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1-Introduction and Overview  VU 

Lecture 1 
 

Introduction and Overview 
 
What is Algebra? 
 

History 

Algebra is named in honor of Mohammed Ibn-e- Musa al-Khowârizmî. Around 825, he 

wrote a book entitled Hisb al-jabr u'l muqubalah, ("the science of reduction and 

cancellation"). His book, Al-jabr, presented rules for solving equations. 

Algebra is a branch of Mathematics that uses mathematical statements to describe 

relationships between things that vary over time. These variables include things like the 

relationship between supply of an object and its price. When we use a mathematical 

statement to describe a relationship, we often use letters to represent the quantity that 

varies, since it is not a fixed amount. These letters and symbols are referred to as 

variables.  

Algebra is a part of mathematics in which unknown quantities are found with the help of 

relations between the unknown and known. 

In algebra, letters are sometimes used in place of numbers. 

The mathematical statements that describe relationships are expressed using algebraic 

terms, expressions, or equations (mathematical statements containing letters or symbols 

to represent numbers). Before we use algebra to find information about these kinds of 

relationships, it is important to first introduce some basic terminology.  

Algebraic Term 

The basic unit of an algebraic expression is a term. In general, a term is either a product 
of a number and with one or more variables.  

For example   4x is an algebraic term in which 4 is coefficient and x is said to be variable. 

Study of Algebra 

Today, algebra is the study of the properties of operations on numbers. Algebra 

generalizes arithmetic by using symbols, usually letters, to represent numbers or 
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1-Introduction and Overview  VU 

unknown quantities. Algebra is a problem-solving tool. It is like a tractor, which is a 

farmer's tool. Algebra is a mathematician's tool for solving problems. Algebra has 

applications to every human endeavor. From art to medicine to zoology, algebra can be a 

tool. People who say that they will never use algebra are people who do not know about 

algebra. Learning algebra is a bit like learning to read and write. If you truly learn 

algebra, you will use it. Knowledge of algebra can give you more power to solve 

problems and accomplish what you want in life. Algebra is a mathematicians’ shorthand! 

Algebraic Expressions 

An expression is a collection of numbers, variables, and +ve sign or –ve sign, of 
operations that must make mathematical and logical behaviour.  

For example    28 9 1x x+ −  is an algebraic expression.  

What is Linear Algebra? 
 
 One of the most important problems in mathematics is that of solving systems of linear 

equations. It turns out that such problems arise frequently in applications of mathematics 

in the physical sciences, social sciences, and engineering. Stated in its simplest terms, the 

world is not linear, but the only problems that we know how to solve are the linear ones. 

What this often means is that only recasting them as linear systems can solve non-linear 

problems. A comprehensive study of linear systems leads to a rich, formal structure to 

analytic geometry and solutions to 2x2 and 3x3 systems of linear equations learned in 

previous classes. 

It is exactly what the name suggests. Simply put, it is the algebra of systems of linear 

equations. While you could solve a system of, say, five linear equations involving five 

unknowns, it might not take a finite amount of time. With linear algebra we develop 

techniques to solve m linear equations and n unknowns, or show when no solution exists. 

We can even describe situations where an infinite number of solutions exist, and describe 

them geometrically. 

Linear algebra is the study of linear sets of equations and their transformation properties. 
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1-Introduction and Overview  VU 

Linear algebra, sometimes disguised as matrix theory, considers sets and functions, which 

preserve linear structure. In practice this includes a very wide portion of mathematics! 

Thus linear algebra includes axiomatic treatments, computational matters, algebraic 

structures, and even parts of geometry; moreover, it provides tools used for analyzing 

differential equations, statistical processes, and even physical phenomena. 

Linear Algebra consists of studying matrix calculus. It formalizes and gives geometrical 

interpretation of the resolution of equation systems. It creates a formal link between 

matrix calculus and the use of linear and quadratic transformations. It develops the idea 

of trying to solve and analyze systems of linear equations.  

Applications of Linear algebra 

Linear algebra makes it possible to work with large arrays of data. It has many 

applications in many diverse fields, such as 

• Computer Graphics,  

• Electronics,  

• Chemistry,  

• Biology,  

• Differential Equations,  

• Economics,  

• Business,  

• Psychology,  

• Engineering,  

• Analytic Geometry,  

• Chaos Theory,  

• Cryptography,  

• Fractal Geometry,  

• Game Theory,  

• Graph Theory,  

• Linear Programming,  

• Operations Research 
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1-Introduction and Overview  VU 

It is very important that the theory of linear algebra is first understood, the concepts are 

cleared and then computation work is started. Some of you might want to just use the 

computer, and skip the theory and proofs, but if you don’t understand the theory, then it 

can be very hard to appreciate and interpret computer results. 

Why using Linear Algebra? 

Linear Algebra allows for formalizing and solving many typical problems in different 

engineering topics. It is generally the case that (input or output) data from an experiment 

is given in a discrete form (discrete measurements). Linear Algebra is then useful for 

solving problems in such applications in topics such as Physics, Fluid Dynamics, Signal 

Processing and, more generally Numerical Analysis. 

Linear algebra is not like algebra. It is mathematics of linear spaces and linear functions. 

So we have to know the term "linear" a lot. Since the concept of linearity is fundamental 

to any type of mathematical analysis, this subject lays the foundation for many branches 

of mathematics.  

Objects of study in linear algebra 

Linear algebra merits study at least because of its ubiquity in mathematics and its 

applications. The broadest range of applications is through the concept of vector spaces 

and their transformations. These are the central objects of study in linear algebra  

 

1. The solutions of homogeneous systems of linear equations form paradigm 

examples of vector spaces. Of course they do not provide the only examples.  

2. The vectors of physics, such as force, as the language suggests, also provide 

paradigmatic examples.  

3. Binary code is another example of a vector space, a point of view that finds 

application in computer sciences.  

4. Solutions to specific systems of differential equations also form vector spaces.  

5. Statistics makes extensive use of linear algebra.  

6. Signal processing makes use of linear algebra.  

7. Vector spaces also appear in number theory in several places, including the 

study of field extensions.  

 

                                            
   ______________________________________________________________________                                        
                                                ©Virtual University Of Pakistan                                                          5 
 
 



1-Introduction and Overview  VU 

8. Linear algebra is part of and motivates much abstract algebra. Vector spaces 

form the basis from which the important algebraic notion of module has been 

abstracted.  

9. Vector spaces appear in the study of differential geometry through the tangent 

bundle of a manifold.  

10. Many mathematical models, especially discrete ones, use matrices to represent 

critical relationships and processes. This is especially true in engineering as 

well as in economics and other social sciences.  

 

There are two principal aspects of linear algebra: theoretical and computational. A major 

part of mastering the subject consists in learning how these two aspects are related and 

how to move from one to the other.  

  

Many computations are similar to each other and therefore can be confusing without 

reasonable level of grasp of their theoretical context and significance. It will be very 

tempting to draw false conclusions.  

 

On the other hand, while many statements are easier to express elegantly and to 

understand from a purely theoretical point of view, to apply them to concrete problems 

you will need to “get your hands dirty”. Once you have understood the theory sufficiently 

and appreciate the methods of computation, you will be well placed to use software 

effectively, where possible, to handle large or complex calculations.  
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Course Segments 

 

The course is covered in 45 Lectures spanning over six major segments, which are given 

below; 

 

1. Linear Equations 

2. Matrix Algebra  

3. Determinants  

4. Vector spaces  

5. Eigen values and Eigenvectors, and 

6. Orthogonal sets  

 

Course Objectives 

The main purpose of the course is to introduce the concept of linear algebra, to explain 

the underline theory, the computational techniques and then try to apply them on real life 

problems.  Major course objectives are as under; 

 

• To master techniques for solving systems of linear equations  

• To introduce matrix algebra as a generalization of the single-variable algebra of 

high school.  

• To build on the background in Euclidean space and formalize it with vector space 

theory.  

• To develop an appreciation for how linear methods are used in a variety of 

applications.  

• To relate linear methods to other areas of mathematics such as calculus and, 

differential equations.  
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1-Introduction and Overview  VU 

 

Recommended Books and Supported Material 
 
I am indebted to several authors whose books I have freely used to prepare the lectures 

that follow. The lectures are based on the material taken from the books mentioned 

below. 

 

1. Linear Algebra and its Applications (3rd Edition) by David C. Lay.  

2. Contemporary Linear Algebra by Howard Anton and Robert C. Busby. 

3. Introductory Linear Algebra (8th Edition) by Howard Anton and Chris Rorres. 

4. Introduction to Linear Algebra (3rd Edition) by L. W. Johnson, R.D. Riess and 

J.T. Arnold. 

5. Linear Algebra (3rd Edition) by S. H. Friedberg, A.J. Insel and L.E. Spence. 

6. Introductory Linear Algebra with Applications (6th Edition) by B. Kolman. 

 

I have taken the structure of the course as proposed in the book of David C. Lay. I would 

be following this book. I suggest that the students should purchase this book, which is 

easily available in the market and also does not cost much. For further study and 

supplement, students can consult any of the above mentioned books.  

I strongly suggest that the students should also browse on the Internet; there is plenty of 

supporting material available. In particular, I would suggest the website of David C. Lay; 

www.laylinalgebra.com, where the entire material, study guide, transparencies are readily 

available. Another very useful website is www.wiley.com/college/anton, which contains a 

variety of useful material including the data sets. A number of other books are also 

available in the market and on the internet with free access. 

I will try to keep the treatment simple and straight. The lectures will be presented in 

simple Urdu and easy English. These lectures are supported by the handouts in the form 

of lecture notes. The theory will be explained with the help of examples. There will be 

enough exercises to practice with. Students are advised to go through the course on daily 

basis and do the exercises regularly.  
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Schedule and Assessment 
 

The course will be spread over 45 lectures. Lectures one and two will be introductory and 

the Lecture 45 will be the summary. The first two lectures will lay the foundations and 

would provide the overview of the course. These are important from the conceptual point 

of view. I suggest that these two lectures should be viewed again and again.   

 

The course will be interesting and enjoyable, if the student will follow it regularly and 

completes the exercises as they come along. To follow the tradition of a semester system 

or of a term system, there will be a series of assignments (Max eight assignments) and a 

mid term exam. Finally there will be terminal examination.  

 

The assignments have weights and therefore they have to be taken seriously.  
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2-Introduction to Matrices  VU 

Lecture 2 
Background 

     
                                             Introduction to Matrices 
 
Matrix A matrix is a collection of numbers or functions arranged into rows and columns. 
 
Matrices are denoted by capital letters ZYBA ,,,,  . The numbers or functions are called 
elements of the matrix. The elements of a matrix are denoted by small letters zyba ,,,,  .  
 
Rows and Columns The horizontal and vertical lines in a matrix are, respectively, called the 
rows and columns of the matrix. 
 
Order of a Matrix The size (or dimension) of matrix is called as order of matrix. Order of 
matrix is based on the number of rows and number of columns. It can be written as r c× ; r 
means no. of  row and c means no. of columns. 
 
If a matrix has m  rows and n  columns then we say that the size or order of the matrix 
is nm× . If A  is a matrix having m  rows and n columns then the matrix can be written as   

                                   

11 12 1

21 22 2

1 2

n

n

m m mn

a a a
a a a

A

a a a

 
 
 
 =
 
 
 
 





   

   



    

The element, or entry, in the ith  row and jth  column of a nm×  matrix A is written as ija  
 

For example: The matrix 
2 1 3
0 4 6

A
− 

=  
 

 has two rows and three columns. So order of A 

will be 2 3×  
          
Square Matrix A matrix with equal number of rows and columns is called square matrix.  

For Example   The matrix 
4 7 8
9 3 5
1 1 2

A
− 

 =  
 − 

 has three rows and three columns. So it is a 

square matrix of order 3. 
 
 

Equality of matrices 

The two matrices will be equal if they must have  
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a)  The same dimensions (i.e. same number of rows and columns) 
b) Corresponding elements must be equal.  

 Example   The matrices 
4 7 8
9 3 5
1 1 2

A
− 

 =  
 − 

  and 
4 7 8
9 3 5
1 1 2

B
− 

 =  
 − 

 equal matrices  

(i.e A = B) because they both have same orders and same corresponding elements.  
 
Column Matrix A column matrix X  is any matrix having n  rows and only one column. 
Thus the column matrix X can be written as 

    11

1

31

21

11

][   ×=



























= ni

n

b

b

b

b

b

X



 

A column matrix is also called a column vector or simply a vector. 
 
Multiple of matrix A multiple of a matrix A  by a nonzero constant k is defined to be  
 

   nmij

mnmm

n

n

ka

kakaka

kakaka

kakaka

kA ×=























= ][

21

22221

11211









          

           
 Notice that the product kA  is same as the product Ak . Therefore, we can write  AkkA = .  
 
It implies that if we multiply a matrix by a constant k, then each element of the matrix is to 
be multiplied by k. 
Example 1 
 

(a)    



















−

−

=



















−

−

⋅

301

520

1510

65/1

14

32

5  
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(b)      





















−=



















−⋅

t

t

t

t

e

e

e

e

4

2

4

2

1

        

 
Since we know that AkkA = . Therefore, we can write      
             

t
t

t
t e

e

e
e 3

3

3
3  

5

2
 

5

2

5

2
−

−

−
−












=












=












⋅    

 
 
Addition of Matrices Only matrices of the same order may be added by adding 
corresponding elements. 
 If ][ ijaA =  and ][ ijbB =  are two nm×  matrices then ][ ijij baBA +=+  
Obviously order of the matrix A + B is nm×  
 
 
Example 2 Consider the following two matrices of order 33×    

                               


















−−

−

=

5106

640

312

A ,   


















−

−

=

211

539

874

B   

Since the given matrices have same orders, therefore, these matrices can be added and their 
sum is given by  
 

                 


















−−

−

=



















+−−++−

+++

−++−+

=+

395

1179

566

25)1(1016

563490

)8(37142

BA  

 
Example 3 Write the following single column matrix as the sum of three column vectors  

                                        
















+
−

t
tt
et t

5
7
23

2

2

 

Solution 
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2 2

2 2 2

3 2 3 0 2 3 0 2
7 7 0 1 7 0

5 0 5 0 0 5 0

t t

t

t e t e
t t t t t t e

t t

   −  − −                      + = + + = + +                                   

 

 
Difference of Matrices The difference of two matrices A  and B  of same order nm×  is 
defined to be the matrix )( BABA −+=−  
 The matrix B−  is obtained by multiplying the matrix B  with 1− .  So that BB  ) 1 ( −=−   
 
Multiplication of Matrices We can multiply two matrices if and only if, the number of 
columns in the first matrix equals the number of rows in the second matrix.  
Otherwise, the product of two matrices is not possible. 
OR 
If the order of the matrix A  is nm×  then to make the product AB  possible order of the 
matrix B  must be pn× .  Then the order of the product matrix AB  is pm× . Thus  
    pmpnnm CBA ××× =⋅  
 
If the matrices A  and B  are given by 

 























=























=

npnn

p

p

mnmm

n

n

bbb

bbb

bbb

B

aaa

aaa

aaa

A

















21

22221

11211

21

22221

11211

  ,  

Then 

    













































=

npnn

p

p

mnmm

n

n

bbb

bbb

bbb

aaa

aaa

aaa

AB

















21

22221

11211

21

22221

11211

       

           

        =

11 11 12 21 1 1 11 1 12 2 1

21 11 22 21 2 1 21 1 22 2 2

1 11 2 21 1 1 1 2 2

n n p p n np

n n p p n np

m m mn n m p m p mn np

a b a b a b a b a b a b
a b a b a b a b a b a b

a b a b a b a b a b a b

+ + + + + + 
 + + + + + + 
 
 + + + + + +  

  

  

  

  
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pn

n

k
kjikba

×=










= ∑

1
                                                              

Example 4 If possible, find the products AB and BA , when 

(a)     










=

53

74
A , 










 −
=

86

29
B  

 

(b)   


















=

7

0

8

2

1

5

A ,  









 −−
=

02

34
B  

 
Solution (a) The matrices A  and B are square matrices of order 2. Therefore, both of the 
products AB and BA  are possible.  
 

        










=












⋅+−⋅⋅+⋅

⋅+−⋅⋅+⋅
=










 −











=

3457

4878

85)2(36593

87)2(46794

86

29

53

74
AB              

 
 

Similarly  










=












⋅+⋅⋅+⋅

⋅−+⋅⋅−+⋅
=




















 −
=

8248

5330

58763846

5)2(793)2(49

53

74

86

29
BA  

Note  From above example it is clear that generally a matrix multiplication is not 
commutative i.e. BAAB ≠  . 
 
(b) The product AB is possible as the number of columns in the matrix A  and the number of 
rows in B is 2. However, the product BA is not possible because the number of column in the 
matrix B and the number of rows in A  is not same. 
 

5 8
4 3

1 0
2 0

2 7

5 ( 4) 8 2 5 ( 3) 8 0 4 15
1 ( 4) 0 2 1 ( 3) 0 0 4 3
2 ( 4) 7 2 2 ( 3) 7 0 6 6

AB
 

− −  =     
 

⋅ − + ⋅ ⋅ − + ⋅ − −   
   = ⋅ − + ⋅ ⋅ − + ⋅ = − −   
   ⋅ − + ⋅ ⋅ − + ⋅ −   

 

                                           










=

3457

4878
AB ,  











=

8248

5330
BA  

 
Clearly .BAAB ≠   
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

















−

−

−

−

−

=

6

3

15

6

4

4

AB  

 
However, the product BA  is not possible.  
 
Example 5 

(a)     


















−

=



















⋅+⋅−+−⋅

⋅+⋅+−⋅

⋅+⋅−+−⋅

=

















−



















−

−

9

44

0

496)7()3(1

6564)3(0

436)1()3(2

4

6

3

971

540

312

 

 

(b)     











+

+−
=




















−

yx

yx

y

x

83

24

83

24
 

 
Multiplicative Identity For a given any integer n , the nn×  matrix  
                                          

                                                      



























=

1000

0100

0010

0001











I  

 
is called the multiplicative identity matrix. If A  is a matrix of order n n× , then it can be 
verified that AIAAI =⋅=⋅  

 Example 
1 0
0 1

I  
=  
 

, 
1 0 0
0 1 0
0 0 1

I
 
 =  
 
 

 are identity matrices of orders 2 x 2 and 3 x 3 

respectively and If









 −
=

86

29
B  then we can easily prove that BI = IB = B 
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Zero Matrix or Null matrix A matrix whose all entries are zero is called zero matrix or null 
matrix and it is denoted by O .  

For example   










=

0

0
O ;     











=

00

00
O ;       



















=

0

0

0

0

0

0

O  

and so on. If A and O  are the matrices of same orders, then AAOOA =+=+  
 
Associative Law The matrix multiplication is associative. This means that if BA   ,  and 
C are pm× , rp× and nr ×  matrices, then CABBCA )()( =  
The result is a  nm×  matrix. This result can be verified by taking any three matrices which 
are confirmable for multiplication.  
 
Distributive Law If B  and C are matrices of order nr ×  and A  is a matrix of order rm× ,  
then the distributive law states that 
                                       ACABCBA +=+ )(  
Furthermore, if the product CBA )( +  is defined, then 
    BCACCBA +=+ )(  
 Remarks 
It is important to note that some rules arithmetic for real numbers  do not carry over the 
matrix arithmetic. 
For example, , , anda b c d∀ ∈   

i) if ab cd= and 0a ≠ , then b c= (Law of Cancellation) 
ii) if 0ab = , then least one of the factors a or b (or both) are zero. 

However the following examples shows that the corresponding results are not true in case of 
matrices. 
Example 

  Let 
0 1 1 1 2 5

, ,
0 2 3 4 3 4

A B C     
= = =     
     

and 
1 7
0 0

D  
=  
 

, then one can easily check that  

3 4
6 8

AB AC  
= =  

 
. But B C≠ . 

Similarly neither A  nor B are zero matrices but 
0 0
0 0

AD  
=  
 

 

But if D is diagonal say
1 0
0 7

D  
=  
 

, then AD DA≠ . 

Determinant of a Matrix Associated with every square matrix A of constants, there is a 
number called the determinant of the matrix, which is denoted by )det(A or  A . There is a 
special way to find the determinant of a given matrix. 
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Example 6 Find the determinant of the following matrix 


















−

=

421

152

263

A  

Solution The determinant of the matrix A  is given by 

   

421

152

263

)det(

−

=A  

We expand the  )det(A  by first row, we obtain 

                     

421

152

263

)det(

−

=A =3
42
15

-6
41
12

−
+2

21
52

−
 

or                        185)2(41)6(8-2)-3(20)det( =+++=A  
  
Transpose of a Matrix The transpose of  nm×  matrix A  is denoted by trA and it is 
obtained by interchanging rows of A into its columns. In other words, rows of A become the 
columns of .trA  Clearly trA is n m×  matrix. 
 

If   

11 12 1

21 22 2

1 2

n

n

m m mn

a a a
a a a

A

a a a

 
 
 =
 
 
 





   



, then 

11 21 1

12 22 2

1 2

m

mtr

n n mn

a a a
a a a

A

a a a

 
 
 =
 
 
 





   



 

Since order of the matrix A  is nm× , the order of the transpose matrix trA  is mn× .  

Properties of the Transpose  

The following properties are valid for the transpose; 

• The transpose of the transpose of a matrix is the matrix itself:`    
• The transpose of a matrix times a scalar (k) is equal to the constant times the 

transpose of the matrix: ( )T TkA kA=  
• The transpose of the sum of two matrices is equivalent to the sum of their 

transposes:  ( )T T TA B A B+ = +   
• The transpose of the product of two matrices is equivalent to the product of their 

transposes in reversed order:   ( )T T TAB B A=   
• The same is true for the product of multiple matrices:  ( )T T T TABC C B A=   
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Example 7 (a) The transpose of matrix  


















−

=

421

152

263

A  is 
3 2 1

  6 5 2
2 1 4

TA
− 

 =  
 
 

 

(b) If


















=

3

0

5

X , then [ ]5 0 3TX =  

 
Multiplicative Inverse Suppose that A  is a square matrix of order nn× . If there exists an 

nn×  matrix B such that IBAAB == , then B is said to be the multiplicative inverse of the 
matrix A  and is denoted by 1−= AB . 

For example: If 










=

102

41
A  then the matrix B

5 2
1 1/ 2

− 
=  − 

 is multiplicative inverse of A 

because AB = 
1 4
2 10
 
 
 

5 2
1 1/ 2

− 
 − 

 = 
1 0
0 1
 
 
 

 =I 

Similarly we can check that BA = I 
 
 
Singular and Non-Singular Matrices A square matrix A  is said to be a non-singular 
matrix ifdet( ) 0A ≠ , otherwise the square matrix A  is said to be singular. Thus for a 
singular matrix A  we must have  det( ) 0A =  
 

Example:   
2 3 1
1 1 0
2 3 5

A
− 

 =  
 − 

 

                       
2(5 0) 3(5 0) 1( 3 2)

10 15 5 0
A = − − − − − −

= − + =
 

 
which means that A is singular. 
 
Minor of an element of a matrix 
 
Let A be a square matrix of order n x n. Then minor ijM  of the element ija A∈  is the 
determinant of )1()1( −×− nn  matrix obtained by deleting the ith  row and jth  column 
from A .   
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 Example If 
2 3 1
1 1 0
2 3 5

A
− 

 =  
 − 

 is a square matrix. The Minor of 3 A∈  is denoted by 

12M and is defined to be  12M  = 
1 0
2 5

= 5-0 = 5 

Cofactor of an element of a matrix 
 
Let A  be a non singular matrix of order nn×  and let C ij denote the cofactor (signed minor) 

of the corresponding entry ija  A∈  , then it is defined to be     ij
ji

ij MC +−= )1(  

Example    If 
2 3 1
1 1 0
2 3 5

A
− 

 =  
 − 

 is a square matrix. The cofactor of 3 A∈  is denoted by 

12C and is defined to be 12C = 1 2 1 0
( 1)

2 5
+= − =  - (5 - 0) = -5 

 
 
Theorem   If A  is a square matrix of order nn×  then the matrix has a multiplicative inverse 

1−A  if and only if the matrix A  is non-singular. 
 

Theorem  Then inverse of the matrix A  is given by  tr
ijC

A
A )(

)det(
11 =−                

 
1. For further reference we take 2=n so that A  is a 22×  non-singular matrix given by 
 

                                      













=

2221

1211

aa

aa
A  

  Therefore 122121122211   ,  , aCaCaC −=−==  and 1122 aC = . So that  
 

                                     














−

−
=















−

−
=−

1121

1222

1112

21221
)det(

1
)det(

1
aa

aa

Aaa

aa

A
A

tr

 

 

 2. For a 3×3 non-singular matrix A=
11 12 13

21 22 23

31 32 33

a a a
a a a
a a a

 
 
 
 
 
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3332

2322
11

aa

aa
C = ,

3331

2321
12

aa

aa
C −= ,   C 13 =

3231

2221

aa
aa

and so on.  

Therefore, inverse of the matrix A  is given by 
11 21 31

1
12 22 32

13 23 33

1
det

C C C
A C C C

A
C C C

−

 
 

=  
 
 

. 

 

Example 8  Find, if possible, the multiplicative inverse for the matrix










=

102

41
A . 

Solution The matrix A  is non-singular because     2=8-10=
102

41
)det( =A  

 Therefore, 1−A exists and is given by A 1− =











−

−
=












−

−

2/11

25

12

410

2
1  

Check  IAA =










=












+−−

+−−
=












−

−











=−

10

01

541010

2245

2/11

25

102

411  

 

                   IAA =










=












+−+−

−−
=






















−

−
=−

10

01

5411

202045

102

41

2/11

251  

 

Example 9 Find, if possible, the multiplicative inverse of the following matrix 

                      










=

33

22
A   

Solution The matrix is singular because  

03232
33

22
)det( =⋅−⋅==A  

Therefore, the multiplicative inverse 1−A of the matrix does not exist.  

Example 10 Find the multiplicative inverse for the following matrix 

                                                      A=
2 2 0
2 1 1

3 0 1
−
 
 
  
 

. 
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Solution       Since 012)30(0)32(2)01(2

103

112

022

)det( ≠=−+−−−−=−=A  

 Therefore, the given matrix is non singular. So, the multiplicative inverse 1−A of the matrix 
A  exists. The cofactors corresponding to the entries in each row are 
 

             3
03

12
      ,5

13

12
           ,1

10

11
131211 −=

−
==

−
−=== CCC         

              6
03

22
          ,2

13

02
     ,2

10

02
232221 =−===−=−= CCC      

               6
12

22
     ,2

12

02
          ,2

11

02
333231 =

−
=−=

−
−=== CCC  

Hence   A 1− =
12
1

















−
−

−

663
225

221
=

















−
−

−

2/12/14/1
6/16/112/5

6/16/112/1
 

We can also verify that IAAAA =⋅=⋅ −− 11  
 
Derivative of a Matrix of functions 
Suppose that  

( ) ( )ij m n
A t a t

×
 =     

is a matrix whose entries are functions those are differentiable in a common interval, then 
derivative of the matrix )(tA  is a matrix whose entries are derivatives of the corresponding 
entries of the matrix )(tA . Thus                              

   
nm

ij
dt

da
dt
dA

×








=  

The derivative of a matrix is also denoted by ).(tA′  
 
Integral of a Matrix of Functions 
 
Suppose that  ( ) nmij tatA

×
= )()(  is a matrix whose entries are functions those are continuous 

on a common interval containing t , then integral of the matrix )(tA  is a matrix whose entries 
are integrals of the corresponding entries of the matrix )(tA . Thus 

                                
0

0

( ) ( )ij
m n

t tA s ds a s dst
t ×

 =  
 ∫ ∫  
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Example 11   Find the derivative and the integral of the following matrix 

sin 2
3( )

8 1

t
tX t e

t
=

−

 
 
 
  
 

      

Solution The derivative and integral of the given matrix are, respectively, given by  



















=























−

=′

8

3

2cos2

)18(

)(

)2(sin

)( 33 tt e

t

t
dt
d

e
dt
d

t
dt
d

tX     and 

0

3 3

20

0

sin 2

1/ 2cos 2 1/ 2
( ) 1/ 3 1/ 3

0 4

8 1

t

t
s t

t

sds

tt
X s ds e ds e

t t

s ds

 
 
  − +     = = −    −  
 − 
 

∫

∫ ∫

∫

  

Exercise 
Write the given sum as a single column matrix 

1. ( )
















−
−
















−
−

−+
















− t

t
tttt

5
4
3

2
3

1
1

1

2
3  

2. 
1 3 4 2
2 5 1 2 1 1 8
0 4 2 4 6

t t
t

t

− −       
       − − + −       
       − − − −       

 

Determine whether the given matrix is singular or non-singular. If singular, find 1A− . 

3. 
3 2 1
4 1 0
2 5 1

A
 
 =  
 − − 

 

4. 
4 1 1
6 2 3
2 1 2

A
− 

 = − 
 − − 

 

Find dX
dt

 

5. 














+−

−
=

tt

tt
X

2cos52sin3

2cos42sin
2
1

 

6. If ( )
4

2

cos

2 3 1

te t
A t

t t

π 
=  
 − 

 then find (a) ∫
2

0

)( dttA , (b)  ∫
t

dssA
0

.)(  

7. Find  the integral ∫
2

1

)( dttB   if  ( )
6 2

1/ 4
t

B t
t t

 
=  
 
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Lecture 3 
 

Systems of Linear Equations 
 
In this lecture we will discuss some ways in which systems of linear equations arise, how 
to solve them, and how their solutions can be interpreted geometrically.  
 
Linear Equations 
     We know that the equation of a straight line is written as y mx c= + , where m is the 
slope of line(Tan of the angle of line with x-axis) and c is the y-intercept(the distance at 
which the straight line meets y-axis from origin). 
Thus a line in R2 (2-dimensions) can be represented by an equation of the form 

1 2a x a y b+ =  (where a1, a2 not both zero). Similarly a plane in R3 (3-dimensional space) 
can be represented by an equation of the form 1 2 3a x a y a z b+ + =   (where a1, a2, a3 not 
all zero).  
 
A linear equation in n variables 1 2, , , nx x x   can be expressed in the form 

1 1 2 2 n na x a x a x b+ + + = (hyper plane in n  ) --------(1)   
           

 
where 1 2, , , na a a and b are constants and the “a’s” are not all zero.  
 
Homogeneous Linear equation 
 
In the special case if b = 0, Equation (1) has the form  1 1 2 2 0n na x a x a x+ + + =    (2) 
This equation is called homogeneous linear equation. 
 
Note A linear equation does not involve any products or square roots of variables. All 
variables occur only to the first power and do not appear, as arguments of trigonometric, 
logarithmic, or exponential functions.  
 
Examples of Linear Equations 
 
(1) The equations  

( )1 2 3 2 1 32 3 2 2 5 2x x x and x x x+ + = = + +  are both linear 

(2) The following equations are also linear 
1 2 3 4

1
1 22

3 7 2 3 0

3 1 1n

x y x x x x

x y z x x x

+ = − − + =

− + = − + + + =
 

 
(3) The equations 1 2 1 2 2 13 2 4 6x x x x and x x− = = −  

are not linear because of the presence of 1 2x x  in the first equation and 1x  in the second. 
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System of Linear Equations 
 
A finite set of linear equations is called a system of linear equations or linear system. The 
variables in a linear system are called the unknowns.  
 
For example, 

1 2 3

1 2 3

4 3 1
3 9 4

x x x
x x x
− + = −
+ + = −

             

is a linear system of two equations in three unknowns x1, x2, and x3.  
 
General System of Linear Equations 
A general linear system of m equations in n-unknowns 1 2, , , nx x x  can be written as 

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

n n

n n

m m mn n m

a x a x a x b
a x a x a x b

a x a x a x b

+ + + =
+ + + =

+ + + =





   



        (3) 

          
Solution of a System of Linear Equations 
A solution of a linear system in the unknowns 1 2, , , nx x x is a sequence of n numbers 

1 2, , , ns s s such that when substituted for 1 2, , , nx x x  respectively, makes every 
equation in the system a true statement. The set of all such solutions { }1 2, , , ns s s of a 
linear system is called its solution set. 
 
Linear System with Two Unknowns 
 
When two lines intersect in R2, we get system of linear equations with two unknowns 
 

For example, consider the linear system 1 1 1

2 2 2

a x b y c
a x b y c

+ =
+ =

 

 
The graphs of these equations are straight lines in the xy-plane, so a solution (x, y) of this 
system is infact a point of intersection of these lines.  
 
Note that there are three possibilities for a pair of straight lines in xy-plane: 

 
1. The lines may be parallel and distinct, in which case there is no intersection and 

consequently no solution. 
2. The lines may intersect at only one point, in which case the system has exactly 

one solution. 
3. The lines may coincide, in which case there are infinitely many points of 

intersection (the points on the common line) and consequently infinitely many 
solutions. 
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Consistent and inconsistent system 
 
A linear system is said to be consistent if it has at least one solution and it is called 
inconsistent if it has no solutions.  
 
Thus, a consistent linear system of two equations in two unknowns has either one 
solution or infinitely many solutions – there is no other possibility.  
 
Example consider the system of linear equations in two variables 

1 2 1 22 1, 3 3x x x x− = − − + =  
Solve the equation simultaneously: 
Adding both equations we get 2x  = 2, Put 2x  = 2 in any one of the above equation we 
get 1 3x = . So the solution is the single point (3, 2). See the graph of this linear system 

 
 
   x2             
        
        
              
             2     
        
      x1   
         l2             3        
      
 l1  (a)                 
 
This system has exactly one solution 
 
See the graphs to the following linear systems: 
 

1 2

1 2

( ) 2 1
2 3

a x x
x x
− = −

− + =
  1 2

1 2

( ) 2 1
2 1

b x x
x x
− = −

− + =
 

 
    x2           x2   
        
        
            2  
             2     
        
      x1   
         l2             3       3 
           l1  
 l1  (a)             (b)    
 

    (a) No solution.                        (b) Infinitely many solutions. 
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Linear System with Three Unknowns 
 
Consider r a linear system of three equations in three unknowns: 

1 1 1 1

2 2 1 2

3 3 3 3

a x b y c z d
a x b y c z d
a x b y c z d

+ + =
+ + =
+ + =

 

 
In this case, the graph of each equation is a plane, so the solutions of the system, If any 
correspond to points where all three planes intersect; and again we see that there are only 
three possibilities – no solutions, one solution, or infinitely many solutions as shown in  
figure. 

 
 
Theorem 1 Every system of linear equations has zero, one or infinitely many solutions; 
there are no other possibilities. 
 

Example 1 Solve the linear system 
1

2 6
x y
x y
− =
+ =

 

 
Solution 

Adding both equations, we get 7
3

x = . Putting this value of x in 1st equation, we 

get 4
3

y = . Thus, the system has the unique solution 7 4, .
3 3

x y= =   

 
Geometrically, this means that the lines represented by the equations in the system 

intersect at a single point 7 4,
3 3

 
 
 

 and thus has a unique solution. 

 

Example 2 Solve the linear system 
4

3 3 6
x y
x y
+ =
+ =

 

Solution 
Multiply first equation by 3 and then subtract the second equation from this. We obtain
 0 6=  
This equation is contradictory.  
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Geometrically, this means that the lines corresponding to the equations in the original 
system are parallel and distinct. So the given system has no solution. 
 

Example 3 Solve the linear system 
4 2 1

16 8 4
x y
x y
− =
− =

 

 
Solution  
 
Multiply the first equation by -4 and then add in second equation. 
 

                 
16 8 4
16 8 4

0 0

x y
x y

− + = −
− =

=
 

Thus, the solutions of the system are those values of x and y that satisfy the single 
equation 4 2 1x y− =                                                       
 
Geometrically, this means the lines corresponding to the two equations in the original 
system coincide and thus the system has infinitely many solutions.   
 
Parametric Representation 
 
 It is very convenient to describe the solution set in this case is to express it 
parametrically. We can do this by letting y = t and solving for x in terms of t, or by 
letting x = t and solving for y in terms of t.  
 
The first approach yields the following parametric equations (by taking y=t in the 
equation 4 2 1x y− = ) 
                        

4 2 1,
1 1 ,
4 2

x t y t

x t y t

− = =

= + =
 

 
We can now obtain some solutions of the above system by substituting some numerical 
values for the parameter.  

Example   For t = 0 the solution is 1( ,0).
4

 For t = 1, the solution is 3( ,1)
4

 and for 1t = −  

the solution is 1( , 1) .
4

etc− −   

 

Example 4 Solve the linear system 
2 5

2 2 4 10
3 3 6 15

x y z
x y z
x y z

− + =
− + =
− + =
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Solution 
Since the second and third equations are multiples of the first.  
 
Geometrically, this means that the three planes coincide and those values of x, y and z 
that satisfy the equation 2 5x y z− + =  automatically satisfy all three equations. 
 
We can express the solution set parametrically as  
 
                   1 2 1 25 2 , ,x t t y t z t= + − = =  
Some solutions can be obtained by choosing some numerical values for the parameters. 
 
For example   if we take 1 2y t= =  and 2 3z t= =  then  

1 25 2
5 2 2(3)
1

x t t= + −
= + −
=

  

Put these values of x, y, and z in any equation of linear system to verify  
 

2 5
1 2 2(3) 5
1 2 6 5
5 5

x y z− + =
− + =
− + =
=

 

 
Hence x = 1, y = 2,  z = 3  is the solution of the system. Verified.  
 
Matrix Notation 
 
The essential information of a linear system can be recorded compactly in a rectangular 
array called a matrix.  
 

Given the system 
1 2 3

2 3

1 2 3

2 0
2 8 8

4 5 9 9

x x x
x x

x x x

− + =
− =

− + + = −

      

With the coefficients of each variable aligned in columns, the matrix 
1 2 1
0 2 8
4 5 9

− 
 − 
 − 

 

is called the coefficient matrix (or matrix of coefficients) of the system. 
 
An augmented matrix of a system consists of the coefficient matrix with an added column 
containing the constants from the right sides of the equations. It is always denoted by Ab 
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                                 Ab = 
1 2 1 0
0 2 8 8
4 5 9 9

− 
 − 
 − − 

 

 
 
Solving a Linear System 
 
In order to solve a linear system, we use a number of methods. 1st of them is given 
below.  
 
Successive elimination method  In this method the 1x  term in the first equation of a 
system is used to eliminate the 1x  terms in the other equations. Then we use the 2x  term 
in the second equation to eliminate the 2x  terms in the other equations, and so on, until 
we finally obtain a very simple equivalent system of equations. 
 
 

Example 5 Solve  
1 2 3

2 3

1 2 3

2 0
2 8 8

4 5 9 9

x x x
x x

x x x

− + =
− =

− + + = −

  

 
Solution We perform the elimination procedure with and without matrix notation, 
and place the results side by side for comparison: 

1 2 3

2 3

1 2 3

2 0
2 8 8

4 5 9 9

x x x
x x

x x x

− + =
− =

− + + = −

           
1 2 1 0
0 2 8 8
4 5 9 9

− 
 − 
 − − 

 

 
To eliminate the 1x  term from third equation add 4 times equation 1 to equation 3,  

1 2 34 8 4 0x x x− + =  

1 2 34 5 9 9x x x− + + = −   

       2 33 13 9x x− + = −  
 
The result of the calculation is written in place of the original third equation: 

1 2 3

2 3

2 3

2 0

2 8 8

3 13 9

x x x
x x
x x

− + =

− =

− + = −

  
1 2 1 0
0 2 8 8
0 3 13 9

− 
 − 
 − − 

 

 
Next, multiply equation 2 by ½ in order to obtain 1 as the coefficient for 2x  
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1 2 3

2 3

2 3

2 0

4 4

3 13 9

x x x
x x
x x

− + =

− =

− + = −

  
1 2 1 0
0 1 4 4
0 3 13 9

− 
 − 
 − − 

 

 
To eliminate the 2x  term from third equation add 3 times equation 2 to equation 3, 

 
The new system has a triangular form 

1 2 3

2 3

3

2 0
4 4
3

x x x
x x
x

− + =
− =
=

   
1 2 1 0
0 1 4 4
0 0 1 3

− 
 − 
  

 

 
Now using 3rd equation eliminate the x3 term from first and second equation i.e. multiply 
3rd equation with 4 and add in second equation. Then subtract the third equation from first 
equation we get 
 

1 2

2

3

2 3
16
3

x x
x
x

− = −
=
=

  
1 2 0 3
0 1 0 16
0 0 1 3

− − 
 
 
  

 

 
Adding 2 times equation 2 to equation 1, we obtain the result 
 
   

 
1

2

3

29 1 0 0 29
16 0 1 0 16

0 0 1 33

x
x
x

=  
  =  
  =  

       

          
 
This completes the solution.  
Our work indicates that the only solution of the original system is (29, 16, 3).  
 
To verify that (29, 16, 3) is a solution, substitute these values into the left side of the 
original system for x1, x2 and x3 and after computing, we get 
 
      (29) – 2(16) +  (3) = 29 – 32 + 3 = 0 
                2(16) – 8(3) = 32 – 24 = 8 
   –4(29) + 5(16) +  9(3)  = –116 + 80 + 27 = –9 
 
The results agree with the right side of the original system, so (29, 16, 3) is a solution of 
the system. 
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This example illustrates how operations on equations in a linear system correspond to 
operations on the appropriate rows of the augmented matrix. The three basic operations 
listed earlier correspond to the following operations on the augmented matrix. 
 
 
Elementary Row Operations 
  
1. (Replacement) Replace one row by the sum of itself and a nonzero multiple of 

another row.  
2. (Interchange) Interchange two rows. 
3. (Scaling) Multiply all entries in a row by a nonzero constant. 
 
Row equivalent matrices 
 
A matrix B is said to be row equivalent to a matrix A of the same order if B can be 
obtained from A by performing a finite sequence of elementary row operations of A. 
If A and B are row equivalent matrices, then we write this expression mathematically as 
A  B.  

For example  
1 2 1 0
0 2 8 8
4 5 9 9

− 
 − 
 − − 



1 2 1 0
0 2 8 8
0 3 13 9

− 
 − 
 − − 

 are row equivalent matrices 

because we add 4 times of 1st row in 3rd row in 1st matrix.  
 
Note If the augmented matrices of two linear systems are row equivalent, then the two 
systems have the same solution set. 
 
Row operations are extremely easy to perform, but they have to be learnt and practice. 
 
 
Two Fundamental Questions 
 

1. Is the system consistent; that is, does at least one solution exist? 
2. If a solution exists is it the only one; that is, is the solution unique? 

 
We try to answer these questions via row operations on the augmented matrix. 
 
Example 6 Determine if the following system of linear equations is consistent 

 
1 2 3

2 3

1 2 3

2 0
2 8 8

4 5 9 9

x x x
x x

x x x

− + =
− =

− + + = −

       

 
Solution 
 
First obtain the triangular matrix by removing x1 and x2 term from third equation and 
removing x2 from second equation.  
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First divide the second equation by 2 we get 
 

1 2 3

2 3

1 2 3

2 0
4 4

4 5 9 9

x x x
x x

x x x

− + =
− =

− + + = −

             

1 2 1 0
0 1 4 4
4 5 9 9

− 
 − 
 − − 

 

 
 
Now multiply equation 1 with 4 and add in equation 3 to eliminate x1 

from third equation. 
 
 

1 2 3

2 3

2 3

2 0
4 4

3 13 9

x x x
x x
x x

− + =
− =

− + = −

               

1 2 1 0
0 1 4 4
0 3 13 9

− 
 − 
 − − 

 

 
Now multiply equation 2 with 3 and add in equation 3 to eliminate x2 

from third equation. 
 

1 2 3

2 3

3

2 0
4 4
3

x x x
x x
x

− + =
− =
=

               
1 2 1 0
0 1 4 4
0 0 1 3

− 
 − 
  

 

 
Put value of x3 in second equation we get  

2 4(3) 4x − =  

2 16x =  

 
Now put these values of x2 and x3 in first equation we get  
 

1 2(16) 3 0x − + =  
 

1 29x =  
 
So a solution exists and the system is consistent and has a unique solution. 
 
 
Example 7 Solve if the following system of linear equations is consistent. 

2 3

1 2 3

1 2 3

4 8
2 3 2 1
5 8 7 1

x x
x x x
x x x

− =
− + =
− + =
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Solution The augmented matrix is 
0 1 4 8
2 3 2 1
5 8 7 1

− 
 − 
 − 

 

 
To obtain x1 in the first equation, interchange rows 1 and 2:  

2 3 2 1
0 1 4 8
5 8 7 1

− 
 − 
 − 

 

 
To eliminate the 5x1 term in the third equation, add –5/2 times row 1 to row 3: 

2 3 2 1
0 1 4 8
0 1/ 2 2 3/ 2

− 
 − 
 − − 

  

 
Next, use the x2 term in the second equation to eliminate the –(1/2) x2 term from the 
third equation. Add ½ times row 2 to row 3: 

2 3 2 1
0 1 4 8
0 0 0 5 / 2

− 
 − 
  

  

 
The augmented matrix is in triangular form.  
To interpret it correctly, go back to equation notation: 
 

1 2 3

2 3

2 3 2 1

4 8

0 2.5

x x x
x x

− + =

− =

=

 

There are no values of x1, x2, x3 that will satisfy because the equation 0 = 2.5 is never 
true. 
Hence original system is inconsistent (i.e., has no solution).  
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Exercises 
 
1. State in words the next elementary “row” operation that should be performed on the 

system in order to solve it. (More than one answer is possible in (a).) 
 

1 2 3 4

2 3 4

3 4

3 4

. 4 2 8 12
7 2 4
5 7

3 5

a x x x x
x x x

x x
x x

+ − + =
− + = −

− =
+ = −

  

1 2 3 4

2 3

3

4

. 3 5 2 0
8 4
2 7

1

b x x x x
x x

x
x

− + − =
+ = −

=
=

 

 
2. The augmented matrix of a linear system has been transformed by row operations into 

the form below. Determine if the system is consistent. 
 

1 5 2 6
0 4 7 2
0 0 5 0

− 
 − 
  

 

 
3. Is (3, 4, –2) a solution of the following system? 
 

1 2 3

1 2 3

1 2 3

5 2 7
2 6 9 0
7 5 3 7

x x x
x x x
x x x

− + =
− + + =
− + − = −

 

 
4. For what values of h and k is the following system consistent? 
 

1 2

1 2

2
6 3

x x h
x x k
− =

− + =
 

 
Solve the systems in the exercises given below; 
 

5.  
2 3

1 2 3

1 2 3

5 4

4 3 2

2 7 1

x x
x x x
x x x

+ = −

+ + = −

+ + = −

  6.  
1 2 3

1 2 3

1 2 3

5 4 3
2 7 3 2

2 7 1

x x x
x x x
x x x

− + = −
− + = −

− − =

 

 
 
 

7.  
1 2

1 2 3

2 3

2 4

3 3 2

0

x x
x x x

x x

+ =

− − =

+ =

  8.  
1 3

2 3

1 2 3

2 4 10
3 2

3 5 8 6

x x
x x

x x x

− = −
+ =

+ + = −
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Determine the value(s) of h such that the matrix is augmented matrix of a consistent 
linear system. 
 

9. 
1 3
2 6 5

h− 
 − − 

    10. 
1 2
4 2 10

h − 
 − 

 

 
Find an equation involving g, h, and that makes the augmented matrix correspond to a 
consistent system. 
 

11. 
1 4 7
0 3 5
2 5 9

g
h
k

− 
 − 
 − − 

   12. 
2 5 3
4 7 4
6 3 1

g
h
k

− 
 − 
 − − 

 

 
Find the elementary row operations that transform the first matrix into the second, and 
then find the reverse row operation that transforms the second matrix into first. 
 

13. 
1 3 1 1 3 1
0 2 4 , 0 1 2
0 3 4 0 3 4

− −   
   − −   
   − −   

  14. 
0 5 3 1 5 2
1 5 2 , 0 5 3
2 1 8 2 1 8

− −   
   − −   
      

 

 

15. 
1 3 1 5 1 3 1 5
0 1 4 2 , 0 1 4 2
0 2 5 1 0 0 3 5

− −   
   − −   
   − − −   
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Lecture 4 
 

Row Reduction and Echelon Forms 
 
 To analyze system of linear equations, we shall discuss how to refine the row reduction 
algorithm.  While applying the algorithm to any matrix, we begin by introducing a non 
zero row or column (i.e. contains at least one nonzero entry) in a matrix,  
 
Echelon form of a matrix 
 
A rectangular matrix is in echelon form (or row echelon form) if it has the following three 
properties: 
 

1. All nonzero rows are above any rows of all zeros 
2. Each leading entry of a row is in a column to the right of the leading entry of the 

row above it. 
3. All entries in a column below a leading entry are zero. 

 
 
Reduced Echelon Form of a matrix 
 
If a matrix in echelon form satisfies the following additional conditions, then it is in 
reduced echelon form (or reduced row echelon form): 
 

4. The leading entry in each nonzero row is 1. 
5. Each leading 1 is the only nonzero entry in its column. 

 
Examples of Echelon Matrix form 
 
The following matrices are in echelon form. The leading entries (  ) may have any 
nonzero value; the started entries (*) may have any values (including zero). 
 
                        

2 3 2 1
1. 0 1 4 8

0 0 0 5 / 2

− 
 − 
  
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0 * * * * * * * *
* * *

0 0 0 * * * * * *
0 * *

2. 3. 0 0 0 0 * * * * *
0 0 0 0

0 0 0 0 0 * * * *
0 0 0 0

0 0 0 0 0 0 0 0 *

 
   
   
   
   
   
    













            

1 4 3 7 1 1 0
4. 0 1 6 2 5. 0 1 0

0 0 1 5 0 0 0

0 1 2 6 0
6. 0 0 1 1 0

0 0 0 0 1

−   
   
   
      

 
 − 
  

 

 
Examples of Reduced Echelon Form 
 
The following matrices are in reduced echelon form because the leading entries are 1’s, 
and there are 0’s below and above each leading 1. 

                              

1 0 0 29
1. 0 1 0 16

0 0 1 1

 
 
 
  

 

0 1 * 0 0 0 * * 0 *
1 0 * *

0 0 0 1 0 0 * * 0 *
0 1 * *

2. 3. 0 0 0 0 1 0 * * 0 *
0 0 0 0

0 0 0 0 0 1 * * 0 *
0 0 0 0

0 0 0 0 0 0 0 0 1 *

 
   
   
   
   
   
    

 

0 1 2 0 1
1 0 0 4 1 0 0

0 0 0 1 3
4. 0 1 0 7 5. 0 1 0 6.

0 0 0 0 0
0 0 1 1 0 0 1

0 0 0 0 0

− 
     
     
     
   −     

 

 

Note A matrix may be row reduced into more than one matrix in echelon form, using 
different sequences of row operations. However, the reduced echelon form obtained from 
a matrix, is unique.  
 
Theorem 1 (Uniqueness of the Reduced Echelon Form) Each matrix is row equivalent 
to one and only one reduced echelon matrix. 
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Pivot Positions 
A pivot position in a matrix A is a location in A that corresponds to a leading entry in an 
echelon form of A.  
 
Note When row operations on a matrix produce an echelon form, further row operations 
to obtain the reduced echelon form do not change the positions of the leading entries.  
 
Pivot column 
 
A pivot column is a column of A that contains a pivot position. 
 
Example 2 Reduce the matrix A below to echelon form, and locate the pivot columns 

0 3 6 4 9
1 2 1 3 1
2 3 0 3 1

1 4 5 9 7

A

− − 
 − − − =
 − − −
 − − 

 

 
Solution Leading entry in first column of above matrix is zero which is the pivot 
position. A nonzero entry, or pivot, must be placed in this position. So interchange first 
and last row. 
 

    

1 4 5 9 7
1 2 1 3 1
2 3 0 3 1

0 3 6 4 9

Pivot ↵ − −
 − − − 
 − − −
 

− − 

 

     
     Pivot Column 
 
Since all entries in a column below a leading entry should be zero. For this add row 1 in 
row 2, and multiply row 1 by 2 and add in row 3. 
      Pivot 

                          

1 4 5 9 7
0 2 4 6 6
0 5 10 15 15
0 3 6 4 9

− − 
 − − 
 − −
 − − 

           

      Next pivot column 
 
Add –5/2 times row 2 to row 3, and add 3/2 times row 2 to row 4. 
   
 
 

1 2

1 32
R R

R R
+
+
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1 4 5 9 7
0 2 4 6 6
0 0 0 0 0
0 0 0 5 0

− − 
 − − 
 
 − 

 
2 3

2 4

5
2

3
2

R R

R R

− +

+
        

 
Interchange rows 3 and 4, we can produce a leading entry in column 4. 
 
       Pivot 

 

1 4 5 9 7 * * * *
0 2 4 6 6 0 * * *
0 0 0 5 0 0 0 0 *
0 0 0 0 0 0 0 0 0 0

General form

− −   
   − −   
   −
   
   






 

    Pivot column 
 
 
This is in echelon form and thus columns 1, 2, and 4 of A are pivot columns. 
 
      Pivot positions 

0 3 6 4 9
1 2 1 3 1
2 3 0 3 1

1 4 5 9 7

− − 
 − − − 
 − − −
 − − 

         

      Pivot columns 
 
Pivot element 
 
A pivot is a nonzero number in a pivot position that is used as needed to create zeros via 
row operations 
 
The Row Reduction Algorithm consists of four steps, and it produces a matrix in 
echelon form. A fifth step produces a matrix in reduced echelon form.  
 
The algorithm is explained by an example. 
 
Example 3 Apply elementary row operations to transform the following matrix first 
into echelon form and then into reduced echelon form. 
 

   
0 3 6 6 4 5
3 7 8 5 8 9
3 9 12 9 6 15

− − 
 − − 
 − − 
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Solution 
 
STEP 1 Begin with the leftmost nonzero column. This is a pivot column. The pivot 
position is at the top. 
 

   
0 3 6 6 4 5
3 7 8 5 8 9
3 9 12 9 6 15

− − 
 − − 
 − − 

 

    Pivot column 
 
 
STEP 2 Select a nonzero entry in the pivot column as a pivot. If necessary, interchange 
rows to move this entry into the pivot position 
 
Interchange rows 1 and 3. (We could have interchanged rows 1 and 2 instead.) 
 
       Pivot 

3 9 12 9 6 15
3 7 8 5 8 9
0 3 6 6 4 5

− − 
 − − 
 − − 

 

 
STEP 3 Use row replacement operations to create zeros in all positions below the pivot 
 
Subtract Row 1 from Row 2. i.e. 2 1R R−  
    Pivot 

3 9 12 9 6 15
0 2 4 4 2 6
0 3 6 6 4 5

− − 
 − − 
 − − 

 

 
STEP 4 Cover (or ignore) the row containing the pivot position and cover all rows, if 
any, above it. Apply steps 1 –3 to the sub-matrix, which remains. Repeat the process until 
there are no more nonzero rows to modify. 
 
 
With row 1 covered, step 1 shows that column 2 is the next pivot column; for step 2, 
we’ll select as a pivot the “top” entry in that column. 
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          Pivot 
3 9 12 9 6 15
0 2 4 4 2 6
0 3 6 6 4 5

− − 
 − − 
 − − 

 

     Next pivot column 
 
According to step 3 “All entries in a column below a leading entry are zero”. For this 
subtract 3/2 time R2 from R3 
 

3 9 12 9 6 15
0 2 4 4 2 6
0 0 0 0 1 4

− − 
 − − 
  

 3 2
3
2

R R−  

 
When we cover the row containing the second pivot position for step 4, we are left with a 
new sub matrix having only one row: 
 
 

3 9 12 9 6 15
0 2 4 4 2 6
0 0 0 0 1 4

− − 
 − − 
  

 

    Pivot 
This is the Echelon form of the matrix.  
To change it in reduced echelon form we need to do one more step: 
 
STEP 5  Make the leading entry in each nonzero row 1. Make all other entries of that 
column to 0. 
 
Divide first Row by 3 and 2nd Row by 2 
 

              

1 3 4 3 2 5
0 1 2 2 1 3
0 0 0 0 1 4

− − 
 − − 
  

       2
1
2

R ,    1
1
3

R  

 
Multiply second row by 3 and then add in first row. 
 

              

1 0 2 3 5 4
0 1 2 2 1 3
0 0 0 0 1 4

− − 
 − − 
  

         2 13R R+  

 
Subtract row 3 from row 2, and multiply row 3 by 5 and then subtract it from first row 
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1 0 2 3 0 24
0 1 2 2 0 7
0 0 0 0 1 4

− − 
 − − 
  

     2 3

1 35
R R
R R

−

−
 

This is the matrix is in reduced echelon form. 
 
Solutions of Linear Systems 
 
When this algorithm is applied to the augmented matrix of the system it gives solution set 
of linear system. 
Suppose, for example, that the augmented matrix of a linear system has been changed 
into the equivalent reduced echelon form 

1 0 5 1
0 1 1 4
0 0 0 0

− 
 
 
  

 

 
There are three variables because the augmented matrix has four columns. The associated 
system of equations is 

1 3

2 3

3

5 1
4

0 0 which means x is free

x x
x x
− =
+ =

=

      (1)  

               
The variables x1 and x2 corresponding to pivot columns in the above matrix are called 
basic variables. The other variable, x3 is called a free variable. 
 
Whenever a system is consistent, the solution set can be described explicitly by solving 
the reduced system of equations for the basic variables in terms of the free variables. This 
operation is possible because the reduced echelon form places each basic variable in one 
and only one equation.  
 
In (4), we can solve the first equation for x1 and the second for x2. (The third equation is 
ignored; it offers no restriction on the variables.) 

1 3

2 3

3

1 5
4

x x
x x
x is free

= +
= −        (2) 

 
By saying that x3 is “free”, we mean that we are free to choose any value for x3. When   
x3 = 0, the solution is (1, 4, 0); when x3 = 1, the solution is (6, 3, 1 etc).  
 
Note The solution in (2) is called a general solution of the system because it gives an 
explicit description of all solutions. 
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Example 4 Find the general solution of the linear system whose augmented matrix has 

been reduced to 
1 6 2 5 2 4
0 0 2 8 1 3
0 0 0 0 1 7

− − − 
 − − 
  

 

 
Solution The matrix is in echelon form, but we want the reduced echelon form 
before solving for the basic variables. The symbol “~” before a matrix indicates that the 
matrix is row equivalent to the preceding matrix. 
 

  1 3 2 3

1 6 2 5 2 4
0 0 2 8 1 3
0 0 0 0 1 7

By 2 and Weget

1 6 2 5 0 10
0 0 2 8 0 10
0 0 0 0 1 7

R R R R

− − − 
 − − 
  

+ +

− 
 − 
  



 

   2
1 we get
2

By R  

 
1 6 2 5 0 10
0 0 1 4 0 5
0 0 0 0 1 7

− 
 − 
  

  

 
1 2By 2 we getR R−  

 
1 6 0 3 0 0
0 0 1 4 0 5
0 0 0 0 1 7

 
 − 
  

  

 
The matrix is now in reduced echelon form. 
The associated system of linear equations now is 

1 2 4

3 4

5

6 3 0

4 5

7

x x x
x x

x

+ + =

− =

=

           (6) 

 
The pivot columns of the matrix are 1, 3 and 5, so the basic variables are x1, x3, and x5. 
The remaining variables, x2 and x4, must be free.  
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Solving for the basic variables, we obtain the general solution: 
 
    x1 = -6x2 –3x4 

x2 is free 
x3 = 5 + 4x4             (7) 
x4 is free 
x5 = 7 

 
Note that the value of x5 is already fixed by the third equation in system (6).  
 
Exercise 
 
1. Find the general solution of the linear system whose augmented matrix is  
 

1 3 5 0
0 1 1 3

− − 
 
 

 

 
2. Find the general solution of the system 
 

1 2 3 4

1 2 3 4

1 2 3 4

2 3 0
2 4 5 5 3

3 6 6 8 2

x x x x
x x x x
x x x x

− − + =

− + + − =

− − + =

 

   
 
Find the general solutions of the systems whose augmented matrices are given in 
Exercises 3-12 
 

3.   
1 0 2 5
2 0 3 6
 
 
 

    4.   
1 3 0 5
3 7 0 9

− − 
 − 

 

 

5.  
0 3 6 9
1 1 2 1

 
 − − − 

   6.  
1 3 3 7
3 9 4 1

− 
 − 

 

 

7.  
1 2 7
1 1 1

2 1 5

− 
 − − 
 
 

   8.  
1 2 4
2 3 5

2 1 1

 
 − − − 
 − 
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9.  
2 4 3
6 12 9

4 8 6

− 
 − − 
 − 

   10.  

1 0 9 0 4
0 1 3 0 1
0 0 0 1 7
0 0 0 0 1

− 
 − 
 −
 
 

 

 

11.  

1 2 0 0 7 3
0 1 0 0 3 1
0 0 0 1 5 4
0 0 0 0 0 0

− − 
 − 
 −
 
 

  12.             

1 0 5 0 8 3
0 1 4 1 0 6
0 0 0 0 1 0
0 0 0 0 0 0

− − 
 − 
 
 
 

 

 
 
 
Determine the value(s) of h such that the matrix is the augmented matrix of a consistent 
linear system. 
 

13. 
1 4 2
3 1h

 
 − − 

     14. 
1 3
2 8 1

h 
 
 

 

 
Choose h and k such that the system has (a) no solution, (b) a unique solution, and (c) 
many solutions. Give separate answer for each part. 
 
15. x1 + hx2 = 1     16. x1 - 3x2 = 1 
      2x1 + 3x2 = k           2x1 + hx2 = k 
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Lecture 05 
 

Null Spaces, Column Spaces, and Linear Transformations 
 
Subspaces arise in as set of all solutions to a system of homogenous linear equations as 
the set of all linear combinations of certain specified vectors. In this lecture, we compare 
and contrast these two descriptions of subspaces, allowing us to practice using the 
concept of a subspace. In applications of linear algebra, subspaces of Rn usually arise in 
one of two ways:  
 as the set of all solutions to a system of homogeneous linear equations or  
 as the set of all linear combinations of certain specified vectors.  

Our work here will provide us with a deeper understanding of the relationships between 
the solutions of a linear system of equations and properties of its coefficient matrix. 
 
Null Space of a Matrix:   
 
Consider the following system of homogeneous equations: 

1 2 3

1 2 3

3 2 0
5 9 0

x x x
x x x
− − =

− + + =
       (1) 

In matrix form, this system is written as Ax = 0, where  
1 -3 -2
-5 9 1

=  
 
 

A        (2) 

Recall that the set of all x that satisfy (1) is called the solution set of the system (1). Often 
it is convenient to relate this set directly to the matrix A and the equation Ax = 0. We call 
the set of x that satisfy Ax = 0 the null space of the matrix A. The reason for this name is 
that if matrix A is viewed as a linear operator that maps points of some vector space V 
into itself, it can be viewed as mapping all the elements of this solution space of AX = 0 
into the null element "0". Thus the null space N of A is that subspace of all vectors in V 
which are imaged into the null element “0" by the matrix A. 
 
NULL SPACE 
 
Definition   The null space of an m n×  matrix A, written as Nul A, is the set of all 
solutions to the homogeneous equation Ax = 0. In set notation, 

Nul A = {x: x is in Rn and Ax = 0}  
OR 

( ) { / , 0}Nul A x x Ax= ∀ ∈ =  
 
A more dynamic description of Nul A is the set of all x in Rn that are mapped into the 
zero vector of Rm via the linear transformation →x Ax , where A is a matrix of 
transformation. See Figure1 
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                                                   Figure 1 
 

Example 1:   Let 1 -3 -2
-5 9 1

=  
 
 

A  and let 
5
3 .
-2

 
 =  
  

u  Determine if Nul∈u A . 

Solution:   To test if u satisfies Au = 0, simply compute 

 
5

1 -3 -2 5 -9 + 4 0
= 3 = =

-5 9 1 -25 + 27 - 2 0
-2

 
      
             

Au .  Thus u is in Nul A. 

 
Example:  Determine the null space of the following matrix: 

                
4 0
8 20

A  
=  − 

   

   
Solution:   To find the null space of A we need to solve the following system of 
equations: 

 
 
 
  
 
  

 
We can find Null space of a matrix with two ways i.e. with matrices or with system of 
linear equations. We have given this in both matrix form and (here first we convert the 
matrix into system of equations) equation form.  In equation form it is easy to see that by 
solving these equations together the only solution is 1 2 0x x= = .  In terms of vectors from 

2  the solution consists of the single vector { }0 and hence the null space of A is{ }0 . 
 
 

0 

Rm 
Rn 

Nul A 
0 

1

2

1 2

1 2

1 2 1

1 2 2

4 0 0
8 20 0

4 0 0
8 20 0

4 0 0 0
8 20 0 0

x
x

x x
x x

x x x
and x x x

    
=    −    

+   
⇒ =   − +   

⇒ + = ⇒ =
⇒ − + = ⇒ =
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1

2 1

2

4 0 1 0 1~
8 20 8 20 4

1 0
~ 8

0 20

1 0 1~
0 1 20

R

R R

R

   
   − −   

 
+ 

 
 
 
 

Activity: Determine the null space of the following matrices: 

1.                
0 0 0

0 0 0 0
0 0 0

 
 =  
 
 

 

2.              
1 5
5 25

M
− 

=  − 
 

 
In earlier (previous) lectures, we developed the technique of elementary row operations 
to solve a linear system. We know that performing elementary row operations on an 
augmented matrix does not change the solution set of the corresponding linear system 
Ax=0. Therefore, we can say that it does not change the null space of A.  We state this 
result as a theorem: 
 
Theorem 1:   Elementary row operations do not change the null space of a matrix. 

Or 
Null space N(A) of a matrix A can not be changed (always same) by changing the matrix 

with elementary row operations.  
 
Example:     Determine the null space of the following matrix using the elementary row 
operations: (Taking the matrix from the above Example) 

                  
4 0
8 20

A  
=  − 

 

Solution:   First we transform the matrix to the reduced row echelon form: 
 
 
 

 
 

  
  
 

 
which corresponds to the system  

1

2

0
0

x
x
=
=

 

Since every column in the coefficient part of the matrix has a leading entry that means 
our system has the trivial solution only:  

 

This means the null space consists only of the zero vector. 
 
We can observe and compare both the above examples which show the same result.  

1

2

0
0

x
x
=
=
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Theorem 2:   The null space of an m n×  matrix A is a subspace of Rn. Equivalently, the 
set of all solutions to a system Ax = 0 of m homogeneous linear equations in n unknowns 
is a subspace of Rn. 
 
Or simply, the null space is the space of all the vectors of a Matrix A of any order those 
are mapped (assign) onto zero vector in the space Rn (i.e. Ax = 0). 
Proof:   We know that the subspace of A consists of all the solution to the system 
Ax = 0 .  First, we should point out that the zero vector, 0, in Rn  will be a solution to this 
system and so we know that the null space is not empty.  This is a good thing since a 
vector space (subspace or not) must contain at least one element. 
Now we know that the null space is not empty. Consider u, v be two any vectors 
(elements) (in) from the null space and let c be any scalar.  We just need to show that the 
sum (u+v) and scalar multiple (c.u) of these are also in the null space. 
 
 
Certainly Nul A is a subset of Rn because A has n columns. To show that Nul(A) is the 
subspace, we have to check three conditions whether they are satisfied or not. If Nul(A) 
satisfies the all three condition, we say Nul(A) is a subspace otherwise not. 
First, zero vector “0” must be in the space and subspace. If zero vector does not in the 
space we can not say that is a vector space (generally, we use space for vector space).  
And we know that zero vector maps on zero vector so 0 is in Nul(A).  Now choose  any 
vectors u, v from Null space and using definition of Null space (i.e. Ax=0) 

Au = 0 and Av = 0 
 

Now the other two conditions are vector addition and scalar multiplication. For this we 
proceed as follow:  
Let start with vector addition:  
To show that u + v is in Nul A, we must show that A (u + v) = 0. Using the property of 
matrix multiplication, we find that  
A (u + v) = Au + Av = 0 + 0 = 0 
Thus u + v is in Nul A, and Nul A is closed under vector addition.   
For Matrix multiplication, consider any scalar , say c,   
A (cu) = c (Au) = c (0) = 0 
which shows that cu is in Nul A. Thus Nul A is a subspace of Rn. 
 
Example 2:   The set H, of all vectors in R4 whose coordinates a, b, c, d satisfy the 
equations 
       a – 2b + 5c = d  
       c – a = b 
is a subspace of R4. 
Solution:   Since    a – 2b + 5c = d  
                              c – a = b 
By rearranging the equations, we get 

  
  a - 2b + 5c - d = 0

-a -  b   + c       = 0
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We see that H is the set of all solutions of the above system of homogeneous linear 
equations. 
Therefore from the Theorem 2, H is a subspace of R4. 
 
It is important that the linear equations defining the set H are homogeneous. Otherwise, 
the set of solutions will definitely not be a subspace (because the zero-vector (origin) is 
not a solution of a non- homogeneous system), geometrically means that a line that not 
passes through origin can not be a subspace, because subspace must hold the zero vector 
(origin). Also, in some cases, the set of solutions could be empty. In this case, we can not 
find any solution of a system of linear equations, geometrically says that lines are parallel 
or not intersecting.  
If the null space having more than one vector, geometrically means that the lines intersect 
more than one point and must passes through origin (zero vector) . 
 
An Explicit Description of Nul A: 
   There is no obvious relation between vectors in Nul A and the entries in A. We say that 
Nul A is defined implicitly, because it is defined by a condition that must be checked. No 
explicit list or description of the elements in Nul A is given. However, when we solve the 
equation Ax = 0, we obtain an explicit description of Nul A.  
 
Example 3:   Find a spanning set for the null space of the matrix 

 

 
Solution:   The first step is to find the general solution of Ax = 0 in terms of free 
variables.  
After transforming the augmented matrix [A   0] to the reduced row echelon form and we 
get; 

1 -2 0 -1 3 0
0 0 1 2 -2 0
0 0 0 0 0 0

 
 
 
  

 

which corresponds to the system 

           
1 2 4 5

3 4 5

x - 2x - x + 3x  = 0
           x  + 2x - 2x  = 0
  0 = 0

 

The general solution is  
1 2 4 5

2

3 4 5

4

5

x  = 2x  + x - 3x
x  = free variable
x  = - 2x  + 2x
x  = free variable
x  = free variable

           

- 3  6 -1  1 - 7
 1 - 2  2  3 - 1
 2 - 4  5  8 - 4

=
 
 
 
  

A
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Next, decompose the vector giving the general solution into a linear combination of 
vectors where the weights are the free variables. That is, 
 

2 -3 2 1 -3
1 0 0

-2 2 0 -2 2
0 1 0
0 0 1

1 2 4 5

2 2

3 4 5 2 4 5

4 4

5 5

x x + x x
x x
x = x + x = x + x + x
x x
x x

         
         
         
         
         
         
                 

↑ ↑ ↑
                                              u             v            w

 

  2 4 5= x + x + xu v w        (3) 
Every linear combination of u, v and w is an element of Nul A. Thus {u, v, w} is a 
spanning set for Nul A. 
 
Two points should be made about the solution in Example 3 that apply to all problems of 
this type. We will use these facts later.  

1. The spanning set produced by the method in Example 3 is automatically linearly 
independent because the free variables are the weights on the spanning vectors. 
For instance, look at the 2nd, 4th and 5th entries in the solution vector in (3) and 
note that   2 4 5x + x + xu v w  can be 0 only if the weights x2, x4 and x5 are all zero. 

2. When Nul A contains nonzero vector, the number of vectors in the spanning set 
for Nul A equals the number of free variables in the equation Ax = 0. 

 

Example 4:   Find a spanning set for the null space of 

1 -3 2 2 1
0 3 6 0 -3
2 -3 -2 4 4
3 -6 0 6 5
-2 9 2 -4 -5

=

 
 
 
 
 
 
  

A . 

Solution:   The null space of A is the solution space of the homogeneous system 
1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

x - 3x + 2x + 2x + x = 0
0x +3x +6x +0x - 3x = 0
2x - 3x - 2x +4x +4x = 0
3x - 6x +0x +6x +5x = 0
-2x +9x + 2x - 4x - 5x = 0
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 1 -3  2  2  1   0
 0  3  6  0 -3  0
 2 -3 -2  4  4  0
 3 -6  0  6  5  0
-2  9  2 -4 -5  0

 
 
 
 
 
 
  

 

 1  -3  2  2  1   0 
 0  3  6  0  -3  0 
 0  3  - 6  0  2  0 
 0  3  - 6  0  2  0 
 0  3  6  0  -3  0 

1 3

1 4

1 5

- 2R + R
-3R + R
2R + R

 
 
 
 
 
 
  

 

 1  -3  2  2  1   0 
 0  1  2  0  -1  0 
 0  3  - 6  0  2  0 
 0  3  - 6  0  2  0 
 0  3  6  0  -3  0 

2(1/3)R

 
 
 
 
 
 
  

 

  

1 -3    2    2    1   0
0  1    2    0   -1  0
0  0  -12    0    5  0
0  0  -12    0    5  0
0  0    0    0    0  0

2 3

2 4

2 5

- 3R + R
-3R + R
-3R + R

 
 
 
 
 
 
  

 

 1  -3  2  2  1   0 
 0  1  2  0  -1  0 
 0  0  1  0  -5/12  0 
 0  0  -12  0  5  0 
 0  0  0  0  0  0 

3(-1/12)R

 
 
 
 
 
 
  

 

  

1 -3  2  2   1   0 
0  1  2  0  -1  0 
0  0  1  0  -5/12  0 
0  0  0  0   0  0 
0  0  0  0   0  0 

3 412R + R

 
 
 
 
 
 
  

 

  

 1  -3  0  2  11/ 6   0 
 0  1  0  0  -1/6  0 
 0  0  1  0  -5/12  0 
 0  0  0  0  0  0 
 0  0  0  0  0  0 

3 2

3 1

- 2R + R
-2R + R

 
 
 
 
 
 
  
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1  0  0  2   4/3   0
0  1  0  0  -1/6  0
0  0  1  0  -5/12  0
0  0  0  0   0  0
0  0  0  0   0  0

2 13R + R

 
 
 
 
 
 
  

 

The reduced row echelon form of the augmented matrix corresponds to the system 

1 4 5

2 5

3 5

 1 x + 2 x  +(4/3) x = 0
1 x + (-1/6) x = 0

1 x + (-5/12) x = 0
0 = 0
0 = 0

.  

No equation of this system has a form zero = nonzero; Therefore, the system is 
consistent. The system has infinitely many solutions:  

arbitrary arbitrary
1 4 5 2 5 3 5

4 5

x = -2 x +(-4/3) x x = +(1/6) x x = +(5/12) x
x = x = 

 

The solution can be written in the vector form:  

= (-2,0,0,1,0) = (-4/3,1/6,5/12,0,1)4 5c c   

Therefore {(-2,0,0,1,0), (-4/3,1/6,5/12,0,1)} is a spanning set for Null space of A. 
 
Activity:     Find an explicit description of Nul A where: 

1.  
3 5 5 3 9
5 1 1 0 3

A  
=  
 

 

2.  

4 1 1 0 1
1 1 2 3 1
1 1 2 0 1
0 0 1 1 1

A

− 
 − − − =
 − −
 
 

 

 
The Column Space of a Matrix:   Another important subspace associated with a matrix 
is its column space. Unlike the null space, the column space is defined explicitly via 
linear combinations.  
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Definition: (Column Space):  The column space of an m n×  matrix A, written as Col A, 
is the set of all linear combinations of the columns of A. If A = [a1   …   an], then  

Col A = Span {a1 ,… , an } 
 
Since Span {a1, …, an } is a subspace, by Theorem of  lecture 20 i.e. if 1,..., pv v  are in a 

vector space V , then Span { }1,..., pv v is a subspace of V   . 
The column space of a matrix is that subspace spanned by the columns of the matrix 
(columns viewed as vectors). It is that space defined by all linear combinations of the 
column of the matrix. 
 
Example, in the given matrix, 

   

1 1 3
2 1 4
3 1 5
4 1 6

A

 
 
 =
 
 
 

  

The column space ColA is all the linear combination of the first (1, 2, 3, 4), the second (1, 
1, 1, 1) and the third column ( 3, 4, 5, 6). That is, ColA = { a·(1, 2, 3, 4) + b·(1, 1, 1, 1) + 
c·( 3, 4, 5, 6) }. In general, the column space ColA contains all the linear 
combinations of columns of A. 
 
The next theorem follows from the definition of Col A and the fact that the columns of A 
are in Rm. 
 
Theorem 3:   The column space of an m n×  matrix A is a subspace of Rm. 
 
Note that a typical vector in Col A can be written as Ax for some x because the notation 
Ax stands for a linear combination of the columns of A. That is, 

Col A = {b: b = Ax for some x in Rn} 
The notation Ax for vectors in Col A also shows that Col A is the range of the linear 
transformation .→x Ax   

Example 6:   Find a matrix A such that W = Col A. 
6 -

+
-7

a b
= a b : a,b in R

a

  
  
  
    

W  

Solution:    First, write W as a set of linear combinations. 
6 -1 6 -1
1 1 Span 1 , 1
-7 0 -7 0

= a +b : a,b in R =
          
          
          
                    

W  

Second, use the vectors in the spanning set as the columns of A. Let 
6 -1
1 1
-7 0

= .
 
 
 
  

A  

Then W = Col A, as desired. 
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We know that the columns of A span Rm if and only if the equation   Ax = b has a 
solution for each b. We can restate this fact as follows: 
The column space of an m n× matrix A is all of Rm if and only if the equation Ax = b has 
a solution for each b in Rm. 
  
Theorem 4:   A system of linear equations Ax = b is consistent if and only if b in the 
column space of A. 
 
Example 6:   A vector b in the column space of A. Let Ax = b is the linear system 

-1 3 2 1
1 2 -3 = -9
2 1 -2 -3

1

2

3

x
x
x

    
    
    
        

. Show that b is in the column space of A, and express b as a 

linear combination of the column vectors of A. 
Solution:   Augmented Matrix is given by 

  
-1  3  2   1 
 1  2 -3 -9 
 2  1 -2 -3 

 
 
 
  

 

1 -3  - 2   -1
0  5  -1  -8
0  7   2  -1

1

1 2

1 3

-1R
-1R + R
-2R + R

 
 
 
  

 

1 -3 -2   -1
0  1 -1/5  -8/5
0  0  17/5  51/5

2

2 3

1/5R
-7R + R

 
 
 
  

 

1  -3  0   5
0  1  0 -1
0  0  1  3

3

3 2

3 1

(5/17)R
(1/5)R + R

2R + R

 
 
 
  

 

0 

x2 

x1 

x3 

W 
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1  0  0   2
0  1  0 -1
0  0  1  3

2 13R + R
 
 
 
  

 

1 2 3x = 2,x = -1,x = 3⇒ . Since the system is consistent, b is in the column space of A.  

Moreover,  
-1 3 2 1

2 1 - 2 + 3 -3 = -9
2 1 -2 -3

       
       
       
              

 

 
Example:      Determine whether b is in the column space of A and if so, express b as a 
linear combination of the column vectors of A: 

1 1 2 1
1 0 1 : 0
2 1 3 2

A b
−   

   = =   
   
   

 

 
Solution:     
 The coefficient matrix Ax b=  is: 

 

The augmented matrix for the linear system that corresponds to the matrix 
equation Ax b=  is: 

1 1 2 1
1 0 1 0
2 1 3 2

 − 
 
 
 
 

 

We reduce this matrix to the Reduced Row Echelon Form:  

( )

( )

2 1

3 1

1 1 2 1 1 1 2 1
1 0 1 0 ~ 0 1 1 1 1
2 1 3 2 2 1 3 2

1 1 2 1
~ 0 1 1 1 2

0 1 1 4

R R

R R

 −   − 
   − − + −   
   
   

 − 
 − − + − 
 − − 

 

                           ( ) 2

1 1 2 1
~ 0 1 1 1 1

0 1 1 4
R

 − 
 − − 
 − − 

 

1

2

3

1 1 2 1
1 0 1 0
2 1 3 2

x
x
x

−    
    =    

        
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3 2

1 1 2 1
~ 0 1 1 1

0 0 0 3
R R

 − 
 − + 
 
 

 

( )

3

2 3

1 3

1 2

1 1 2 1
1~ 0 1 1 1
3

0 0 0 1

1 1 2 1
~ 0 1 1 0

0 0 0 1

1 1 2 0
~ 0 1 1 0

0 0 0 1

1 0 1 0
~ 0 1 1 0 1

0 0 0 1

R

R R

R R

R R

 − 
 − 
 
 
 − 
  + 
 
 
 
  + 
 
 
 
  + − 
 
 

 

 
The new system for the equation Ax b=  is 

                  
1 3

2 3

0
0

0 1

x x
x x
+ =
+ =

=

 

Equation 0 1=  cannot be solved, therefore, the system has no solution (i.e. the system is 
inconsistent). 
Since the equation Ax = b has no solution, therefore b is not in the column space of A. 
  
 
 
Activity:     Determine whether b is in the column space of A and if so, express b as a 
linear combination of the column vectors of A: 
 

1.  
 
 
 
 
 

2. 
1 1 1 1
1 1 1 ; 2
1 1 1 3

A b
−   

   = − =   
   − − −   

 

1 1 2 5
9 3 1 ; 1
1 1 1 0

A b
−   

   = =   
   
   
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3. 

1 1 2 1 1
0 2 0 1 2

;
1 1 1 3 3
0 2 2 1 4

A b

−   
   
   = =
   −
   
   

 

 
 
 
 
Theorem 5:   If x0 denotes any single solution of a consistent linear system Ax=b and if 

, , ,...,1 2 3 kv v v v form the solution space of the homogeneous system Ax=0, then every 
solution of Ax=b can be expressed in the form 1 2 ... kc c c= + + + +0 1 2 kx x v v v and, 
conversely, for all choices of scalars 1 2 3, , ,..., kc c c c , the vector x is a solution of Ax=b. 
 
General and Particular Solutions:   The vector x0 is called a particular solution of Ax=b 
.The expression x0+ c1 v1 +c2v2+ . . . +ck vk  is called the general solution of Ax=b  , and 
the expression c1 v1 +c2v2+ . . . +ck vk  is called the general solution of Ax=0. 
 
Example 7:   Find the vector form of the general solution of the given linear system  
Ax = b; then use that result to find the vector form of the general solution of Ax=0. 

1 2 3 5

1 2 3 4 5 6

3 4 6

1 2 4 5 6

x +3x - 2x + 2x = 0
2x +6x - 5x - 2x +4x - 3x = -1

5x +10x +15x = 5
2x +6x +8x +4x +18x = 6

 

Solution:   We solve the non-homogeneous linear system. The augmented matrix of this 
system is given by 

1  3 -2  0  2   0   0
2  6 -5 -2  4  -3 -1
0  0  5  10  0  15  5
2  6  0  8  4  18  6

 
 
 
 
 
 

 

 1  3  - 2  0  2  0   0 
 0  0  -1  - 2  0  -3  -1 
 0  0  5  10  0  15  5 
 0  0  4  8  0  18  6 

1 2

1 4

-2R + R
-2R + R

 
 
 
 
 
 

 

2

 1  3  - 2  0  2  0   0 
 0  0  1  2  0  3  1 
 0  0  5  10  0  15  5 
 0  0  4  8  0  18  6 

-1R

 
 
 
 
 
 
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 1  3  - 2  0  2  0   0 
 0  0  1  2  0  3  1 
 0  0  0  0  0  0  0 
 0  0  0  0  0  6  2 

2 3

2 4

-5R + R
-4R + R

 
 
 
 
 
 

 

34

 1  3  - 2  0  2  0   0 
 0  0  1  2  0  3  1 
 0  0  0  0  0  6  2 
 0  0  0  0  0  0  0 

R

 
 
 
 
 
 

 

 
 1  3  - 2  0  2  0   0 
 0  0  1  2  0  3  1 
 0  0  0  0  0  1  1/3 
 0  0  0  0  0  0  0 

3(1/6)R

 
 
 
 
 
 

 

 1  3  - 2  0  2  0   0 
 0  0  1  2  0  0  0 
 0  0  0  0  0  1  1/3 
 0  0  0  0  0  0  0 

3 2- 3R + R

 
 
 
 
 
 

 

 1  3  0  4  2  0   0 
 0  0  1  2  0  0  0 
 0  0  0  0  0  1  1/3 
 0  0  0  0  0  0  0 

2 12R + R

 
 
 
 
 
 

 

The reduced row echelon form of the augmented matrix corresponds to the system   

1 2 4 5

3 4

6

1 x +3 x + 4 x +2 x = 0
1 x +2 x = 0

1 x = (1/3) 
0 = 0

 

No equation of this system has a form zero = nonzero; Therefore, the system is 
consistent. The system has infinitely many solutions:  

1 2 4 5 2 3 4

4 5 6

x = -3 x - 4 x - 2 x x = r x = -2 x
x = s x = t x = 1/3

 

1 2 3

4 5 6

x = -3r - 4s - 2t x = r x = -2s
1x = s x = t x =
3
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This result can be written in vector form as  
-3 - 4 - 2 0 -3 -4 -2

0 1 0 0
-2 0 0 -2 0

0 0 1 0
0 0 0 1

1 1 0 0 0
3 3

1

2

3

4

5

6

r s tx
rx
sx

= = + r + s +tsx
tx

x

                                                                                                  

  (A) 

which is the general solution of the given system. The vector x0 in (A) is a particular 

solution of the given system; the linear combination 

-3 -4 -2
1 0 0
0 -2 0
0 1 0
0 0 1
0 0 0

r + s +t

     
     
     
     
     
     
     
     
     

 in (A) is the 

general solution of the homogeneous system. 
 
Activity: 

1. Suppose that 1 2 3 41, 2, 4, 3x x x x= − = = = −  is a solution of a non-homogenous 
linear system Ax b=  and that the solution set of the homogenous system 0Ax =  
is given by this formula: 

1

2

3

4

3 4 ,
,

,

x r s
x r s
x r
x s

= − +
= −
=
=

 

(a) Find the vector form of the general solution of 0Ax = . 
(b) Find the vector form of the general solution of 0Ax = . 

 
 
Find the vector form of the general solution of the following linear system Ax = b; then 
use that result to find the vector form of the general solution of Ax=0: 

2.               1 2

1 2

2 1
3 9 2

x x
x x
− =
− =

 

 

3.            

1 2 3 4

1 2 3 4

1 2 3 4

1 2 4

2 3 3
3 3 1

3 2 2
4 5 3 5

x x x x
x x x x
x x x x
x x x

+ − + =
− − + + = −
− + − + =

− − = −
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The Contrast between Nul A and Col A: 
   It is natural to wonder how the null space and column space of a matrix are related. In 
fact, the two spaces are quite dissimilar. Nevertheless, a surprising connection between 
the null space and column space will emerge later.   
 

Example 8: Let 
2 4 -2 1

= -2 -5 7 3
3 7 -8 6

 
 
 
  

A   

(a) If the column space of A is a subspace of Rk, what is k? 
(b) If the null space of A is a subspace of Rk, what is k? 
 
Solution:    
 
(a) The columns of A each have three entries, so Col A is a subspace of Rk, where k = 3. 
(b) A vector x such that Ax is defined must have four entries, so Nul A is a subspace of 
Rk, where k = 4. 
 
When a matrix is not square, as in Example 8, the vectors in Nul A and Col A live in 
entirely different “universes”. For example, we have discussed no algebraic operations 
that connect vectors in R3 with vectors in R4. Thus we are not likely to find any relation 
between individual vectors in Nul A and Col A. 
 

Example 9:   If
2 4 -2 1

= -2 -5 7 3
3 7 -8 6

 
 
 
  

A , find a nonzero vector in Col A and a nonzero 

vector in Nul A 

Solution:   It is easy to find a vector in Col A. Any column of A will do, say, 
2
-2
3

.
 
 
 
  

 To 

find a nonzero vector in Nul A, we have to do some work. We row reduce the augmented 

matrix [A   0] to obtain
1 0 9 0 0

[ ] ~ 0 1 -5 0 0
0 0 0 1 0

 
 
 
  

A 0 . Thus if x satisfies Ax = 0, 

then 1 3 2 3 4x = -9x , x = 5x , x = 0 , and x3 is free. Assigning a nonzero value to x3 (say), x3 = 
1, we obtain a vector in Nul A, namely, x = (-9, 5, 1, 0). 
 

Example 10: With
2 4 -2 1
-2 -5 7 3
3 7 -8 6

=
 
 
 
  

A , let 

3
3

-2
and -1

-1
3

0

= = .

 
  
  
  
    

 

u v  

(a) Determine if u is in Nul A.  Could u be in Col A? 
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(b) Determine if v is in Col A.  Could v be in Nul A? 
Solution:   (a) An explicit description of Nul A is not needed here. Simply compute the 
product 

3
2 4 -2 1 0 0

-2
= -2 -5 7 3 = -3 0

-1
3 7 -8 6 3 0

0

 
      
       ≠      
           

 

Au  

Obviously, u is not a solution of Ax = 0, so u is not in Nul A.  
Also, with four entries, u could not possibly be in Col A, since Col A is a subspace of R3. 
(b) Reduce [A   v] to an echelon form: 

2 4 -2 1 3 2 4 -2 1 3
[ ] -2 -5 7 3 -1 0 1 -5 -4 2

3 7 -8 6 3 0 0 0 17 1

   
   =    
      

A v    

At this point, it is clear that the equation Ax = v is consistent, so v is in Col A. With only 
three entries, v could not possibly be in Nul A, since Nul A is a subspace of R4. 
 
 
The following table summarizes what we have learned about Nul A and Col A. 
  

1. Nul A is a subspace of Rn. 
2. Nul A is implicitly defined; i.e. we 

are given only a condition (Ax = 0) 
that vectors in Nul A must satisfy. 

3. It takes time to find vectors in Nul 
A. Row operations on [A   0] are 
required. 

4. There is no obvious relation 
between Nul A and the entries in A. 

 
 
5. A typical vector v in Nul A has the 

property that Av = 0. 
 
6. Given a specific vector v, it is easy 

to tell if v is in Nul A. Just compute 
Av. 

 
7. Nul A = {0} if and only if the 

equation Ax = 0 has only the trivial 
solution. 

8.  Nul A = {0} if and only if the linear 
transformation →x Ax  is one-to-
one. 

 

1. Col A is a subspace of Rm. 
2. Col A is explicitly defined; that is, 

we are told how to build vectors in 
Col A. 

3. It is easy to find vectors in Col A 
The columns of A are displayed; 
others are formed from them. 

4. There is an obvious relation 
between Col A and the entries in 
A, since each column of A is in Col 
A. 

5. A typical vector v in Col A has the 
property that the equation Ax = v 
is consistent. 

6. Given a specific vector v, it may 
take time to tell if v is in Col A. 
Row operations on [A   v] are 
required. 

7. Col A.= Rm if and only if the 
equation Ax = b has a solution for 
every b in Rm. 

8. Col A = Rm if and only if the linear 
transformation →x Ax maps Rn 
onto Rm. 
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Kernel and Range of A Linear Transformation:    
Subspaces of vector spaces other than Rn are often described in terms of a linear 
transformation instead of a matrix. To make this precise, we generalize the definition 
given earlier in Segment I. 
 
Definition:   A linear transformation T from a vector space V into a vector space W is a 
rule that assigns to each vector x in V a unique vector T (x) in W, such that 

(i)  T (u + v) = T (u) + T (v)  for all u, v in V, and   
 (ii) T (cu) = c T (u)   for all u in V and all scalars c.  
 
The kernel (or null space) of such a T is the set of all u in V such that T (u) = 0 (the zero 
vector in W). The range of T is the set of all vectors in W of the form T (x) for some x in 
V. If T happens to arise as a matrix transformation, say, T (x) = Ax for some matrix A – 
then the kernel and the range of T are just the null space and the column space of A, as 
defined earlier. So if T(x) = Ax, col A = range of T. 
 
 
Definition:   If :T V W→ is a linear transformation, then the set of vectors in V that T 
maps into 0 is called the kernel of T; it is denoted by ker(T). The set of all vectors in W 
that are images under T of at least one vector in V is called the range of T; it is denoted 
by R(T). 
  
Example:    If : n m

AT →   is multiplication by the m n×  matrix A, then from the 
above definition; the kernel of AT  is the null space of A and the range of AT  is the column 
space of A. 
 
Remarks:   The kernel of T is a subspace of V and the range of T is a subspace of W.  

 
Figure 2 Subspaces associated with a linear transformation. 

 
In applications, a subspace usually arises as either the kernel or the range of an 
appropriate linear transformation. For instance, the set of all solutions of a homogeneous 
linear differential equation turns out to be the kernel of a linear transformation. Typically, 
such a linear transformation is described in terms of one or more derivatives of a 

0 
W 

V’ 
0 

Range 

Kernel 

Domain 

Kernel is a 
subspace of V 

Range is a 
subspace of W 
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function. To explain this in any detail would take us too far a field at this point. So we 
present only two examples. The first explains why the operation of differentiation is a 
linear transformation. 
 
Example 11:   Let V be the vector space of all real-valued functions f  defined on an 
interval [a, b] with the property that they are differentiable and their derivatives are 
continuous functions on [a, b]. Let W be the vector space of all continuous functions on 
[a, b] and let : →D V W  be the transformation that changes f  in V into its 
derivative ′f . In calculus, two simple differentiation rules are 
  ( ) ( ) ( ) and ( ) ( )c c+ = + =D f g D f D g D f D f  
That is, D is a linear transformation. It can be shown that the kernel of D is the set of 
constant functions of [a, b] and the range of D is the set W of all continuous functions on 
[a, b]. 
 
 
Example 12:   The differential equation 0y wy′′ + =     (4) 
where w is a constant, is used to describe a variety of physical systems, such as the 
vibration of a weighted spring, the movement of a pendulum and the voltage in an 
inductance – capacitance electrical circuit. The set of solutions of (4) is precisely the 
kernel of the linear transformation that maps a function ( )=y f t  into the 
function ( ) ( )w′′ +f t f t . Finding an explicit description of this vector space is a problem in 
differential equations.  
 

Example 13:   Let .
a

= b : a - 3b - c = 0
c

  
  
  
    

W  Show that W is a subspace of R3 in 

different ways. 
Solution:   First method: W is a subspace of R3 by Theorem 2 because W is the set of all 
solutions to a system of homogeneous linear equations (where the system has only one 
equation). Equivalently, W is the null space of the 1x3 matrix = [1 - 3 -1].A  
Second method: Solve the equation a – 3b – c = 0 for the leading variable a in terms of 
the free variables b and c.  

Any solution has the form 
3

,
b+c
b
c

 
 
 
  

where b and c are arbitrary, and 

3 3 1
1 0
0 1

b+c
b = b +c
c

     
     
     
          

↑ ↑

1 2v v
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This calculation shows that W = Span{v1, v2}. Thus W is a subspace of R3 by Theorem 
i.e. if 1,..., pv v  are in a vector spaceV , then Span { }1,..., pv v is a subspace ofV . We could 
also solve the equation a – 3b – c = 0 for b or c and get alternative descriptions of W as a 
set of linear combinations of two vectors. 
 

Example 14:   Let
7 -3 5 2 7
-4 1 -5 1 6
-5 2 -4 -1 -3

= , = ,and =
     
     
     
          

A v W  

Suppose you know that the equations Ax = v and Ax = w are both consistent. What can 
you say about the equation Ax = v + w? 
Solution:   Both v and w are in Col A. Since Col A is a vector space, v + w must be in Col 
A. That is, the equation Ax = v + w is consistent. 
 
 
 
 
 
 
Activity:      

1. Let V and W be any two vector spaces. The mapping :T V W→  such that T (v) = 
0 for every v in V is a linear transformation called the zero transformation. Find 
the kernel and range of the zero transformation. 

 
2. Let V be any vector space. The mapping :I V V→  defined by I(v) = v is called 

the identity operator on V. Find the kernel and range of the identity operator. 
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Exercises: 
 

1. Determine if w = 
5
-3
2

 
 
 
  

 is in Nul A, where A=
5 21 19

13 23 2
8 14 1

 
 
 
  

. 

 
In exercises 2 and 3, find an explicit description of Nul A, by listing vectors that span the 
null space. 

2. 
1 3 5 0
0 1 4 -2
 
 
 

    3. 
1 -2 0 4 0
0 0 1 -9 0
0 0 0 0 1

 
 
 
  

 

 
In exercises 4-7, either use an appropriate theorem to show that the given set, W is a 
vector space, or find a specific example to the contrary. 
 

4. :
a
b a+b+c = 2
c

  
  
  
    

   5. :

a
b a - 2b = 4c
c 2a = c+3d
d

  
  
         

 

 

6. 

- 2
5 +

: real
+ 3

b d
d

b,d
b d

d

 
 
 
 
 
 

    7. 
- + 2

- 2 : real
3 - 6

a b
a b a,b
a b

 
 
 
  

 

 
In exercises 8 and 9, find A such that the given set is Col A. 
 

8. 

2 + 3
- 2

: real
4 +

3 - -

s t
r s t

r,s,t
r s

r s t

  
  +         

   9. 

-
2 +

: , , real
5 - 4

b c
b c d

b c d
c d

d

  
  +         

 

 
For the matrices in exercises 10-13, (a) find k such that Nul A is a subspace of Rk, and  
(b) find k such that Col A is a subspace of Rk. 
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10. 

2 -6
-1 3
-4 12
3 -9

 
 
 =
 
 
 

A     11. 

7 -2 0
-2 0 -5
0 -5 7
-5 7 -2

 
 
 =
 
 
 

A  

 

12. A=
4 5 -2 6 0
1 1 0 1 0
 
 
 

   13. A=[ ]1 -3 9 0 -5  

 

14. Let
-6 12 2

and
-3 6 1
   

= =   
   

A w . Determine if w is in Col A. Is w in Nul A? 

 

15. Let 
-8 -2 -9 2
6 4 8 and 1
4 0 4 -2

   
   = =   
      

A w . Determine if w is in Col A. Is w in Nul A? 

 

16. Define T: P2 →R2 by T (p) = 
(0)
(1)

 
 
 

p
p

. For instance, if p (t) = 3 + 5t + 7t2, then 

3
15

( )  
=  
 

T p . 

a. Show that T is a linear transformation. 
b. Find a polynomial p in P2 that spans the kernel of T, and describe the range of T. 
 

17. Define a linear transformation T: P2→R2 by T (p) =
(0)
(1)

 
 
 

p
p

. Find polynomials p1 

and p2 in P2 that span the kernel of T, and describe the range of T. 
 
18. Let M2x2 be the vector space of all 2x2 matrices, and define T: M2x2→  M2x2 by   

T (A) = A + AT, where 
a b
c d
 

=  
 

A . 

(a) Show that T is a linear transformation. 
(b) Let B be any element of M2x2 such that BT=B. Find an A in M2x2 such that T (A) = B. 
(c) Show that the range of T is the set of B in M2x2 with the property that BT=B. 
(d) Describe the kernel of T. 
 
19. Determine whether w is in the column space of A, the null space of A, or both, where 
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(a) 

1 7 6 -4 1
1 -5 -1 0 -2
-1 9 -11 7 -3
-3 19 -9 7 1

,

   
   
   = =
   
   
   

w A  (b) 

1 -8 5 -2 0
2 -5 2 1 -2
1 10 -8 6 -3
0 3 -2 1 0

,

   
   
   = =
   
   
   

w A  

 
20. Let a1, …, a5 denote the columns of the matrix A, where 

5 1 2 2 0
3 3 2 -1 -12
8 4 4 -5 12
2 1 1 0 -2

 
 
 =
 
 
 

A , [ ]= 1 2 4B a a a  

(a) Explain why a3 and a5 are in the column space of B 
(b) Find a set of vectors that spans Nul A 
(c) Let T: R5→R4 be defined by T (x) = Ax. Explain why T is neither one-to-one nor 
onto.   
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Lecture 06 
 

Linearly Independent Sets; Bases 
 
First we revise some definitions and theorems from the Vector Space: 
 
Definition:    Let V be an arbitrary nonempty set of objects on which two operations are 
defined, addition and multiplication by scalars.  
 
 If the following axioms are satisfied by all objects u, v, w in V and all scalars l and 
m, then we call V a vector space. 
 
Axioms of Vector Space:  
 For any set of vectors u, v, w in V and scalars l, m, n:  
1. u + v is in V 
2.  u + v = v + u 
3.  u + (v + w) = (u + v) + w 
4.         There exist a zero vector 0 such that  
 0 + u = u + 0 = u 
5. There exist a vector – u in V such that  
             -u + u = 0 = u + (-u) 
6.  (l u) is in V 
7. l (u + v)= l u + l v 
8. m (n u) = (m n) u = n (m u) 
9. (l +m) u= I u+ m u 
10. 1u = u where 1 is the multiplicative identity 
 
    
Definition:   A subset W of a vector space V is called a subspace of V if W itself is a 
vector space under the addition and scalar multiplication defined on V. 
 
Theorem:   If W is a set of one or more vectors from a vector space V, then W is subspace 
of V if and only if the following conditions hold: 
 
(a) If u and v are vectors in W, then u + v is in W 
(b) If k is any scalar and u is any vector in W, then k u is in W. 
 
Definition;   The null space of an  m x n matrix A (Nul A) is the set of all solutions of the 
hom  equation Ax = 0 
 Nul A = {x: x is in Rn and Ax = 0}  
 
Definition:    The column space of an  m x n matrix A (Col A) is the set of all linear 
combinations of the columns of A.  
If A = [a1   …   an],  
then  
Col A = Span { a1,… , an }  
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Since we know that a set of vectors { }1 2 3, , ,... pS v v v v= spans a given vector space V if 
every vector in V is expressible as a linear combination of the vectors in S. In general 
there may be more than one way to express a vector in V as linear combination of vectors 
in a spanning set. We shall study conditions under which each vector in V is expressible 
as a linear combination of the spanning vectors in exactly one way. Spanning sets with 
this property play a fundamental role in the study of vector spaces. 
In this Lecture, we shall identify and study the subspace H as “efficiently” as possible. 
The key idea is that of linear independence, defined as in Rn. 
 
Definition:    An indexed set of vectors {v1,…, vp} in V is said to be linearly 
independent if the vector equation  

1 2 pc +c +...+c = 01 2 pv v v        (1) 
has only the trivial solution, i.e. c1 = 0, … , cp = 0. 
The set {v1,…,vp} is said to be linearly dependent if (1) has a nontrivial solution, that is, 
if there are some weights, c1,…,cp, not all zero, such that (1) holds. In such a case, (1) is 
called a linear dependence relation among v1, … , vp. Alternatively, to say that the v’s 
are linearly dependent is to say that the zero vector 0 can be expressed as a nontrivial 
linear combination of the v’s. 
  
If the trivial solution is the only solution to this equation then the vectors in the set are 
called linearly independent and the set is called a linearly independent set.  If there is 
another solution then the vectors in the set are called linearly dependent and the set is 
called a linearly dependent set. 
 
Just as in Rn, a set containing a single vector v is linearly independent if and only if ≠v 0 . 
Also, a set of two vectors is linearly dependent if and only if one of the vectors is a 
multiple of the other. And any set containing the zero-vector is linearly dependent. 
 
Determining whether a set of vectors 1 2 3, , ,... na a a a is linearly independent is easy when 
one of the vectors is 0: if, say, 1 0a = , then we have a simple solution to 

1 1 2 2 3 3 ... 0n nx a x a x a x a+ + + + = given by choosing 1x to be any nonzero value and putting 
all the other x’s equal to 0. Consequently, if a set of vectors contains the zero vector, it 
must always be linearly dependent. Equivalently, any set of linearly independent vectors 
cannot contain the zero vector. 
   
Another situation in which it is easy to determine linear independence is when there are 
more vectors in the set than entries in the vectors. If n > m, then the n vectors 

1 2 3, , ,... na a a a  in Rm are columns of an m n× matrix A. The vector equation 

1 1 2 2 3 3 ... 0n nx a x a x a x a+ + + + =  is equivalent to the matrix equation Ax = 0 whose 
corresponding linear system has more variables than equations. Thus there must be at 
least one free variable in the solution, meaning that there are nontrivial solutions 
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to 1 1 2 2 3 3 ... 0n nx a x a x a x a+ + + + = : If n > m, then the set { }1 2 3, , ,... na a a a of vectors in Rm 
must be linearly dependent.  
When n is small we have a clear geometric picture of the relation amongst linearly 
independent vectors. For instance, the case n = 1 produces the equation 1 1 0x a = , and as 
long as 1 0a ≠ , we only have the trivial solution 1 0x = . A single nonzero vector always 
forms a linearly independent set. 
When n = 2, the equation takes the form 1 1 2 2 0x a x a+ = . If this were a linear dependence 
relation, then one of the x’s, say 1x , would have to be nonzero. Then we could solve the 
equation for 1a  and obtain a relation indicating that 1a  is a scalar multiple of 2a . 
Conversely, if one of the vectors is a scalar multiple of the other, we can express this in 
the form 1 1 2 2 0x a x a+ = . Thus, a set of two nonzero vectors is linearly dependent if and 
only if they are scalar multiples of each other. 
 
Example:      (linearly independent set)  
Show that the following vectors are linearly independent:  
 

                                
1 2 3

2 2 0
1 , 1 , 0
1 2 1

v v v
−     
     = = =     
     −       

Solution:    Let there exist scalars 1 2 3, ,c c c  in R such that 

1 1 3 2 3 3 0c v c v c v+ + =  
Therefore, 

                  1 2 3

2 2 0
1 1 0 0
1 2 1

c c c
−     
     ⇒ + + =     
     −     

 

                  
1 2

1 2

31 2

2 2 0
0 0

2

c c
c c

cc c

−     
     ⇒ + + =     
     −     

 

                 
1 2

1 2

1 2 3

2 2 0
0
02

c c
c c
c c c

− +   
   ⇒ + =   
   − +   

 

The above can be written as: 
 

1 2 1 2

1 2

1 2 3

2 2 0 ........(1) 0........(4) ( 2 (1))
0 .......(2)

2 0 ......(3)

c c c c dividing by onboth sides of
c c
c c c

− + = ⇒ − + =
+ =
− + =
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1 2

1 2
3

1
3

2 1

2

1 2 3 1 2 3

(2) (4) :
0

(3) :
0 (2) :

0 0 0
__________ 0 0

0
0 2 0 0

0
0 ; , ,

  The system has trivial solution.

Solving and implies
c c

Solving implies
c c Solving implies

c
c

c
c c
c

c c c scalars c c c R are all zero

Hence

+ =
− + =

+ + =
+ =

⇒ =
+ = ⇒ =
⇒ =

⇒ = = = ∈
∴

1 2 3, , .the given vectors v v v are linearly independent

 

 
Example:      (linearly dependent set) 
If { } { } { }1 2 32, 1,0,3 , 1, 2,5, 1 7, 1,5,8v v and v= − = − = − , then the set of vectors 

{ }1 2 3, ,S v v v= is linearly dependent, since 1 2 33 0v v v+ − =  
 
Example;      (linearly dependent set) 
The polynomials 2 2

1 2 31, 2 3 5, 3 1p x p x x and p x x= − + = − + + = − + +  form a linearly 
dependent set in 2p  since 1 2 33 2 0p p p− + = . 
 
Note: The linearly independent or linearly dependent sets can also be determined using 
the Echelon Form or the Reduced Row Echelon Form methods. 
 
Theorem 1:   An indexed set { v1, … , vp } of two or more vectors, with ≠1v 0 , is 
linearly dependent if and only if some vj (with 1j > ) is a linear combination of the 
preceding vectors, v1, … , vj-1. 
 
The main difference between linear dependence in Rn and in a general vector space is that 
when the vectors are not n – tuples, the homogeneous equation (1) usually cannot be 
written as a system of n linear equations. That is, the vectors cannot be made into the 
columns of a matrix A in order to study the equation Ax = 0. We must rely instead on the 
definition of linear dependence and on Theorem 1. 
 
Example 1:   Let p1 (t) = 1, p 2(t) = t and p 3 (t) = 4 – t. Then { p 1, p 2, p 3} is linearly 
dependent in P because       p3 = 4p1 – p2. 
 
Example 2:   The set {Sin t, Cos t} is linearly independent in C [0, 1] because Sin t and 
Cos t are not multiples of one another as vectors in C [0, 1]. That is, there is no scalar c 
such that Cos t = c. Sin t for all t in [0, 1]. (Look at the graphs of Sin t and Cos t.) 
However,  {Sin t Cos t, Sin 2t} is linearly dependent because of he identity:  
Sin 2t = 2 Sin t Cos t, for all t. 
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Useful results: 
• A set containing the zero vector is linearly dependent. 
• A set of two vectors is linearly dependent if and only if one is a multiple of the 

other. 
• A set containing one nonzeoro vector is linearly independent. i.e. consider the set 

containing one nonzeoro vector { }1v  so { }1v  is linearly independent when 1 0v ≠ . 
• A set of two vectors is linearly independent if and only if neither of the vectors is 

a multiple of the other. 
 
Activity:     Determine whether the following sets of vectors are linearly independent or 
linearly dependent: 
 

1. ( ) ( ) ( )1,0,0,0 , 0,1,0,0 , 0,0,0,1i j k= = =  in 4 . 
2. ( ) ( ) ( ) ( )1 2 3 42,0, 1 , 3, 2, 5 , 6,1, 1 , 7,0,2v v v v= − = − − − = − − = −  in 3.   

3. ( ) ( ) ( )1,0,0,...,0 , 0,1,0,...,0 , 0,0,0,...,1i j k= = =  in m. 

4. 2 2 2 23 3 1, 4 , 3 6 5, 2 7x x x x x x x x+ + + + + − + + in 2p  
  

Definition:   Let H be a subspace of a vector space V. An indexed set of vectors B = 
{b1,…, bp} in V is a basis for H if  
  

(i) B is a linearly independent set, and  
(ii) the subspace spanned by B coincides with H; that is, 

H = Span {b1,...,bp } 
The definition of a basis applies to the case when H = V, because any vector space is a 
subspace of itself. Thus a basis of V is a linearly independent set that spans V. Observe 
that when ≠H V , condition (ii) includes the requirement that each of the vectors b1,...,bp 
must belong to H, because Span { b1,...,bp } contains  b1,…,bp, as we saw in lecture 21. 
 
Example 3:   Let A be an invertible n n×  matrix – say, A = [a1 … an]. Then the columns 
of A form a basis for Rn because they are linearly independent and they span Rn, by the 
Invertible Matrix Theorem. 
 
Example 4:   Let e1,…, en be the columns of the n n×  identity matrix, In. That is, 
 

1 0 0
0 1 0

, , ...

0 0 1

= =

     
     
     =
     
     
     

  
1 2 ne e e  

 
The set {e1, …, en} is called the standard basis for R n (Fig. 1). 
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Figure 1 - The standard basis for R3 

 

Example 5: Let 
3 -4 -2
0 , 1 ,and 1 .
-6 7 5

= = =
     
     
     
          

1 2 3v v v  Determine if {v1, v2, v3} is a basis 

for R3. 
Solution:   Since there are exactly three vectors here in R3, we can use one of any 
methods to determine whether they are basis for 3 or not. For this, let solve with help of 
matrices. First form a matrix of vectors i.e. matrix A = [v1   v2    v3]. If this matrix is 
invertible (i.e. |A| ≠ 0 determinant should be non zero).  
For instance, a simple computation shows that det A = 6 0≠ . Thus A is invertible. As in 
example 3, the columns of A form a basis for R3.  
 
Example 6:   Let S = {1, t, t2, …, tn}. Verify that S is a basis for Pn. This basis is called 
the standard basis for Pn. 
 
Solution:   Certainly S spans Pn. To show that S is linearly independent, suppose that  
c0,…, cn satisfy 

c0.1 + c1t + c2t2 + ….. + cntn = 0 (t)     (2) 
This equality means that the polynomial on the left has the same values as the zero 
polynomial on the right. A fundamental theorem in algebra says that the only polynomial 
in Pn with more than n zeros is the zero polynomial. That is, (2) holds for all t only if      
c0 = …= cn = 0. This proves that S is linearly independent and hence is a basis for Pn. 
See Figure 2. 

x1 

x2 

x3 

e1 
e2 

e3 

                                                  
                                                   ©Virtual University Of Pakistan                                                            74 



06- Linear Independence Sets; Bases                                                                                                           VU                                                  
 

 
 

Figure 2 – The standard basis for P2 
 
Problems involving linear independence and spanning in Pn are handled best by a 
technique to be discussed later. 
 
Example 7:   Check whether the set of vectors {(2, -3, 1), (4, 1, 1), (0, -7, 1)} is basis for 
R3? 
Solution:   The set S = {v1, v2, v3} of vectors in R3 spans V = R3 if  

c1v1 + c2v2 + c3v3 = d1w1 + d2w2 + d3w3    (*)  
with w1 = (1,0,0), w2 = (0,1,0) , w3 = (0,0,1) has at least one solution for every set of 
values of the coefficients d1, d2, d3. Otherwise (i.e., if no solution exists for at least some 
values of d1, d2, d3), S does not span V. With our vectors v1, v2, v3, (*) becomes 

c1(2,-3,1) + c2(4,1,1) + c3(0,-7,1) =  d1(1,0,0) + d2(0,1,0) + d3(0,0,1) 
Rearranging the left hand side yields   

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

2 c  +4 c  +0 c = 1 d  +0 d  +0 d
-3 c  +1 c -7 c = 0 d  +1 d  +0 d
1 c  +1 c  +1 c = 0 d  +0 d  +1 d

     (A) 

2 4 0
-3 1 -7
1 1 1

1 1

2 2

3 3

c d
c d
c d

    
    ⇒ =    
         

 

 

We now find the determinant of coefficient matrix 
2 4 0
-3 1 -7
1 1 1

 
 
 
  

 to determine whether the 

system is consistent (so that S spans V), or inconsistent (S does not span V). 

y=1 

y=t 
y=t2 

y 

t 
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Now   det 
2 4 0
-3 1 -7
1 1 1

 
 
 
  

 = 2(8) – 4(4) +0 = 0   

Therefore, the system (A) is inconsistent, and, consequently, the set S does not span the 
space V. 
  
Example 8:   Check whether the set of vectors  
{-4  + 1 t + 3 t2 ,  6  + 5 t + 2 t2 ,  8  + 4 t + 1 t2} is a basis for P2? 
Solution   The set S = {p1 (t), p2 (t), p3 (t)} of vectors in P2 spans V = P2 if  

c1 p1 (t) + c2 p2 (t) + c3 p3 (t) = d1 q1 (t) + d2 q2 (t) + d3 q3 (t)  (*)  
with q1(t) = 1  + 0 t  + 0 t 2  , q2(t) = 0  + 1 t  + 0 t 2  , q3(t) = 0  + 0 t  + 1 t 2 has at least 
one solution for every set of values of the coefficients d1, d2, d3. Otherwise (i.e., if no 
solution exists for at least some values of d1, d2, d3), S does not span V. With our vectors 
p1(t), p2(t), p3(t), (*) becomes: 

c1 (-4 + 1 t + 3 t2) + c2 (6 + 5 t + 2 t2) + c3 (8 + 4 t + 1 t2) = 
d1 (1  + 0 t  + 0 t 2 )  +  d2 (0  + 1 t  + 0 t 2 )  +  d3 (0  + 0 t  + 1 t 2 ) 

 Rearranging the left hand side yields  
(-4 c1 +6 c2 +8 c3)1  + (1 c1 +5 c2 +4 c3) t + (3 c1 +2 c2 +1 c3) t2 = 
(1 d1 +0 d2 +0 d3)1 + (0 d1 +1 d2 +0 d3) t + (0 d1 +0 d2 +1 d3) t2  

In order for the equality above to hold for all values of t, the coefficients corresponding to 
the same power of t on both sides of the equation must be equal. This yields the 
following system of equations: 

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

-4 c +6 c +8 c = 1 d +0 d +0 d
1 c +5 c +4 c = 0 d +1 d +0 d
3 c +2 c +1 c = 0 d +0 d +1 d

     (A) 

- 4 6 8
1 5 4
3 2 1

1 1

2 2

3 3

c d
c d
c d

    
    ⇒ =    
         

 

 

We now find the determinant of coefficient matrix 
- 4 6 8
1 5 4
3 2 1

 
 
 
  

 to determine whether the 

system is consistent (so that S spans V), or inconsistent (S does not span V). 

Now   det 
- 4 6 8
1 5 4
3 2 1

 
 
 
  

 = -26≠ 0. Therefore, the system (A) is consistent, and, 

consequently, the set S spans the space V. 
 
The set S = {p1 (t), p2 (t), p3 (t)} of vectors in P2 is linearly independent if the only 
solution of  

c1 p1 (t) + c2 p2 (t) + c3 p3 (t) = 0      (**) 
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is c1, c2, c3 = 0. In this case, the set S forms a basis for span S. Otherwise (i.e., if a 
solution with at least some nonzero values exists), S is linearly dependent. With our 
vectors p1 (t), p2 (t), p3 (t), (2) becomes: c1 (-4 + 1 t + 3 t2) + c2 (6 + 5 t + 2 t2) + c3 (8 + 
4 t + 1 t2) = 0 Rearranging the left hand side yields  

(-4 c1 +6 c2 +8 c3)1  + (1 c1 +5 c2 +4 c3) t + (3 c1 +2 c2 +1 c3) t2 = 0  
This yields the following homogeneous system of equations:  

1 2 3

1 2 3

1 2 3

-4 c +6 c +8 c = 0
1 c  +5 c  +4 c = 0
3 c  +2 c  +1 c = 0

 
- 4 6 8
1 5 4
3 2 1

1

2

3

c 0
c 0

0c

    
    ⇒ =    
        

  

As   det 
- 4 6 8
1 5 4
3 2 1

 
 
 
  

 = -26≠ 0. Therefore the set S = {p1 (t), p2 (t), p3 (t)} is linearly 

independent. Consequently, the set S forms a basis for span S. 
 

Example 9:   The set 
1 0 0 1 0 0 0 0

= , , ,
0 0 0 0 1 0 0 1

        
        
        

S  is a basis for the vector 

space V of all 2 x 2 matrices.  
Solution:   To verify that S is linearly independent, we form a linear combination of the 
vectors in S and set it equal to zero: 

 c1 
1 0
0 0
 
 
 

+ c2
0 1
0 0
 
 
 

+ c3 
0 0
1 0
 
 
 

+ c4 
0 0
0 1
 
 
 

= 
0 0
0 0
 
 
 

  

This gives 
0 0
0 0

1 2

3 4

c c
=

c c
   
   

  
, which implies that c1 = c2 = c3 = c4 = 0. Hence S is  

linearly independent.  

To verify that S spans V we take any vector 
a b
c d
 
 
 

 in V and we must find scalars c1, c2, 

 c3, and c4 such that    

c1 
1 0
0 0
 
 
 

+ c2
0 1
0 0
 
 
 

+ c3 
0 0
1 0
 
 
 

+ c4 
0 0
0 1
 
 
 

=
a b
c d
 
 
 

⇒ 1 2

3 4

c c a b
=

c c c d
   
   

  
 

We find that c1 = a, c2 = b, c3 = c, and c4 = d so that S spans V. 
  
The basis S in this example is called the standard basis for M22. More generally, the 
standard basis for Mmn consists of mn different matrices with a single 1 and zeros for the 
remaining entries 
  
Example 10:   Show that the set of vectors  

3 6 0 -1 0 -8 1 0
, , ,

3 -6 -1 0 -12 -4 -1 2
        
        
        

 

 
 is a basis for the vector space V of all 2 x 2 matrices (i.e. M22).  
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Solution:   The set S = {v1, v2, v3, v4} of vectors in M22 spans V = M22 if  

c1 v1 + c2 v2 + c3 v3 + c4 v4 = d1 w1 + d2 w2 + d3 w3 + d4 w4 
 (*)  

with   w1 =
1 0
0 0
 
 
 

, w2 = 
0 1
0 0
 
 
 

, w3 =
0 0
1 0
 
 
 

, w4 = 
0 0
0 1
 
 
 

 

has at least one solution for every set of values of the coefficients d1, d2, d3, d4. 
Otherwise (i.e., if no solution exists for at least some values of d1, d2, d3, d4), S does not 
span V. With our vectors v1, v2, v3, v4, (*) becomes:  

c1
3 6
3 -6
 
 
 

 + c2 
0 -1
-1 0
 
 
 

+ c3
0 -8
-12 -4
 
 
 

 + c4
1 0
-1 2
 
 
 

 

= d1
1 0
0 0
 
 
 

 + d2 
0 1
0 0
 
 
 

+ d3
0 0
1 0
 
 
 

+ d4
0 0
0 1
 
 
 

  

Rearranging the left hand side yields  

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

3 c +0 c +0 c  +1c   6 c -1c - 8 c +0 c   
3 c -1c -12 c -1c     - 6 c +0 c - 4 c +2c
 
 
 

=

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

1 d  +0 d  +0 d  +0 d     0 d  +1 d  +0 d  +0 d
0 d  +0 d  +1 d  +0 d     0 d  +0 d  +0 d  +1 d
 
 
 

  

The matrix equation above is equivalent to the following system of equations  

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

3 c + 0 c + 0 c +1 c = 1 d +0 d +0 d +0 d
6 c - 1 c - 8 c +0 c = 0 d +1 d +0 d +0 d
3 c - 1 c -12 c - 1 c = 0 d +0 d +1 d +0 d
-6 c +0 c - 4 c + 2 c = 0 d +0 d +0 d +1 d

 

3 0 0 1
6 -1 -8 0
3 -1 -12 -1
-6 0 -4 2

1 1

2 2

3 3

4 4

c d
c d
c d
c d

    
    
    ⇒ =
    
    

     

 

We now find the determinant of coefficient matrix 

3 0 0 1
6 -1 -8 0
3 -1 -12 -1
-6 0 -4 2

A

 
 
 =
 
 
 

 to determine 

whether the system is consistent (so that S spans V), or inconsistent (S does not span V). 
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Now   det (A) = 48 ≠ 0. Therefore, the system (A) is consistent, and, consequently, the set 
S spans the space V. 
Now, the set S = {v1, v2, v3, v4} of vectors in M22 is linearly independent if the only 
solution of    c1v1 + c2v2 + c3v3 + c4v4 = 0   is c1, c2, c3, c4 = 0. In this case the set S 
forms a basis for span S. Otherwise (i.e., if a solution with at least some nonzero values 
exists), S is linearly dependent. With our vectors v1, v2, v3, v4, we have   

c1
3 6
3 -6
 
 
 

+ c2
0 -1
-1 0
 
 
 

+ c3
0 -8
-12 -4
 
 
 

+ c4
1 0
-1 2
 
 
 

=
0 0
0 0
 
 
 

  

Rearranging the left hand side yields  
1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

3 c  +0 c  +0 c  +1 c     6 c -1 c - 8 c  +0 c
3 c -1 c -12 c -1 c                - 6 c  +0 c - 4 c  +2 c
 
 
 

= 
0 0
0 0
 
 
 

 

The matrix equation above is equivalent to the following homogeneous equation. 

3 0 0 1 0
6 -1 -8 0 0
3 -1 -12 -1 0
-6 0 -4 2 0

1

2

3

4

c
c
c
c

    
    
    =
    
    

    

  

As  det (A) = 48 ≠ 0   

Therefore the set S = {v1, v2, v3, v4} is linearly independent.  Consequently, the set S 
forms a basis for span S. 
 

Example 11:   Let 
1 -3 - 4
-2 5 5 and { , , }.
-3 7 6

= , = , = , Span
     
      =     
          

1 2 3 1 2 3v v v H v v v   

Note that v3 = 5v1 + 3v2 and show that Span {v1, v2, v3} = Span {v1, v2}. Then find a 
basis for the subspace H. 
 
Solution:    
 
Every vector in Span {v1, v2} belongs to H because 

c1 v1 + c2 v2 = c1 v1 + c2 v2 + 0 v3 
 

                                                  
                                                   ©Virtual University Of Pakistan                                                            79 



06- Linear Independence Sets; Bases                                                                                                           VU                                                  
 

  
 
Now let x be any vector in H – say, x = c1v1 + c2v2 + c3v3. Since v3 = 5v1 + 3v2, we may 
substitute 

x = c1v1 + c2v2 + c3 (5v1 + 3v2) 
   = (c1 + 5c3) v1 + (c2 + 3c3) v2 

Thus x is in Span {v1, v2}, so every vector in H already belongs to Span {v1, v2}. We 
conclude that H and Span {v1, v2} are actually the same set of vectors. It follows that  
{v1, v2} is a basis of H since {v1, v2} is obviously linearly independent. 
 
Activity:     Show that the following set of vectors is basis for 3 : 
 
 

1.   
  

   
2.  

 

 
The Spanning Set Theorem: 
As we will see, a basis is an “efficient” spanning set that contains no unnecessary vectors. 
In fact, a basis can be constructed from a spanning set by discarding unneeded vectors. 

 
Theorem 2: (The Spanning Set Theorem) Let S = {v1, … , vp} be a set in V and let  
H = Span {v1, …, vp}. 

a. If one of the vectors in S – say, vk – is a linear combination of the 
remaining vectors in S, then the set formed from S by removing vk still 
spans H. 

b. If { }≠H 0 , some subset of S is a basis for H. 
 

v3 

x2 

x1 

x3 
 

v1 
 v2 

 

( ) ( ) ( )1 2 11, 2, 3 , 0, 1, 1 , 0, 1, 3v v v= = =

( ) ( ) ( )1 2 11, 0, 0 , 0, 2, 1 , 3, 0, 1v v v= = =
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Since we know that span is the set of all linear combinations of some set of vectors and 
basis is a set of linearly independent vectors whose span is the entire vector space. The 
spanning set is a set of vectors whose span is the entire vector space. "The Spanning set 
theorem" is that a spanning set of vectors always contains a subset that is a basis. 
 
  
Remark:   Let V = Rm and let S = {v1 , v2,…, vn} be a set of nonzero vectors in V. 
 
Procedure: 
         The procedure for finding a subset of S that is a basis for W = span S is as follows: 
Step 1   Write the Equation,   

c1v1 + c2v2 + …+ cn vn =0      (3) 
Step 2   Construct the augmented matrix associated with the homogeneous system of  
Equation (1) and transforms it to reduced row echelon form. 
Step 3   The vectors corresponding to the columns containing the leading 1’s form a basis 
 for W = span S.  
Thus if S = {v1, v2,…, v6} and the leading 1’s occur in columns 1, 3, and 4, then { v1 , v3 , v4} is 
a basis for span S. 
 
Note   In step 2 of the procedure above, it is sufficient to transform the augmented matrix to row 
echelon form. 
 
Example 12:   Let S = {v1, v2, v3, v4, v5} be a set of vectors in R4, where 
v1 = (1,2,-2,1), v2 = (-3,0,-4,3), v3 = (2,1,1,-1), v4 = (-3,3,-9,6), and v5 = (9,3,7,-6). 
Find a subset of S that is a basis for W = span S. 
Solution:   Step 1 Form Equation (3),  
c1 (1,2, -2,1) + c2(-3,0,-4,3) + c3(2,1,1,-1)+ c4(-3,3,-9,6) + c5(9,3.7,-6) = (0,0,0,0). 
Step 2 Equating corresponding components, we obtain the homogeneous system 

  

1 2 3 4 5

1 3 4 5

1 2 3 4 5

1 2 3 4 5

 c  - 3c + 2c  - 3c  +9c  = 0
2c   +  c  + 3c  + 3c = 0
-2c  - 4c +  c  -  9c  + 7c  = 0
 c  + 3c  -  c  + 6c  - 6c  = 0

 

The reduced row echelon form of the associated augmented matrix is 
1 0  ½   3/2  3/2   :  0
0 1 -1/2   3/2 -5/2   :  0
0 0  0   0  0      :  0
0 0  0   0  0      :  0

 
 
 
 
 
 

 

Step 3   The leading 1’s appear in columns 1 and 2, so {v1, v2} is a basis for W = span S. 
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Two Views of a Basis When the Spanning Set Theorem is used, the deletion of 
vectors from a spanning set must stop when the set becomes linearly independent. If 
an additional vector is deleted, it will not be a linear combination of the remaining 
vectors and hence the smaller set will no longer span V. Thus a basis is a spanning set 
that is as small as possible. 
A basis is also a linearly independent set that is as large as possible. If S is a basis for V, 
and if S is enlarged by one vector – say, w – from V, then the new set cannot be linearly 
independent, because S spans V, and w is therefore a linear combination of the elements 
in S. 
 
Example 13: The following three sets in R3 show how a linearly independent set can be 
enlarged to a basis and how further enlargement destroys the linear independence of the 
set. Also, a spanning set can be shrunk to a basis, but further shrinking destroys the 
spanning property. 
 
 

1 2 1 2 4 1 2 4 7
0 , 3 0 , 3 , 5 0 , 3 , 5 , 8
0 0 0 0 6 0 0 6 9

                      
                      
                      
                                            

 

 
      Linearly independent A basis    Spans R3 but is 
      but does not span R3  for R3     linearly dependent 
 

Example 14:  Let 
1 0
0 1
0 0

= , = ,
   
   
   
      

1 2v v  and : s in .
0

s
s R

  
  =   
    

H  then every vector in H is a 

linear combination of v1 and v2 because
1 0
0 1

0 0 0

s
s s s
     
     = +     
          

. Is {v1, v2} a basis for H?  

Solution:   Neither v1 nor v2 is in H, so {v1, v2} cannot a basis for H. In fact, {v1, v2} is a 
basis for the plane of all vectors of the form (c1, c2, 0), but H is only a line. 
 
 
Activity:     Find a Basis for the subspace W in 3 spanned by the following sets of 
vectors: 
 

1. ( ) ( ) ( ) ( )1 2 3 41,0, 2 , 3, 2,1 , 1,0,6 , 3,2,1v v v v= = = =  
  

2. ( ) ( ) ( ) ( )1 2 3 41, 2, 2 , 3, 2,1 , 1,1,7 , 7 ,6,4v v v v= = = =  
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Exercises: 
 
Determine which set in exercises 1-4 are bases for R2 or R3. Of the sets that are not bases, 
determine which one are linearly independent and which ones span R2 or R3. Justify your 
answers. 
 

1. 
1 3 -3
0 2 -5
-2 -4 1

, ,
     
     
     
          

    2. 
1 -2 0 0
-3 9 0 -3
0 0 0 5

, , ,
       
       
       
              

 

 

3. 
1 -4
2 -5
-3 6

,
   
   
   
      

     4. 
1 0 3 0
-4 3 -5 2
3 -1 4 -2

, , ,
       
       
       
              

 

 
5. Find a basis for the set of vectors in R3 in the plane x + 2y + z = 0. 
 
6. Find a basis for the set of vectors in R2 on the line y = 5x. 
 
7. Suppose R4 = Span {v1, v2, v3, v4}. Explain why {v1, v2, v3, v4} is a basis for R4. 
 
8. Explain why the following sets of vectors are not bases for the indicated vector spaces. 
(Solve this problem by inspection). 
(a) u1 = (1, 2), u2 = (0, 3), u3 = (2, 7) for R2 
(b) u1 = (-1, 3, 2), u2 = (6, 1, 1) for R3 
(c) p1 = 1 + x + x2, p2 = x – 1 for P2 

(d) 
1 1 6 0 3 0 5 1 7 1
2 3 -1 4 1 7 4 2 2 9

, , , ,         
= = = = =         
         

A B C D E  for M22 

 
9. Which of the following sets of vectors are bases for R2? 
(a) (2, 1), (3, 0) (b) (4, 1), (-7, -8) (c) (0, 0), (1, 3) (d) (3, 9), (-4, -12) 
 
10. Let V be the space spanned by v1 = Cos2 x, v2 = Sin2x, v3 = cos 2x.  
(a) Show that S = {v1, v2, v3} is not a basis for V (b) Find a basis for V 
 
In exercises 11-13, determine a basis for the solution space of the system. 
 

11. 
1 2 3

1 2 3

1 3

x + x - x = 0
-2x - x + 2x = 0
- x + x = 0

   12. 
1 2 3

1 3

2 3

2x + x 3x = 0
x + 5x = 0

x + x = 0

+
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13. 

x+ y + z = 0
3x+ 2y - 2z = 0
4x+3y - z = 0
6x+5y + z = 0

 

 
14. Determine bases for the following subspace of R3 
(a) the plane 3x – 2y + 5z = 0  (b) the plane x – y = 0 
(c) the line x = 2t, y = -t, z = 4t (d) all vectors of the form (a, b, c), where b = a + c 
 
15. Find a standard basis vector that can be added to the set {v1, v2} to produce a basis 
for R3. 
(a) v1 = (-1, 2, 3), v2 = (1, -2, -2) (b) v1 = (1, -1, 0), v2 = (3, 1, -2) 
 
16. Find a standard basis vector that can be added to the set {v1, v2} to produce a basis 
for R4. 
 v1 = (1, -4, 2, -3), v2 = (-3, 8, -4, 6)   
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Lecture 07 
 

Dimension of a Vector Space 
 

In this lecture, we will focus over the dimension of the vector spaces. The 
dimension of a vector space V is the cardinality or the number of vectors in the basis B of 
the given vector space. If the basis B has n (say) elements then this number n (called the 
dimension) is an intrinsic property of the space V. That is it does not depend on the 
particular choice of basis rather, all the bases of V will have the same cardinality. Thus, 
we can say that the dimension of a vector space is always unique. The discussion of 
dimension will give additional insight into properties of bases. 
The first theorem generalizes a well-known result about the vector space Rn. 
Note: 
          A vector space V with a basis B containing n vectors is isomorphic to Rn i.e., there 
exist a one-to-one linear transformation from V to Rn.  
 
Theorem 1: If a vector space V has a basis B = {b1, …, bn}, then any set in V containing 
more than n vectors must be linearly dependent. 
 
Theorem 2: If a vector space V has a basis of n vectors, then every basis of V must 
consist of exactly n vectors. 
 
Finite and infinite dimensional vector spaces: 
                                                                             If the vector space V is spanned or 
generated by a finite set, then V is said to be finite-dimensional, and the dimension of V, 
written as dim V, is the number of vectors in a basis for V. If V is not spanned by a finite 
set, then V is said to be infinite-dimensional. That is, if we are unable to find a finite set 
that can generate the whole vector space, then such a vector space is called infinite 
dimensional. 
 
Note: 
 
(1) The dimension of the zero vector space {0} is defined to be zero. 
(2) Every finite dimensional vector space contains a basis. 
 
 
Example 1:   The n dimensional set of real numbers Rn, set of polynomials of order n Pn, 
and set of matrices of order m n×   Mmn are all finite- dimensional vector spaces. 
However, the vector spaces F (-∞ ,∞ ), C (-∞ ,∞ ), and Cm (-∞ ,∞ ) are infinite- 
dimensional. 
 
Example 2:  
(a)   Any pair of non-parallel vectors a, b in the xy-plane, which are necessarily linearly 
independent, can be regarded as a basis of the subspace R2. In particular the set of unit 
vectors {i, j} forms a basis for R2. Therefore, dim (R2) = 2. 
 

_______________________________________________________________________________________                                                           
                                                        @Virtual University Of Pakistan                                                        85 

 



07-Dimension of a Vector Space  VU  

Any set of three non coplanar vectors {a, b, c} in ordinary (physical) space, which will be 
necessarily linearly independent, spans the space R3. Therefore any set of such vectors forms a 
basis for R3. In particular the set of unit vectors {i, j, k} forms a basis of R3. This basis is called 
standard basis for R3. Therefore dim (R3) = 3. 
 
The set of vectors {e1, e2, …, en} where 

e1 = (1, 0, 0, 0, …, 0), 
e2 = (0, 1, 0, 0, …, 0), 
e3 = (0, 0, 1, 0, …, 0), 

… 
… 
… 

en = (0, 0, 0, 0, …, 1) 
is linearly independent.  
Moreover, any vector x = (x1, x2, …, xn) in Rn can be expressed as a linear combination of these 
vectors as  

x = x1e1 + x2e2 + x3e3 +…+ xnen. 
Hence, the set {e1, e2, … , en} forms a basis for Rn. It is called the standard basis of Rn, therefore 
dim (Rn) = n. Any other set of n linearly independent vectors in Rn will form a non-standard 
basis. 
 
(b)   The set B = {1, x, x2, … ,xn} forms a basis for the vector space Pn of polynomials of degree 
< n. It is called the standard basis with dim (Pn) = n + 1. 
 
(c)   The set of 2 x 2 matrices with real entries (elements) {u1, u2, u3, u4} where 

u1 = 
1 0
0 0
 
 
 

, u2 = 
0 1
0 0
 
 
 

, u3 = 
0 0
1 0
 
 
 

, u4 = 
0 0
0 1
 
 
 

 

is a linearly independent and every 2 x 2 matrix with real entries can be expressed as their linear 
combination. Therefore, they form a basis for the vector space M2X2. This basis is called the 
standard basis for M2X2 with dim (M2X2) = 4. 

Note: 

(1) dim (Rn) = n  { The standard basis has n vectors}. 

(2) dim (Pn) = n + 1  { The standard basis has n+1 vectors}. 

(3) dim (Mm× n) = mn  { The standard basis has mn vectors.} 
 
Example 3:   Let W be the subspace of the set of all (2 x 2) matrices defined by 

W = {A =
a b
c d
 
 
 

: 2a – b + 3c + d = 0}. 

Determine the dimension of W. 
Solution:   The algebraic specification for W can be rewritten as d = -2a + b – 3c.  
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Now   A = 
a b
c d
 
 
 

 

 Substituting the value of d, it becomes 
 

A= 
-2 + - 3

a b
c a  b c
 
 
 

 

This can be written as  

A= 
0

0 -2
a

a 
 
 
 

+
0
0

b
 b 

 
 
 

+
0 0

- 3c  c
 
 
 

 

= a 
1 0
0 -2 
 
 
 

 + b
0 1
0  1 
 
 
 

 + c
0 0
1  - 3
 
 
 

 

= a A1 + bA2 + cA3 

where  A1 =
1 0
0 2
 
 − 

, A2 = 
0 1
0 1
 
 
 

, and A3 =
0 0
1 3
 
 − 

 

The matrix A is in W if and only if A = aA1 + bA2 + cA3, so {A1, A2, A3} is a spanning set for 
W.  Now, check if this set is a basis for W or not. We will see whether {A1, A2, A3} is linearly 
independent or not. {A1, A2, A3} is said to be linearly independent if 
 1 2 3aA  + bA  + cA =0 a=b=c=0⇒ i.e., 

1 0 0 1 0 0 0 0
0 -2 0  1 1  - 3 0 0

0 0 0 0 0 0
0 -2 0 - 3 0 0

0 0
2 3 0 0

a b c

a b
a  b c  c

a b
c a b c

       
+ + =       

       
       

+ + =       
       
   

=   − + −   

 

Equating the elements, we get 
0, 0, 0a b c= = =  

This implies {A1, A2, A3} is a linearly independent set that spans W. Hence, it’s the basis of W 
with dim( W)= 3. 
 

Example 4:   Let H = Span {v1, v2}, where 
3
6
2

=
 
 
 
  

1v  and 
-1
0 .
1

=
 
 
 
  

2v  Then H is the plane 

studied in Example 10 of lecture 23. A basis for H is {v1, v2}, since v1 and v2 are not 
multiples and hence are linearly independent. Thus, dim H = 2.   
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A coordinate system on a plane H in R3 
 
Example 5: Find the dimension of the subspace 

-3 + 6
5 + 4

- 2 -
5

a b c
a d

= : a,b,c,d R
b c d

d

  
  
   ∈       

H  

Solution: The representative vector of H can be written as 
3 6 1 3 6 0

5 4 5 0 0 4
2 0 1 2 1
5 0 0 0 5

a b c
a d

a b c d
b c d

d

− + −         
         +         = + + +
         − − − −
         
         

 

Now, it is easy to see that H is the set of all linear combinations of the vectors  
 
 

1 -3 6 0
5 0 0 4
0 1 -2 -1
0 0 0 5

= , = , = , =

       
       
       
       
       
       

1 2 3 4v v v v  

 
Clearly, ,≠1 2v 0 v  is not a multiple of v1, but v3 is a multiple of v2. By the Spanning Set 
Theorem, we may discard v3 and still have a set that spans H. Finally; v4 is not a linear 

v1 
2v1 

0 

v2 

2v2 

3v2 

x=2v1+3v2 
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combination of v1 and v2. So {v1, v2, v4} is linearly independent and hence is a basis for 
H. Thus dim H = 3. 
 
Example 6: The subspaces of R3 can be classified by various dimensions as shown in 
Fig. 1.  
0-dimensional subspaces:  

The only 0-dimensional subspace of R3 is zero space. 
 
1-dimensional subspaces:  

1-dimensional subspaces include any subspace spanned by a single non-zero 
vector. Such subspaces are lines through the origin. 
 
2-dimensional subspaces:  

Any subspace spanned by two linearly independent vectors. Such subspaces are 
planes through the origin. 
 
3-dimensional subspaces: 

The only 3-dimensional subspace is R3 itself. Any three linearly independent 
vectors in R3 span all of R3, by the Invertible Matrix Theorem. 
 

 
 

Figure 1 – Sample subspaces of R3 
 
Bases for Nul A and Col A:   
                                              We already know how to find vectors that span the null 
space of a matrix A. The discussion in Lecture 21 pointed out that our method always 
produces a linearly independent set. Thus the method produces a basis for Nul A. 
 

x2 

x3 

x1 1 dim 

0 dim 

x3 

x1 2 dim 

3 dim 
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Example 7:   Find a basis for the null space of

2 2 -1 0 1
-1 -1 2 -3 1
1 1 -2 0 -1
0 0 1 1 1

=

 
 
 
 
 
 

A . 

Solution:   The null space of A is the solution space of homogeneous system 
1 2 3 5

1 2 3 4 5

1 2 3 5

3 4 5

2x + 2x - x + x = 0
- x - x + 2x - 3x + x = 0

x + x - 2x - x = 0
x + x + x = 0

 

The most appropriate way to solve this system is to reduce its augmented matrix into 
reduced echelon form. 

4 2 3 1

3 1 3 2

 2  2 -1  0  1   0
-1 -1  2 -3  1  0

,
 1  1 -2  0 -1  0
 0  0  1  1  1  0

1  1 -2  0 -1  0
 0  0  1  1  1  0

2 , 3
 2  2 -1  0  1   0
-1 -1  2 -3  1  0 

1  1 -2  0 -

R R R R

R R R R

 
 
 
 
 
 

 
 
  − −
 
 
 

 



 3 2

3

1  0
 0  0  1  1  1  0

3
 0  0 3  0  3   0
-1 -1  2 -3  1  0 

1  1 -2  0 -1  0
0  0  1  1  1  0 1
0  0 0 -3  0   0 3
-1 -1  2 -3  1  0 

1  1 -2  0 -1  0
0  0  1  1  1  0
0  0 0 1 

R R

R

 
 
  −
 
 
 

 
 
  −
 
 
 



 4 1 0   0
-1 -1  2 -3  1  0 

R R

 
 
  +
 
 
 
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4 3

1 2

1  1 -2  0 -1  0
0  0  1  1  1  0

3
0  0 0 1  0   0
0 0  0 -3  0  0 

1  1 -2  0 -1  0
0  0  1  1  1  0

2
0  0 0 1  0   0
0 0  0 0  0  0 

R R

R R

 
 
  +
 
 
 

 
 
  +
 
 
 





 

2 3 1 3

1  1 0  2 1  0
0  0  1  1  1  0

, 2
0  0 0 1  0   0
0 0  0 0  0  0 

1  1 0  0 1  0
0  0  1  0  1  0
0  0 0 1  0   0
0 0  0 0  0  0 

R R R R

 
 
  − −
 
 
 

 
 
 
 
 
 





 

Thus, the reduced row echelon form of the augmented matrix is  
1  1  0  0  1   0
0  0  1  0  1  0
0  0  0  1  0  0
0  0  0  0  0  0

 
 
 
 
 
 

 

which corresponds to the system  
1 2 5

3 5

4

 1x +1 x + 1 x = 0
1 x + 1 x = 0

1 x = 0
0 = 0

 

No equation of this system has a form zero = nonzero. Therefore, the system is 
consistent. Since the number of unknowns is more than the number of equations, we will 
assign some arbitrary value to some variables. This will lead to infinite many solutions of 
the system. 
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1 2 5

2

3 5

4

5

x = - 1x -1x
x = s
x = - 1x
x = 0
x = t

 

The general solution of the given system is 
x1 = - s - t   ,   x2 = s  ,   x3 = - t  ,    x4 = 0   ,    x5 = t 

Therefore, the solution vector can be written as 
1

2

3

4

5

x -s - t -s -t -1 -1
x s s 0 1 0
x = = + = s +t-t 0 -t 0 -1
x 0 0 0 0 0
x t 0 t 0 1

           
           
           
           
           
           
                     

 

which shows that the vectors 

-1 -1
1 0
0 and -1
0 0
0 1

= =

   
   
   
   
   
   
      

1 2v v  span the solution space .Since they 

are also linearly independent,{v1,v2} is a basis for Nul A. 
 
The next two examples describe a simple algorithm for finding a basis for the column 
space. 
 

Example 8:   Find a basis for Col B, where 

1 4 0 2 0
0 0 1 -1 0

[ , ]
0 0 0 0 1
0 0 0 0 0

= ..., =

 
 
 
 
 
 

1 2 5B b b b  

Solution   Each non-pivot column of B is a linear combination of the pivot columns. In 
fact, b2 = 4b1 and b4 = 2b1 – b3. By the Spanning Set Theorem, we may discard b2 and 
b4 and {b1, b3, b5} will still span Col B. Let 

1 0 0
0 1 0

{ } , ,
0 0 1
0 0 0

= , , =

      
      
                         

1 3 5S b b b  

Since b1 ≠ 0 and no vector in S is a linear combination of the vectors that precede it, S is 
linearly independent. Thus S is a basis for Col B. 
 
               What about a matrix A that is not in reduced echelon form? Recall that any 
linear dependence relationship among the columns of A can be expressed in the form Ax 
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= 0, where x is a column of weights. (If some columns are not involved in a particular 
dependence relation, then their weights are zero.) When A is row reduced to a matrix B, 
the columns of B are often totally different from the columns of A. However, the 
equations Ax = 0 and Bx = 0 have exactly the same set of solutions. That is, the columns 
of A have exactly the same linear dependence relationships as the columns of B. 
 
Elementary row operations on a matrix do not affect the linear dependence relations 
among the columns of the matrix. 
 
Example 9: It can be shown that the matrix 

1 4 0 2 -1
3 12 1 5 5

[ ]
2 8 1 3 2
5 20 2 8 8

= ... =

 
 
 
 
 
 

1 2 5A a a a  

is row equivalent to the matrix B in Example 8. Find a basis for Col A. 
Solution:   In Example 8, we have seen that = 4 and = 2 -2 1 4 1 3b b b b b  
so we can expect that = 4 and = 2 -2 1 4 1 3a a a a a . This is indeed the case. 
Thus, we may discard a2 and a4 while selecting a minimal spanning set for Col A. In fact, 
{a1, a3, a5} must be linearly independent because any linear dependence relationship 
among a1, a3, a5 would imply a linear dependence relationship among b1, b3, b5. But we 
know that {b1, b3, b5} is a linearly independent set. Thus {a1, a3, a5} is a basis for Col A. 
The columns we have used for this basis are the pivot columns of A. 
 
Examples 8 and 9 illustrate the following useful fact. 
 
Theorem 3:   The pivot columns of a matrix A form a basis for Col A. 
 
Proof: The general proof uses the arguments discussed above. Let B be the reduced 
echelon form of A. The set of pivot columns of B is linearly independent, for no vector in 
the set is a linear combination of the vectors that precede it. Since A is row equivalent to 
B, the pivot columns of A are linearly independent too, because any linear dependence 
relation among the columns of A corresponds to a linear dependence relation among the 
columns of B. For this same reason, every non-pivot column of A is a linear combination 
of the pivot columns of A. Thus the non-pivot columns of A may be discarded from the 
spanning set for Col A, by the Spanning Set Theorem. This leaves the pivot columns of A 
as a basis for Col A. 
 
Note: Be careful to use pivot columns of A itself for the basis of Col A. The columns of 
an echelon form B are often not in the column space of A. For instance, the columns of 
the B in Example 8 all have zeros in their last entries, so they cannot span the column 
space of the A in Example 9. 
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Example 10:   Let 
1 -2
-2 and 7 .
3 -9

= =
   
   
   
      

1 2v v  Determine if {v1, v2} is a basis for R3. Is {v1, 

v2} a basis for R2? 

Solution Let A = [v1   v2]. Row operations show that
1 -2 1 -2
-2 7 0 3
3 -9 0 0

A=
   
   
   
      

 . Not every 

row of A contains a pivot position. So the columns of A do not span R3, by Theorem 4 in 
Lecture 6. Hence {v1, v2} is not a basis for R3. Since v1 and v2 are not in R2, they cannot 
possibly be a basis for R2. However, since v1 and v2 are obviously linearly independent, 
they are a basis for a subspace of R3, namely, Span {v1, v2}. 
 

Example 11: Let 
1 6 2 -4
-3 2 -2 -8 .
4 -1 3 9

= , = , = , =
       
       
       
              

1 2 3 4v v v v  Find a basis for the subspace 

W spanned by {v1, v2, v3, v4}.  
Solution: Let A be the matrix whose column space is the space spanned by {v1, v2, v3, 
v4},  

1 6 2 -4
-3 2 -2 -8
4 -1 3 9

=
 
 
 
  

A  

 Reduce the matrix A into its echelon form in order to find its pivot columns. 

                        2 1 3 1

2 3 3 2

1 6 2 -4
-3 2 -2 -8
4 -1 3 9

1 6 2 -4
0 20 4 -20 3 , 4
0 -25 -5 25

1 6 2 -4
1 10 5 1 -5 , ,
4 5

0 0 0 0

=

by R R R R

by R R R R

 
 
 
  
 
  + − 
  
 
  − − 
  





A

 

The first two columns of A are the pivot columns and hence form a basis of Col A = W. 
Hence {v1, v2} is a basis for W. 
Note that the reduced echelon form of A is not needed in order to locate the pivot 
columns. 
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Procedure: 
 Basis and Linear Combinations 
Given a set of vectors S = {v1, v2, …,vk} in Rn, the following procedure produces a subset 
of these vectors that form a basis for span (S) and expresses those vectors of S that are 
not in the basis as linear combinations of the basis vector. 
Step1: Form the matrix A having v1, v2,..., vk as its column vectors. 
Step2: Reduce the matrix A to its reduced row echelon form R, and let 

 w1, w2,…, wk be the column vectors of R. 
Step3:  Identify the columns that contain the leading entries i.e., 1’s in R. The 

corresponding column vectors of A are the basis vectors for span (S). 
Step4: Express each column vector of R that does not contain a leading entry as  

a linear combination of preceding column vector that do contain leading entries 
(we will be able to do this by inspection). This yields a set of dependency 
equations involving the column vectors of R. The corresponding equations for the 
column vectors of A express the vectors which are not in the basis as linear 
combinations of basis vectors.  

 
Example 12: Basis and Linear Combinations 
(a) Find a subset of the vectors v1 = (1, -2, 0, 3), v2 = (2, -4, 0, 6), v3 = (-1, 1, 2, 0) and 
      v4 = (0, -1, 2, 3) that form a basis for the space spanned by these vectors. 
(b) Express each vector not in the basis as a linear combination of the basis vectors. 
Solution: (a) We begin by constructing a matrix that has v1, v2, v3, v4 as its column 
vectors 

   

1 2 -1 0
-2 -4 1 -1
0 0 2 2
3 6 0 3

 
 
 
 
 
 
↑ ↑ ↑ ↑

1 2 3 4v v v v
       (A) 

Finding a basis for column space of this matrix can solve the first part of our problem. 
Transforming Matrix to Reduced Row Echelon Form: 

   

 1  2 -1  0
-2 -4  1 -1
 0  0  2  2
 3  6  0  3

 
 
 
 
 
 

 

 1  2  -1  0 
 0  0  -1  -1 
 0  0  2  2 
 0  0  3  3 

1 2

1 4

2 R + R
-3R + R

 
 
 
 
 
 

  
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 1  2  -1  0 
 0  0  1  1 
 0  0  2  2 
 0  0  3  3 

2-1R

 
 
 
 
 
 

  

 1  2  -1  0 
 0  0  1  1 
 0  0  0  0 
 0  0  0  0 

2 3

2 4

-2R + R
-3R + R

 
 
 
 
 
 

  

1  2  0  1
0  0  1  1
0  0  0  0
0  0  0  0

2 1R + R

 
 
 
 
 
 

  

Labeling the column vectors of the resulting matrix as w1, w2, w3 and w4 yields 
1  2  0  1
0  0  1  1
0  0  0  0
0  0  0  0

 
 
 
 
 
 

↑↑ ↑ ↑

31 2 4ww w w

     (B) 

The leading entries occur in column 1 and 3 so {w1, w3} is a basis for the column space 
of (B) and consequently {v1, v3} is the basis for column space of (A). 
(b) We shall start by expressing w2 and w4 as linear combinations of the basis vector w1 
and w3. The simplest way of doing this is to express w2 and w4 in term of basis vectors 
with smaller subscripts. Thus we shall express w2 as a linear combination of w1, and we 
shall express w4 as a linear combination of w1 and w3. By inspection of (B), these linear 
combinations are w2 = 2w1 and w4 = w1 + w3. We call them the dependency equations. 
The corresponding relationship of (A) are v3 = 2v1 and v5 = v1 + v3. 
 
Example 13: Basis and Linear Combinations 
(a) Find a subset of the vectors v1 = (1, -1, 5, 2), v2 = (-2, 3, 1, 0), v3 = (4, -5, 9, 4),  
v4 = (0, 4, 2, -3) and v5 = (-7, 18, 2, -8) that form a basis for the space spanned by these 
vectors. 
(b) Express each vector not in the basis as a linear combination of the basis vectors 
Solution: (a) We begin by constructing a matrix that has v1, v2, ... , v5  as its column 
vectors 
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 1 -2  4  0   - 7 
-1  3 -5  4  18 
 5  1  9  2    2 
 2  0  4 -3   -8 

 
 
 
 
 
 

↑ ↑↑ ↑ ↑

3 51 2 4v vv v v

    (A) 

Finding a basis for column space of this matrix can solve the first part of our problem. 
Transforming Matrix to Reduced Row Echelon Form: 

 1 -2  4  0   - 7 
-1  3 -5  4  18 
 5  1  9  2    2 
 2  0  4 -3   -8 

 
 
 
 
 
 

 

 1  - 2  4  0  - 7 
 0  1  -1  4  11 
 0  11  -11  2  37 
 0  4  - 4  -3  6 

1 2

1 3

1 4

R + R
-5R + R
-2R + R

 
 
 
 
 
 

 

 1  - 2  4  0  - 7 
 0  1  -1  4  11 
 0  0  0  - 42  -84 
 0  0  0  -19  -38 

2 3

2 4

-11R + R
-4R + R

 
 
 
 
 
 

 

 1  - 2  4  0  - 7 
 0  1  -1  4  11 
 0  0  0  1  2 
 0  0  0  -19  -38 

3(-1/42)R

 
 
 
 
 
 

 

  

 1  - 2  4  0  - 7 
 0  1  -1  4  11 
 0  0  0  1  2 
 0  0  0  0  0 

3 419R + R

 
 
 
 
 
 

 

 1  - 2  4  0  - 7 
 0  1  -1  0  3 
 0  0  0  1  2 
 0  0  0  0  0 

3 2(-4)R + R

 
 
 
 
 
 

 

  

 1  0  2  0  -1 
 0  1  -1  0  3 
 0  0  0  1  2 
 0  0  0  0  0 

2 12R + R

 
 
 
 
 
 
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Denoting the column vectors of the resulting matrix by w1 , w2 , w3, w4, and w5 yields 
 1  0  2  0  -1 
 0  1  -1  0  3 
 0  0  0  1  2 
 0  0  0  0  0 

 
 
 
 
 
 

↑ ↑↑ ↑ ↑

3 51 2 4w ww w w

     (B) 

The leading entries occur in columns 1,2 and 4 so that {w1, w2, w4} is a basis for the 
column space of  (B) and consequently {v1, v2, v4} is the basis for column space of (A). 
(b) We shall start by expressing w3 and w5 as linear combinations of the basis vector w1, 
w2, w4. The simplest way of doing this is to express w3 and w5 in term of basis vectors 
with smaller subscripts. Thus we shall express w3 as a linear combination of w1 and w2, 
and we shall express w5 as a linear combination of w1, w2, and w4. By inspection of (B), 
these linear combination are w3 = 2w1 – w2 and w5 = -w1 + 3w2 + 2w4. 
The corresponding relationship of (A) are v3 = 2v1 – v2 and v5 = -v1 + 3v2 + 2v4. 
 
Example 14: Basis and Linear Combinations 
(a) Find a subset of the vectors v1 = (1, -2, 0, 3), v2 = (2, -5, -3, 6), v3 = (0, 1, 3, 0), 
 v4 = (2, -1, 4, -7) and v5 = (5 , -8, 1, 2) that form a basis for the space spanned by these 
vectors. 
(b) Express each vector not in the basis as a linear combination of the basis vectors. 
Solution: (a) We begin by constructing a matrix that has v1, v2, ... , v5  as its column 
vectors 

   

1 2 0 2 5
-2 -5 1 -1 -8
0 -3 3 4 1
3 6 0 -7 2

 
 
 
 
 
 
↑ ↑ ↑ ↑ ↑

1 2 3 4 5v v v v v
       (A) 

Finding a basis for column space of this matrix can solve the first part of our problem. 
Reducing the matrix to reduced-row echelon form and denoting the column vectors of the 
resulting matrix by w1, w2, w3, w4, and w5 yields 

 1  0 2  0       1 
 0  1 -1  0       1
  0  0  0  1       1
 0  0  0   0       0

 
 
 
 
 
 

↑ ↑↑ ↑ ↑

3 51 2 4w ww w w

     (B) 

The leading entries occur in columns 1, 2 and 4 so {w1, w2, w4} is a basis for the column 
space of (B) and consequently {v1, v2, v4} is the basis for column space of (A). 
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(b) Dependency equations are  w3 = 2w1 – w2 and w5 = w1 + w2 + w4 
The corresponding relationship of (A) are v3 = 2v1 – v2 and v5 = v1 + v2 + v4 
 
Subspaces of a Finite-Dimensional Space:   The next theorem is a natural counterpart to 
the Spanning Set Theorem. 
 
Theorem 5: Let H be a subspace of a finite-dimensional vector space V. Any linearly 
independent set in H can be expanded, if necessary, to a basis for H. Also, H is finite-
dimensional and dim dim≤H V . 
 
When the dimension of a vector space or subspace is known, the search for a basis is 
simplified by the next theorem. It says that if a set has the right number of elements, then 
one has only to show either that the set is linearly independent or that it spans the space. 
The theorem is of critical importance in numerous applied problems (involving 
differential equations or difference equations, for example) where linear independence is 
much easier to verify than spanning. 
 
Theorem 5 (The Basis Theorem):   Let V be a p-dimensional vector space, p> 1. Any 
linearly independent set of exactly p elements in V is automatically a basis for V. Any set 
of exactly p elements that spans V is automatically a basis for V. 
 
The Dimensions of Nul A and Col A:  Since the pivot columns of a matrix A form a 
basis for Col A, we know the dimension of Col A as soon as we know the pivot columns. 
The dimension of Nul A might seem to require more work, since finding a basis for Nul 
A usually takes more time than a basis for Col A. Yet, there is a shortcut. 
 
Let A be an m n×  matrix, and suppose that the equation Ax = 0 has k free variables. 
From lecture 21, we know that the standard method of finding a spanning set for Nul A 
will produce exactly k linearly independent vectors say, u1, … , uk, one for each free 
variable. So {u1, … , uk} is a basis for Nul A, and the number of free variables determines 
the size of the basis. Let us summarize these facts for future reference. 
 
The dimension of Nul A is the number of free variables in the equation Ax = 0, and the 
dimension of Col A is the number of pivot columns in A. 
 
Example 15:   Find the dimensions of the null space and column space of 

-3 6 -1 1 -7
1 -2 2 3 -1
2 -4 5 8 -4

=
 
 
 
  

A  

Solution:   Row reduce the augmented matrix [A   0] to echelon form and obtain 
1 -2 2 3 -1 0
0 0 1 2 -2 0
0 0 0 0 0 0

 
 
 
  
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Writing it in equations form, we get 
1 2 3 4 5

3 4 5

2 2 3 0
2 2 0

x x x x x
x x x
− + + − =
+ − =

 

Since the number of unknowns is more than the number of equations, we will introduce 
free variables here (say) x2, x4 and x5. Hence the dimension of Nul A is 3. Also dim Col 
A is 2 because A has two pivot columns. 
 
Example 16:   Decide whether each statement is true or false, and give a reason for each 
answer. Here V is a non-zero finite-dimensional vector space. 

1. If dim V = p and if S is a linearly dependent subset of V, then S contains more than 
p vectors. 
2. If S spans V and if T is a subset of V that contains more vectors than S, then T is 
linearly dependent. 

Solution: 
1. False. Consider the set {0}. 
2. True. By the Spanning Set Theorem, S contains a basis for V; call that basis ′S . 

Then T will contain more vectors than ′S . By Theorem 1, T is linearly dependent.  
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Exercises: 
 
For each subspace in exercises 1-6, (a) find a basis and (b) state the dimension. 
 

1. 
2

: , in
3

s t
s t s t
t

 −  
  +  
    

R     2. 

2

: , , in
3
2

c
a b

a b c
b c
a b

  
  −    −   +  

R  

 

3. 

4 2
2 5 4

: , , in
2

3 7 6

a b c
a b c

a b c
a c
a b c

 − −  
  + −    − +   − + +  

R   4. 

3 6
6 2 2

: , , in
9 5 3
3

a b c
a b c

a b c
a b c
a b c

 + −  
  − −    − + +   − + +  

R   

 
5. {(a, b, c): a – 3b + c = 0, b – 2c = 0, 2b – c = 0} 
 
6 {(a, b, c, d): a - 3b + c = 0} 
 
7. Find the dimension of the subspace H of R2 spanned by 

2 4 3
, ,

5 10 6
− −     

     −     
 

 
8. Find the dimension of the subspace spanned by the given vectors. 

1 3 9 7
0 , 1 , 4 , 3
2 1 2 1

−       
       −       
       −       

 

 
Determine the dimensions of Nul A and Col A for the matrices shown in exercises 9 to 
12. 
 

9. 

1 6 9 0 2
0 1 2 4 5
0 0 0 5 1
0 0 0 0 0

− − 
 − =
 
 
 

A    10. 

1 3 4 2 1 6
0 0 1 3 7 0
0 0 0 1 4 3
0 0 0 0 0 0

− − 
 − =
 −
 
 

A  

 

11. 
1 0 9 5
0 0 1 4
 

=  − 
A    12. 

1 1 0
0 4 7
0 0 5

− 
 =  
  

A  
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13. The first four Hermite polynomials are 1, 2t, -2 + 4t2, and -12t + 8t3. These 
polynomials arise naturally in the study of certain important differential equations in 
mathematical physics. Show that the first four Hermite polynomials form a basis of P3. 
 
14. Let B be the basis of P3 consisting of the Hermite polynomials in exercise 13, and let 
p (t) = 7 – 12 t – 8 t2 + 12 t3. Find the coordinate vector of p relative to B. 
 
15. Extend the following vectors to a basis for R5: 

9 9 6
7 4 7

8 , 1 , 8
5 6 5

7 7 7

−     
     −     
     = = = −
     −     
     − −     

1 2 3v v v  
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Lecture 08 
 

Rank 
 

With the help of vector space concepts, for a matrix several interesting and useful 
relationships in matrix rows and columns have been discussed.  
For instance, imagine placing 2000 random numbers into a 40 x 50 matrix A and then 
determining both the maximum number of linearly independent columns in A and the 
maximum number of linearly independent columns in AT (rows in A). Remarkably, the 
two numbers are the same. Their common value is called the rank of the matrix. To 
explain why, we need to examine the subspace spanned by the subspace spanned by the 
rows of A. 
 
The Row Space:   If A is an m n×  matrix, each row of A has n entries and thus can be 
identified with a vector in Rn. The set of all linear combinations of the row vectors is 
called the row space of A and is denoted by Row A. Each row has n entries, so Row A is 
a subspace of Rn. Since the rows of A are identified with the columns of AT, we could 
also write Col AT in place of Row A. 

Example 1:   Let 

-2 -5 8 0 -17
1 3 -5 1 5

and
3 11 -19 7 1
1 7 -13 5 -3

= (-2,-5,8,0,-17)
= (1,3,-5,1,5)

=
= (3,11,-19,7,1)
= (1,7,-13,5,-3)

 
 
 
 
 
 

1

2

3

4

r
r

A
r
r

 

The row space of A is the subspace of R5 spanned by {r1, r2, r3, r4}. That is, Row A = 
Span {r1, r2, r3, r4}. Naturally, we write row vectors horizontally; however, they could 
also be written as column vectors 
Example: Let   

 

 
That is Row A=Span {r1, r2}. 
 
                     We could use the Spanning Set Theorem to shrink the spanning set to a 
basis. 
Some times row operation on a matrix will not give us the required information but row 
reducing certainly worthwhile, as the next theorem shows  
 
Theorem 1:   If two matrices A and B are row equivalent, then their row spaces are the 
same. If B is in echelon form, the nonzero rows of B form a basis for the row space of A 
as well as B. 
 
Theorem 2:   If A and B are row equivalent matrices, then 

2 1 0
and

3 -1 4

= (2,1,0)
= (3,-1,4)

=  
 
 

1

2

r
r

A
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(a) A given set of column vectors of A is linearly independent if and only if the 
corresponding column vectors of B are linearly independent. 
(b) A given set of column vector of A forms a basis for the column space of A if and only 
if the corresponding column vector of B forms a basis for the column space of B. 
 
 
 
Example 2: (Bases for Row and Column Spaces) 

Find the bases for the row and column spaces of 

1 -3 4 -2 5 4
2 -6 9 -1 8 2
2 -6 9 -1 9 7
-1 3 -4 2 -5 -4

=

 
 
 
 
 
 

A . 

Solution:   We can find a basis for the row space of A by finding a basis for the row 
space of any row-echelon form of A.  

Now  

 1  -3  4  - 2  5   4
 2  - 6  9  -1  8   2
 2  - 6  9  -1  9   7
-1   3 -4   2 -5  - 4

 
 
 
 
 
 

 

 1  -3  4  - 2  5  4 
 0  0  1  3  - 2  - 6 
 0  0  1  3  -1  -1 
 0  0  0  0  0  0 

1 2

1 3

1 4

-2 R + R
-2 R + R

R + R

 
 
 
 
 
 

 

 1  -3  4  - 2  5  4 
 0  0  1  3  - 2  - 6 
 0  0  0  0  1  5 
 0  0  0  0  0  0 

2 3-1R + R

 
 
 
 
 
 

 

Row-echelon form of A: 

1 -3 4 -2 5 4
0 0 1 3 -2 -6
0 0 0 0 1 5
0 0 0 0 0 0

=

 
 
 
 
 
 

R  

Here Theorem 1 implies that that the non zero rows are the basis vectors of the matrix.  
So these bases vectors are 

[ ]
[ ]
[ ]

1 -3 4 -2 5 4

0 0 1 3 -2 -6

0 0 0 0 1 5

=

=

=

1

2

3

r

r

r

 

 A and R may have different column spaces, we cannot find a basis for the column space 
of A directly from the column vectors of R. however, it follows from the theorem (2b) if 
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we can find a set of column vectors of R that forms a basis for the column space of R, 
then the corresponding column vectors of A will form a basis for the column space of A. 
 
The first, third, and fifth columns of R contains the leading 1’s of the row vectors, so 

   

1 4 5
0 1 -2
0 0 1
0 0 0

1 = = =

     
     
     ′ ′ ′
     
     
     

3 5c c c  

form a basis for the column space of R, thus the corresponding column vectors of A 

namely,  

1 4 5
2 9 8
2 9 9
-1 -4 -5

= = =

     
     
     
     
     
     

1 3 5c c c   

form a basis for the column space of A. 
 
Example: 
The matrix  
 

 

is in row-echelon form. 
The vectors  

 
 
 
 
 

form a basis for the row space of R, and the vectors 
1 -2 0
0 1 0

, ,
0 0 1
0 0 0

c = c = c =

     
     
     
     
     
     

1 2 3  

form a basis for the column space of R. 
 
 
 
 

1 -2 5 0 3
0 1 3 0 0
0 0 0 1 0
0 0 0 0 0

R =

 
 
 
 
 
 

[ ]
[ ]
[ ]

1 -2 5 0 3

0 1 3 0 0

0 0 0 1 0

=

=

=

1

2

3

r

r

r
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Example 3: (Basis for a Vector Space using Row Operation) 
Find bases for the space spanned by the vectors 

   
= (1,-2,0,0,3) = (2,-5,-3,-2,6)
= (0,5,15,10,0) = (2,6,18,8,6)

1 2

3 4

v v
v v

 

Solution: The space spanned by these vectors is the row space of the matrix 

       

1 -2 0 0 3
2 -5 -3 -2 6
0 5 15 10 0
2 6 18 8 6

 

 
 
 
 
 
 

 

Transforming Matrix to Row Echelon Form: 
 

1  - 2    0    0    3
2  -5   -3   - 2    6
0   5  15  10    0
2   6  18    8    6

 
 
 
 
 
 

 

 1  - 2  0  0  3 
 0  1  3  2  0 
 0  5  15  10  0 
 0  10  18  8  0 

1 2

1 4

2

(-2)R + R
(-2)R + R

(-1)R

 
 
 
 
 
 

 

 1  - 2  0  0  3 
 0  1  3  2  0 
 0  0  0  0  0 
 0  0  -12  -12  0 

2 3

2 4

(-5)R + R
(-10)R + R

 
 
 
 
 
 

 

 1  - 2  0  0  3 
 0  1  3  2  0 
 0  0  -12  -12  0 
 0  0  0  0  0 

34R

 
 
 
 
 
 

 

 1  - 2  0  0  3 
 0  1  3  2  0 
 0  0  1  1  0 
 0  0  0  0  0 

3(-1/12)R

 
 
 
 
 
 
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Therefore,  

1 -2 0 0 3
0 1 3 2 0
0 0 1 1 0
0 0 0 0 0

=

 
 
 
 
 
 

R  

The non-zero row vectors in this matrix are  
= (1,-2,0,0,3), = (0,1,3,2,0), = (0,0,1,1,0)1 2 3w w w  

These vectors form a basis for the row space and consequently form a basis for the 
subspace of R5 spanned by v1, v2, v3. 
 
Example 4: (Basis for the Row Space of a Matrix) 

Find a basis for the row space of 

1 -2 0 0 3
2 -5 -3 -2 6
0 5 15 10 0
2 6 18 8 6

=

 
 
 
 
 
 

A  consisting entirely of row 

vectors from A. 
Solution:   We find AT; then we will use the method of example (2) to find a basis for the 
column space of AT; and then we will transpose again to convert column vectors back to 
row vectors. Transposing A yields 

1 2 0 2
-2 -5 5 6
0 -3 15 18
0 -2 10 8
3 6 0 6

=

 
 
 
 
 
 
  

TA  

Transforming Matrix to Row Echelon Form: 
 1   2   0     2
-2  -5   5     6
 0  -3  15   18
 0  - 2  10     8
 3   6   0     6

 
 
 
 
 
 
  

 

 1  2  0  2 
 0  -1  5  10 
 0  -3  15  18 
 0  - 2  10  8 
 0  0  0  0 

1 2

1 5

2 R + R
(-3)R + R

 
 
 
 
 
 
  
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 1  2  0  2 
 0  1  -5  -10 
 0  -3  15  18 
 0  - 2  10  8 
 0  0  0  0 

2(-1)R  

 
 
 
 
 
 
  

 

 1  2  0  2 
 0  1  -5  -10 
 0  0  0  -12 
 0  0  0  -12 
 0  0  0  0 

2 3

2 4

(3)R + R
(2)R + R

 
 
 
 
 
 
  

 

 1  2  0  2 
 0  1  -5  -10 
 0  0  0  1 
 0  0  0  -12 
 0  0  0  0 

3(-1/12)R  

 
 
 
 
 
 
  

 

 1  2  0  2 
 0  1  -5  -10 
 0  0  0  1 
 0  0  0  0 
 0  0  0  0 

3 412 R + R

 
 
 
 
 
 
  

 

Now   

1 2 0 2
0 1 -5 -10
0 0 0 1
0 0 0 0
0 0 0 0

=

 
 
 
 
 
 
  

R  

The first, second and fourth columns contain the leading 1’s, so the corresponding 
column vectors in AT form a basis for the column space of AT; these are 

1 2 2
-2 -5 6

and0 -3 18
0 -2 8
3 6 6

= , = =

     
     
     
     
     
     
          

1 2 4c c c  

Transposing again and adjusting the notation appropriately yields the basis vectors 
[ ] [ ] [ ]1 -2 0 0 3 2 -5 -3 -2 6 2 6 18 8 6= , = and =1 2 4r r r  

for the row space of A. 
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The following example  shows how one sequence of row operations on A leads to bases 
for the three spaces: Row A, Col A, and Nul A. 
  
 
 
Example 5:   Find bases for the row space, the column space and the null space of the 
matrix  

 
 
 
 
 
 

 
Solution:   To find bases for the row space and the column space, row reduce A to an 

echelon form: 

1 3 -5 1 5
0 1 -2 2 -7
0 0 0 -4 20
0 0 0 0 0

=

 
 
 
 
 
 

A B  

By Theorem (1), the first three rows of B form a basis for the row space of A (as well as 
the row space of B). Thus Basis for Row A:  

{(1, 3, -5, 1, 5), (0, 1, -2, 2, -7), (0, 0, 0, -4, 20)} 
For the column space, observe from B that the pivots are in columns 1, 2 and 4. Hence 
columns 1, 2 and 4 of A (not B) form a basis for Col A: 

-2 -5 0
1 3 1

Basis for Col : , ,
3 11 7
1 7 5

      
      
                         

A  

Any echelon form of A provides (in its nonzero rows) a basis for Row A and also 
identifies the pivot columns of A for Col A. However, for Nul A, we need the reduced 
echelon form. Further row operations on B yield 

1 0 1 0 1
0 1 -2 0 3
0 0 0 1 -5
0 0 0 0 0

=

 
 
 
 
 
 

 A B C  

The equation Ax = 0 is equivalent to Cx = 0, that is, 
1 3 5

2 3 5

4 5

x +           x            +  x  = 0
        x  - 2x            + 3x  = 0
 x     - 5x  = 0

 

-2 -5 8 0 -17
1 3 -5 1 5
3 11 -19 7 1
1 7 -13 5 -3

=

 
 
 
 
 
 

A
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So x1 = -x3 – x5, x2 = 2x3 – 3x5, x4 = 5x5, with x3 and x5 free variables. The usual 
calculations (discussed in lecture 21) show that 

-1 -1
2 -3

Basis for Nul : ,1 0
0 5
0 1

    
    
         
    
    
        

A  

 
Observe that, unlike the bases for Col A, the bases for Row A and Nul A have no simple 
connection with the entries in A itself. 
 
Note:  
1.  Although the first three rows of B in Example (5) are linearly independent, it is wrong   

to conclude that the first three rows of A are linearly independent. (In fact, the third 
row of A is 2 times the first row plus 7 times the second row). 

 2.  Row operations do not preserve the linear dependence relations among the rows of a 
matrix. 

 
Definition:   The rank of A is the dimension of the column space of A. 
Since Row A is the same as Col AT, the dimension of the row space of A is the rank of 
AT. The dimension of the null space is sometimes called the nullity of A. 
 
Theorem 3: (The Rank Theorem) The dimensions of the column space and the row 
space of an m n×  matrix A are equal. This common dimension, the rank of A, also equals 
the number of pivot positions in A and satisfies the equation 

rank A + dim Nul A = n 
 
Example 6: 
(a) If A is a 7 9×  matrix with a two – dimensional null space, what is the rank of A? 
(b). Could a 6 9×  matrix have a two – dimensional null space? 
Solution:   
 (a) Since A has 9 columns, (rank A) + 2 = 9 and hence rank A = 7. 
 (b) No, If a 6 9×  matrix, call it B, had a two – dimensional null space, it would have to 
have rank 7, by the Rank Theorem. But the columns of B are vectors in R6 and so the 
dimension of Col B cannot exceed 6; that is, rank B cannot exceed 6. 
 
The next example provides a nice way to visualize the subspaces we have been studying. 
Later on, we will learn that Row A and Nul A have only the zero vector in common and 
are actually “perpendicular” to each other. The same fact will apply to Row AT (= Col A) 
and Nul AT. So the figure in Example (7) creates a good mental image for the general 
case.  
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Example 7: Let 
3 0 1
3 0 1
4 0 5

− 
 = − 
  

A . It is readily checked that Nul A is the x2 – axis, Row A 

is the x1x3 – plane, Col A is the plane whose equation is x1 – x2 = 0 and Nul AT is the set 
of all multiples of (1, -1, 0). Figure 1 shows Nul A and Row A in the domain of the linear 
transformation ;→x Ax  the range of this mapping, Col A, is shown in a separate copy of 
R3, along with Nul AT. 

 
Figure 1 – Subspaces associated with a matrix A 

 
Applications to Systems of Equations: 
   The Rank Theorem is a powerful tool for processing information about systems of 
linear equations. The next example simulates the way a real-life problem using linear 
equations might be stated, without explicit mention of linear algebra terms such as 
matrix, subspace and dimension. 
 
 Example 8:   A scientist has found two solutions to a homogeneous system of 40 
equations in 42 variables. The two solutions are not multiples and all other solutions can 
be constructed by adding together appropriate multiples of these two solutions. Can the 
scientist be certain that an associated non-homogeneous system (with the same 
coefficients) has a solution?  
Solution:   Yes. Let A be the 40 42×  coefficient matrix of the system. The given 
information implies that the two solutions are linearly independent and span Nul A. So 
dim Nul A = 2. By the Rank Theorem, dim Col A = 42 – 2 = 40. Since R40 is the only 
subspace of R40 whose dimension is 40, Col A must be all of R40. This means that every 
non-homogeneous equation Ax = b has a solution. 
 

x2 
x1 

x3 

0 

Row A 

Nul A x2 

x1 

0 

Col A 

Nul AT 

x3 

R3 
R3 
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Example 9:   Find the rank and nullity of the matrix 

-1 2 0 4 5 -3
3 -7 2 0 1 4
2 -5 2 4 6 1
4 -9 2 -4 -4 7

=

 
 
 
 
 
 

A . 

Verify that values obtained verify the dimension theorem. 

Solution 

 -1  2  0  4  5  -3 
 3  - 7  2  0  1  4 
 2  -5  2  4  6  1 
 4  -9  2  - 4  - 4  7 

 
 
 
 
 
 

 

 

 1  - 2  0  - 4  -5  3 
 3  - 7  2  0  1  4 
 2  -5  2  4  6  1 
 4  -9  2  - 4  - 4  7 

1(-1)R

 
 
 
 
 
 

 

  

 1  - 2  0  - 4  -5  3 
 0  -1  2  12  16  -5 
 0  -1  2  12  16  -5 
 0  -1  2  12  16  -5 

1 2

1 3

1 4

(-3)R + R
(-2)R + R
(-4)R + R

 
 
 
 
 
 

 

 1  - 2  0  - 4  -5  3 
 0  1  - 2  -12  -16  5 
 0  -1  2  12  16  -5 
 0  -1  2  12  16  -5 

2(-1)R

 
 
 
 
 
 

 

  

 1  - 2  0  - 4  -5  3 
 0  1  - 2  -12  -16  5 
 0  0  0  0  0  0 
 0  0  0  0  0  0 

2 3

2 4

R + R
R + R

 
 
 
 
 
 

 

 1  0  - 4  - 28  -37  13 
 0  1  - 2  -12  -16  5 
 0  0  0  0  0  0 
 0  0  0  0  0  0 

2 12R + R

 
 
 
 
 
 

 

The reduced row-echelon form of A is 
1 0 -4 -28 -37 13
0 1 -2 -12 -16 5
0 0 0 0 0 0
0 0 0 0 0 0

 
 
 
 
 
 

     (1) 
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The corresponding system of equations will be 

1 3 4 5 6

2 3 4 5 6

x  - 4x  - 28x  - 37x  + 13x  = 0
x  - 2x  -12x  - 16x  +  5x  = 0

 

or, on solving for the leading variables, 
1 3 4 5 6

2 3 4 5 6

x  = 4x  - 28x  + 37x  - 13x
x  = 2x  +12x  + 16x  - 5x       (2) 

it follows that the general solution of the system is  
1

2

3

4

5

6

x  = 4r + 28s + 37t - 13u
x  = 2r + 12s + 16t -  5u
x  = r
x  = s
x  = t
x  = u

 

or equivalently, 

1

2

3

4

5

6

x 4 28 37 -13
x 2 12 16 -5
x 1 0 0 0

= r + s +t +u
x 0 1 0 0
x 0 0 1 0
x 0 0 0 1

         
         
         
         
         
         
         
         
          

    (3) 

The four vectors on the right side of (3) form a basis for the solution space, so  

nullity (A) = 4. The matrix 

-1 2 0 4 5 -3
3 -7 2 0 1 4
2 -5 2 4 6 1
4 -9 2 -4 -4 7

=

 
 
 
 
 
 

A  has 6 columns,  

so rank(A) + nullity(A) = 2 + 4 = 6 = n 
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Example 10:   Find the rank and nullity of the matrix; then verify that the values obtained 

satisfy the dimension theorem 

1 -3 2 2 1
0 3 6 0 -3
2 -3 -2 4 4
3 -6 0 6 5
-2 9 2 -4 -5

=

 
 
 
 
 
 
  

A  

Solution:   Transforming Matrix to the Reduced Row Echelon Form: 
 1  -3  2  2  1 
 0  3  6  0  -3 
 2  -3  - 2  4  4 
 3  - 6  0  6  5 
 - 2  9  2  - 4  -5 

 
 
 
 
 
 
  

 

  

 1  -3  2  2  1 
 0  3  6  0  -3 
 0  3  - 6  0  2 
 0  3  - 6  0  2 
 0  3  6  0  -3 

1 3

1 4

1 5

(-2)R + R
(-3)R + R

2R + R

 
 
 
 
 
 
  

 

 1  -3  2  2  1 
 0  1  2  0  -1 
 0  3  - 6  0  2 
 0  3  - 6  0  2 
 0  3  6  0  -3 

2(1/3)R   

 
 
 
 
 
 
  

 

  

 1  -3  2  2  1 
 0  1  2  0  -1 
 0  0  -12  0  5 
 0  0  -12  0  5 
 0  0  0  0  0 

2 3

2 4

2 5

(-3) R  + R
(-3) R + R
(-3)R + R

 
 
 
 
 
 
  

 

 1  -3  2  2  1 
 0  1  2  0  -1 
 0  0  1  0  -5/12 
 0  0  -12  0  5 
 0  0  0  0  0 

3(-1/12)R   

 
 
 
 
 
 
  
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 1  -3  2  2  1 
 0  1  2  0  -1 
 0  0  1  0  -5/12 
 0  0  0  0  0 
 0  0  0  0  0 

3 412R + R

 
 
 
 
 
 
  

 

  

 1  -3  0  2  11/6 
 0  1  0  0  -1/6 
 0  0  1  0  -5/12 
 0  0  0  0  0 
 0  0  0  0  0 

3 2

3 1

(-2 ) R  + R
(-2 ) R  + R

 
 
 
 
 
 
  

 

  

 1  0  0  2  4/3 
 0  1  0  0  -1/6 
 0  0  1  0  -5/12 
 0  0  0  0  0 
 0  0  0  0  0 

2 1(3) R  + R

 
 
 
 
 
 
  

   (1) 

Since there are three nonzero rows (or equivalently, three leading 1’s) the row space and 
column space are both three dimensional so rank (A) = 3. 
 To find the nullity of A, we find the dimension of the solution space of the linear system 
Ax = 0. The system can be solved by reducing the augmented matrix to reduced row 
echelon form. The resulting matrix will be identical to (1), except with an additional last 
column of zeros, and the corresponding system of equations will be 

 

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

4x + 0x + 0x + 2x + x = 0
3

10x + x + 0x + 0x - x = 0
6
50x + 0x + x + 0x - x = 0

12

  

The system has infinitely many solutions:  

x1 = -2 x4+(-4/3) x5  x2 = (1/6) x5 

x3  = (5/12) x5   x4 = s 

x5 = t 

The solution can be written in the vector form:  

c4 = (-2, 0, 0, 1, 0)  c5 = (-4/3, 1/6, 5/12,0,1) 
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Therefore the null space has a basis formed by the set  

{(-2, 0, 0, 1, 0), (-4/3, 1/6, 5/12,0,1)} 

The nullity of the matrix is 2. Now Rank (A) + nullity (A) = 3 + 2 =5 = n 
 
Theorem 4:   If A is an m x n, matrix, then 
(a) rank (A) = the number of leading variables in the solution of Ax = 0 
(b) nullity (A) = the number of parameters in the general solution of Ax = 0 
 
Example 11:   Find the number of parameters in the solution set of Ax = 0 if A is a 5 7×  
matrix of rank 3. 
Solution: nullity (A) = n – rank (A) = 7-3 =4 
Thus, there are four parameters. 
 
Example:  Find the number of parameters in the solution set of Ax = 0 if A is a 4 4×  
matrix of rank 0. 
Solution nullity (A) = n – rank (A) = 4-0 =4 
Thus, there are four parameters. 
 
Theorem 5:   If A is any matrix, then rank (A) = rank (AT) 
 
Four fundamental matrix spaces: 

   If we consider a matrix A and its transpose AT together, then there are six 
vectors spaces of interest: 
Row space of A  row space of AT 

Column space of A  column space of AT 

Null space of A null space of AT 

However, transposing a matrix converts row vectors into column vectors and column 
vectors into row vectors, so that, except for a difference in notation, the row space of AT 
is the same as the column space of A and the column space of AT is the same as row 
space of of A. 
This leaves four vector spaces of interest: 
Row space of A  column space of A  
Null space of A  null space of AT 
These are known as the fundamental matrix spaces associated with A, if A is an m x n 
matrix, then the row space of A and null space of A are subspaces of Rn and the column 
space of A and the null space of AT are subspaces of Rm. 
 
Suppose now that A is an m x n matrix of rank r, it follows from theorem (5) that AT is an 
n x m matrix of rank r . Applying theorem (3) on A and AT yields 

Nullity (A)=n-r, nullity (AT)=m-r 
From which we deduce the following table relating the dimensions of the four 
fundamental spaces of an m x n matrix A of rank r. 
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Fundamental space      Dimension 
Row space of A      r 
Column space of A      r 
Null space of A     n-r 
Null space of AT      m-r 
 
Example 12:   If A is a 7 x 4 matrix, then the rank of A is at most 4 and, consequently, 
the seven row vectors must be linearly dependent. If A is a 4 x 7 matrix, then again the 
rank of A is at most 4 and, consequently, the seven column vectors must be linearly 
dependent. 
 
Rank and the Invertible Matrix Theorem:   The various vector space concepts 
associated with a matrix provide several more statements for the Invertible Matrix 
Theorem. We list only the new statements here, but we reference them so they follow the 
statements in the original Invertible Matrix Theorem in lecture 13. 
 
Theorem 6:   The Invertible Matrix Theorem (Continued) 
Let A be an n x n matrix. Then the following statements are each equivalent to the 
statement that A is an invertible matrix. 

m. The columns of A form a basis of Rn. 
n. Col A = Rn. 
o. dim Col A = n 
p. rank A = n 
q. Nul A = {0} 
r. dim Nul A = 0 

 
Proof:   Statement (m) is logically equivalent to statements (e) and (h) regarding linear 
independence and spanning. The other statements above are linked into the theorem by 
the following chain of almost trivial implications: 

( ) ( ) ( ) ( ) ( ) ( ) ( )g n o p r q d⇒ ⇒ ⇒ ⇒ ⇒ ⇒  
Only the implication (p) ⇒  (r) bears comment. It follows from the Rank Theorem 
because A is n n× . Statements (d) and (g) are already known to be equivalent, so the 
chain is a circle of implications. 
 
We have refrained from adding to the Invertible Matrix Theorem obvious statements 
about the row space of A, because the row space is the column space of AT. Recall from 
(1) of the Invertible Matrix Theorem that A is invertible if and only if AT is invertible. 
Hence every statement in the Invertible Matrix Theorem can also be stated for AT.  
 
Numerical Note: 
                 Many algorithms discussed in these lectures are useful for understanding 
concepts and making simple computations by hand. However, the algorithms are often 
unsuitable for large-scale problems in real life.  
Rank determination is a good example. It would seem easy to reduce a matrix to echelon 
form and count the pivots. But unless exact arithmetic is performed on a matrix whose 
entries are specified exactly, row operations can change the apparent rank of a matrix
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For instance, if the value of x in the matrix 
5 7
5 x
 
 
 

 is not stored exactly as 7 in a 

computer, then the rank may be 1 or 2, depending on whether the computer treats x – 7 as 
zero. 
In practical applications, the effective rank of a matrix A is often determined from the 
singular value decomposition of A. 
 
Example 13:  The matrices below are row equivalent 

2 -1 1 -6 8 1 -2 -4 3 -2
1 -2 -4 3 -2 0 3 9 -12 12
-7 8 10 3 -10 0 0 0 0 0
4 -5 -7 0 4 0 0 0 0 0

= , =

   
   
   
   
   
   

A B  

1. Find rank A and dim Nul A. 
2. Find bases for Col A and Row A. 
3. What is the next step to perform if one wants to find a basis for Nul A? 
4. How many pivot columns are in a row echelon form of AT? 

Solution: 
1. A has two pivot columns, so rank A = 2. Since A has 5 columns altogether, dim 

Nul A = 5 – 2 = 3. 
2. The pivot columns of A are the first two columns. So a basis for Col A is 

2 -1
1 -2

,
-7 8
4 -5

{ , }=

    
    
                 

1 2a a

The nonzero rows of B form a basis for Row A, namely {(1, –2, –4, 3, –2), (0, 3, 
9, –12, 12)}. In this particular example, it happens that any two rows of A form a 
basis for the row space, because the row space is two-dimensional and none of the 
rows of A is a multiple of another row. In general, the nonzero rows of an echelon 
form of A should be used as a basis for Row A, not the rows of A itself. 

3. For Nul A, the next step is to perform row operations on B to obtain the reduced 
echelon form of A. 

4. Rank AT = rank A, by the Rank Theorem, because Col AT = Row A. So AT has 
two pivot positions. 

 
Exercises: 
 
In exercises 1 to 4, assume that the matrix A is row equivalent to B. Without calculations, 
list rank A and dim Nul A. Then find bases for Col A, Row A, and Nul A. 
 

1. 
1 4 9 7 1 0 1 5
1 2 4 1 , 0 2 5 6

5 6 10 7 0 0 0 0

− − −   
   = − − = − −   
   −   

A B   
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2. 

1 3 4 1 9 1 3 0 5 7
2 6 6 1 10 0 0 2 3 8

,
3 9 6 6 3 0 0 0 0 5

3 9 4 9 0 0 0 0 0 0

− − − −   
   − − − − −   =
   − − − −
   −   

A B =  

 

3. 

2 3 6 2 5 2 3 6 2 5
2 3 3 3 4 0 0 3 1 1

,
4 6 9 5 9 0 0 0 1 3
2 3 3 4 1 0 0 0 0 0

− −   
   − − − − −   = =
   −
   − −   

A B  

 

4. 

1 1 3 7 9 9 1 1 3 7 9 9
1 2 4 10 13 12 0 1 1 3 4 3

,1 1 1 1 1 3 0 0 0 1 1 2
1 3 1 5 7 3 0 0 0 0 0 0
1 2 0 0 5 4 0 0 0 0 0 0

− − − −   
   − − − −   
   = =− − − − −
   − − −   
   − − −   

A B  

 
5. If a 3 x 8 matrix A has rank 3, find dim Nul A, dim Row A, and rank AT. 
 
6. If a 6 x 3 matrix A has rank 3, find dim Nul A, dim Row A, and rank AT. 
 
7. Suppose that a 4 x 7 matrix A has four pivot columns. Is Col A = R4? Is Nul A = R3? 
Explain your answers. 
 
8. Suppose that a 5 x 6 matrix A has four pivot columns. What is dim Nul A? Is Col A = 
R4? Why or why not?  
 
9. If the null space of a 5 x 6 matrix A is 4-dimensional, what is the dimension of the 
column space of A? 
 
10. If the null space of a 7 x 6 matrix A is 5-dimensional, what is the dimension of the 
column space of A? 
 
11. If the null space of an 8 x 5 matrix A is 2-dimensional, what is the dimension of the 
row space of A? 
 
12. If the null space of a 5 x 6 matrix A is 4-dimensional, what is the dimension of the 
row space of A? 
 
13. If A is a 7 x 5 matrix, what is the largest possible rank of A? If A is a 5 x 7 matrix, 
what is the largest possible rank of A? Explain your answers. 
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14. If A is a 4 x 3 matrix, what is the largest possible dimension of the row space of A? If 
A is a 3 x 4 matrix, what is the largest possible dimension of the row space of A? Explain. 
 
15. If A is a 6 x 8 matrix, what is the smallest possible dimension of Nul A? 
 
16. If A is a 6 x 4 matrix, what is the smallest possible dimension of Nul A? 
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Lecture 09 
 

Solution of Linear System of Equations and Matrix Inversion 
 
Jacobi’s Method 
This is an iterative method, where initial approximate solution to a given system of 
equations is assumed and is improved towards the exact solution in an iterative way. 
 
In general, when the coefficient matrix of the system of equations is a sparse matrix 
(many elements are zero), iterative methods have definite advantage over direct methods 
in respect of economy of computer memory  
Such sparse matrices arise in computing the numerical solution of partial differential 
equations 
Let us consider  

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2 1

n n

n n

n n nn n

a x a x a x b
a x a x a x b

a x a x a x b

+ + + = 
+ + + = 


+ + + = 





   



 

In this method, we assume that the coefficient matrix [A] is strictly diagonally dominant, 
that is, in each row of [A] the modulus of the diagonal element exceeds the sum of the 
off-diagonal elements.  
We also assume that the diagonal element  do not vanish. If any diagonal element 
vanishes, the equations can always be rearranged to satisfy this condition.  
Now the above system of equations  can be written as  

11 12
1 2

11 11 11

22 21
2 1

22 22 22

( 1)1
1 1

n
n

n
n

n nn n
n n

nn nn nn

ab ax x x
a a a

ab ax x x
a a a

ab ax x x
a a a

−
−

= − − − 



= − − − 





= − − − 






   



 

We shall take this solution vector 1 2( , ,..., )T
nx x x  as a first approximation to the exact 

solution of system. For convenience, let us denote the first approximation vector by 
(1) (1) (1)
1 2( , ,..., )nx x x  got after taking  as an initial starting vector.  

 
Substituting this first approximation in the right-hand side of system, we obtain the 
second approximation to the given system in the form 
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(2) (1) (1)11 12
1 2

11 11 11

(2) (1) (1)22 21
2 1

22 22 22

( 1)(2) (1) (1)1
1 1

n
n

n
n

n nn n
n n

nn nn nn

ab ax x x
a a a

ab ax x x
a a a

ab ax x x
a a a

−
−

= − − − 



= − − − 





= − − − 






   



 

This second approximation is substituted into the right-hand side of Equations and obtain 
the third approximation and so on.  
This process is repeated and (r+1)th approximation is calculated 

( 1) ( ) ( )11 12
1 2

11 11 11

( 1) ( ) ( )22 21
2 1

22 22 22

( 1)( 1) ( ) ( )1
1 1

r r rn
n

r r rn
n

n nr r rn n
n n

nn nn nn

ab ax x x
a a a

ab ax x x
a a a

ab ax x x
a a a

+

+

−+
−

= − − − 



= − − − 





= − − − 






   



 

Briefly, we can rewrite these Equations as 
( 1) ( )

1
,

1, 2,..., 1, 2,...,

n
ijr ri

i j
jii ii
j i

abx x
a a

r i n

+

=
≠

= −

= =

∑
 

It is also known as method of simultaneous displacements,  
since no element of   ( 1)r

ix +    is used in this iteration until every element is computed. 
 
A sufficient condition for convergence of the iterative solution to the exact solution is 

1
1

, 1, 2,...,
n

ii ij
j
j

a a i n
=
≠

> =∑  When this condition (diagonal dominance) is true, Jacobi’s 

method converges  
 
Example   
Find the solution to the following system of equations using Jacobi’s iterative method for 
the first five iterations:  
83 11 4 95
7 52 13 104
3 8 29 71

x y z
x y z
x y z

+ − =
+ + =
+ + =

 

Solution 
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95 11 4
83 83 83

104 7 13
52 52 52
71 3 8
29 29 29

x y z

y x z

z x y

= − + 

= − − 

= − − 

 

Taking the initial starting of solution vector as  (0,0,0) ,T  from Eq. ,we have the first 
approximation as 
 

(1)

(1)

(1)

1.1446
2.0000
2.4483

x
y
z

   
   =   

     

 

Now, using Eq. ,the second approximation is computed from the equations 
 

(2) (1) (1)

(2) (1) (1)

(2) (1) (1)

1.1446 0.1325 0.0482
2.0 0.1346 0.25
2.4483 0.1035 0.2759

x y z
y x z
z x y

= − +


= − − 
= − − 

 

Making use of the last two equations we get the second approximation as 
(2)

(2)

(2)

0.9976
1.2339
1.7424

x
y
z

   
   =   

     

 

 
Similar procedure yields the third, fourth and fifth approximations to the required 
solution and they are tabulated as below; 
 
Variables 

Iteration number r x y z 

1 1.1446 2.0000 2.4483 

2 0.9976 1.2339 1.7424 

3 1.0651 1.4301 2.0046 
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4 1.0517 1.3555 1.9435 

5 1.0587 1.3726 1.9655 

 
Example  
Solve the system by jacobi’s iterative method  
8 3 2 20
4 11 33
6 3 12 35

x y z
x y z
x y z

− + =
+ − =
+ + =

 

(Perform only four iterations) 
Solution  
Consider the given system as  
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[ ]

[ ]

[ ]

0 0 0

1

8 3 2 20
4 11 33
6 3 12 35

min
1 20 3 2
8
1 33 4
11
1 35 6 3

12
0

1 20 3(0)
8

x y z
x y z
x y z

the system is diagonally do ant

x y z

y x z

z x y

we start with an initial aproximation x y z
substituting these
first iteration

x

− + =
+ − =
+ + =
    

= + −

= − +

= − −

       = = =
  

  

= +[ ]

[ ]

[ ]

[ ]

[ ]

[ ]

1

1

2

2

2

2(0) 2.5

1 33 4(0) 0 3
11
1 35 6(0) 3(0) 2.916667

12

1 20 3(3) 2(2.9166667) 2.895833
8
1 33 4(2.5) 2.9166667 2.3560606
11
1 35 6(2.5) 3(3) 0.9166666

12

y

z

Second iteration

x

y

z

− =

= − + =

= − − =

  

= + − =

= − + =

= − − =

 

 

[ ]

[ ]

[ ]

3

3

3

1 20 3(2.3560606) 2(0.9166666) 3.1543561
8
1 33 4(2.8958333) 0.9166666 2.030303

11
1 35 6(2.8958333) 3(2.3560606) 0.8797348

12

third iteration

x

y

z

  

= + − =

= − + =

= − − =
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[ ]

[ ]

[ ]

4

4

4

1 20 3(2.030303) 2(0.8797348) 3.0419299
8
1 33 4(3.1543561) 0.8797348 1.9329373

11
1 35 6(3.1543561) 3(2.030303) 0.8319128

12

fourth iteration

x

y

z

    

= + − =

= − + =

= − − =

 

 
Example  
Solve the system by jacobi’s iterative method  
3 4 15 54.8

12 3 39.66
10 2 7.74

x y z
x y z

x y z

+ + =
+ + =

+ − =
 

(Perform only four iterations) 
Solution  
 
 
Consider the given system as  

[ ]

[ ]

[ ]

3 4 15 54.8
12 3 39.66

10 2 7.74
min

10 2 7.74
12 3 39.66

3 4 15 54.8
1 7.74 2

10
1 39.66 3

12
1 54.8 3 4

15

x y z
x y z

x y z
the system is not diagonally do ant we rearrange the system

x y z
x y z
x y z

x y z

y x z

z x y

+ + =
+ + =

+ − =
          
+ − =

+ + =
+ + =

= − +

= − −

= − −
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[ ]

[ ]

[ ]

0 0 0

1

1

1

2

0

1 7.74 (0) 2(0) 0.774
10
1 39.66 (0) 3(0) 1.1383333

12
1 54.8 3(0) 4(0) 3.6533333

15

1 7.74 1.1
10

we start with an initial aproximation x y z
substituting these
first iteration

x

y

z

Second iteration

x

       = = =
  

  

= − + =

= − − =

= − − =

  

= −[ ]

[ ]

[ ]

2

2

383333 2(3.6533333) 1.3908333

1 39.66 0.774 3(3.6533333) 2.3271667
12
1 54.8 3(0.774) 4(1.1383333) 3.1949778

15

y

z

+ =

= − − =

= − − =

 

 

[ ]

[ ]

[ ]

3

3

3

1 7.74 2.3271667 2(3.1949778) 1.1802789
10
1 39.66 1.3908333 3(3.1949778) 2.3903528

12
1 54.8 3(1.3908333) 4(2.3271667) 2.7545889

15

third iteration

x

y

z

  

= − + =

= − − =

= − − =

 

[ ]

[ ]

[ ]

4

4

4

1 7.74 2.5179962 2(2.7798501) 1.0781704
10
1 39.66 1.1802789 3(2.7545889) 2.51779962

12
1 54.8 3(1.1802789) 4(2.3903528) 2.7798501

15

fourth iteration

x

y

z

   

= − + =

= − − =

= − − =
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Lecture 10 
 

Solution of Linear System of Equations and Matrix Inversion 
Gauss–Seidel Iteration Method 

 
It is another well-known iterative method for solving a system of linear equations of the 
form 

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

n n

n n

n n nn n n

a x a x a x b
a x a x a x b

a x a x a x b

+ + + = 
+ + + = 


+ + + = 





   



 

In Jacobi’s method, the (r + 1)th approximation to the above system is given by 
Equations 

( 1) ( ) ( )11 12
1 2

11 11 11

( 1) ( ) ( )22 21
2 1

22 22 22

( 1)( 1) ( ) ( )1
1 1

r r rn
n

r r rn
n

n nr r rn n
n n

nn nn nn

ab ax x x
a a a

ab ax x x
a a a

ab ax x x
a a a

+

+

−+
−

= − − − 



= − − − 





= − − − 






   



 

Here we can observe that no element of ( 1)r
ix +   replaces  ( )r

ix   entirely for the next cycle of 
computation.  
In Gauss-Seidel method, the corresponding elements of  ( 1)r

ix + replaces those of    
( )r
ix   as soon as they become available.  

Hence, it is called the method of successive displacements. For illustration consider 
11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

n n

n n

n n nn n n

a x a x a x b
a x a x a x b

a x a x a x b

+ + + = 
+ + + = 


+ + + = 





   



 

In Gauss-Seidel iteration, the (r + 1)th approximation or iteration is computed from: 
( 1) ( ) ( )11 12
1 2

11 11 11

( 1) ( 1) ( )22 21
2 1

22 22 22

( 1)( 1) ( 1) ( 1)1
1 1

r r rn
n

r r rn
n

n nr r rn n
n n

nn nn nn

ab ax x x
a a a

ab ax x x
a a a

ab ax x x
a a a

+

+ +

−+ + +
−

= − − − 



= − − − 





= − − − 






   



 

Thus, the general procedure can be written in the following compact form  
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1
( 1) ( 1) ( )

1 1

i n
ij ijr r ri

i j j
j j iii ii ii

a abx x x
a a a

−
+ +

= = +

= − −∑ ∑        for all 1, 2,...,i n=  and 1,2,...r =  

To describe system  in the first equation, we substitute the r-th approximation into the 
right-hand side and denote the result by ( 1)

1 .rx +   In the second equation, we substitute 
( 1) ( ) ( )
1 3( , ,..., )r r r

nx x x+  and denote the result by ( 1)
2

rx +  
In the third equation, we substitute ( 1) ( 1) ( ) ( )

1 2 4( , , ,..., )r r r r
nx x x x+ + and denote the result by 

( 1)
3 ,rx + and so on. This process is continued till we arrive at the desired result. For 

illustration, we consider the following example : 
 
Note 
The difference between jacobi’s method and gauss Seidel method is that in jacobi’s 
method the approximation calculated are used in the next iteration for next 
approximation but in Gauss-seidel method the new approximation calculated is 
instantly replaced by the previous one. 
 
Example   
Find the solution of the following system of equations using Gauss-Seidel method and 
perform the first five iterations: 

1 2 3

1 2 4

1 3 4

2 3 4

4 2
4 2
4 1

4 1

x x x
x x x
x x x
x x x

− − =
− + − =
− + − =
− − + =

 

 
Solution  
The given system of equations can be rewritten as 
 

1 2 3

2 1 4

3 1 4

4 2 3

0.5 0.25 0.25
0.5 0.25 0.25
0.25 0.25 0.25
0.25 0.25 0.25

x x x
x x x
x x x
x x x

= + + 
= + + 
= + + 
= + + 

 

Taking  2 3 4 0x x x= = = on the right-hand side of the first equation of the system , we get  
(1)
1 0.5.x = Taking  3 4 0x x= = and the current value of 1,x  we get from the 2nd equation 

of the system 
(1)
2 0.5 (0.25)(0.5) 0 0.625x = + + =  

 
Further, we take x4 = 0 and the current value of x1     we obtain from the third equation of 
the system 
 

(1)
3 0.25 (0.25)(0.5) 0

0.375

x = + +

=
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Now, using the current values of x2 and x3 the fourth equation of system gives 
(1)
4 0.25 (0.25)(0.625)

(0.25)(0.375) 0.5

x = +

+ =
 

 
The Gauss-Seidel iterations for the given set of equations can be written as 

( 1) ( ) ( )
1 2 3
( 1) ( 1) ( )
2 1 4
( 1) ( 1) ( )
3 1 4
( 1) ( 1) ( 1)
4 2 3

0.5 0.25 0.25

0.5 0.25 0.25

0.25 0.25 0.25

0.25 0.25 0.25

r r r

r r r

r r r

r r r

x x x
x x x
x x x
x x x

+

+ +

+ +

+ + +

= + +

= + +

= + +

= + +

 

Now, by Gauss-Seidel procedure, the 2nd and subsequent approximations can be 
obtained and the sequence of the first five approximations are tabulated as below: 
 
 
 Variables 

Iteration 
number r 

 
 

x1  x2  x3  x4 

1  0.5  0.625  0.375  0.5 

2  0.75  0.8125  0.5625  0.59375 

3  0.84375  0.85938  0.60938  0.61719 

         
4  0.86719  0.87110  0.62110  0.62305 

5  0.87305  0.87402  0.62402  0.62451 

 
Example  
Solve the system by Gauss-Seidel  iterative method  
8 3 2 20
4 11 33
6 3 12 35

x y z
x y z
x y z

− + =
+ − =
+ + =

 

(Perform only four iterations) 
Solution  
Consider the given system as  
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[ ]

[ ]

[ ]

0 0 0

1

8 3 2 20
4 11 33
6 3 12 35

min
1 20 3 2
8
1 33 4
11
1 35 6 3

12
0

1 20 3(0)
8

x y z
x y z
x y z

the system is diagonally do ant

x y z

y x z

z x y

we start with an initial aproximation x y z
substituting these
first iteration

x

− + =
+ − =
+ + =
    

= + −

= − +

= − −

       = = =
  

  

= +[ ]

[ ]

[ ]

[ ] [ ]

[ ] [ ]

1

1

2 1 1

2 2 1

2(0) 2.5

1 33 4(2.5) 0 2.0909091
11
1 35 6(2.5) 3(2.0909091) 1.1439394

12

1 120 3 20 3(2.0909091) 2(1.1439394) 2.9981061
8 8
1 133 4 33 4(2.9981061) 1.1439394 2.0137741
11 11

y

z

Second iteration

x y z

y x z

− =

= − + =

= − − =

  

= + − = + − =

= − + = − + =

[ ] [ ]2 2 2
1 135 6 3 35 6(2.9981061) 3(2.0137741) 0.9141701

12 12
z x y= − − = − − =

 

 

[ ]

[ ]

[ ]

3

3

3

1 20 3(2.0137741) 2(0.9141701) 3.0266228
8
1 33 4(3.0266228) 0.9141701 1.9825163
11
1 35 6(3.0266228) 3(1.9825163) 0.9077262

12

third iteration

x

y

z

  

= + − =

= − + =

= − − =
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[ ]

[ ]

[ ]

4

4

4

1 20 3(1.9825163) 2(0.9077262) 3.0165121
8
1 33 4(3.0165121) 0.9077262 1.9856071

11
1 35 6(3.0165121) 3(1.9856071) 0.8319128

12

fourth iteration

x

y

z

    

= + − =

= − + =

= − − =

 

 
Example  
 
 
  Solve the system by suing Gauss-seidel iteration method  
28 4 32

3 10 24
2 17 4 35

x y z
x y z

x y z

+ − =
+ + =

+ + =
 

 
 
Solution  
28 4 32

3 10 24
2 17 4 35

min min

28 4 32
2 17 4 35

3 10 24

x y z
x y z

x y z

the given system is diagonally do ant so we will make it diagonaaly do ant by
iterchanaginhg the equations

x y z
x y z

x y z

hence we can apply Gau

+ − =
+ + =

+ + =

              
  

+ − =
+ + =

+ + =

    

1 [32 4 ]
28
1 [35 2 4 ]

17
1 [24 3 ]

10

ss Seidel method
from the above equations

x y z

y x z

z x y

−   
    

= − +

= − −

= − −
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1

1

1

0
1 [32] 1.1428571
28

1.1428571 , 0
1 [35 2(1.1428571) 4(0)] 1.9243697

17
1.1428571 1.9243697

1 [24 1.1428571 3(1.9243697)] 1.7084034
10

First approximation
putting y z

x

puting x z

y

putting x y

z

Second

  
 = =

= =

 =    =  

= − − =

 =   , =

= − − =

2

2

2

3

1 [32 4(1.9243697) 1.7084034] 0.9289615
28
1 [35 2(0.9289615) 4(1.7084034)] 1.5475567

17
1 [24 0.9289615 3(1.5475567)] 1.8408368

10

1 [32 4(1.5475567) 1.8428368] 0.98759
28

iteration

x

y

z

third iteration

x

  

= − + =

= − − =

= − − =

  

= − + =

3

3

4

4

4

32

1 [35 2(0.9875932) 4(1.8428368)] 1.5090274
17
1 [24 0.9875932 3(1.5090274)] 1.8485325

10

1 [32 4(1.5090274) 1.8485325] 0.9933008
28
1 [35 2(0.9933008) 4(1.8428368)] 1.5070158

17

y

z

fourth iteration

x

y

z

= − − =

= − − =

  

= − + =

= − − =

=
1 [24 0.9933008 3(1.5070158)] 1.8485652

10
− − =  

 
Example 
Using Gauss-Seidel iteration method, solve the system of the equation. 
10 2 3

2 10 15
10 2 27
2 10 9

x y z w
x y z w

x y z w
x y z w

− − − =
− + − − =
− − + − =
− − − + = −
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(Perform only four iterations) 
Solution  
10 2 3

2 10 15
10 2 27
2 10 9

min
1 [3 2 ]

10
1 [15 2 ]

10
1 [27 2 ]

10
1 [ 9 2 ]

10

x y z w
x y z w

x y z w
x y z w

it is diagonally do anat and we may write eqaution as

x y z w

y x z w

z x y w

w x y z

first approximation
putting

− − − =
− + − − =
− − + − =
− − − + = −

          

= + + +

= + + +

= + + +

= − + + +

  

1

1

1

1

2

0 (1) ,
0.3
1 [15 2(0.3)] 1.56

10
0.3, 1.56 0

1 [27 0.3 1.56] 2.886
10

0.3, 1.56 2.886
1 [ 9 0.3 1.56 2(2.886)] 0.1368

10
sec

y z w on RHS of we get
x

y

putting x y and w

z

putting x y and z

w

ond iteration

x

 = = =        
=

= + =

  = =   =

= + + =

 = =   =

= − + + + = −

  

2

2

2

3

1 [3 2(1.56) 2.886 0.1368] 0.88692
10
1 [15 2(0.88692) 2.886 0.1368] 1.952304

10
1 [27 0.88692 1.952304 2( 0.1368)] 2.9565624

10
1 [ 9 0.88692 1.952304 2(2.9565624)] 0.0247651

10

1
10

y

z

w

third iteration

x

= + + − =

= + + − =

= + + + − =

= − + + + = −

  

= [3 2(1.952304) 2.9565624 0.0.0247651] 0.9836405+ + − =
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3

3

3

4

1 [15 2(0.9836405) 2.9565624 0.0247651] 1.9899087
10
1 [27 0.9836405 1.9899087 2( 0.0247651)] 2.9924019

10
1 [ 9 0.983405 1.9899087 2(2.9924019)] 0.0041647

10

1 [3 2(1.9899087) 2
10

y

z

w

fourth iteration

x

= + + − =

= + + + − =

= − + + + = −

  

= + +

4

4

4

.9924019 0.0041647] 0.9968054

1 [15 2(0.9968054) 2.9924019 0.0041647] 1.9981848
10
1 [27 0.9968054 1.9981848 2( 0.0041647)] 2.9986661

10
1 [ 9 0.9968054 1.9981848 2(2.9986661)] 0.0007677

10

y

z

w

− =

= + + − =

= + + + − =

= − + + + = −

 

Note  
When to stop the iterative processes ,we stop the iterative process when we get the 
required accuracy means if your are asked that find the accurate up to four places of 
decimal then we will simply perform up to that iteration after which we will get the 
required accuracy. If we calculate the root of the equation and its consecutive values are  
1.895326125, 1.916366125, 1.919356325, 1.919326355, 1.919327145, 1.919327128 
Here the accuracy up to seven places of decimal is achieved so if you are asked to acquire 
the accuracy up to six places of decimal then we will stop here . 
But in the solved examples only some iteration are carried out and accuracy is not 
considered here. 
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Lecture 11 
 

Solution of Linear System of Equations and Matrix Inversion 
 
Relaxation Method 
This is also an iterative method and is due to Southwell.To explain the details, consider 
again the system of equations 

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

n n

n n

n n nn n n

a x a x a x b
a x a x a x b

a x a x a x b

+ + + = 
+ + + = 


+ + + = 





   



 

Let 
( ) ( ) ( ) ( )

1 2( , ,..., )p p p p T
nX x x x=  

be the solution vector obtained iteratively after p-th iteration. If  ( )p
iR   denotes the 

residual of the i-th equation of system given above , that is of 1 1 2 2i i in n ia x a x a x b+ + + =  
defined by 

( ) ( ) ( ) ( )
1 1 2 2

p p p p
i i i i in nR b a x a x a x= − − − −  

we can improve the solution vector successively by reducing the largest residual to zero 
at that iteration. This is the basic idea of relaxation method.  
 
To achieve the fast convergence of the procedure, we take all terms to one side and then 
reorder the equations so that the largest negative coefficients in the equations appear on 
the diagonal. 
 
Now, if at any iteration, iR   is the largest residual in magnitude, then we give an 
increment to ;ix iia being the coefficient of xi 
 

i
i

ii

Rdx
a

=  

In other words, we change .ix     to   ( )i ix dx+  to relax  iR  that is to reduce iR       to zero.  
Example   
 
Solve the system of equations  
 

1 2 3

1 2 3

1 2 3

6 3 11
2 8 15

7 10

x x x
x x x

x x x

− + =
+ − = −

− + =

 

by the relaxation method, starting with the vector (0, 0, 0). 
 
Solution  
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At first, we transfer all the terms to the right-hand side and reorder the equations, so that 
the largest coefficients in the equations appear on the diagonal.  
Thus, we get 

1 2 3

1 2 3

1 2 3

0 11 6 3
0 10 7
0 15 2 8

x x x
x x x
x x x

= − + − 
= − + − 
= − − − + 

 

 
         
 
 
after interchanging the 2nd and 3rd equations.  
 
Starting with the initial solution vector (0, 0, 0), that is taking   1 2 3 0,x x x= = =       
  
we find the residuals 1 2 311, 10, 15R R R= = = −  
 
of which the largest residual in magnitude is R3, i.e. the 3rd  equation has more  error and 
needs immediate attention for improvement.  
 
Thus, we introduce a change, dx3in x3 which is obtained from the formula  

3
3

33

15 1.875
8

Rdx
a

= − = =  

Similarly, we find the new residuals of large magnitude and relax it to zero, and so on.  
We shall continue this process, until all the residuals are zero or very small. 
Iteration                  Residuals         Maximum  Difference               Variables 

 
number R1  R2 R3 iR   idx  x1 x2 x3 

0 11  10 -15 -15 1.875 0 0 0 

1 9.125   8.125 0 9.125 1.5288 0 0 1.875 

2 0.0478  6.5962  -
3.0576 

6.5962 -0.9423 1.5288 0 1.875 
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Iteration                  Residuals         Maximum  Difference               Variables 

number R1 R2 R3  iR  idx  x1 x2 x3 

0 11 10 -15 -15 15/8 
=1.875 

0 0 0 

1 9.125 8.125 0 9.125 -9.125/(-6) 
=1.5288 

0 0 1.875 

2 0.0478 6.5962 -3.0576 6.5962 -6.5962/7 
=-0.9423 

1.5288 0 1.875 

3 -2.8747 0.0001 -2.1153 -2.8747 2.8747/(-6) 
=-0.4791 

1.0497 -0.9423 1.875 

4 -0.0031 0.4792 -1.1571 -1.1571 1.1571/8 
=0.1446 

1.0497 -0.9423 1.875 

 
Iteration                  Residuals         Maximum  Difference               Variables 

number R1 R2 R3  iR   idx  x1 x2 x3 

5 -0.1447 0.3346 0.0003 0.3346 -.3346/7 
=-0.0478 

1.0497 -0.9423 2.0196 

6 0.2881 0.0000 0.0475 0.2881 -.2881/(-6) 
=0.0480 

1.0497 -0.9901 2.0196 

7 -0.0001 0.048 0.1435 0.1435 =-0.0179 1.0017 -0.9901 2.0196 

8 0.0178 0.0659 0.0003 - - 1.0017 -0.9901 2.0017 
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At this stage, we observe that all the residuals R1, R2 and R3  are small enough and 
therefore we may take the corresponding values of xi at this iteration as the solution.  
Hence, the numerical solution  is given by  

1 2 31.0017, 0.9901, 2.0017,x x x= = − =  
The exact solution is 

1 2 31.0, 1.0, 2.0x x x= = − =  
 
Example  
 
Solve by relaxation method, the equation  
10 2 2 6

10 2 7
10 8

x y z
x y z
x y z

− − =
− − − =
− − + =

 

 
Solution  
 
The residual 1 2 3, ,r r r  are given by  

1

2

3

6 10 2 2
7 10 2
8 10

r x y z
r x y z
r x y z

= − + +
= + − +
= + + −

 

The operation table is as follows  
 
x y z r1 r2 r3                          
  1 0 0 -10 1 1                          L1 
  0 1 0 2 -10 1                          L2 
0 0 1 2 2 -10                       L3 
 
 
The relaxation table is as follows  
 
x y z r1 r2 r3 
0 0 0 6 7 8                               L4 
0 0 1 8 9 -2                L5=L4+L3 
0 1 0 10 -1 -1                L6=L5+L2 
1 0 0 0 0 0                  L7=L6+L1 
 
Explanation 
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(1) In L4 ,the largest residual is 8.to reduce it, To reduce it ,we give an increment of  

3

4 3 5

8 8 0.8 1
10

(1) , .

c
the resulting residulas are obtained by
L L i e line L

= = ≅

      
+   

  

(2) In line 5L the largest residual is 9 

      Increment=
2

9 9 0.9 1
10b

 = = ≅  

       The resulting residuals (= 6L ) = 5 21.L L+  
(3) In line 6L  ,the largest residual  is 10 

      Increment =
1

10 10 1
10a

 = ≅  

      The resulting residuals (= 6L ) = 5 21.L L+  
Exact solution is arrived and it is x=1,y=1,z=1 
 
Example  

Solve the system by relaxation method, the equations  
 
9 2 7

10 2 15
2 2 13 17

x y z
x y z

x y z

− + =
+ − =

− − = −
 

Solution  
The residuals 1 2 3, ,r r r  are given by  

1

2

3

9 2 9
10 2 15

2 2 13 17

9 9 2
15 10 2

17 2 2 13

x y z
x y z

x y z
here
r x y z
r x y z
r x y z

− + =
+ − =

− − = −
 

= − + −
= − − +
= − − + +

 

Operation table  
 
x y z r1 r2 r3 
1 0 0 -9 -1 -2 
0 1 0 1 -10 2 
0 0 1 -2 2 13 
 
Relaxation table is  
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x y z r1 r2 r3 
0 0 0 9 15 -17 
0 0 1 7 17 -4 
0 1 0 8 7 -2 
0.89 0 0 -0.01 6.11 -3.78 
0 0.61 0 0.6 0.01 -2.56 
0 0 0.19 0.22 0.39 -0.09 
0 0.039 0 0.259 0 -0.012 
0.028 0 0 0.007 -0.028 -0.068 
0 0 0.00523 -0.00346 -1.01754 -0.00001 
 
 
Then x=0.89+0.028=0.918;y=1+0.61+0.039=1.694 
And z=1+0.19+0.00523=1.19523 
Now substituting the values of x,y,z in (1) ,we get  
r1=9-9(0.918)+1.649-2(1.19523)=-0.00346 
r2=15-0.918-10(1.649)+2(1.19523)=-0.1754 
r3=-17-2(0.918) +2(1.649) +13(1.19523) =-0.00001 
Which is agreement with the final residuals. 
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Lecture 12 

Norms of Vectors and Matrices, Matrix Norms and Distances 

 

PPT’s slides are available in VULMS/downloads 
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Lecture 13 

Error Bounds and Iterative Refinement 

 

PPT’s slides are available in VULMS/downloads 
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Lecture 14 
 

Eigenvalues and Eigenvectors 
 
In this lecture we will discuss linear equations of the form Ax = x and, more generally, 
equations of the form Ax = xλ , where λ  is a scalar. Such equations arise in a wide 
variety of important applications and will be a recurring theme in the rest of this course. 
 
Fixed Points:    
A fixed point of an n n×  matrix A is a vector x in Rn such that Ax = x. Every square 
matrix A has at least one fixed point, namely x = 0. We call this the trivial fixed point of 
A. 
The general procedure for finding the fixed points of a matrix A is to rewrite the equation 
Ax = x as Ax = Ix or, alternatively, as 

(I – A)x = 0         (1) 
Since this can be viewed as a homogeneous linear system of n equations in n unknowns 
with coefficient matrix I – A, we see that the set of fixed points of an n n×  matrix is a 
subspace of Rn that can be obtained by solving (1). 

 
The following theorem will be useful for ascertaining the nontrivial fixed points of a 
matrix. 
 
Theorem 1:    
If A is an n x n matrix, then the following statements are equivalent. 
(a) A has nontrivial fixed points. 
(b) I – A is singular. 
(c) det(I – A) = 0. 
 
Example 1:   
 In each part, determine whether the matrix has nontrivial fixed points; and, if so, graph 
the subspace of fixed points in an xy-coordinate system. 

3 6 0 2
( ) ( )

1 2 0 1
a b   

= =   
   

A A  

 
Solution:  
(a) The matrix has only the trivial fixed point since
 

 
 

 
(b) The matrix has nontrivial fixed points since 

1 0 3 6 2 6
( )

0 1 1 2 1 1

2 6
det( ) det ( 1)( 2) ( 1)( 6) 4 0

1 1

I A

I A

− −     
− = − =     − −     

− − 
− = = − − − − − =− ≠ − − 
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1 0 0 2 1 2

( )
0 1 0 1 0 0

I A
−     

− = − =     
     

 

1 2
det( ) det 0

0 0
I A

− 
− = = 

 
 

 
The fixed points x =(x, y) are the solutions of the linear system (I – A)x=0, which we can 
express in component form as 

1 -2 0
0 0 0

x
y

     
=     

     
 

A general solution of this system is 
x = 2t, y = t         (2) 
 

which are parametric equations of the line 1
2y x= .  It follows from the corresponding 

vector form of this line that the fixed points are 
2 2

1
x t

t
y t
     

= = =     
     

x        (3) 

As a check,  
0 2 2 2
0 1

t t
t t

     
= = =     
     

Ax x  

so every vector of form (3) is a fixed point of A. 
 

   y 
                                                                                           

   1
2y x=  

                           (2, 1)•  
                
                                                                                  
 
                                                                                               x 
 
 

Figure 1 
 
Eigenvalues and Eigenvectors:    
In a fixed point problem one looks for nonzero vectors that satisfy the equation Ax = x. 
One might also consider whether there are nonzero vectors that satisfy such equations as 

Ax = 2x, Ax = –3x, Ax = 2x   
or, more generally, equations of the form Ax = λx  in which λ  is a scalar.  
 
Definition:   If A is an n x n matrix, then a scalar λ  is called an eigenvalue of A if there 
is a nonzero vector x such that Ax = xλ . If λ  is an eigenvalue of A, then every nonzero 
vector x such that Ax = xλ  is called an eigenvector of A corresponding to λ . 
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Example 2:    

Let 
1 6 6 3

, and .
5 2 -5 -2
     

= = =     
     

A u v  Are u and v eigenvectors of A? 

Solution:  
1 6 6 -24 6

-4 -4
5 2 -5 20 -5

Au u       
= = = =       
       

 

1 6 3 -9 3
5 2 -2 11 -2

Av        
= = ≠       
       

λ  

Thus u is an eigenvector corresponding to an eigenvalue – 4, but v is not an eigenvector 
of A, because Av is not a multiple of v. 
 
Example 3:  

Show that 7 is an eigenvalue of
1 6
5 2
 

=  
 

A , find the corresponding eigenvectors. 

Solution:    
The scalar 7 is an eigenvalue of A if and only if the equation 

Ax = 7x              (A) 
has a nontrivial solution. But (A) is equivalent to Ax – 7x = 0, or 

(A – 7I) x = 0              (B) 
To solve this homogeneous equation, form the matrix 

1 6 7 0 -6 6
- 7 -

5 2 0 7 5 -5
A I      

= =     
     

 

The columns of A – 7I are obviously linearly dependent, so (B) has nontrivial solutions. 
Thus 7 is an eigenvalue of A. To find the corresponding eigenvectors, use row operations: 

1 2

2 1

6 6 0
5 5 0

1 1 0
~ ( 1 )

5 5 0

1 1 0
~ ( 5 )

0 0 0

R R

R R

− 
 − 

− 
− − − 

− 
− 

 

 

The general solution has the form x2
1

.
1
 
 
 

 Each vector of this form with 2 0x ≠  is an 

eigenvector corresponding to 7.λ =  
 
The equivalence of equations (A) and (B) obviously holds for any λ  in place of λ = 7. 
Thus λ  is an eigenvalue of A if and only if the equation 

(A - λ I)x = 0                   (C) 
has a nontrivial solution.  
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Eigen space: 
The set of all solutions of (A - λ I)x = 0 is just the null space of the matrix A - λ I. So 
this set is a subspace of Rn and is called the eigenspace of A corresponding to λ . The 
eigenspace consists of the zero vector and all the eigenvectors corresponding toλ . 
Example 3 shows that for matrix A in Example 2, the eigenspace corresponding to λ = 7 
consists of all multiples of (1, 1), which is the line through (1, 1) and the origin. From 
Example 2, one can check that the eigenspace corresponding to λ = -4 is the line through 
(6, -5). These eigenspaces are shown in Fig. 1, along with eigenvectors (1, 1) and (3/2, -
5/4) and the geometric action of the transformation x Ax→  on each eigenspace. 
 
 
 
 
 

 
 
 

Example 4:   Let 
4 -1 6
2 1 6 .
2 -1 8

A
 
 =  
  

   

Find a basis for the corresponding eigenspace where eigen value of matrix is 2. 
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Solution:   Form 
4 -1 6 2 0 0 2 -1 6

- 2 2 1 6 - 0 2 0 2 -1 6
2 -1 8 0 0 2 2 -1 6

A I
     
     = =     
          

 and row reduce the 

augmented matrix for (A – 2I) x = 0: 
 

 
 
 

            3 1

2 -1 6 0
~ 0 0 0 0

0 0 0 0
R R

 
  − 
  

 

At this point we are confident that 2 is indeed an eigenvalue of A because the equation  
(A – 2I) x = 0 has free variables. The general solution is 

( )

1 2 3

2 3

1

1

1

2

3

2 6 0........( )
,

2 6
1 32

/ 2 3 / 2 3 1/ 2 3
0 1 0

0 0 1

x x x a
Let x t x s then

x t s

x t s

then
x t s t s
x t t t s

s sx

− + =
= =

= −

= −

− − −           
           = = + = +           
                     

 

By back substitution the general solution is 
1

2 2 3 2 3

3

1 2 -3
1 0 , and free
0 1

     
     = +     
          

x
x x x x x
x

 

The eigenspace, shown in Fig. 2, is a two – dimensional subspace of R3. A basis is 
1 -3
2 , 0
0 1

    
    
    
        

is a basis. 

2 1

2 -1 6 0
2 -1 6 0
2 -1 6 0

2 -1 6 0
~ 0 0 0 0

2 1 6 0
R R

 
 
 
  
 
  − 
 − 
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The most direct way of finding the eigenvalues of an n n×  matrix A is to rewrite the 
equation Ax xλ=  as Ax Ixλ=  , or equivalently, as 

( - ) 0I A xλ =         (4) 
and then try to determine those values of λ , if any, for which this system has nontrivial 
solutions. Since (4) have nontrivial solutions if and only if the coefficient matrix -I Aλ is 
singular, we see that the eigenvalues of A are the solutions of the equation 

det( - ) 0I Aλ =         (5) 
Equation (5) is known as characteristic equation. Also, if λ  is an eigenvalue of A, then 
equation (4) has a nonzero solution space, which we call the eigenspace of A 
corresponding to λ . It is the nonzero vectors in the eigenspace of A corresponding to λ  
that are the eigenvectors of A corresponding to λ . 
The above discussion is summarized by the following theorem. 
 
Theorem:   If A is an n n×  matrix and λ  is a scalar, then the following statements are 
equivalent. 
(i) λ  is an eigenvalue of A. 
(ii) λ  is a solution of the equation det( - ) 0I Aλ = . 
(iii) The linear system ( - ) 0I A xλ =  has nontrivial solutions. 
 
Eigenvalues of Triangular Matrices:   If A is an n n×  triangular matrix with diagonal 
entries a11, a22, …, ann, then -I Aλ  is a triangular matrix with diagonal entries 

11 22- , - , , - nna a aλ λ λ . Thus, the characteristic polynomial of A is 

11 22det( - ) ( - )( - ) ( - )nnI A a a aλ λ λ λ=   
which implies that the eigenvalues of A are 

1 11 2 22, , ,= = = n nna a aλ λ λ  
Thus, we have the following theorem. 
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Theorem:   If A is a triangular matrix (upper triangular, lower triangular, or diagonal) 
then the eigenvalues of A are the entries on the main diagonal of A.  
 
Example 5: (Eigenvalues of Triangular Matrices) 

By inspection, the characteristic polynomial of the matrix 

1
2

2
3

5
8

4
9

0 0 0
-1 - 0 0
7 6 0

-4 3 6

A

 
 
 =
 
 
 

 is 

21 2
2 3( ) ( - )( )( - 6)= +p λ λ λ λ . So the distinct eigenvalues of A are 1

2 ,λ =  2
3λ = − , and 

6λ = . 
 
Eigenvalues of Powers of a Matrix:   Once the eigenvalues and eigenvectors of a matrix 
A are found, it is a simple matter to find the eigenvalues and eigenvectors of any positive 
integer power of A. For example, if λ  is an eigenvalue of A and x is a corresponding 
eigenvector, then 2 2( ) ( ) ( ) ( )A x A Ax A x Ax x xλ λ λ λ λ= = = = = , which shows that 2λ  is 
an eigenvalue of A2 and x is a corresponding eigenvector. In general we have the 
following result. 
 
Theorem:   If λ  is an eigenvalue of a matrix A and x is a corresponding eigenvector, and 
if k is any positive integer, then kλ  is an eigenvalue of Ak and x is a corresponding 
eigenvector. 
Some problems that use this theorem are given in the exercises. 

 
A Unifying Theorem:   Since λ  is an eigenvalue of a square matrix A if and only if 
there is a nonzero vector x such that Ax =λ x, it follows that λ = 0 is an eigenvalue of A 
if and only if there is a nonzero vector x such that Ax = 0. However, this is true if and 
only if det(A) = 0, so we list the following 

 
Theorem:   If A is an n n×  matrix, then the following statements are equivalent.  
(a) The reduced row echelon form of A is In. 
(b) A is expressible as a product of elementary matrices. 
(c) A is invertible. 
(d) Ax = 0 has only the trivial solution. 
(e) Ax = b is consistent for every vector b in Rn. 
(f) Ax = b has exactly one solution for every vector b in Rn  
(g) The column vectors of A are linearly independent. 
(h) The row vectors of A are linearly independent. 
(i) det(A)≠ 0. 
(j) λ = 0 is not an eigenvalue of A. 
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Example 6: 

(1) Is 5 an eigenvalue of 
6 -3 1
3 0 5 ?
2 2 6

A
 
 =  
  

 

(2) If x is an eigenvector for A corresponding to λ , what is A3x? 
 
Solution:  
(1) The number 5 is an eigenvalue of A if and only if the equation (A-λ I) x = 0 has a 
nontrivial solution. Form 

6 -3 1 5 0 0 1 -3 1
-5 3 0 5 - 0 5 0 3 -5 5

2 2 6 0 0 5 2 2 1
A I

     
     = =     
          

 

and row reduce the augmented matrix: 

2 1

3 1

3 2

1 -3 1 0
3 -5 5 0
2 2 1 0

1 -3 1 0
~ 0 4 2 0 3

2 2 1 0

1 -3 1 0
~ 0 4 2 0 2

0 8 -1 0

1 -3 1 0
~ 0 4 2 0 2

0 0 -5 0

R R

R R

R R

 
 
 
  
 
  − 
  
 
  − 
  
 
  − 
  

 

At this point it is clear that the homogeneous system has no free variables. Thus A – 5I is 
an invertible matrix, which means that 5 is not an eigenvalue of A. 
 
(2). If x is an eigenvector for A corresponding to λ , then Ax = λ x and so  

2( )2A x A x Ax x= = =λ λ λ  
Again 2 2 3( ) ( ) .3 2A x A A x A x Ax x= = = =λ λ λ  The general pattern, ,kA x x= kλ  is 
proved by induction. 
 
 
Exercises: 
 

1. Is λ 2=  an eigenvalue of 
3 2
3 8
 
 
 

? 
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2. Is 1 2
1

 − +
 
 

 an eigenvector of 
2 1
1 4
 
 
 

? If so, find the eigenvalue. 

 

3. Is 
4
3

1

 
 − 
  

 an eigenvector of 
3 7 9
4 5 1

2 4 4

 
 − − 
  

? If so, find the eigenvalue. 

 

4. Is 
1
2

1

 
 − 
  

 an eigenvector of 
3 6 7
3 3 7
5 6 5

 
 
 
  

? If so, find the eigenvalue. 

 

5. Is λ 4=  an eigenvalue of 
3 0 1
2 3 1
3 4 5

− 
 
 
 − 

? If so, find one corresponding eigenvector. 

 

6. Is λ 3=  an eigenvalue of 
1 2 2
3 2 1
0 1 1

 
 − 
  

? If so, find one corresponding eigenvector. 

 
In exercises 7 to 12, find a basis for the eigenspace corresponding to each listed 
eigenvalue. 
 

7. 
4 2

, λ 10
3 9

A
− 

= = − 
   8. 

7 4
, λ 1 5

3 1
A . 
= = − − 

 

 

9. 
4 0 1
2 1 0 , λ =1,2,3
2 0 1

A
 
 = − 
 − 

  10. 
1 0 1

0 , λ = 2
1

A
− 

 = 1 −3 − 
 4 −13 

 

 

11. 
4 2 3
1 1 3 , λ = 3

2 4 9
A

 
 = − − 
  

  12. 

3 0 2 0
1 3 1 0

, λ = 4
0 1 1 0
0 0 0 4

A

 
 
 =
 
 
 

 

 
Find the eigenvalues of the matrices in Exercises 13 and 14. 
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13. 
0 0 0
0 2 5
0 0 1

 
 
 
 − 

    14. 
4 0 0
0 0 0
1 0 3

 
 
 
 − 

 

 

15. For 
1 2 3
1 2 3 ,
1 2 3

A
 
 =  
  

 find one eigenvalue, with no calculation. Justify your answer. 

 
16. Without calculation, find one eigenvalue and two linearly independent vectors of 

5 5 5
5 5 5
5 5 5

A
 
 =  
  

. Justify your answer. 
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Lecture 15 

 
The Characteristic Equation 

 
 
The Characteristic equation contains useful information about the eigenvalues of a square 
matrix A. It is defined as 
                                                 det( ) 0,A Iλ− =   
Where λ is the eigenvalue and I is the identity matrix. We will solve the Characteristic 
equation (also called the characteristic polynomial) to work out the eigenvalues of the 
given square matrix A. 
 
 

Example 1:   Find the eigenvalues of 
2 3
3 -6

A  
=  
 

. 

Solution: In order to find the eigenvalues of the given matrix, we must solve the matrix 
equation  

( - ) 0A I x =λ  
for the scalar λ  such that it has a nontrivial solution (since the matrix is non singular). 
By the Invertible Matrix Theorem, this problem is equivalent to finding all λ  such that 
the matrix -A Iλ  is not invertible, where 

2 3 0 2 - 3
- - .

3 -6 0 3 -6 -
λ λ

λ
λ λ

     
= =     
     

A I  

 
By definition, this matrix -λA I   fails to be invertible precisely when its determinant is 
zero. Thus, the eigenvalues of A are the solutions of the equation 

2 - 3
det( - ) det 0.

3 -6 -
λ

λ
λ

 
= = 

 
A I  

Recall that det - 
= 

 

a b
ad bc

c d
 

So  det( - ) (2 - )(-6 - ) - (3)(3)A I =λ λ λ  
2-12 6 - 2 -9= + +λ λ λ  

2 4 - 21= +λ λ  
                           2 4 - 21 0,+ =λ λ   
                          ( -3)( 7) 0,+ =λ λ  
 so the eigenvalues of A are 3 and  –7. 
 

Example 2:   Compute det A for 
1 5 0
2 4 -1
0 -2 0

 
 =  
  

A  
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Solution: 
     Firstly, we will reduce the given matrix in echelon form by applying elementary row 
operations 

                              

2 1

2 3

3 2

2
1 5 0
0 -6 -1 ,
0 -2 0

1 5 0
0 -2 0 ,
0 -6 -1

3
1 5 0
0 -2 0 ,
0 0 -1

by R R

A

by R R

by R R

−

 
 =  
  
↔

 
 
 
  
−

 
 
 
  





 

which is an upper triangular matrix. Therefore,  

                                    
det (1)( 2)( 1)

2.
A = − −
=

 

  
Theorem 1: Properties of Determinants 
Let A and B be two matrices of order n then 
 
(a) A is invertible if and only if det 0.A ≠  
(b) det (det )(det ).AB A B=  
(c) det det .TA A=  
(d) If A is triangular, then det A is the product of the entries on the main diagonal of A. 
(e) A row replacement operation on A does not change the determinant.  
(f) A row interchange changes the sign of the determinant. 
(g) A row scaling also scales the determinant by the same scalar factor. 
 
Note: These Properties will be helpful in using the characteristic equation to find 
eigenvalues of a matrix A. 
 
 
Example 3: (a) Find the eigenvalues and corresponding eigenvectors of the matrix 

1 3
4 2

A  
=  
 

 

(b) Graph the eigenspaces of A in an xy-coordinate system. 
 
Solution: (a) The eigenvalues will be worked out by solving the characteristic equation 
of A. Since 
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1 0 1 3 1 3

.
0 1 4 2 4 2

- -
- -

- -
λ

λ λ
λ

     
= =     

     
I A  

The characteristic equation det( - )I A = 0λ  becomes 
1 3

4 2
- -

0.
- -
λ

λ
=  

Expanding and simplifying the determinant, it yields 
2 - 3 -10 0,λ λ =  

 or 
 ( )( )2 - 5 0.λ λ+ =                                                   (1) 

Thus, the eigenvalues of A are 2λ = −  and 5λ = . 
 
Now, to work out the eigenspaces corresponding to these eigenvalues, we will solve the 
system 

1 3 0
4 2 0

     
=     

     

- - x
- - y
λ

λ
       (2) 

for 2λ = −  and 5λ = . Here are the computations for the two cases. 
 
 
(i) Case λ = -2   
                     In this case Eq. (2) becomes  

                                       
3 3 0

,
4 4 0

x
y

− −     
=     − −     

 

which can be written as  

                                      
3 3 0,
4 4 0 .

x y
x y x y

− − =
− − = ⇒ = −

    

In parametric form,  
              x = – t, y = t .      (3) 

Thus, the eigenvectors corresponding to 2λ = −  are the nonzero vectors of the form 
1

.
1

x -t -
t

y t
     

= = =     
     

x       (4) 

It can be verified as      

                      
1 3 2

2 2
4 2 2

x       
= = =       

       

-t t -t
- -

t - t t
 

Thus, 
                               Ax xλ=  
(ii) Case λ = 5  
 In this case Eq. (2) becomes  

                             
4 3 0

,
4 3 0

- x
- y
     

=     
     

 

which can be written as  
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4 3 0

34 3 0 .
4

x y

x y x y

− =

− + = ⇒ =
    

In parametric form,  

              3 , .
4

x t y t= =       (5) 

Thus, the eigenvectors corresponding to 5λ =  are the nonzero vectors of the form 
3 3
4 4 .

1
x t

t
y t

    
= = =    
     

x        (6) 

It can be verified as  

             
3 15 3
4 4 41 3

5 5
4 2 5

t t t
t t t

      
= = = =      
       

Ax x. 

 
(b) The eigenspaces corresponding to 2λ = −  and 5λ =  can be sketched from the 
parametric equations (3) and (5) as shown in figure 1(a).  
 
 
 
 
 
 

            y 
                                                       ( 2λ = − )              ( 5λ = ) 
                                                           y = –x        4

3=y x   
 
 
  

                                                                    x 
 
 
 

 
 

           Figure 1(a) 
 

  
It can also be drawn using the vector equations (4) and (6) as shown in Figure 1(b). When 
an eigenvector x in the eigenspace for 5λ =  is multiplied by A, the resulting vector has 
the same direction as x but the length is increased by a factor of 5 and when an 
eigenvector x in the eigenspace for 2λ = −  is multiplied by A, the resulting vector is 
oppositely directed to x and the length is increased by a factor of 2. In both cases, 
multiplying an eigenvector by A produces a vector in the same eigenspace. 
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            y 
                                                       ( 2λ = − )              ( 5λ = ) 
                       5x 

 
 

                                                                             x 
                                                                     x                                  x    

 
                                  –2x  

 
 

 
Figure 1(b) 

 
Eigenvalues of an n n×  matrix: 
                                                                 Eigen values of an n n×  matrix can be found in 
the similar fashion. However, for the higher values of n, it is more convenient to work 
them out using various available mathematical software. Here is an example for a 3 3×  
matrix. 
 

Example 4: Find the eigen values of the matrix 
0 -1 0
0 0 1
-4 -17 8

A
 
 =  
  

 

Solution: 

3 2

0 0 0 1 0
det( - ) det 0 0 0 0 1

0 0 4 17 8

1 0
0 -1
4 17 -8

- -8 17 4,

λ
λ λ

λ

λ
λ

λ

λ λ λ

−   
   = −   
   − −   

=

= +

I A

   (7) 

which yields the characteristic equation 
                     3 2- -+ =8 17 4 0λ λ λ                                                     (8) 

  
To solve this equation, firstly, we will look for integer solutions. This can be done by 
using the fact that if a polynomial equation has integer coefficients, then its integer 
solutions, if any, must be divisors of the constant term of the given polynomial. Thus, the 
only possible integer solutions of Eq.(8) are the divisors of –4, namely 1, 2,± ±  and 4± . 
Substituting these values successively into Eq. (8) yields that λ =4 is an integer solution. 
This implies that λ – 4 is a factor of Eq.(7), Thus, dividing the polynomial by λ – 4 and 
rewriting Eq.(8), we get 
                                      2( - )( - )+ =4 4 1 0λ λ λ . 
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Now, the remaining solutions of the characteristic equation satisfy the quadratic equation 
2 - 4 1 0.λ λ + =  

 Solving the above equation by the quadratic formula, we get the eigenvalues of A as  
4, 2 3, 2 3λ λ λ= = + = −  

Example 5   Find the characteristic equation of 

5 -2 6 -1
0 3 -8 0
0 0 5 4
0 0 0 1

 
 
 =
 
 
 

A  

 
Solution: Clearly, the given matrix is an upper triangular matrix. Forming -A Iλ , we get 

5 - -2 6 -1
0 3- -8 0

det( - ) det
0 0 5 - 4
0 0 0 1-

A I

 
 
 =
 
 
 

λ
λ

λ
λ

λ

 

Now using the fact that determinant of a triangular matrix is equal to product of its 
diagonal elements, the characteristic equation becomes  
                                          2(5 - ) (3- )(1- ) 0.λ λ λ =  
Expanding the product, we can also write it as 
                             4 3 2-14 68 -130 75 0.λ λ λ λ+ + =  
Here, the eigenvalue 5 is said to have multiplicity 2 because (λ - 5) occurs two times as a 
factor of the characteristic polynomial. In general, the (algebraic) multiplicity of an 
eigenvalue λ  is its multiplicity as a root of the characteristic equation. 
 
Note: 
From the above mentioned examples, it can be easily observed that if A is an n n× matrix, 
then det (A – λ I) is a polynomial of degree n called the characteristic polynomial of A. 
 
 
 
 
Example 6   The characteristic polynomial of a 6 6×  matrix is 6 5 4- 4 -12λ λ λ . Find the 
eigenvalues and their multiplicities. 
Solution: 
                  In order to find the eigenvalues, we will factorize the polynomial as 

6 5 4

4 2

4

- 4 -12
( - 4 -12)
( - 6)( 2)

λ λ λ

λ λ λ

λ λ λ

=

= +

 

The eigenvalues are 0 (multiplicity 4), 6 (multiplicity 1) and – 2 (multiplicity 1).We 
could also list the eigenvalues in Example 6 as 0, 0, 0, 0, 6 and –2, so that the eigenvalues 
are repeated according to their multiplicities 
 
Activity: 
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               Work out the eigenvalues and eigenvectors for the following square matrix. 

                                          
5 8 16
4 1 8 .
4 4 11

A
 
 =  
 − − − 

 

Similarity: 
                      Let A and B be two n x n matrices, A is said to be similar to B if there exist 
an invertible matrix P such that 
                                                  P -1AP = B, 
 or equivalently,  
                                                    A = PBP -1. 
Replacing Q by P -1, we have  
                                                 Q -1BQ = A. 
 So B is also similar to A. Thus, we can say that A and B are similar. 
  
Similarity transformation:  
                                              The act of changing A into P -1AP is called a similarity 
transformation.   
 
The following theorem illustrates use of the characteristic polynomial and it provides the 
foundation for several iterative methods that approximate eigenvalues. 
 
Theorem 2: 
                     If n x n matrices A and B are similar, then they have the same 
characteristic polynomial and hence the same eigenvalues (with the same multiplicities). 
  
Proof:  If B = P -1AP, then 

-1 -1 -1 -1 -1- - - ( - ) ( - )B I P AP I P AP P P P AP P P A I Pλ λ λ λ λ= = = =  
Using the multiplicative property (b) of Theorem 1, we compute 

-1det( - ) det ( - )B I P A I Pλ λ =    

                   -1det( ).det( - ).det( )P A I Pλ=     (A) 
Since 
                 det (P -1). det(P) = det(P -1P)  
                                            = det I  
                                            = 1, 
 Eq. (A) implies that            
                               det( - ) det( - ).B I A Iλ λ=  
Hence, both the matrices have the same characteristic polynomials and therefore, same 
eigenvalues. 
 
Note: It must be clear that Similarity and row equivalence are two different concepts. ( If 
A is row equivalent to B, then B = EA for some invertible matrix E.) Row operations on 
a matrix usually change its eigenvalues. 
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Application to Dynamical Systems: 
                                             Dynamical system is the one which evolves with the passage 
of time. Eigenvalues and eigenvectors play a vital role in the evaluation of a dynamical 
system. Let’s consider an example of a dynamical system. 
 

Example 7:   Let 
.95 .03

.
.05 .97

A  
=  
 

 Analyze the long term behavior of the dynamical 

system defined by xk+1 = Axk (k = 0, 1, 2, …), with 
0.6
0.4
 

=  
 

0x . 

Solution:   The first step is to find the eigenvalues of A and a basis for each eigenspace.  
The characteristic equation for A is 
                         0 det( )A Iλ= −  

0.95 - 0.03
0 det (.95 - )(.97 - ) - (.03)(.05)

0.05 0.97 -
λ

λ λ
λ

 
= = 

 
 

2 -1.92 .92= +λ λ  
By the quadratic formula  

21.92 (1.92) - 4(.92) 1.92 .0064
2 2

± ±
= =λ 1.92 .08 1 or .92

2
±

= =  

Firstly, the eigenvectors will be found as given below. 
,

( ) 0,
( ) 0.

Ax x
Ax x
A I x

λ
λ
λ

=
− =
− =

 

For 1λ =  
 

1

2

1

2

0.95 0.03 1 0
0,

0.05 0.97 0 1

0.05 0.03
0,

0.05 0.03

x
x

x
x

      
− =      

      
−   

=  −  

 

which can be written as 
1 2

1 2 1 2 1 2

0.05 0.03 0
0.03 30.05 0.03 0 .
0.05 5

x x

x x x x or x x

− + =

− = ⇒ = =
 

In parametric form, it becomes 

1 2
3 .
5

x t and x t= =  

 
For 0.92λ =  

__________________________________________________________________________________                                                                      
                                                    @Virtual University Of Pakistan                                                     161 



15-The Characteristic Equation                               VU 
 

1

2

1

2

0.95 0.03 0.92 0
0,

0.05 0.97 0 0.92

0.03 0.03
0.

0.05 0.05

x
x

x
x

      
− =      

      
  

=  
  

 

It can be written as 
1 2

1 2 1 2

0.03 0.03 0
0.05 0.05 0

x x
x x x x
+ =
+ = ⇒ = −

 

In parametric form, it becomes 
1 2x t and x t= = −  

 
Thus, the eigenvectors corresponding to λ = 1 and λ  = .92 are multiples of 

3 1
and

5 -1
   

= =   
   

1 2v v  respectively. 

The next step is to write the given x0 in terms of v1 and v2. This can be done because 
{v1, v2} is obviously a basis for R2. So there exists weights c1 and c2 such that 

1
1 2

2

[ ]0 1 2 1 2x v v v v
 

= + =  
 

c
c c

c
     (1) 

In fact,  
1

1 1
0

2

3 1 .60
[ ]

5 -1 .401 2v v
−

−     
= =     

    

c
x

c
 

Here,  
13 1 3 1 1 11 1

3 15 1 5 1 5 38
5 1

Adj
− − −     
= = −     − − −     

−

 

Therefore, 
 

           1

2

-1 -1 .60 .1251
-5 3 .40 .225-8

c
c
       

= =       
      

     (2) 

 
Because v1 and v2 in Eq.(1) are eigenvectors of A, with Av1 = v1 and Av2 = (.92) v2, xk  
can be computed as    

x1  = Ax0 = c1Av1 + c2Av2 (Using linearity of x Ax→ ) 
      = c1v1 + c2 (.92)v2  (v1 and v2 are eigenvectors.) 
x2  = Ax1 = c1Av1 + c2 (.92)Av2 = c1v1 + c2 (.92)2 v2. 

Continuing in the same way, we get the general equation as  
                         xk = c1v1 + c2(.92)kv2 (k = 0, 1, 2, …). 
Using c1 and c2 from Eq.(2), 

3 1
.125 .225(.92) ( 0,1,2,...)

5 -1kx    
= + =   

   
k k    (3) 

This explicit formula for xk gives the solution of the difference equation xk+1 = Axk.  
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As k →∞ , (.92)k tends to zero and xk tends to 
.375

.125 .
.625
 

= 
 

1v  

 
 

Example 8:   Find the characteristic equation and eigenvalues of 
1 -4

.
4 2

A  
=  
 

 

Solution:   The characteristic equation is 
1- -4

0 det( - ) det
4 2 -

A I  
= =  

 

λ
λ

λ
 

2

(1- )(2 - ) - (-4)(4),
-3 18,
λ λ

λ λ

=

= +
 

which is a quadratic equation whose roots are given as 
 

23 (-3) - 4(18)
2

3 -63
2

λ
±

=

±
=

 

Thus, we see that the characteristic equation has no real roots, so A has no real 
eigenvalues. A is acting on the real vector space R2 and there is no non-zero vector v in 
R2 such that Av = λ v for some scalarλ . 
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Exercises: 
 
Find the characteristic polynomial and the eigenvalues of matrices in exercises 1 to 12. 
 

1. 
3 2
1 1

− 
 − 

     2. 
5 3
4 3

− 
 − 

 

 

3. 
2 1
1 4

 
 − 

     4. 
3 4
4 8

− 
 
 

 

 

5. 
5 3
4 4

 
 − 

     6. 
7 2
2 3

− 
 
 

 

 

7. 
1 0 1
2 3 1
0 6 0

− 
 − 
  

    8. 
0 3 1
3 0 2
1 2 0

 
 
 
  

 

 

9. 
4 0 0
5 3 2
2 0 2

 
 
 
 − 

    10. 
1 0 1
3 4 1

0 0 2

− 
 − 
  

 

 

11. 
6 2 0
2 9 0

5 8 3

− 
 − 
  

    12. 
5 2 3
0 1 0
6 7 2

− 
 
 
 − 

 

 
For the matrices in exercises 13 to 15, list the eigenvalues, repeated according to their 
multiplicities. 
 

13. 

4 7 0 2
0 3 4 6
0 0 3 8
0 0 0 1

− 
 − 
 −
 
 

   14. 

5 0 0 0
8 4 0 0
0 7 1 0
1 5 2 1

 
 − 
 
 − 
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15. 

3 0 0 0 0
5 1 0 0 0

3 8 0 0 0
0 7 2 1 0
4 1 9 2 3

 
 − 
 
 − 
 − − 

 

 
16. It can be shown that the algebraic multiplicity of an eigenvalue λ  is always greater 
than or equal to the dimension of the eigenspace corresponding to λ . Find h in the matrix 
A below such that the eigenspace for λ =5 is two-dimensional: 
 

  

5 2 6 1
0 3 0
0 0 5 4
0 0 0 1

A

− − 
 
 =
 
 
 

h
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Lecture 16 
 

Diagonalization 
 
 Diagonalization is a process of transforming a vector A to the form A = PDP-1 for some 
invertible matrix P and a diagonal matrix D. In this lecture, the factorization enables us to 
compute Ak quickly for large values of k which is a fundamental idea in several 
applications of linear algebra. Later, the factorization will be used to analyze (and 
decouple) dynamical systems. 
The “D” in the factorization stands for diagonal. Powers of such a D are trivial to 
compute. 
 
 

Example 1: If 
2

2

5 0 5 0 5 0 5 0
, then

0 3 0 3 0 3 0 3
      

= = =       
       

2D D  and   

2 3

2 3

5 0 5 0 5 0
0 3 0 3 0 3

    
= =    
     

3D  

In general, 
5 0

for 1
0 3

k

k k
 

= ≥ 
 

kD  

The next example shows that if A = PDP-1 for some invertible P and diagonal D, then it 
is quite easy to compute Ak. 
 

Example 2:   Let 
7 2

.
- 4 1
 

=  
 

A  Find a formula for Ak, given that A = PDP-1, where 

1 1 5 0
and

-1 -2 0 3
   

= =   
   

P D  

Solution:   The standard formula for the inverse of a 2 2×  matrix yields 
2 1
-1 -1
 

=  
 

-1P  

By associative property of matrix multiplication, 
1

1

( )( ) ( ) PDIDP−= = = =


2 -1 -1 -1 -1 -1A PDP PDP PD P P DP PDDP  

where I is the identity matrix. 
2

2

1 1 2 15 0
-1 -2 -1 -10 3

    
= =     

    
2 -1PD P  

Again,  
1

( ) ( )= = = =3 -1 2 -1 2 -1 2 -1 3 -1A PDP A PD P P D P PDD P PD P  

Thus, in general, for 1,k ≥  
1 1 2 15 0

,
-1 -2 -1 -10 3

k

k

    
= =     

    
k k -1A PD P
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2 15 3

,
-1 -15 2.3

k k

k k

   
=    − −   

 

2.5 -3 5 -3
.

2.3 - 2.5 2.3 -5

k k k k

k k k k

 
=  
 

 

Activity: 
Work out 4C , given that 1C PDP−=  where  

                                  
1 0 2 0

,
3 1 0 1

P D   
= =   
   

  

 
Remarks: 
A square matrix A is said to be diagonalizable if A is similar to a diagonal matrix, that is, 
if A = PDP-1 for some invertible matrix P and some diagonal matrix D. The next theorem 
gives a characterization of diagonalizable matrices and tells how to construct a suitable 
factorization. 
 
Theorem 1: The Diagonalization Theorem 
An n x n matrix A is diagonalizable if and only if A has n linearly independent 
eigenvectors. 
 
In fact, A = PDP-1, with D a diagonal matrix, if and only if the columns of P are n 
linearly independent eigenvectors of A. In this case, the diagonal entries of D are 
eigenvalues of A that correspond, respectively, to the eigenvectors in P. 
 
In other words, A is diagonalizable if and only if there are enough eigenvectors to form a 
basis of Rn. We call such a basis an eigenvector basis. 
 
Proof:  First, observe that if P is any n n×  matrix with columns v1, … , vn and if D is any 
diagonal matrix with diagonal entries 1,...., nλ λ  then 

[ ] [ ]... ... ,= =1 2 n 1 2 nAP A v v v Av Av Av              (1) 

while  [ ]
1

2
1 2

0 0
0 0

0 0

n

n

λ
λ

λ λ λ

λ

 
 
 = =
 
 
 

1 2 nPD P v v v






  



         (2) 

Suppose now that A is diagonalizable and A = PDP-1. Then right-multiplying this 
relation by P, we have AP = PD. In this case, (1) and (2) imply that 

[ ] [ ]1 2 nλ λ λ=1 2 n 1 2 nAv Av Av v v v                  (3) 
Equating columns, we find that 

1 2, , , nλ λ λ= = =1 1 2 2 n nAv v Av v Av v                                (4) 
 
Since P is invertible, its columns v1,…, vn must be linearly independent. Also, since these 
columns are nonzero, Eq.(4) shows that 1,....., nλ λ  are eigenvalues and v1, …, vn are 
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corresponding eigenvectors. This argument proves the “only if” parts of the first and 
second statements along with the third statement, of the theorem. 
 
Finally, given any n eigenvectors v1, …, vn use them to construct the columns of P and 
use corresponding eigenvalues 1,....., nλ λ  to construct D. By Eqs. (1) – (3). AP =PD. This 
is true without any condition on the eigenvectors. If, in fact, the eigenvectors are linearly 
independent, then P is invertible (by the Invertible Matrix Theorem), and AP = PD 
implies that A = PDP-1. 
 
Diagonalizing Matrices 

 Example 3: Diagonalize the following matrix, if possible 
1 3 3
-3 -5 -3
3 3 1

 
 =  
  

A  

Solution: To diagonalize the given matrix, we need to find an invertible matrix P and a 
diagonal matrix D such that A = PDP-1 which can be done in following four steps. 
 
Step 1: Find the eigenvalues of A.  
  The characteristic equation becomes  

3 20 det( ) 3 4A Iλ λ λ= − = − − +  
  2( 1)( 2)λ λ= − − +  
The eigenvalues are λ = 1 and λ = -2 (multiplicity 2) 
Step 2:  Find three linearly independent eigenvectors of A. Since A is a 3 3×  matrix and 
we have obtained three eigen values, we need three eigen vectors. This is the critical step. 
If it fails, then above Theorem says that A cannot be diagonalized. Now we will produce 
basis for these eigen values. 
  
Basis vector for 1:λ =  

1

2

3

( ) 0
0 3 3 0
3 6 3 0 .

3 3 0 0

A I x
x
x
x

λ− =

     
     − − − =     
          

 

After applying few row operations on the matrix ( )A Iλ− , we get 

1

2

3

0 1 1 0
3 3 0 0 ,
0 0 0 0

x
x
x

     
     =     
          

 

which can be written as  
2 3

1 2

0
3 3 0
x x
x x
+ =
+ =

 

In parametric form, it becomes 
1 2 3, ,x t x t x t= = − =  
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Thus, the basis vector for 1λ =  is 1

1
1

1
v

 
 = − 
  

 

 
 
Basis vector for -2λ =  

1

2

3

( ) 0
3 3 3 0
3 3 3 0 ,

3 3 3 0

A I x
x
x
x

λ− =

     
     − − − =     
          

 

which can be written as   

                        
1 2 3

1 2 3

1 2 3

3 3 3 0
3 3 3 0

3 3 3 0

x x x
x x x

x x x

+ + =
− − − =

+ + =

 

In parametric form, it becomes 
1 2 3, ,x s t x s x t= − − = =    

Now, 
1

2

3

2 3

0 ,
0

1 1
1 0 ,
0 1

1 1
1 0 .
0 1

x s t s t
x s s
x t t

s t

x x

− − − −       
       = = +       
              

− −   
   = +   
      
− −   
   = +   
      

 

Thus, the basis for 2λ = −  is 2

1
1
0

v
− 
 =  
  

 and 3

1
0
1

v
− 
 =  
  

 

 
We can check that {v1, v2, v3} is a linearly independent set. 
Step 3: Check that {v1, v2, v3} is a linearly independent set. 
Construct P from the vectors in step 2. The order of the vectors is not important. Using 

the order chosen in step 2, form 
1 -1 -1

[ ] -1 1 0
1 0 1

1 2 3P v v v
 
 = =  
  
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Step 4: Form D from the corresponding eigen values. For this purpose, the order of the 
eigen values must match the order chosen for the columns of P. Use the eigen value λ = -
2 twice, once for each of the eigenvectors corresponding to λ = -2: 
 

1 0 0
0 -2 0
0 0 -2

D
 
 =  
  

 

Now, we need to check do P and D really work. To avoid computing P -1, simply verify 
that AP = PD. This is equivalent to A = PDP -1 when P is invertible.We compute 
    

1 3 3 1 -1 -1 1 2 2
-3 -5 -3 -1 1 0 -1 -2 0
3 3 1 1 0 1 1 0 -2

1 -1 -1 1 0 0 1 2 2
-1 1 0 0 -2 0 -1 -2 0
1 0 1 0 0 -2 1 0 -2

AP

PD

     
     = =     
          
     
     = =     
          

 

 
Example 4:   Diagonalize the following matrix, if possible. 

2 4 3
-4 -6 -3
3 3 1

 
 =  
  

A  

Solution:   The characteristic equation of A turns out to be exactly the same as that in 
example 3 i.e., 

3 2

2

0 det( - )
2 4 3

4 6 3
3 3 1

- -3 4
-( -1)( 2)

λ
λ

λ
λ

λ λ

λ λ

=

−
= − − − −

−

= +

= +

A I

 

The eigen values are λ = 1 and λ = -2 (multiplicity 2). However, when we look for eigen 
vectors, we find that each eigen space is only one – dimensional. 

Basis for 
1

1: -1
1

1v
 
 = =  
  

λ  

Basis for 
-1

-2 : 1
0

2v
 
 = =  
  

λ  

__________________________________________________________________________________                                                                     
                                                           @Virtual University Of Pakistan                                               170 

 



16-Diagonalization                                                VU  
 

There are no other eigen values and every eigen vector of A is a multiple of either v1 or 
v2. Hence it is impossible to form a basis of R3 using eigenvectors of A. By above 
Theorem, A is not diagonalizable. 
 
Theorem 2:   An n x n matrix with n distinct eigenvalues is diagonalizable. 
 
The condition in Theorem 2 is sufficient but not necessary i.e., it is not necessary for an n 
x n matrix to have n distinct eigen values in order to be diagonalizable. Example 3 serves 
as a counter example of this case where the 3 x 3 matrix is diagonalizable even though it 
has only two distinct eigen values. 
 
 
 
Example 5:   Determine if the following matrix is diagonalizable. 

  
5 -8 1
0 0 7
0 0 -2

A
 
 =  
  

 

Solution : In the light of Theorem 2, the answer is quite obvious. Since the matrix is 
triangular, its eigen values are obviously 5, 0, and   –2.Since A is a 3 x 3 matrix with 
three distinct eigen values, A is diagonalizable. 
 
Matrices Whose Eigenvalues Are Not Distinct:    
If an n x n matrix A has n distinct eigen values, with corresponding eigen vectors v1 ,..., v 
n and if P = [v1 … vn] , then P is automatically invertible because its columns are linearly 
independent , by Theorem 2 of lecture 28. When A is diagonalizable but has fewer than n 
distinct eigen values, it is still possible to build P in a way that makes P automatically 
invertible, as shown in the next theorem. 
 
Theorem 3:   Let A be an n x n matrix whose distinct eigen values are 1λ λ p, ..., . 

a. For 1≤ k≤ p, the dimension of the eigen space for λk  is less than or equal to the 
multiplicity of the eigen value λk  

b. The matrix A is diagonalizable if and only if the sum of the dimensions of the 
distinct eigen spaces is equal to n, and this happens if and only if the dimension of 
the eigen space for each of λk equals the multiplicity of λk . 

c. If A is diagonalizable and Bk is basis for the eigen space corresponding to λk  for 
each k, then the total collection of vectors in the sets B1, ..., Bp form an 
eigenvector basis for Rn . 

 
Example 6:   Diagonalize the following matrix, if possible. 
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5 0 0 0
0 5 0 0
1 4 -3 0
-1 -2 0 -3

A

 
 
 =
 
 
 

 

Solution:   Since A is triangular matrix, the eigenvalues are 5 and –3, each with 
multiplicity 2. Using the method of lecture 28, we find a basis for each eigen space. 

  Basis for 1 2

-8 -16
4 4

λ 5 : and
1 0
0 1

v v

   
   
   = = =
   
   
   

 

  Basis for 3 4

0 0
0 0

λ -3 : and
1 0
0 1

v v

   
   
   = = =
   
   
   

 

The set {v1,…,v4}is linearly independent, by Theorem 3. So the matrix P =[v1…v4] is 
invertible, and A=PDP -1 , where 
 
 
 
 

  

-8 -16 0 0 5 0 0 0
4 4 0 0 0 5 0 0

and
1 0 1 0 0 0 -3 0
0 1 0 1 0 0 0 -3

P D

   
   
   = =
   
   
   

  

 
Example 7: 

(1) Compute A8 where 
4 -3
2 -1

A  
=  
 

 

(2) Let 1 2

-3 12 3 2
, and

-2 7 1 1
A v , v     
= = =     
     

.  Suppose you are told that v1 and 

v2 are eigenvectors of A. Use this information to diagonalize A. 
(3) Let A be a 4 x 4 matrix with eigenvalues 5, 3, and -2, and suppose that you 

know the eigenspace for λ =3 is two-dimensional. Do you have enough 
information to determine if A is diagonalizable? 

Solution: 
Here, det (A- λ I)= λ 2  -3 λ+2=( λ -2)( λ -1).  
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The eigen values are 2 and 1, and corresponding eigenvectors are 

1 2

3 1
, and

2 1
v v   
= =   
   

. Next, form 

13 1 2 0 1 -1
, and

2 1 0 1 -2 3
−     

= = =     
     

P ,D P  

Since A = PDP –1, A8 = PD8P
8

8

3 1 1 -12 0
2 1 -2 30 1

    
=     
    

 

   
3 1 256 0 1 -1
2 1 0 1 -2 3
     

=      
     

    

   
766 -765
510 -509
 

=  
 

 

(2)Here, 1 1

-3 12 3 3
1 ,

-2 7 1 1
Av .v     

= = =     
     

and 

   2 2

-3 12 2 6
3

-2 7 1 3
Av .v     

= = =     
     

 

Clearly, v1 and v2 are eigenvectors for the eigenvalues 1 and 3 , respectively. Thus  

A = PDP -1, where 
3 2 1 0

and
1 1 0 3

P D   
= =   
   

 

(3) Yes A is diagonalizable. There is a basis {v1, v2 } for the eigen space corresponding 
to λ=3. Moreover, there will be at least one eigenvector for λ =5 and one for λ =-2 say 
v3 and v4. Then {v1, …., v4 }  is linearly independent and A is diagonalizable , by 
Theorem 3. There can be no additional eigen vectors that are linearly independent from  
v1 to v4 because the vectors are all in R4 .Hence the eigenspaces for λ =5 and λ =-2 are 
both one–dimensional. 
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Exercise: 
 
In exercises 1 and 2, let A = PDP-1 and compute A4. 
 

1. 
5 7 2 0

,
2 3 0 1

P D =   
=    
   

   2. 
2 3 1 0

,
3 5 0 1/2

P D =
−   

=    −   
 

 
In exercises 3 and 4, use the factorization A = PDP-1 to compute Ak, where k represents 
an arbitrary positive integer. 
 

3. 
0 1 0 0 1 0

3( ) 3 1 0 3 1
       

=       − −       

a a
a b b b

 

 

4. 
2 12 3 4 2 0 1 4
1 5 1 1 0 1 1 3

− −       
=       − −       

 

 
In exercises 5 and 6, the matrix A is factored in the form PDP-1. Use the Diagonalization 
Theorem to find the eigenvalues of A and a basis for each eigenspace. 
 

5. 
2 2 1 1 1 2 5 0 0 1 4 1 2 1 4
1 3 1 1 0 1 0 1 0 1 4 1 2 3 4
1 2 2 1 1 0 0 0 1 1 4 1 2 1 4

/ / /
/ / /
/ / /

       
       = − −       
       − −       

 

 

6. 
4 0 2 2 0 1 5 0 0 0 0 1
2 5 4 0 1 2 0 5 0 2 1 4
0 0 5 1 0 0 0 0 4 1 0 2

− − −       
       =       
       − −       

 

 
Diagonalize the matrices in exercises 7 to 18, if possible. 
 

7. 
3 1
1 5

− 
 
 

     8. 
2 3
4 1
 
 
 

 

 

9. 
1 4 2
3 4 0
3 1 3

− − 
 − 
 − 

    10. 
4 2 2
2 4 2
2 2 4

 
 
 
  
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11. 
2 2 1
1 3 1
1 2 2

− 
 − 
 − − 

    12. 
4 0 2
2 5 4
0 0 5

− 
 
 
  

 

 

13. 
7 4 16
2 5 8
2 2 5

 
 
 
 − − − 

    14. 
0 4 6
1 0 3

1 2 5

− − 
 − − 
  

 

 

15. 
4 0 0
1 4 0
0 0 5

 
 
 
  

    16. 
7 16 4

6 13 2
12 16 1

− − 
 − 
  

 

 

17. 

5 3 0 9
0 3 1 2
0 0 2 0
0 0 0 2

− 
 − 
 
 
 

   18. 

4 0 0 0
0 4 0 0
0 0 2 0
1 0 0 2

 
 
 
 
 
 
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                                             Lecture 17 
    
                                          Inner Product  
 
If u  and v  are vectors in nR  , then we regard u  and v as 1n× matrices. The transpose 

tu is a 1 n× matrix, and the matrix product tu v  is a 1 1× matrix which we write as a 
single real number (a scalar) without brackets. 
The number tu v  is called the inner product of u  and v .  And often is written as .u v  
This inner product is also referred to as a dot product.  

If 

1

2

.

.

.

n

u
u

u

u

 
 
 
 

=  
 
 
 
  

 and 

1

2

.

.

.

n

v
v

v

v

 
 
 
 

=  
 
 
 
  

 

 
Then the inner product of u  and v  is 

 
 

 
Example 1 

Compute .u v  and .v u  when
2 3
5 2
1 3

u and v
   
   = − =   
   − −   

. 

Solution  
 

2 3
5 2
1 3

u and v
   
   = − =   
   − −   

 

[ ]2 5 1tu = − −  

[ ]
3

. 2 5 1 2 2(3) ( 5)(2) ( 1)( 3)
3

6 10 3 1

tu v u v
 
 = = − − = + − + − − 
 − 

= − + = −

 

 
 

1

2

1 2 1 1 2 2

.
. . . ...

.

.

n n n

n

v
v

u u u u v u v u v

v

 
 
 
 

  = + + +  
 
 
 
  
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[ ]3 2 3tv = −  

[ ]
2

. 3 2 3 5 3(2) (2)( 5) ( 3)( 1)
1

6 10 3 1

tv u v u
 
 = = − − = + − + − − 
 − 

= − + = −

 

 
Theorem  
Let u , v  and w  be vectors in nR  , and let c  be a scalar. Then 

a. . .u v v u=  
b. ( ). . .u v w u w v w+ = +  
c. ( ). ( . ) .( )cu v c u v u cv= =  
d. . 0u u ≥   and . 0u u =  if and only if 0u =  
 

Observation 
 

1 1 2 2

1 1 2 2

( .... ).

( . ) ( . ) ... ( . )
p p

p p

c u c u c u w
c u w c u w c u w

+ +

= + +
 

 
Length or Norm 

The length or Norm of v  is the nonnegative scalar v  defined by  
2 2 2

1 1

2

. ...

.
nv v v v v v

v v v

= = + + +

=
 

 
Note:      For any scalar c ,     cv c v=  
 

Unit vector  
A vector whose length is 1 is called a unit vector. If we divide a non-zero vector 
v by its length v , we obtain a unit vector u  as 

vu
v

=  

 The length of u is       1 1u v
v

= =  

 
Definition  
The process of creating the unit vector u  from v  is sometimes called normalizing v , 
and we say that u  is in the same direction as v . In this case “ u ” is called the 
normalized vector.  
 
Example 2 
Let (1,2,2,0)v = in 4R . Find a unit vector u  in the same direction as v . 
Solution  
The length of v  is given by  
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2 2 2 2
1 2 3 4.v v v v v v v= = + + +  

So, 
2 2 2 21 2 2 0 1 4 4 0 9 3v = + + + = + + + = =  

The unit vector u  in the direction of v  is given as  
 

1
31

2
21 1 3
23

2
0 3

0

u v
v

 
 

   
   
   = = =
   
   
   

 
 

 

To check that 1u =  

2 2 2 21 2 2 1 4 4. ( ) ( ) ( ) (0) 0 1
3 3 3 9 9 9

u u u −
= = + + + = + + + =  

 
Example 3 

Let W be the subspace of 2R spanned by 2( ,1)
3

X = . Find a unit vector Z that is a basis 

for W. 
 
Solution   
 
 W consists of all multiples of x, as in Fig. 2(a). Any nonzero vector in W is a basis 
for W. To simplify the calculation, x is scaled to eliminate fractions. That is, multiply 
x by 3 to get 

2
3

y  
=  
 

 

Now compute 2 2 22 3 13, 13,y y= + = =  and normalize y to get 

2 2 131
313 3 13

z
  

= =   
    

 

 
 
 
 
 
See Fig. 2(b). Another unit vector is ( 2 13 , 3 13).− −  
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Figure 2   Normalizing a vector to produce a unit vector. 
 
 
Definition  
For u  and v  vectors in nR , the distance between u  and v , written as dist (u , v ), is the 
length of the vector u v− . That is  

  
 

Example 4 
Compute the distance between the vectors u = (7, 1) and v = (3, 2) 
 
Solution   

7 3 7 3 4
1 2 1 2 1

u v
−       

− = − = =       − −       
 

 
dist (u , v ) = 2 2(4) ( 1) 16 1 17u v− = + − = + =  
 
 
Law of Parallelogram of vectors  
 
The vectors, u , v and u v−  are shown in the fig. below. When the vector u v−  is 
added to v , the result isu . Notice that the parallelogram in the fig. below shows that 
the distance from u  to v  is the same as the distance of u v−  to o . 
 

( , )dist u v u v= −
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Example 5 
If 1 2 3( , , )u u u u=  and 1 2 3( , , )v v v v= , then  

2 2 2
1 1 2 2 3 3

( , ) ( ).( )

( ) ( ) ( )

dist u v u v u v u v

u v u v u v

= − = − −

= − + − + −
 

Definition  
Two vectors in u  and v  in nR  are orthogonal (to each other)   if . 0u v =  
 
Note  
The zero vector is orthogonal to every vector in nR    because 0 . 0t v = for all v  in nR . 
 
The Pythagorean Theorem  
 
Two vectors u  and v  are orthogonal if and only if   2 2 2u v u v+ = +  
 
Orthogonal Complements  
The set of all vectors z that are orthogonal to w in W is called the orthogonal 

complement of W and is denoted by w⊥  
 
Example 6  
   Let W be a plane through the origin in R3, and let L be the line through the origin 
and perpendicular to W. If z and w are nonzero, z is on L, and w is in W, then the line 
segment from 0 to z is perpendicular to the line segment from 0 to w; that is, z . w = 0. 
So each vector on L is orthogonal to every w in W. In fact, L consists of all vectors 
that are orthogonal to the w’s in W, and W consists of all vectors orthogonal to the z’s 
in L. That is, 

L W ⊥=  and W L⊥=  
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Remarks 
 
The following two facts aboutW ⊥ , with W a subspace of Rn, are needed later in the 
segment.  
(1) A vector x is in W ⊥  if and only if x is orthogonal to every vector in a set that 
spans W. 
(2) W ⊥ is a subspace of Rn.   
 
Theorem 3    
Let A be m x n matrix. Then the orthogonal complement of the row space of A is the 
null space of A, and the orthogonal complement of the column space of A is the null 
space of AT:  (Row ) Nul ,A A⊥ =  (Col ) NulA A⊥ = T  
Proof  
  The row-column rule for computing Ax shows that if x is in Nul A, then x is 
orthogonal to each row of A (with the rows treated as vectors in Rn). Since the rows of 
A span the row space, x is orthogonal to Row A. Conversely, if x is orthogonal to 
Row A, then x is certainly orthogonal to each row of A, and hence Ax = 0. This 
proves the first statement. The second statement follows from the first by replacing A 
with AT and using the fact that Col A = Row AT. 
 
Angles in R2 and R3  
  If u and v are nonzero vectors in either R2 or R3, then there is a nice connection 
between their inner product and the angle ϑ  between the two line segments from the 
origin to the points identified with u and v. The formula is 

cosu v u v⋅ = ϑ      (2) 
To verify this formula for vectors in R2, consider the triangle shown in Fig. 7, with 
sides of length , ,u v  and .u v−  By the law of cosines, 

2 2 2 2 cosu v u v u v− = + − ϑ  
which can be rearranged to produce 

2 2 2

2 2 2 2 2 2
1 2 1 2 1 1 2 2 1 1 2 2

1cos
2

1 ( ) ( )
2

u v u v u v

u v

 = + − − 

 = + + + − − − − = + = ⋅ u u v v u v u v u v u v

ϑ
 

                        (u1, u2) 
 
                                                u                                u v−  
                                                                             ϑ  
                                                                             v                                        (v1, v2)                                                             
 

Figure 7   The angle between two vectors. 
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Example 7 
Find the angle between the vectors    (1, 1,2), (2,1,0)u v= − =  
 
Solution   

. (1)(2) ( 1)(1) (2)(0) 2 1 0 1u v = + − + = − + =  
And  

2 2 2

2 2 2

(1) ( 1) (2) 1 1 4 6

(2) (1) (0) 4 1 5

u

v

= + − + = + + =

= + + = + =
 

 
Angle between the two vectors is given by 

cosϑ ⋅
=

u v
u v

 

Putting the values, we get  
 

 

Exercises  
 
Q.1 

Compute .u v  and .v u  when
1 3
5 1
3 5

u and v
−   

   = =   
      

 

Q.2 
Let (2,1,0,3)v = in 4R . Find a unit vector u  in the direction opposite to that of v . 
 
Q.3 

Let W be the subspace of 3R spanned by 1 3 5( , , )
2 2 2

X = . Find a unit vector Z that is a 

basis for W. 
 
Q.4 
Compute the distance between the vectors u = (1, 5, 7) and v = (2, 3, 5). 
 
Q.5 
Find the angle between the vectors    (2,1,3), (1,0, 2)u v= = . 
 

1

1 1cos
5 30

1cos
30

1cos 79.48
30

θ

θ

θ − °

= =

=

= =

6
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Lecture 18 
Orthogonal and Orthonormal sets 

 
Objectives 
 
The objectives of the lecture are to learn about: 

• Orthogonal Set. 
• Orthogonal Basis. 
• Unique representation of a vector as a linear combination of Basis vectors. 
• Orthogonal Projection. 
• Decomposition of a vector into sum of two vectors. 
• Orthonormal Set. 
• Orthonormal Basis. 
•  Some examples to verify the definitions and the statements of the theorems. 
 

Orthogonal Set 
 
Let { }1 2, ,..., pS u u u= be the set of non-zero vectors in ,nR is said to be an orthogonal set 
if all vectors in S  are mutually orthogonal. That is 
O S∉  and . , , 1, 2,..., .i ju u o i j i j p= ∀ ≠ =  
 
Example 
 
Show that { }1 2 3, ,S u u u=  is an orthogonal set. Where 

1 2

3 1
1 , 2
1 1

u u
−   

   = =   
      

 and 3

1
2
2 .
7
2

u

− 
 
 

= − 
 
 
 

 

Solution 
  
To show that S  is orthogonal, we show that each vector in S  is orthogonal to other. That 
is 

. , , 1, 2,3.i ju u o i j i j= ∀ ≠ =  
For 1, 2i j= =  

1 2

3 1
. 1 . 2

1 1
3 2 1 0

u u
−   

   =    
      

=− + + =

 

Which implies 1u  is orthogonal to 2.u  
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For 1, 3i j= =   

1 3

1
3 2

. 1 . 2
1 7

2
3 72

2 2
0.

u u

− 
  
  = −  
     
 

−
= − +

=

 

Which implies 1u  is orthogonal to 3.u  
For 2, 3i j= =   

2 3

1
1 2

. 2 . 2
1 7

2
1 74
2 2
0.

u u

− 
 − 
  = −  
     
 

= − +

=

 

Which implies 2u  is orthogonal to 3.u  

Thus { }1 2 3, ,S u u u=  is an orthogonal set. 
 
Theorem 
Suppose that { }1 2, ,..., pS u u u= is an orthogonal set of non-zero vectors in nR  and 

{ }1 2, ,..., .pW Span u u u=  Then S  is linearly independent set and a basis for .W  
 
Proof 
 
Suppose 

1 1 2 20 ... .p pc u c u c u= + + +  

Where 1 2, ..., pc c c  are scalars. 

1 1 1 1 2 2

1 1 1 1 2 2 1

1 1 1 2 1 2 1

1 1 1

.0 .( ... )

0 .( ) .( ) ... .( )

( . ) ( . ) ... ( . )

( . )

p p

p p

p p

u u c u c u c u
u c u u c u u c u
c u u c u u c u u
c u u

= + + +

= + + +

= + + +

=
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Since S  is orthogonal set, so, 1 2 1. ... . 0pu u u u+ + =  but 1 1. 0.u u >   

Therefore 1 0c = . Similarly, it can be shown that 2 3 ... 0pc c c= = = =  

Therefore by definition { }1 2, ,..., pS u u u=  is linearly independent set and by definition of 
basis is a basis for subspaceW .    
 
Example 
 
If { }1 2,S u u= is an orthogonal set of non-zero vector in 2R  . Show that S is linearly 
independent set. Where 

1

3
1

u  
=  
 

 and 2

1
.

3
u

− 
=  
 

 

 
Solution 
 
To show that { }1 2,S u u= is linearly independent set, we show that the following vector 
equation  

1 1 2 2 0.c u c u+ =   
has only the trivial solution. i.e. 1 2 0.c c= =  

1 1 2 2

1 2

1 2

1 2

1 2

1 2

0

3 1 0
1 3 0

3 0
3 0

3 0

3 0

c u c u

c c

c c

c c

c c

c c

+ =

−
+ =

−
+ =

− =

+ =

     
     
     

     
     

    
 

Solve them simultaneously, gives 
1 2 0.c c= =  

Therefore if S  is an orthogonal set then it is linearly independent. 
 
Orthogonal basis 
 
Let { }1 2, ,..., pS u u u=  be a basis for a subspace W  of ,nR  is also an orthogonal basis if S  
is an orthogonal set. 
 
Theorem  
If { }1 2, ,..., pS u u u= is an orthogonal basis for a subspace W  of nR . Then each y in W can 

be uniquely expressed as a linear combination of 1 2, ,..., .pu u u  That is 

1 1 2 2 ... .p py c u c u c u= + + +   
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Where 
.
.

j
j

j j

y u
c

u u
=  

 
Proof  
 
  

1 1 1 2 2 1

1 1 1 2 2 1 1

1 1 1 2 1 2 1

1 1 1

. ( ... ).

( ). ( ). ... ( ).

( . ) ( . ) ... ( . )

( . ).

p p

p p

p p

y u c u c u c u u
c u u c u u c u u

c u u c u u c u u
c u u

= + + +

= + + +

= + + +

=

 

Since S  is orthogonal set, so, 1 2 1. ... . 0pu u u u+ + =  but 1 1. 0.u u >  
Hence 

1
1

1 1

.
.

y uc
u u

=  and similarly 2
2

2 2

.. ,... .
. .

p
p

p p

y uy uc c
u u u u

= =  

 
Example 
 
The set { }1 2 3, ,S u u u=  as in first example is an orthogonal basis for 3R . Express y as a 
linear combination of the vectors in .S  Where 

[ ]6 1 8 Ty = −  
 
Solution 
 
We want to write 

1 1 2 2 3 3y c u c u c u= + +  
Where 1 2,c c  and 3c  are to be determined. 
By the above theorem 

1
1

1 1

.
.

y uc
u u

=  

6 3
1 . 1
8 1 11 1
3 3 11
1 . 1
1 1

   
   
   
   −   = = =
   
   
   
      
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2
2

2 2

.
.

6 1
1 . 2
8 1 12 2
1 1 6
2 . 2
1 1

y uc
u u

=

−   
   
   
   − −   = = = −
− −   

   
   
      

 

And 
3

3
3 3

.
.

1
6 2
1 . 2
8 7

332 2
1 1 33/ 2

2 2
2 . 2
7 7
2 2

y uc
u u

=

− 
  
   −  
  −    − = = = −

− −   
   
   
− −   
   
   
   

 

Hence 
1 2 32 2y u u u= − − . 

 
 
Example 
 
The set { }1 2 3, ,S u u u=  is an orthogonal basis for 3R . Write y as a linear combination of 
the vectors in .S  Where 

1 2

3 1 1
7 , 1 , 1
4 0 0

y u u
     
     = = − =     
          

 and  3

0
0
1

u
 
 =  
  

 

 
Solution 
 
We want to write 

1 1 2 2 3 3y c u c u c u= + +  
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Where 1 2,c c  and 3c  are to be determined. 
By the above theorem 

1
1

1 1

3 1
7 . 1
4 0. 3 7 0 2
1 1. 1 1 0
1 . 1
0 0

y uc
u u

   
   −   
    − +   = = = =−

+ +   
   − −   
      

 

2
2

2 2

3 1
7 . 1
4 0. 3 7 0 5
1 1. 1 1
1 . 1
0 0

y uc
u u

   
   
   
    + +   = = = =

+   
   
   
      

 

And 

3
3

3 3

3 0
7 . 0
4 1. 4 4
0 0. 1
0 . 0
1 1

y uc
u u

   
   
   
      = = = =
   
   
   
      

 

Hence 
1 2 32 5 4y u u u=− + + . 

 
Exercise 
 
The set { }1 2 3, ,S u u u=  is an orthogonal basis for 3R . Write y as a linear combination of 
the vectors in .S  where 

1 2

1
52 2
21 , 1 ,
5

3 0 1

y u u

 
 

     
     = = − =     
         − 

  

 and  3

8
3

16
3
8
3

u

 
 
 
 =  
 
 
  
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An Orthogonal Projection (Decomposition of a vector into the sum of two vectors 
 
Decomposition of a non- zero vector y nR∈  into the sum of two vectors in such a way, 
one is multiple of u nR∈  and the other orthogonal to u . That is 

y y z∧= +  

Where y uα∧ =  for some scalar α  and z  is orthogonal tou . 
 
 
                                                          

                                                           y∧−               z y y∧= −  
 u  
  
                                               y             
                                                                        y uα∧ =  
                               
                               z y y∧= −                    
                                                    
       
 
                                          y∧−   
 
 
 
 
 
In the above figure a vector y is decomposed into two vectors z y y∧= − and .y uα∧ =    
Clearly it can be seen that z y y∧= −  is orthogonal to u  and y uα∧ = is a multiple ofu . 
Since z y y∧= −  is orthogonal to u.  
Therefore 

. 0
( ). 0
( ). 0

. ( . ) 0
.
.

z u
y y u
y u u

y u u u
y u
u u

α
α

α

∧

=

− =
− =
− =

⇒ =

 

And 

.

.

z y y
y uy u
u u

∧= −

= −
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Hence 

 .
.

y uy u
u u

∧ = , which is an orthogonal projection of y ontou . 

And 

.

.

z y y
y uy u
u u

∧= −

= −
    is a component of y   

 
 
Example 
 

Let 
7
6
 

=  
 

y      and  
4
2
 

=  
 

u .  

Find the orthogonal projection of y onto u. Then write y as a sum of two orthogonal 
vectors, one in span {u} and one orthogonal to u.  
 
Solution 
 
Compute 

7 4
40

6 2

4 4
20

2 2

y u

u u

   
⋅ = ⋅ =   

   
   

⋅ = ⋅ =   
   

 

The orthogonal projection of y onto u is 
4 840ˆ 2
2 420

y uy u u
u u

   ⋅
= = = =   ⋅    

 and the 

component of y orthogonal to u is 
7 8 1

ˆ
6 4 2

y y
−     

− = − =     
     

 

The sum of these two vectors is y. That is, 
7 8 1
6 4 2

ˆ ˆ( )y y y y

−     
= +     

     
−

 

 
This decomposition of y is illustrated in Fig. 3. Note: If the calculations above are 
correct, then ˆ ˆ{ , }y y y− will be an orthogonal set. As a check, compute 

8 1
ˆ ˆ( ) 8 8 0

4 2
y y y

−   
⋅ − = ⋅ = − + =   

   
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                             x2 
 
 
                                                                                  •y 
 
                                                                                                             L = Span {u} 
                     ˆy y−                                                         •    ŷ  
                          •  2                                                              
                                                            •u 
 
                                                                                                                               x1 
                                      1                                                8 
 

Figure 3 The orthogonal projection of y on to a line through the origin. 
 
Example 
 
Find the distance in figure below from y to L. 
 
                             x2 
 
 
                                                                                  •y 
 
                                                                                                             L = Span {u} 
                     ˆy y−                                                         •    ŷ  
                          •  2                                                              
                                                            •u 
 
                                                                                                                               x1 
                                      1                                                8 
 
 
 
Solution 
 
The distance from y to L is the length of the perpendicular line segment from y to the 

orthogonal projection ŷ . 
 
The length equals the length of ˆy y− . 
 
This distance is  

2 2ˆ ( 1) 2 5y y− = − + =  
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Example 
                  Decompose y = (-3,-4) into two vectors ŷ and z, where ŷ  is a multiple of u = 
(-3, 1) and z is orthogonal to u. Also prove that . 0y z∧ =  
Solution 
It is very much clear that y∧ is an orthogonal projection of  y onto u and it is calculated by 
applying the following formula 

.

.
y uy u
u u

∧ =  

         

3 3
.

34 1
3 3 1

.
1 1

− −   
    −−     =  − −     
   
   

   
39 4
19 1
− −

=  +  
  

31
12
− 

=  
 

  

3
2
1
2

 − 
=  
 
  

 

            
            

3
3 3 3/ 23 2
4 4 1/ 2 92

21
2

z y y∧

 
     − − − +   − = − = − = =      − − −     −     
  

 

So, 
3 3
2 2
1 9
2 2

y and z∧

   − −   
= =   
   −      

 

Now 
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3 3
2 2. .
1 9
2 2

9 9
4 4
0

y z∧

   − −   
=    
   −      

= −

=

 

Therefore, y∧  is orthogonal to z 
 
Exercise 
 
Find the orthogonal projection of a vector y = (-3, 2) onto u = (2, 1). Also prove that 
y y z∧= + , where y∧ a multiple of u and z is is an orthogonal to u. 
 
Orthonormal Set 
 
Let { }1 2, ,..., pS u u u= be the set of non-zero vectors in ,nR is said to be an orthonormal set 
if  S  is an orthogonal set of unit vectors.  
 
Example 
 
Show that { }1 2 3, ,S u u u=  is an orthonormal set. Where 

1 2

2
05

0 , 1
1 0
5

u u

 
      = = −      −   
  

 and 3

1
5

0 .
2
5

u

 
 
 

=  
 
 
  

 

 
Solution 
 
To show that S  is an orthonormal set, we show that it is an orthogonal set of unit 
vectors. 
 It can be easily prove that S is an orthogonal set because 

. 0 , , 1, 2,3.i ju u i j i j= ∀ ≠ =  
Furthermore 
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1 2 3

1 1

2 2

2 1
05 5

0 , 1 0 .
1 0 2
5 5

2 2
5 5

. 0 . 0
1 1
5 5

4 10
5 5

1
0 0

. 1 . 1
0 0

0 1 0
1

u u u

u u

u u

   
        = = − =        −     
      

   
   
   

=    
   − −   
      

= + +

=

   
   = − −   
      

= + +
=

 

And 

3 3

1 1
5 5

. 0 . 0
2 2
5 5

1 4
5 5
1

u u

   
   
   

=    
   
   
      

= +

=

 

Hence  
{ }1 2 3, ,S u u u= is an orthonormal set. 

 
Orthonormal basis 
 
Let { }1 2, ,..., pS u u u=  be a basis for a subspace W  of ,nR  is also an orthonormal basis if 
S  is an orthonormal set. 
 
Example 
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Show that { }1 2 3, ,S u u u= is an orthonormal basis of 3,R where 

1 2

1
3

6
11 2
1 , 6
11 1
1

6
11

u u

− 
   
   
   
   = =   
   
   
       

 and 3

1
66
4 .
66
7
66

u

− 
 
 

− =  
 
 
  

 

 
Solution 
 
To show that { }1 2 3, ,S u u u= is an orthonormal basis, it is sufficient to show that it is an 
orthogonal set of unit vectors. That is 

. 0 , , 1, 2,3.i ju u i j i j= ∀ ≠ =  
And 

. 1 , , 1, 2,3.i ju u i j i j= ∀ = =  
Clearly it can be seen that  

1 2

1 3

. 0,

. 0
u u
u u

=
=

 

And 
2 3. 0.u u =  

Furthermore 
1 1

2 2

. 1,
. 1

u u
u u

=
=

 

And 
3 3. 1.u u =  

Hence S is an orthonormal basis of  3.R  
 
Theorem 
                 A m n×  matrix U has orthonormal columns if and only if tU U I=  
Proof 
          Keep in mind that  in an if and only if statement, one part depends on the other, 
so, each part is proved separately. That is, we consider one part and then prove the other 
part with the help of that assumed part. 
Before proving both sides of the statements, we have to do some extra work which is 
necessary for the better understanding. 
Let 1 2, ,..., mu u u  be the columns of U. Then U can be written in matrix form as 
                  [ ]1 2 3 ... mU u u u u=  
Taking transpose, it becomes 
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1

2

3

.

.

.

t

t

t

t

t
m

u
u
u

U

u

 
 
 
 
 
 =
 
 
 
 
  

 

                   [ ]

1

2

3

1 2 3. . . .
.
.

t

t

t

t
m

t
m

u
u
u

U U u u u u

u

 
 
 
 
 
 =
 
 
 
 
  

1 1 1 2 1 3 1

2 1 2 2 2 3 2

3 1 3 2 3 3 3

1 2 3

...

...

...
. . . .
. . . .
. . . .

...

t t t t
m

t t t t
m

t t t t
m

t t t t
m m m m m

u u u u u u u u
u u u u u u u u
u u u u u u u u

u u u u u u u u

 
 
 
 
 
 =
 
 
 
 
  

 

                 

1 1 1 2 1 3 1

2 1 2 2 2 3 2

3 1 3 2 3 3 3

1 2 3

.

. . . ... .
. . . ... .
. . . ... .

. . . .

. . . .

. . . .
. . . ... .

t

m

m

m
t

m m m m m

As u v v u
Therefore

u u u u u u u u
u u u u u u u u
u u u u u u u u

U U

u u u u u u u u

=

 
 
 
 
 

=  
 
 
 
 
 

 

 
Now, we come to prove the theorem. 
First suppose that ,tU U I= and we prove that columns of U are orthonormal. 
Since, we assume that  
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1 1 1 2 1 3 1

2 1 2 2 2 3 2

3 1 3 2 3 3 3

1 2 3

. . . ... .
. . . ... .
. . . ... .

. . . .

. . . .

. . . .
. . . ... .

1 0 0 ... 0
0 1 0 ... 0
0 0 1 ... 0
. . . .
. . . .
. . . .
0 0 0 ... 1

m

m

m
t

m m m m m

u u u u u u u u
u u u u u u u u
u u u u u u u u

U U

u u u u u u u u

 
 
 
 
 

=  
 
 
 
 
 
 
 
 
 
 =  
 
 
 
  

 

 
 
Clearly, it can be seen that 

. 0 , 1, 2,...

. 1 , 1, 2,...

i j

i j

u u for i j i j m
and
u u for i j i j m

= ≠ =

= = =
 

 
 Therefore, columns of U are orthonormal. 
Next suppose that the columns of U are orthonormal and we will show that .tU U I=  
Since we assume that columns of U are orthonormal, so, we can write 

. 0 , 1, 2,...

. 1 , 1, 2,...

i j

i j

u u for i j i j m
and
u u for i j i j m

= ≠ =

= = =
 

Hence, 

1 1 1 2 1 3 1

2 1 2 2 2 3 2

3 1 3 2 3 3 3

1 2 3

. . . ... .
. . . ... .
. . . ... .

. . . .

. . . .

. . . .
. . . ... .

m

m

m
t

m m m m m

u u u u u u u u
u u u u u u u u
u u u u u u u u

U U

u u u u u u u u

 
 
 
 
 

=  
 
 
 
 
 

 

                            
                                          © Virtual University Of Pakistan                                                             197 



18-Orthogonal and Orthonormal Sets                                                                                                          VU 

1 0 0 ... 0
0 1 0 ... 0
0 0 1 ... 0
. . . .
. . . .
. . . .
0 0 0 ... 1

 
 
 
 
 =  
 
 
 
  

 

 
 
That is   

.tU U I=  
Which is our required result. 
 
Exercise 
Prove that the following matrices have orthonormal columns using above theorem. 

1 11(1)
1 12

2 2 1
(2) 1 2 2

2 1 2

cos sin
(3)

sin cos
θ θ
θ θ

 
 − 

− 
 
 
 − 
 
 − 

 

 
Solution (1) 
Let   

1 11
1 12
1 11
1 12

1 1 1 11
1 1 1 12
1 0
0 1

t

t

t

U

U

Then

U U

I

U U I

 
=  − 

 
=  − 

   
=    − −   

 
= = 

 
=

 

Therefore, by the above theorem, U has orthonormal columns. 
 
(2) And (3) are left for reader.  
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  Theorem 
 
Let U be an m n×  matrix with orthonormal columns, and let x and y be in nR . Then 
 

a)  Ux x=  
b) ( ).( ) .Ux Uy x y=  
c) ( ).( ) 0 . 0Ux Uy iff x y= =  

 
Example 
 
 

1/ 2 2 / 3
1 21/ 2 2 / 3
2 30 1/ 3

Let U and X

 
   

= − =   
   
  

 

Verify that Ux x=  
 
Solution 
 
Notice that U has orthonormal columns and  
 
 
 

1/ 2 2 / 3
1 01/ 2 1/ 2 0 1/ 2 2 / 3
0 12 / 3 2 / 3 1/ 3 0 1/ 3

TU U

 
    

= − =    −    
  

 

 
1/ 2 2 / 3 3

1 21/ 2 2 / 3 1
2 30 1/ 3 1

9 1 1 11

2 9 11

Ux

Ux

x

        = − = −             

= + + =

= + =
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Lecture 19 

Orthogonal Decomposition 
 
Objectives  
The objectives of the lecture are to learn about: 

• Orthogonal Decomposition Theorem. 
• Best Approximation Theorem. 
 

Orthogonal Projection 
 
The orthogonal projection of a point in 2R onto a line through the origin has an important 
analogue in nR  .  
That is given a vector Y and a subspace W in nR , there is a vector ŷ  in W such that  
 
1) ŷ  is the unique vector in W for which ˆy y−  is orthogonal to W, and  
2) ŷ  is the unique vector in W closest to y. 
 
                                                                        y  
 
 
 
 
 
                0                                                      ŷ  
 
 
We observe that whenever a vector y is written as a linear combination of vectors  

1 2, , ..., nu u u   in a basis of nR , the terms in the sum for y can be grouped into two parts so 
that y can be written as 1 2y z z= + , where 1z is a linear combination of some of the iu ’s, 
and 2z is a linear combination of the rest of the 'iu s . This idea is particularly useful when  
{ }1 2, , ..., nu u u  is an orthogonal basis.  

 
Example 1 
 
Let { }1 2 5, , ...,u u u  be an orthogonal basis for 5R  and let 1 2 5 5...y c c c= + + +1 2u u u . 
Consider the subspace W= Span{u1, u2} and write y as the sum of a vector 1z  in W and a 
vector 2z  in ⊥W . 
 
 
Solution  
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Write  

1 2

1 1 2 2 3 3 4 4 5 5

z z

y c u c u c u c u c u= + + + +
 

 

where 1 1 1 2 2z c u c u= +  is in Span of {u1, u2}, and 2 3 3 4 4 5 5z c u c u c u= + +  is in Span of {u3, 
u4, u5}.  
To show that z2 is in ⊥W , it suffices to show that z2 is orthogonal to the vectors in the 
basis {u1, u2} for W. Using properties of the inner product, compute 

2 1 3 3 4 4 5 5 1 3 3 1 4 4 1 5 5 1( ) 0z u c u c u c u u c u u c u u c u u⋅ = + + ⋅ = ⋅ + ⋅ + ⋅ =  
since u1 is orthogonal to u3, u4, and u5,  a similar calculation shows that 0⋅ =2 2z u  
Thus, 2z  is in ⊥W . 
 
Orthogonal decomposition theorem 
Let W be a subspace of ,nR then each y in nR  can be written uniquely in the form 

ˆy y z= +  
Where y W and z W∧ ⊥∈ ∈  
Furthermore, if { }1 2, , ..., pu u u  is any orthogonal basis forW , then 

1 1 2 2

.
... ,

.
j

n n j
j j

y u
y c u c u c u wherec

u u
∧ = + + + =  

Proof 
 
 
 
                                             ˆz = y - y         y 
                                          •                      •  
 
 
                                                                  •                       •  
                                        0                        ˆ wy proj Y=               
 
 
                              Fig: Orthogonal projection of y on to W. 
 
 
Firstly, we show that ,y W∧ ∈ z W ⊥∈ . Then we will show that y y z∧= + can be 
represented in a unique way. 
 
          Suppose W is a subspace of nR and let  { }1 2, ,..., pu u u   be an orthogonal basis for 
W. 

As 1 1 2 2... p py c u c u c u∧ = +  where 
.
.

j
j

j j

y u
c

u u
=  
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Since { }1 2, ,..., pu u u      is the basis for W and y∧ is written as a linear combination of 

these basis vectors. Therefore, by definition of basis  .y W∧ ∈   
Now, we will show that z y y W∧ ⊥= − ∈ . For this it is sufficient to show that jz u⊥ for 
each 1,2,... .j p=  
Let 1u W∈  be an arbitrary vector. 

1 1

1 1

1 1 1 2 2 1

1 1 1 1 2 2 1 1

1 1 1 1 1

1
1 1 1

1 1

1 1

. ( ).

. .
. ( ... ).

. ( . ) ( . ) ... ( . )

. ( . ) . 0, 2,3,...

.. ( . )
.

. .
0

p p

p p

j

z u y y u
y u y u
y u c u c u c u u
y u c u u c u u c u u
y u c u u where u u j p

y uy u u u
u u

y u y u

∧

∧

= −

= −
= − + + +

= − − −

= − = =

= −

= −
=

 

Therefore, 1.z u⊥  
Since 1u  is an arbitrary vector, therefore jz u⊥ for 1, 2,... .j p=   

Hence by definition of  ,W z W⊥ ⊥∈  
Now, we must show that y y z∧= +  is unique by contradiction. 
Let y y z∧= +  and 1 1,y y z∧= +  where 1,y y W∧ ∧ ∈  and 1, ,z z W ⊥∈  
also 1 1z z and y y∧ ∧≠ ≠ . Since above representations for y are equal, that is 

1 1

1 1

y z y z
y y z z

∧ ∧

∧ ∧

+ = +

⇒ − = −
 

Let 
1s y y∧ ∧= −  

Then 
1s z z= −  

Since W is a subspace, therefore, by closure property 
1s y y W∧ ∧= − ∈  

Furthermore, W ⊥  is also a subspace, therefore by closure property  
1s z z w⊥= − ∈  

Since 
s W∈  and .s W ⊥∈  Therefore by definition s s⊥  
That is s. s=0 
Therefore 

1

1

0s y y
y y

∧ ∧

∧ ∧

= − =

⇒ =
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Also 
1z z=  

This shows that representation is unique. 
 
Example 
 

Let 1

2
5
1

u
 
 =  
 − 

,  2

2
1
1

u
− 
 =  
  

, and 
1
2
3

y
 
 =  
  

 

 
Observe that { }1 2,u u is an orthogonal basis for W=span{ }1 2,u u , write y as the sum of a 
vector in W and a vector orthogonal to W.  
 
Solution 
 
Since ,y W∧ ∈  therefore y∧  can be written as following: 

1 1 2 2

1 2
1 2

1 1 2 2

. .
. .

2 2 2 2
9 3 9 155 1 5 1

30 6 30 30
1 1 1 1

2 / 5 2
12 10
5

1/ 5 1

y c u c u
y u y uu u
u u u u

∧ = +

= +

− −       
       = + = +       
       − −       
− −   

   = =   
      

 

1 2 / 5 7 / 5
2 2 0
3 1/ 5 14 / 5

1
7 / 5 0

2

y y∧

−     
     − = − =     
          

 
 =  
  

 

Above theorem ensures that y y∧−  is in W ⊥ . 
You can also verify by 1( ). 0y y u∧− =  and 2( ). 0y y u∧− = . 
 
The desired decomposition of y is  
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1 2 / 5 7 / 5
2 2 0
3 1/ 5 14 / 5

y
−     

     = = +     
          

 

  
Example 

Let W=span{ }1 2,u u , where 1

1
3
2

u
 
 = − 
  

 and 2

4
2
1

u
 
 =  
  

 

Decompose 
2
2
5

y
 
 = − 
  

 into two vectors; one in W and one in .W ⊥  Also verify that these 

two vectors are orthogonal. 
Solution 
 
Let y W∧ ∈ and .z y y W∧ ⊥= − ∈  
Since ,y W∧ ∈  therefore y∧  can be written as following: 

1 1 2 2

1 2
1 2

1 1 2 2

. .
. .

1 4
9 33 2
7 7

2 1

3
3
3

y c u c u
y u y uu u
u u u u

y

∧

∧

= +

= +

   
   = − +   
      
 
 = − 
  

 

Now 
2 3
2 3
5 3

1
1
2

z y y

z

∧

   
   = − = − − −   
      
− 
 =  
  

 

Now we show that ,z y∧⊥ i.e. . 0z y∧ =  
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1 3
. 1 . 3

2 3
0

z y∧

−   
   = −   
      

=

  

Therefore .z y∧⊥  
Exercise 

Let W=span{ }1 2,u u , where 1

1
0
3

u
 
 =  
 − 

 and 2

3
1
1

u
 
 =  
  

 

Write 
6

8
12

y
 
 = − 
  

 as a sum of two vectors; one in W and one in .W ⊥  Also verify that these 

two vectors are orthogonal. 
 
Best Approximation Theorem 
 
                 Let W is a finite dimensional subspace of an inner product space V and y is 
any vector in V. The best approximation to y from W is then Pr y

woj , i.e for every w (that 
is not Pr y

woj ) in W, we have 

Pr .y
wy oj y w− < −  

 
Example 

Let W=span{ }1 2,u u , where 1

1
3
2

u
 
 = − 
  

 , 2

4
2
1

u
 
 =  
  

 and
2
2
5

y
 
 = − 
  

. Then using above 

theorem, find the distance from y to W. 
 
Solution  
Using above theorem the distance from y to W is calculated using the following formula 

Pr y
wy oj y y∧− = −  

Since, we have already calculated 
2 3 1
2 3 1
5 3 2

y y∧

−     
     − = − − − =     
          

 

So         6y y∧− =  
Example 
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The distance from a point y in nR to a subspace W is defined as the distance from y to the 
nearest point in W.  
Find the distance from y to W =span{ }1 2,u u , where 
 

1 2

1 5 1
5 , 2 , 2

10 1 1
y u u

−     
     = − = − =     
     −     

 

 
By the Best Approximation Theorem, the distance from y to W is ˆ ,y y−  where           
ŷ = projwy. Since, {u1, u2} is an orthogonal basis for W, we have 

1 2

5 1 1
15 21 1 7ˆ 2 2 8
30 6 2 2

1 1 4
y u u

−     
−      = + = − − = −     

     −     

 

1 1 0
ˆ 5 8 3

10 4 6

− −     
     − = − − − =     
          

y y  

2 2 2ˆ 3 6 45y y− = + =  

The distance from y to W is 45 3 5.=  
 
Theorem 
 
If { }1 2, ,..., pu u u is an orthonormal basis for a subspace W of nR , then  

 
1 1 2 2

1 2

Pr ( . ) ( . ) ...( . )

[ .... ]

Pr

w p p

p

y T n
w

oj y y u u y u u y u u
If U u u u

then oj UU y y in R

= + +

=

= ∀

 

 
Example 
 

Let 1 2

7 1 9
1 , 1 , 1
4 2 6

u u y
− − −     
     = = =     
     −     

 

 
and W =span{ }1 2,u u . Use the fact that u1 and u2 are orthogonal to compute Pr woj y . 
 
Solution 
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1 2
1 2

1 1 2 2

1 2

. .Pr
. .

88 2
66 6

7 1 9
4 11 1 1
3 3

4 2 6

w
y u y uoj y u u
u u u u

u u

y

= +

−
= +

− − −     
     = − = =     
          

 

 
In this case,y happens to be a linear combination of u1 and u2 . So y is in W.  The closest 
point in W to y is y itself.  
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Lecture 20 

Orthogonal basis, Gram-Schmidt Process, Orthonormal basis 

 

Example 1 
 
Let W = Span {x1, x2}, where  

1 2

3 1
6 2
0 2

x and x
   
   = =   
      

 

 
Find the orthogonal basis {v1, v2} for W.  

Solution    

Let P be a projection of x2 on to x1. The component of x2 orthogonal to x1  is x2 – P, 
which is in W  as it is formed from x2 and a multiple of x1. 

            Let v1 = x1   and compute  

 

 
 

Thus, {v1, v2} is an orthogonal set of nonzero vectors in W , dim W = 2 and {v1, v2} is a 
basis of W.  

Example 2  
 
For the given basis of a subspace W = Span {x1, x2}, 
 

                                 1 2

0 5
4 6
2 7

x and x
   
   = =   
   −   

  

 
Find the orthogonal basis {v1, v2} for W.  
 

Solution 
 
Set v1 = x1 and compute 

2 1
2 2 2 1

1 1

1 3 0
.   15  2 6 0
. 45

2 0 2

x vv x P x v
v v

     
     = − = − = − =     
          
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Thus, an orthogonal basis for W is 
0 5
4 , 4
2 8

    
    
    
    −    

 

Theorem 
 
Given a basis {x1, …, xp} for a subspace W of nR . Define  
 

 

 
Then {v1, …,vp} is an orthogonal basis for W.  
  
In addition  
 
 Span {v1, …, vk}= Span {x1,…, xk} for 1 k p≤ ≤  

Example 3 

The following vectors {x1, x2, x3} are linearly independent 

                       1 2 3

1 0 0
1 1 0

, ,
1 1 1
1 1 1

x x x

     
     
     = = =
     
     
     

 

 
Construct an orthogonal basis for W by Gram-Schmidt Process. 

2 1
2 2 1

1 1

5 0
.   10 6 4
. 20

-7 2

5 0 5
16 4 4
2

-7 2 8

x vv x v
v v

   
   = − = −   
      

     
     = − =     
     −     

2 1
1 1 2 2 1

1 1

3 1 3 2
3 3 1 2

1 1 2 2

1 2 -1
1 2 -1

1 1 2 2 -1 -1

.
.

. .
. .

. . .
...

. . .
p p p p

p p p
p p

x vv x v x v
v v

x v x vv x v v
v v v v

x v x v x v
v x v v v

v v v v v v

= = −

= − −

= − − − −


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Solution    

To construct orthogonal basis we have to perform the following steps. 

Step 1   Let v1 = x1  

Step 2  

                 Let 2 1
2 2 1

1 1

.  
.

x vv x v
v v

= −   

Since   

0 1 3 / 4 3
1 1 1/ 4 13
1 1 1/ 4 14
1 1 1/ 4 1

− −       
       
       = = − = =
       
       
       

2 1v x   

Step 3  

     3 1 3 2
3 3 1 2

1 1 2 2

0 1 3 0
0 1 1 2 / 3. . 2 2
1 1 1 2 / 3. . 4 12
1 1 1 2 / 3

x v x vv x v v
v v v v

 −        
                  = − + = − + =                    
         

  

  

 

 
 

 

 

Thus, {v1, v2, v3} is an orthogonal set of nonzero vectors in W. 

 

Example 4  

Find an orthogonal basis for the column space of the following matrix by Gram-Schmidt 
Process. 

3

0 0 0
0 2 / 3 2 / 3
1 2 / 3 1/ 3
1 2 / 3 1/ 3

v

     
     −     = − =
     
     
     
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1 6 6
3 8 3
1 2 6
1 4 3

− 
 − 
 −
 − − 

 

Solution 
Name the columns of the above matrix as x1, x2, x3  and perform the Gram-Schmidt 
Process on these vectors. 

                                     

1 6 6
3 8 3

, ,1 2 31 2 6
1 4 3

x x x

−

−
= = =

−

− −

     
     
     
     
     
     

 

 
Set v1 = x1 

                                                    

2 1
2 2 1

1 1

. 
.

6 1 3
8 3 1

( 3)
2 1 1
4 1 1

x vv x v
v v

= −

−     
     −     = − − =
     −
     − −     

 

                           

3 1 3 2
3 3 1 2

1 1 2 2

. .
. .

6 1 3 1
3 3 1 11 5
6 1 1 32 2

3 1 1 1

x v x vv x v v
v v v v

= − −

− −       
       −       = − − =
       
       − − −       

 

Thus, orthogonal basis is 

1 3 1
3 1 1

, ,
1 1 3
1 1 1

 − −      
      −                   − −      
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Example 5  

Find the orthonormal basis of the subspace spanned by the following vectors. 

                      
3 0
6 , 0
0 2

x x
   
   = =   
      

1 2  

Solution 

 

Since from example # 1, we have  

1 2

3 0
6 , 0
0 2

v v
   
   = =   
      

 

 

 

 

 

Example 6 

Find the orthonormal basis of the subspace spanned by the following vectors. 

                                         1 2

2 4
5 1

1 2
andx x

   
   = − = −   
      

  

Solution  

                  Firstly we find  v1 and v2 by Gram-Schmidt Process as  

Set v1 = x1             

2 1
2 2 2 1

1 1

2

.  
.

4 2 4 2
15 11 5 1 5
30 2

2 1 2 1

x vv x x v
v v

v

= = −

       
       = − − − = − − −       
              

 

1 1 2 2
1 2

 

1/ 53 0
1 1 16 2 / 5 , 0

45 0 0 1

Orthonormal Basis

u v u v
v v

        = = = = =             
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                      2 1

4 1 6
1 5 / 2 3

2 1/ 2 3
1 1 30
54 3 6

Now v and since v

     
     = − − − =     
          

= = =  

                      

,

2 / 30 2 / 6

, 5 / 30 , 1/ 6

1/ 30 1/ 6

Thus the orthonormal basis for W is

    
        = −      

        
        

1 2

1 2

v v
v v

 

Theorem 
 
If A is an m x n matrix with linearly independent columns, then A can be factored as  
A = QR,  where Q is an m x n matrix whose columns form an orthonormal basis for Col A 
and R is an n x n upper triangular invertible matrix with positive entries on its diagonal.  
 

Example 7 

Find a QR factorization of matrix 

1 2 5
1 1 4
1 4 3

1 4 7
1 2 1

A

 
 − − 
 = − −
 − 
  

 

Solution 
 
Firstly find the orthonormal basis by applying Gram Schmidt process on the columns of 
A. We get the following matrix Q. 

                                          

1/ 5 1/ 2 1/ 2

1/ 5 0 0

1/ 5 1/ 2 1/ 2

1/ 5 1/ 2 1/ 2

1/ 5 1/ 2 1/ 2

Q

 
 
− 
 

= − 
 − 
 − 
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5 5 4 5

0 6 2
0 0 4

TNow R AQ=
 −
 

− 
 
 

=  

Verify that A=QR. 
 

Theorem  
 

1

1 1 2 2

1 2

 { ,  ...,  }

( ) ( ) ( )

  [   ...   ],

   

  ,p

w p p

p

T n
w

nIf u u is an orthonormal

proj y y u u y u u y u u

If U u u u

then proj y UU y y in R

basis for a subspaceW of R then
= ⋅ + ⋅ + + ⋅

=

= ∀

 

 

  

 


     

  

       

 

 

The Orthogonal Decomposition Theorem 
 

Let W be a subspace of  nR  Then each y in nR  can be written uniquely in the form  
  

where         is in W and z is in      
 

In fact, if {u1, …, up} is any orthogonal basis of W, then  
 
 

 
 
and z = y – ŷ   . The vector  ŷ   is called the orthogonal projection of y onto W and is 
often  written as projw y.  
 

  Best Approximation Theorem 
 
Let W be a subspace of nR , y  is  any vector in nR  and   ŷ   the orthogonal projection of y 
onto W.  Then ŷ  is the closest point in W to y, in the sense that                           
 
for all v in W distinct from  ŷ .   
  
 
 
 
 
 
 
The vector ^y     in this theorem is called the best approximation to y by elements of W.  

ˆy y z= +
W ⊥

1
1

1 1

ˆ p
p

p p

y uy uy u u
u u u u

⋅⋅
= + +

⋅ ⋅


ˆy y y v− < −
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Exercise 1 
 
Let W = Span {x1, x2}, where  
 
 
 
 
 
 
 
Construct an orthonormal basis for W.  
 

Exercise 2 

Find an orthogonal basis for the column space of the following matrix by Gram-Schmidt 
Process. 

                                                  

3 5 1
1 1 1

1 5 2
3 7 8

− 
 
 
 − − −
 − 

 

 

Exercise 3 
 
Find a QR factorization of  
 
 
  
              

    

1 1/ 3
1 1/ 31 2
1 2 / 3

x and x
   
   = =   
   −   

1 3 5
1 3 1

0 2 3
1 5 2
1 5 8

A

 
 − − 
 =
 
 
  
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Lecture 21 

Least Square Solution 
 
 Best Approximation Theorem 
 
Let W be a subspace of nR ,  y be any vector in nR  and   ŷ   the orthogonal projection of y 
onto W. Then ŷ  is the closest point in W to y, in the sense that                           
for all v in W distinct from ŷ     
 
The vector ŷ  in this theorem is called the best approximation to y by elements of W.  
 
Least-squares solution 
 
The most important aspect of the least-squares problem is that no matter what “x” we 
select, the vector Ax will necessarily be in the column space Col A. So we seek an x that 
makes Ax the closest point in Col A to b. Of course, if b happens to be in Col A, then b is 
Ax for some x and such an x is a “least-squares solution.” 
 
Solution of the General Least-Squares Problem   
 
Given A and b as above, apply the Best Approximation Theorem stated above to the 
subspace Col A. Let ˆ

Col Ab proj b=  

Since b̂  is in the column space of A, the equation ˆAx b=  is consistent, and there is an x̂  
in Rn such that 

ˆˆAx b=         (1) 
Since b̂  is the closest point in Col A to b, a vector x̂  is a least-squares solution of Ax = b 
if and only if x̂  satisfies ˆˆAx b= . Such an x̂  in Rn is a list of weights that will build b̂  out 
of the columns of A.  
 
Normal equations for x̂  
Suppose that x̂  satisfies ˆˆ .Ax b=  By the Orthogonal Decomposition Theorem the 
projection b̂  has the property that ˆb b−  is orthogonal to Col A, so ˆb Ax−  is orthogonal 
to each column of A. If aj is any column of A, then ˆ( ) 0,ja b Ax⋅ − =  and ˆ( ) 0.T

ja b Ax− =  

Since each T
ja  is a row of AT, 

ˆ( ) 0TA b Ax− =        (2) 
ˆ 0T TA b A Ax− =  

ˆT TA Ax A b=         (3) 
The matrix equation (3) represents a system of linear equations commonly referred to as 
the normal equations for x̂.  
 
 

ˆy y y v− < −
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 Since set of least-squares solutions is nonempty and any such x̂  satisfies the normal 
equations. Conversely, suppose that x̂  satisfies ˆ .T TA Ax A b=  Then it satisfy that ˆ−b Ax  
is orthogonal to the rows of AT and hence is orthogonal to the columns of A. Since the 
columns of A span Col A, the vector ˆ−b Ax  is orthogonal to all of Col A. Hence the 
equation ˆ ˆ( )b Ax b Ax= + −  is a decomposition of b into the sum of a vector in Col A and 
a vector orthogonal to Col A. By the uniqueness of the orthogonal decomposition, ˆAx  
must be the orthogonal projection of b onto Col A. That is, ˆˆ =Ax b  and x̂  is a least-
squares solution. 
 
Definition 
 
If A is m x n and b is in nR , a least-squares solution of Ax = b is an    I x̂   in nR  such that    
 
                                    ˆ nb Ax b Ax x R− ≤ − ∀ ∈  
 
Theorem   
 
The set of least-squares solutions of Ax = b coincides with the nonempty set of solutions 
of the normal equations  
 
 
Example 1 
  
Find the least squares solution and its error from the following matrices, 
 

                                    
4 0 2
0 2 , 0
1 1 11

A b
   
   = =   
      

 

 
Solution  
  
Firstly we find 

                               

4 0
4 0 1 17 1

0 2
0 2 1 1 5

1 1

2
4 0 1 19

0
0 2 1 11

11

T

T

A A and

A b

 
    = =         

 
    = =         

 

 

Then the equation ˆT TA Ax A b=  becomes 1

2

17 1 19
1 5 11

x
x
    

=    
    

  

ˆT TA Ax A b=

 
                                                   © Virtual University Of Pakistan                                                          218 



21-Least Square Solution                                                                                                                              VU 

 
Row operations can be used to solve this system, but since ATA is invertible and 2 2× , it 

is probably faster to compute 1 5 11( )
1 1784

TA A − − 
=  − 

  

 

Therefore, 1ˆ ( )T Tx A A A b−=
5 1 19 84 11 1
1 17 11 168 284 84

−       
= = =       −       

 

                           Now again as A= 
4 0
0 2
1 1

 
 
 
  

, 
2
0

11

 
 =  
  

b   

Then                              
4 0 4

1
ˆ 0 2 4

2
1 1 3

   
    = =           

Ax  

Hence            
2 4 2

ˆ 0 4 4
11 3 8

−     
     − = − = −     
          

b Ax  

So  2 2 2ˆ ( 2) ( 4) 8 84− = − + − + =b Ax  

The least-squares error is 84.  For any x in R2, the distance between b and the vector Ax 
is at least 84.   
 
Example 2 
 
Find the general least-squares solution of Ax = b in the form of a free variable with  
 

                                      

1 1 0 0 3
1 1 0 0 1
1 0 1 0 0

,
1 0 1 0 2
1 0 0 1 5
1 0 0 1 1

A b

−   
   −   
   

= =   
   
   
   
   

 

 
 
 
 
 
 
Solution 
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   Firstly we find, 

1 1 0 0
1 1 1 1 1 1 1 1 0 0 6 2 2 2
1 1 0 0 0 0 1 0 1 0 2 2 0 0
0 0 1 1 0 0 1 0 1 0 2 0 2 0
0 0 0 0 1 1 1 0 0 1 2 0 0 2

1 0 0 1

 
            = =             
 

TA A and  

3
1 1 1 1 1 1 1 4
1 1 0 0 0 0 0 4
0 0 1 1 0 0 2 2
0 0 0 0 1 1 5 6

1

− 
 −         −   = =             
 

TA b  

Then augmented matrix for ˆ =T TA Ax A b  is 
 
 
 
 
 
 
 
The general solution is 1 4 2 4 3 43 , 5 , 2 ,x x x x x x= − = − + = − +  and x4 is free. 
So the general least-squares solution of Ax = b has the form 
 
 
 
 
  
 
Theorem  
 
The matrix TA A  is invertible iff the columns of A are linearly independent. In this case, 
the equation Ax = b has only one least-squares solution  x̂   , and it is given by  
 
                                                         
Example 3 
Find the least squares solution to the following system of equations. 

                                        

2 4 6 0
1

1 3 0 1
2 ,

7 1 4 2
3

1 0 5 4

x
A x b

x

   
    −     = =    −
     

   

 

Solution 

6 2 2 2 4 1 0 0 1 3
2 2 0 0 4 0 1 0 1 5
2 0 2 0 2 0 0 1 1 2
2 0 0 2 6 0 0 0 0 0

   
   − − −   
   − −
   
   



4

3 1
5 1

ˆ
2 1

0 1

x

−   
   −   = +
   −
   
   

x

1ˆ ( )T Tx A A A b−=
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As 

               

2 1 7 1
4 3 1 0
6 0 4 5

2 4 6
2 1 7 1 55 12 45

1 3 0
4 3 1 0 12 26 28

7 1 4
6 0 4 5 45 28 77

1 0 5

T

TA A

A
 
 = − 
  

 
    −    = − =    
       

 

 

Now 
 

                          

0
2 1 7 1 9

1
4 3 1 0 5

2
6 0 4 5 12

4

TA b

 
−    

    = − = −    −
       

 

 

 
As                              ˆT TA Ax A b=  
 

                        
55 12 45 1 9
12 26 28 2 5
45 28 77 3 12

x
x
x

−     
     = −     
          

 

 

                                  
1 .676
2 .776
3 .834

x
x
x

−   
   = −   
      

  

 
 
 
Example 4 
 
Compute the least square error for the solution of the following equation 

2 4 6 0
1

1 3 0 1
2 ,

7 1 4 2
3

1 0 5 4

x
A x b

x

   
    −     = =    −
     

   
. 

 
Solution 
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2 4 6 2 4 6
1 .676

1 3 0 1 3 0
2 .776

7 1 4 7 1 4
3 .834

1 0 5 1 0 5

0.548
1.652

2.172
3.494

x
A x x

x

A x

   
−      − −      = = −      

         
   
 
 
 =
 −
 
 





 

 
As least square error  
 

                                                        b Ax∈ = −  
 
is as small as possible, or in other words is smaller than all other possible choices of x. 
 
 
                                                      
 
  
As 
  

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       

2 2 2 2 2
1 2 3 4∈ =∈ +∈ +∈ +∈                                                                        

Thus, least square error is  
 

     b Ax∈ = − 2 2 2 2( 0.548) (0.652) (0.172) (1.494)= − + + +  
 
                                 =0.3003+0.4251+.02958+2.23=2.987 
 
Theorem 
 
Given an m x n matrix A with linearly independent columns.Let A = QR be a QR 
factorization of A ,then for each b in Rm, the equation Ax = b has a unique least-squares 
solution, given by  
 
 
 
 
Example 1  

0 0.548 0.548
1 1.652 0.652

ˆ
2 2.172 0.172

4 3.494 1.494

b Ax

−     
     
     − = − =
     − −
     
     

-1ˆ Tx R Q b=
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Find the least square solution for 

1 3 5 3
1 1 0 5

,
1 1 2 7
1 3 3 3

A b

   
   
   = =
   
   −   

 

 
Solution   
 
 First of all we find QR factorization of the given matrix A. For this we have to find out 
orthonormal basis for the column space of A by applying Gram-Schmidt Process, we get 
the matrix of orthonormal basis Q, 
 

                      

1 2 1 2 1 2
1 2 1 2 1 2
1 2 1 2 1 2
1 2 1 2 1 2

Q

 
 − − =
 −
 − 

 And 

1 3 5
1 2 1 2 1 2 1 2 2 4 5

1 1 0
1 2 1 2 1 2 1 2 0 2 3

1 1 2
1 2 1 2 1 2 1 2 0 0 2

1 3 3

TR Q A=

 
    
    − −    
   − −     

 

= =  

 

Then   

3
1 2 1 2 1 2 1 2 6

5
1 2 1 2 1 2 1 2 6

7
1 2 1 2 1 2 1 2 4

3

TQ b

 
    
    = − − = −    
   − −     − 

 

 

The least-squares solution x̂  satisfies ˆ ;TRx Q b=  that is, 
1

2

3

2 4 5 6
0 2 3 6
0 0 2 4

x
x
x

     
     = −     
          

 

 

This equation is solved easily and yields 
10

ˆ 6 .
2

 
 = − 
  

x  

Example 2 
 
Find the least squares solution                        to the given matrices, 
 

ˆ TRx Q b=
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3 1 1
6 2 , 2
0 2 3

A b
   
   = =   
      

 

Solution                                   
First of all we find QR factorization of the given matrix A. Thus,                                   we 
have to make  
Orthonormal basis by applying Gram Schmidt process on the columns of A, 
 
Let v1 = x1 

                 2 1
2 2 2 1

1 1

1 3 0
.   15  2 6 0
. 45

2 0 2

x vv x P x v
v v

     
     = − = − = − =     
          

  

                           
1 2

1 2

,

1 0
, 2 , 0

0 1

Thus the orthonormal basis are

v v
v v

    
       =                 

 

Thus  

                      

1 0
1 2 0

2 0
0 0 1

0 1

3 1
1 2 0

6 2
0 0 1

0 2

1
15 5 1 2 0 5

2
0 2 0 0 1 3

3

T

T

T

Q and Q

Now R Q A

And Q b

 
  = =       

 
   =        

 
      = = =             

=  

Thus, least squares solution of ˆ TRx Q b=  is 

                                     

15 5 5
ˆ

0 2 3

1
ˆ

1.8

x

x

   
=   

   
 

=  
 
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Exercise 1 
 
Find a least-squares solution of Ax = b for  
 
 
 
 
 
 
 
Exercise 2 
 
Find the least-squares solution and its error of Ax = b for  
 
 
 
 
 
 
 
 
 
Exercise 3 
 
 Find the least squares solution                     to the given matrices, 
 
       

                 

2 1 5
2 0 , 8
2 3 1

A b
−   

   = − =   
      

 

 
 
 
 

1 6 1
1 2 2

,
1 1 1
1 7 6

− −   
   −   = =
   
   
   

A b

1 3 5 3
1 1 0 5

,
1 1 2 7
1 3 3 3

   
   
   = =
   
   −   

A b

ˆ TRx Q b=
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Lecture 22 
 

Eigen Value Problems 
 

Let [A] be an n x n square matrix. Suppose, there exists a scalar    and a vector  
          

1 2( )T
nX x x x=   

such that 
[ ]( ) ( )A X Xλ=  

( ) ( )ax axd e a e
dx

=  

2
2

2 (sin ) (sin )d ax a ax
dx

= −  

Then λ  is the eigen value and X is the corresponding eigenvector of the matrix [A]. 
We can also write it as  [ ]( ) ( )A I X Oλ− =  
This represents a set of n homogeneous equations possessing non-trivial solution, 
provided 

0A Iλ− =  
This determinant, on expansion, gives an n-th degree polynomial which is called 
characteristic polynomial of [A], which has n roots. Corresponding to each root, we can 
solve these equations in principle, and determine a vector called eigenvector.  
Finding the roots of the characteristic equation is laborious. Hence, we look for better 
methods suitable from the point of view of computation. Depending upon the type of  
matrix [A] and on what one is looking for, various numerical methods are available.  
 
Power Method and Jacobi’s Method 
 
Note! 
We shall consider only real and real-symmetric matrices and discuss power and Jacobi’s 
methods 
 
Power Method 
 
To compute the largest eigen value and the corresponding eigenvector of the system  
[ ]( ) ( )A X Xλ=  
where [A] is a real, symmetric or un-symmetric matrix, the power method is widely used 
in practice.  
 
Procedure 
Step 1: Choose the initial vector such that the largest element is unity. 
 
Step 2: The normalized vector (0)v   is pre-multiplied by the matrix [A]. 
 
Step 3:The resultant vector is again normalized. 
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Step 4: This process of iteration is continued and the new normalized vector is repeatedly 
pre-multiplied by the matrix [A] until the required accuracy is obtained. 
At this point, the result looks like 

( ) ( 1) ( )[ ]k k k
ku A v q v−= =  

Here, kq  is the desired largest eigen value and ( )kv   is the corresponding eigenvector. 
 
 
Example 
Find the eigen value of largest modulus, and the associated eigenvector of the matrix by 
power method  

2 3 2
[ ] 4 3 5

3 2 9
A

 
 =  
  

 

Solution 
We choose an initial vector (0)υ  
as (1,1,1) .T  
Then, compute first iteration 

(1) (0)

2 3 2 1 7
[ ] 4 3 5 1 12

3 2 9 1 14
u A v

     
    = =    
         

 

Now we normalize the resultant vector to get 
1
2

(1) (1)6
1714

1
u q v

 
 = = 
 
 

 

The second iteration gives, 
391

2 7
(2) (1) 6 67

7 7
171
14

(2)
2

2 3 2
[ ] 4 3 5

3 2 9 1

0.456140
12.2143 0.783626

1.0

u A v

q v

   
   = =    

         
 
 = = 
 
 

 

Continuing this procedure, the third and subsequent iterations are given in the following 
slides 
 

(3) (2)

2 3 2 0.456140
[ ] 4 3 5 0.783626

3 2 9 1.0
u A v

   
  = =   
     
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(3)
3

5.263158 0.44096
9.175438 11.935672 0.776874

11.935672 1.0
q v

   
   = = =   
   
   

 

(4) (3)

(4)
4

5.18814
[ ] 9.07006

11.86036

0.437435
11.8636 0.764737

1.0

u A v

q v

 
 = =  
 
 
 
 = = 
 
 

 

(5) (4)

(5)
5

5.16908
[ ] 9.04395

11.84178

0.436512
11.84178 0.763732

1.0

u A v

q v

 
 = =  
 
 
 
 = = 
 
 

 

 
After rounding-off, the largest eigen value and the corresponding eigenvector as accurate 
to two decimals are 

11.84λ =  
0.44

( ) 0.76
1.00

X
 
 =  
 
 

 

Example 
Find the first three iterations of the power method of the given matrix   
 

7 6 3
12 20 24
6 12 16

− 
 − − 
 − − 

 

Solution  
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[ ]

(0)

(1) (0)

7 6 3
12 20 24
6 12 16

(1,1,1)

7 6 3 1 7 6 3 10
12 20 24 1 12 20 24 8
6 12 16 1 6 12 16 2

twe choose finitial vector as v
first iteration

u A v

by diagon

− 
 − − 
 − − 

     =
  

− + −       
       = = − −  = − − + = −       
       − − − − + −       

 

[ ]

(1) (1)
1

(2) (1)

10 1
sin 8 10 0.8

2 0.2
sec

7 6 3 1 7 4.8 0.6 2.8
12 20 24 0.8 12 16 4.8 0.8
6 12 16 0.2 6 9.6 3.2 0.4

ali g u q v

ond iteration

u A v

   
    −      = −   =   
   − −   

  

− − +       
       = = − −  − = − + − = −      
      − − − − + −       

(1) (2)
2

2.8 1
sin 0.8 2.8 0.2857

0.4 0.1428
by diagonali g u q v




   
     −      = −   =   
      

 

 

[ ](3) (2)

7 6 3 1 7 1.7142 0.4284 4.8574
12 20 24 0.2857 12 5.714 3.4272 2.8588
6 12 16 0.1428 6 3.4284 2.2848 0.2868

sin
4.8574
2.858

third iteration

u A v

now daigonali g

  

− − −       
       = = − −  − = − + + = −       
       − − − + + −       

  

−
1

8 sin 4.8574 0.5885
0.2868 0.0590

now normali g
   
           −   
   − −   

 

 
Example 
Find the first three iteration of the power method applied on the following matrices  

            0

1 1 0
2 4 2 ( 1,2,1)

0 1 2

tuse x
− 

 − −       = − 
 − 
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Solution  
 

[ ]

(0)

(1) (0)

(1

1 1 0
2 4 2 ( 1, 2,1)

0 1 2
1

1 1 0 1 1 2 0 3
2 4 2 2 2 8 2 8

0 1 2 1 0 2 2 0
tan

tUSE x

st iterations

u x

now we normalize the resul t vector to get

u

− 
 − −     = − 
 − 

 

− − − − + −       
        = Α =  − −  = + − =       
       − − +       

        

) (1)
1

3
3 8

8 8 1
0 0

q x

− 
 − 
  = = =  
     
 

  

[ ]

[ ]

(2) (1)

(2)

(3) (2)

33 1 0
81 1 0 1.3758 62 4 2 1 4 0 4.75
8

0 1 2 0 11

1.375 0.28947
4.75 4.75 1

1 0.2152

1 1 0
2 4 2

0 1 2

u x

u

u x

− − − +   
 − −    
     = Α  = − −  = + + =     
    − −    −       

− −   
   = =   
   − −   

−
= Α  = − −

−

0.28947 1.28947 0.25789
1 4.99998 4.99998 1

0.2152 1.42104 0.28420

− − −      
       = =       

       − − −      

 

 
 
 
 
 
 
Exercise 
Find the largest eigen value and the corresponding eigen vector by power method after 
fourth iteration starting with the initial vector  (0) (0,0,1)Tυ =  
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1 3 2
[ ] 4 4 1

6 3 5
A

− 
 = − 
  

 

 
Let   

1 2, , , nλ λ λ  
be the distinct eigen values of an  n x n matrix [A], such that 1 2 nλ λ λ> > >  and 
suppose 1 2, , , nv v v  are the corresponding eigen vectors  
Power method is applicable if the above eigen values are real and distinct, and hence, the 
corresponding eigenvectors are linearly independent.  
Then, any eigenvector v in the space spanned by the eigenvectors  1 2, , , nv v v  
can be written as their linear combination 1 1 2 2 n nv c v c v c v= + + +  
 
Pre-multiplying by A and substituting 
   

1 1 1 2 2 2, , n n nAv v Av v Av vλ λ λ= = =  
 
We get 

2
1 1 1 2 2

1 1

n
n nAv c v c v c vλλλ

λ λ
 

= + + + 
 

  

Again, pre-multiplying by A and simplifying, we obtain 
2 2

2 2 2
1 1 1 2 2

1 1

n
n nA v c v c v c vλλλ

λ λ

    
 = + + +   
     

            

Similarly, we have 
 

2
1 1 1 2 2

1 1

r r
r r n

n nA v c v c v c vλλλ
λ λ

    
 = + + +   
     

  

and  
1 1

1 1 2
1 1 1 2 2

1 1

( )
r r

r r n
n nA v c v c v c vλλλ

λ λ

+ +

+ +
    
 = + + +   
     

  

Now, the eigen value  1λ  
 
can be computed as the limit of the ratio of the corresponding components of  rA v  
and 1 .rA v+   
That is,  
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11
1

1
1

( )
, 1, 2, ,

( )

rr
p

r rr
p

A v
Lt p n

A v
λλ
λ

++

→∞
= = =   

Here, the index p stands for the p-th component in the corresponding vector  
Sometimes, we may be interested in finding the least eigen value and the corresponding 
eigenvector.  
In that case, we proceed as follows.  
We note that  [ ]( ) ( ).A X Xλ=  
Pre-multiplying by 1[ ]A− , we get 

1 1 1[ ][ ]( ) [ ] ( ) [ ]( )A A X A X A Xλ λ− − −= =  
Which can be rewritten as 

1 1[ ]( ) ( )A X X
λ

− =  

which shows that the inverse matrix has a set of eigen values which are the reciprocals of 
the eigen values of [A].  
Thus, for finding the eigen value of the least magnitude of the matrix [A], we have to 
apply power method to the inverse of [A].  
 

                    © Copyright Virtual University of Pakistan                                              232 
 



23- Jacobi’s Method                                                                                                                                      VU 
 

Lecture 23 
 

Jacobi’s Method 
 
Definition 
An n x n   matrix [A] is said to be orthogonal if 

1

[ ] [ ] [ ],
i.e.[ ] [ ]

T

T

A A I
A A −

=

=
 

In order to compute all the eigen values and the corresponding eigenvectors of a real symmetric matrix, 
Jacobi’s method is highly recommended. It is based on an important property from matrix theory, which 
states 
that, if [A] is an n x n  real symmetric matrix, its eigen values are real, and there exists an orthogonal matrix 
[S] such that  the diagonal matrix D is   

1[ ][ ][ ]S A S−  
 
This digitalization can be carried out by applying a series of orthogonal transformations 

1 2, ,..., ,nS S S  

Let A be an n x n real symmetric matrix. Suppose ija be numerically the largest element amongst the off-

diagonal elements of A. We construct an orthogonal matrix S1 defined as   
 

sin , sin ,

cos , cos
ij ji

ii jj

s s
s s

θ θ

θ θ
= − =

= =
  

While each of the remaining off-diagonal elements are zero, the remaining diagonal elements are assumed 
to be unity. Thus, we construct S1 as under 

1

i-th column -th column

1 0 0 0 0
0 1 0 0 0

0 0 cos sin 0 i-th row

0 0 sin cos 0 -th row

0 0 0 0 1

j

S

j

θ θ

θ θ

↓ ↓

 
 
 
 
 

− ← =  
 

← 
 
 
  

  

  

    

  

    

  

    

  

 

Where cos , sin ,sin cosandθ θ θ ϑ−  are inserted in  ( , ), ( , ), ( , ), ( , ) thi i i j j i j j −  positions respectively, 

and elsewhere it is identical with a unit matrix.  
Now, we compute  

1
1 1 1 1 1

TD S AS S AS−= =  
Since S1 is an orthogonal matrix, such that .After the transformation, the elements at the position (i , j), (j , 
i) get annihilated, that is dij and dji reduce to zero, which is seen as follows: 
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2 2

2 2

cos sin cos sin
sin cos sin cos

cos sin cos sin ( )sin cos cos 2
( )sin cos cos 2 sin cos 2 sin cos

ii ij

ji jj

ii ij

ij jj

ii jj jj ii ij

ji ii ij ii jj ij

d d
d d

a a
a

a a

a a a a a
a a a a a a

θ θ θ θ
θ θ θ θ

θ θ θ θ θ θ θ
θ θ θ θ θ θ θ

 
 
 

−    
=     −    
 + − +
 − + + −  

 

Therefore,  0ijd =  only if, 
 

cos 2 sin 2 0
2

jj ii
ij

a a
a θ θ

−
+ =  

 
That is if  

2
tan 2 ij

ii jj

a
a a

θ =
−

   

Thus, we choose θ     such that the above equation is satisfied, thereby, the pair of off-diagonal elements dij 
and dji reduces to zero.However, though it creates a new pair of zeros, it also introduces non-zero 
contributions at formerly zero positions.  
Also, the above equation gives four values of    , but to get the least possible rotation, we choose  
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Lecture 24 
 

 
Example 
Find all the eigen values and the corresponding eigen vectors of the matrix by Jacobi’s 
method        

1 2 2

2 3 2

2 2 1

A

 
 

=  
 
  

 

Solution  
The given matrix is real and symmetric. The largest off-diagonal element is found to be  

13 31 2.a a= =   
Now, we compute 

13

11 33

2 2 4tan 2
0

ij

ii jj

a a
a a a a

θ = = = = ∞
− −

 

This gives,  4θ π=    
Thus, we construct an orthogonal matrix Si as 

1 1
2 24 4

1
1 1

4 4 2 2

0cos 0 sin
0 1 0 0 1 0

sin 0 cos 0
S

π π

π π

− − 
  = =   
     

 

The first rotation gives, 
1

1 1 1

1 1 1 1
2 2 2 2

1 1 1 1
2 2 2 2

1 2 20 0

0 1 0 2 3 2 0 1 0
0 02 2 1

3 2 0
2 3 0
0 0 1

D S AS−=

 − −   
    

=     
    
     

 
 =  
 − 

 

We observe that the elements d13 and d31 got annihilated. To make sure that calculations 
are correct up to this step, we see that the sum of the diagonal elements of D1 is same as 
the sum of the diagonal elements of the original matrix A. 
As a second step, we choose the largest off-diagonal element of D1 and is found to be  

12 21 2,d d= = and compute  

12

11 22

2 4tan 2
0

d
d d

θ = = = ∞
−

 

This again gives 4θ π=   
Thus, we construct the second rotation matrix as 
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1 1
2 2

1 1
2 2 2

0

0

0 0 1

S

− 
 

=  
 
 

 

At the end of the second rotation, we get 
1

2 2 1 2

1 1 1 1
2 2 2 2

1 1 1 1
2 2 2 2

0 03 2 0
0 2 3 0 0

0 0 10 0 1 0 0 1

5 0 0
0 1 0
0 0 1

D S D S−=

−    
    = −    
    −    
 
 =  
 − 

 

This turned out to be a diagonal matrix, so we stop the computation. From here, we 
notice that the eigen values of the given matrix are 5,1 and –1. The eigenvectors are the 
column vectors of 1 2S S S=  
Therefore 

1 1 1 1
2 2 2 2

1 1
2 2

1 1
2 2

1 1 1
2 2 2

1 1
2 2

1 1 1
2 2 2

0 0

0 1 0 0
0 0 0 1

0

S

− −   
   

=    
   
   
 − −
 

=  
 

−  

 

 
Example 
Find all the eigen values of the matrix by Jacobi’s method. 

2 1 0
1 2 1

0 1 2
A

− 
 = − − 
 − 

 

Solution 
Here all the off-diagonal elements are of the same order of magnitude. Therefore, we can 
choose any one of them. Suppose, we choose a12 as the largest element and compute 

1tan 2
0

θ −
= = ∞  

Which gives,    4.θ π=    
 
Then    cos sin 1 2θ θ= =                        
and we construct an orthogonal matrix S1 such that 
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1 1
2 2

1 1
2 2

0

0

0 0 1

S

− 
 

=  
 
 

 

The first rotation gives 
1

1 1 1

1 1 1 1
2 2 2 2

1 1 1 1
2 2 2 2

1
2

1
2

1 1
2 2

0 02 1 0
0 1 2 1 0

0 1 20 0 1 0 0 1

1 0

0 3

2

D S AS−=

− −   − 
    = − − −    
    −    
 −
 

= − 
 
− −  

 

Now, we choose 13 1 2d = −  
As the largest element of D1 and compute 

13

11 33

2 2tan 2
1 2

27 22 41 .o

d
d d

θ

θ

−
= =

− −

′ ′′=

 

Now we construct another orthogonal matrix S2, such that 

2

0.888 0 0.459
0 1 0

0.459 0 0.888
S

− 
 =  
  

 

At the end of second rotation, we obtain 

1
2 2 1 2

0.634 0.325 0
0.325 3 0.628

0 0.628 2.365
D S D S−

− 
 = = − 
 − 

 

Now, the numerically largest off-diagonal element of D2 is found to be 23 0.628d = − and 
compute. 

2 0.628tan 2
3 2.365

31 35 24 .o

θ

θ

− ×
=

−
′ ′′= −

 

Thus, the orthogonal matrix is 

3

1 0 0
0 0.852 0.524
0 0.524 0.852

S
 
 =  
 − 

 

At the end of third rotation, we get 
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1
3 3 2 3

0.634 0.277 0
0.277 3.386 0

0 0 1.979
D S D S−

− 
 = =  
  

 

To reduce D3 to a diagonal form, some more rotations are required. However, we may 
take 0.634, 3.386 and 1.979 as eigen values of the given matrix. 
 
Example 
 
Using Jacobi’s method, find the eigenvalues and eigenvectors of the following matrix, 

                                                                   
1 1/ 2 1/ 3
1/ 2 1/ 3 1/ 4
1/ 3 1/ 4 1/ 5

 
 
 
  

 

Solution:  

12 21

12

11 22

1

. arg
1
2

122 2 32tan 2 1 21
3

3tan
2 28.155

2

ij

ii jj

The given matrix is real and symmetric The l est off diagonal element is found to be

a a

Now we comute

a a
a a a a

θ

θ

−

−

= =

 
 
 = = = =

− − −

 
 
 = =

 
1

1

cos28.155 sin 28.155 0 0.882 0.472 0
sin 28.155 cos28.155 0 0.472 0.882 0

0 0 1 0 0 1

Thus we construct an orthogonal matrix S as

S
− −   

   = =   
      

 

1
1 1 1,

0.882 0.472 0 1 1/ 2 1/3 0.882 0.472 0
0.472 0.882 0 1/ 2 1/3 1/ 4 0.472 0.882 0

0 0 1 1/3 1/ 4 1/5 0 0 1

1.268 0.000 0.412
0.000 0.066 0.063
0.412 0.063 0.200

The first rotation gives D S AS−=

−     
     = −     
          
 
 =  
  

 

 
We see that sum of the diagonal elements of 1D =1.53 
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And the sum of the diagonal elements of A = 1.53 
This means that our question is going right. 
 
As a second step we choose the largest of off-diagonal element of D1, which is d13 = d31 
= 0.412, and comput 

( )

( )

13

11 33
1

2 0.4122tan 2 0.772
1.268 0.200

tan 0.772
18.834

2

d
d d

θ

θ
−

= = =
− −

= =

 

 
 
 
 
 
 
 

1
2 2 1 2

,

0.946 0 0.323 1.268 0.000 0.412 0.946 0 0.323
0 1 0 0.000 0.066 0.063 0 1 0

0.323 0 0.946 0.412 0.063 0.200 0.323 0 0.946

1.408 0.020 0.001
0.020 0.066 0.060
0.001 0.

Thus the rotation gives
D S D S−=

−     
     =      
     −     

−
=

− 060 0.059

 
 
 
  

 

We again see that sum of the diagonal elements of 2D =1.53 
Also the sum of the diagonal elements of A = 1.53 
This means that our question is going right. 
Hence the eigenvalues are 1.408 , .066 and .059 and the corresponding eigenvectors are 
the columns of S.Where  
                     S =

1 2S S  

                           = 
0.882 0.472 0
0.472 0.882 0

0 0 1

− 
 
 
  

0.946 0 0.323
0 1 0

0.323 0 0.946

− 
 
 
  

 

                            = 
.8343 .472 .2848
.446 .88 .1524
.323 0 .946

− − 
 − 
  

 

 
 

2

2

cos18.834 0 sin18.834 0.946 0 0.323
0 1 0 0 1 0

sin18.834 0 cos18.834 0.323 0 0.946

Thus we construct an orthogonal matrix S as

S
− −   

   = =   
      
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Lecture 25 
Inner Product Space 

 
Inner Product Space 

In mathematics, an inner product space is a vector space with the additional structure 
called an inner product. This additional structure associates each pair of vectors in the 
space with a scalar quantity known as the inner product of the vectors. Inner products 
allow the rigorous introduction of intuitive geometrical notions such as the length of a 
vector or the angle between two vectors. They also provide the means of defining 
orthogonality between vectors (zero inner product). Inner product spaces generalize 
Euclidean spaces (in which the inner product is the dot product, also known as the scalar 
product) to vector spaces of any (possibly infinite) dimension, and are studied in 
functional analysis. 

Definition 
An inner product on a vector space V  is a function that to each pair of vectors 

u and v  associates a real number ,u v〈 〉 and satisfies the following axioms, 

For all , ,u v w  in V and all scalars C: 
1) , ,u v v u〈 〉 = 〈 〉   
2) , , ,u v w u w v w〈 + 〉 = 〈 〉 + 〈 〉  
3) , ,cu v c u v〈 〉 = 〈 〉  
4) , 0 , 0 0u u and u u iff u〈 〉 ≥ 〈 〉 = =  
 
A vector space with an inner product is called inner product space. 
 
Example 1 
  Fix any two positive numbers say 4 & 5 and for vectors  1 2,u u u=   and 

1 2,v v v=  in  2R     set  

                                                 1 1 2 2, 4 5u v u v u v= +  
Show that it defines an inner product. 
 
Solution 

  Certainly Axiom 1 is satisfied, because  
,u v = 4u1v1 +5u2v2 = 4v1u1 + 5v2u2 = ,uv . 

If w = (w1, w2), then 
1 1 1 2 2 2

1 1 2 2 1 1 2 2

, 4( ) 5( )

4 5 4 5 , ,

u v w u v w u v w

u w u w v w v w u w v w

+ = + + +

= + + + = +
 

This verifies Axiom 2. 
For Axiom 3, we have 1 1 2 2 1 1 2 2, 4( ) 5( ) (4 5 ) ,c cu v cu v c u v u v c= + = + =u v u v  

For Axiom 4, note that 2 2
1 2, 4 5 0,u u u u= + ≥  and 2 2

1 24 5 0u u+ =  only if u1 = u2 = 0, that 

is, if u = 0. Also, 0,0 = 0.  
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 So ,u v = 4u1v1 +5u2v2 = 4v1u1 + 5v2u2  defines an inner product on R2. 
 
 
Example 2 
Let A be symmetric, positive definite n n×   matrix and let u and v be vectors in nℜ   . 
Show that  , tu v u Av=   defines and inner product. 
Solution 
                 We check that 

                                         
( )

, . .

. ,

t

tt t t

u v u Av u Av Av u

A v u v A u v Au v u

= = =

= = = =
 

Also 

                                      
( ),

, ,

t t tu v w u A v w u Av u Aw

u v u w

+ = + = +

= +
 

And  
                                 ( ) ( ), ,t tcu v cu Av c u Av c u v= = =  
Finally since A is positive definite  

, 0 0tu u u Au for all u= > ≠  

                                    , 0 0tSo u u u Au iff u= = =  

So , tu v u Av=  is an inner product space. 
 
Example 3   
 Let t0, …, tn be distinct real numbers. For p and q in Pn, define 

0 0 1 1, ( ) ( ) ( ) ( ) ( ) ( )n np q p t q t p t q t p t q t= + + +  
Show that it defines inner product. 

 
Solution 
Certainly Axiom 1 is satisfied, because  

0 0 1 1

0 0 1 1

, ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ,
n n

n n

p q p t q t p t q t p t q t

q t p t q t p t q t p t q p

= + + +

= + + + =




 

If r = 0 1( ) ( ) ( )nr t r t r t+ + + , then 
[ ] [ ] [ ]

[ ] [ ]
0 0 0 1 1 1

0 0 1 1 0 0 1 1

, ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ... ( ) ( ) ( ) ( ) ( ) ( ) ... ( ) ( )

, ,

n n n

n n n n

p q r p t q t r t p t q t r t p t q t r t

p t r t p t r t p t r t q t r t q t r t q t r t

p r q r

+ = + + + + + +

= + + + + + + +

= +



 

This verifies Axiom 2. 
For Axiom 3, we have 

 
[ ] [ ] [ ]

[ ]
0 0 1 1

0 0 1 1

, ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ,
n n

n n

cp q cp t q t cp t q t cp t q t

c p t q t p t q t p t q t c p q

= + + +

= + + + =




 

For Axiom 4, note that 
2 2 2

0 1, [ ( )] [ ( )] [ ( )] 0np p p t p t p t= + + + ≥  
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Also, ,0 0 =0. (We still use a boldface zero for the zero polynomial, the zero vector in 

Pn.) If ,p p =0, then p must vanish at n + 1 points: t0, …, tn. This is possible only if p is 
the zero polynomial, because the degree of p is less than n + 1. Thus 

0 0 1 1, ( ) ( ) ( ) ( ) ( ) ( )n np q p t q t p t q t p t q t= + + +  defines an inner product on Pn. 

 
Example 4 

Compute ,p q  where p(t)= 4+t  q(t) = 5-4t2  
Refer to 2P  with the inner product given by evaluation at -1, 0 and 1 in example 2. 

Solution 

   
( 1) 3 , (0) 4 , (1) 5
( 1) 1 , (0) 5 , (1) 1

P P P
q q q
− = = =
− = = =

 

                     

                      

, ( 1) ( 1) (0) (0) (1) (1)
(3)(1) (4)(5) (5)(1)
3 20 5

p q P q P q P q= − − + +

= + +
= + +

 

Example 5 
Compute the orthogonal projection of q onto the subspace spanned by p, for p and q in 
the above example. 
Solution 

The orthogonal projection of q onto the subspace spanned by p 
 

( 1) 3 , (0) 4 , (1) 5
( 1) 1 , (0) 5 , (1) 1

P P P
q q q
− = = =
− = = =

 

 
. 28 . 50q p p p= =  

                                        

                                     

. 28 (4 )
. 50

56 14
25 25

q pq p t
p p

t

= = +

= +



 

 
Example 6  

Let V be 2P  ,  with the inner product from example 2  where                                        

0 1 2
10 , 1
2

t t and t= = =   

Let   ( ) ( )212 2 1p t t and q t t= = −     

Compute , ,p q and q q  
Solution 
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( ) ( ) ( ) ( ) ( )

( )( ) ( )( ) ( )( )

( ) ( )

( ) ( ) ( )

2
2 2

2 2 2

1

2
, 0 0 1 1

0 1 3 0 12 1 12

1, 0 1
2

1 0 1 2

p q p q p p q

q q q q q

= + +

= − + + =

  = + +          

= − + + =

 

 
Norm of a Vector 
                                           Let V be and inner product space with the inner product 
denoted by ,u v   just as in nR  , we define the length or norm of a vector V to be the 
scalar  
                                2, ,v u v or v u v= =  
 

1) A unit vector is one whose length is 1. 
2) The distance between &u v  is  u v−   vectors &u v  are orthogonal if , 0u v =  
 

Example 7 
   Compute the length of the vectors in example 3. 
 
Solution 

( ) ( )

( ) ( ) ( )

2
2 22

2 2 2

1, 0 1
2

0 3 12 153

153

p p p p p p

p

  = = + +          

= + + =

=

 

 
In example 3 we found that   

                                                        
, 2

2

q q

Hence q

=

=
 

 
Example 8 

Let 2ℜ  have the inner product of example 1 and let x=(1,1) and y=(5,-1)  
a)   Find 

2
, ,x y and x y              b) Describe all vectors ( )1 2,z z  that are 

orthogonal to y. 
Solution 
          
a) We have x=(1,1) and y=(5,-1)  
And                           1 1 2 2, 4 5x y x y x y= +  
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, 4(1)(1) 5(1)(1)

4 5 9 3

x x x= = +

= + = =
 

                                
, 4(5)(5) 5( 1)( 1)

100 5 105

y y y= = + − −

= + =
 

                                       

                                        
[ ]
[ ]
[ ]

2

2

2

2

, , ,

4(1)(5) 5(1)( 1)

20 5

15 225

x y x y x y=

= + −

= −

= =

 

 
b) All vectors 1 2( , )z z z=  orthogonal to y=(5,-1) 

[ ]

1 2

1 2

1 2

1

2

, 0
4(5)( ) 5( 1)( ) 0
20 5 0
4 0

4 1 0

y z
z z

z z
z z

z
z

< >=
+ − =

− =
− =

 
− = 

 

 

So all multiples of 
4
1

 
 − 

 are orthogonal to y. 

 
Example 9 
  Le V be 4P  with the inner product in example 2 involving evaluation of 
polynomials at -2,-1,0,1,2 and view 2P  as a subspace of V. Produce an orthogonal basis 
for 2P  by applying the Gram Schmidt process to the polynomials 21, &t t . 
Solution 
 
 
Given polynomials           1        t        t2   at               -2,-1, 0, 1 and 2 

 
 
Polynomial:          1             t            t2    

Vector of values: 

1 2 4
1 1 1

, ,1 0 0
1 1 1
1 2 4

−     
     −     
     
     
     
          

 

The inner product of two polynomials in V equals the (standard) inner product of their 
corresponding vectors in R5. Observe that t is orthogonal to the constant function 1. So 
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take p0(t) = 1 and p1(t) = t. For p2, use the vectors in R5 to compute the projection of t2 
onto Span {p0, p1}: 

2 2
0

0 0

2 2
1

, ,1 4 1 0 1 4 10

, 5

, , 8 ( 1) 0 1 8 0

t p t

p p

t p t t

= = + + + + =

=

= = − + − + + + =

 

The orthogonal projection of t2 onto Span {1, t} is 0 1
10 0 .
5

p p+  Thus 
2 2

2 0( ) 2 ( ) 2p t t p t t= − = −  
An orthogonal basis for the subspace P2 of V is: 
 

Polynomial:           p0           p1            p2 
   

Vector of values: 

1 2 2
1 1 1

, ,1 0 2
1 1 1
1 2 2

−     
     − −     
     −
     −     
          

   

    
Best Approximation in Inner Produce Spaces 
 
 A common problem in applied mathematics involves a vector space V whose 
elements are functions. The problem is to approximate a function f  in V by a function 
g  from a specified subspace W of V. The “closeness” of the approximation of f  
depends on the way f g−  is defined. We will consider only the case in which the 
distance between f  and g  is determined by an inner product. In this case the best 
approximation to f  by functions in W is the orthogonal projection of f onto the 
subspace W. 
 
Example 10 
   Let V be 4P  with the inner product in example 5 and let 0 1 2, &P P P  
be the orthogonal basis for the subspace 2P , find the best approximation to  
( ) 415

2
p t t= −     by polynomials in 2P . 

 
Solution:     The values of p0, p1, and p2 at the numbers – 2, –1, 0, 1, and 2 are listed 
in R5 vectors in 

Polynomial:           p0           p1           p2  
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Vector of values: 

1 2 2
1 1 1

, ,1 0 2
1 1 1
1 2 2

−     
     − −     
     −
     −     
          

      

The corresponding values for p are: 3,9 2,5,9 2,−  and –3. 
We compute 

0 1 2

0 0 2 2

, 8 , 0 , 31

, 5, , 14

p p p p p p

p p p p

= = = −

= =
  

Then the best approximation in V to p by polynomials in P2 is 

2

0 1 2
0 1 2

0 0 1 1 2 2

28 31 8 31
0 25 14 5 14

, , ,
ˆ

, , ,

( 2).

p

p p p p p p
p proj p p p p

p p p p p p

p p t−

= = + +

= + = − −

 

 
This polynomial is the closest to P of all polynomials in P2, when the distance between 
polynomials is measured only at –2, –1, 0, 1, and 2. 
 
Cauchy – Schwarz Inquality 

 
,

,

For all u v in V

u v u v≤
 

 
 
Triangle Inequality 
 

,For all u v in V
u v u v+ ≤ +

 

Proof 
 

 
 

2 22 ,u u v v≤ + +   
2 22u u v v≤ + +  

( )22u v u v+ = +  

 
   u v u v⇒ + = +  

 
Inner product for [ ],C a b  

2 ,

, 2 , ,

u v u v u v

u u u v v v

+ = + +

= + +
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   Probably the most widely used inner product space for applications 
is the vector space [ ],C a b  of all continuous functions on an interval a t b≤ ≤ , with an 
inner product that will describe. 
 
Example 11 
  For f , g  in [ ],C a b  , set  

( ) ( ),
a

b
f g f t g t dt= ∫  

Show that it defines an inner product on [ ],C a b . 
Solution 

               Inner product Axioms 1 to 3 follow from elementary properties of 
definite integrals 

 
1. , ,

2. , , ,

3. , ,

f g g f

f h g f g h g

cf g c f g

=

+ = +

=

 

 For Axiom 4, observe that 
2, [ ( )] 0

b

a
f f f t dt= ≥∫  

 
The function [f(t)]2 is continuous and nonnegative on [a, b]. If the definite integral of 
[f(t)]2 is zero, then [f(t)]2 must be identically zero on [a, b], by a theorem in advanced 
calculus, in which case f is the zero function. Thus ,f f = 0 implies that f is the zero 
function of [a, b].  

So , ( ) ( )
b

a
t t dt= ∫f g f g  defines an inner product on C[a, b]. 

 
Example 12 

Compute     ,f g   where   [ ]2 3( ) 1 3 ( ) 0,1f t t and g t t t on v C= − = − = . 
Solution 

Let V be the space [ ],C a b  with the inner product  

( ) ( ),
a

b
f g f t g t dt= ∫  

                                               2 3( ) 1 3 , ( )f t t g t t t= − = −  
 

                                             

( )
( )

1 2 3

0
1 5 3

0
1

6 4 2

0

, (1 3 )

3 4

1 1
2 2

0

f g t t t dt

t t t dt

t t t

= − −

= − +

= − +

=

∫
∫

 

Example 13 
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Let V be the space [ ],C a b  with the inner product  

( ) ( ),
a

b
f g f t g t dt= ∫  

Let W be the subspace spanned by the polynomials       
( ) ( ) ( ) 2

1 2 31 , 2 1 & 12P t P t t P t t= = − =  
Use the Gram – Schmidt process to find an orthogonal basis for W. 
Solution 
  
Let q1 = p1, and compute 

1

0

1 2

0
, (2 1)(1) ( ) 0t dt t t= − = − =∫2 1p q  

So p2 is already orthogonal to q1, and we can take q2 = p2. For the projection of p3 onto 
W2 = Span {q1, q2}, we compute 

1

0

1 2 3

0
, 12 1 4 4t dt t= ⋅ = =∫3 1p q  

1

0

1

0
, 1 1 1dt t= ⋅ = =∫1 1q q  

1 12 3 2

0 0
, 12 (2 1) (24 12 ) 2t t dt t t dt= − = − =∫ ∫3 2p q   

1

0

1 2 3

0

1 1, (2 1) (2 1)
6 3

t dt t= − = − =∫2 2q q  

Then   
, , 4 2proj 4 6
, , 1 1 3

= + = + = +
2

3 1 3 2
w 3 1 2 1 2 1 2

1 1 2 2

p q p q
p q q q q q q

q q q q
 

And  proj 4 6= − = − −
23 3 w 3 3 1 2q p p p q q  

As a function, q3(t) = 12t2 – 4 – 6(2t – 1) = 12t2 – 12t + 2. The orthogonal basis for the 
subspace W is {q1, q2, q3} 
 
Exercises 

Let 2ℜ  have the inner product of example 1 and let x=(1,1) and y=(5,-1)  
a)   Find 

2
, ,x y and x y              b) Describe all vectors ( )1 2,z z  that are 

orthogonal to y. 
 
2)   Let 2ℜ  have the inner product of Example 1. Show that  the Cauchy-Shwarz 
inequality  holds for x=(3,-2) and y=(-2,1) 
 
  Exercise 3-8  refer to 2P  with  the inner product given by evaluation at -1,0 and 1 in 
example 2. 
3)   Compute ,p q  where p(t)= 4+t  q(t) = 5-4t2 

4)   Compute ,p q  where p(t)= 3t - t2  q(t) = 3 + t2 

      5)    Compute  P and q   for p and q  in exercise 3. 

       6)    Compute  P and q   for p and q  in exercise 4. 
       7)    Compute the orthogonal projection of q onto the subspace spanned by p, for p 
and q in Exercise 3. 
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       8)     Compute the orthogonal projection of q onto the subspace spanned by p, for p 
and q in Exercise 4. 

 
9)    Let 3P  have the inner product given by evaluation at -3,-1,1, and 3. Let 

2
1 2( ) 1 , ( ) , ( )p t p t t and p t tο = = =  

a)Computer the orthogonal projection of 2P  on to the subspace spanned by 0P  and 1P . b)     
Find a polynomial q that is orthogonal to 0P   and 1P  such tha { }0 1, ,p p q  is an orthogonal 

basis for span { }0 1, ,p p q  . Scale the polynomial q so that its vector of values at    (-3,-
1,1,3) is (1,-1,-1,1) 

10)        Let 3P  have the inner product given by evaluation at -3,-1,1, and 3. Let 
2

1 2( ) 1 , ( ) , ( )p t p t t and p t tο = = =  
Find the best approximation to 3( )p t t=  by polynomials in Span { }0 1, ,p p q . 

11)   Let 0 1 2, ,p p p  be the orthogonal polynomials described in example 5, where the 
inner product on 4P  is given by  evaluation at -2, -1, 0, 1, and 2. Find the orthogonal 
projection of 3t  onto Span { }0 1 2, ,p p p  

12)   Compute     ,f g   where   [ ]2 3( ) 1 3 ( ) 0,1f t t and g t t t on v C= − = − = . 
 
13)   Compute     ,f g   where   

 [ ]3 2( ) 5 3 ( ) 0,1f t t and g t t t on v C= − = − = . 

14)   Compute f  for f in exercise 12. 

15)    Compute g  for g in exercise 13. 
 
16) Let V be the space C[-2,2]  with the inner product of Example 7. Find an 

orthogonal basis for the subspace spanned by the polynomials 21, ,t t .   
17)  

 Let  1

2

u
u

u
 

=  
 

 and 1

2

v
v

v
 

=  
 

 be two vectors in 2R . Show that 1 1 2 2, 2 3u v u v u v= +  

defines an inner product. 
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Lecture 26 
Application of inner product spaces 

 
Definition 
 
An inner product on a vector space V is a function that associates to each pair of vectors u 
and v in V, a real number  ,u v   and satisfies the following axioms, for all u, v, w in V 
and all scalars c:  
1. , ,

2. , , ,

3. , ,

4. , 0 , 0   0.

u v v u

u v w u w v w

cu v c u v

u u and u u iff u

=

+ = +

=

≥ = =  

 

 
A vector space with an inner product is called an inner product space.  
 
Least Squares Lines  
 
               The simplest relation between two variables x and y is the linear 
equation 0 1y xβ β= + . Often experimental data produces points 1 1( , ),..., ( , )n nx y x y  that 
when graphed, seem to lie close to a line. Actually we want to determine the parameters 

0β  and 1β  that make the line as “close” to the points as possible. There are several ways 
to measure how close the line is to the data. The usual choice is to add the squares of the 
residuals. The least squares line is the line 0 1y xβ β= +  that minimizes the sum of the 
squares of the residuals. 
       If the data points are on the line, the parameters 0β  and 1β  would satisfy the 
equations 

                                       
0 1 1 1

0 1 2 2

0 1

_________________

. .
. .
. .

n n

predicted Observed
value value

x y
x y

x y

β β
β β

β β

+ =
+ =

+ =
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We can write this system as  
 

01

2 1

0

1

1
1
. . .

, ,
. . .
. . .
1 n n

X y
yx

x y

Where X y

x y

β

β
β

β

=

  
  
  
    

= = =     
    

  
  

      

 

 
Computing the least-squares solution of X yβ =  is equivalent to finding the β   that 
determines the least-squares line. 
 
Example 1 
 
Find the equation 0 1y xβ β= +   of the least-squares line that best fits the data points      
(2, 1), (5, 2), (7, 3), (8, 3).  
                 
Solution 
                  
 
 
 
 
 
 
 
 
For the least-squares solution of x yβ = , obtain the normal equations(with the new 
notation) : 
              ˆT TX X X yβ =  
i.e, compute  
 

1 2
1 1 1 1 1 5 4 22
2 5 7 8 1 7 22 142

1 8

TX X

 
     = =       
 
 

 

1
1 1 1 1 2 9
2 5 7 8 3 57

3

TX y

 
     = =       
 
 

 

0

1

1 2 1
1 5 2

, ,
1 7 3
1 8 3

X y

Here X y

β

β
β

β

=

   
       = = =     
   
   
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The normal equations are  
 

               0

1

4 22 9
22 142 57

β
β
    

=    
    

 

Hence, 
 

1
0

1

4 22 9
22 142 57

142 22 91
22 4 5784

24 2 / 71
30 5 /1484

β
β

−
     

=     
    

−   
=    −   

   
= =   

   

 

Thus, the least -squares line has the equation  

                               2 5
7 14

y x= +  

 

 
 
 
Weighted Least-Squares  
 
         Let y be a vector of n observations, 1 2, ,..., ny y y and suppose we wish to 
approximate y by a vector ŷ that belongs to some specified subspace of n (as discussed 
previously that ŷ  is written as Ax so that ŷ  was in the column space of A).Now suppose 
the approximating vector ŷ  is to be constructed from the columns of matrix A. Then we 
find an x̂  that makes ˆ ˆAx y= as close to y as possible. So that measure of closeness is the 
weighted error  
                        2 2ˆ ˆWy Wy Wy WAy− = −  
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Where W is the diagonal matrix with (positive) 1,..., nw w on its diagonal, that is  

                  

1

2

0 . . . 0
0
. . .
. . .
. . .
0 . . . n

w
w

W

w

 
 
 
 

=  
 
 
 
  

  

Thus, x̂ is the ordinary least-squares solution of the equation  
                                        WAx Wy=  
 
 The normal equation for the weighted least-squares solution is  
               ( ) ( )T TWA WAX WA Wy=  
Example 2 
 
Find the least squares line 0 1y xβ β= +   that best fits the data (–2, 3), (–1, 5), (0, 5), (1, 4), 
(2, 3). Suppose that the errors in measuring the y-values of the last two data points are 
greater than for the other points. Weight this data half as much as the rest of the data. 
 
Solution 
 

0

1

,
1 2 3
1 1 5
1 0 , , 5
1 1 4
1 2 3

Write X and y

X y

β

β
β

β

−   
   −    
   = = = 
    
   
      

 

 
For a weighting matrix, choose W with diagonal entries 2 , 2 , 2 , 1 and 1. 
Left-multiplication by W scales the rows of X and y: 
 

2 0 0 0 0 1 2
0 2 0 0 0 1 1
0 0 2 0 0 1 0
0 0 0 1 0 1 1
0 0 0 0 1 1 2

WX

−   
   −   
   =
   
   
      
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2 4 6
2 2 10
2 0 , 10
1 1 4
1 2 3

WX Wy

−   
   −   
   = =
   
   
      

 

For normal equation, compute  
 

14 9 59
( ) , ( )

9 25 34
T TWX WX and WX Wy

−   
= =   − −   

 

And solve  

                 

0

1

1
0

1

0

1

0

1

0

1

14 9 59
9 25 34

14 9 59
9 25 34

25 9 591
9 14 34269

25 9 591
9 14 34269

1169 4.31
55 0.2269

β
β

β
β

β
β

β
β

β
β

−

−     
=    − −    

−     
=     − −    

     
=     −    

     
=     −    

     
= =     

    

 

Therefore, the solution to two significant digits is 0 14.3 0.20andβ β= = .  
Hence the required line is 4.3 0.2y x= +  
In contrast, the ordinary least-squares line for this data can be found as: 
 

1 2
1 1

1 1 1 1 1 5 0
1 0

2 1 0 1 2 0 10
1 1
1 2

TX X

− 
 −     = =   − −     
 
  
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3
5

1 1 1 1 1 20
5

2 1 0 1 2 1
4
3

TX y

 
 
     = =   − − −    
 
  

 

 

        

0

1

1
0

1

0

1

0

1

5 0 20
0 10 1

5 0 20
0 10 1

10 0 201
0 5 150

200 4.01
5 0.150

β
β

β
β

β
β

β
β

−

    
=    −    

     
=     −    

     
=     −    

     
= =     − −    

                                       

 
Hence the equation of least-squares line is  
                                  1.0 0.1y x= −  

                   
 
What Does Trend Analysis Mean? 
 
An aspect of technical analysis that tries to predict the future movement of a stock based 
on past data. Trend analysis is based on the idea that what has happened in the past gives 
traders an idea of what will happen in the future.  
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Linear Trend 
 
A first step in analyzing a time series, to determine whether a linear relationship provides 
a good approximation to the long-term movement of the series computed by the method 
of semi averages or by the method of least squares. 
 
Note 
 
The simplest and most common use of trend analysis occurs when the points 0 1, ,..., nt t t  
can be adjusted so that they are evenly spaced and sum to zero. 
 
Example 
 
Fit a quadratic trend function to the data (-2,3), (-1,5), (0,5), (1,4) and (2,3) 
 
Solution 
 
The t-coordinates are suitably scaled to use the orthogonal polynomials found in Example 
5 of the last lecture. We have 
 
                                                                    

0 1 2Polynomial : p p p data : g
1 2 2 3
1 1 1 5

: 1 , 0 , 2 , 5
1 1 1 4
1 2 2 3

Vector of values

−       
       − −       
       −
       −       
              

 

0 1 2
0 1 2

0 0 1 1 2 2

0 1 2

2

, , ,ˆ
, , ,

20 1 7
5 10 14

ˆ ( ) 4 0.1 0.5( 2)

g p g p g pp p p p
p p p p p p

p p p

and p t t t

< > < > < >
= + +
< > < > < >

= − −

= − − −

 

 
Since, the coefficient of 2p is not extremely small, it would be reasonable to conclude 
that the trend is at least quadratic. 
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Above figure shows that approximation by a quadratic trend function 
 
Fourier series 
 
If f is a 2π -periodic function then  

0

1
( ) ( cos sin )

2 m m
m

af t a mt b mt
∞

=

= + +∑  

is called Fourier series of f where  
 

2

0

1 ( ) cosma f t mt dt
π

π
= ∫          and  

 
2

0

1 ( )sinmb f t mt dt
π

π
= ∫  

 
Example 
 
Let [0, 2 ]C π  has the inner product  

2

0

, ( ) ( )f g f t g t dt
π

< >= ∫  

and let m and n be unequal positive integers. Show that cos mt and  cos nt  
are orthogonal. 
 
Solution 
 
When  m n≠  
 

2

0
2

0

cos ,cos cos cos

1 [cos ( ) cos( )
2

mt nt mt nt dt

mt nt mt nt dt

π

π

< >=

= + + −

∫

∫
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2

0

1 sin ( ) sin ( )
2

0

mt nt mt nt
m n m n

π
+ − = + + − 

=

 

 
 
Example 
 
Find the nth-order Fourier approximation to the function  
 

( )f t t=  on the interval[0, 2 ]π . 
 
Solution 
 
We compute  
 

22
20

00

1 1 1 1.
2 2 2 2
a t dt t

ππ

π
π π

 
= = = 

  
∫  

 
and for k>0, using integration by parts, 
 

            

22

2
00

22

2
00

1 1 1cos cos sin 0

1 1 1 2sin sin cos

k

k

ta t kt dt kt kt
k k

tb t kt dt kt kt
k k k

ππ

ππ

π π

π π

 = = + =  

 = = − = −  

∫

∫

 

 
Thus, the nth-order Fourier approximation of ( )f t t=  is  
 

2 22sin sin 2 sin 3 sin
3

t t t nt
n

π − − − − ⋅⋅⋅−  

 
The norm of the difference between f and a Fourier approximation is called the mean 
square error in the approximation. 
It is common to write  
 

0

1
( ) ( cos sin )

2 m m
m

af t a mt b mt
∞

=

= + +∑  

This expression for f (t) is called the Fourier series for f on[0, 2 ]π . The term cosma mt , 
for example, is the projection of f onto the one-dimensional subspace spanned by cos mt . 
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Example 
 
Let 2

1 2 3( ) 1, ( ) , ( ) 3 4q t q t t and q t t= = = − .Verify that 1 2 3{ , , }q q q is an orthogonal set in 
C{-2,2] with the inner product 
 

, ( ) ( )
b

a

f g f t g t dt< >= ∫  

 
Solution: 

22
2

1 2
22

2
22 2

1 3 2
2

22
2 4 2

2 3
22

1, 1. 0
2

, 1.(3 4) ( 4 ) 0

3, .(3 4) ( 2 ) 0
4

q q t dt t dt

q q t dt t t

q q t t dt t t

−−

−
−

−−

< >= = =

< >= − = − =

< >= − = − =

∫

∫

∫

 

 
Exercise 
 

1. Find the equation 0 1y xβ β= +   of the least-squares line that best fits the data 
points (0, 1), (1, 1), (2, 2), (3, 2).  

2. Find the equation 0 1y xβ β= +   of the least-squares line that best fits the data 
points (-1, 0), (0, 1), (1, 2,),(2, 4).  

3. Find the least-squares line 0 1y xβ β= + that best fits the data  
         (-2, 0), (-1, 0), (0, 2,),(1, 4),(2, 4), assuming that the first and last data points are 
      less reliable. Weight them half as much as the three interior points.  

      4:   To make a trend analysis of six evenly spaced data points, one can use orthogonal  
            polynomials with respect to evaluation at the points t=-5, -3, -1, 1, 3and 5 
     (a).  Show that the first three orthogonal polynomials are  

            2
0 1 2

3 35( ) 1, ( ) , ( )
8 8

p t p t t and p t t= = = −  

     (b)   Fit a quadratic trend function to the data  
            (-5, 1), (-3, 1), (-1, 4), (1, 4), (3, 6), (5, 8) 
      5:    For the space [0, 2 ]C π  with the inner product defined by 

2

0

, ( ) ( )f g f t g t dt
π

< >= ∫  

     (a)   Show that sin mt and sin nt  are orthogonal when m n≠  
     (b)   Find the third–order Fourier approximation to ( ) 2f t tπ= −  
     (c)   Find the third order Fourier approximation to 3cos t , without performing any 
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             integration calculations.  
 
6:  Find the first-order and third order Fourier approximations to  
 

( ) 3 2sin 5sin 2 6cos 2f t t t t= − + −  

 
                                                     ©Virtual University Of Pakistan                                                          261 



27-Houreholder’s Method and QR Algorithm  VU 
 

Lecture 27 

Householder’s Method  and QR Algorithum 

PPT’s slides are available in VULMS/downloads 
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Lecture 28 

Singular Value Decomposition 

PPT’s slides are available in VULMS/downloads 

 

 



29-Fixed points of functions of several variables  VU 
 

Lecture 29 

Fixed Points for Functions of Several Variables 

PPT’s slides are available in VULMS/downloads 
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Lecture 30 

Newton’s Method 

PPT’s slides are available in VULMS/downloads 
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Lecture 31 

Quasi-Newton Method 

PPT’s slides are available in VULMS/downloads 
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