp(ff), for all i such that c2i 0 0. Since lp(f) > Ip(rl) > lp(r2}, we
get a representation of the desired type for f - r2, namely

f - r2 = (cnXn +C21X21)f1 +... + (cjsXls +c28X2s)fs.

Continuing in this way we eventually obtain a representation for f - r of the
desired type. The last statement is clear.

The method for computing r is given as Algorithm 4.1.1. We note that in
obtaining It (r) = c1 X1 + - + c3Xs in Algorithm 4.1.1, we are assuming that
ci = 0 for all i such that lp(fi) does not divide lp(r). Assuming that linear
equations are solvable in R we can determine whether the Cj's exist and compute
them if they do.

INPUT: f, f,7 ... ,f3 E A with f f 0

OUTPUT: hl,...,h8,r,where f

lp(f) = max(max1<i<s (lp(hz) lp(f1)), lp(r))

and r is minimal with respect to {fi,... , f 3 }

INITIALIZATION: h1 := 0,... , hs : = 0, r : = f

WHILE there is an i such that lp (f2) divides lp(r) and there

are c1, ... , c3 E R and power products X1, ... , Xs

such that lt(r) = c1X1 lt(f1) + - . + c,XS lt(f5) and

lp(r) = Xi lp(fi) for all i such that ci 0 DO

r:= r - (Clxlfl +...+c3Xsfs)

FORi=1tosDO
hi := hz + ciX i

ALGORITHM 4.1.1. Division Algorithm over Rings

EXAMPLE 4.1-11. We reconsider Examples 4.1.2 and 4.1.7 using Algorithm.
4.1.1. The first pass through the WHILE loop was done in Example 4.1.2 and
gave us r = f - (yfi + (-2x) f3) = -3y -10x -1, h1 = y, h2 = 0, and h3 = -2x.
The second pass through the WHILE was done in Example 4.1.7 and gave us
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r = (-3y -- lox -1) -- (-f3) = -lox -- 6, h1 = y, h2 = 0, and h3 = -2x -1. The
WHILE loop stops, since only lp(f i) divides 1p (r) but there is no cl such that
--lox = lt(r) = ci lt(fi) = cl(7x). Thus, f = yfi + (-2x -- 1) f3 + (-lox -- 6).

We may now give the first characteristic properties of Grobner bases over
A = R[xi, ... , xn], for a ring R.

THEOREM 4.1.12. Let I be an ideal of A and let G = {g,... , gt } be a set of
non-zero polynomials in I. Then the follouring are equivalent.

(i) Lt(G) = Lt (1).
(ii) For any polynomial f E A we have

f E I if and only if f 0)+0.

(iii) For all f E I, f - higi + ... + htgt for some polynomials hl,... , ht E A
such that lp(f) = maxi<i<t(lp(hi) lp(9g))-

PROOF. (i)== (ii). We know that if f 0, then f E I. Conversely assume
that f E I. Then we know from Theorem 4.1.10, that f + r with r minimal.
If r -34 0 then, by Lemma 4.1.9, It(r) Lt(G). But f E I and f - r E I imply
that r E I and so It (r) E Lt (I) = Lt (G) , which is a contradiction.

((iii). This is the special case of r = 0 of Theorem 4.1.10.
(iii)==(i). For f E I we need to show that It (f) E Lt (G) . We have that

f = hxg1- - . + htgt such that lp(f) = maxi<j<t(1p(hz) lp(gi)). It is then easily
seen that It (f) = = E It (hz) lt(fi) where the sum is over all i satisfying lp(f) _
lp(hi) lp(g2) . Thus lt(f) E Lt(G), as desired. D

It is important to notice the form of Statement (iii) in the Theorem. We use
lp(f) = = maxi<i<t(lp(hi) lp(gi)) instead of 1p(f) = max1<i<t lp(higi), since over
a ring R with zero divisors, we need not have lp(hi) 1p(9z) = lp(higi).

DEFINITION 4.1.13. A set G of non-zero polynomials contained in an ideal
1

I is called a Grobner basis for I provided that G satisfies any one of the three
equivalent conditions of Theorem 4.1.12. A set G of non-zero polynomials con-
tained in A is called a Grobner basis provided that G is a Grobner basis for (C).

EXAMPLE 4.1.14. Let R = Z and A = Z[x, y] with the Zleglex ordering with
x < y. Let Ii = 4x+1, f2 = 6y+1 and I = (fl, f2). Then 3yfl-2xf2 = 3y-2x E
I while It(3y - 2x) = 3y 0 (lt(f1),lt(f2)) = {4x, 6y), and thus {fl,12} is not a
Grobner basis for I. On the other hand, as another example, let gi = 2x + 1, g2 =
3y +I and set F= (91,92). Then by simply looking at all linear combinations of
gi and 92, it is easily seen that Lt(I') = (2x, 3y, xy) = (2x, 3y) = (lt(gi), lt(92)),
and so {gi, g2 } is a Grobner basis for F.

COROLLARY 4.1.15. If G is a Grobner basis for the ideal I in A, then I = (G).
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PROOF. This is immediate from part (iii) of Theorem 4.1.12. 0

We note that the remainder r obtained in Theorem 4.1.10 is not necessarily
unique, even in the case where F is a Grobner basis (see Exercise 4.1.6). We
have, however, in Theorem 4.1.12 that for G a Grobner basis and f E (C), the
only possible remainder for f is 0 with respect to G. That is,

COROLLARY 4.1.16. If G is a Grobner basis and f E (G) and f + r, where
r is minimal, then r = 0.

PROOF. Since f E (G) we have that r E (G) and so, since G is a Grobner
basis, we see that if r 0 then r cannot be minimal by Lemma 4.1.9. 0

We further note that the Noetherian property of the ring R, and hence of the
ring R[x 1, ... , xn] , yields the following Corollary, whose proof we leave to the
exercises (Exercise 4.1.5).

COROLLARY 4.1.17. Let I C R[xl, ... ,xn] be a non-zero ideal. Then I has a
finite Grobner basis.

We will develop a method for computing Grobner bases over rings in the next
section. However, in the special case where R = k [y] , for a field k and a single
variable y, we see from the next theorem that we can compute a Grobner basis
over R using the theory presented in Chapter 1. This result will not be used
until Section 4.5.

THEOREM 4.1.18. If G = {gi,... , gt } is a Grobner basis in k [y, x1, ... , xn]
with respect to an elimination order with the x variables larger than y, then G
is a Grobner basis in (k[yJ)[xi,... , xn] .

PROOF. Let f E I = (gi,... , gt). We will denote by Lt (I), It (f ), lp(f), and
lc(f) the leading term ideal of I, the leading term, leading power product,
and leading coefficient of f with respect to the elimination order <, and by
Ltx (I), ltx (f), lp. (f), and lcx (f) the leading term ideal of I, the leading term,
leading power product, and leading coefficient off in (k[y])[x1,... , xn] (i.e., here
the order is the one on the x variables alone which we will denote by <x) . Note
that lcx (f) E k [y] . We will denote the leading term of a polynomial a E k [y] by
it., (a).

We need to show that Ltx (I) = (lt(gi),... , ltx (gt)). One inclusion is trivial.
For the reverse inclusion, let f E I. We write gi = a-X1+ lower x terms, where Xi
is a power product in the x variables alone and ai E k [y] ; so It., (gh) = ai X i . Since
G is a Grobner basis in k[y, xx, ... , xn] we can apply the Division Algorithm (see
Theorem 1.5.9 and its proof) to write

(4.1.2) f = a1 yvx T19i1 + a2yL2T29i2 + .. + aNyvNTN9iN
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where T. is a power product in the x variables alone, a; E k, for 1 < j < N and,
since lp(aa y13 Z'j gz.) = y"3 T3 lpy (aj, )Xi3 ,

(4.1.3)

y"zT1lpy(ail)Xi; > yv2T2lpy(ai2)Xi2 > ... > yh/NTNlpy(aiN)XiN.

Since we are using an elimination order with y smallest, we must have

T1Xzi > T2Xi2 > ... > TNXjN .

Choose jo least such that Tjo Xijo > Tjo + X Xz,o+1. Then T1 Xil = Tj XiJ for 1
j < jo, and T1 Xi, > X for all other x power products, X, appearing in the right
side of Equation (4.1.2). Thus

jo

(4.1.4) ltx(f) = (>cjy"aj)TiXl,
?=1

provided that h = Fjj'= 1 aj yf" aZ? j4 0. But from Equation (4.1.3), looking at the
first jo terms and canceling T, Xa3 = T1 Xi we get

/" lpy (ail) > y"2 lpy(ai2) > ... > 1 fio lpy (aa;o )

and so lpy (h) = y"1 lpy (aiz) 0. Finally, from Equation (4.1.4) we see

io jo

ajT? lpy(a,,)Xil aj ' (gil
j=J

as desired. p

The converse of Theorem 4.1.18 is not true as the following example shows.
EXAMPLE 4.1.19. Consider the ideal I = (y(y + 1)x, y2x) C R[x], where R =

k[y]. Then {y(y + 1)x, y2x} is a Grobner basis in R[x], since, in that ring, the
polynomials y(y + 1)x and y2x are both terms. However, {y(y + 1)x, y2x} is
not a Grobner basis in k[x, y] with respect to the lex order with x > y (or any
other order for that matter), since the polynomial yx is in I but its leading term
(itself) is divisible by neither lt(y(y + 1)x) = y2x nor lt(y2x) = y2x.

Exercises
4.1.1. In Z[x,y], let fl = 6x2+y+1, f2 = 10xy-y-x, f3 = 15y2 + x, and

F = {fi, f2, f3 l. Consider deglex with x > Y.
a. Show that 2x3y --F ) -x3 -X2 y - 2xy2 -- 2xy.
b. Show that x3y2 - x4+x3 y + x2y2 -xy3 - xy2.

c. Show that x3 y2 + 5x4 +x3y+ -xy3 -X 2y -- 2xy2 - y3 - x2 - 2xy -V2.

In each case note that the remainder polynomial is minimal with respect
to F. There are many ways one can reduce the above polynomials; the
reductions above are just one possibility.
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4.1.2. In Z[x, y, z], let f1 = x2yz+yz+1, f2 = 5yz2-xy+z, f3 = 7yz-z-7y-2,
and F = {fj, f2, f3}. Consider deglex with x < y < z.
a. Use the Division Algorithm (Algorithm 4.1.1) on f = -3xy + 2xy2 -

2yz + 2z2 + 3x2 y2 z2 to write f = h 1 f x + h2 f 2 + h3 f3 + r where r is
minimal with respect to F and

lp(f) = max(lp(hi) lp(f ), lp(h2) lp(f2), lp(h3) lp(f3), lp(r)).

(There are two obvious ways to begin this exercise; try them both.)
b. Show that the set F is not a Grobner basis.

4.1.3. In Z1a[x,y], let f1 = 3x2y+3x, f2 = 7xy2+y, and F = {f, f2}. Consider
lexwith x>y.
a. Use the Division Algorithm (Algorithm 4.1.1) on f = x3y3 + 5x2y2 +

x2 y + 1 to write f = hl f, + h2 f2 + r, where r is minimal with respect
to F and lp(f) = max(lp(hl) lp(f l ), lp(h2) IPM), lp(r) ). [One answer
isr=-x+1.]

b. Show that the set F is not a Grobner basis.
4.1.4. Show that the subset F = {3x2y - x, 2z2 _ x} C Z[x, y, z] is a Grobner

basis with respect to deglex where x > y > z and is not a Grobner basis
with respect to lex where x > y > z-

4.1-5. Prove Corollary 4.1.17.
4.1.6. If you attempted to mimic the definition of reduced Grobner basis of

Chapter 1, what would be the significance of the equality of ideals in
Z[x, y], (2x2, 3y2 + x2) = (2x2, 3y2 + 3x2)? Alternatively think about this
example for the idea of uniqueness of reduction. [Hint: Either set is
a Grobner basis with respect to deglex with y > x. Also, try reducing
6x2 y2 -- x4.]

4.1.7. Show that for any polynomials f, g E R[xj, ... , xn], for any finite set
of non zero polynomials F in R[xl, ... , x,,], and for any power product
X E R [x l , ... , x,,] , we have

a. If f E F, then f g --+ 0.
b. If f -+ g, then X f F) + X g.

4.1.8. Let {gi,... , gt} C R[xx, ... ,x7z] and 0 54 h E R[x1,... , xn], where R is
an integral domain. Prove that {gi,... , gt } is a Grobner basis if and only
if {hg1,... , hgt} is a Grobner basis.

4.1.9. Let I be a non zero ideal in R[x1, ... , xn] and let G be a Grobner basis for
1. We say that G is a minimal Grobner basis provided that for all g E G,
g is minimal with respect to the set G {g}. Prove that every Grobner
basis for I contains a minimal Grobner basis for I.

4.1.10. Let I be a non-zero ideal in R [x 1, ... , x,z] and let G be a Grobner basis
for I.
a. Prove that G n R generates I fl R.
b. Call a generating set F for an ideal J C R a minimal generating set

provided that for all r E F we have (F r-- {r}) J. Show that if G
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is a minimal Grobner basis for I (see Exercise 4.1.9), then G fl R is a
minimal generating set for I n R.

4.1.11. Let I be an ideal in R[xl, ... ,xn] and let it denote the quotient map
R[xx, ... , xn] -- (R/(I n R) [xi, ... , xn]. Let G C I be given.
a. Show that if G is a Grobner basis for I then 7r(G) is a Grobner basis

for 7r (I). [Hint: For all f E I, f 0 1 fl R, write f = f o + f, where
ir(fo) =0 andir(lc(fl)) L0.]

b. Show that G is a minimal Grobner basis for I (see Exercise 4.1.9) if and
only if G n R is a minimal generating set for I n R (see Exercise 4.1.10),

it (G G n R) is a minimal Grobner basis for ir(I), and lc(g) 0 1 fl R
for all gEG---Gf1R.

4.1.12. Let G be a Grobner basis for a non-zero ideal I of R[xl,... , xn], where R
is an integral domain. Let K be the quotient field of R. Let J be the ideal
of K [x l , ... , xn] generated by I. Prove that G is also a Grobner basis for
J with respect to the same order.

4.1.13. Prove Lemma 4.1.3.
4.1.14. Use the ideas in this section and those of Section 3.5 to obtain a the`

ory of Grobner bases for R[xi, ... , xn]-submodules of R[xl, ... , x,,] M. In
particular state and prove the analog of Theorem 4.1.12 for R[xl, ... , Wn]
modules.

4.2. Computing Grobner Bases over Rings. In this section we will give
another characterization of Grobner bases (Theorem 4.2.3) which is similar to the
S-polynomial criterion in Theorem 1.7.4, and is the direct analogue of Theorem
3.2.5. Of course, now our syzygy modules are submodules of (R[x17... , x,,,]),$.

We will then give the analogue of Buchberger's Algorithm (Algorithm 1.7.1) for
the case of rings (Algorithm 4.2.1). We will conclude this section by giving an
iterative algorithm for computing the syzygy module needed for this generalized
Buchberger Algorithm (see Algorithm 4.2.2).

We note, by Theorem 1.1.3, that R Noetherian implies R[xl, ... , xn] is Noethe
riaan. Moreover, by Theorem 3.1.1, (R[xi,... , xn]) s is Noetherian, and hence any
submodule of it is Noetherian and finitely generated.

DEFINITION 4.2.1. Given power products X1, ... ,XS and non-zero elements
c1, ... , cs in R set L = [ c1X1 ... c,Xs ] . Then, for a power product X,
we call a syzygy h = (h1,... , h8) E Syz(L) (R[vi,... , Xn])s homogeneous
of degree X provided that each h, is a term (i.e. lt(h2) = hi for all i) and
Xi lp(hi) = X for all i such that hi ; 0.

We have the following easy lemma.

LEMMA 4.2.2. With the notation above, Syz(L) has a finite generating set of
homogeneous syzygies.
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PROOF. As noted above Syz(L) is finitely generated. Thus it suffices to show
that given any syzygy h = (h1,... , h3) E Syz(L) we may write h as a sum of
homogeneous syzygies. Now we know that h1c1X1 + ... + hsc3X5 = 0. Then
expanding the polynomials hi into their individual terms, we see that for any
power product X we may collect together all the terms in this last sum whose
power product is X and these must also add to zero, since all the cjXX are terms.
This immediately gives the desired representation.

We can now give the following theorem whose proof parallels exactly the proof
of the similar Theorem 3.2.5 (Exercise 4.2.1).

THEOREM 4.2.3. Let G = {gj,... , gt } be a set of non-zero polynomials in A.
Let B be a homogeneous generating set for Syz (lt (gl ), ... , It (gt)). Then G is a
Grobner basis for the ideal (91,... , gt) if and only if for all (h1,... , ht) E B, we
have

hlg1 + ... + htgt 0.

One can view the expression h1g1 + - - + htgt above as a generalized S-
polynomial, since in that expression the leading terms cancel (this is the basic
idea that was used in Section 3.3). Thus we see how we will go about gener-
alizing Buchberger's Algorithm. We first must find a homogeneous generating
set for the syzygy module of the leading terms. We then form the generalized
S-polynomials and reduce each one of them using the reduction presented in the
previous section. If one of these does not reduce to zero, we add the reduction
to our set and repeat the procedure.

The next question we must answer is how do we go about constructing a
homogeneous generating set for Syz (lt (gl) , ... , It (gt)) . Or in general, given power
products X1, ... , Xs and non zero elements ci, ... , cs E R how do we construct a
homogeneous generating set for Syz (c1 X1, ... , c8X8). In view of Equation (4.1.1)
and the surrounding discussion, we make the following

DEFINITION 4.2.4. For any subset J C {1,... 1812 set X J = lcm (Xj j E J).
We say that J is saturated with respect to X1, ... , XS provided that for all j E
{1, ... , s}, if X3 divides X.1, then j E J. For any subset J C {1,... , s} we call
the saturation of J the set J' consisting of all j E J such that X3 divides X j.
(Note that Xi ^ Xy .)

EXAMPLE 4.2.5. Let X1 = xy, X2 = x2, X3 = y, and X4 = x4 . Then if
J = {1, 2} we see that Xi = x2y and J is not saturated since 3 V J, while
X3 = y divides X j = x2y. On the other hand, if J = {1, 2, 3} we see that
X J = x2y and J is saturated since 4 is the only element of {1, 2, 3, 41 not in J
and X4 = x4 does not divide Xi = x2y. Clearly {1, 2, 3} is the saturation of
{1, 2}.
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We recall the notation for the standard basis vectors

ex =(1,0,...) 0},e2=(0) 1,0,...,0},... ,e.=(0,0,...,0,1)

for A-. Given the above notation we are now prepared to state

THEOREM 4.2.6. For each set J 9 {1,... , s}, which is saturated with respect
to X1, ... , X57 let BJ = {bj,... , bv,J} be a generating set for the R-module of
syzygies SyzR(c, I j E J). (Note that each of the vectors b,,J is in the R--module
R1 f1, where IJI denotes the cardinality of J). For each such b,,j, denote its j th
coordinate, for j E J, by bjvJ. Set

svJ = bj vJ
XJ

S.03.

jEJ

(Note that each of the vectors s, j is in As.) Then the set of vectors s,j, for J
ranging over all such saturated subsets of {1,... , s} and 1 < v < vJ, forms a
homogeneous generating set for the syzygy module Syz(c1 X1, ... , c8X8).

PROOF. It is first of all clear that each of the vectors is homogeneous of
degree XJ. Moreover, syj is a syzygy of [ c1X1 . . . csXS ] , since

c1X1 csXs I svJ = c1X1 ... cs Xs b9jyJ XX'-je
jEJ

= b.7.,J
XJC9 X7 =XJ 1] b3-yJc3 -=0,

EJ Xj jEJ

by the definition of b,J. Now, let h = (h1,... , h3) E Syz (c1 X1, . - , c3X.). Since,
by Lemma 4.2.2, Syz(c1 X1, ... , csXS) is generated by homogeneous syzygies, it
suffices to write h as a linear combination of the syJ's in the case that h is
a homogeneous syzygy, say of degree Y. We write h = (d11'1,... , ds Ys) for
d 1 , ... , ds E R and power products Yl, ... , YS . Set J = {j d j 0} and let
J' be the saturation of J. We have that Yj X j = Y for all j E J, since h is
homogeneous of degree Y. Then, since h is a syzygy of [ c1X1 . . . C. X"' ] ,

we have >.jEJ d jY q j X j= Y ? E J d j cj = 0. Thus (dj I j E J') is a syzygy of
[c, I j E J' ] and so by hypothesis

(dj I j E J') = r,,byJ'

that is, for each j E J',

d, = rvbjvjt,
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for some rv E R. Now Y'Xj = Y for all j E J implies that XJ _ XJ' divides Y.
It now follows that

"JI VJI X J,Y
E ry Sup = E E rv bjvJ'ej
v=1

XJ1
L=1 jEJ' x y X9

pit S

--- (>rbjji)Yjej] = djYjej >djYjej = h,
jEJ' v=1 jEJ' j=1

as desired.

We note that we have reduced the problem of computing a generating set for
Syz(c1X1, ... , c.,X3) to computing the subsets of {1,... , s} which are saturated
with respect to X1i... , X. (an easy task) and computing syzygies in R (see
Definition 4.1.5).

EXAMPLE 4.2.7. We consider R = Z and let c1X1 = 2xyz, c2X2 = 5xy2, C3X3
= 85y2, and c4X4 = 6x2 Z. We will assume that the reader can solve the el-
ementary linear diophantine equations that occur in this example (i.e. that
the reader can "solve linear equations in R = Z"). One readily checks that
the saturated subsets of {1,2,3,4} are {1}, {3}, {4}, {1, 4}, {2, 3}, {1, 2, 3}, and
{1, 2, 3, 4}. Since R = Z is an integral domain, the singletons {1}, {3}, {4} do not
give rise to any non zero syzygy. For J = {1, 4} we need to solve in R = 7L the
equation 251+654 = 0 and one finds a generating set for the solutions of this equa-
tion to be {(-3,1)}. Since Xj = x2yz, the corresponding syzygy is - 3 e1+xyz

z
e4 = (-3x,0,0,.y). Now for J = = {2, 3}, we need to solve 5b2 + 85b3 = 0+ 8+

e3 = (0,-17,z,0).which gives us {(-17,1)} and the syzygy
5b2

X-Y -Y

The set J = {1, 2, 3} gives the diophantine equation 2b1 + 5b2 + 85b3 = 0. This
may be solved to yield two generators for the solutions, namely, (-40, -1,1)
and (-5,2,0). Then, with X J = x y2 z, w e obtain the syzygies -40 e 1 ----XYZ

2 e2 + e3 = (-40y, -z, xz, 0) and -5M e1 + 2 e2 = (-5y, 2z, 0, 0).Xy y y
xyFinally for J = {1,2,3,4}, we get the generators (-40,--1,1,0),(-5,2,0,O) and

(-3, 0, 0,1). These will give syzygies that have already been obtained, as is read-
ily checked, and so are not needed in our generating set. So we obtain that

Syz(2xyz, 5xy2, 85y2, 6x2z) = ((-3x, 0, 0, y), (0, -17,x, 0),

(-40?,, -z, xz, 0), (-5y, 2z, 0, 0)).

Now that we can compute, by Theorem 4.2.6, a homogeneous generating
set for Syz (It (fl), ... , It (f s) ), for any set of polynomials {fi,... , fs }, we can
give Algorithm 4.2.1, the algorithm for computing Grobner bases for ideals in
A=R[x1,... ,xn].

THEOREM 4.2.8. If R is a Noetherian ring and linear equations are solvable
in R then Algorithm 4.2.1 produces a Gro bner basis for the ideal (fi,... , fs).
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INPUT: F_ {f,... ,fs} 9A=R[xl,... ,xn]
with fi00 (1<i<s)

OUTPUT: G = {g,... , gt }, a Grobner basis for (fi,-..

INITIALIZATION: G:= 0, G':= F

WHILE G'4 G DO

G:= G"

Let the elements of G be gi , ... , gt

Compute B, a homogeneous generating set

for Syz (lt (g1) , ... , It (gt) )

FOReach h= (hi,... ht) EBDO

Reduce h1g1 + .. + htgt -' r,

with r minimal with respect to G'

IF r 54 Q THEN

G' : = G' U jr}

ALGORITHM 4.2.1. Grobner Basis Algorithm over Rings.

PROOF. If the algorithm stops, it clearly, by Theorem 4.2.3, gives a Grobner
basis for the ideal (fi,... ,f). As the algorithm progresses we add to a set of
polynomials G a polynomial r, minimal with respect to G, to obtain a new set
G'. By Lemma 4.1.9, It (r) Lt(G) and so Lt(G) C Lt (G') . Thus, since the ring
A is Noetherian, the algorithm stops.

We will give examples of computing Grobner bases shortly, after we have given
a more efficient method for computing the relevant syzygies. We will incorporate
this method for computing syzygies into our Grobner basis Algorithm and so
we will actually use Algorithm 4.2.2 to compute these examples (see Examples
4.2.11, 4.2.12, and 4.2.13)

Moller has given a method for computing the syzygies that arise
in Algorithm 4.2.1. In particular, this method gives an efficient way to avoid
duplication in the computation of syzygies (see Algorithm 4.2.2). At each stage
of Algorithm 4.2.1 we add one or more polynomials to the generating set for
the ideal (fr,... , f s) s) . So we have to compute a generating set for the syzygy
module of this increased set of leading terms. The idea of Moller is to use the
computations of syzygies already done in order to compute the new syzygies.
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Note that any syzygy of a set of leading terms is automatically a syzygy of a
larger set of leading terms (using zeros for the extra leading tern-is) .

Again consider power products X1, ... , XS and non zero elements c1, ... , cs E
R. Let SQ = Syz(c1X1i ... , c.X,) for 1 < a < s. We will compute a homoge-
neous generating set of S. = Syz(c1 X1, ... , csX5) by inductively constructing
generating sets for the S,. We note that a homogeneous generating set of Si
consists of a generating set of the ideal Ir E R I rc1 = 0} of R (called the anni-
hilator of c1 and denoted by ann(cl)) viewed as a subset of A. Also, if we take a
homogeneous syzygy (b1Y1,... , bQ YQ) in S, there are two possibilities. Either
ba = 0 and (b1Y1,... , b,-,Y,-,) is a homogeneous syzygy in Sa_ i ; or be j4 0
and2 bb E (c1,... , c,-1)R : (Ca)R.

So we proceed as follows. We consider all subsets J of {1, ... , a}, saturated
with respect to X1 i ... , XQ , such that a E J. For each such J let b1 j, ... , b"', j
denote a generating set for the ideal in R, (c, I j E J, j 54 OR: (ca} R. Now for
each b,j there are bj E R such that

1: bjcj +bpjCa = 0)

jEJ
j0cr

and we define the homogeneous syzygy in S,,,, by

sj = E bjXie9+bµJ XieQ.
jEJ X1 Xa
Ma

(The b j's may not be unique, but any choice will do.) We also consider a ho-
mogeneous generating set a 1, ... , am for S,_ 1, which we assume, by induction,
has been computed. Define for 1 < i < m, (a,, 0) to be the homogeneous syzygy
in SS with the coordinates of az in the first a - 1 coordinates and 0 in the last
coordinate. We now can state

THEOREM 4.2.9. The syzygies (ai, 0), ... , (a,,, 0) together with the syzygies
8111 for J C {1,... , al saturated with respect to X1, ... , XX with a E J, form a
homogeneous generating set for the syzygy module So .

PROOF. Let d = (d1Y1,... , d,YY), for di, ... , dc. E R and power products
Y1, ... , Y,, be a homogeneous syzygy in S. of degree Y. If d, = 0 it is clear
that d is a linear combination of (al, 0), ... , (a7z, 0). So assume that d, 0 0. Let
J' be the set of all j such that d j 0 0 and let J be the saturation of J' inside
{1,... , a} . Note that Xj = X y divides Y. Then dQ E (c, I j E J, j 0 o-)R : (c)R
and so da = EZ= ribi j. Then it is easily checked that

.r Y
d -- rAsJAJ Xj

2RecaU that for two ideals 1, J C R the ideal quotient, I: J, is defined to be I: J = jr E
RIrJ C 1}.
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is a homogeneous syzygy with a zero in its o th coordinate and so is a linear
combination of (ai, 0), ... , (am, 0), giving the desired result.

EXAMPLE 4.2.10. We will redo Example 4.2.7 using this method. We start
with Sx = Syz(2xyz) = (0). We now consider S2 = Syz(2xyz, 5xy2). The only
saturated subset of {1, 2} that need be considered is {1, 2} itself (actually {2}
is saturated and contains 2 but will only yield the 0 syzygy). We note that
(2)z: (5)z = (2)z giving the syzygy (-5, 2) of [ 2 5 ]. Thus S2= ((-5y, 2z)).
We now turn to S3 and note that the saturated subsets of {1, 2, 3} containing 3
are {2, 3} and {1, 2, 3}. Working with the first one, we note that (S)z: (85)z =
(1)z giving the syzygy (-17,1) of [ 5 85 ] and so the syzygy (0, -17, x) in
S3. For the second set, {1, 2, 3}, we note that (2, 5)Z: (85)z = (1)z and we may
use the same syzygy as before. Therefore S3 = ((- 5y, 2z, 0), (0, -17, x)). We
finally turn our attention to S4 and note that the saturated subsets of {1, 2, 3, 4}
containing 4 are {1, 4} and {1,2,3,4}. For {1,4} we compute (2)z: (6)z = (1)z
giving the syzygy (--3,1) of [ 2 6 ] and so the syzygy (-3x, 0, 0, y) in S4.
Finally for {1,2,3,4} we need to compute (2,S,SS)z: (6)z = (l)z and we may
use the same syzygy as we did for {1, 4}. So we obtain

S4 = Syz(2xyz, 5xy2, 85y2, 6x22) = ((-5y, 2z, 0, 0), (0, -17, x, 0), (-3x, 0, 0, y)).

We note that the syzygy (-40y, -z, xz, 0) is not in this list, but was included
in Example 4.2.7. It is not needed, since (- 40y, -z, xz, 0) = z(0, -17, x, 0) +
8(-5y, 2z, 0, 0).

We give the improvement of Algorithm 4.2.1 which makes use of Theorem 4.2.9
as Algorithm 4.2.2. We leave the easy proof that it is correct to the exercises
(Exercise 4.2.9).

We close this section by giving some examples of Algorithm 4.2.2. Since the
polynomials generated by the algorithm are scattered throughout the text of the
example, we have put boxes around them for easier reference.

EXAMPLE 4.2.11. We continue with R = 7L and use lex with x > y in Z[x, y].

Let I (f', f2), where fi = 3x2y + and Lf2 = 4xy2 - 5x. J The case a = 1
in the algorithm does not generate new polynomials, since (O)z: (3)z = {0} (we
note that, since R = Z is an integral domain, we never need to consider sin-
gleton saturated sets). Now consider the case a = 2. The only non singleton
saturated subset containing 2 is {1, 2}. We compute (3)z: (4)z = (3)z which
gives the syzygy' (4y, -3x) in Syz(3x2y, 4xy2,). The corresponding S-polynomial,
4 y f f - 3x f 2 = 15x2 + 28y2, is minimal with respect to G and so we add
it to G as Ff, 15x2 +28 Y2. To compute new syzygies, we need only con-
sider the saturated subsets J C {1, 2, 3} containing 3 and they are {1, 3} and
{1, 2, 3}. For {1, 3}, we compute (3)z: (15)z = (1)z giving the syzygy (5, 0) ----y) in
Syz (3x2 y, 4xy2,15x2) . The corresponding S-polynomial 5f, - y f 3 = - 28y3 + 35y

is minimal with respect to G and so we add it to G as f4 = -28y3 + 35y. JWe also
compute the syzygies corresponding to {1, 2, 3} by computing (3, 4 z : (15)z _
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INPUT: F={fi,...,f3}cR[xi,...,x7}with fz 0(1<i<s)
OUTPUT: G a Grobner basis for (f',... I fs)

INITIALIZATION: G :_ F, o:= 1, m:= s

WHILE a < m DO

Compute S = {subsets of {1,... , a}, saturated with respect to

lp (f l ), ... , lp(fem. ), which contain a}

FOR each J E S DO

Xj:= lcm(lp(fj) lj E J)

Compute generators bij, i = 15... , AJ

for (1c(f)Ij E J, j j4 a)R: (IC(fcr))R

FOR i = 1,... , A j DO

Compute b j E R, j E J, j 54 a

such that E b3 lc(f1) + bi j lc(f f) = 0
jEJ,j#Q

Reduce b. Xi
+ b XJ -----) r, .f, zJ I l f +

jEJ,ja 1P(f3) lplfQl

where r is minimal with respect to G

IF r 0 0 THEN

fm+i := r

G:= GU{fm+l}

m:=m+1
a:=a+1
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ALGORITHM 4.2.2. Grobner Basis Algorithm in R[xl , ... , x,,] using MUller's
Technique

(1)z and we may use the same syzygy (5, 0, -y) as before. The saturated subsets
of {1, 2,3, 4} containing 4 are {2, 4} and {1, 2,3, 4}. For the first we compute
(4)z: (---28)z = (1) which gives the syzygy (0, 7y, 0, x). The corresponding S-
polynomial is 7y f2 + x f4 = -35xy + 35xy = 0. As before the set {1, 2, 3, 4}
gives no new polynomial. We see now that {fi, f2, 13, f4} is a Grobner basis for
(Ii, M. . This is a minimal Grobner basis (see Exercise 4.1.9 for the definition of
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minimal Grobner basis).
EXAMPLE 4.2.12. We consider the ideal I in Z2o [x, y] (where Z20 is the ring

Z/20Z) generated by the polynomials f 1 = 4xy - x, and f2 = 3x2 + Y. We
use the lex term order with x > y. We again follow lgorithm 4.2.2 to compute
a Grobner basis for I. We first consider a. = 1. The only saturated subset of {1}
is {1} itself. We compute (0): (4) = (5) (throughout this example we will use
{- } for (This gives rise to the polynomial 5f, = 5x. This polynomial
cannot be reduced so we let f3 = 5x, and we add it to G. We next compute
the saturated subsets of {1, 2 which contain 2. These are {2}, and {1, 21. Since
3 is a unit in Z20, {2} does not give rise to a new polynomial, i.e. (0): (3) = (0).
For the set {1, 2} we compute (4): (3) = (4) which gives rise to the polynomial

-3x f i + 4y f 2 = -3x2 + 4y2 -i 4y2 + y. This polynomial cannot be reduced
so we let f4 = 4y2 + y, and we add it to G. We now compute the saturated
subsets of 1, 2, 3 which contain 3. These are {3}, {1, 3}, {2, 3}, {1, 2, 3}. For the
set {3} we compute (0): (5) = (4) which gives rise to the polynomial 4f3 = 0.
For the set { 1, 3} we compute (4): (5) = {4) which gives rise to the polynomial

5f1 -,4y f3 = 5x 0. For the set {2, 3} we compute (3): (5) = (1) which gives
rise to the polynomial 15f2 - x f 3 = 15y which cannot be reduced. Therefore we
let )15 = 15y, and add it to G. For the set {1, 2, 3} we see that (4,3): (5) _
(3): 5 = 1 and this gives rise to the same polynomial as the set {2, 3} . We
next compute the saturated subsets of {1, 2,3,4] which contain 4. These are
{4}, {1, 3, 41, and {1, 2,3, 4}. For the set {4} we compute (0): (4) = (5) which

gives rise to the polynomial 5f4 = 5y AS) 0. For the set {1, 3, 4} we compute
(4,5): (4) = (1) which gives rise to the polynomial y f 1 - x/4 = 0. The set
{1, 2,3, 4} does not generate a new polynomial, since (4,3,5): (4) = (4,5): (4}.
We compute the saturated subsets of {1, 2,3,4,5] which contain 5. These are
{5}, {1, 3, 5}, {1,2,3,5}, {4, 5}, {1,3,4,5} and {1,2,3,4,5}. For the set {5} we
compute (0): (15) = (4) which gives rise to the polynomial 4f5 = 0. For the
set {1, 3, 51 we compute (4,5): (15) = (1) which gives rise to the polynomial
3y f3 -x f5 = 0. Note then that {1,2,3,5}, {1,3,4,5] and {1,2,3,4,5}donot give
rise to any new polynomials. Finally, for the set {4, 5} we compute (4): (15) =
(0): (15) = (4) which does not give rise to a new polynomial. Thus the algorithm
stops and a Grobrier basis for I is {fi, 12, f 3, f 4 , f5}. Note that we have also shown
that

SyZ(lt(fl),lt(f2),lt(f3),lt(f4),lt(f5)) =

((5,0,0,0,0), (-3x, 4y, 0, 0, 0) (0,0,4,0,0), (5,0, -4y5 0, 0) , (0,15, _X , 0, 0)

(0,0,0,5,0), (y, 0, 0, --x, 0), (0,0,0,0,4), (0,0, 3y, 0, -x)).

This will be used later.
EXAMPLE 4.2.13. We will now give one more example where the coefficient

ring does not have the property that every ideal is principal. We let R =
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Z[v' 51 = {u + v/Iu, v E Z}. It is well known (see, for example, [AdGo])
that Z[V-51 is not a UFD and so not a PID. Indeed it is not hard to show that
2, 3,1 + , and 1 - are not units and cannot be factored in Z[/],
but that 2.3 = (1 + /)(i - ) . According to Theorem 4.2.3, in order to
compute a Grobner basis in such a setting we will need to be able to compute
a homogeneous generating set for the syzygies of the leading terms of polyno-
mials. We will follow Algorithm 4.2.2. To do this we need to compute ideals of
the form (Cl,... , ce) : (c) for cx,... , ce, c E Z[,/-5] (in this example, of course,
(c1,... ) Q) means (ci,... , ce)Z[ ). One can do this either by using some el-
ementary theory of quadratic fields (see [AdGoJ) to find generators for these
ideals, or one may proceed as follows. We need to find all a E Z [/] such that
ca = cial + - + ccae for some a1, ... , at E Z[,,/]. Each of the c's and a's
are of the form u + v/ for integers u, v. So in the desired equation, one can
simply equate the real and imaginary parts and obtain a pair of linear Diophan-
tine Equations. These are discussed in elementary number theory courses (see
Niven, Zuckerman, and Montgomery [NZM]). Many computer algebra systems
have the facility to solve such equations. Of course, this method will give a gen-
erating set for (c1,... , ce) : (c) as a Z-module. This generating set is then also a
generating set f o r (Cl,... , ce) : (c) as a n Z[ / ]-module, but some of the gener-
ators might be redundant. In the computations below we will write down only
the non-redundant generators but it is possible to verify that these generators
are correct by the above procedure. We illustrate this more specifically for the
case I = 1. So in this case we need to solve cl al = ca for a, and a. We write
CI =ul+v1vandc=u+vvandaI =31+yl/and a=j6 + 'Y ,

where u1, V1, u, v, #I, -vi, p, ^1 are all integers. Then taking the real and imagi-
nary parts of the equation clal - ca = 0, we need to solve the pair of equations
ul)31 - 5v1 yl - u/3 + 5vy = 0 and v1131 + uj yl --- v13 - u-y = 0 for the integers
,C31, 'yl , f3, y. For an alternative method to do these computations, which is in the
spirit of this book, see Exercise 4.3.1.

Let us consider the ideal I in (Z[/)[x, y] generated by the two polynomials

[fi = 2xy + V----Sy and ,f2 = (1+ V )x2 _ xy. We use the lex ordering with
x > y. We follow gorit to compute a rabner basis for I.

Since Z [/ is an integral domain we do not need to consider saturated sets
which are singletons. So the first saturated set we must consider is {l, 21. We
compute (2): (1 + J) = (1 - , 2) . Since 3.2 --- (1 - /)(i + /) = o,
the first generator, 1-, gives rise to the polynomial 3x f 1-- (1- I)Yf2 =
(1 V---5)xy' + 3Pxy, and this cannot be reduced any further using fl, f2.

We let f3 = (1- )xy2 + 3vr--5xAlso, the second generator,2, gives rise
to the polynomial

(1+vf--5 )xf1 /(1 +v/--5)xy-Vf__5y2.

= 5 (1 + 5)xy - V_5y2.We let I f4
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We now consider the saturated subsets of {7., 2, 3} which contain 3. They are
{1,3} and {1,2,3}. For the set {1,3} we compute (2): (1-.-/) = (1+vr--5, 2).
The first generator gives rise to the syzygy (-3y, 0, (1 + Vf--5)) and the second
to the syzygy ((1 - /)y, 0, -2). These give rise to the following polynomials

5y2 _fl > p,-3Jf1 + (1 + V(--5-) f3 = 3-sv----5(1 + v/-5)xy - 3Vf -
(1 - V(---5-)yf, - 2f3 -6v/----5xy + v/----5-(l 5)y2

A4 (5+,/--5)y2 _ 15y.

We let !5y. I For the saturated set {1, 2, 3} we compute
(2,1+ tvf--5): (1 - sv/-5) = (1). This gives rise to the polynomial

xyfi - y2f2 - x f3 = -3.v/-5xzPl + Xy3 + Xy2
and we let Lf6 = xy3 + xy2.

We now consider the saturated subsets of [i2, 3, 4} which contain 4. They are
{1, 4},{l, 2, 4}, {1,3,4}and{1,2,3,4}. For {l, 4} we compute (2): (-5+r) _
(-1+ Vf--55 2). These give rise to the polynomials

(5 + Vf-3 V/1-5 f, + (- 1 + V/-- -5) f4 5)y2 _ 15y f5+01
5y2 + 5(1 -{- Vr-5}y.(5-V')f1+2f4 = 2V---

We let I f7 = -2,\/ 5y2 -1- 5(1 + \(-5)y. For the saturated set {1,2,4} we com-
pute (2,1+ V/--5): (-5 + Vf--5) = (l). This gives rise to the polynomial

3x fl - ?!f2 + xf4 = (I - 5Vr-)Xy2 + 3,V---5xy -f-+ 0.

For the saturated set {1, 3, 4} we compute (2,1- vf--5): (-5 + V'--5) = 1). This
gives rise to the polynomial

2yf, + f3 + yf4 \/----5y3 + 2v 1-5y',

We note that fg cannot be re-and we letand we let Li8 = 3xy 5y3 + +

duced because 3V----5 (2, --5 +). It is easy to see that for the saturated
set {1,2,3,4} we can use the same syzygy as we did for {1,3,4}.

We now consider the saturated subsets of {1, 2,3,4, 5} which contain 5. They
are {1,3,4,5} and {1, 2, 3, 4, 5}. For {1,3,4,5} we compute (2,1 -, -5 +
J): (5 + ) = (1). This gives rise to the polynomial

3yfi - f3 - xf5 = 3(5 - /)xy + 3'y2 -- 0-
It is easy to see that for the saturated set {1,2,3,4,5} we can use the same
syzygy as we did for {1,3,4,5}.

We now consider the saturated subsets of {1, 2,3,4,5, 6} which contain 6. They
are {1,2,4,6} and {1,2,3,4,5,6}. For {1,2,4,6} we compute (2,1+',-5+
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Nf--5} : (3v/--5) _X2,1-I- _X2,1-F- may. These generators gives
rise to the polynomials

3v/---5xfi + 2f6

3v'---5yfa + (1 + v/ 5)f6

2xy3 + 2vr--5xy2 -15xy
2Vf-5xy2 -15xy - 5y3

5y3 + 5y2-15xy - Vf-
5)yl + 15y2-(5 + VI

o,
(I + f--5)XV3 - (5 +
(-5 + vf---5)xy2 - 5Vf-y3

0.

For {l, 2, 3, 4, 5, 6} we compute (2, 1+/, 1-V', -5+v/-'-5, 5+vr--5) :(3-v/ --5)
= (2,1+ vr---5): (3Nf--5) = 2, J. + Vf--5} and so we can use the same syzygies as
in the previous case.

We now consider the saturated subsets of 13., 2,3,4,5,6, 7} which contain 7.
They are {5, 7}, {1,3,4,5,7} and {1,2,3,4,5,6,7}. For {5,7} we compute (5 +
v' r--5) : - - 2 V --- -5) = V --- -5 ( - 1 + V/ --5) : V/'---5 ( - 2) = ( - I + V --- -5) : (2) = (3, 1 -
Vf--5). These generators give rise to the polynomials (1 + xf--5) fs +3 fy = 0 and
2f5 + (1- vr---5) f7 = 0. For {1, 3, 4, 5, 7} we compute (2,1- v/----5, -5 + v/----515 +
v/-5) : (-2vf--5) = (1). We obtain the polynomial

/yfi + x f7 = 5(1 + y v)xy - 5V2
-5(1 - 5)y2 - 15vr--5y

0.

It is easy to see that for the saturated set {1, 2, 3, 4, 5, 6, 7} we can use the same
syzygy as we did for {1,3,4,5,7}.

We now consider the saturated subsets of {1, 2, 3, 4, 5, 6, 7, 8} which contain
8. They are {1,4,8}, {1,3,4,5,7,8}, {1,2,4,6,8} and {1,2,3,4,5,6,7,8}. For
{1, 4, 8} w e compute (2, -5 + / ) : (3/) = (2) -5 + V/--5). We obtain the
polynomials

3.t,/----5fx - 2f8 = 2Vf--5J3 - 4,Vr-5J2 -15y
(5+.%/--5)y2 _ 15y

Q,

3N/--5f4- (-5 + vf--5)f$ _ -5(1 + vf--5}y3 + 5(5 + 2V,--5)y2

-ufs±?bf7
0.

For {l, 3, 4, 5, 7, 8} we compute (2, 1-/, -5+V----5, :(3%/--5)
= (2, -5 + V1--5), and so we may use the same syzygy as in the previous case.
For {1,2,4,6,8} we compute (2,1 + v/---5, -5 -F- -,f--5, (3v,'--5) = (1)
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We obtain the polynomial

fs + xfs = f--5)Xy3 + 3V---

It is easy to see that for the saturated set {1, 2, 3, 4, 5, 6, 7, 8} we can use the
same syzygy as we did for {1, 3, 4, 5, 7, 8}.

We now have that the polynomials f, 7 f2, f3, f4, 15, f63 f7, fs form a Grobner
basis for I.

We note that the leading coefficients of 11,14 and f8 form an ideal which
is equal to (1) = Z[v/---5], so we can add to the Grobner basis a polyno-
mial whose leading power product is x y and whose leading coefficient is 1. In
deed, 8. 2 + 3(-5 + ) + (-1)3/ = 1, and so this polynomial is 8f1 +

It can then be shown that
is also a Grobner basis for I (Exercise 4.2.10).

Exercises
4.2.1. Prove Theorem 4.2.3.
4.2.2. Prove the following: Let G = {g',... , gt} be a set of non-zero polynomials

in A. Let B be a homogeneous generating set of Syz (It (gl ), ... , It (gt)) .
Then G is a Grobner basis for the ideal (g1:... , gt) if and only if for all
(h1,... , ht) E B, we have h191 + ... + h gt -== v . g1 + - - + vtgt where
lp(hlgj + - + htgt) = max(lp(vx) lp(gl),... , lp(vt) lp(9t)). [Hint: See the
proof of Theorem 3.2.5.]

4.2.3. Show that in Moller's method of computing syzygies of terms (i.e. in
Theorem 4.2.9 and Algorithm 4.2.2), if J C J' C {1, ... , ci} with a E J,
such that

(c? I j E J, j# Q)R: (cg)R=(cj IjEJ',j,4c)E: (cor)R

and the set J has been used, then the set J' may be ignored.
4.2.4. Show that in Algorithm 4.2.2, if we consider the case where R = k is a

field then we may improve the algorithm as follows: For each o- in the
main WHILE loop find the minimal number of distinct jl, ... , jr, with
1 < j, < a such that for each J E S there is a jv E J. Then in the
remainder of the WHILE loop we need only compute the reductions of
S(f3v , M for 1 < v < r. Use this method to redo Example 3.3.5. Compare
this result to the use of crit2 in Example 3.3.5.

4.2.5. Compute generators for the following syzygy modules.
a. For R = Z compute Syz (3x2 y, 5x2 z, 9yz2, 7x y2 z) . [An answer: {(-5z,

3y, o, o), (-3z2, o, x2, 0), (-4yz, y2, 0, x), (0,0, -7xy, 9z)}.]
b. For R = Z15 compute Syz (2x2 y, 5x22, 9yz2, 7xy2 z) . [An answer: {(0, 3,

0, o), (5z, y, o, 0), (0,0,5, 0), (3z2, o, x2, 0), (0, 0, 7xy, 9z), (-yz, -y2, 0,
x)}.]
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c. For R = Z[i] (where i2 = -1) compute Syz(3ix2y, (2 + i)x2z, 5yz2,
7xy2z). [An answer: {(-(2 + i)z, 3iy, 0, 0), (0, -(2 -- i)yz, x2, 0), (4iyz,
(2 - i)y2, 0, x), (0) 0, -7xy, 5yz)}.]

4.2.6. For the ring R = Z compute a Grobner basis for the ideals generated by
the given polynomials with respect to the given term order.
a. fi =2xy-x, f2 =3y-x2 andlexwithx<y.
b. fi = 3x2y -- 3yz + y, f2 = 5x2z -- 8z2 and deglex with x > y > z.
c. fi = 6x2 + y2, f2 = lOx2y + 2xy and lex with x > y.

4.2.7. For the ring R = Z15 compute a Grobner basis for the ideal generated by
the polynomials fl = 2x2y + 3z and f2 = 5x22 + y with respect to deglex
with x > y > z.

4.2.8. For the ring R = Z[i] (where i2 = -1) compute a Grobner basis for
the ideal generated by the polynomials f, = 3ix2y + (1 + i) z and f2
(2 + i)x2z + y with respect to deglex with x > y > z.

4.2.9. Prove that Algorithm 4.2.2 terminates and has the desired output.
4.2.10. Show that {f2, f 5l f',, f9} forms a Grobner basis as asserted at the end of

Example 4.2.13.
4.2.11. Generalize the results in this section to the computation of Grobner bases

for R[xi, ... , x7z]-submodules of (R[xi,... , xn])7z (see Exercise 4.1.14).

4.3. Applications of Grobner Bases over Rings. We are interested in
applications similar to the ones in the previous two chapters. We have basically
seen in Section 4.1 how to solve the ideal membership problem and we will give
an example of this. We will then show how to compute a complete set of cosec
representatives modulo an ideal. This requires more effort than it did in the
case of fields because now one has to take into account the ideals in the ring
R. We will then explore the use of elimination in this context to compute ideal
intersection, ideal quotients and ideals of relations. These applications are very
much the same as before and do not require any serious modifications in their
statements or proofs. We will close this section by showing how to compute a
generating set for the syzygy module of an arbitrary set of polynomials.

So let R be a Noetherian ring in which linear equations are solvable (see
Definition 4.1.5) and let A = R[xi, ... , x,a]. Let I be a non zero ideal of A.
Suppose that I = (fr,... , f e) , set F = {f,... , f8}, and let G -- {gj,... , gtI be
a Grobner basis for I. Then by Theorem 4.1.12 we know that f E I if and only
if f -+ 0. Thus we can determine whether or not f E I (ideal membership
problem) . Moreover as we saw in Algorithm 4.1.1, if f E I, we can obtain
f = higi + ... + htgt explicitly. Also, using Algorithm 4.2.2, we can find a
matrix T such that (91,... )9t) = T(f1, ... , f8). We can then substitute in for
the gz's to obtain f as a linear combination of the fi's, provided f E I.

EXAMPLE 4.3.1. We go back to Example 4.2.11. Recall that a Grobner basis
for the ideal generated by f, = 3x2y + 7y and f2 4xy2 - 5x in 7[x, y] with
respect to the lex ordering with x > y is {fi, f2, f3, fj} where f3 = 15x2 + 28y2
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and f4 = -28y3 + 35y. We let f = 2z2ya - 3x2y + 5X2 - 4.Ty3 --12xy2 + 5xy -I-
15x -1-14y2 - 7y. First we verify that f E (fl, f2). We have

f f-4

-1141

-2,f3

--y,f2

2-4

f - (-7Z f2 -- 2y2 f3)

-3x2y - 30x2 - 4.xy3 -12xy2 + 5xy -F- 15x - 56y4 + 14y2-7y

-30x2 - 4.zy3 -12xy2 + 5xy + 15x - 56y4 + 14y2

-4zy3 - i2xy2 + 5xy + 15x - 56y4 +70y2

-12xy2 -I- 15x - 56y4 +70Y2

-56y4 + 70y2

0.

Thus we have

f = (-7xf2+2y2f3)-fj-2f3-yf2-3f2+2yf4
= -fl - (?x + y/ + 3)f2 -F (2312 - 2)f3 -F 2yf4.

In Example 4.2.11 we saw that

1 0

0 1 [fi
4y -3x l f2

L -4y2 +5 3xy
T

Thus f = (2y -1) fx + (--x -- y --- 3)f2.
We now consider the problem of determining a complete set of coset repre-

sentatives for A/I, where I is a non zero ideal of A. We adapt the method given
in Zacharias [Za]. In order to do this we must assume that given any ideal £ of
R, we can determine a complete set C of coset representatives of R/ and that
we have a procedure to find, for all a E R, an element c E C such that a - c
(mod £) . If this is the case we say that R has effective cosec representatives.
Such rings include the integers Z, the finite rings Z/nZ, the polynomial rings
over fields, Z[/], and Z [/ i] . We consider a Grobner basis G = {gj,... , gt}
for the ideal I. With respect to the set {lt(gi),... 1t (gt) } of leading terms of
G, we consider the saturated subsets J C {1,... , t} as defined in Definition
4.2.4. However here we also consider J = 0 to be saturated. Then for each
saturated subset J C {1,... , t}, we let Ij denote the ideal of R generated by
{Ic(g,) i E J} (if J = 0, then Ij = {0}). Let Cj denote a complete set of
coset representatives for R/Ij. We assume that 0 E Cj. Also, for each power
product X, let Jx = {i I lp(gi) divides X}. It is clear that JX is saturated for
all power products X (in the proof of Theorem 4.3.3 we will need C jx for all
power products X, and of course JJ could be equal to 0 for some X and that is
why we had to add 0 in our list of saturated subsets) .
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DEFINITION 4.3.2. We call a polynomial r E A totally reduced provided that
for every power product X, if cX is the corresponding term of r (here, of course,
c E R may very well be 0), then c E CJ,,. For a given polynomial f E A, we call
a polynomial r E A a normal form for f provided that f - r (mod I) and r is
totally reduced.

It should be emphasized that the definition of normal form depends not only
on the set of polynomials G, but also on the choices of the sets of coset repre-
sentatives Cj for the set of saturated subsets J.

The complete set of coset representatives is given by the following

THEOREM 4.3.3. Let G be a Grobner basis for the non-zero ideal I of A.
Assume that for each saturated subset J C {1,... , t}, we have chosen, as above,
a complete sets of cosec representatives Cj for the ideal Ij. Then every f E A has
a unique normal form. The normal form can be computed effectively provided
linear equations are solvable in R and R has effective cosec representatives.

PROOF. We will first show the existence of a normal form for f. The proof
will be constructive. (We note that this part of the proof does not depend on
the fact that G is a Grobner basis for I.) The proof will be similar in nature
to the reduction algorithm. We will use induction on lp (f) to obtain a totally
reduced polynomial r with f = r (mod I) satisfying lp(r) < lp(f). If f = 0 then
the result is clear. Thus we assume the result for all polynomials whose leading
power product is less than lp(f ), where we assume that f 0 0. To simplify
the notation we set J = Jlp(f1. We may choose c E Cj such that lc(f) =_ c
(mod 1j). (Note that c = 0 if and only if f is reducible.) Then we may write
lc(f) - c = EiEJ Ci 1C(g0 (this can be done effectively by our assumption that
linear equations are solvable in R). We consider

f, =f`Ecj IPM
gg.

iEJ 1*0
Write f, = c lp(f) + f. Then we have that lp(f f) < lp(f) . Thus, by induction,
there is a polynomial r 1 which is totally reduced, satisfies lp (r1) < lp(f f) and
has the property that f' r1 (mod 1). We now have that

-r -IPM cl rf fl, i + 1: Ci 9: + P(f) +- i )
iEJ lp(gi)

c lp(f) + r1 (mod I).

Let r = c lp(f) + r1. Noting that lp(r1) < lp(fl) < lp(f), we see that lp(r) <
lp(f). Finally, lp(rl) < lp(f) implies that r = clp(f) + rj is totally reduced and
so r is a normal form for f, and the induction is complete.

We next show the uniqueness of normal forms. So suppose that r1, r2 are
totally reduced, f - rx (mod 1) and f r2 (mod I). Then we have r1- r2 E I
and, since G is a Grobner basis for I, we have r1 - r2 G )+ 0; in particular,
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if r1 zA r2, we have that rx - rz is reducible. Thus if X = lp(r1 - r2) and
c = lc(rx --- r2) we have that c E'JX . Let d1, d2 be, respectively, the coefficients
of X in r1, r2. Then since r1 and r2 are totally reduced, d1, d2 E CJ,, . Thus since
c = d1- d2 0 0 we have that d, and d2 represent distinct cosets mod'Jx and so
their difference ca of represent the 0 coset; i.e. c 0 'J X . This is a contradiction.
Thus c = o and rx = r2, as desired.

We note that in the case where R = = k is a field, Theorem 4.3.3 asserts that a
k -basis for k[x1, ... , x,z] /I consists of all power products X such that JX = 0.
This is precisely the statement of Proposition 2.1.6.

EXAMPLE 4.3.4. We go back to Example 4.2.12. Recall that a Grobner basis
for the ideal I = (4xy + x, 3x2 + y) in Z20 [x, y] with respect to the lex ordering
with x > y was computed to be {fi, f2, f3, f4, f5 j, where f1 = 4xy + x, f2 =
3x2 + y, f f 3 = 5x, ff = 4y2 + y, f5 = 15y. We wish to describe a complete
set of coset representatives for Z20 [x, y] /I We follow Theorem 4.3.3 and we use
the notation given there. First note that if X is any power product not 1, x,
ory,thenIj =720.WealsohaveIJ1 ={0}, andIJx ={5}. We now
choose a complete set CJX of coset representatives for ?L2Q /IJ, for each power
product X. Clearly for those ideals 'J,, equal to X20, CJ, _ {0}. We choose
CJz = CJlf = {0, 1, 2, 3, 4}, and C,1 = gyp. Therefore a complete set of cosec
representatives for Z20[x, VI II is the set {a+bx+cy I a E Z20, b, c E {0, 1122 3, 4}}.

Thus, for example if f 3x2y + 2xy + 13y -- 5, we have

f f-- f -- (3xyf3 - 3xf 1) -= 3x2 + 2xy + 13y - 5

2 2xy+12y--5
f 12y-2x-5

2y+3x+ 15 (mod I).

As we did in Example 2.1.8 we can also construct a multiplication table for
Z20 [x, y] /I. Namely, we have xy xy - yf3 + f 1 = x, x2 - x2-7f2 = -7y
3y (mod I), and y2 f y2 + f4+ y f,5 = y. Thus we obtain

So, for example, (2 + 4x + 2y)(3 + 4x + 4y) = 6 + 14y + 16x2 + 8y2 + 4xy
6+14y+8y+8y+4x=6+4x+10y=6+4x (mod l).

EXAMPLE 4.3.5. We go back to Example 4.2.13. Recall that a Grobner basis
for the ideal I = (1+5)x2 -xy) in (Z[/])[x, y] with respect
to the lex ordering with x > y was computed to be {f2, fs, f.', fs}, where f2 =

+ 5)X2 _ xJ, f.5= (5+ V/-5)y2-15y, fr = -2V _5y2 + (5 + 5v/-5)y, and
fs = Xy + V----5y3 - 5V/-5y2 + 8Vf--5y. We wish to describe a complete set of
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coset representatives for (7L [/) [x, y] /I. We follow Theorem 4.3.3 and we use
the notation given there. Note first that for every power product X not equal
to 1, x", or yA, v, > 1, we have 'Jx = Z[V- 51. We also have I j,. = I,s = IJ, =
{0},Ijx = (1+/)foru> 1, andIJy, = (5+/,-2f) = (10,5+
/) f o r i > 1. We now choose a complete set CjX of coset representatives for
Z [ / /I j,,, for all power products X. Clearly, for those IJ,,'s equal to Z[/:]
we have CjX = {0}. We choose Ci., _ {0, 1, 2, 3, 4, 5} for v > 2 (note that
6 E (1 + / ) and that a1 + a2 a1 -- a2 (mod 1 + ---5)). We choose
CiVA = {0,1,2,3,4,5,6,7,8,9} for 1.4 > 2 (as above we have al + a2 \/
al 5a2 (mod 5 + ) , and 10 E IJ M) . Therefore a complete set of coset
representatives for (Z[/])Jx, y]/1 is

n m

la bx+cy+ 1] 4x' + >2e,4y' I a,b,c E Z[ -5],
v=2 p=2

dy E {0,1,2,3,4,5}, and eA E {0,1,2,3,4,5,6,7,8,9}
1-

We now turn to applications of the method of elimination (see Sections 2.3
and 3.6). The proofs are very similar to the ones in those two sections, so most
of them will be omitted and left to the exercises.

Let y1, ... , ym be new variables, and consider a non-zero ideal

Ic ,ym] R[x1,... ,xn,Y1,... ,ym]-

We wish to "eliminate" the variables y1, ... , y?z, i.e. we wish to compute gener-
ators (and a Grobner basis) for the ideal I n A. First, we choose an e ' 'nation
order on the power products of A[y1i ... , yn] with the y variables larger than
the x variables (see Section 2-3). The next result is the analog of Theorems 23.4
and 3.6.6 and a generalization of Exercise 4.1.10 a.

THEOREM 4.3.6. With the notation set above, let G be a Grobner basis for I
with respect to an elimination order on A[y1, ... , Y.] with the y variables larger
than the x variables. Then G n A is a Grobner basis for I n A.

PROOF. We will use the notation LtA and LtA[.y] for the leading term ideals
in A and A[y1, ... , ym] respectively. Then we need to show that LtA(G n A)
LtA (I n A). So if 0 0 f E I n A then lt(f) E LtA[y] (I) = LtA[y] (G) and so
It(f) is a linear combination of elements It(g) such that g E G with coefficients
in A[yl, ... , ym]. Since It(f) is a term involving only the x variables, we may
assume each sutnmand is a term and involves only the x variables. Hence for
each g E G appearing in the sum for It (f ), It (g) involves only the x variables and
thus, since we are using an elimination order with the y variables larger than the
x variables, each term in such a g involves only the x variables, i.e. g E G n A.
Thus It (f) E LtA (G n A), as desired. 0
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EXAMPLE 4.3.7. We go back to Example 4.2.12. Recall that a Grobner basis
for the ideal I = (4xy + x, 3x2 + y) in Z20 [x, y] with respect to the lex ordering
with x > y was computed to be {4xy+x, 3x2+y, 5x, 4y2+y,15y}. Using Theorem
4.3.6 and Exercise 4.1.10 a, we see that I n Z20 [y] _ (4y2 + y,15 y) , and that
inz2o=fol.

EXAMPLE 4.3.8. We go back to Example 4.2.13. Recall that a Grobner basis
for the ideal r (2xy + y, (1+1)2 - xy) in (Z[v"])[x,y1 with respect
to the lex ordering with x > y was computed to be

{2xy+vCy,(1 +/)x2 -xy,(1 _` v)xy2+3/xy,

/(1 + /)xy - 5y2,(5+ )y2 15y,-3 x2y-+ -xy3+ /xy2,

.-2/y2 + 5(1 + /)y, 3sxy --- y3 + 2v"-5y2

Using Theorem 4.3.6 and Exercise 4.1.10 a, we see that

I n (Z[V])[y] = ((5 + )y2 - 15y, - 2 y2 + 5(1 + J)y)
and I n z[.\/--5i = {0}.

Our first application will be to compute the intersection of two ideals of A
and the ideal quotient of two ideals of A. First, as in the ideal case over fields,
Proposition 2.3.5, and as in the module case, Proposition 3.6.8, we have

PROPOSITION 4.3.9. Let I = (Ii,... J.) and J = (gi,... , gt) be ideals of A
and let w be a new variable. Consider the ideal

L = (wf 1, ... , wf3, (1- w)gx, ... , (1 - w)gt) C A[w] = R[xl, ... , xn , w].

ThenInJ=LnA.
As a consequence of this result we obtain a method for computing generators

for the ideal I n J C A: we first compute a Grobner basis G for the ideal L in
Proposition 4.3.9 with respect to an elimination order on the power products in
A [w] with w larger than the x variables; a Grobner basis for I n J is then given
by GnA.

EXAMPLE 4.3.10. In Z[x, y], we wish to compute (3x - 2, 5y - 3) n (xy - 6).
So following Proposition 4.3.9 and Theorem 4.3.6 we consider the polynomials
f, = 3xw - 2w, f2 = 5yw - 3w and f3 = xyw - 6w - xy + 6 and compute
f/i, f2, f3) n Z [x, y]. We will outline the computation. We consider the deglex
ordering with x > y on the variables x and y and an elimination order between
w and x, y with w larger. We follow Algorithm 4.2.2 (observe that much use of
Exercise 4.2.3 is made in this computation). The first saturated set to consider is
{1, 2} which gives rise to 5y f 1 - 3x f2 -'+ 0. The only saturated set containing
3 is {1, 2, 3} and this gives rise to f - 2yf 1 + x f2 -+ 4wy - 8w -- xy + 6 = f4-
For the saturated sets containing 4 we need to consider {2, 4} which gives rise to
-5f4+4f2 = 28w+5xy---30 = ff and {1, 2,3,4} which gives rise to -xf4+4f3 =
8wx - 24w +x2 y -- 4x y - 6x + 24 = f6. For the saturated sets containing 5 we need
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to consider {1, 5} which gives rise to 3x f 5 - 28 f i -- )+ 15x2y ---10xy ---- 90x + 60 =
f7, {2, 4, 5} which gives rise to y f5 - 7f4 --+ 5xy2 - 3xy - 30y + 18 = 18, and
{1, 2, 3143 5} which gives the same result as the last set (Exercise 4.2-3). For
the saturated sets containing 6 we need to consider {1, 5, 6} which gives rise
to f6 - 12f, + x f,9 = 6x2y - 4x y - 36x + 24 = f 9 and {1,2,3,4,5,6} which
gives the same result as the previous set. For the saturated sets containing 7
we need only consider {1, 2,3,4,5,6, 7} which gives rise to w h 7 - 5x y f 1 )+0-
The remaining cases (only 4 need to be computed) all go to zero and we see that
{fl,f2,fa,f4,f5,fs,f7,fs,f9} is a Grobner basis for (f1, f2, f3). Thus

(3x - 2, 5y - 3) n (xy - 6) = {5xy2 - 3xy - 30y + 18,15x2y - loxy - 90x + 60,

6x2y - 4xy - 36x + 24).

We also note that fto = f7.2f9 = 3x2 y - 2xy - 18x + 12 is in (f' , f2, f 3) and
we can replace f7, f9 by f, 0 so that {fi, f2, f3, .f5,16,18, f, 0 1 is also a Grobner
basis for (Ii, 12, 13). We thus obtain the simpler generating set

(3x - 2, 5y - 3) n (xy - 6) = (5xy2 - 3xy - 30y + 18, 3x2 y --- 2xy -18x + 12).

The computation of ideal quotients is almost the same as in the previous cases
except that one must be careful of possible zero divisors in R and hence in A.

PROPOSITION 4.3.11. Let I = f i , ... , f s } and J (9',... , gt) be ideals of
A. Then

t
I: J= If EAR fJCI}= nI: (g;) .

Moreover, if
I n (g) = (h,g,... , heg)

and g is not a zero divisor in A, then we have

I: (g) = (h,,... , ht).

PROOF. The proof is exactly the same as in the ideal case over a field, see
Lemmas 2.3.10 and 2.3.11, until we must verify that I n {g) .w (h,g,... , hag)
implies that I: (g) = (h,,... , hj) which requires that g must be canceled and
this requires that g not be a zero divisor. D

As a consequence of this result we obtain a method for computing generators
for the ideal I: J C A, provided that none of 91, ... , 9t are zero divisors.

EXAMPLE 4.3.12. In Z[x, y], we wish to compute (3x - 2,5y - 3) : (xy - 6).
From Proposition 4.3.11 we need to compute (3x -- 2, 5y - 3) n (xy - 6) and
divide the generators of this ideal by xy - 6. This intersection was computed in
Example 4.3.10 and so dividing the polynomials obtained there by xy - 6 we
obtain immediately that

(3x -2, 5y-3): (xy-6)=(5y-3,3x-2).
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In Section 2.4 we used e ' 'nation to compute the kernel of an algebra homo-
morphism. Sometimes R[xi, ... , xn] is called an R-algebra, in order to emphasize
the special role played by the ring R. In a similar vein, a ring homomorphism
between two polynomial rings over R

0: R[yi, .. , ym] R[xi,... , x,z]

is called an R-algebra homomorphism provided that 0(r) = r for all r E R. It is
then clear that 0 is uniquely determined by

0: ya I-- ' fA,

for f j, ... , fm E R[xl,... , xn] . That is, if we let h E R[yl, - - , ylzj, say h =
E}, cvy 1 - - y., where cv E R, v = (v1,... , vm) E Nm, and only finitely many
c,,'s are non-zero, then we have

q(h) = cyf1JL ... h(f1,... ,fm) E R[xj,... ,x,].

Given this setup we have the analogue of Theorem 2.4.2.

THEOREM 4.3.13. With the notation above, let J = (y' - fi , ... , ym - f m) c
R[yi,...,ym,x1,...,xn]. Then

Another way to view Theorem 4.3.13 is that J n R[y1, ... , y7z] gives the ideal
, ... , f s .of relations among the polynomials f,

EXAMPLE 4.3.14. Consider the Z-algebra homomorphism 0: Z[u, v, w] --
Z[x, y] defined by 0: u i- 3x-2, 0: v 5y-3 and 0: w - xy - 6. We
wish to find the kernel of 0. Following Theorem 4.3.13 we let f, = 3x - 2 -- u,
f2 = 5y --- 3 - v, and f3 = x y -- 6 - w and compute (fr, 12, f 3) n z [u,v, w] . We
consider the term orders deglex with u > v > to on u, v, w and deglex with
x > y on x, y and an elimination order between x, y and u, v, w with x, y larger.
We follow Algorithm 4.2.2. The first saturated set to consider is {1, 2} which
gives rise to 5yfl - 3x f2 -++ 0. The only saturated set containing 3 is {1, 2, 3}
and this gives rise to -f3 + 2y f f -212 = vx + 3x - guy - 4y + w + 6 = f4.
For the saturated sets containing 4 we need to consider { 1, 4} which gives rise
to 3f4 - v f 1 -'+ -6uy- 12y + uv + 3u + 2v + 3w + 24 = fs and {1,2,3,4}
which gives rise to y f4 - v f 3 -- ) + -2y 2 a -- 4y2 + yu + yw + 8y + vw + 6v = f6.
There are three saturated sets containing 5 but we need only consider (Exercise
4.2.3) {2, 5} which gives rise to 5f5 + 6u f2 = -uv -- 3u - 2v + 15w + 84 = f7
and {1, 2, 3, 5} which gives rise to x f 5 + 6u f 3 --3+ 0. All remaining polynomials
arising from saturated sets containing 6 or 7 reduce to zero. Thus we see that
ker(q5) = (uv + 3u + 2v - 15w -- 84).

We conclude this section by giving a method for computing a set of gener-
ators for the syzygy module, Syz (fl , ... , f s) , for a set of non-zero polynomials
{f,... , f, I in A. We do this by first computing Syz (91, ... , 9t) for a Grobner ba-
sis {gi,... , 9t} for the ideal (Ii,... , fe). The theorem describing Syz (9l, - , gt )
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is the analogue of Theorem 3.4.1. In our case, we will have to replace Theorem
1.7.4 with Theorem 4.2.3.

Let {gj,... , gt} be a Grobner basis in A. We let lt(gi) = cjX2 for ci E R and
power products Xi. Let 13 = {h1,... , hi j be a homogeneous generating set of
the syzygy module Syz (lt (gl ), ... , lt(gt)) = Syz (cl Xl , ... , ctXt) . Assume that
for I < j < £ we have that hj = (d311'',1,... , cjtYjt) for d3i E R and power
products Y i , where for each j we assume that h j is homogeneous of degree
Z3; i.e. for all i, j such that dji 0 0, we have Xz1'?z = Z3. (we assume that
Yji = 0 if d,2 = 0.) Then by Theorem 4.2.3, for each j, 1 < j < 1 the generalized

d -2Y-igi has the representationS-polynomial F,'=l

t t

djiYjigi = E aj,,gv,
i=1 v.-1

where
t

max lp(aj,,) lp(gv) =1p(E djiYjigi) < max Yz lp(gi).
1<v<t 1<i<t

i=1

We now define for 1 < j < 1,

sj =hj -(a31i... ajt) EAt.

We note that s j E Syz(g1, ... , gt) .

THEOREM 4.3.15. With the notation above, the collection {83 11 < j < £} is
a generating set for Syz (g1, ... , gt).

PROOF. Suppose to the contrary that there exists (ui,... , ut) such that

(u1,... ,ut) E Syz(gl,... gt) -- (s3 11 < j< e).

Then we can choose such a (u1,... , ut) with X =maxi < i < t (lP ui) lp(9j)) least.
Let

S = {i E {1,... ,t} I lp(ua) lp(9i) = X}.

Now for each i E {1,... , t} we define uz as follows:

, uiifiVS
uz - Ui - lt(uj) if i E S.

Of course we have that for all i, lp(u") lp(gi) < X. Now, for i E S, let lt(uz) _
c!.7'. So for alliESwehave X:X'=X. Since ES ...(u1,... , ut yz 91 > > 9t

we see that

E Cz X,1 Xz = 0,
iES

and so

>cX2'ei E Syz(c1X1, ... , ctXt).
iES
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Thus, we may write
l

ci,Xiez = >vjhj,
iES j=1

for some v j E .A. We note that, we may assume that either v j = 0 or that vj =
b -
l , b3 E R. We can see this since, for each i E S, we have ccX' -= Ej=j Y-.7 Zj

from which we obtain, after multiplying through by Xa, c1X = E,1=1 v j d jz Z? ;
and thus the power products involved are independent of i. Then we have

>2cXei+(t4,... ut)
zES

X
bj hj + (ul,... ut)

j=1
,Z3

x £ X
bj yj sj + (ul, ... ,ut) + bj (aji, ... , ajt).

j=1 j=1 Z3

We define

(to1,... , Wt) _ (ui, ... , ut) + Ebj-(ajl,... , ajt).
j=1 ,Z3

We note that (wi, ... , wt) is in Syz(gl, ... , gt) --- (s, 1 < j < 1), since
(u1,... , ut) and each a j are in Syz(g1, ... , gt) and (u1,... , ut) (s3 I 1 <
j < £) . We will obtain the desired contradiction by proving that

max (lp(wv) lp(gv)) < X.
1<v<t

For eachhvE {1,... ,t} we have
l

1P(wv)1P(gv) = 1P(u + Eb; d,,)Xy
j=1 ?

< maxi u' max
Xl

a X .
-j Z3

But, by definition of uv, we have lp(uv)X,, < X. Also,

X X
Z-

lp(ajv)X, < max
Z

Yji.Xi = X.
3 1<i<t-

Therefore lp(w) lp(g) < X for each v E {1,... , t} violating the condition that
X = maxi<z<t(lp(uj) lp(gi)) is least. D

We now turn our attention to computing Syz (f i , ... , f s) , for a collection
{fi,... , f j } of non-zero polynomials in A that do not necessarily form a Grobner
basis. We first compute a Grobner basis {gi,-.. , gt } for (fi,... , f8) . Set F =
[ fl .. f s ] and G = [91 . - gt I . We can compute a t x s matrix S
and an s x t matrix T with entries in A such that F = GS and G = FT. (Recall
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that S is obtained using Algorithm 4.1.1 and T is obtained by keeping track
of the reductions in Algorithm 4.2.1 or Algorithm 4.2.2.) Now using Theorem
4.3.15, we can compute a generating set {8,... , se} for Syz(G) . Then exactly
as we did in Theorem 3.4.3 we have (Exercise 4.3.12)

THEOREM 4.3.16. With the notation above we have

SyZ.fi,...,f3)= CA'

where rx , ... , rs are the columns of I, -- TS.

EXAMPLE 4.3.17. We go back to Example 4.2.12. Recall that a Grobner
basis for the ideal I = (fi, f2) in 7 20 [x, Y], where f, = 4x y + x and f2 =
3x2 + y, with respect to the lex ordering with x > y, was computed to be fl,
f2, f3 = 5x, f4 = 4y2 + y, f s = 15y. We wish to compute a generating set for
Syz (.f1, f2, f3, f4, fs) and Syz (fl, f2). As in Theorem 4.3.15, we first compute a
homogeneous generating set for

Syz(lt(f1), lt(f2), lt(.f3), lt(.f4), lt(.f5)) = Syz(4xy, 3x2, 5x, 4y2,15y).

In Example 4.2.12 we found that the syzygy module is generated by (5, 0, 0, 0, 0),
(-3x, 4y, 0, 0, 0), (0,0,4,0,0), (5,0, -4y, 0, 0), (0) 15, -x, 0, 0), (0,0,0,5,0), (y,0,
0) -x, 0), (0,070,074), (0, 0, 3y, 0, -x). These syzygies give rise to the following
polynomials

-3x f, + 4y f2
4f3

5fi - 4Jfa
15f2 - Xf3
5.fa

fi - Xf4
4f5

3yf3 -ifs

5X - fs
-3x2 + 4 f2 f4
0

5x=f3
15y = f,5
5y =ifs
0

0

0.

Therefore

SYZ(f1,f2,f37f47f5} =

((5,0, -1,0,0), (-3x,4y+ 1,0,-1,0), (0, 0,4,0,0)}(5)0,-4y-1,0,0),

(0,15, --x, 0, -1), (0,0,0,5, -3), (y, 0, 0, -x, 0), (0,0,0,074), (0,0, 3y, 0, -x)) -

To compute Syz(fl, f2), we first compute the matrices S and T such that

[fi f2 fs fa fs ] = [ fi f2 ] T, and

,fl ,f2 ] = [ fl f2 f3 f4 f5 ] S-
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It is easy to see that

0 1 0 4y+1 -5

We have
T(5, 0, -1, 0, 0)
T(-3x, 4y + 1, 0, - 1, 0)

T(0, 0, 4, 0, 0)
T(5,0,-4y-1,0,0)
T(0,15) -x, 0, -1)
T(0,0,0,5,-3)
T(y, 0, 0, --x, 0)
T(0,0,0,0,4)
T(0, 0, 3y, 0, -x)

Finally we have

r2-TS°00
Therefore

SYz(fi, f2) = ((y+ sx2, -4Xy - x), {15y + 5x2, 5x}).

Exercises
4.3.1. In this exercise we give another method for computing the ideals in Exam-

ple 4.2.13. We .first observe that Z[/] " - Z[x]/(z2 + 5) under the map
V---5 i ) X + (x2 + 5). Thus to find, for example, (2): (1 + ) , we need
to find the syzygies of the matrix [ I + x 2 x2 + 5 ] and read off the
coefficients of 1 + x. We note that {1 + x, 2,x2 + 5} is a Grobner basis and
we can compute a generating set Syz (1 + x, 2, x 2 + 5) = {(-2, 1+ x, 0), (1-

7 --2) } which yields (2): (1 + ) = -2,1 - V-5).x, -3, 1), (0,x2 +5
Verify the statements made so far and then go on to use this method to
compute all of the ideal quotients in Example 4.2.13.

4.3.2. Generalize Exercise 4.3.1 to the case where Z[x]/(x 2 + 5) is replaced by
R[xl, ... , xn]/I, where R is a commutative ring and I is an ideal in
R [x 1i ... , xc] , that is, give a method for computing generators for ideal
quotients in R[x1, ... , x,]/L.

=4.3.3. As in Example 4.2.12, consider the ideal I C Z20 [x, y] generated by f j
4xy + x and f2= 3x2 + y. Show that f = 12x3 y2 - x3 y -10x3+,4x2 y2 -

4x2y - 4xy3 - 4xy2 + 11xy - 6x E I and write f as a linear combination
of f, and f2.
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4.3.4. In Example 4.2.11 compute a complete set of coset representatives for
Z[x, y]/I. Find the totally reduced form of 5x3y3, 3x3y3 and 4x3y3.

4.3.5. Prove Proposition 4.3.9.
4.3.6. In Z[x, y] compute (3x - 2, xy - 6) f1 (5y -- 3). [Answer: (15xy - 9x -10y +

6, 5xy2 - 48xy + 27x,1Oy2 - 96y + 54) .]
4.3.7. Prove Proposition 4.3.11.
4.3.8. In Z[x, y] compute (3x 2, xy - 6) : (5y-3). [Hint: Look at Exercise 4.3.6.]
4.3.9. Prove Theorem 4.3.13.

4.3.10. Consider the Z-algebra homomorphism 0: Z[u, v] -' Z[x, y] defined by
0: u 1 + 3x - 2 and 0: v x y - 5. Compute generators for ker (0) .

4.3.11. Consider the Z-algebra homomorphism 0: Z[u, v, w] -p Z[x, y] defined
by O : u > 3x-2,0:v 2y -- 5 and q5 : w i x - 5y. Compute
generators for ker(q).

4.3.12. Prove Theorem 4.3.16.
4.3.13. Compute generators for the syzygy module of the GrQbner bases con-

structed in Exercise 4.2.6. Use this to construct the syzygy module for
the original polynomials (of course, by unique factorization, this latter
problem is trivial). Repeat this exercise for Exercises 4.2.7 and 4.2.8.

4.3.14. Compute Syz (f 2 , f5, f7, f9) for the Grobner basis in Example 4.2.13 (al-
though this problem is quite doable, it is a long, messy computation)-

4.3-15. The following exercise depends on Exercises 4.1.14 and 4.2.11. Generalize
the following to the case of R[x1, ... , x, ,]-submodules of R[xl,... , x7,]'n.
a. Tasks (i) and (ii) at the beginning of Section 3.6.
b. Task (iii) at the beginning of Section 3.6.
c. Theorem 3.6.6.
d. Theorems 3.7.3 and 3.7.6 (of course use the ideas in Theorems 4.3.15

and 4.3.16).
e. As much of Section 3.8 as energy permits.

4.4. A Prinxality Test. In this section we will give an algorithm that will
determine whether a given ideal I in A = 1 [x1, ... , x9z] is prime or not. Recall
that an ideal P is called prime if and only if given any polynomials f, g E
R[x1 i ... , x,z] with f g E P, we have f E P or g E P. This is easily seen to be
equivalent to the statement that the ring R[x 1, ... , x,,] / P is an integral domain.
Prime ideals are basic building blocks like prime integers are building blocks in
Z. Geometrically, prime ideals in k[x1, ... , x,,], where k is a field, correspond to
irreducible varieties (varieties which are not the union of two proper subvarieties)
(see [CLOS]). Algebraically, any radical ideal is the intersection of prime ideals.
The test for primality that we present in this section is taken from the paper of
P. Gianni, B. Trager and G. Zacharias [GTZJ.

Before we give the primality test, we must consider rings of fractions of the
ring A. Although this is not strictly necessary, we will assume when discussing
rings of fractions that R is an integral domain, since that is all that is needed in
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order to obtain the primality test (even in the case where R is not an integral
domain). Then A is also an integral domain. We have the field of fractions

K= IL if, 9 E 54 0

of A. We consider certain subrings of K. Let S C A be a multiplicative set, that
is, 1 E S, 0 V S, and if f,g E S then f g E S. Examples of multiplicative sets are
S={gEAIgj40},
S={gv IvEN} for afixedgEA.

Given a multiplicative set S C A we define the subring S" 1 A of K by

S-1A= f EKIf EAand9ES
19

It is easy to see that 51A is a subring of K, which we call the ring of fractions
of A with respect to S. In the three examples above, if S = Ig E A 1 g 01,
then S-1A = K; if S = Ig E A I g P}, then S--1A is called the local ring at P
and is denoted by Ap; and finally if S = {g" I v E N} then S-1 A = I-L I f Ev

A and u E N} is denoted by A . We note that A is a subring of S-MA, since for9
all f E A, we have f = f and 1 E S, by assumption.

Our main concern is the saturation of a non zero ideal I of A with respect to
S, which is defined to be

S-1I nA,
where S-'I = If- I f E I and g E S}. It is readily seen that S`1I is an ideal in
S ` 1A and is, in fact, the ideal in S - 1 A generated by the set I. It is often also
written as I (S-1 A), since every element of S-1I is the product of an element
of I and an element of S-1 A. We show that for two multiplicative sets S we
can easily compute generators for the saturation of an ideal I with respect to
S, namely for the cases where S = {gMIu = 0, 1, ... } (Proposition 4.4.1) and
S = {r E Rjr 0} (Proposition 4.4.4).

PROPOSITION 4.4.1. Let R be an integral domain. Let g E A, g 0 0. Let w be
a new variable. Consider the ideal (I, wg - 1) of A[w]. Then

IA9nA=(I,wg-1)nA.
PROOF. Let f E IA9 n A. Then there is a non-negative integer v such that

gv f E I. Then wvgv f E IA[w] C (I, wg -1) and so

f =WV gvf + (1- wvgv)f E (I, wg - 1),

as desired. Conversely, let f E (I, wg -- 1) n A. Then,

f=f(x1,... , xn) = 1: g ,(xl, ... , xn)hM,(x1i ... , xn, w)
IA=1

+(wg(xl,... ,xn) - 1)ho(xl,... ,xn,w) E A = R[xl,... ,xnb
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where g,, E I and h,, E A[w] for all p. Since the variable w does not appear in
f = f (x i , ... , xn) we may substitute w =

9

, which shows that f E I A9 . El

Proposition 4.4.1 should be compared with Theorem 2.2.13.
Thus, in order to compute generators for the saturation of an ideal I C A =

R[x1, ... , x.,,] with respect to S = {g" I v E N} we consider an elimination order
on the variables x1,... , xn, w with w bigger than the x variables. We compute
a Grobner basis, G, for the ideal (I, wg - 1) in A[w] = =- R[xl,. , . , xn, w]. Then
G lA is a Grobner basis for this saturation (Theorem 4.3-6).

We will give an example which illustrates Proposition 4.4.1 in Example 4.4.6.
Now let S = R- {6}, and let k denote the quotient field of R (i.e. k = S-1 R).

In order to compute generators for the saturation of I with respect to S, we need
two preliminary results.

For an integral domain R, let S be any multiplicative subset of R. We note
that (S'R)[xi,... , xn] = S-1(R[x1, ... ,xn]) (this is an easy exercise). In this
situation we see that Grobner bases are well-behaved.

PRoposrrmoN 4.4.2. Let R be an integral domain. Let S C R be a multiplica-
tive set and let I C A be a non-zero ideal of A. Let G be a Grobner basis for I
with respect to some term order. Then G is a Grobner basis for the ideal S-1I
in S-1A.

PROOF. This follows easily from the third characterization of Grobner basis
in Theorem 4.1.12. Namely, let f E S-11. Then there is a s E S C R such that
s f E 1. Suppose that G = {gi,... , gt 1. Then s f = h1 g1 + . . + htgt such that
lp(sf) = max1<i<t(lp(hi)lp(gi)). Thus f = (hi)gi±. . .+('h)g. Since R is an
integral domain, we have lp(sf) = lp(f) and lp($ hz) = lp(h2) (1 < i < t). Thus
we have a representation of f in terms of gl , ... , gt of the desired type showing
that G = {gi,... , gt I is a Grobner basis for S-1I.

We note that in the following lemma we do not need that R be an integral
domain.

LEMMA 4.4.3. Let J C I be ideals in A and assume that Lt(I) C U(,1). Then
J=I.

PROOF. Of course, since J C I, we have that Lt (J) = Lt (I) . We observe that
the proof of Theorem 4.1.12 did not require that the set G be a finite set. Then
we see that J is a (infinite) Grobner basis for I, and hence by Corollary 4.1.15,
J generates I. But J is an ideal and so generates itself, that is, J = I.

Recall that for s E R we denote by R. = { sy I r E R, v E N}. We now give
the result which, when combined with Proposition 4.4.1, allows us to compute
generators for the saturation of an ideal I with respect to S = R - {o}.
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PROPOSITION 4.4.4. Let R be an integral domain with k its quotient field. Let
I C A = R[xl, ... , xn] be a non-zero ideal and let G = {g,... , 9t} be a Grobner
basis for I with respect to some term ordering. Set s = lc(g1) lc(g2) lc(gt).
T'hera

(4.4.1) Ik[xi,... ,xn] nR[xi,... ,xn] = IRs[x1,... , x,] nR[xl,... ,xn].

PROOF. We will need leading term ideals in R[xl, ... , xn], which we denote
by Lt, and in Rs [x 1, ... , xn] , which we denote by Lts . We note that it suffices
to show that

(4.4.2) Lts(Ik[xj, ... , x,z] n Rs[xi, ... , x7z]) C Lts(IRs[x1, ... , xn])-

Indeed, if Equation (4.4.2) holds, we have from Lemma 4.4.3, applied to the
ring Rs [xj, ... , xn], that Ik[xi,... , z ra] n Rs [x1, ... , xn] = IR3 [x1,... , xn]. The
desired result (4.4.1) follows by intersecting this last equation with R[x1, ... , xn] .

CLAIM: Lt(I)k[xl,... , xn]nR[xl, ... , x,,J = Lt(I)R8 [xi, ... , x,]nR[xl,... , x,].
Assuming the Claim, we prove (4.4.2) as follows. We let f E Ik [xi , ... , xn] n

R. [xi, ... , x,,] . We need to show that It(f) is in Lts (IRS [xi, .. - , xn]) . Since, by
Proposition 4.4.2, G is a Grobner basis for I k[xi, ... , x,], we may write, by
Theorem 4.1.12, f = h1 g1 + - . + htgt where hi E k [x j, ... , a ] and lp (f) _
max1<i<t(1p(hj) lp(g2)). Let V = {i I lp(f) = lp(hi) lp(gi)}. Then lt(f)
>2 V It(hi) It (gi). Since f E R. [xi, ... , xn] there is an non-negative integer A
such that s', f E R[x1,... , xn]. We see that

lt(s'` f) ` >1t(s"hj) lt(gi) E Lt(I)k[xi, ... , xn] n R[xi, ... , xnb
iEV

and so from the Claim

It(59f) E Lt(I)R8[xl> ... , xn] n R[xl, .. .

Thus, recalling that Lt(I) = Lt(G), we may write

t
lt(s'4 f) =

ai
Xi lt(gi),

s s

for ai E R, non-negative integers vi, and power products Xi, such that lp(f) _
Xi lp(gi) for all i such that ai 0 0. Hence

t
lt(f)=E a'_Xi lt(gi) E Lts (IRs [x1, ... , xrz])Vi +

i=1
'q

since lt(gi) E Lt8 (IRS [x1, ... , x,] ), as desired.
It remains to prove the Claim. We will show that both sides are equal to the

ideal, (lp(g2) 11 < i < t) in R[x i , ... , xn] . We first note that R. C k and so we
have immediately that Lt(I)R. [x1, ... ,xn]nR[x1 i ... , xn] C Lt(I)k[xi,... , x,j n
R [x i , ... , xJ We write It (gi) = ci Xi for ci E R and a power product Xi.
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Then, since s aici for some aj E R, by the definition of 8, we have that
Xi = - (cjX) E Lt (1) R. [x1, ... , x,,,] and so we see that

(X2 1 < i < t) C Lt(I)R3 [xi, ... , xn] n R[xi, ... , xn].

It remains to show that Lt(I)k[xx, ... , xn] n R[xi, ... , xn] C (Xi 11 < i < t).
Since Lt (I) = Lt(G) we can express each element f of Lt (I) k [xl , ... , xn] n
R [x 1, ... , xn] as a linear combination of the Xi with coefficients in k [xl , ... , xn] .
Let cX be a term in f, where c E R and X is a power product. Then in order
for c to be non zero we must have an Xi dividing X and then we see that

Lt(I)k[xl, ... , xn] n R[x1, ... , x9,] C (Xi 11 < i < t),

as desired. 0

We note that if R is a UFD, then the element s in Proposition 4.4.4 can be
replaced by s = lcm (lc(ga) 11 < i < t) (Exercise 4.4.1).

COROLLARY 4.4.5. Let R be an integral domain in which linear equations are
solvable and let k be its quotient field. Let I C A = R[xl, ... , x,,,] be an ideal.
Then we can compute generators for the ideal

Ik[xl, ... , xn] n R[xi, ... , xn].

PROOF. This follows from Proposition 4.4.4 and Proposition 4.4.1.

EXAMPLE 4.4.6. We consider Example 4.2.11 and compute the saturation
of I = (3x2 y + 7y, 4xy2 --- 5x) with respect to Q [x, y] . That is, we compute
I Q [x, y] n Z [x, V]. In that example we computed a Grobner basis for I, with
respect to lex with x > y, to be f, = 3x2 y + 7y, f2 = 4xy2 -- 5x, f3 = 15x2 -+- 28y2,
and f4= 28y3 - 35y. Then, following Proposition 4.4.4 and Exercise 4.4.1, we
need to compute IZ420 [x, y] nZ[x, y], since lcm(3, 4,15, 28) = 420 (here, of course,
we are adopting the notation of this section and 2420 does not mean the integers
mod 420). Then, from Proposition 4.4.1, we need to compute (fi, f2. 420w --
1) n Z [x, y], which we do using Theorem 4.3.6. We, of course, begin with the
polynomials Ii, f2, f3, f4 together with f5 = 420w - 1 and observe that, since
fl, f2, f3, f4 is a Grobner basis, we may start with a = 5 in Algorithm 4.2.2,
provided we use the lex term ordering with w >:i > y. We will not go through
the computations, but will note that {f', f2, f3, 14, f5, 525wx _ xy2, 784wy2 +
x2, 525wy -- y3 , 980wx+x3 , 980wy +x2 y, 4y3 - 5y, 3x3 + 28xy2 - 28x} is a Grobner
basis for (f 1, f2, 420w -1), and hence {fl,f2,fa,f4,4y3-5y,3x3+28xy2 - 28x}
is a Grobner basis for IQ [x, y] n Z [x, y] .

Finally we are ready to discuss the issue of primality in rings. We are no longer
assuming that R is an integral domain. We need two lemmas from commutative
algebra which give criteria for when an ideal in R[xi, ... , x?z] is prime.
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LEMMA 4.4.7. Let I C R[xi, ... , x.,,] be an ideal. Then I is a prime ideal if
and only if the image of I in (R/.I n R) [x1, ... , xn] is prime. Moreover, in this
case I n R is prime.

PROOF. For r E R we let f = r + I n R be the image of r in R/I n R. For f =
1 ai XX E R[x 1i ... , x,,] , with ai E R and power products X1 f we write f =1!i.=

aiXi, its image in (R/I fl R x1 ... x . We define a ring homomorphismEi1
0: (R1inR)[xj,...

5 Xnj -' R[xi,... ,xn]/I

by

aiXi F- aIX, + I.
i=1 s=1

That the map is well-defined follows since if E1=1 azXj = 0, then a2 E I fl R for
all i and so clearly Eli=1 aiXi E I. It is then easy to see that 0 is onto and ker( )
is the image of I in (R/IflR)[xi,... , xn]. It is now immediate that I is a prime
ideal if and only if the image of I in (RhI n R) [xi, ... , xn] is prime. Finally, it
is trivially seen that if I is prime then so is I fl R.

LEMMA 4.4.8. Let R be an integral domain with quotient field k and let I C
R [x 1i ... , xn] be an ideal such that I n R = {0}. Then I is prime if and only if
Ik[xi,... , xn] is prime in k[xi,... , xn] and I = Ik[xl,... , x,z] fl R[x1, ... , xn].

PROOF. We first assume that I is a prime ideal in R[xi, ... , xn]. Let f, g E
k[x1,. _ . , x,z] and assume that f g E Ik [x x , ... , xn]. Then f g = r such that
h E I and r E R. Let d, e E R be such that df, eg E R[x1, ... ,xn]. Then
we have r(df)(eg) = deh E I and so r(df) E I or eg E I, since I is prime
in R[xl,... , x, ]. We then have immediately that f E Ik[xl,... , xn] or g E
Ik [x 1, ... , xn], and so Ik [xl , ... , xn] is prime, as desired. Moreover, let E

Ik[x1,... ,xn]nR[x1,...,xn] with h E I and r E R, r 0. Then r( ) Eland
so r E I or E I (recall that T E R[xl,... , x9z]). By the hypothesis, InR = {0},
r V I and so T E I. The reverse inclusion is trivial.

We now assume that the ideal I k [xl , ... , xn] is prime in k [x1, ... , xn,] and
I = Ik[x1i... , xn] n R[xi,... , xn]. Let f, g E R[xl,... , xn] and assume that
f g E I. Then f g E Ik [x 1, ... , x,z] and so by hypothesis, f E Ik [x1, ... , xn] or g E
Ik[xl,... , xn]. We assume that f E Ik[xl,... , xn]. Then f E Ik[xx, ... , xn] n
R[xl, ... , xn] = I and so we see that I is a prime ideal. El

COROLLARY 4.4.9. Let I C R[x] be an ideal. Then I is prime if and only if
(i) I n R is a prime ideal in R and

(ii) if we let R' = R/InR, k' be the quotient field of R', and I' be the image of
I in R' [x] , then I'M [x] is a prime ideal of R' [x], and I' - I'k' [x] n R' [x].

PROOF. Noting that I' n R' = {0}, this follows immediately from Lemmas
4.4.7 and 4.4.8.
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Since R[x1,... , xn] = (R[xi, ... , Xn-1])[xn], Corollary 4.4.9 gives us an in-
ductive technique of determining whether a given ideal in R[xx, ... , xn] is prime.
The idea is summarized in the next paragraph.

For a single variable x and an ideal I C R[x] we want to decide if I is a prime
ideal. By Corollary 4.4.9, we first need to determine whether I n R is prime.
We may compute a generating set for I n R from Theorem 4.3.6 and then,
assuming we can determine whether ideals in R are prime, we can determine
whether I n R is prime. In this case we will consider the integral domain R' =
R/I n R, its quotient field k', and the ideal I', the image of I in k [x] . Again
by Corollary 4.4.9, we then need to determine whether I'k' [x] is a prime ideal
for one variable x. Since x is a single variable, k' [x] is a PID and, using the
Euclidean Algorithm (Algorithm 1.3.2) on the known generators of I', we can
determine a single generator f of I'k' [x] . Now, assuming that we can determine
whether f is irreducible or not in k'[x], we can determine whether I'k'[x] is a
prime ideal or not. Finally, by Corollary 4.4.5 we can determine whether or not
if = ilk-, [x] n R[x] .

Thus we see that in order to have an algorithm determining the primality
of ideals in R[x1, ... , x,z], we must assume that we can do similar things in
R. Specifically, we must assume that we can determine when an ideal in R is
prime. Moreover, we must assume that we can determine, given a prime ideal
P of R[x1,... , xn], whether polynomials in one variable with coefficients in the
quotient field of R[xi, ... , xn]/P are irreducible or not. For example Z and Q
have these properties.

The algorithm for determining the primality of an ideal is given as Algorithm
4.4.1.

EXAMPLE 4.4.10. We now give an example of Algorithm 4.4.1. Let I C
Q[x, y, z] be the ideal generated by f, = xz - y2, f2 = x3 _ yz and f3=x2 y - z2.
As we saw in Exercise 2.5.5, this is the ideal of relations among the three poly-
nomials t3, t4, t5 and hence must be a prime ideal (since then Q[x, y, z] /I is
isomorphic to a subring of the integral domain Q[t]). In this example we will
show that I is prime using Algorithm 4.4.1. We use the notation established in
that algorithm. We first compute a Grobner basis G for I using the lex order-
ing with x > y > z and get G = {fi, f 2 , f3 , f43 f}, where f 4 = xy3 ---- z3 and
f5=y5-z4.We haven=3, J4=J3=(0),J2=(y5-z4),and J1 I. We
first note that the case i = 4 in the algorithm is trivial.

The next case to consider is i = 3. We have J2 = I n Q [V, z] = (y5 _ z4) .
Thus, R' = R3/J3 = Q[z], J' = J2R [y] = (y5 -- z4)Q[y, z], and3 k' = Q(z). Then
J'k'[y] = (y5 - z4)Q(z) [y] and so f = y5 - z4 . Here f is viewed as a polynomial in
y with coefficients in Q(z). We use "brute force" to see that f is irreducible over
Q(z) : It cannot have a root in Q(z), since there cannot be a rational function
in Q(z) whose fifth power is the fourth power of the prime z E Q[z], because of

3Here Q(z) denotes the field of rational functions in z, that is, the quotient field of Q[z]
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INPUT: I, an ideal of R[x2,... , x7 ]

OUTPUT: TRUE if I is a prime ideal, FALSE otherwise

Set Rz := R[xz, ... , xn] for i = 1,... , n, and Rn+1 := R

ComputeJJ:=lnR, fori=1,...,n+1
IF Jn+1 is not a prime ideal of R THEN

result: =FALSE

ELSE

result: =TRUE

i:=n+1
WHILE i > 1 AND result: =TRUE DO

R':=RZ/JJ

J':= Ji-IR'[xi-1]

k' := quotient field of R'

Compute the polynomial f such that J' k' [xi_ x ] = (f)

IF f is not zero or irreducible over k' THEN

result:=FALSE

ELSE

Compute J'k' [xi-1] n R' [xi-1]

IF J'k'[xi_1] n R'[xz_1] 34 J' THEN

result: =FALSE

ELSE

i:=i-1
result

ALGORITHM 4.4.1. Primolity Test in R[xi,... , x,,]

unique factorization in Q[z]. Moreover, it cannot be the product of a cubic and
a quadratic in Q(z) [y]. One way to see this is as follows. If f y5 - z4 were the
product of a cubic and a quadratic in Q(z) [y], then we would have a system of 5
polynomial equations in 5 unknowns which would have to have a solution in Q(z) .
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If one computes a Grobner basis for these polynomials one finds that there would
have to be a rational function e(z) E Q(z) satisfying eb = z8 (use lex with e > z
being the smallest variables where e is the constant term of the quadratic) and
again this is impossible. It is then trivial to check that (y5 -zI)Q(x) [y] flQ [y, z] _
(J5 - z4)Q[y, z] (if (y5 - Z4) IIJ av(z)Jv E (y5 - z4)Q[y, z] with av(z) E fi(x),

then a simple induction shows that a,, (z) E Q[z]). Thus we have completed the
WHILE loop for i = 3 with "result=TRUE".

We now consider the case i = 2. In this case Jl = I. We have R' = Q[y, z]/(y5-
z4), J' = I{(Q[y, x]1 (y5 - z4)}[x]) and k' = quotient field of M. For polynomials
f E Q [x, y, z] we denote by f the polynomial in R'[x] = (Q [y, x]/ (y5 - z4)}[x]
obtained by reducing the coefficients of the powers of x (these being polynomials
in Q[y, z]) modulo (y5 - z4); i.e. we have a homomorphism

Q[X, Y, ZI MY, Z1/(Y, - Z
4)) [X]

f - 4 7.

We also denote the image of an ideal K C Q [x, y, z] in ,R' [x] by K. We first must
find a generator for J'k' [x], where J' is the ideal generated by 71,72' f, f4 E
R' jx] . It is, in fact, easy to see that f 2, f 3, f 4 are multiples of f 1 in k' [x]. For
example, ignoring the "bar" notation for the moment, viewing the following
equation as being in k' [x], and noting that z, z2, and z3 are non-zero in if, we
see that x3 - yz = (zx - y2) (z x2 + z y2 x + I y4); that is, 72 is a multiple off 1.
Thus f= f 1 and it is irreducible over k', since it is of degree 1 in x. It remains to
show that J' k' [x] n k [x] = X. We will apply Proposition 4.4.4 and Proposition
4.4.1.

So we first need to compute a Grobner basis for the ideal J' =(7,,72,73,71) C
R' [x] . We will use Algorithm 4.2.2. We make the following general observation
which is easily proved: if K is an ideal of Q[x, y, z] contairnng y5 - z4 and
g E Q [x, y, z], then K : (g) = K : (g). We consider the saturated subset {1, 2}
for which we need to compute (z): (1) = (z) and the corresponding syzygy is

x2, -z) giveshich 'the S-Pofynonual x2 zf2 = -y2x2 + yz -' 0. Now7,-
the saturated subsets of {1, 2, 3} containing 3 are {1, 3} and {1, 2, 3}. For {1, 3}
we compute (z): (y) = (z,y5 - z4) : {y) = (z,y5 -- z4) : (y) = (z, y4) (note that
this latter is just a computation in Q [y, z] and so can be done using Lemma
2.3.11) . The two syzygies are (x, -z) and (3x, -y4) . The first gives the S-

1 omial x - z = `z3 14 0. The second gives the S- of omialPo yn y f I f s y P yn
z3xf1 - V473 = (z4 _ y5)x2 --- y2zax + - y4z2 -& 0. The saturated set {1, 2, 3}
and the saturated subsets of {1, 2,3, 4} containing 4 can be handled in the same
way. After this computation, we see that a Grobner basis for the ideal J' is just
the original generating set {f x, f2, f 3, f 4 }

Then, as in Proposition 4.4.4, we set s = lc(f 1) lc(f 2) lc(73) lc(f 4) = zlyy3 =
y4z, and we need to show that J'R, [x] n 9 [x] = X. We do this using Proposition
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4.4.1. Thus we need to compute

(J',wz --1) n R'[x] = (fi, f2, f3, f4, y5 - z4, wzy4 -- 1) n Q[x, y, z].

This latter computation can be done in Q [x, y, z, w]. Using lex with to > x > y >
z, we compute that a Grobner basis for the ideal (fi, f2, f3, f4, y5 -- z4 , vz y4 -1)
consists of the 6 polynomials listed above together with wy3z3 --x2, wyz4 --x, and
wz5 -y. Thus (f17 f2, f3, f4, y5 -` z4, wzy4 -1) n Q[x, y, z] = (f1, f2, f3, f47 y5 _" z4)

and so (J', wzy4 - 1) n R'[x] = (fi, 12, f3, f4, 315 - z4, wzy4 - 1) n Q[x, y, z] _
(fi, f2 , f3 , f4) = J' and the algorithm terminates with "result=TRUE."

Exercises
4.4.1. Prove that if R is a UFD then in Proposition 4.4.4 we can let s =

lcm(Ic(g1), IC (92), ... , IC (9t)) -
4.4.2. Compute the saturation of the following ideals in Z [x, y] with respect to

Q[x, y] using Proposition 4.4.4.
a. (6x2 + y2,1ox2y + 2xy).

. b. (3x2y - 3yz + y, 5x22 - 8z2).
4.4.3. Using Algorithm 4.4.1 and lex with z > y > x, show that the ideal (xz ----

y3, yz - x2) C Q[x, y, z] is not prime.
4.4.4. Using Algorithm 4.4.1, show that the ideal (y4 -- z3, y2 - xz, xy2 ---- z2, x2 -

z) C Q [x, y, z] is prime.

4.5. Grobner Bases over Principal Ideal Domains. In this section we
specialize the results of the previous sections to the case where the coefficient ring
R is a Principal Ideal Domain (PID). Recall that an integral domain is a PID if
every ideal of R is principa4 that is, if every ideal of R can be generated by a
single element. We note that such rings are also Unique Factorization Domains
(UFD) (see [Go, He, Hun}). We will make extensive use of this fact in this
section and in Section 4.6. Examples of such rings include Z, Z['], Z[i], where
i2 = -1, and k[y], where k is a field and y is a single variable. Of course the
theory that we have developed so far in this chapter applies to these rings. But,
because of the special properties of PID's, we will show that we may construct
Grobner bases using S--polynomials as we did in the case of fields (Algorithm
4.5.1). We will then define strong Grobner bases which are similar to Grobner
bases when the ring R is a field, and we will show how to compute them in
Theorem 4.5.9. We will also describe the structure of strong Grobner bases in
the case of a polynomial ring in one variable over a PID. This will give us a lot
of information about the given ideal as we will see in Section 4.6. We will also
specialize the ring R to k [y] , where k is a field and y is a single variable, and
we will describe the relationship among the different notions of Grobner bases
in this case.

Recall that in order to compute a Grobner bases for (fr,... , f S } in A
R[xi, ... , x7z], we need to compute a homogeneous generating set for the syzygy
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module, Syz (lt (f 1), ... , It(f s)) (Theorem 4.2.3). When R is a field, we saw that a
generating set B for Syz (It (fl), .. , , It (f a)) exists such that every element of B has
exactly two non zero coordinates (these syzygies correspond to S--polynomials;
see Proposition 3.2.3).

DEFINITION 4.5.1. A generating set B of Syz((lt(f1),... , It(fs)) is called an
S-basis if every element of B is homogeneous and has exactly two non zero coor-
dinates.

In general, when the coefficient ring is not a field, there is no S-basis for
Syz ((lt (f 1), ... , lt(f s)) (see Example 4.5-4). However, when R is a PID such a
generating set exists as the next proposition shows. We assume that s > 1 in
this entire section, because the case s = 1 is trivial, since any single polynomial
is automatically a Grobner basis (note that this is not the case if R has zero
divisors; e.g. {2x + 11 is not a Grobner basis in Z6[x]) . We first prove the
following identity'.

LEMMA 4.5.2. Let R be a PID and let a, al, ... , at be in R {0}. Then

l
(a,, ... I aj)R: (a)R= ((ai)Aq: (a)R)

i=1

PROOF. Since R is a PID, we have (see Proposition 1.3.8 for the case where
R = k[x]}

(a1,... ,aj)R = (gcd(a1,... ,at))R

and (see Lemma 2.3.7 for the case of polynomial rings)

(a)R n (a)a = (lcm(a2, a)) R for all i = 1, ... ,

Moreover, it is easy to show that in any UFD we have

lcm(gcd(a1, ... , at), a) = gcd(lcm(al, a), ... , Icm(at, a)).

Thus
(a1,... , at) R n (a) R = (gcd(a1,... , al))B n (a) R

(lcm(gcd(ai,... , at) , a)) R = (gcd(lcm(aj, a), ... , lcAa{cat, a)}fix

I c

_ (lcm(a1, a), ... , lcm(al, a)}R = (lcm(a, a)) A = >J(a)R fl (a)R.
s=1 i=F

The result now follows easily as in Lemma 2.3.11 and Proposition 4.3.11.

PROPOSITION 4.5.3. Let R be a PID and let fl, ... , f, be non-zero polynomi-
als in R[x1, ... ,xn], with s > 1. Then Syz((lt(fx), ... , lt(fs)) has an S- basis.

4 For ideals 11, ... j e in a ring R we define the ideal I ito be the ideal in R generated

by the ideals Ii, ... , it I. That is, > 1 I: = (I1, ... , It). It is easy to see that every element
f E r1i2 can be w r i t t e n as f = f 1 + ... + ft where f2 E 44 for each i = 1 , ... , I
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PROOF. For i = 1, ... , s let lt(fz) = cjXZ, where cz E R and lp(fz) = X.
For any subset J of {1,... , s l we define, as before, X j = lcm(X3 I j E J).
We use the notation and technique presented in Theorem 4.2.9 to construct the
desired generating set. Let SS = Syz (c1 X1, ... , cCXC,) for 1 < a < s. We will
show by induction on a that every S0, has an S-basis. Our induction starts at
a = 2. Then it is easy to see that S2 is generated by the syzygy (-51- Xl , - cz : ),
where c = lcm(cx, p2), and X = lcm(X1, X2). Now let a > 2 and assume by
induction that we have computed an S-basis B,_1 for Si.S-We now construct
an S-basis B0. for S,. Recall from Theorem 4.2.9 that B, consists of two groups
of elements. First, to each element a of BQ _...1 corresponds the element (a, 0) in
Ba. Clearly (a, 0) has only two non zero coordinates by the choice of B,_1. The
other elements in Zi,_1 are obtained from the ideal (c3 I j E J, j OR: (cam},R)

where J is a saturated subset of {I,... , a} containing a. From Lemma 4.5.2 we
have

(C.7 (c)R=>(cJ)R:o(CO)R.
jEJ
J0a

Now for j E J, j a, let dj be a generator of the ideal (c3)R: (c0) R. Therefore

(c3IjEJ,ja)R:(c0,)R=(djIjEJ,ja)R.
Moreover, as in Theorem 4.2.9, associated to each dj we have the element

d,c0 X3ae3 -- 7

Cj X; a

since d3 c0, E (ci). Clearly the element s3j has only two non zero coordinates.
By Theorem 4.2.9 the vectors s?j, where j E J, j 0 a, and J ranges over all

saturated subsets of {1, ... , a} which contain a, together with the vectors (a, 0),
where a ranges over all elements of a generating set for S,-,, forms a generating
set for SQ . Therefore SS has an S-basis. D

We now give an example which shows that S-bases do not exist for rings which
are not PmD's.

EXAMPLE 4.5.4. Consider the ring R = Z [z] . R is not a PID, since, for exam
ple, (2, z) is not principal. We note that R is a UFD. Now consider the following
polynomials in (Z[z])[x, y]

fi = 2xy2 + y, f2 = xxZy + x, f3 = (2 + z)xy + 1.

We use the lex order with x > y. Then we have

It(fl) -_ 2xy25 lt(f2) = ZX2y' lt(f3) = (2 + z)xy.

The homogeneous elements of Syz(lt(fl), lt(f2), lt(f3)) with exactly two non-zero
coordinates are multiples of al = (-zx, 2y, 0), s2 = (-(2 + z), 0, 2y), or 83 =
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(0, -(2+z), zx). However, the vector (-x, -y, xy) is in Syz(lt(fl), lt(f2), lt(f3)},
and so, if si, 82: s3 generated Syz{lt(fl), It(f2), lt(f3)), we wouJ.d have

(-x,-y,xy)=h1(-zx,2y,0)+h2(-(2+z),0,2y)+h3(0,-(2+z),zx),

for some hl, h2, h3 E (Z [z]) [x, y]. Then xy = = 2yh2 + zxh3. Note that h2 = a2x
and h3 = a3y, for some a2, a3 E Z[x, y, z]. But then 1 = 2a2 + za3, and this is
impossible. So Syz (lt(fi ), It (f 2 ), lt(f3)) does not have an S-basis.

In fact, it can be shown that if R is a UFD and if Syz (lt(f 1), ... , lt(f 3))
has an S-basis for every ideal I = = (fj,... , f,) in R [x i , ... , xn] , then R is a
PID (see Exercise 4.5.14). However, there are rings which are not UFD's for
which Syz (It (fl)7 ... , It (f s)) has an S-basis for every ideal I = f l , ... , ,f 3 } in

R[x1, ... , xn] (see Exercise 4.5-15).
We note that the syzygies obtained in Proposition 4.5.3 are the analog of the

syzygies used to define the S-polynomials in the case where the coefficients are in
a field. Indeed, if lt(ff) = cjX , It(f3) = c?X,, where ci, c3 E R, then the syzygy
with exactly two non-zero coordinates corresponding to these two polynomials
is

cX cX
$: ^

Ci Yi
ei -

X1
ej

where c = lcm(ci, c3), and X = lcm(Xi, X3). We define the S-polynomial of fi
and f3 as

(4.5.1) S(.fZ .f3) =
c

X
X fi- c

X
X

f3j
Proposition 4.5.3 can then be used to modify Algorithm 4.2.1 to obtain an

algorithm for computing Grobner bases in R[x1,... , x7,], where R is a PID.
This algorithm is presented as Algorithm 4.5.1. We note that Algorithm 4.5.1 is
si m lar to the algorithm given in the case of .R = k, a field (see Algorithm 1.7.1).

We now give an example of how Algorithm 4.5.1 is applied.
EXAMPLE 4.5.5. We go back to Example 4.2.11 and use Algorithm 4.5.1 to

recompute a Grobner basis with respect to the lex term ordering with x > y for
I -== (fi,f), where f, = 3x2 y + 7y, f 2 = 4xy2 - 5x and R = Z. We initialize
G = {fl,f2} and 9'= {{fi,f2}}TSfnce G 0, we choose {fl,f2} E 9, so that
now 9 = 0. We compute c = lcm(3, 4) = 12, X = lcm(x2y, xy2) = x2y2, so that
the corresponding S-polynomial is S (f l , f2) = 4y f 1 - 3x f 2 -- 15x2 + 28y2 . This

polynomial cannot be reduced and we add f 3 15x2 + 28y2 to the basis, so
that now G = {f, f2, f3} and 9= {{fi, f3 f2, ,f3 Since 0 we choose
{fi,f}, so that = {{f2,f3}}. In this case we have c = 15 and X =x2y, so
that the corresponding S-polynomial is S (ff , f3) = 5f, - y f 3 = -28y3 + 35y.
This polynomial cannot be reduced and we add f4 = -28y3 + 35y to the basis,
so that G = If,, and 9 = {{f2,f3},{fl,f4},{f2,f4},T1,f4}}. Since
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f=#a{iSi<s)
OUTPUT: G = {gi,... , gt}, a Grobner basis for (A , ... , M

INITIALIZATION: G := F, 9:_ {{f, g} I f # g E G}

WHILE 9 # 0 DO

Choose any {f, g} E !9 . Let It (f) = c fX f, It (g) = cgXg

9:= G - fff5gll

Compute c =1cm(c f, cg) and X = 1cm(X f, Xy)

C X f_ c X
+ h, where h is minimal respect to G

cf Xf cy
Y-9

g

IF h, # 0 THEN

9:_ 9 u {{u, It} I for all u E G}

G:= G U {hj

ALGORITHM 4.5.1. Grobner Basis Algorithm over a PID

G :A Qj we choose {f2,f3}, so that '1 = {{fl,f4},{f2,f4},{f3,f4}}.If,, In this case
we have c = 60 and X = x2y2, so that the corresponding S-polynomial is

S(f2, f3) =15x f2 -- 4y2.f3 = --75x2 --- 112y4 -- --112y4 + 14oy2 f4; 0.

Since 9 0 0, we choose {fl,f4}, so that G = {{f2,f4},{f3,f4}}. In this case,
c = 84, and X = x2y3, so that the corresponding S-polynomial is

,S(fl, f4} = 28y2 fl + 3X2 f4 = 105x2g + 196y3 196y3 - 245y 0.

It is easy to see that the other two elements of g also give rise to polynomials
which reduce to zero and so do not contribute new polynomials to the basis.
Therefore we get (as we did in Example 4.2.11) that {fi, f2, f3, f4} is a Grobner
basis for 1.

We note that this computation required more steps than the computation
of this Grobner basis did in Example 4.2.11 using Algorithm 4.2.2. In order
to improve the efficiency of Algorithm 4.5.1, Moller gave an analogue of crit2
which eliminates many S--polynomial computations. The interested reader should
consult [Mo88].

Recall that we defined Grobner bases in R[xl, ... , x7z] the way we did in
Definition 4.1.13 because of the problem of dividing by elements of the coefficient
ring R. In the case when the coefficient ring is a PID, there is a stronger version
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of Grobner bases which is similar to the one we gave when the coefficient ring
was a field.

DEFINITION 4.5.6. Let G = {gi,... , gt} be a set of non-zero polynomials in
R[xx, ... , xn] . Then we say that G is a strong Grobner basis for I = (g,... , gt )

if for each f E I, there exists an i E {1,... , t} such that lt(gz) divides It (f) . We
say that G is a minimal strong Grobner basis if no lt(gi) divides lt(gj) for i j.

Note that this definition does not in itself require that R be a PID. However
strong Grobner bases exist only in the case when R is a PID (Exercise 4.5-16).

EXAMPLE 4.5.7. Let R = k[y, z], where k is a field. Consider the ideal I =
(x, y, z) in R[x]. This ideal does not have a (finite) strong Grobner basis. This
is because there are an infinite number of non associate irreducible polynomials
in the two variables y, z in I. If a strong Grobner basis G existed, then each of
these irreducible polynomials would have leading term (which is the irreducible
polynomial itself) divisible by the leading term of an element of G. This would
force an infinite number of elements in G, which violates the definition of a strong
Grobner basis.

The following result is immediate and its proof is left to the reader (Exercise
4.5.6).

LEMMA 4.5.8. If G = {gj,... , gt} C R[xl, ... , xn] is a strong Grobner basis,
then it is a Grobner basis.

We now show how to construct a strong Grobner basis from a given Grobner
basis. So let {fj,... , f.1 be a Grobner basis for an ideal I in R [x i , ... , xn] .

Let It(fz) = ciXi, where Cj E R and lp(fi) = X2. For each saturated subset
J of {l,... , s}, let C j= gcd(c j I j E J) and write c j_ Eje J a j c j (any such
representation will do). Also, let X j = lcm(X? I j E J). Consider the polynomial

x,fJ->2ajfj.
iEJ

THEOREM 4.5.9. Let R be a PID, and I be an ideal of R[xi, ... , xn]. Assume
that {fi,... , fs} is a Grobner basis for I. Then the set

{f.i I J is a saturated subset of {1,... , s}}

is a strong Grobner basis for I. In particular, every non-zero ideal in R[xx, ... , x,,]
has a strong Grobner basis.

PROOF. Let 0 0 f E I. Then lt(f) E Lt (fl) ... , fs) = (lt(f1),... , lt(fs)y. Let
J = {i E {1,... , s} I Xi divides lp(f)}. It is clear that J is saturated and that
Xj divides lp(f). We also have It(f) E (lt(fj) I j E J) and so lc(f) = F?Ej d;cj
for some dj E R, from which we conclude that cJ divides lc(f ). Therefore lt(fi)
divides It(f).
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We leave it to the exercises to show that every ideal has a minimal strong
Grobner basis (Exercise 4.5.9).

Together with the concept of strong Grobner bases, we could also define the
concept of strong reduction. Reduction off modulo a set F = {fi,... , f5} is
performed if It (f) E (lt(f1),... , It(f,,)) (see Definition 4.1.1) . Strong reduction
would require instead that an lt(ff) divides It(f). One can show that for a set
G of non zero polynomials in R[x1i ... , xn], we have that every element in (G)
strongly reduces to zero if and only if G is a strong Grobner basis (Exercise
4.5.1).

Theorem 4.5.9 gives us a method for computing strong Grobner bases. We
give an illustration in the next example.

EXAMPLE 4.5.10. We go back to Example 4.5.5. We saw that a Grobner basis
for the ideal I = (3x2y + 7y, 4xy2 - 5x) C Z[x, yj with respect to the lex term
ordering 2 = 4xy2 - 5x,with x > y is {fi, f2, f3, .ff}, where fl = 3x2y + 7y, f
f3 = 15x2 +28 y2 , and f4 = --28y3 + 35y. Following the proof of Theorem 4.5.9
we first compute all the saturated subsets of {1, 2, 3, 4}: J1 = {2}, J2 = {3},
J3 = {4}, J4 = {1, 3}, J5 = {2, 4}, J6 = {1,2,3}, J7 = {1,2,3,4}. The sets Jx,
J2, and J3 give rise to the original polynomials f j,, = f2, f j2, = f3, f J3 = f4-
Associated with J4 we have c j, = gcd (3,15) = 3, and X j, = x2 y, so f j4 = f l .

Associated with J5 we have cj, = gcd(4, ---28) = 4, and Xj5 - xy3. Therefore,
fj$ = yf 2 . Associated with the set Jr,, we have e j, = gcd(3, 4,15) = 1, and
XJ6 = x2y2. Therefore fj6 = x f2 - y f 1 = x2y2 - 5X2-7y2 . Associated with
the set J7 we have c j, = gcd(3, 4,15, - 28) = 1 and XJ7 = x2 y3. Therefore

f,7 = xy f 2 - y2 f 1 = y f j6 . We see we do not need fj,, and fj7 and therefore, a
strong Grobner basis for I is

{4xy2 -- 5x,15x2 + 28y2, --28y3 + 35y, 3x2y + 7y, x2y2 - 5x2 - 7y2}.

To conclude this example we give an example of determining ideal membership
using strong reduction. Consider the polynomial f = 7x2y2 - 15x2y - 35x2 -
28xy3 + 35xy - 56y4 - 28y3 + 21y2. Then we have

f -15x2y - 28xy3 + 35xy - 56y4 - 28y3 + 70y2

-28xy3 + 35xy - 56y4 -28Y3 + 70y2 + 35y

-56y4 - 28y3 + 70y2 + 35y
- 'J4-28y3 + 35y 0.

Thus f = 7 fj6 - 5fi - 7yf2 + (2y -- 1)f4 and since fj6 = xf 2 - yfl we have
f = (-7y - 5) f 1 + (7x - 7y)12 + (2y - 1) f4. We note that the first reduction
above could not have been done with a single polynomial from fl, /2, f3, f4-

We now consider the case where R = k [y], with k a field and y a single
variable. In this setting we have three concepts of Grobner bases: Grobner bases
in k[y, XI; ... , xn] (as defined in Section 1.6), Grobner bases in (k[yJ)[x1,... , xnj
(as defined in Section 4.1), and strong Grobner bases in (k[y])[xi,... , xn] (as
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defined in Definition 4.5.6). Clearly the ring k[y, xi, ... , x,,] is the same as
the ring (k[y])[xi,... , x,], but, in the latter ring, polynomials are viewed as
polynomials in the variables x1, ... , xn with coefficients in k[y]. We have seen in
Lemma 4.5.8 that if {g,... , gt } is a strong Grobner basis in (k[y])[x1,... , xn]
then it is a Grobner basis in (k[y])[x1,... , x,]. Moreover, we saw in Theorem
4.1.18 that if {gi,... , gtI is a Grobner basis with respect to an elimination order
with the x variables larger than the y variable in k[y, x1, ... , xn], then it is a
Grobner basis in (k[y])[xi,... , xn]. The next theorem strengthens this result
considerably. We will first need a lemma.

In both results we assume we have an elimination order with the x vari-
ables larger than V. We need a notation to distinguish between leading terms
in k [y, x1, ... , z.] and (k[y])[x1,... , xn] . We use It, lp, lc for their usual mean-
ings in k[y, x1, ... , xn], and we will use ltx, lpx, lcx for corresponding objects
in (k[y])[xi,... , xn]. So, for example, if f E k[y, x1, ... , xn], then lcx(f) is
a polynomial in y. Finally for a E k [y] we use 1ty (a) for the leading term
of a. Note that because of the chosen order, for f E k[y, x1, ... , xn] we have
lt(f) = lt (lc (1)) lpx(f).

LEMMA 4.5.11. Let R = k [y] . Then G = {gi,... , gt } C R[x i , ... , xn] is a
strong Grobner basis if and only if

(i) G is a Grobner basis in R[xi,... , xn] and
(ii) for every J C {1,... , t}, saturated urith respect to {1px (gi), . , . , lpx (g0 },

there exists i E J such that lcx (gi) divides lcx (9j) for all j E J.

PROOF. Let I = (gj,... , gt). We first prove that (i) and (ii) imply that G is
a strong Grobner basis in R[x1, ... , x,,) (this proof is very similar to the proof of
Theorem 4.5.9). Let f E I. Since G is a Grobner basis in R[x1, ... , xn], we have
ltx (f) E (lt(g1),... , ltx (gt)). Let J = Jj E {1,... , t} lpx (g j) divides lpx (f) } .
Then J is saturated. Moreover we have

ltx(.f) =Eaj1tx(9,)
jEJ

for some a j E R [x i , ... , xn ] , which we may assume are terms with respect to the
variables x1 , , xn with lpx (f) = lpx (aj) lpx (gj) for all j E J such that a j ; 0.
Then

Ic:' E le, (aj) le,
jEJ

Now choosing i E J as in (ii) we get lcx (gi) divides lcx (f) and so, by definition
of J, we get ltx(gi) divides ltx(f) as desired.

Conversely, let G be a strong Grobner basis in R[xl, ... , x,]. Then, by Lemma
4.5.8, G is a Grobner basis in R[x1,... , x,,]. Let J be a saturated subset of
{1,... , t}. Let c = gcd(lcx (g j) I j E J) and write c = EjEJ d j lcx (9j)

I
for some
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d; E R = k[y]. Also, let X I j E J). Now consider the polynomial

d3Xf g3
3EJ lPx(g3

Note that ltx (f) = cX and f E I. Since G is a strong Grobner basis there is a
gi E G such that 1tx (gz) divides ltx (f) - Therefore i E J since lpx (gi) divides X.
Moreover, lcx (gi) divides c and we are done.

THEOREM 4.5.12. Let R = k [y] . Then G = {g,... , gt} is a Grobner basis in
k[y, x1, ... , xn] with respect to an elimination order with the x variables larger
than y if and only if G is a strong Grobner basis in (k[y])[x1,... , xn ] .

PROOF . Let us first assume that G = {gi,... , gt } is a Grobner basis in
k [y, x x , ... , xn] with respect to an elimination order with the x variables larger
than y. By Theorem 4.1.18 we see that G is a Grobner basis in (k[y])[xi,... , xn].
Thus by Lemma 4.5.11 it suffices to show that given a subset J of {1,... , t},
saturated with respect to {lp(gj),... , lp. (gt) }, there exists i E J such that
1cx (gi) divides lcx (g3) for all j E J. So let J be such a saturated set. Let
c = gcd(lcx (gj) I j E J) and X = lcm(lpx (g2) I j E J). We can write c
E,ES b; lcx (g,) , for some b3 E k [y] . Now consider the polynomial

X
f I2Jp(g.)9

;ES
E (gi,... ,gt).

Note that ltx (f) = cX. Moreover, It (f) = Ity (c) X, since we have an elimination
order with the x variables larger than the y variable. Since G is a Grobner
basis in k [y, x 1, ... , xn] , there exists gi E G such that It (gi) divides It(f)
lty (c)X . But then i E J since lpx (gi) divides 1px (f) = X. Also, 1ty (lcx (gg) )
divides lty (lcx (f)) =1ty (c). Therefore, deg(lcx (gz)) < deg(c) and so the fact that
c divides lcx(gi) implies that c is a non zero constant in k times lcx(gi), which
immediately gives the desired result.

Conversely, let us assume that G is a strong Grobner basis in (k[y])[xi,... , xn] .

Let f E I. Then there exists gz E G such that ltx (gi) = lcx (g2) lpx (gi) divides
1tx (f) = lcx (f) lpx (f) . So Ipx (gi) divides 1px (f) and lcx (gz) divides lcx (f) . But
then It (g2) = it,, (lcx (g2)) lpx (gi) divides It (f) = lty (lcx (f)) Ipx (f). Therefore G
is a Grobner basis in k[y, x1, ... , xn].

We now go back to the case of an arbitrary PID R and conclude this section
by giving a characterization of strong Grobner bases in R[x], where x is a single
variable. This will be used in Section 4.6 to give the primary decomposition of
ideals in R[x]. From Lazard [Laz85] (see also Szekeres [Sz]), we have

THEOREM 4.5.13. Let R be a PID and let x be a single variable. Assume that
G = {gi,... , gg } is a minimal strong Grobner basis for an ideal I of R[x] and
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let lp(gi) = x" . We further assume that we have ordered the gj 's in such a way
that v1 < v2 < ... < vt. Let g = gcd(gl, ... ,gt). Then

91 = a2a3 ... at9
92 a3 ... ath2g

gi = aZ+I ... athi9

9t-1 = at ht-19
9t = htg,

where aiER,It(hi)=xvi, vl<v2<...<vt, and

hi+1 E (hj,aih%-1,... ,a3...aih2,a2a3...aj),

fori=2,... ,t.

PROOF. From Exercise 4.5.11, we have that {gi,... , gt} is a strong Grobner

basis if and only if gl , ... , 9t is a strong Grobner basis. Thus we may assume
9 g

that gcd(gl,... , gt) = 1. Let 1t(gz) = cixus, where ci E R (1 < i < t).
CLAIM 1. 11 <V2 < - < vt.
PROOF. Assume to the contrary that we have an i, 1 < i < t, such that vi

vi+ 1. Let c = gcd (ci 7 ci+1) and write c = bi cz + bz+ 1 ci+ 1, for some bz 7 bi+1 E R.
Consider the polynomial h bzgi + bi+19i+1. Then h E I and It(h) = cxi" . Since
G is a strong Grobner basis, there exists a j E {1,... , t j such that It (gj) = cjx'v'
divides It (h) = cxvs . Then vj < vi. But then It (g,) divides It (gz ), and so, by our
assumption that G is minimal, we have that i = j. Hence c = ci, and It (g,)
divides 1t(g,+1). This contradicts our assumption that G is minimal.

CLAIM 2. cZ+x divides cj7 for i = 1, ... , t - 1.

PROOF. Let i E {1,... It - 1}. As in Claim 1, let c = gcd(ci, cZ+1) and
write c = bici + bz+lci+l, for some bi, bi+l E R. Now consider the polynomial
h = bzx''s+1-Lsgi + bi+1gi+1 E I. Note that It(h) = cxvi+'. Since G is a strong
Grobner basis, there exists a j E {1,... , t}, such that It(9j) = c3 xv" divides It (h).

Thus vj < vv+ 1, and so j < i + 1, and c3 divides c, and so It (g?) divides It (gi+ 1) .

Since G is minimal, we have that j = i + 1, and so ci+1 = c = gcd(ci, cZ+i ).
Therefore C+1 divides ci.

CLAIM 3. Ci 9i+1 E (g',... , gi), for i = 1;... It - 1.
Ci+1

PROOF. Let h = Ci
9i+1 - xvi+1-vigi. Note that h E I and that lp(h) <

Ci+ 1

lp(gz+1). Since lp(gi+1), - . , lp(9t) are larger than lp(h), and since h -+ 0, the
only polynomials that can be used to reduce h to zero are 917... 7 gi. Therefore
h E (gi,... , gz), and hence so is 9i+1

Ci+ 1 .

CLAIM 4. 91 E R.
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PROOF. Let c(gi) E R be the greatest common divisor of the coefficients of
the powers of x that appear in g' . Then g1 = c(gi)p(gl ), where p(gi) E R[x]
and the greatest common divisor of the coefficients of p(gl) is 1. We show by
induction on i that p(gl) divides gi. The case i = 1 is clear. Now assume that
p91) divides 9i, 92> ... 9z. Since E (9',... 9) by Claim 3, we see that

> 9i+ it > '
Ci+1

p(gi) divides V%-ti. But gcd Ci
, p(gi) = 1, since any common factor of

Ci+1 Ci+1

and p(g1) would have to be in R and would have to be a factor of the
Ci+3

coefficients of powers of x appearing in p(gi). Therefore p(gi) divides gi+1. Now,
since p(gi) divides every gi f p (gi) must be 1 because of the assumption that the
gi's have no factor in common. Therefore gi = c(gi) E R.

CLAIM 5. ci divides gi for all i = 1, ... , t and ct = 1.
PROOF . We use induction on i. The case i = 1 is clear, since gl = cl. Assume

that c1 divides g1, c2 divides 92,. .. , ci divides 9j. Then, by Claim 2, we have
that ci divides 91, g,... , gi Since Ci gi+l E (9', ... , gj) by Claim 3, we see

C i+1

that ci divides Ci gz+1. Therefore cz+1 divides gi+1. Now, since ci divides gi
Ci+1

for each i, and since ct divides ci for each i, we see that ct divides gg for each i.
Therefore ct = 1 because of the assumption that the 9i's are relatively prime.

Now set az+.1 = Ci and tai = t". Then we have
Ci+1 Ci

9t = ctht = ht
9t-1 = Ct-i ht-1 = ct Ct--1

ht-1 = atht-1

9t-2 = Ct-2ht-2 = Ct 42 Ct-1
ht-2 = at-latht_2

Ct-1 Ct

9s, = ai+1 ai+2... at-lath.-

92

91

= a3 ..._1h2
= a2 a3 ... at.

CLAIM 6. hZ+1 E (hj,a2h2_,,... , a3 ... aih2, a2 ... aJ.
PROOF. By Claim 3 we have gi+1 E (g,,... , 90, that is,

+i

ai+l ai+2 ... athi+1 E (ai+i... at hi, ai... at-- i, ... , a3- ath2, a2 -at).

The result follows after dividing by ai+i ... at. The Theorem is now completely
proved. El

We note that the converse is also true. That is, any set of polynomials
9',... , gt in R [x] which satisfies the conditions in Theorem 4.5.13 is a strong
Grobner basis and is minimal if no ai is a unit (Exercise 4.5.12).
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COROLLARY 4.5.14. Let k be a field and let y, x be variables and set A =
k[y, x]. We assume that we have the lex term ordering with y < x. Let G =
{9i,... , gt} be a minimal Grobner basis for an ideal I of k[y, x] and let lp,, (gi) =
xvi . We assume that we have ordered the 9i 's in such a way that v1 < u2 < ... <
vt . Let g = gcd(gl, ... ) gt ). Then

91

92

9i

= a2a3 ... atg

= a3 ... at h2g

= aj+1 ... athag

9t-1 = atht-x9
9t = htg,

where ai E k[y], lt(hi)=x"s, v, <v2 <... <vt, and

fori=2,...,t.

ha+1 E (h;,azht_i,. , a3,, * aih2, a2a3 ... a1),

PROOF. We have from Theorem 4.5.12, that G is a strong Grobner basis in
(k [y]) [x] and so the result follows immediately from Theorem 4.5.13. 0

EXAMPLE 4.5.15. We consider the ring R = Q[y] and the ideal I = ((x +
V) (y2 + 1), x2 - x -}- y + 1) in R[x] . We compute a strong Grobner basis for
I by computing a Grobner basis for I viewed in Q[x, y] with respect to the
lexicographic order with x > y (Theorem 4.5.12). We find

91 = J4 + 2y3+ 2y2 + 2y + 1 = (y + 1)2 (y2 + 1) = azas
92 = xy2+x+y3+y=(y2+1)(x+y)=ash2
93

X2 - X +y+ I =h3.

EXAMPLE 4.5.15. Consider the three polynomials in Z[x]

fi

f2

f3

630x -630 = 9.5 .14(x -1) - a2a3g
70x2 + 70x -140 = 5(x + 2) 14(x -1) = a3h,2g
14x4 + 70x3 + 196x2 - 70x - 210
(x3 + 6x2 + 20x x-15) 14(x - 1) =hag.

It can be easily verified using Lemma 4.5.11 that {fI, f2, 13) is a strong Grobner
basis. We also note that the f i's have the form required in Theorem 4.5.13,
since h3 = x3+6x2 +20x+15 = (x + 1)(x + 2)(x + 3) + 9(x + 1) E (9,x+2)
and so it also follows from the converse of Theorem 4.5.13 (Exercise 4.5.12) that
{fi, f2, f 3l is a strong Grobner basis.
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Exercises
4.5.1. We define strong reduction in R[xl,... , x.,,], for R a PID, with respect

to a set F = Ih,... , fS } of non zero polynomials in R[x1,... , x,] as
follows. For f, g E R[xl, ... , xn] we write f --F )s g provided that for
some < i < s we have lt(f f) divides It(f) and g = f -- it j)fi. We

write f *+,s g, as usual, when we iterate the preceding. Show that the
following are equivalent for a set G = {gi,... , gt} of non zero polynomials
in R[x1,... , x,,] where we set I = (G).
a. G is a strong Grobner basis for I.
b. For all f E I we have f +,50.

4.5.2. Show that in Exercise 4.5.1 the following statement:

for all i, j we have S(g27 gj) +,s 0

(see Equation (4.5.1)) does not imply that G is a strong Grobner basis.
[Hint: Look at the polynomials f j = 2x + 1 and f2 = = 3y + x in Z [x, y] .1

4.5.3: Prove the converse of Theorem 4.5.9. That is, prove that if the set of f j
defined there is a strong Grobner basis for I then { f , ... , f 8 } is a Grobner
basis for I.

4.5.4. Let f, g E R [x 1, ... , x9z] , with f, g 0, and let d = gcd (f , g) . Prove that
{f, g} is a Grobner basis if and only if gcd (lt (d ), It (d)) = 1. (This is the
analog of critl.) [Hint: Follow the proof of Lemma 3.3.1.]

4.5.5. For the ring R = 7L use Algorithm 4.5.1 to compute a Grobner basis for
the ideals generated by the given polynomials with respect to the given
term order.
a. fl = 2xy - x, f2 = 3y - x2 and lex with x < y.
b. fl = 3x2y - 3yz + y, f2 = 5x22 -- 8z2 and deglex with x > y > z.
c. f, = 6x2 + y2, f2 = lOx2 y + 2xy and lex with x > y.

4.5.6. Prove Lemma 4.5.8.
4.5.7. For the ring R = Z use Theorem 4.5.9 to compute a strong Grobner basis

for the ideals generated by the given polynomials with respect to the given
term order in the exercises in Exercise 4.5.5.

4.5.8. Compute a strong Grobner basis for the ideal in Z [i] [x, y, z] in Exercise
4.2.5.

4.5.9. Prove that every non zero ideal of R[xl, ... , xn], where R is a PID, has a
minimal strong Grobner basis.

4.5.10. Show that for the strong Grobner basis constructed in Exercise 4.5.7 (for
Exercise 4.5.5 part c), -30x3y2 + 6x3 - 5x2y3 -6X2 Y 2 +16X2 Y + 5xy3 +
x y2 + 2xy - 5y5 + y3 strongly reduces to zero.

4.5.11. Prove that if {gi,... , gtI is a set of non zero polynomials in R[x 1, ... , xn]

where R is a PID and g = gcd (gl, ... ) gt) , then {gi,... , gtI is a strong
Grobner basis if and only if {,... , 9 } is a strong Grobner basis.
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4.5.12. Prove the converse of Theorem 4.5.13 as stated immediately after the proof
of Theorem 4.5.13.

4.5.13. Verify that the Grobner bases for (--x2 - xy + x2y2 + xy3, -5y + 5xy -
3xy2 + 3x2 y2) C Q [x, y] with respect to the lex ordering with x > y has
the form stated in Corollary 4.5.14.

4.5.14. Prove that if R is a UFD and if for every {fi,... , ,f s } C R[xl, ... , x.] we
have that Syz(lt(f 1), ... , lt(f5)) has an S-basis, then R is a PID. [Hint:
If R is not a PID, then there exist a, b E R such that gcd(a, b) = 1 and
1 V (a, b). Note that (1, 1, -1) E Syz(a, b, a + b).]

4.5.15. Show that if R is a Dedekind Domain, then for every {fi,... , f8} C
R[xx, ... ,x,] we have that Syz(lt(f; ), ... , lt(f8)) has an S--basis. [Hint:
Prove the identity in Lemma 4.5.2 and follow the proof of Proposition
4.5.3 (note that more than one d3 may be needed).]

4.5.16. Prove that if R is a UFD and if for every non zero ideal I C R[xx, ... , xn],
I has a strong Grobner basis, then R is a PID. [Hint: Use the idea in
Example 4.5.7. Assume the facts that if every prime ideal in a UFD is
principal then it is a PID, and that every non-principal prime ideal in a
UFD contains an infinite number of non associate irreducibles.]

4.6. Primary Decomposition in R[x] for R a PID. In this section we
follow Lazard [Laz85] and use the results of Section 4.5 to "decompose" ideals
in R[x], where R is a PID and x is a single variable. The decomposition we have
in mind is one similar to the decomposition of natural numbers into products
of powers of prime numbers. In our setting, the analog of a product is an ideal
intersection, and the analog of a prime integer is a prime ideal. Recall that an
ideal P in a commutative ring A is prime if fg E P implies that either f E P or
g E P, or equivalently, if the set S = A - P is a multiplicative set (see Section
4.4).

We will need the following elementary fact about Noetherian rings.

LEMMA 4.6.1. Let A be a Noetherian ring and let S be any non-empty set of
ideals of A. Then S contains a maximal element, i.e. there is an ideal I E S
such that there is no ideal J E S such that I C J.

We first consider the decomposition of the radical Vi for an ideal I in A.
Recall from Definition 2.2.4 that

={f EAR f"ElforsomevEN}.

LEMMA 4.6.2. Let I be an ideal in a Noetherian ring A. We have

n P.
ICP

P prime ideal
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PROOF. The inclusion c n P follows from the fact that if a prime
ICP

P prime ideal
ideal P contains I, it also contains Vi.

We now consider the reverse inclusion. So let us assume that there is an
element f in n P -- vfl-. Consider the set S = { f v v = 0, 1, ... } . Note that

ICP
P prime ideal

S n vi = 0, for otherwise, if f1l E for some v E N, then (f")'4 = = f v4 E I,
for some p E N, and this implies that f v/7, which is a contradiction. Now
consider the collection S of all ideals of A which contain VfI- and have empty
intersection with S. Clearly S is nonempty, since vfI- E S. By Lemma 4.6.1,
there exists an ideal M E S which is maximal in S. In particular, vi C M and
M n S = 0. We now prove that M is a prime ideal. Let gh E M and assume
that neither g nor h is in M. By maxixnality of M we have

(g, M) fl S 0 and (h, M) fl S54 0.

Therefore there exist v, v' E N, m, m' E M, and a, a' E A such that

ag+m= f" and a'li+m' = f"'.

But then

fy+v, _ (ag + m) (a'h + m') = (aa') (gh) + (ag + m)m' + (a'h)m E M n S,
ES EM EM

which is a contradiction, and so M is prime. Now we have a prime ideal M which
contains V7 and hence I, so f E n P C M by assumption. But M n S= 0,

IcP
P prime ideal

and we obtain a contradiction.

In view of the above lemma, one might think that any ideal in R[x] can be
decomposed as the intersection of powers of prime ideals. This is not the case
as the following example shows.

EXAMPLE 4.6.3. Consider the ideal Q = (4, x2) in Z[x]. Any prime ideal which
contains Q must contain both 2 and x, and hence must be equal to M = (2, x),
since M is a maximal ideal of Z [x] (since Z[x]/(2, x) Z2). Therefore, if Q were
the intersection of powers of prime ideals, it would be a power of (2, x). But
M3 C Q c M2. So Q cannot be a power of M.

The correct analog to powers of primes is the following.

DEFINI'T'ION 4.6.4. An ideal Q of A is called primary if Q 0 A and if fy E Q
then either f is in Q or some power of g is in Q.

It is easy to see that prime ideals are primary. However, powers of prime
ideals need not be primary (see [AtMD]) although, using Lemma 4.6.13, we see
that powers of maximal ideals are primary.
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EXAMPLE 4.6.5. The ideal Q given in Example 4.6.3 is primary. To see this,
let f g E Q = (4, x2), and let f V Q. It is easy to see that we can write f = h f+r f,
and g = hg + r9, where h f, hg E Q, and r f = of x + b f, r9 = agx + bg, where
a1, ag, b f, bg = 0, 1, 2, or 3 (note that r f and rg are the totally reduced remainders
of f and g as defined in Definition 4.3.2). Moreover, since f V Q, we have that
either af or b f is not equal to 0. Since f g E Q, 4 divides a fb9 + a9bf and b fbg.

Note that if b9 = 0, then g2 E Q, and we would be done. So we may assume
that bg 0. If b f = 0 then 4 divides a fb9, and so since a f and b9 are non zero,
we have a f = b9 = 2 giving g2 E Q. Otherwise, b f 0 and so b f = b9 = 2, so
again we have g2 E Q.

LEMMA 4.6.6. If Q is a primary ideal in a Noetherian ring A, then VQ is a
prime ideal. Moreover vrQ is the smallest prime ideal containing Q.

PROOF. Let fg E vrQ. Then (fg)" = f"g" E Q and so f" E Q or (g")µ =
g"µ E Q. Therefore f E VIQ or g E VfQ and V/Q is a prime ideal. The second
statement follows from the fact that any prime ideal containing Q also contains
VQ. o

DEFINITION 4.6.7. If Q is primary and VrQ = P, we say that Q is P -primary.

We can now define what we mean by decomposition.

DEFINITION 4.6.8. Let I = fl.1 Qt 7 where Qz is Pi -primary for each i. We
call ni,=, Qz a primary decomposition of I. If, in addition, the Pi are all distinct
and for all i1 1 < i < r, we have f, Q; Z Qi, we call the primary decomposition
i rredundant . In this latter case, the ideal Qi is said to be the primary component
of I which belongs to Pi, and Pi is said to be a prime component of I.

It is easy to prove that if Qx, ... , Q, are all P-prmary then ni 1 Qz is also
P-primary. Given this, and the obvious statement that we can remove super-
fluous Qz7 we see that any ideal that has a primary decomposition also has an
irredundant primary decomposition.

We note that in Lemma 4.6.2 we gave a primary decomposition of fI. Also,
in Example 4.6.5, the ideal Q was primary, and thus was its own primary de-
composition. In general, we have

THEOREM 4.6.9. Every ideal in a Noetherian ring A has a primary decompo-
sition.

PROOF. The key to the proof is the concept of irreducible ideals. An ideal
I is irreducible if I = Il n 12 implies that I = I, or I = 12. The proof of the
theorem is done in two steps. First we prove that every ideal in A is a finite
intersection of irreducible ideals, and then we show that every irreducible ideal
is primary.
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Let S be the collection of all !deals in A which are not the intersection of a
finite number of irreducible ideals. Assume to the contrary that S is not empty.
By Lemma 4.6.1 there exists a maximal element M in S, Now, since M is in S,
M is not irreducible. Therefore there exist ideals M1 and M2 such that M j4 M1,
M j4 M2 and M = M1 fl M2. Thus M M1, M2. By the maximality of M, we
have that M1 and M2 are not in S. Therefore they are both a finite intersection
of irreducible ideals. But then M is also a finite intersection of irreducible ideals.
This is a contradiction, and therefore S = 0.

Now let I be an irreducible ideal. We will show that I is primary. So let
f g E I and let f V I. Consider the ascending chain

fig} C I: (g2) C... C I: (g1) C ...

Since A is Noetherian we have that for some f, I: (gl) = I: (g+1).
CLAIM - (i + (g% n (i + (f)) = i.
PROOF. Clearly I C (I + (y% fl (I + (f)). For the reverse inclusion, let

a + 'r-g' = P -I- sf E (I + (gl)) n (I + (f)), where a,# E I, r, s E A. Then
rgt+l = qfl + sfg E I. Therefore r E I: (gl+l) = I: (gt). But then

El Er

a + g/r E I, and the Claim is proved.
Now by the assumption that I is irreducible, either I = I + (f) or I = I + (ge).

Since f V I, we have I = I + (ge), and hence gt E I. Therefore I is primary. p

We note that the preceding Theorem is purely existential, that is, it gives
no indication how to go about computing the primary decomposition of a given
ideal in some specific ring. There has been much work done on this problem,
see [GTZ, EHVI. The main purpose of this section is to use Theorem 4.5.13
to show how to do this explicitly in the ring R[x], where R is a PIT) in which
certain computability assumptions must be made. Namely, we assume that linear
equations are solvable in R, that we can factor in R, and that given any prime
element u E R we can factor in (R/(u))[x]. Examples of such rings include Q [y] ,

Z and (Z/pZ) [y] for a prime integer p.
Let 10 R [x] , {O} be an ideal in R [x] and let {gi,... , gt} be a minimal strong

Grobner basis for I. For simplicity we will assume that g = gcd (gl , ... , gt) = 1.

In this case we say that the ideal I is zero-dimensional5. It follows from Theorem
2.2.7 and Corollary 4.5.14 that this definition coincides with the one given before
for the special case of Q[x, y]. We will be using Theorem 4.5.13 and the notation
set there.

5For certain PID's, R, this definition is more restrictive than the one usually found in the
literature.
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That is, we have

91

92

=
a3 ... ath2

9z = ai+1 - at hi

9t_1 atht-1
9t = ht,

where

hi+1 E (h,ajhj_j,... , a3 ... aih2, a2a3 ... az),

fori=2,... ,t.
We first show how to compute all of the prime ideals containing I.

THEOREM 4.6.10. Let I, P be ideals in R[x] with I zero-dimensional and P
prime. Then, with the notation above,

(i) I C P if and only if there exists i > 2 such that (c, hi) C P;
(ii) Let i E {2,... , t}. If (a2, hi) C P then P = (u, v), where u is an irre-

ducible factor of ai and v is an irreducible factor of hi modulo u;
(iii) If I C P, then P is maximal.

PROOF. To prove (i), let I C P. Then 91 = a2a3 at E F, so that there
exists i > 2 such that ai E P, and we choose i largest with that property. Now
gi = ai+1- - athi E P, but ai+1 - - at 0 P by the choice of i, and so hi E P.
Therefore (ai, hz) C P. For the converse, let i > 2 and assume that az7 hi E P.
First note that for all j = 1, ... , i we have gj E (ai , hi) . Now we show that for
j = i+1, ... , t we have g3 E (ai, hi). Since h3 E (h;-1, aj-1hj-2, ... , a2 - - aj-1),
it is an easy induction on j to show that for j = i + 1, ... , t we have

(hj-,, aj-lhj-2.... ,a2 .a,_1) C (a,hj).

Thus, since g3 is a multiple of h, we have g, E (ai 7 hi) for j = i + 1, ... , t. We
now see that I C (ai, hi). So, since (ai, hi) C P, we have I C P.

We now prove (ii). Let (ai, hh) C P. Since ai E P, an irreducible factor of ai,
say u, is in P. Note that the ideal (u) is now a maximal ideal of R, and hence
R = R/(u) is a field and R[x] is aPID. Let P be the image of P in [x}. Then,
since hi E P, P 0 {01 and so P is a maximal ideal of R[x]. Since R[x] is a
PID, we see that P is generated by an irreducible polynomial u E R[x], that is,_
P = (I). The image hz of hi is in P, and so v is an irreducible factor of hi. Let
v E R[x] be a pre-image of v. Since u E P, and since u E P, we see that v E P.
Therefore (u, v) C P. We also have

R[x]/(u,v) ^_'R[x]/P = (_v)



264 CHAPTER 4. GROBNER BASES OVER RINGS

Since R [x] /P is a field, we have that R[x]/(u, v) is a field and so (u, v) is a
maximal ideal. Therefore P = (u, v).

Statement (iii) is now immediate. 0

LEMMA 4.6.11. Let I be an ideal in a Noetherian ring A such that every prime
Q

ideal containing I is maximal. Let I = n Q3 be a primary decomposition of I,
3=i

where Q3 is primary and VQ-j = M3 is maximal. Then for any maximal ideal
M such that I C M, there exists j E {1,... , e} such that M = .M3.

PROOF. We have

l 8 P

VfY Q-7 = vQ-.7
9=1 1=1 ?=1

Since I C M, we have

flM, c flMJcM.

Therefore there exists j E {1,... , £} such that M3 C M. But M3 is maximal, so
M = M3 . p

Therefore, to compute the primary decomposition of the zero-dimensional
ideal I C R[x], we first have to determine all the maximal ideals containing I.
To do this we find all maximal ideals which contain (aj, hi), for each i = 2, ... , t.
Theorem 4.6.10 gives an explicit method for finding all such maximal ideals:
given {g,... , gt } a strong Grobuer basis for I as in Theorem 4.5.13, for each

17... 7t
(i) compute the irreducible factors of a1;

(ii) for each u computed in (i), compute the irreducible factors of hi modulo
u;

(iii) each u, v computed in (i) and (ii) respectively gives rise to a maximal
ideal containing I, namely M = (u, v) .

Note that the method presented above gives, in fact, a way to compute the
primary decomposition of vfI- for a zero-dimensional ideal I (combining Theorem
4.6.10 and Lemma 4.6.2). We give an example to show how this method is used.

EXAMPLE 4.6.12. We go back to Example 4.5.15 where R = Q[y] and I =
((x+y)(y2 + 1), x2 _ x -+- y + 1). We computed a strong Grabner basis for I to be

91 = y4+2y3+2y2+2y+1 =(y+1)2(y2+1)=a2a3
92 = xy +x+y3+y= (y2+1)(x+y) =a3h2
93 = x2--x+y+1=h3.

Note that the greatest common divisor of 91, 92 and 93 is 1. We find all maximal
ideals containing I. So we find those maximal ideals which contain (a2, h2) =
((y + 1) 2, x + y) and those which contain (a3, h3) = (y2 -1,x2 - x + y + 1).
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Maximal ideals which contain ((y + 1)2, x + y) : The only irreducible factor of
(y + 1)2 is u = y + 1. Also, x + y : = x -r- I (mod y + 1) is irreducible. We let
v = x -1. Therefore the only maximal ideal which contains ((y + 1)2, x + y) is

Ml =(y+1,x_1).

Maximal ideals which contain (y2 + 1, x2 - x + y + 1) : Clearly u = y2 + 1 is
irreducible in Q[y]. Now we find the irreducible factors of x2 - x + y + 1 modulo
u, or equivalently, we find the irreducible factors of the image of x2 - x + y + 1
in the ring [x], where

R = R/ (u) = Q[y]/(y2 + 1) = Q[i]

where i = . The image of x2 - x + y + 1 in (Q[i])[x] is the polynomial
x2 - x + i +1. It is easy to see that this last polynomial can be factored as

x2 -x+i+1 = (X-i)(x+i-1),
and each of the factors in the right-hand side polynomial is irreducible in (Q[iJ)[x}.
We find pre-images of these factors in R[x] and we have

x2-x+y+1 = (x--y)(x+y-1) (mody2-i-1).

Therefore we have two maximal ideals in R[x] containing (y2 + 1, x2 - x + y + 1):

M2 = (y2 + 1, x -- y), andM3 = (y2 + 1, x + y -1) .

We now have the primary decomposition of VY:

/= M; f1M2fM3 = (y+ 1,x- 1)fl(y2 + 1,x-y)fl(y2 +1,x+y- 1).

Since we now can compute all the maximal ideals containing I, we need to find
the primary ideals which correspond to each maximal ideal in order to compute
the primary decomposition of I. We do this in two steps. We first give a criterion
to determine whether a given ideal Q is .M-primary. We then give a criterion to
determine which of the M-primary ideals belong to the primary decomposition
of 1.

LEMMA 4.6.13. Let A be a Noetherian ring. Let M be a maximal ideal of A
and let Q C M be an ideal of A. Further assume that for each m E M there
exists v E N such that m' E Q. Then Q is primary.

PROOF. We first prove that VfQ = M. Since M is prime and Q C M, we have
J C M. Moreover, if m E M then m E A, since a power of m is in Q, and
thus MC vfQ as well.

It remains to show that Q is primary. Let f g E Q and f V Q. We show that
g E M. Suppose to the contrary that g V M. Then there exist h E A and m E M
such that hg + m = 1, since M is maximal. Let v E N such that m" E Q. Then

1 =1'' = (hg+m)v=h'g-}-mv,
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for some h' E A. Then f = h' g f + m1 f E Q, a contradiction. Therefore
gEM.

LEMMA 4.6.14. Let A be a Noetherian ring and let I be an ideal of A. Let
I

I =
I l

Qi be a primary decomposition of I such that Qi is Mi -primary with Mi
i=1

maximal. Then for j = 1, ... ,

Q3=If EAII:(f)gM3}.

PROOF. Let j E {1,... , t}. We denote If E A I I : (f) V_ Mj } by QQ Q. Let
f E Q'.. Then there exists g E A such that g 0 M; = Q3 and f g E I C Q-.
Since Qj is primary, either f E Q3 or a power of g is in Q. But since g
we must have f E Q2 . Therefore Q3 C Q3.

For the reverse inclusion let f E Q, . For each i E {1,... , £}, i j, there exists
si E MM - Mj, since Mi and M3 are distinct maximal ideals. Since Mi = vrQi-,

there exists vi E N such that sz i E Qi. We define

e e

s = s i E Qi.
s-=1 z=1

Note that s V Mj by construction. Then fs E [f Qz g fl Qz = I. Therefore
z=1 i=1

sEI:(f)andsfM3,sothat fEQ3. D
We now return to the case where A = R[x] where R is a PID. We will use the

above to give a method for computing the primary decomposition of I. So let
M = (u, v) be a maximal ideal which contains (cii, hi), as obtained in Theorem
4.6.10. Then u is an irreducible factor of ai and so u divides g1 = a2 at. Let
m be the largest integer such that u"z divides gj (so m > 1). Now, we know that
the image v of v in the ring (RI (u)) [x] is an irreducible factor of the image hi of
hz. Therefore v divides the image gt of gt, since gt = h E (ai, h) and u divides
ai. Let n be the largest integer such that ,n divides gt (note that n - I). Then
we have gt = v' w (mod u), for some w E R[x], such that the image w of w is
not divisible by u.

THEOREM 4.6.15. We use the notation above. Let V, W E R[x] be such that

gt - VW (mod Urn), V=un (mod u), and W w (mod u).

Then Q = (um,g2,... , gt-1, V) is M -primary and is the M-primary component
of I.

PROOF. We first note that 19 Q. Indeed, we can write gt = VW + hum', for
some h E R[x], and so gt E Q. Moreover 91 E Q, since um' divides g1. Therefore
ICQ.



4.6. PRIMARY DECOMPOSITION IN R[x] FOR R A PID 267

We now show that Q is M-primary using Lemma 4.6.13. Clearly Q C M,
since um, V, and g2, ... , gt- 1 are in M (recall that we noted in the proof of
Theorem 4.6.10 that g2, ... , 9t-1 E (as, hi) C M) . To conclude, it is sufficient
to show that some power of u and v are in Q. Clearly um E Q. Now we can
write V = v'z + h' u, for some h' E R[x] . Therefore vn = V - h' u, and hence
vnm=(V--h'u)'nEQ.

We now show that Q is the M -primary component of I using Lemma 4.6.14.
We define q = If E R[x] 11: (1) cC MI. Let f E Q' and let g E I : (f)-M.
Then f g E I C Q. Since Q is M-primary, either f E Q or gv E Q, for some
v E N. But if gv E Q, then g E vrQ = M, a contradiction. Therefore f E Q, and
Q' C Q.

We now prove the reverse inclusion. First note that g1 is relatively prime to
rnu

u because of the choice of m. Therefore in V M, for otherwise, since u E M,
u

we would have 1 E M (recall that g1 and u are in R and that R is a PID). Also,
91 um = gl E I, and so u'm E Q'. Now let j be such that 2 < j < t - 1. Thenum

1 V M, and 1g3 E I, so that g, E C.Y. It remains to show that V E Q'. To see
this we note that W M, for otherwise, W = hu + h' v for some h, h' E R[x],
and so w - W - h' v (mod u). But this means that v divides iv, and this is a
contradiction. Then W 91 M and VW = gt - h1urn for some h1 E R[x] imply

VW 91 = (gt - hlum) g1 = gt 91
- h1g1 E I.Um Um Um

Therefore V E Q'. .0

The last thing that remains to be done, in order to compute the primary
decomposition of I, is to compute the polynomials V and W required in the last
theorem. This is always possible and it follows from a result known as Hensel's
Lemma. We will state the result and show how it is used in examples, but we
will not provide a proof of it. The interested reader should consult [Coh].

THEOREM 4.6.16 (HENSEL'S LEMMA). Let u be an irreducible element of the
PID R and let f E R[x]. Let g(1), 0) E R[x] be two polynomials such that their
images in (R/(u))[x] are relatively prime and such that

f = 8(1)0) (mod u).

Then for any m there exist polynomials g(m) and h(m) in R[x] such that

f - g(m)h(m) (mod um), g(m) = g(l) (mod u), h(m) =- h(1) (mod u).

If linear equations are solvable in R then these polynomials are computable.

We will now illustrate the technique presented in this section in three exam-
ples. These examples will also illustrate how the Hensel lifting technique works.
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EXAMPLE 4.6.17. We go back to Example 4.6.12. We found that I = & +
y)(y2 + 1), x2 - x + y + 1) C (Q[y])[x} has the following strong Grobner basis

91

92

93

y4 + 2y3 + 2y2 + 2y + I = (y + 1)2 (y2 + 1) = a2a3
xY 2 + x -f- y3 + ?! _ (y2 + 1) (x + y) = a3h2
x2-x+y+1 =h3,

and that the maximal ideals which contain I are

M1 = (y+1,x-1),M2 = (y2+1,x-y),M3 = (y2+1,x+y-1).

we now find the primary components Q1 , Q2, and Q3 corresponding to M1, M2,
and M3 which belong to I. We use Theorem 4.6.15 and the notation set there
to find Q1, Q2, and Q.

Primary component which corresponds to M1: In this case we have u = y + 1
and v = x -1. The largest integer m such that um divides gl = (y + 1)2(y2 + 1)
is m = 2. Now we need to factor g3 modulo u. We have

93=x2_X+y+1=x2-x-(x-1)x (mody+1).

Therefore the largest n such that v'n divides 93 modulo u is n = 1. We also have
w=x. Now we need to find V and Wsuchthat

VW - x2 - x + y + 1. (mod(y+1)2),Vx-1 (mod y + 1),

and W ° x (mody+1).
To do this we find polynomials h and h' in Q[x, y] such that

V = (x - 1) + (y + 1)h and W = x + (y + 1) h',

and which satisfy the congruence

93 = x2-x+y+l
X(X - 1) + (Y + 1)
VW (mod (y+1)2)
x(x - 1) + x(y + 1)h + (x - 1)(y + 1) h'

+(y + 1)2h /a' (mod (y + 2)2)

x(x - 1) + x(y + 1)h + (x - 1)(y + 1) h' (,mod (Y + 1)2).

Therefore y + 1 = x(y + 1)h + (x - 1)(y + 1) h' (mod (y + 1)2), or equivalently
1 xh + (x - 1) h' (mod y + 1). One obvious solution to this equation is h = 1
and la' = -1. Therefore we have

v=(x-i)+(y+1)=x+y, andW=x-(y+1)=x-y-1.
By Theorem 4.6.15 the primary component of I which corresponds to the max-
imal ideal Ml is

Qz = (u2, 92, V) = ((y+1)2,(y2+1)(x+),x+y) = ((y+1)2,x+y).
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Primary component which corresponds to M2: In this case we have u = y2 + 1
and v = x -- Y. The largest integer m such that um divides g1 = (y + 1) 2 (y2 + 1)
is m = 1. Now we need to factor y3 modulo u. We have

93 =x2 _x+y+l _ (x-y)(x+y- 1) (mody2+1).

Therefore the largest n such that v'h divides g3 modulo u is n = 1. We also have
w = x + y -1. Since m = 1 we may let V = v and W = w. Therefore the primary
ideal corresponding to M2 and which belongs to I is

Q2 = (Y2 + 1 (y2 + 1)(X + y)IX _ y) = M2-

Primary component which corresponds to M3: This computation is the same
as the previous one and we get that the primary ideal corresponding to M3 and
which belongs to I is

Q
(y2+j2(y2+j)(X+y)'X+y_j) =M

Therefore we have

I = ((x +y)(y2+1),x2-x+y+1)=Q1fQ2flQ3

((y+1)2,x+y)fl(y2+1,x-y)fl(y2+1,x+y-1).

The next example illustrates how the Hensel lifting technique is applied re-
peatedly.

EXAMPLE 4.6.18. In this example we again consider the ring R = Q[y]. Let I
be the ideal ((x + y) 2 (y - 1), x2 + x + y) of R[x]. Again, to compute the strong
Grobner basis for I we compute the Grabner basis for I viewed as an ideal in
Q[x, y] with respect to the lex term ordering with x > y. We get

91

92

93

y5 - y4 = Y4(y _ 1) = a2a3
xy-x+ 2y4-y3-y= (y- 1)(x+2y3+y2+y) =a3h2
x2-1-x+y=h3.

Note that the greatest common divisor of g1 i g2, and g3 is I . As in Example 4.6.12
we first compute the maximal ideals which contain I. We find those maximal
ideals which contain (a2, h2) = (y4, x + 2y3 + y2 + y) and those which contain
{a3, h3) = (y -- 1, x2 + x + y)-

Maximal ideals which contain (y4, x + 2y3 + y2 + y) : The only irreducible
factor of a2 = y4 is u = y. The only irreducible factor of x + 2y3 + y2 + y modulo
y is v = x. Therefore the maximal ideal which contains (y4, x + 2y3 + y2 + y) is

Ml = (y,x).

Maximal ideals which contain (y - 1,x2 + x + y) : It is easy to see that the
only maximal ideal that contains (y - 1, x2 + x + y) is

M2=(y---1,x2+x+1).
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That is, we have u = y --- 1 and v = x2 + x + 1, since x2 + x + 1 is irreducible
in the ring R [x] , where R = R/ (u) = Q[y]/(y -- 1) ^' Q. So the original ideal
(y - 1, x2 + x + y) = M2 is itself maximal.

Thus, the primary decomposition of is

= M1 f M2 = (y, x) f1 (y _ 1,x2 + x + 1).

We now fuad the primary components that belong to I and which correspond
to M1 and M2. We use Theorem 4.6.15 and the notation set there to find Q1
and Q2.

Primary component which corresponds to M1: In this case we have u = y and
v = X. The largest integer m such that u"' divides gx = y4(y _ 1) is m = 4. Now
we need to factor g3 modulo u. We have

93 =x2+x+y-x2+x-x(x+1) (mody).
Therefore the largest n such that vh divides g3 modulo u is n = I. We also have
w = x -+-1. Thus we need to find V and W such that

VW - x2 + x + y (mod y4 ), V = x (mod y) , and W = x + 1 (mod y) .

To do this we use the Hensel lifting technique three times to find V W , WW such
that at each stage we have

V(i)W(z) = x2 + x + y (mod yt), V(t) - x (mod y), W(t) - x + 1 (mod y),

for i = 2, 3, 4. This is done inductively by constructing V (i+') and W ('+I) in
terms of VW and w(') respectively. We start with lifting modulo y2. To do this
we must find polynomials h(2) and h'(2) in Q[x, y] such that

V(2) = x + yh(2) and W(2) = x + 1 + yh'(2)

and which satisfy the following congruence

93 = X2 +X+Y

V(2) W(2) (mod y2)

x2 + x + (x + 1)yh(2) + xyh'(2) (mod y2).

Therefore we have y - (x + 1)yh(2) + xy h'(2) (mod y2), or equivalently 1
(x + 1)h(2) + x h'(2) (mod y). An obvious solution to this congruence is h(2) = 1
and 02) _ -1. Therefore we have

V(2) =x+y and W(2) =x- y+1.

To lift modulo y3, we find 0) and 03) such that

V(3) = V(2) + y2 h(3) = x + y + y2 h(3) ,

W(3) = W(2) +, y2h'(3) = x __.. y + 1 + y2h'(3)
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and which satisfy the congruence

93 = x2+x+y
V(3) w(3) (mod y3 )
x2 + x + y - y2 + (x + y)y2h'(3) + (x - y + 1)y2h(3) (mod y3).

Canceling y2 we have

(x + y)h'(3) + (x -- y + 1)h(3) = I (mod y).

A solution to this congruence is h(3) = = 1 and 03) = -I - Therefore we have

V(3) =x+y2+y and W(3) =x-y2-y+1.

Finally we lift modulo y4. We find h(4) and 04) such that

V = V(4) V(3) + y3 h(4) = x + y2 + y + y3 h(4) ,

w = w(4) = w(3) +113 04) y2 - y + 1 + y3h'(4)

and which satisfy the congruence

93 = x2+x-F-y
V(4)W(4) (mod y4)

X2 + x + y -2y3 + (X + y2 + y)y3h'F(4)

+(X - y2 _ y + 1)y'h (4) (mod y4).

Canceling y3 we have

(x + y2 + y)h'(4) + (x - y2 - y + 1)h(4)- 2 (mod y).

A solution to this congruence is h(4) = 2 and h' (4) = -2. Therefore we have

V = V(4) =x+2y3 +y2 +y and W = W(4) =x--2y3 -y2 - y+ 1.

Now that we have V and W we can find the primary ideal Qx corresponding to
MI and which belongs to I,

Qi = (utm, 92, V) (y4, (y - 1)(x + 2y3 + y2 + y), x + 2y3 + y2 + y)
= (y4, z + 2y3 +y2 +y).

Primary component which corresponds to M2: In this case we have u = y - 1
and v = x2 + x + 1. The largest integer m such that um divides g' = ?(y - 1)

.ism=1. We thus have that Q2=(y--1,x2+x+1}= 2M

Therefore the primary decomposition of I is

I = Ql n M2 = (y4,x+2y3 +y2 +y) fl (y - 1,x2 +x + 1).

We conclude this section with an example in Z [x] .
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EXAMPLE 4.6.19. The polynomials

91 = 45=9.5=a2a3
92 = 5x + 10= 5(x+2) = a3h2
93 = x3 + 6x2 + 20x + 15 = h3.

form a minimal strong Grobner basis in Z[x]. We will compute the primary
decomposition of I = (91,92,93). We first compute the maximal ideals which
contain (a2, h2) and (a3, h3) respectively.

Maximal ideals which contain (9, x + - 2) : The only irreducible factor of 9 is
u = 3. Also, v = x + 2 is irreducible modulo 3. Therefore there is only one
maximal ideal which contains (9, x + 2), and it is

Mx=(3,x+2).

Maximal ideals which contain (5,x3 + 6x2 + 20x + 15) : The only irreducible
factor of 5 is u = 5. Also,

x3 + 6x 2 + 20x + 15 - x3 + x2 . x2 (X + 1) (mod 5).

Therefore there are two irreducible factors modulo 5, namely x and x + 1. Thus
there are two maximal ideals which contain (5, x3 + 6x2 + 20x + 15),

MZ = (5, x) and M3 = (5, x + I).

The primary decomposition of VfY is

Ml nMz nM3 = (3,x+2)fl(5,x)fl(5,x+1).

Now we find the primary component for each of these maximal ideals.
Primary component which corresponds to M1: In this case we have u = 3 and

v = x + 2. The largest integer m such that um divides g1 = 45 is m = 2. Now
we need to factor 93 modulo u. We have

93 = 23 +6X2 + 20x + 15 = x3 + 2x = x(x 2 + 2) - x(x + 1) (x -1- 2) (mod 3).

Therefore the largest n such that vu divides g3 modulo u is n =1. We also have
w = x (x + 1). Now we need to find V and W such that

VW - X 3 + 6x2 +20x+15 (mod 9), V =x+2 (mod 3),

and W - x(x + 1) (mod 3).

As before we use the Hensel lifting technique. We find polynomials h and h' in
Z[x] such that

V= {x + 2} + 3h and W = x{x + 1} +3h',
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and which satisfy the following congruence

93 = x3 + 6x2 + 20x -I-15

VW (mod 9)

x3 + 3x2 + 2x + 3x(x + 1)h + 3(x + 2) h' (mod 9).

Therefore we have 3x2 + 6 ` 3x(x -}-1)h + 3(x + 2) h' (mod 9), or equivalently,
x2 + 2 = x(x + 1)h + (x + 2) h' (mod 3). A solution to this congruence is h = 0
and h' = x + 1. Thus we have

V =x+2 and W- x(x+1)+3(x+1) =x2 -#-4x+3.

We now can find the primary ideal Ql corresponding to Ml and which belongs
to I

I

Q1 = (um,92,V) = (9,5(x+2),x+2) = (9,x+2).
Primary component which corresponds to M2: In this case we have u = 5 and

v = X. The largest integer m such that um divides g1 = 45 is m = 1. Now we
factor 93 modulo u. We have

93 = x3 + 5x2 + 20x + 15 - x3 + x2 = x2 (x + 1) (mod 5).

Therefore the largest n such that vh divides g3 modulo u is n = 2. We also have
w = x + I. Since m = 1 we may let V = v and W = w. The primary ideal Q2
corresponding to M2 and which belongs to I is

Q2 = (um, 927 V) = (5, 5(x + 2), x2) = (5, x2).

Primary component which comsponds to M3: In this case we have u = 5 and
v = x +1. As above the largest integer m such that u"m divides gl = 45 is m = 1.
Also, as above 93 x2 (x + 1) (mod 5), and so the largest n such that v' divides
93 modulouis n= 1. We also have w = x2. As above we can choose V and W
equal to v and w respectively, and so the primary ideal Q3 corresponding to M3
and which belongs to I is

Q3 = (um, g2, V) = (5, 5(x + 2), x + 1) = (5, x + 1).

Therefore we have the following primary decomposition of I

I=Q1nQ2nQ3 = (9,x+2)n(5,x2)n(5,x+1).

Exercises
4.6.1. Consider the following three polynomials in Q[x, y]

91
(y2 - J + 1)2(y - 1) =alas

92
(y
-

1)(x2
+

y)
= ashi

93 x8 + 2xg + 3x4 +X2_ 4f -f-1= h3.
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Let I _ (91, 92, 93) C (Q[x])[y]. Verify that {g1, 92, 93 } is a strong Grdbner
basis for I and find the primary decomposition of I.

4.6.2. Consider the following three polynomials in Z[x]

91 = 4.7 =aims
92 = 7(x2 -I-1) = a3h2

93 = x4 +4x +3=h3.
Let I = {g1, 92, 93) C Z[x]. Verify that {91, 92, 931 is a strong Grobner
basis for I and find the primary decomposition of I.



Appendix A. Computations and Algorithms

Computations. There are many Computer Algebra Systems which have a
Grobner basis package, for example Axiom, MAPLE, and MATHEMATICA. There
are other packages which are entirely devoted to computing in polynomial rings
and which have an extensive list of commands to perform some of the computa-
tions presented in this book. In particular, we mention CoCoA and MACAULAY.
Most of the computations in the examples and exercises in this book (except in
Chapter 4) were performed using CoCoA. Many of these computations could
not have been done with the other systems listed above. MAPLE and MATHE-
MATICA do not allow computations in modules and have only a limited choice of
orders. These systems allow the user to program and the algorithms presented
in this book are, in principle, programmable. However, any practical implemen-
tation of these algorithms requires a lot of material not included in this book
and many hours of work. MACAULAY computes only with homogeneous polyno-
mials and focuses on computations applied to algebraic geometry. Most of our
examples are non homogeneous. Some of the computations could still be done
using MACAULAY, but with care (see Exercises 1.4.9 and 1.6-18). None of the
above systems have an implementation for the computation of Grobner bases
over rings which are not fields. Of course the algorithms over rings could also,
in principle, be implemented using some of these systems.

CoCoA provides commands for the algebraic manipulation of polynomials
in k [x i , ... , xn] , ideals of k [x 1, ... , x.,,], and submodules of the free modules
(klxi,... , xn]}m, where k is a field. Moreover, the user can choose among pre-
defined term orders or define a custom ordering. The algebraic procedures in-
clude the computation of the intersection of ideals and modules, ideal quotients,
normal forms, syzygy modules, elimination ideals and modules, free resolutions,
and, of course, Grobner bases for ideals and modules. When starting a compu-
tation with CoCoA the user specifies the characteristic of the field. Even when
computing over Q, CoCoA performs arithmetic modulo a large prime number,
so errors may occur and the user must keep this in mind.

CoCoA was developed at the University of Genova, Italy, by Antonio Capani,
Alessandro Giovini, Gianfranco Niesi, and Lorenzo Robbiano. To obtain a copy
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of CoCoA send a message to the developers at

cocoa@dima.unige.it.

Algorithms. The algorithms in this book are presented in pseudo-code, and
the format is as follows. We always start our algorithms by specifying the in-
put (which follows the word INPUT) and the output (which follows the word
OUTPUT). We then always specify how we initialize the variables involved in
the algorithm (this follows the word INITIALIZATION).

When we need to assign an expression to a variable we use the instruction
variable := expression

For example, if the current value of the variable I is 4 and the current value of
the variable G is {1, 2, 3}, and if the instructions

G:=GU{1}
£:=f+1

are executed, then the operation {1, 2, 3} U {4} = {1, 2, 3, 4} is performed, and G
takes on its new value {1, 2,3, 4}, and then the operation 4 +1 = 5 is performed,
and takes on its new value 5.

We use the following conditional structure:
IF condition THEN

action I
ELSE

action 2
This means that if condition is true, then action 1 is performed, and if condition
is false then action 2 is performed. Note that the truth of condition depends
on the current value of the variables in the algorithm. Sometimes we omit the
ELSE statement which always means that action 2 is simply "do nothing."
The indentation always indicates what action 1 and action 2 are and when the
conditional structure terminates.

We also use two loop structures:
WHILE condition DO

action
and

FOR each item in a set S DO
action

In the WHILE loop, action is repeated as long as condition holds and is not
performed if condition does not hold. In the FOR loop, action is performed
once for each item in the set S. Note that, in many instances, an order on the
set S is prescribed, and the FOR loop must be executed in that order. No other
instruction is executed until the entire WHILE or FOR loop is completed. The
indentation always indicates what the action is and when the loops terminate.



Appendix B. Well-ordering and Induction

In this book we use a form of "proof by induction" which may be unfamiliar to
the reader. It is the purpose of this appendix to briefly describe this process.

We consider a non empty set T which we assume has a total order "<" on
it. That is, we assume we have a relation "<" on T satisfying the following
properties:

the relation < is reflexive: for all t E T, t < t;
the relation < is transitive: for all s, t, u E T, if s < t and t < u then
s < u;
the relation < is antisymmetric: for all s, t E T, if s < t and t < s then
s = t;
the relation < is total: for all s, t E T, either s < t or t < s.

We say that a total order < is a well ordering provided that we have the
additional property

Let S C T such that S 0. Then S contains a smallest element. That
is, there is an s E S such that for all t E S we have s < t.

We will use two examples of well-ordered sets. There is, of course, the one
familiar to most people, the set of natural numbers N = {0, 1, 2, ... }. The one
we will use most in this book is the set T' of power products in the variables

xn on which we will put various orders (see Section 1.4); all of them will
be well-orderings.

Let T be a well ordered set. Since T is a subset of itself, it has a smallest
element which we will denote by I (of course, in N this element is 0) .

We assume that we are given a set {Pt I t E T} of statements to be proved.
We go about this in one of two ways.

We argue by contradiction. If one of the statements is false, we can let
S be the set of all t E T such that Pt is false. Since S 0 0 we may
choose s E S least. Another way to say this is that if some of the Pt's
are false then we may choose a smallest s E T for which P. is false. The
idea then is to find t < s for which Pt is also false and so arrive at a
contradiction and conclude that all Pt's are true.
The second way to proceed is in the more traditional "induction argu-
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meat" style (commonly referred to as strong induction) . We assume
that

(i) l'2 is true;
(iii) For all t E T the truth of P3 for all s < t implies the truth of Pt.

We conclude from this that all of the Pt's are true.

The validity of the first method of reasoning is obvious. Moreover the proof
that these two forms of induction are equivalent proceeds exactly as it does in
the case T= N.
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power product, 1, 18

leading, 21, 202
presentation, 117, 119, 195
primality test, 244
primary

component, 261
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