Advanced Differential Equations (MTH701) VU

Lecture 33

Applications of Adomian Decomposition Method

In this lecture the singular initial value problems, linear and nonlinear, homogeneous and
nonhomogeneous, generalized Emden-Fowler equation and Bratu-type equations are investigated
by using Adomian decomposition method. The solutions are constructed in the form of a
convergent series.

ADOMIAN METHOD FOR SINGULAR INITIAL VALUE PROBLEMS IN SECOND-
ORDER ODES

The studies of singular initial value problems in the second order ordinary differential equations
(ODESs) have attracted the attention of many mathematicians and physicists. One of the equations
describing this type is the Lane—Emden-type equations formulated as

y"+2y'+f(y)=0, 0<x<l,
X
»(0)=4, y'(0)=B. D

On the other hand, studies have been carried out on another class of singular initial value problems
of the form

Al 2 1
Y +;y+f(x,y)=g(x), 0<x<l, (2)

y©0)=4,  »y'(0)=35,

where 4 and B are constants, f{x, y) is a continuous real valued function, and g(x) eC [0, 1].

Eq.(2) differs from the classical Lane—Emden-type equations (1) for the function f{(x, y) and for
the inhomogeneous term g(x).

Eq.(1) with specializing f{)) was used to model several phenomena in mathematical physics and
astrophysics such as the theory of stellar structure, the thermal behavior of a spherical cloud of
gas, isothermal gas spheres, and theory of thermionic currents. Due to the significant applications
of Lane-Emden-type equations in the scientific community, various forms of f{y) have been
investigated in many research works.

In recent years, a large amount of literature is developed concerning Adomian decomposition
method, and the related modification to investigate various scientific models. The Adomian
decomposition method provides the solution in a rapidly convergent series with components that
are elegantly computed. A reliable part of this approach is how this method can be modified to
address the concept of singular points. To properly address this question, we may require slight
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variation of the decomposition algorithm as described in previous lecture. An alternate framework
can be designed to overcome the difficulty of the singular point at x=0.

The Adomian decomposition method usually defines the equation in an operator form by
considering the highest-ordered derivative in the problem. To overcome the singularity behavior,
we define the differential operator L in terms of the two derivatives contained in the problem. We
rewrite (2) in the form

Ly=-f(x,y)+g(x), (3)

. . . . 2 .
where the differential operator L in terms of two derivatives, y"+= ", is defined by
X

L=x" i(xz ij (4)
dx\ dx
The inverse operator L is therefore considered a two-fold integral operator defined by
LI'()= j X7 j x> (\)dxdx. (5)
0 0

Operating with L™ on (3), it follows

y(x)=A+Bx+L'g(x)=L" f(x,). (6)
As the Adomian decomposition method introduces the solution y(x) by an infinite series of
components

y@) =3y, ), (7)
n=0
and the nonlinear function f{x, y) by an infinite series of polynomials

Foy)=3 4, ®)

n=0

where the components yx(x) of solution y(x) will be determined recurrently, and A4, are Adomian

polynomials constructed for non-linear function defined as 4, = L' dd/I” [ f ((x, y)/i)]ifo .
n! -
Substituting (7) and (8) into (6) gives
Y ()= A+Bx)+L'g(x)-L"Y A, )

n=0 n=0
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To determine the components yn(x), we use Adomian decomposition method that suggests the use
of the recursive relation

Vo(x)=A+B(x)+ L'g(x),
Vi (X) = _Lil(Ak )9 k2 0, (10)

which gives

Vo(x)=A+Bx+ L"lg(x),

y(x)==L"(4,),
Y, (x)= _L_I(Al)a

y;(x)=-L"(4,), (11)

The series solution of y(x) defined by (7) follows immediately.

The main advantage of using this choice for the operator L is that it tackles the differential equation
directly without any need for a transformation formula.

Example 1:

Solve the following linear singular initial value problem by using Adomian decomposition method.

y"+gy'+y =6+12x+x" +x°,
x
y(0)=0,  »'(0)=0. (12)
Solution

Firstly, we have to re-write the given DE in an operator form as
Ly=6+12x+x"+x" - y. (13)
Applying L™! to both sides of (13) and using the initial condition. we obtain

L'Ly=L"6)+12L"'(x)+ L' () + L' (X)) = L' (). (14)
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As,
L'L(y)=L" (y" +gy’j
X
r -2 r 2 " 2 '
=J-x J.x (y +—y jdxdx
0 0 X
= Ix’z (xzy' - I 2xy'dx + I ny’de dx
0 0 0
= [ y'dx = y(x) = (0) = y(x),
0
L'(6)= Ix‘zsz (6)dxdx
0 0
X 3 X
= 6J.x’2 (x—de = 2.[xa’x =x7,
0 3 0
1207 (x) =12[ x7 [ % (x) dxelx
0 0
X 4 X
= 12J- X (x—)dx = 3J- xidx=x,
0 4 0
4 5
~ L' (%)= and ['(¥) =2
(x7) 20 ™ (x7) 30

Putting all these values in Eq. (14),

1 1
y=x2+x3+—0x4+5x5—[1y. (15)

Proceeding as before we obtain the recursive relationship

1
X)=x"+x +—x'+—x
Yo (X) 20 30
Vit (x) = _Lil(yk): k=0. (16)
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Consequently, the first few components are as

1 1
2 3 4 5
=Xx"+x +—x +—x,

=-L" =——X ——X ———X ———X
‘¢ ) ==30% "30% 320" 1680

L o, 1 5. 1 I
X+ x'+ X+ x
840 1680 60480 151200

! x* - ! x' -, 17)
60480 151200

b

Vo = _Lil(yl) ==

M

Y3 = _Lil(yz) ==

Other components can be evaluated in a similar manner. Substituting these values in Eq. (7) and
after cancellation, we have

Y(x)=x"+x°, (18)

which is the exact solution.

Example 2:
Solve the following nonlinear singular initial value problem by using Adomian decomposition
method.
y"+%y'— 6y=4ylny,
y(0)=1, »'(0)=0. (19)
Solution
Re-write the given DE in an operator form as
Ly=4ylny+6y. (20)
Applying L™! to both sides of (20) and using the initial condition we obtain
L'Ly=4L" (yln y)+ 6L (y ),
y(x):l+4L’1(y1ny)+6L’1(y ) (21
Proceeding as previous example, we obtain the recursive relationship

yo(x) =1,
Vi (x) = 6L71(yk) +4L" (4,), k=>0. (22)
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The Adomian polynomials for the nonlinear term F ( y) = yIn y are computed as follows:

4y = vy In(y,),
A =y F'(y,) =y, (1+1n y,),
2 2
A, = 3, F () + 2 F () =y, (14+1n yy) + 2
, =0 F'(v)+ (V) =y, (I1+Iny )+ )
2 2y,
3 3
A3:y3F'(yo)+y1y2F"(yo)+yZ1Fm(yo)=y3(1+lnyo)+%_6y_)iza (23)
0 0

which are obtained by using reference list of the Adomian polynomials given in lecture 32.

By putting (23) into (22), we get the following components

Yo =1
Y =6L"(y)+4L" (4) =x,

_ _ 1
v, =6L 1(y1)+4L l(/11)25)5‘,

¥y = 6L (3,) +4L7 (4,) =%x6,

V= 6L’1(y3)+4L’1(A3) :%xg,

Y, = 6L (y,)+ 4L (4,) = éx (24)

and so on. In view of above equation, the solution in a series form is given by

1 1 1 1
y(x):1+x2+Ex4+—x6+—x8+—x'°+ ...... , (25)

3! 4! 5!

and in the closed form

y(x)= e (26)
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GENERALIZATION:
Replace the standard coefficient of )" in (2) by n/x, for real n; n>0. In other words, a general

equation

n
y"+;y'+f(x,y)=g(x), n>0, (27)
with initial conditions
y(0)=A4, v'(0) =B, (28)

can be formulated.

Here, the differential operator is defined as

L :x"i(x" ij, (29)
dx dx

for which the inverse operator L™ is expressed by

X

L'()= jx [ x" (. (30)

0
Applying L, to both sides of (27) yields
y(x)= A+Bx+L;1g(x)—L;1f(x,y). (31)
Proceeding as before we obtain

Vo(x)=A+ Bx+ L;lg(x),
Vea()=-L'4,, k>0, (32)

where Ak are Adomian polynomials that represent the nonlinear term f(x, y). In view of (32), the
components of the function y(x) can be elegantly determined. The slight change we imposed on
defining the operator L» in (29), in terms of the first two derivatives, was successful to overcome
the singularity issue forn > 0. To illustrate the generalization discussed above, we will discuss an
example.
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Solve the following nonlinear singular initial value problem by using Adomian decomposition

Example 3:
method.
y"+§y'+14y =—4ylny,
y(0)=1, y'(0)=0.
Solution

In an operator form, given differential equation becomes

L(y)=—14y—-4yhy.

Recall that the operator L» is defined by

L =x° i(xé ij
" de\" dx)

for which the inverse operator L, is expressed by

L'()= jx_éjxﬁ (.)dxdx.

Operating L, on both sides of (34), we have

y=1-14L(y)- 4L, (yIn y).

Proceeding as before we obtain the recursive relationship

yO (x) = 1:
Ven(x)=-14L"(y,)—4L'(4,),

k=0.

(33)

(34)

(35)

(38)

The Adomian polynomials for the nonlinear term F ( y) = yln y are computed before in (23).

Substituting (23) into (38) gives the components
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Yo =1
Y= _14L;1(J/0)_4L;1(A0) = _xz,

_ _ 1
Y, = —14Ln](yl) _4Ln1(Al) :ax“,

¥y =141 (v,)— 4L, (4,) =—%x6,
1 -1 1 8
¥y =ML} () = 4L, (4) =",
. i 1
Vs :_14Lnl(J/4)_4Lnl(A4):_axloa (39)

so that other components can be evaluated in a similar manner. In view of (39), the solution in a
series form is given by

1 1 1 1
B R IV VL VL VL
y(x)=1-x"+ !x 3!x + !x 5!x +oeees (40)

and in closed form

y(x)= e, (41)

ADOMIAN DECOMPOSITION METHOD FOR EMDEN-FOWLER EQUATION

Many problems in the literature of mathematical physics can be distinctively formulated as
equations of Emden—Fowler type defined in the form

y”+%y’+af(x)g(y)=0, YO)=y,  ¥(0)=0, (42)

where f(x)and g(y)are some given functions of x and y respectively. For f(x)=1 and

g(y)=", Eq. (42) becomes the standard Lane—Emden equation.

The standard coefficient of y’ in Emden—Fowler equation is 2/x. However, if we replace 2/x by r/x,
for real r, » > 0, then we write down Emden—Fowler equation in general as

Y+ +af(0)g(y) =0, =0 (43)
X

with boundary conditions given by

yO)y=a, y'(0)=0. (44)
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Introducing the differential operator

L=x" i(xr ij, (45)
dx dx

for which the inverse operator L™ is expressed by

()= jx-’jx"(.)dxdx. (46)

In an operator form, Eq. (43) may be rewritten as

Ly =—af (x)g(y). (47)
Operating with L on (47), we have
y=a-al' (f(x)g(»)). (48)

The slight change we imposed in defining the operator L in (45), in terms of the first two
derivatives, was successful to overcome the singularity issue forr #0.

As discussed above, Adomian decomposition method introduces the decomposition series

y(x)= Z »,(x) and the infinite series of polynomials

n=0

)= A, i) (49)

where the components y»(x) of the solution y(x) will be determined recurrently, and A» are Adomian
polynomials. Substituting the value of y(x) and (49) into (48), it gives

Zy,,(X)=a—aL"(f(x)ZAn(yo,yl,--.,yn) ] (50)
n=0 n=0
Identifying yo(x)=a, the recursive relation

.yo(xj ::CZJ

Vi (x)= —al (f(x)Ak), k=20 (51

or equivalently
J/O(;x) = CX,

Vi (X) = —ajix’jfx’ (f(x)Ak )dxdx, k>0 (52)

10
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will lead to the complete determination of the components y»(x) of y(x). The series solution of y(x)
follows immediately.

Example 4:

Solve the following equation by using Adomian decomposition method.
14 8 !
V'+—y' +18ay=—4ylny,
X

where the boundary conditions are given by
y(0)=1,  y'(0)=0.
Solution

Using the recursive relation (52) yields

Yo(x)=1
Vi (X) = —18aL_1(yk) _4L_1(Ak)’ k=0 (53)

The first few Adomian polynomials for g(y) = yIn yare given by

A4, =y,In y,,

Al = yl(l +1nyo)>
2

A= y2(1+1ny0)+2y—y1. (54)
0

Using (53) yields
yO = 19
v, =—18aL™ (y,)—4L"(4,) = —ax’,

2
a

Yy = _lgaL_l(yl)_4L_l(A1) =7x4 )

3

yy =180l () - 4L (4) =" (55)
Consequently, the series solution is
a’ a’
2,4 4 a3
y(x)=1-ax +2!x 3!x +... (56)

and in a closed form it becomes y(x) = e

11
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ADOMIAN DECOMPOSITION METHOD FOR BRATU-TYPE EQUATIONS

The standard Bratu’s boundary value problem in one-dimensional planar coordinates is of the form

u"+Ae" =0, 0<x<l,
u(0)=u(1)=0.

The Bratu model appears in a number of applications such as the fuel ignition of the thermal
combustion theory. It stimulates a thermal reaction process in a rigid material where the process
depends on the balance between chemically generated heat and heat transfered by conduction.

Example 5:

Solve the following Bratu-type model equation by using Adomian decomposition method.

u"-r’e" =0, 0<x<l, (57)
u(0) =u(1)=0.

Solution
The given problem can be written in an operator form as

Lu=r’e"=0, 0<x<l, (58)
u(0)=u(1)=0,

where L is the differential operator given by

82

_y.

L

The inverse L is assumed to be a two-fold integral operator given by
LI'()= j j (.)dxdx.
00

Applying the inverse operator L™ on both sides of (58) and using the initial condition u (0) = 0, we
find

u(x)=ax+ L' (7%e"), (59)

where a=u'(0). Substituting (7) and (8) into the functional equation (59) gives

iun(x) zax+L1[7rziAn} (60)

n=0

12
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where A, are the so-called Adomian polynomials. Identifying the zeroth component uo(x) by ax,
the remaining components ux(x), n>1 can be determined by using the recurrence relation

u,(x) = ax,

u,, (x)=nL"(4,), k>0 (61)
where Ak are Adomian polynomials that represent the nonlinear term ¢ and given by

4,=e",

f— u()
A =ue”,
1 2 u
A =|u,+—u; |e”,
2
A _ l 3 u,
, = ”3"‘”1”2"‘6”1 e,

1 1 1 ‘
A, = u4+u1u3+5u22+5u12u2+£uf‘}e”. (62)

Other polynomials can be generated in a similar way to enhance the accuracy of approximation.
Combining (61) and (62) yields

uy(x) = ax,
7[2

u (x)=——(—e” +ax+1),
a

4
T
u,(x) = _4_a4 (—e

2ax

+4axe™ —4e™ +2ax+5),

6
uy(x)= 1;26 (€ + 6> (1—ax)+3e™(2a’x* —6ax +5)—6ax—22),

(63)

In view of (63), the solution u(x) is readily obtained in a series form by

2 4
V4
u(x)=ax——(—e" +ax+1)—
a

Z (&> +daxe™ —4e™ +2ax+5)
a

6

+ 17;_6 (€ + 6> (1-ax)+3e™(2a°x*> —6ax +5) — 6ax —22)
a

+...,

or equivalently

13
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2

3! 4! 5!

 , ma 5, (rdt+rxt) , (7xa’+4rta)
u(x)zax+;x + X+ X+ X

\z'a* +r*a* +4x° )  (267'a’ + 7%a’ +34rx°a
+ 61 X + 61

+...,

—u(x) =—ln(1+cos((%+xj7zjj.

Solve the following problems by using Adomian decomposition method.

Exercises

y"Jrgy':Z(Zx2 +3)y,
X

1.
y(0)=1, »'(0)=0.
" 5 [ y y/2
5 y+;y+8a(e +2e"7)=0,
y(0)=0, »'(0)=0.
3 u"+ e =0, 0<x<l,
" u(0)=u(l)=0.

¥
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