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Preface

We wrote this book with two goals in mind:
(i) To give a leisurely and fairly comprehensive introduction to the definition

and construction of Grobner bases;
(ii) To discuss applications of Grobner bases by presenting computational

methods to solve problems which involve rings of polynomials.
This book is designed to be a first course in the theory of Grobner bases suitable
for an advanced undergraduate or a beginning graduate student. This book is
also suitable for students of computer science, applied mathematics, and engi-
neering who have some acquaintance with modern algebra. The book does not
assume an extensive knowledge of algebra. Indeed, one of the attributes of this
subject is that it is very accessible. In fact, all that is required is the notion of the
ring of polynomials in several variables (and rings in general in a few places, in
particular in Chapter 4) together with the ideals in this ring and the concepts of
a quotient ring and of a vector space introduced at the level of an undergraduate
abstract and linear algebra course. Except for linear algebra, even these ideas
are reviewed in the text. Some topics in the later sections of Chapters 2, 3, and 4
require more advanced material. This is always clearly stated at the beginning of
the section and references are given. Moreover, most of this material is reviewed
and basic theorems are stated without proofs.

The book can be read without ever "computing" anything. The theory stands
by itself and has important theoretical applications in its own right. However,
the reader will not fully appreciate the power of, or get insight into, the methods
introduced in the book without actually doing some of the computations in the
examples and the exercises by hand or, more often, using a Computer Algebra
System (there are over 120 worked-out examples and over 200 exercises). Com-
puting is useful in producing and analyzing examples which illustrate a concept
already understood, or which one hopes will give insight into a less well under-
stood idea or technique. But the real point here is that computing is the very
essence of the subject. This is why Grobner basis theory has become a major
research area in computational algebra and computer science. Indeed, Grobner
basis theory is generating increasing interest because of its usefulness in pro-

ix
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viding computational tools which are applicable to a wide range of problems in
mathematics, science, engineering, and computer science.

Grobner bases were introduced in 1965 by Bruno Buchberger' [Bu65]. The
basic idea behind the theory can be described as a generalization of the theory
of polynomials in one variable. In the polynomial ring k[x], where k is a field,
any ideal I can be generated by a single element, namely the greatest common
divisor of the elements of I. Given any set of generators {fi,... , fs } C k [x]
for I, one can compute (using the Euclidean Algorithm) a single polynomial
d = gcd (f l )... , fs) such that I = (f',... , f s) = (d). Then a polynomial f E k [x]
is in I if and only if the remainder of the division of f by d is zero. Grobner
bases are the analog of greatest common divisors in the multivariate case in the
following sense. A Grobner basis for an ideal I C k [x1, ... , xn] generates I and
a polynomial f E k[xl,... , x,,] is in I if and only if the remainder of the division
of f by the polynomials in the Grobner basis is zero (the appropriate concept of
division is a central aspect of the theory).

This abstract characterization of Grobner bases is only one side of the theory.
In fact, it falls far short of the true significance of Grobner bases and of the
real contribution of Bruno Buchberger. Indeed, the ideas behind the abstract
characterization of Grobner bases had been around before Buchberger's work.
For example, Macaulay [Mac] used some of these ideas at the beginning of
the century to determine certain invariants of ideals in polynomial rings and
Hironaka [Hi], in 1964, used similar ideas to study power series rings. But the
true significance of Grobner bases is the fact that they can be computed. Bruno
Buchberger's great contribution, and what gave Grobner basis theory the status
as a subject in its own right, is his algorithm for computing these bases.

Our choice of topics is designed to give a broad introduction to the elemen-
tary aspects and applications of the subject. As is the case for most topics in
commutative algebra, Grobner basis theory can be presented from a geometric
point of view. We have kept our presentation algebraic except in Sections 1.1
and 2.5. For those interested in a geometric treatment of some of the theory we
recommend the excellent book by D. Cox, J. Little and D. O'Shea [CLOS]. The
reader who is interested in going beyond the contents of this book should use our
list of references as a way to access other sources. We mention in particular the
books by T. Becker and V. Weispfenning [BeWe] and by B. Mishra [Mi] which
contain a lot of material not in this book and have extensive lists of references
on the subject.

Although this book is about computations in algebra, some of the issues which
might be of interest to computer scientists are outside the scope of this book.
For example, implementation of algorithms and their complexity are discussed
only briefly in the book, primarily in Section 3.3. The interested reader should
consult the references.

Z Wolfgang Grobner was Bruno Buchberger's thesis advisor.
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In Chapter 1 we give the basic introduction to the concept of a Grobner basis
and show how to compute it using Buchberger's Algorithm. We are careful to
give motivations for the definition and algorithm by giving the familiar examples
of Gaussian elimination for linear polynomials and the Euclidean Algorithm for
polynomials in one variable. In Chapter 2 we present the basic applications to
algebra and elementary algebraic geometry. We close the chapter with three
specialized applications to algebra, graph theory, and integer programming. In
Chapter 3 we begin by using the concept of syzygy modules to give an improve-
ment of Buchberger's Algorithm. We go on to show how to use Grobner bases to
compute the syzygy module of a set of polynomials (this is solving diophantine
equations over polynomial rings). We then develop the theory of Grobner bases
for finitely generated modules over polynomial rings. With these, we extend
the applications from the previous chapter, give more efficient methods for com-
puting some of the objects from the previous chapter, and conclude by showing
how to compute the Hom functor and free resolutions. In Chapter 4 we develop
the theory of Grobner bases for polynomial rings when the coefficients are now
allowed to be in a general Noetherian ring and we show how to compute these
bases (given certain computability conditions on the coefficient ring). We show
how the theory simplifies when the coefficient ring is a principal ideal domain.
We also give applications to determining whether an ideal is prime and to com-
puting the primary decomposition of ideals in polynomial rings in one variable
over principal ideal domains.

We give an outline of the section dependencies at the end of the Preface.
After Chapter 1 the reader has many options in continuing with the rest of the
book. There are exercises at the end of each section. Many of these exercises
are computational in nature, some doable by hand while others require the use
of a Computer Algebra System. Other exercises extend the theory presented in
the book. A few harder exercises are marked with (*).

This book grew out of a series of lectures presented by the first author at the
National Security Agency during the summer of 1991 and by the second author
at the University of Calabria, Italy, during the summer of 1993.

We would like to thank many of our colleagues and students for their helpful
comments and suggestions. In particular we would like to thank Beth Arnold,
Ann Boyle, Garry Helzer, Karen Horn, Perpetua Kessy, Lyn Miller, Alyson
Reeves, Elizabeth Rutman, Brian Williams, and Eric York. We also want to
thank Sam Rankin, Julie Hawks and the AMS staff for their help in the prepa-
ration of the manuscript.
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Chapter 1. Basic Theory of Grabner Bases

In this chapter we give a leisurely introduction to the theory of Grobner bases.
In the first section we introduce the reader to the kinds of problems we will be
interested in throughout this book. In the next two sections we motivate the
method of solution of these problems by presenting the method of solution in
two familiar special cases, namely the row reduction of matrices of systems of
linear polynomials, and the division algorithm for polynomials in one variable.
The basic method in both cases is to use the leading term of one polynomial to
subtract off a term in another polynomial. In Section 1.4 we introduce what we
mean by the leading term of a polynomial in n variables. In Section 1.5 we go
on to generalize the ideas in Sections 1.2 and 1.3. This leads us in Section 1.6 to
defining the central notion in this book, namely the notion of a Grobner basis. In
Section 1.7 we present the algorithm due to Bruno Buchberger which transformed
the abstract notion of a Grobner basis into a fundamental tool in computational
algebra. We refine the definition of a Grobner basis in an important way in
Section 1.8 and summarize what we have done in Section 1.9.

1.1. Introduction. Let k be any field (e.g., the rational numbers, Q, the real
numbers, R, or the complex numbers, C) . We consider polynomials , f (x1, ... , x,,)
in n variables with coefficients in k. Such polynomials are finite sums of terms of
the form a E k, and' /3 E N, i = 17.. . , n. We call x#l ...
a power product. For example, f = x1 +x2 -1 axed g = x -- 3x2 - -

2
xi x3 are poly-

nomials in three variables. We let k [x 1, ... , xn] denote the set of all polynomials
in n variables2 with coefficients in the field k. Note that in k[xl,... , xn] we have
the usual operations of addition and multiplication of polynomials, a n d w i t h re-
spect to these operations k [x 1, .. _ , xn] is a commutative ring. Also, k [x 1, ... , x7L]

is a k -vector space with basis the set, Tn, of all power products,

Tn = {x4' - . x n 1 ,8 i E N,i ` 1,... ,n}.

1 We denote by N the set of non-negative integers, that is, N = { 0, 1, 2, 3,. .. }.
2Most of the time,'from now on, whenever we work with just one, two, or three variables,

we will not use variables with subscripts, but instead will use the variables x, y, or z as needed.
For example, f = z2 -I- y2 --1 is a polynomial in Q[x, y] and g = x - 3y2 + 2 xz is a polynomial
in Qfx, y, z) .

1



2 CWAPTER 1. BASIC THEORY OF GRGBIVER BASES

For a positive integer n we define the affine n-space

kn= {(al,...,an) j(For

example, if k = IR, then kn = Jn is the usual Euclidean n -space.) A
polynomial f E k[xl,. - . , xn] determines a function kn -+ k defined by

(ar,... , an) f(al, ... , an), for all (al, ... , an,) E kn.

This function is called evaluation. We thus have two ways of viewing a poly-
nomial f E k[xl,... , xn]. One is as a formal polynomial in k[xl,... x.,,] and
the other is as a function kn -p k (it should be noted that if k happens to be
a finite field then two different polynomials can give rise to the same function;
however this need not concern us here).

This "double identity" of polynomials is the bridge between algebra and ge-
ometry. For f E k [x 1, ... , xn] we define V (f) to be the set of solutions of the
equation f = 0. More formally,

VW is called the variety defined by f. For example, V (x2 + y2 _ 1) C R2 is the
circle in the xy-plane with center (0, 0) and radius I.

More generally, given fl, ... , f, E k [x 1, ... , x,,] , the variety V (fl, ... , f8) is
defined to be the set of all solutions of the system

(1.1.1) fx=0,f2=0,...,fs=0.
That is,

V(f1, ... , fs) _ {(ai,... , an) E k n J fi(a17 ... , an) = 0,i = - 1 2, . . . 551-

Note that V (f l , ... , f,) = n:=, V (f i) . For example, the variety V(x2 + y2 --

1, x - 3 y2) C ]R2 is the intersection of the circle x2 + y2 = 1 and the parabola
x = 3y2 in the xy-plane. More generally still, if S C k[xi,... , xn], we define

V (S) = {(a,,. .. , an) E kn I f (a1, ... ,an) = 0 for all f E S}.

There are many numeric algorithms for solving non-linear systems such as
These algorithms solve for one solution at a time, and find an "approx-

imation" to the solution. They ignore the geometric properties of the solution
space (the variety), and do not take into consideration possible alternate de-
scriptions of the variety (using a different system). Indeed, as we will see below,
a variety can be the solution set of a number of systems such as (1.1.1), and
the computation of the solutions can drastically improve if the given system of
equations is transformed into a different system that has the same solutions but
is "easier" to solve. To illustrate this, recall that the Gauss-Jordan elimination
method transforms a system of linear equations into the so-called row echelon
form (see Section 1.2). The system thus obtained has exactly the same solu-
tions as the original system, but is easier to solve; this example will be discussed
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more thoroughly in the next section. We will develop an analogous procedure
for System (1.1.1) which will give us algebraic and geometric information about
the entire solution space of System (1.1.1).

The method for obtaining this information is to find a better representation for
the corresponding variety. This will be done by considering the ideal generated
by polynomials fl, ... , f s , denoted (Ii,...

$

(11,... Ifs) _ uifi 1u2 E k[xl,... , xn], i = 1, ... is .

s=1

It is easy to check that I = (1"... , f S } is an ideal in k [x 1 i ... ,x]; that is, if
f, g E I, then so is f + g and if f E I and h is any polynomial in k [x1, ... , xn],
then h f E I. The set {f',... , fs I is called a generating set of the ideal I. The
desired "better" representation for the variety V (f 1, ... , f $) will be a better
generating set for the ideal I = (f',... , f8).

To see how this might help, we consider the variety V(I), that is, the solutions
of the infinite system of polynomial equations

(1.1.2) f = 01f E I;

and contrast it with the solutions of the finite system

(1-1-3) f1=0,f2=0,...,Is=0-

A solution of System (1.1.2) will clearly be a solution of System (1.1.3), since
f f E I for i = 13... , s. Conversely, if (a17... , an) E kn is a solution of System
(1.1.3), and if f is any element of I, then f (a1, ... ,an) = 0, since f = E'=1 uiA.1

for some uz E k [x 1, ... , x,, ] . Hence (ai,... , cam,) is a solution of System (1.1.2).
Thus we have that V(I) = V (f l , ... , f8). We note that an ideal may have
many different generating sets with different numbers of elements. For exam-
ple, in k [x, y], (x + y, x) = = (x, y) = (x + xy, x2 , y2 , y + xy). Now, if we have
I = (fi,... , fs) = (f,... , ft), then V(f1,... , f3) = V(I) = V(fi, ... , ft).

This means that the system f, = 0, ... , f, = 0 has the same solutions as the
system fl' = 0, ... , f, = 0, and hence a variety is determined by an ideal, not
by a particular set of equations. So, if we obtain a "better" generating set for
the ideal I = (fi,... , f3), we will have a "better" representation for the variety
V (f,7... , f S) . And by "better" we mean a set of generators that allows us to
understand the algebraic structure of I = (11,.-. , f s) and the geometric struc-
ture of V (fl, ... , f s) better. The remainder of this chapter is devoted to finding
this "better" generating set for I (which will be called a Grabner basis for I).
In the case of linear polynomials this "better" generating set is the one obtained
from the row echelon form of the matrix of the system.

We will now look at the problem from a different perspective. Consider a col-
lection, V, of points of the affine space V. We define the set I (V) of polynomials
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in k [x l , ... , x,] by

I(V) _ If E k[xi,... , xn] I f (al, ... , an) = 0 for all (a1,... , an) E V}.

It is easy to verify that the set I (V) is an ideal in k [x 1, ... , x7z] . It would seem that
this ideal is very different from the ideal (fi,... , fe). The latter ideal is defined
algebraically as the set of all linear combinations of fl, ... , f, with polynomial
coefficients, while the former ideal is defined by the geometric condition that f is
in I (V) if and only if f (a , , ... , an) = 0 for all (a1,.. - , an) E V. We will examine
the exact relationship between these two descriptions later. For now, we note
that the ideal I(V) can be put in the form (fi, . - . , f.) for some fl, ... , f, E
k [x i , ... , x.,,]. Indeed, the Hilbert Basis Theorem (Theorem 1.1.1) states that
any ideal I in k [x 2 , ... , x,] (in particular the ideal I (V)) has a finite generating
set. We will prove the Hilbert Basis Theorem at the end of the section. Another
consequence of this result is that if A is an infinite set and for all A E A we have
a polynomial f X E k [x x , ... ,x}, then the solution set of the infinite system

fa=O,aEA

is, in fact, the solution set of a finite system, namely, of a finite generating set
for the ideal (fx I A E A) (this ideal is defined to be the set of all finite linear
combinations of the fA, A E A, with polynomial coefficients).

The construction of the ideal I(V) above is a very important one. It is the
bridge from geometry back to algebra since, in addition to the map

{ Subsets of k [x i , ... , xn] } -p { Varieties of kn }
S V(S),

we now have a map

{ Subsets of kn} -) {Ideals of k[xl,... , xn]}
I(V).

Understanding the relationship between these two maps allows us to go back
and forth between algebraic and geometric questions. In particular, we will be
interested in the exact relationship between the ideal I and the ideal I (V(I)). It
is easy to see that I C I (V(I)), but equality does not always hold. For example,
if I = (x2, y2) c k [x, V1, then V(1) = {(0, 0) }, and so x and y are in the ideal
I (V(I)), but they are not in I. For more on the relationship between I and
I (V (I)), see Section 2.2.

In order to find the "better" generating set discussed above, we will need to
determine whether two finite sets of polynomials in k [x 1, ... , xn] give rise to the
same ideal. More specifically, given fl, ... , fs E k [x 1 i ... , xn] , and f117 ... , ft' E
k [xl , ... , x,,], we will need to determine whether (f',... , f.) = (fi,... , ft'y . For
this reason and many others, it is desirable to solve the following problems: given

I = (.f1,- , fs) and f E k[xj,... ,xn],
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PROBLEM 1. Determine whether f is in I. This is the so-called "ideal mem-
bership problem."

PROBLEM 2. If f E I, determine u1, ... , u8 E k [x1, ... , xn] such that f =
ulf1 + u2f2 + . -+-' usfs.

REMARK : In this book, the word "determine" is informally understood to
mean that one can give an algorithm that can be programmed on a computer.

The discussion above is related to another problem that deals with a certain al-
gebraic construction. Let I be an ideal of k[x1, ... , xn], and let f E k[x1, ... , xn].
We saw earlier that f determines an evaluation function kn -* k defined by
(ai,... , a,) f (a 1, ... , an). We now consider the restriction of this function
to VV); that is, we consider the evaluation function V(I) -' k defined by
(ai,... , an) i 4 f (ai, ... , an) for all (a1,... , an) E V(I).

We would like to answer the following question: for f, g in k[x1,... , xn], when
are the corresponding evaluation functions V(I) -' k equal? We note that this
is related to the ideal I (V (I)) introduced earlier. Indeed, if f - g is in the ideal
I (V (I) ), then the evaluation function V(I) - k defined by f - g is identically
zero, and hence the evaluation functions V(I) -i k determined by f and g are
equal. Recall that given f and gin k[x1, ... , xn], and an ideal J of k[x1,... , xn],
we say that f is congruent to g modulo J, denoted f g (mod J), if f - g E J.
Observe that "=" is an equivalence relation on k [x 1, ... , xn] . We denote the set
of equivalence classes by k [x 1, ... , xn] / J. Elements of k [xi, ... , xn] / J are of the
form f + J and are called cosecs of J. Also, k[xl, ... , xn]/J is a commutative
ring with the usual operations of addition and multiplication inherited from
k[x1, ... , xn] and is called the quotient ring of k[x1, ... , xn] by J. It is also a
vector space over k.

In connection with this construction, we would like to solve the following
problems:

PROBLEM 3. Determine a set of coset representatives of k[x1, ... , x.,, J.
PROBLEM 4. Determine a basis for k [x 1, ... , xn] / J as a vector space over k

(which may or may not be finite).
We now turn our attention to the Hilbert Basis Theorem. This result is

crucial in everything we will be doing throughout this book. It guarantees the
termination of our algorithms and also, as pointed out above, it guarantees that
every variety is the solution set of a finite set of polynomials.

THEOREM 1.1.1 (HILBERT BASIS THEOREM). In the ring k[x1,... , x,a] we
have the following:

(i) If I is any ideal of k [x1, ... ,x], then there exist polynomials fl,. .. , f s E
k[x1, ... , xn] such that I = (fi,... , f8).

(ii) If Il C 12 C 13 C ... C In C . is an ascending chain of ideals of
k [x 1, ... , x, ] , then there exists N such that IN = IN+ 1 = IN+2 = .. .

Before we go on to the proof we would like to make a couple of definitions.
An ideal I in a general ring R which satisfies Condition (i) is said to be finitely
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generated, or to have a finite generating set. Condition (ii) is sometimes referred
to as the Ascending Chain Condition, and any commutative ring R satisfying
that condition is called a Noetherian ring.

In the next two sections we will illustrate the discussion of this section using
two examples: linear systems and polynomials in one variable. These will be
fundamental motivations for the general constructions we will develop in the
remainder of this chapter.

The remainder of this section is devoted to the proof of Theorem 1.1.1. The
reader may skip the proof and proceed directly to the next section.

It turns out that if either of the two conditions in Theorem 1.1.1 holds, then
the other also holds; this is the content of the next theorem.

THEOREM 1.1.2. The following conditions are equivalent for a commutative
ring R:

(i) If I is any ideal of R, then there exist elements fl, ... , ,f 9 E R such that
I={fl,-..,fs).

(ii) If I1 C 12 C 13 C ... C In C ... is an ascending chain of ideals of R.
then there exists N such that IN = IN+1 = IN+2 = - -

That is, the ring R is Noetherian if and only if every ideal in R has a finite
generating set.

PROOF. Let us first assume Condition (i), and let

I 1 CI2 CI3 C ... C I n C-...

be an ascending chain of ideals of R. Consider the set I = Uco 1 In. Since the
ideals In are increasing, it is easy to see that I is an ideal of R. By Condition
(i), I = (f',... , fe), for some fx, ... , fs E R. Since for i = 1, ... , s, ff is in I,
there exists Ni such that f i E INi . Let N = maxi <i<s N1; then f i E IN for all
i = 1, .. - , s, and so I C IN. Thus I = IN, and Condition (ii) follows.

For the reverse implication, assume to the contrary that there exists an ideal
I of R that is not generated by a finite set of elements of R. Let f j E I. Then
there exists f2 El with f2 0 (fr). Thus (fi) C (fi, f2). We continue in this
fashion, and we get a strictly ascending chain of ideals of R which contradicts
Condition (ii). D

We now state and prove a more general version of the Hilbert Basis Theorem.

THEOREM 1.1.3. If R is a Noetherian ring, then so is R[x].

PROOF. Let R be a Noetherian ring, and let J be an ideal of R[x] . By Theorem
1.1.2, it is enough to show that J is finitely generated. For each n > 0, define
In = jr E R I r is the leading coefficient of a polynomial in J of degree n } U {o}
(that is, r is the coefficient of xn). It is easy to see that In is an ideal of R and
that In C In+1, for all n > 0. Since R is Noetherian, there exists N such that
In = IN for all n > N. Also, by Theorem 1.1.2, each iz is finitely generated,
say Ii = (r11,... , rit,). Now for i = 1, ... , N and j = 1, ... , t2, let f1j be a
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polynomial in J of degree i with leading coefficient ra3. To complete the proof of
the theorem it suffices to show that J = (fj I 1 < i < N,1 < 3 < ti) .

So let J* = (fij I 1 < i < N,1 < j < to) . Clearly J* C J. Conversely, let
f E J, and let the degree of f be n. We prove by induction on n that f E J.
If f = 0 or n = 0, then f E Io, and hence f E P. Now let n > 0, and assume
that all the elements of J of degree at most n -1 are in J* . Let r be the leading
coefficient of f. If n < N, then, since r E In, we have r =

E R. Then the polynomial g = 1=
1 sjfnj is of degree n, has leading

coefficient r, and is in P. Thus f - g has degree at most n - I and is in J. By
induction, f - g is in J*, and hence f is also in J* . If n > .N, then r E In = IN,
and r = E'j'=jsjrNj, for some s; E R. The polynomial g = Ety 1 s j xn ' f N j
has degree n, leading coefficient r, and is in J*. Thus f - g has degree at most
n - 1 and, by induction, f - g E P. Therefore f is in P.

Using a simple induction on n and the above result, we can easily show that
k[x1, ... , xn] is Noetherian (first noting that the field k is trivially Noetherian).
That is, Theorem 1.1.1 is true.

1.2. The Linear Case. In this section we consider the system

(1.2.1) f, = 0, ... , f a = 0, where each f i is linear.

In this case, the algorithmic method to answer all the questions raised in
Section 1.1 is the well-known row reduction which changes System (1.2.1) to row
echelon form. Consider the following examples.

EXAMPLE 1.2.1. Let f, = x + y - z and f2= 2x +3y+ 2z be linear polynomials
in R[x, y, z]. We consider the ideal I = (f1, f2) and the variety V (f 1, f2), that is,
the solutions to the system

(1.2.2)
fx+ y - z = 0

2x - 3y + 2z = 0.
We now perform row reduction on the matrix associated with this system:

1 1 --1 1 1 -1
2 3 2 0 1 4

The last matrix is in row echelon form. The solutions of System (1.2.2) are
the same as those of the following system

(1.2.3)
Jx + y - z --- 0

Y + 4z = 0.

and are easily obtained parametrically as: x = 5z and y = -4z.
The row reduction process is, in fact, a method to change a generating set for

the ideal I = (Ii, 12) into another generating set. We subtracted twice the first
row from the second row and replaced the second row by this new row. This
amounts to creating a new polynomial, f3 = f2- 2f, = y + 4z, and replacing f2
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by f3. The original ideal I is equal to the ideal (fl, f3). Indeed, since f3 = f2-2 fl
we see that f3 E I = (Ii, f2)> and since fz = 2f1 + fa we see that fs E (fj, f3)
and so I = (fl, f2) _ (fl, f3). This process simplifies the generating set of the
ideal I and allows for an easy resolution of System (1.2.2), that is, it makes it
easy to determine V(I).

The process by which the polynomial f2was replaced by f3 using fl is called
reduction of f2 by fl, and we write

f2 -f3
The new polynomial f3 that was created can be viewed as a remainder of

a certain division: we used the first term of fl, namely x, to eliminate a term
from f2, namely 2x. Since this first term of fl cannot eliminate any other terms,
the division stops and the remainder is exactly f3. This can be written in long
division form

2

x+y-z 2x+3y+2z
2x+2y-2z

y + 4z
which gives us f 2= 2f, + f3.

When the system has more than two equations, the division (or reduction) of
a polynomial may require more than one polynomial.

EXAMPLE 1.2.2. Let f1 = y - z, f2 = x + 2y + 3z, and f3 = 3x-4y+2z
be linear polynomials in Q [x, y, z]. We consider the ideal I = (/1, f2, f3) and the
variety V (f, 7 f2, f3), that is, the solutions to the system

(1.2.4)

y - z = 0
+ 2y + 3z 0

- 4y + 2z = 0.

The row reduction is as follows:

o 1 -1
1 2 3

3 -4 2

1 2 3 --- 1 2 3

0 -10 -7 0 0 -17
This says that a new generating set for I = (Ii, f2, ,f 3} is {fl,f2, -17z}. Note
that the polynomial -17z is obtained by the following reductions:

(1.2.5)

This amounts to a division, similar to that in Example 1.2.1, of f3 by 12 and f,
in succession.

Repeated use of the reduction steps, as in the above, will be denoted by
f

f3 + -17z.
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Note that we have

(1.2.6) f3 = -lOfi +3f2 -17z.

The coefficient "3" of f2 is the multiple of f2 used in the first reduction in (1.2.5)
and the coefficient "-10" of f, is the multiple of f, used in the- second reduction
in (1.2.5).

We would like to "extract" from these examples some general ingredients
that will be used in the general situation of non-linear polynomials. We will
concentrate on Example 1.2.2.

First, we imposed an order on the variables: we chose to eliminate x first
from the third equation of (1.2.4) and then we chose to eliminate y from the
new third equation. That is, when we row reduce a matrix there is an order on
how to proceed to introduce zeros: first we introduce zeros into the first column
(that is, we eliminate x), and then we introduce zeros in the second column (we
eliminate y) etc. We could have written the variables in the polynomials in a
different order, say fl = -z + y, f2 = 3z + 2y + x and f3, = 2z -- 4y + U. We
would have used the same row reduction method, but would have eliminated z
first, then y. We would have wound up with a different set of equations in row
echelon form, but they would have been just as good for our purpose of solving
System (1.2.4). So the order does not matter, but there must be an order. This
issue becomes essential in our generalization of these ideas. We note that in our
example the order is such that x is first followed by y and then z and so the
leading term of f, is y, the leading term of f2 is x, and the leading term of f 3 is
3x

Second, the reductions in (1.2.5) were obtained by subtracting multiples of f,
and f2. This had the effect of using the leading terms of f, and f2 to eliminate
terms in f3 and in -loy - 7z leaving the remainder of -17z and giving us
Equation (1.2.6). Note that -17z cannot be reduced further using the leading
terms of fi and f2.

The process of row reduction viewed in this light gives us a way to solve the
problems posed in Section 1.1. Let us concentrate on Example 1.2.1. First, we
have a very clear description of the solution space:

V(I) = V (fl s f2) = V 1f1, f3) = {A(5, -4, 1) I A E 1};

it is a line in R3. We next turn to the question of determining whether a poly-
nomial f E k [x, y, z] is in I and, if so, express it as a linear combination of the
elements in the generating set. In our case, because the leading term of f, is x
and the leading term of f3 is y, any polynomial f can be reduced to a polynomial
in z alone by the division process using both f, and f 3 in a way similar to that
used in (1.2.5). Also, any polynomial in z alone cannot be reduced using division
by f i and f3. The division process allows us to write f as a linear combination
of f, and f3 plus a remainder in a similar fashion to Equation (1.2.6) (the re-
mainder is in z alone). It is not too hard to see that f E I = (fi, f2) = (fi, f3) if
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and only if this remainder is zero. Finally one could also check that the basis of
the vector space k[x, y, z]/I is the set of all cosecs of powers of z. The statements
made in this paragraph may be a little difficult to verify or appreciate at this
point but will become clear later.

Exercises
1.2.1. Prove the last statement made about Example 1.2.1 in the last paragraph

of the section. Namely, prove that a basis of the vector space Q [x, y, z] /I
is the set of all cosecs of powers of z. Assume that we now eliminate z
first, then x, then y. What is the row echelon form of the matrix? Use
this to give another basis for the vector space Q [x, y, z] /I.

1.2.2. Following what was done for Example 1.2.1, solve the problems posed in
Section 1.1 for Example 1.2.2. Repeat this eliminating y first, x second
and z last.

1.2.3. Consider the following polynomials in Q[x, y, z, t], f, = x --- 2y + z + t,
f2 = x+y+3z+t, f3= 2x - y---z--t, and f4- 2x+2y+z+t. Solve
the problems posed in Section 1.1 for this set of polynomials.

1.2.4. Let A be an s x n matrix with entries in a field k. Let 1"... , fs be the
linear polynomials in k [xi, ... , xn] corresponding to the rows of A, as in
Example 1.2.2. Let B be a row echelon form for the matrix A and assume
that B has t non zero rows. Let gl, ... , gt be the polynomials correspond-
ing to the non zero rows of B. Prove that { fl, ... , f,) = (gi,... , gt) .
Use the polynomials gl, ... , gt to obtain a basis of the k-vector space
k[xl,...

1 xn1N11 ... , fs).

1.3. The One Variable Case. In this section we consider polynomials in
k[x], that is, polynomials in one variable. In this context we will use the well
known Euclidean Algorithm to solve the problems mentioned in Section 1.1. In
doing this we will present some of the standard material concerning k[x] but will
present this material using notation that will be more immediately generalizable
to the study of polynomials in many variables. The theory of polynomials in one
variable is a good illustration of the more general theory that will be presented
in the remainder of this chapter.

For 0 f E k [x], we recall that the degree of f , denoted deg (f ), is the largest
exponent of x that appears in f. The leading term of f, denoted It (f ), is the
term of f with highest degree. The leading coefficient of f, denoted lc (f) , is the
coefficient in the leading term of f. So, if f = anxn + an_xx'z-1 + - + aix + aa,
with ao,... , an E k and an 0 0, then deg(f) = n, lt(f) - anxn and lc(f) = an.

The main tool in the Euclidean Algorithm is the Division Algorithm (also
known as long division of polynomials) which we illustrate in the next example.

EXAMPLE 1.3.1. Let f = x3-2X2 +2x+8, and g = 2x2 + 3x + l be in Q[x].
We divide f by g to get the quotient 2 x - 4 and the remainder 27X + i9 as

follows:
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2x2 -I- 3x -I-1 x3 - 2x2 -F- 2x + 8

x3 + 2 xa -F
2
x

-2x2 +!x+8
Z

4x+ 49

11

and so we have f =(2x- )g+(x+ 49).

Let us analyze the steps in the above division. We first multiplied g by 2 x
and subtracted the resulting product from f. The idea was to multiply g by
an appropriate term, namely 2 x, so that the leading term of g times this term
canceled the leading term of f. After this first cancellation we obtained the first
remainder h = f -

a
xg = - 2x2 +

a
x + 8. In general if we have two polynomials

f = anx' +an-Ixn--1 +... +aj.x+aac and g = bmxm+bm_lxzn_I +...+blx+bo,

with n = deg(f) > m = deg(g), then the first step in the division of f by g is to
subtract from f the product b Using the notation introduced above, we

note that the factor of g in this product is iWf) and so we get h = f -
it

f g as
9 s

the first remainder. We call h a reduction of f by g and the process of computing
h is denoted

f-h.
Going back to Example 1.3.1, after this first cancellation we repeated the

process on h = _x2+ 3 x + 8 by subtracting It(h) x2 - 21 x - 7 from h to2 2 y gltgg- 2 4

obtain the second (and in this example the final) remainder r = 4 x + 2-9. This
can be written using our reduction notation

f-h- r.
Repeated use of reduction steps, as in the above, will be denoted

f .+ r.
We note that, in the reduction f -- h, the polynomial h has degree strictly

less than the degree of f. When we continue this process the degree keeps going
down until the degree is less than the degree of g. Thus we have the first half of
the following standard theorem.

TxEOPLEivt 1.3.2. Let g be a non-zero polynomial in k[x]. Then for any f E
k[xJ, there exist q and r in k[x] such that

f = qg + r, with r = 0 or deg(r) < deg(g).

Moreover r and q are unique (q is called the quotient and r the remainder).



12 CHAPTER 1. BASIC THEORY OF GROBNER BASES

PROOF. The proof of the existence of q and r was outlined above. The proof
of the uniqueness of q and r is an easy exercise (Exercise 1.3.3).

Observe that the outline of the proof of Theorem 1.3.2 gives an algorithm for
computing q and r. This algorithm is the well known Division Algorithm, which
we present as Algorithm 1.3.1.

INPUT: f,g E k[x] with g; 0

OUTPUT: q, r such that f = qg + r and
r = 0 or deg(r) < deg(g)

INITIALIZATION: q := 0; r := f

WHILE r # 0 AND deg(g) < deg(r) DO

It{r)q:=q+ 1t(9)

lt(r)r:=r- 1t(9)g

ALGORITHM 1.3.1. One Variable Division Algorithm

The steps in the WHILE loop in the algorithm correspond to the reduction
process mentioned above. It is repeated until the polynomial r in the algorithm
satisfies r = 0 or has degree strictly less than the degree of g. As mentioned
above this is denoted

f -L+ r.
EXAMPLE 1.3.3. We will repeat Example 1.3.1 following Algorithm 1.3.1.

INITIALIZATION: q := 0, r := f = x3 -- 2x2 + 2x + 8
First pass through the WHILE loop:

q0+=3

= 2x
r (x_2x2+2x+8)_(2x2+3x+1) = r-Zx2+ 2x+8

Second pass through the WHILE loop:
7X 2

q := 2x + 2 = 2x
_ 1,2(_ZX2 + .x+8)----(2x2+3x+1) =

2 2 4 4
The WHILE loop stops since deg(r) = 1 < 2 = deg(g).

We obtain the quotient q and the remainder r as in Example 1.3.1.
f g, itNow let I g) and suppose that f h. Then, since h = f - it(g)

is easy to see that I = (h, g), so we can replace f by h in the generating set
of I. This idea is similar to the one presented for linear polynomials studied in
Section 1.2. Using this idea repeatedly (that is, using Theorem 1.3.2 repeatedly)
we can prove the following result.
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THEOREM 1.3.4. Every ideal of k [x] is generated by one elements.

PROOF. Let I be a non zero ideal of k [x]. Let g E I be such that g 0 0
and n = deg(g) is least. For any f E I we have, by Theorem 1.3.2, that
f -- qg + r for some q, r c k[x], with r = 0 or deg(r) < deg(g) = n. If r 54 0, then
r = f - qg E I, and this contradicts the choice of g. Therefore r = 0, f -= qg,
and I C (g). Equality follows from the fact that g is in I.

Observe that the polynomial g in the proof of Theorem 1.3.4 is unique up to
a constant multiple. This follows from the fact that if I = (g1) = (ga), then gi
divides g2 and 92 divides gl.

We see that the polynomial g in the proof of Theorem 1.3.4 is the "best"
generating set for the ideal I = (1'... , f3). For example, the system of equations

(1.3.1) fi=0,...,fs=6with ffEk[x],i=1,...,s,
has precisely the same set of solutions as the single equation g = 0, where
(11) ... ,fs) = (9).

We now investigate how to compute the polynomial g of Theorem 1.3.4. We
will, first focus on ideals I C k [x] generated by two polynomials, say I = (fi, f2),
with one of fi , f2not zero. We recall that the greatest common divisor of f, and
f2, denoted gcd(fl, f2), is the polynomial g such that:

g divides both f j and f2;
if h E k[x] divides fl and f2, then h divides g;
lc (g) = I (that is, g is monic).

We further recall

PROPOSITION 1.3.5. Let fl, f2 E k[x], with one of f1, f2 not zero. Then
gcd(f1, f2) exists and (fl, f2) = (gcd(fl,f2)).

PROOF. By Theorem 1.3.4, there exists g E k[x] such that (11,12) (g).
Since g is unique up to a constant multiple, we may assume that lc (g) = W 1. We
will show that g = gcd (f l , f2). Since fl, f2 E (g), g divides both f, and f2- Now,
let h be such that h divides both f 1 and f2. Since g is in the ideal (11,12), there
exist u1, u2 E k [x] such that g = u 1 f 1 + 72212. Thus h divides g, and we are
done.

As a consequence, if we have an algorithm for finding gcd's, then we can
actually find a single generator of the ideal (/1,12)- The algorithm for computing
gcd's is called the Euclidean Algorithm. It depends on the Division Algorithm
discussed above and the following fact.

LEMMA 1.3.6. Let fl, f2 E k[x], with one of fl, f2 not zero. Then gcd(fl, f2)
gcd(f1 -- qf2, f2) for all q E k [x] .

3R,ecall that an ideal generated by one element is called a principal ideal, and an integral
domain for which every ideal is principal is called a principal ideal domain, or PID. Therefore
Theorem 1.3.4 says that k[x] is a PID
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PROOF . It is easy to see that (11, f2y = (fl - qf2, f2). Therefore, by Propo-
sition 1.3.5,

(gcd(f1,f2)) = {.fl, f2) = (fi - qf2, f2) = (gcd(fi - q.f2, f2)).

Thus since the generator of a principal ideal is unique up to constant multiples,
and since the gcd of two polynomials is defined to have leading coefficient 1, we
have gcd(fi, f2) = gcd(fi - qf2, .f2)- E3

We give the Euclidean Algorithm as Algorithm 1.3.2. The reader should note
that the algorithm terminates because the degree of r in the WHILE loop is
strictly less than the degree of g, which is the previous r, and hence the degree of
r is strictly decreasing as the algorithm progresses. Also, the algorithm does give
gcd(f l , f2) as an output, since at each pass through the WHILE loop, we have
gcd(f, 1 i f2) = gcd(f,, g) = gcd(r, g), by Lemma 1.3.6, as long as g 54 0. When
g - 0, then gcd(f 1, f2) = gcd(f , 0) = f f. The last step in the algorithm
ensures that the final result has leading coefficient 1 (that is, is monic).

INPUT: fl, f2 E k [x], with one of fl, f2 not zero

OUTPUT: f = gcd(f 1, f2)

INITIALIZATION: f := f,g := f2

WHILE g 0 DO

f - + r, where r is the remainder of the division of f by g

f := g

g:=r

f==f,f
ALGORITHM 1.3.2. Euclidean Algorithm

To illustrate this algorithm, consider the following
EXAMPLE 1.3.7. Let f, = x3 - 3x + 2 and f 2 = X2- 1 be polynomials in Q [x] .

INITIALIZATION: f : = x3 - 3x + 2, g : = x2
First pass through the WHILE loop:

2

x3 3x + 2 ---} -2x + 2
f:=x2-1
g:=-2x+2

Second pass through the WHILE loop:
x2-1-- x-1^2 0

f -2x+2
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g:=0
The WHILE loop stops

1 _ i x ._ 1

Therefore gcd(f 1, f2) = x --1.
We now turn our attention to the case of ideals generated by more than two

polynomials, I with not all of the fz's zero. Recall that the
greatest common divisor of s polynomials fl, ... f . , denoted gcd(f l , ... , f s) , is
the polynomial g such that:

g divides f Z, i = 1,... , s;
if h E k [x] divides ft, i = 1, ... , s, then h divides g;
lc(g) = 1 (that is, g is monic).

PROPOSITION 1.3.8. Let fl, ... , fs be polynomials in k[x]. Then
(i) fs) = (gcd(fi,... ,fs));

(ii) ifs > 3, then gcd(fl, ... , fs) = gcd(fl, gcd(f2, .. , f5))

PROOF. The proof of statement (i) is similar to the proof of Proposition 1.3.5.
To prove statement (ii), let h = gcd(f2, ... , fe). Then, by (i), ff2,... , fs) = (h),
and hence ff',... , f a) = (fi, h). Again, by (i),

gcd(fi, ... , fs) = gcd(fi, h) = gcd(fi, gcd(f2,...

as desired. D

With the ideas developed in this section we can now solve all the problems
raised in Section 1.1 for the special case of polynomials in one variable. As noted
before, to solve System (1.3.1) we first compute g = gcd (f l , ... , f S) . It then
suffices to solve the single equation g = 0. The computation of gcd (f 1, ... , f')
is done by induction, a polynomial at a time, as is easily seen from part (ii)
of Proposition 1.3.8. To decide whether a polynomial f is in the ideal I =
(Ii,... , f8), we first compute g = gcd(f, i , ... , f,). We then use the Division
Algorithm to divide f by g. The remainder of that division is zero if and only if
f is in the ideal I = (fi,... , f. } = (g). Using the notation introduced earlier:

f E I = (g) if and only if f -+ 0.

Also, the coset representative of the element f + I in the quotient ring k [x] If
is r + I, where r is the remainder of the division of f by g (that is, f + r,
with r = 0 or deg(r) < deg(g)). Finally, the cosets of 1, XI X2, ... , xd-1 where
d = deg (g) , form a basis for the k-vector space k[x]II (Exercise 1.3-6).

In the last section (the linear case) we saw that there were two ingredients for
our solution method: a reduction algorithm (in that case it was row reduction)
and an order among the terms. In the current section we saw that the concept
of reduction leading to the Division Algorithm (Algorithm 1.3.1) was the key
to solving the problems mentioned in Section 1.1. We have not yet stressed the
importance of the ordering of the terms in the one variable case, even though we
have already used the notion of ordering in the concepts of degree and leading
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term. In effect, the ordering is forced upon us. Indeed, in the Division Algorithm,
when we compute r - it(T g, the terms that we introduce (corning from

it
T g)

(9 9
must be smaller than the leading term of r which has been canceled, in order for
the algorithm to terminate. This can only occur if the powers of x are ordered so
that x7z < xm if and only if n < m (Exercise 1.4.2). We note that the condition
n < m is equivalent to the statement that xn divides xm .

ExercLses
1.3.1. Follow Algorithm 1.3.1 (as in Example 1.3.3) to divide f = 2x5 -- 4x3 +

x2 -x±2 byg=x2+x+1.
1.3.2. Find a single generator for the ideal I = (x6 -1, x4 + 2x3 + 2x2 - 2x - 3).

Is x5 + x3 + x2 - 7 E I? Show that x4 + 2x2 -- 3 E I and write x4 + 2x2 - 3

as a linear combination of x6 - 1 and x4 + 2x3 + 2x2 - 2x -- 3.
1.3.3. Prove that q and r obtained in Theorem 1.3.2 are unique.
1.3.4. Compute gcd (fl, f2, f3) using Proposition 1.3.8, where fi = x5 --- 2x4 - x2 +

2x, f2 = x7+x6-2x4-2x3+x+1, and f3 = x6-2x5+x4-2x3+x2- 2x.
1.3.5. Modify Algorithm 1.3.2 to output f, u1, u2 E k[x] such that f = gcd(f 1, f2)

=and f = = Ui f 1 + u2 f 2 . Apply your algorithm to the polynomials f,
xs -1, f2 = x4 + 2x3 + 2x2 - 2x -- 3 E Q[x] of Exercise 1.3.2.

1.3.6. Let g E k [x] be of degree d. Prove that {1 + (g),x+ (g),... , xd-1 + (g) }
is a k -vector space basis for k[x]/(g).

1.3.7. Show that in k[x, y], Theorem 1.3.4 is false. In particular, show that the
ideal (x, y} C k [x, y] cannot be generated by a single element. Show that,
in general, k[xl, ... , x,,] is not a PID.

1.3.8. Prove that a system of equations f = 0, g = 0 with two relatively prime
polynomials f,g E k [x, y] has at most finitely many solutions. [Hint:
View f and g in k(x) [y] and use the Gauss Lemma: f and g are relatively
prime when viewed in k[x, y] if and only if they are relatively prime in
k(x) [y], where we recall that k(x) denotes the field of fractions of k[x], i.e.
k(x) _ {b 1 a, b E k[x],b0 0}-]

1.3.9. Let g E k [y] be irreducible, and let f E k [xl , ... , xn, y] be such that
f 0 (g). Prove that (f,g) rl k [x 1, ... , x7z] 0 {0}. [Hint: Use the hint of
Exercise 1.3.8 with k(x1, ... ) xn) [y], where we recall that k(x1i ... , xn)
denotes the field of fractions of k[x1, ... , xn], i.e. k(x1, ... , xn) IS I
a, b E k[xl, ... , xn], b 0}.]

1.3.10. Let f, g E C [x, y] . Prove that if f and g have a non-constant common
factor in C[x, y], then V(f, g) is infinite. That is, show that if h E C[x, y]
and h is not in C, then the equation h = 0 has infinitely many solutions.
Generalize this exercise to the case where h E C[x1, ... , xn], for n > 2.

1.3.11. Let 11,12, h E k [x]. We consider the equation u1 f 1 + u2 f2 = h, with
unknowns u1, u2, to be polynomials in k [x] .
a. Show that the above equation is solvable if and only if g = gcd (f l , f2)
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divides h.
b. Prove that if g = gcd(fl, f2) divides h, then there exist unique ul, u2 E

k[x] that satisfy the equation above and such that deg(uF) < deg(f2) -
deg(g).Moreover, if deg(h) < deg(f1)-{-deg(f2) -deg(g), then deg(u2) <
deg(fl) - deg(g). Give an algorithm for computing such ul and u2.

c. Let fl = x3 - 142 = x2 +x - 2,h = x2 - 4x -F 3 E fi[x]. Find ul, u2
which satisfy b.

d. Use b to show that if fl and f2 are relatively prime, then for every
h E k[x] such that deg(h) < deg(fl) -I-deg(f2), there exist ul, u2 E k[x]
such that

h ul U2

fif2 ,fl + f2
with deg(ul) < deg(fl) and deg(u2) < deg(f2). (This is the partial
fraction decomposition of rational functions.)

e. Use d to compute the partial fraction decomposition of

x--3
x3 +3x2 +3x +2.

f. Generalize a and b to the case of s polynomials f, , ... , f s E k [xJ.
1.3.12. when the coefficients of polynomials in one variable are not in a field

k, the Division Algorithm (Algorithm 1.3.1) has to be modified. In this
exercise we present a "pseudo" division algorithm for polynomials in R[x],
where R is a unique factorization domain (UFD).
a. Let f , g E R[x] be such that g 0 and deg(f) > deg(g). Prove that

there exist polynomials q, r E R[x] such that lc(g)if = gq + r, where
r = 0 or deg(r) < deg(g), and £ = deg(f) - deg(g) + 1.

b. Give an algorithm for computing q and r. The polynomials q and r are
called the pseudo-quotient and the pseudo-remainder respectively.

c. Use this algorithm to find q and r in the following cases:
(i) f = 6x4 -- 11x3 - 3x2 + 2x, g = 1Ox3 - 23x2 - lox - 3 E Z[x];

(ii) f = (-2 + 4i)x3 + (5 + 3i)x2 2ix + (-1 + i), g = 2x2 + (1 +
i)x + (1 + i) E (Z[i])[x], where i2 = -1.

d. A polynomial f E R[x] is called primitive if its coefficients are relatively
prime. Let f, g be primitive polynomials in R[x], and let lc(g) f =
gq + r be as in a. Prove that gcd(f , g) = gcd(g, r'), where r' is the
primitive part of r; i.e. r = ar', a E R and r' primitive.

e. Use d to give an algorithm for computing gcd(f, g).
f. Use e to compute gcd(f, g) for the examples in c.

g. Use the above to give an algorithm for computing gcd(f, , g), where
f,gER[xl,... ,xn], RaUFD.

h. Use g to compute gcd(f, g), where f = (y2 + y)x3 + (.--y3 - y + 1)x2 +
(-y3 + y2 - 2)x + (...y2 + 2y), g = (y2 + 2y + 1)x2 + (y3 + 3y2 -- 2)x +
(y3 -- y2 - 2y) E Z[x, y].
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1.4. Term Orders. It was important in the last two sections to specify an
order on the power products. In the linear case, we computed with x first, then y,
etc. The particular order used was unimportant but did have to be specified. In
the one variable case we used the highest degree term first and this was required
by the procedures used. In more than one variable we need an order analogous
to the ones used in these two special cases and this will be the focus of this
section.

First recall that the set of power products is denoted by

Tn :G,1...An 1)3i EN,i=1,...,n

Sometimes we will denote xnn by xfl, where f3 = (131, ... , C3n } E Nn.
We would like to emphasize that, throughout this book, "power product" will

always refer to a product of the xi variables, and "term" will always refer to
a coefficient times a power product. So every power product is a term (with
coefficient 1) but a term is not necessarily a power product. We will also always
assume that the different terms in a polynomial have different power products
(so we never write 3z2y as 2x2y + x2 y).

There are many ways to order Tn. However, we already know some properties
that a desirable order must satisfy. For example, the orders in the linear and
one variable cases were used to define a division (or reduction) algorithm, thus
the order had to extend divisibility relations (see the discussion at the end of the
previous section). That is, if x' divides x3, then we should have xa < x°, or
equivalently, if az < 13i for all i = 1, ... , n, then x°` < x-5. Also, in the divisions
described in Sections 1.2 and 1.3, we arranged the terms of the polynomials
in increasing or decreasing order, and hence we must be able to compare any
two power products. Thus the order must be a total order, that is, given any
xa, xfl E T'n, exactly one of the following three relations must hold:

xa <,P, xa= orxa>x0.

Moreover, the reduction - + described in Sections 1.2 and 1.3 must stop after a
finite number of steps. Recall that whenever we had f -!-*+ r, the polynomial r
was such that its leading power product was less than the leading power product
of g: in Section 1.2, that meant that the reduced polynomial r was obtained
by eliminating a leading variable using g; in Section 1.3, that meant that the
remainder polynomial r had degree less than that of g. Therefore, for the reduc-
tion to be finite, we need that the order be a well-ordering, that is, there is no
infinite descending chain aca1 > xa2 > xa3 > ... in Tn. An order that satisfies
all these conditions is called a term order, and it turns out that these conditions
are captured in the following definition (this will be justified in Proposition 1.4.5
and Theorem 1.4.6).

DEFINITION 1.4.1. By a term order on Tn we mean a total order < on Tn
satisfying the following two conditions:
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(i) 1 < xO for all XP E Tn, xS 1;

(ii) If xa < x13, then Zax'Y < XPX_', for all xl' E Tn.

Before we prove that the basic properties we discussed above follow from the
conditions in Definition 1.4.1, we give three examples of term orders. The easy
verification that they are term orders will be left to the exercises (Exercise 1.4.3).

DEFINITION 1.4.2. We define the lexicographical order on Tn with x1 > x2 >
.. > xn as follows: For

a = (at,... ,an),f = (thy... , fan) E Nn

we define

the first coordinates ai and ,3z in a and j3
from the left, which are different, satisfy ai < 8j.

So, in the case of two variables x1 and x2, we have

1 <x2 <x2 <x2 < ... <x1 <x2x1 <x2x1 < ... <x1 < ... .

As noted before, when we do examples in a small number of variables, we will
usually use x, y, or z instead of the subscripted variables above. It is important
to note that we need to specify the order on the variables. For example, if we
use the lexicographic order with x < y, then we have

1<x<x2 <x' <... <y<xy<x2y< <y2 <...

(We deliberately altered the order of x and y from what was probably expected
to emphasize the point that an order on the variables must be specified.)

Note that, for this order, xi is always greater than x2 , for all non-zero 1u, v c N.
This will be of importance later on (see Section 2.3). We will always denote this
order by "lex". We emphasize again that we always need to specify the order on
the variables.

DEFINITION 1.4.3. We define the degree lexicographical order on Tn with
x1 > x2 > - > xn as follows: For

of = (al,... ,an),0 = (01,... ,13n) E Nn

we define

L.ri-=1 aZ <

X
or

En
1az = Ej=JA and x0 < x13

with respect to lex with x1 > x2> .>xn.
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So, with this order, we first order by total degree and we break ties by the lex
order. In the case of two variables x1 and x2, we have

1 < x2 < x1 < x2 < x1x2 < xi < x2 < x1x2 < xIx2 < xa <

Or, using the degree lexicographic ordering in k [x, y] with x < y, we have

1 <x <y <x2 <xy < y2 <x3 < x2y <xy2 <y3 < --

We will always denote this order by "deglex". Again, we always need to
specify the order of the variables.

DEFINITION 1.4.4. We define the degree reverse lexicographical order on Tn
with x1 > x2 > . > Xn as follows: For

Cl = (a1,... ,an),0 = (,Q1,... ,On) E Nn

we define

xa < XP

>1oi < ,Z x jz
or

E=1 ai = E=16j and the first coordinates ai and (3z in
a and /C3 from the right, which are different, satisfy aj > fli.

{

We will always denote this order by "degrevlex". It is easy to see that in the
case of two variables deglex and degrevlex are the same orders (Exercise 1.4.4).
However, if there are at least 3 variables, this is not the case anymore, as the
following example shows:

x2 jx2x3 > x1x2 with respect to deglex with x1 > x2 > x3

but
x2 Jx2x3 < x1x2 with respect to degrevlex with x1 > X2 > x3.

This order turns out to be extremely good for certain types of computations.
The important property that this order possesses is given in Exercise 1.4.9.

Note that the term "right" in Definition 1.4.4 refers to the smallest variable.
That is, we have x1 > x2 > ... > xn. This must be especially kept in mind when
we consider examples involving x, y, z (see Exercise 1.4.1) .

There are many other orders on T' which we will see later in both the exercises
and the text. The three examples given above are the ones we will use the most.
We will see that each order has different properties and which order we use will
depend on the problem we want to solve.

We now return to the general definition of a term order. We want to observe
that a term order, as defined in Definition 1.4.1, has all the properties discussed
before that definition. That is, we need to prove that any term order extends
the divisibility relation and is a well ordering.

PROPOSITION 1.4.5. For xa, x0 E Tn, if xa divides x-8 then x' < xp.
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PROOF. By assumption there is an x'f E Tn such that x0 = = xa ae'y. By
Condition (i) in Definition 1.4.1 we have x1f > 1 and so by Condition (ii) we
have xP = xa x'y > x", as desired.

Now from the Filbert Basis Theorem (Theorem 1.1.1) we can prove

THEOREM 1.4.6. Every term order on T' is a well-ordering; that is, for every
subset A of Tn, there exists xa E A such that for all x3 E A, x°C < x1 .

PROOF. Suppose to the contraxy that the given term order is not a well
ordering. Then there exist x"E T, i = 1, 2, ... such that

(1.4.1) xai > 2:112 > xa3 > .. .

This defines a chain of ideals in k [x l , ... , xn]

(1.4.2) (a1) c (', xa2) C (a1 xa2 , xa3) C ... .

We first note that (x°" , ... , x°ti) 0 (, xa:+1), since if we had equality,
then

xat+1 -- E ujxacj

,

j=1

where u; is a polynomial in k[xi,... ,x], j 1i... , i. If we expand each u3 as a
linear combination of power products, we see that each term in u? xai is divisible
by xaj . Thus every term of the right-hand side of Equation (1.4.3) is divisible
by some xaf,1 < j < i. But x' 1 must appear as the power product of a term
on the right-hand side of Equation (1.4.3). Therefore xai+1 is divisible by some
xa3 ,1 < j < i, and hence xa=+1 > xai for some j, 1 < j < i, by Proposition
1.4.5 and this contradicts (1.4.1). So if we go back to the chain of ideals (1.4:2),
we now see that this chain is a strictly ascending chain of ideals in k [x 1, ... , x,,] .

This is a contradiction to the Hilbert Basis Theorem (Theorem 1.1.1).

Theorem 1.4.6 will be used throughout this book for many proofs in a manner
described in Appendix B.

To finish this section, we fix some notation. First we choose a term order4 on
k jx 1, ... , x,,,]. Then for all f E k [x 1, ... , x,,], with f 0 0,we may write

f = a,xal +a2xa2 +...+a,,x r7

where 0 36 aj E lv, xai E Tn, and x" > x°`2 > ... > xar . We will always try to
write our polynomials in this way. We define:

lp(f) = xa1, the leading power product of f ;
lc (f) = a 1, the leading coefficient of f;
lt(f) = alxa', the leading term of f.

4 W e will s a y that w e h a v e a term order on . . . . . . . . . X } when we have a term order on T' .



22 CHAPTER 1. BASIC THEORY OF GROBNER BASES

We also define lp(O) =1c(0) = It(O) = 0.
Note that lp, lc, and It are multiplicative; that is, lp(fg) = lp(f) lp(g), lc(f g)

= lc(f) lc(g), and lt(f g) = lt(f) lt(g). Also, if we change the term order, then
lp{ f ), Ic(f ), and It(f) may change. For example, let f = W yz + 3xy3 - 2x3

if the order is lex with x > y > z, then lp(f) = x3, ic(f) _ -2, and
it(f) = -2x3;
if the order is deglex with x > y > z, then lp(f) = z2yz, lc(f) = 2, and
It(f) = 2x2yz;
if the order is degrevleac with x > y > z, then lp(f) .- xy3, lc(f) = 3,
and lt(f ) = 3xy3.

Exercises
1.4.1. Consider the polynomial f 3x4 z - 2x3 y4+7x2 y2 z3 - 8xy3 z3 E Q [x, y, z] .

Determine the leading term, leading coefficient, and leading power product
of f with respect to deglex, lex, and degrevlex with x > y > z. Repeat
the exercise with x < y < z.

1.4.2. In the polynomial ring in one vaxiable, k[x], let < be a term order. Show
that it must be the usual one, i.e. the one such that

1<x<x2<x3<....

1.4.3. Show that lex, deglex and degrevlex are term orderings.
1.4.4. Show that in k [x, y] , deglex and degreviex are the same orders.
1.4.5. Given polynomials I',... , f s and u1, ... , us in k[x 1, ... , X.1, show that

lp(fful + ... + fsus) < max i<i<s(lp(fz) lp(uj)). Does equality necessarily
hold? (Prove or disprove.)

1.4.6. Let < be a total order on T' satisfying condition (ii) in Definition 1.4.1,
and assume that < is also a well ordering. Prove that for all xa 1 in
Tn, we have 1 < xa . (This is a partial converse of Theorem 1.4-6).

1.4.7. Let x1,... , x t, be variables, and let m < n. Prove that any term order
on power products in the variables x1, ... , x,n is the restriction of a term
order on power products in the variables x1, ... , xn. [Hint: Use the idea of
lex, grouping the variables x1, ... , xm together, and using the given term
order on them.]

1.4.8. Let f E k [x1, ... , xn] and consider the lex order with x 1 > x2 > - . > x.
Let i E {i,... , n}. Prove that f E k [xi, ... , x,z] if and only if It (f) E

xz,..., x'n.k[ ]

1.4.9. We call a polynomial f E k[x1,... , x,,] homogeneous provided that the
total degree of every term is the same (e.g. x2 y2 z + xy4 --- z' is homoge-
neous since every term has total degree 5, while x3y2 - x2yz2 +y2z is not
homogeneous; the latter polynomial is the sum of the two homogeneous
polynomials x3y2 - x2yz2 and y2z, called the homogeneous components of
x3y2 - x2yz2 +y2z) . Let f be a homogeneous polynomial and let the term
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ordering be degrevlex with xi > x2 > ... > xn. Prove that xn divides f
if and only if x7, divides It (f) . Show more generally that f E (xi,... , x,,)
if and only if It (f) E (xi,... , xn) .

1.4.10. The reviex ordering is defined as follows: For a = (a1,... , as), j3 =
(fl,... ,13) E Nn we define xa < x0 if and only if the first coordinates
a2 and /33 in a and 0 from the right which are different satisfy ai > 8i .
Show that revlex is not a term order on k [xl, ... , xn] .

1.4.11. Let I C k [x 1, ... , xn] be an ideal generated by (possibly infinitely many)
power products (such an ideal is called a monomial ideal). Prove that
there exist a 1, ... , a n E Nn such that I = (x,... , xam) . [Hint: First
show that a polynomial f E I if and only if each term of f is in I.]

1.4.12. (Dickson's Lemma) Prove that the result of Exercise 1.4.11 is equivalent to
the following statement: Given any A C Nn, there exist al, ... , E A
such that

M

A c U (ai + Nn).
i=1

(Bya+Ntm wemean{a+-yy ENtm}.)
1.4.13. Prove that every monomial ideal I (see Exercise 1.4.11) contains a unique

minimal generating set. That is, prove there is a subset G C I such that
I = (G) and for all subsets F C I with I = (F) we have G C F. [Hint:
Prove first that if I= (xal,... ,x°`m) then for0 ENn we have x-3 EIif
and only if there is an i such that xai divides xa.]

1.4.14. (Mora-Robbiano [MoRo]) Let

?r61 = (u11,u12,... 7 2Lln ,... ,um = (V.ml,Um2,... ,Umnz E Qn.

We define an order in Q'''' as follows: (a1,... , a,,,) < (/31, ... , f3m) if and
only if the first az, fi from the left which are different satisfy ai < ,i. (Note
that this is just lex on Q"'.) Now we define an order <u in k [xl , ... , xn]
as follows: for a, 0 E Nn,

xa <UxJ9 * ,a.um) < (/3.u1,... ,/3 Um),

where a ui is the usual dot product in Q".
a. Prove that <u is a transitive relation.
b. Prove that xa <, x,6 implies xax'f <u x°x'y for all a,#, -y E N'1.
c. Prove that if the vectors ul, ... , Um span Qn, then the order, <u, is

a total order.
d. Prove that if the vectors u1, ... , um span Q", then <u is a term order

if and only if for all i, the first u j such that u3, 54 0 satisfies uji > 0.
e. Let ui,... , um be vectors satisfying: for all i, the first u3 such that

uji 54 0 satisfies uji > 0. Show that the partial <u can be extended to
a term order, <u' 5 that is, xa <u xO implies xa <u' xO.
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1.4.15. What vectors ui,... , u,, E Q' in Exercise 1.4.14 give rise to the lex, to
the deglex, and to the degrevlex term orderings with x1 < x2 < . < x ?
Same question with x1 > xz > ... > xn.

1.4.16. Let f = 2x4y5 + 3x5y2 + x3 Z, f 9 E Q[x, y]. Show that there is no term
.ordering on Q[x, y] such that lp(f) = x4y5

1.4.1?. (*) Let Xi = x i1 xni», i = 17... , r, be power products in 1 [x1, ... , xn]
and let f_ Ei= ciXi, where ci E k -- {0}, for i = 12... , r. Assume
that there is a term order < such that lp(f) = X1. Consider the vectors
ai = (a1,... , azn) E Nn, i = 1,... , r. In this exercise we show that there
exists a vector u = (u1,... , un) E Qn such that ui ? 0 for i = 1, ... , n
and ax . u En a13 U, > ? ai3 u3 = a, - u for all £ = 2,... , rj=1 =1
(compare with Exercise 1.4-14). We will use the following result from
linear algebra (see, for example, [Ga]):

THEOREM. Let A be any r x n matrix with rational entries, then
exactly one of the following two alternatives holds:

there exists a row vector v E Qr with non negative coor-
dinates such that the coordinates of the vector vA are all
negative or zero;
There exists a column vector u E Qn with non-negative co-
ordinates such that the coordinates of the vector Au are all
positive.

a. Use the above result to show that there is a vector u E Qn with non
negative coordinates such that a I u > at - u for £ = 2, ... , r. [Hint:
Consider the matrix A whose rows are the vectors a1 -- at.]

There is a geometric way to view the linear algebra theorem used above.
First w e define the convex hull of the vectors al, _ .. , ar as follows:

r r
conv(al,... , ar) ciai I cz > 0, i = 11 ... , r, and q = 1

z=1 Z=i

Also, let {ei,... , en} be the standard basis for Qn, that is, ei is the
vector in Qn with all coordinates equal to 0 except the ith coordinate
which is equal to 1.

b. Show that the first alternative in the linear algebra theorem above is
equivalent to the condition that the zero vector is in the convex hull
of the rows of A together with the vectors ei, i = 1, ... , n_ Note that
the second alternative implies that there is a vector u which makes an
acute angle with every row of A; i.e. the hyperplane, L, orthogonal to
u has all the rows of A on one side, and so L has the convex hull of
the rows of A and the ei's on one side.

c. Conclude that X, is the leading term of f with respect to some term
order if and only if the zero vector is not in the convex hull of the
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vectors a, --- az, i = 2, ... , r and e3, j = 1, ... , n. [Hint: See Exercise
1.4.14, part e.]

d. Use the above to determine all the possible leading terms of f =
2x4y5 + 3x5y2 + x3y9 - x'Ty.

1.4.18. In this exercise we prove the Fundamental Theorem of Symmetric Poly-
nomials. Recall that a polynomial f E k [x1, ... , x,,] is called symmet-
ric provided that when the variables of f are rearranged in any way,
the resulting polynomial is still equal to f. For example, for n = 3,
x1 + X2 + x3, x1x2 + x1 x3 + x2x3 i and X1X2x3 are symmetric. For general
n, let a, = x1+x2+-..+xn,t72 =x1x2+.X1X3+...+xn-1xn,... ,0n =
xix2 . xn. These polynomials are called the elementary symmetric poly-
nomials. The theorem states that every symmetric polynomial is a polyno-
mial in the elementary symmetric polynomials. Fix the lex term ordering
on k[xi, ... , xn] with x1 > x2 > . - > xn. Let f E k[xj, ... , xn] be a
symmetric polynomial. We need to show the existence of a polynomial
h E k[x1, ... , xn] such that f = h(o1,... , o'n).
a. Let 1W) = cx' where a = (a1,... , an) E Nn and c E k. Show that

b. Let
g

-o-cal -a2qa2 -a3 ... 0an- IL
1 2 n-1 n

Show that lp(g) = x'.
c. Now observe that lp(f - cg) < lp(f) and that f - cg is a symmetric

polynomial. Use the well ordering property of term orders to com-
plete the proof of the existence of h and so to prove the Fundamental
Theorem of Symmetric Polynomials.

d. Note that the above proof yields an algorithm for computing h given
the symmetric polynomial f. Use it in the case n = 2 to write x4 + x2
as a polynomial in ai = x1 + X2 and o2 = xlx2.

1.5. Division Algorithm. In this section we study the second ingredient
in our solution method for the problems mentioned in Section 1.1: a division
algorithm in k [x 1, ... , xn] . In Sections 1.2 and 1.3 we had a division algorithm,
also referred to as a reduction process. We will define a division algorithm in
k [x 1, ... , xn] that extends both of the algorithms seen in the previous sections.

The basic idea behind the algorithm is the same as for linear and one vaxi-
able polynomials: when dividing f by fl, ... , f8, we want to cancel terms of f
using the leading terms of the A's (so the new terms which are introduced are
smaller than the canceled terms) and continue this process until it cannot be
done anymore.

Let us first look at the special case of the division of f by g, where f, g E
k[xi,... , xn]. We fix a term order on k[xl,... , xn].
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DEFINITION 1.5.1. Given f, 9, h in k[xi, ... , x,], with g 0, we say that f
reduces to h modulo g in one step, written

h,

if and only if Ip(g) divides a non-zero terrra5 X that appears in f and

X
h f - F--t (g) g.

It must be strongly emphasized that in this definition we have subtracted
from f the entire term X and we have replaced X by terms strictly smaller than
X. (We observe that in the special cases presented in Sections 1.2 and 1.3 we
considered only the case where X = It(f) ).)

For example, let f = 6x2y --- x + 4y3- 1 and g = 2xy + y3 be polynomials in
Q[x, y] . If the term order is lex with x > y, then f -- h, where h = --3xy3 -
x + 4y3 -1, since, in this case X = 6x2y is the term of f we have canceled using
It(g) = 2xy; in fact X = lt(f). (We are not allowed to cancel, say, only 4x2y.
Another way of saying this is that we are not allowed to write f = 4x2y + 2x2y -
x + 4y3 _ I and just cancel 4x2y) . We now consider the term order deglex with
x > y so that now It(g) = y3 and so f -L h, where now h = 6x2y - 8xy - x --1.
We note that in this latter case we canceled the term X = 4y3 from f which is
not the leading term of f.

We can think of h in the definition as the remainder of a one step division of
f by g similar to the one seen in Section 1.3. We can continue this process and
subtract off all terms in f that are divisible by It (g) .

EXAMPLE 1.5.2. Let f = y2x + 4yx - 3x2, g = 2y + x + 1 E Q[x, y]. Also, let
the order be deglex with y > x. Then

-1x2 + 7 x - 2 9 1 3 7+ 7 x - 11x2 -- p 1x3 - 9x2 - 7X.f
2y 2y 4 2y 4 4 2 4

Note that in the last polynomial, namely
4

x3 - 2x2 - 7 x, no term is divisible by
lp(g) = y and so this procedure cannot continue. We could write this reduction
process in long division format as

5From now on we will use capital letters, usually X, Y or Z, to denote power products or
terms instead of the more cumbersome x°t or axa unless we need to make an explicit reference
to the exponent a. We will also say X > Y, for term X, Y, provided that lp(X) > lp (Y) .
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2y+x+1
2yX - 4x2+4x
y2x + 4yx - 3X2

y2x +
2

yX2 f
2
yx

-1 yx2 +
2

yx -- 3x2

2 yx2 - 4x3 _ 4x2

4x3+2yx- 4x2

2yx+ 4x2 + 4x

27

4x3 2x2 _ i7

In the multivariable case we may have to divide by more than one polynomial
at a time, and so we extend the process of reduction defined above to include
this more general setting.

DEFINITION 1.5.3. Let f j h, and f, , ... , fs be polynomials in k[xl, ... , xn],
witty f i 00 (1 <i< s), and let F = { f l , ... ,f8}. We s ay that f reduces to h
modulo F, denoted

f F-+ h,
if and only if there exist a sequence of indices i1, i2, ... , it E {1,. . . , s} and a
sequence of polynomials h1, ... ,ht-1 E k[x1,... , x7z] such that

_.
f-t-+

h2
123

. . .
fit-1 fitf.itp h1 -f ._ _ - t ? h.ht

EXAMPLE 1.5.4. Let fI = yx - y, f2 = y2 - x E Q [x, y]. Let the order be
deglex with y > x. Let F = {fi, f2}, f = y2x. Then

since

y2x - y2 f2 ? X.

DEFINITION 1.5.5..A polynomial r is called reduced with respect to a set of
non-zero polynomials F = = {fl, ... , f, } if r = 0 or no power product that appears
in r is divisible by any one of the lp(ff), i = 1,... , s. In other words, r cannot
be reduced modulo F.

DEFINITION 1.5.5. If f --- + r and r is reduced with respect to F, then we
call r a remainder for f with respect to F.

The reduction process allows us to define a division algorithm that mimics
the Division Algorithm in one variable. Given f, fl, ... , fs E k [xl , ... , xn] with
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fi 0 0 (1 < i < s), this algorithm returns quotients u1, . _ . , us E k [xl, ... , xn],
and a remainder r E k[xl, ... , x1 ], such that

f=u1.fi+...+u3!3+r.

This algorithm is given as Algorithm 1.5.1.

INPUT: f, f1, ... , f3 E k[x1, ... , xn] with fZ 0 (1 < i < s)

OUTPUT: u1, ... , us, r such that f = u1 f 1 + ... + u5 f f + r and
r is reduced with respect to {fi,... , f3} and

max(lp(u1) lpW.f1), ... , lp(u5) lp(fs), lp(r)) = lp(f )

INITIALIZATION: ul : = 0, U2 : = 0, ... , us : = 0, r : = 0, h := f

WHILE h 0 0 DO

IF there exists i such that lp(fi) divides lp(h) THEN

choose i least such that lp(f1) divides lp(h)

It (h)
uz

=
uz ft(f)

h:=h- lt(h)
It f i(.fz)

ELSE

r:= r + It(h)

h:= h - lt(h)

ALGORITHM 1.5.1. Multivariable Division Algorithm

Note that in Algorithm 1.5.1 we have, in effect, assumed an ordering among
the polynomials in the set {f,... , ,f 81 when we chose i to be least such that
lp(f2) divides lp(h). This is an important point and will be illustrated in Example
1.5.10.

It is informative to consider the similarities between Algorithm 1.3.1, the one
variable Division Algorithm in Section 1.3, and Algorithm 1.5.1, the multivari-
able Division Algorithm. The quotients u 1, ... , u5 in Algorithm 1.5.1 correspond
to the single quotient q in Algorithm 1.3.1; we have s different quotients in Al-
gorithm 1.5.1 because we are dividing f by s different polynomials fl, ... , fs
as opposed to dividing f by a single polynomial g in Algorithm 1.3.1. The re-
mainders, denoted by r in both algorithms, have the same definition: no term
of r is divisible by the leading term of any divisor. In Algorithm 1.3.1, once the
leading term of r is not divisible by lt(g), we also know that no other term of r
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is divisible by lt(g), and we have obtained the remainder. So in Algorithm 1.3.1
we start with r f and subtract off multiples of g until this occurs. This simple
property is not true in the multivariable case, necessitating the introduction of
the extra polynomial h in Algorithm 1.5.1. So we start with h = f and r = 0
and subtract off the leading term of h when we can or add the leading term of
h into r when we cannot, and so build up the remainder.

EXAMPLE 1.5.7. We recompute Example 1.5.2 but now we follow Algorithm
1.5.1. Let F = {fj}, where f 1 = 2y + x + 1 E Q [x, y] . The order is deglex with
y > x. Let f = y2x + 4yx - 3x2.

INITIALIZATION: ul := 0, r := 0, h := y2x + 4yx - 3x2
First pass through the WHILE loop:

y = 1p(fl) divides lp(h) = y2x
u1 := u1+ Z-x = YX2V 2

It(h)h : = h- it(h) f l

(y2x+4yx-3x2)- 1(2y+x+l)
y

=-2yx2+2yx-3x2
Second pass through the WHILE loop:

y =1p (f 1) divides lp(h) = yx2

U1 := 2Z +
I x - I .T2

1 1 2y - 2y 4

h h - lth
1

t;x= (-yx2 + 2yx - 3x2) -- ( 2y + x +1)
= 4x3 + 2yx _ 4x2

Third pass through the WHILE loop:
y =1p(f 1) does not divide lp(h) = x3

r :=r+lt(h) = 4x3
h:= h - lt(h) = Zyx- 4x2

Fourth pass through the WHILE loop:
y = lp(f ,) divides lp(h) = yx

ul:=ux+ h-X = 1yx-- Xx2+7x
2y 2 4 4

it(hh.-h-ltfxfl
7

=(2yx_ 4x2)- 2yx(2y+x+1)
----2x2- 4x

Fifth pass through the WHILE loop:
y = lp(fl) does not divide lp(h) = x2

r :=r+lt(h) = 4x3 - 2x2

xh:= h -- lt(h) --- -Ix
Sixth pass through the WHILE loop:

y = lp(f1) does not divide lp(h) = x
r:= r+lt(h)= 4x3- 2x2- 4x
h := h - lt(h) = 0
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The WHILE loop stops, and we have

F 1 3 2f ---a+ 4 x --
2 x

-- x

and

1 --+x 2 +x+1 + x_-.f (yx
4 }{ y } {4 2

ix).

Note that these are the same steps we used in Example 1.5.2.
EXAMPLE 1.5.8. Let F = {fI, f}, where f, = yx y, /2 = y2 - x E Q [x, y]

The order is deglex with y > x. Let f = y2x.
INITIALIZATION: ul := 0, u2 := 0, r := 0, h := y2x
First pass through the WHILE loop:

yx = lp(f1) divides 1p(h) = y2x
U1 := U1 + 2tIt hh = y
h:= h - h =y2X - .x (yx __ y) y2itfl y x

pass through the WHILE loop:
yx =1p(fl) does not divide lp(h) = y2
y2 = lp(f2) divides 1p(h) = y2

u2:=u2+1t f2 = 1
2h:=h-It f2 f2=y2- (y2() if

Third pass through the WHILE loop:
yx = lp(fl) does not divide 1p(h) = = x
y2 -- 1p(f2) does not divide lp(h) = x

r:= r+lt(h) = x
h:=h-lt(h)=0

The WHILE loop stops, and we get

and

f = Yf1 + f2 + x.

THEOREM 1.5.9. Given a set of non-zero polynomials F = {f',... , f., } and f
in k[xi, ... , xn], the Division Algorithm (Algorithm 1.5.1) produces polynomials
ul, ... us, r E k[xl,... , xn] such that

.f =u1f1 +...+usfs+r,

with r reduced with respect to F and

lp(f) = max( max (1p(uj) 1p (fi)), 1p(r))
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PROOF. We first observe that the algorithm terminates. At each stage of
the algorithm, the leading term of h is subtracted off until this can no longer be
done. That is, we get a sequence hl, h2, ... of the h's in the algorithm, where hi+1
is obtained from hi by subtracting off It (h,) and possibly some smaller terms:
hz+1 = hi - (lt(h) + lower terms). This is because we compute hz+1 from hi
by subtracting off It = It ) + lower terms (in case some l (,f;) divides' It f, .
lp(hi )) or by subtracting off lt(h,) (in case no lp(f,) divides lp(hi) ). So we have
that for all i, lp(h2+1) < lp(hi). Thus, since the term order is a well ordering
(Theorem 1.4.5), the list of the hi's must stop.

To prove the second part, we note that from what we did above, and since
h - f at the beginning of the algorithm, we have at any stage in the algorithm
lp(h) < lp (f) . Now, for each i, we obtain ui by adding terms it s) f, where it f i

cancels the leading term of h. It is then immediate that lp(ui) lp(fi) < lp( f
Moreover, r is obtained by adding in terms It(h) and so lp(r) < lp(f ), as well.

With f written as in Theorem 1.5.9, we have f - r E (Ii,... , f s) . Therefore,
if r = 0, then f is in (Ii,..- However, the converse is' not necessarily true;
that is, f may be in the ideal (f',... , f3), but the remainder of the division of
f by fl , ... , f, may not be zero as the following example shows.

EXAMPLE 1.5.10. Consider the polynomial f = y2x - x E Q[x, y], and the
ideal I = (f, I /2) C Q[x, y], where fl = yx - Y, 12 = y2 - x. Set F = {fi, f2}.
Using the deglex term order with y > x and the Division Algorithm, we see that

f -fl+ y2 - x -p 0, that is, f -+ 0 and indeed, f = y f 1 + f22 and hence
f E I. However if we reverse the order of f 1 and f2 (that is, we use f2 first in
the Division Algorithm) then f -+ x2 - x, and x2 -- x is reduced with respect
to F. So the remainder of the division of f by F is non zero, but f is in the ideal
(f1, f2).

This difficulty already occurred in the one variable case. For example, if
f = x, f, = x2 and f2 = x2 -x, then f is reduced with respect to {fi, f2}, whereas
1=/i - f 2 E (fi, f2). The difficulty was resolved by finding a better generating
set for (fi, f2), namely x = gcd (x2)x2 - x) . To do this in the multivariable case
is the subject of the next section.

Exercises
1.5.1. Let f = x3y3 + 2y2, 2xy2 + 3x + 4y2, f2 = y2 - 2y - 2 E Q[x, Y1.

Using lex with x > y, divide f by fl, f2 to obtain a remainder r and an
expression as in Theorem 1.5.9. Repeat this exercise reversing the role of
f, and f2.

1.5.2. Let f = x2y2 - w2, f1 = x -- y 2W, f2 = y - zw, /3 = z - w3, f4 = w3 - w E
Q[x, y, z, w] . Using lex with x > y > z > w, divide f by f1, f2, f3, f,j to
obtain a remainder r and an expression as in Theorem 1.5.9. Repeat this
exercise reversing the role of f, , f2, f3, f4, i.e. using f4, f3, f2, fl.

1.5.3. Prove that given a set of non zero polynomials F C k [x x , ... , x,], there
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can be no infinite chain 91 -p g2 -F
93 ... , [Hint: The new point

here that did not occur in Theorem 1.5.9 is that we may not be subtracting
off leading terns in gi gz+1.]

1.5.4. Show that for any polynomials 1'9 E k [x 1, ... , x,,], for any finite set
of non zero polynomials F C k[xi, ... ,x,], and for any power product
X E Tn, we have
a. If f E F, then f g -F- F+ o.
b. If f F)F + 9, then X f --F- + X g.

1.5.5. Let f, g, h, r, s E k[xx , ... , xn] and let F be a collection of non-zero poly-
nomials in k [x 1 , ... , xn]. Disprove the following:

a. If f ...)+rand g--F'+s, then f+g--F-)+r+s.
b. If f -)+ r and g s, then f g )+ rs.
c. If f +9 + h, f -+ r, and g -F + s, where h, r, s are reduced with

respect to F, then r + s = h.
1.5.6. Let F = {fl , ... , fs } C k [xl, ..E's. , xn], with fI L 0 (1 < i < s), and let f E

k[xl,... , x7,] such that f = >1ufi with lp(f) = max1<z<3 lp(uafi).

Give an example that shows this does not imply that f - + 0. [Compare
with Theorem 1.6.2 part (iii) .]

1.6. Grobner Bases. In this section we finally define the fundamental object
of this book, namely, a Grobner basis.

DEFINITION 1.6.1. A set of non-zero polynomials G = {gi,... , gt } contained
in an ideal I, is called a Grobner basiss for I if and only if for all f E I such
that f 54 0, there exists i E {1,... , t} such that lp(gg) divides lp(f}.

In other words, if G is a Grobner basis for I, then there are no non zero
polynomials in I reduced with respect to G. We note that it is not clear from
this definition that Grobner bases exist. We will prove this in Corollary 1.6.5.

We first present three other characterizations of a Grobner basis. In order to
do this we need to make the following definition. For a subset S of k[xx,... , xn],
we define the leading term ideal of S to be the ideal

Lt(S) = (it(s) I S E S).

THEOREM 1.6.2. Let I be a non-zero ideal of k[xl,... , Xnj- The following
statements are equivalent for a set of non-zero polynomials G = {gi,... , gt} C I.

(i) G is a Grobner basis for I.
(.ii) f E I if and only if f a + 0.

(iii) f E I if and only if f = E'_1 it=9; with 1P(f) = maac1<ti<t(1P(M 1P(94)).
(iv) Lt(G) - Lt(I).

6Another term which is commonly used in the literature is standard basis.
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PROOF. (i) = (ii). Let f E k[xl,... , x7z]. Then, by Theorem 1.5.9, there
exists r E k[xi, ... , x7z], reduced with respect to G, such that f -- o+ r. Thus
f-rElandsofElifandonlyifrEl. Clearly, if r = 0 (that is, f+ o),
then f E I. Conversely, if f E I and r 54 0 then r E I and by (i), there exists
i E {1,... , t} such that lp (g2) divides lp (r) . This is a contradiction to the fact
that r is reduced with respect to G. Thus r = 0 and f -+ 0.

(ii) = (iii). For f E I, we know by hypothesis that f -+ 0, and since the
process of reduction is exactly the same as the Division Algorithm, we see that
(iii) follows from Theorem 1.5.9.

(iii) = (iv) .Clearly, Lt(G) C Lt (I) . For the reverse inclusion it suffices to
show that for all f E I, It (f) E Lt (G) , since the It (f )'s generate Lt (I) . Writing
f as in the hypothesis, it immediately follows that

It(f) = > It(hi) It(gi),
i

where the sum is over all i such that lp(f) = lp (hi) lp(gi) . The result follows
immediately.

(iv) = (i). Let f E I. Then It(f) is in Lt(G), and hence
t

(1.6.1) It( f ,

f o r some h , E k[x1, ... , x,z]. If we expand the right-hand side of Equation (1.6.1),
we see that each term is divisible by some lp(gi). Thus lt(f ), the only term in
the left-hand side, is also divisible by some lp(gi), as desired. p

COROLLARY 1.6.3. If G = {gi,... , gt } is a Grobner basis for the ideal I, then
I=(gl,...,gt).

PROOF. Clearly (g,... , gt) C I, since each gZ is in I. For the reverse inclu
sion, let f E I. By Theorem 1.6.2, f -+ 0, and hence f E (91,... , gt) . Ci

For the next corollary we first need some information about the special nature
of ideals generated by terms.

LEMMA 1.6.4. Let I be an ideal generated by a set S of non-zero terms, and
let f E k [x x , ... , x,z] . Then f is in I if and only if for every term X appearing
in f there exists Y E S such that Y divides X. Moreover, there exists a finite
subset So of S such that I = (So).

PROOF. If f E I, then

(1.6.2) f=>hjXj,

where hi E k[x1, ... , x, ] and Xi E S, for i = 1, ... , I. If we expand the right-
hand side of Equation (1.6.2), we see that every term is divisible by some term
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XZ in S, and hence every term of the left-hand side must also be divisible by
some term Xz E S.

Conversely, if for every term X appearing in f there exists a term Y E S such
that Y divides X, then each such X is in I = (S), and hence f is in I.

In order to prove the last statement we note that, by the Hilbert Basis Theo-
rem (Theorem 1.1.1), I has a finite generating set. By the first part of the lemma
each term in each member of this generating set is divisible by an element of S.
The finite set, So, of such divisors is clearly a generating set for I. C1

COROLLARY 1.6.5. Every non-zero ideal I of k[xl,... , x,,] has a Grobner ba-
sis.

PROOF. By Lemma 1.6.4 the leading term ideal Lt (I) has a finite generating
set which can be assumed to be of the form {lt(g1),... , It (gt) } with g1, ... , gt E
I. If we let G = {g,,... , gt }, then we have Lt (G) = Lt (I) and hence G is a
Grobner basis for I by Theorem 1.6.2.

We now give a fifth characterization of a Grobner basis. We will expand our
terminology a little.

DEFINITION 1.6.6. We say that a subset G = {g,,... , gt } of k [x, , ... , xn ] is
a Grobner basis if and only if it is a Grobner basis for the ideal (G) it generates.

THEOREM 1.6.7. Let G = {g',... , gt } be a set of non-zero polynomials in
k[xl, ... ,xn]. Then G is a Grobner basis if and only if for all f E k[x,, ... , xn],
the remainder of the division of f by G is unique.

PROOF. We first assume that G is a Grobner basis. Let f + r1 and
f+ r2, with r1 and r2 reduced with respect to G. Since f - rl and f - r2
are both in (G) = (g,,... , gt), so is r 1 -- r2 . Moreover r1 - r2 is reduced with
respect to G. But then r1 - r2 = 0, by Theorem 1.6.2 (ii).

Conversely, assume that remainders upon division by G are unique. We will
prove condition (ii) in Theorem 1.6.2. So let f E (C). Suppose that f --+ r
such that r is reduced. We must show that r = 0. (Of course, we know, by
hypothesis, that r is unique.)

CLAIM: If c E k is non-zero, X E TT is a power product, and g E k [x 1, ... , xn]

is such that g -+ r, where r is reduced, then, for each i E {1,... , t}, g -
cX g'. G -) + r. (Note that we have not assumed that cX It (gj) actually cancels a
term in g.)

We note that if the claim is true we are done. To see this, since f E I, we
can write f = =1 c,, is in k and is non-zero and X,, E T and
each i,, E {1,... , t} (this can be done by writing f higi and writing
each hz as a sum of terms). Then, applying the claim to g = f , we see that
f - cl X 1 gz, )+ r. So now we can apply the claim to g = f - c1 X 1 g21 to
obtain f - c,Xlgj1 - c2X2gz2 -+ r. Thus, using induction, we see that 0 =



1.6. GROBNER BASES 35

cvXvgi1,
G + r. That is, 0 r which immediately implies thatf + Y:1V=1

r = 0, as desired.
PROOF OF THE CLAIM: Define d by letting dlc(gi) be the coefficient of

X lp(gj) in g. We will consider three cases.
Case 1. d = 0. Then the coefficient of X lp(gi) in g - cXgg is -c 1c(gi)
which is non zero and so g - cX gi '-3 g 4+ r which is the desired
result.
Case 2. d = c. Let r1 be reduced and assume that g -- cXgi )+ r1.
Then, since d = c 0 0 we see that g - g - cX gi -+ r. Thus, since
we know g G )+ r also, we see r = rl, as desired (by the assumption
that the remainder is unique) .
Case 3. d 0 and d c. Set h = g - dX gg . Then the coefficient of
X lp(gi) in h is 0. Since d 0 we have g -- 9 h. Also, since d 0 c we
have g - cX g2 -g--+ h. So if h )+ r2, such that r2 is reduced, we get
g h --'+ r2 and so r2 = r, since the remainder. is unique. And so
g - CXgj -p h G + r, as desired.

The theorem is now proved.

Although we have in Theorem 1.6.7 that remainders are unique for division by
a Grobner basis, we saw in Exercise 1.5.2 that the quotients are not necessarily
unique (we will see in Exercise 1.6.2 that the polynomials in Exercise 1.5.2 do
form a Grobner basis) .

EXAMPLE 1.6.$. We continue Example 1.5.10. So let f = y2x -- x, f 1 = yx - x
,J. We use deglex with y > x. We showed inand f2 = y2 -- x. Let F = {fi, f9

Example 1.5.10 that f -+ 0 and f -- ) + x2 - x, the latter being reduced with
respect to F. Thus by Theorem 1.6.7, F is not a Grobner basis. We can see this
in another way. Namely, since f = y f 1 + f2 E (fi, f2) and f -+ x2 -.T we
have x2 - x E (fi, f2). But x2 = lp(x2 - x) is not divisible by either lp (f 1) = x y
or lp(f2) = y2. Thus by the definition of a Grobner basis (Definition 1.6.1), F is
not a Grobner basis.

EXAMPLE 1.6.9. Consider the polynomials g1 = z + x, g2 = y - x E Q [x, y, z].
Let G = {g,, g2}, I = (g1, g2). We use the lex term order on Q [x, y, z] with
x < y < z. We will prove that G is a Grobner basis for I. Suppose to the
contrary that there exists f E I such that It (f) 0 (lt(g1), It (g2)) = (z, y) . Then,
z does not divide It (f) , and y does not divide It (f). Thus, because of the lex
term order, z and y do not appear in any term of f, and so f E Q [x] . Let
f = (z + x)hl + (y - x)h2, where hl, h2 E Q[x, y, z]. Since y does not appear in
f, we may set y = x, and we have f = (z + x)hl (x, x, z), and hence z + x divides
f, a contradiction to the fact that the only variable occurring in f is x.

We will give a more systematic way of proving that a set of polynomials is a
Grobner basis in the next section.

We observe that if we have a Grobner basis G = {g',... , gt} for an ideal I,
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then we can solve some of the problems posed in Section 1.1 in a fashion similar
to what we did in the one variable case. To decide whether a polynomial f is
in I, we use the Division Algorithm and divide f by G. The remainder of the
division is zero if and only if f is in I. Also, by Theorem 1.6.7, the representative
of the element f + I in the quotient ring k [x i , ... , x,z] /I is r + I, where r is
the remainder of the division of f by G. Also, a basis for the k-vector space
k[x1, ... ,xn] /I is the set of all cosets of power products that are not divisible
by some 1t (9j) (Exercise 1.6.10). All of these applications will be discussed fully
in Chapter 2.

We note that a Grobner basis with respect to one term order may not be a
Grobner basis with respect to a different term order. For example, if we use the
lex term order with x > y > z in Example 1.6.9, then {g1, g2} is not a Grobner
basis for I (Exercise 1.6.3).

Clearly, the question now is how do we compute a Grobner basis for an ideal
I? The results in this section only prove existence, and the proofs of these results
do not indicate any method for finding Grobner bases. We will give Buchberger's
Algorithm for their computation in the next section.

However, we have already computed (without knowing it!) Grobner bases for
two special cases. In the linear case, the polynomials obtained from row reducing
the matrix of the original linear polynomials to row echelon form constitute a
Grobner basis for the ideal generated by these original polynomials, the variables
being ordered according to the position of their column in the matrix of the sys-
tem of equations (Exercise 1.6.5). In the one variable case, G = {gcd(fj,... , f,) }
is a Grobner basis for the ideal I = (fi,... , f8), by Theorem 1.6.2(ii) (Exercise
1.6.6). In both cases we do have an algorithm for computing the Grobner basis.

Exercises
1.6.1. Show that the polynomials Ii = 2xy2 + 3x + 4y2, f 2 = y2 -2y-2 E Q [x, y],

with lex with x > y do not form a Grobner basis for the ideal they generate.
(See Exercise 1.5.1.)

1.6.2. Show that the polynomials f, = x - y2 w, f 2 = y - zw, f 3 = z - w3, J4 =
W3 - w E Q [X1 y, z, w] in Exercise 1.5.2 form a Grobner basis for the ideal
they generate, with respect to lex with x > y > z > w. [Hint: Follow
Example 1.6.9.] Show that they do not form a Grobner basis with respect
tolexwithw>x>y>z.

1.6.3. Show that the polynomials gi, g2 in Example 1.6.9 do not form a Grobner
basis with respect to lex with x > y > z.

1.6.4. Let < be any term order in k[x, y, z] with x > y > z. Show that the
polynomials f, , f2, f3 in Example 1.2.2 do not form a Grobner basis for I,
whereas fi, f2,-17z do.

1.6.5. Let fl, ... , fm be non-zero linear polynomials in k[xi, ... , x,,] which are
in row echelon form. Show that they form a Grobner basis for the ideal.
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they generate with respect to any order for which the variables are ordered
according to the corresponding columns in the matrix.

1.6.6. In the polynomial ring in one variable, k [x] , consider a set of non zero
polynomials F = {f',... , f s } C k [x]. Let d = gcd (f, , ... , f3). Prove that
F is a Grobner basis if and only if cd E F, for some c E k, c 54 0.

1.6.7. Generalize Exercise 1.6.6 to principal ideals in k [x l , ... , x,]. That is, show
that if I = (d) is a principal ideal in k[x1, ... , x,z], then F C I is a Grobner
basis for I if and only if cd E F, for some c E k, c 0.

1.6.8. Let I be an ideal in k[x1, ... , xn]. Prove that Lt(I) is the k-vector space
spanned by {lp(f) I f E I},

1.6.9. Let I C k [x1, ... , xn] be an ideal generated by a set G = {X1,... , XS} of
non zero terms. Prove that G is a Grobner basis for I.

1.6.10. Let I be an ideal of k[xl, ... , xn] and let G = {g,... , gt } be a Grobner
basis for I. Prove that a basis for the k-vector space k [x 1, ... , x,, ] f I is
{X+IIXETandlp(g) does not divide X for all i = 1, ... , t}.

1.6.11. In this exercise we give another equivalent definition of a Grobner basis.
Let I C k[xl, ... , xn] be an ideal. For a subset S C k[x1, ... , xn] set
£p(S) = {lp(f) I f E S}. (Note that we have just taken the set of all lp(f )
not the ideal generated by the lp(f )'s.) Set I* = I - {0}.
a. Show that Tn is a monoid; that is, T' is closed under multiplication.
b. Show that £p(I*) is a monoideal of T7z; that is, show that for all

X E L p(I*) and Y E Tn we have XY E Cp(I*). (Note: this is just
Exercise 1.7.6.)

c. Prove that F C 1* is a Grobner basis for I if and only if £p(F) gener-
ates Cp(I*) as a monoideal. (We say that £p(F) generates £p(I*) as
a monoideal if and only if for all X E £p(I*) there exists Y E Fn and
Z E £p(F) such that X = YZ. )

1.6.12. In this exercise we give another equivalent definition of a Grobner basis.
Let G C k[xl, ... , x,] consist of non zero polynomials. We call the reduc-
tion relation "+" Confluent provided that for all f, g, h E k [x 1i ... , x,]
such that f -+ g and f -+ h, there exists an r E k[xl,... , x,z] such

that h + r and g -+ r. Prove that G is a Grobner basis if and only
if "-++" is confluent. [Hint: Use Theorem 1.6.7.]

1.6.13. Let {g,... , gt} C k[xi, ... , xn] and let 0 54 h E k[xl,... , xn]. Prove that
{9i,... , gt} is a Grobner basis if and only if {hgj,... , hgt} is a Grobner
basis.

1.6.14. Let G be a Grobner basis for an ideal I of k[xl, ... , xn] and let K be an
extension f i e l d of k. Let J be t h e i d e a l of K[xl, ... , x, ] generated by I.
Prove that G is also a Grobner basis for J.

1.6.15. Let G be a Grobner basis for an ideal I and let r, f E k [x1, ... , xn], where

r is reduced with respect to G. Prove that if f - r E I, then f G )+ r.
1.6.16. Let G and G' be two Grobner bases for an ideal I C k[x,,... , xn] with


