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About the Handouts

The following books have been mainly followed to prepare the slides and handouts:

1.
2.
3.
4.

5.

Spiegel, M.R., Theory and Problems of Vector Analysis: And an Introduction to Tensor
Analysis. 1959: McGraw-Hill.

Spiegel, M.S., Theory and problems of theoretical mechanics. 1967: Schaum.

Taylor, J.R., Classical Mechanics. 2005: University Science Books.

DiBenedetto, E., Classical Mechanics: Theory and Mathematical Modeling. 2010:
Birkh&user Boston.

Fowles, G.R. and G.L. Cassiday, Analytical Mechanics. 2005: Thomson Brooks/Cole.

The first two books were considered as main text books. Therefore the students are advised to
read the first two books in addition to these handouts. In addition to the above mentioned books,
some other reference book and material was used to get these handouts prepared.
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Selected Example/Problem 2: Volume
Integral

Problem Statement

If F = (2x% —32)I — 2xyj — 4xk, evaluate

Lff V.FdV

the closed region bounded by the planes x = 0,y = 0,z = 0and 2x + 2y + z = 4.

Solution

Since F = (2x2 — 32)i — 2xyj — 4xk,

Thus
5 0 0 d . ~
(2, 2 T 2 _ 2, — &
V.F = (axl + ay] + e k).((Zx 3z)1 — 2xyj 4xk)
_0(2x* —3z) 0d2xy 04x
B ox dy 0z
=4x — 2x = 2x

2—x 4—2x-2y

2
fff V.FdV = f f f 2xdzdydx
R 0 0 0

Using equation 2x + 2y + z = 4 for limit

Integrating w.r.t z we obtain,

2—x

2
x(4 — 2x — 2y)dydx =f f (8x — 4x% — 4xy)dydx
0 0

22-x 2—x

2
= fo x|z|¢ 7 dydx = 2ff
0 00

0
2

Ydx = f 8x(2 —x) —4x%(2 — x) — 2x(2 — x)%dx
0 0

2 2—x

2

- - y

= [ @iyl —axriyls - ax
0




2
= f 8x — 8x% + 2x3dx
0

8 x|
4_ 2__ 3+_
XT3y
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Divergence Theorem

Divergence theorem is also called Gauss’s divergence theorem. Gauss’s divergence theorem has
wide applications in physics and engineering and is used to derive equation governing the flow
of fluids, heat conduction, wave propagation and electrical fields.

In words the divergence theorem may states that the surface integral of the normal component of
a vector function A taken over a closed surface S is equal to the integral of the divergence of

A taken over the region R enclosed by the surface.

We can write it mathematically as

Statement

It states that if R is the region bounded by a closed surface S and A is a vector point function

with continuos first partia derivatives, then

lfﬁ.ﬁdszgfvidv

Where 1 is outward drawn unit normal to S.

Proof

If 4 is expressed as A= A;i + A,J + Ak, then the divergence theorem can be written

component wise as

ff A+ A7+ Ak Ads—ﬁf 6A1+6A2+6A3 v
(1" 2] 3 )'n - (ax ay az)
R

S
To establish this relation, we will prove that the respective integrals on each sides are equal.

We prove this for a closed surface S, which has the property that any line parallel to the
coordinate axes cuts S in at most two points. Under this assumption, it follows that S is doubled

valued surface over its projection on each of the coordinate planes.



\

Let R’ be the projection of S on the xy-plane. Divide the surface S into the lower and upper parts

S; and S, and assume the equations of S; and S, to be z = f;(x,y) and z = f,(x, y) respectively.

Consider
[ 5 av =[] 5 aetra
z= fz(xJ/)
I f —dz dydx = f A5 (x,y, 2) 22250 dydx
z=f1(x,y)
— [| sy, £ 0] = Asl v, i) dyds ©
R/

For the upper part S, = dydx = cosy,dS, = k.7,dS,, since the normal 7 to
S, makes an acute angle with k. For the lower part S; dydx = —cosy,dS, = k.fA,dS;, since

the normal 7, to S;  makes an angle y; with —k.
Then

ff A3[(x,y,f2(x,y))] = .U Az E-ﬁzdsz
R’ S,

And

ffA [(x y, f1(x, y))] ff As k. dl,

and therefore the equation (1) becomes



043 A A
jff _dV J:]- A3 k.nzdSZ + J:]- A3 k.n1d51
d0A ~
fﬂ—%ﬂ/ ffA3k.ﬁdS 2)
S

Similarly, by projecting S on the yz and zx coordinate plane, we obtain respectively,

ff —dV ﬂAli.ﬁdS (3)
S

(%2 = [ 300 o
S

By adding equation (2),(3) and (4), we obtain

fff%dv fﬂ%dv fff%dv gAli.ﬁd5+gAzj.ﬁds+£fA3k_ﬁd5

Which is equal to

044 aAz 6A3
fff )dV f(A1l+A2]+A k).Ads

or

ff Al 4+ A7+ Ak Ads—fﬂ aAl+a‘42+a'é13 av
(ll 2] 3 )n - (ax ay az)
S R

Hence the theorem.
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Divergence theorem in Rectangular Form

As we studies earlier about the rectangular coordinate system and rectangular coordinates. The
Cartesian coordinate system (x, y, z) is also called rectangular system. In this article, we will

express the gauss’s divergence theorem in the form of Cartesian coordinates.

Let/-l) = Al’l\+A2]’\+A3i€, and = n1i+ n2j+n3i€

Then
V.A= (i +i] +il€>.(A1i+A2j+Agl€)
dx Jdy 0z
0A; O0A 0A
- ax1 * ay2 * 623
and

The unit normal to S is A = nyi + nyj + nzk. Theni.i =n, = cosa, A.j = n, = cos B and

~
A~

fi.k =n3 = cosy,where a, 8,y are the angles which 7 makes with the positive x, y, z-axes or
i,7, k directions respectively. The quantities cos a , cos 8, cos y are the direction cosines of 7.
Hence

Af= Ajcosa + A, cosf + Az cosy

Using these values, Gauss’s divergence theorem can be written as

044 6A2 6A3
fff( )dV .[ (Ajcosa + A, cosf + Az cosy)dS

is the required form of divergence theorem.
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Verification of Divergence Theorem by an
Example

Problem Statement

Verify the divergence theorem for A = 4xi— 2y?j + z2k taken over the region bounded by
x*? + y?=4,z=0andz = 3.

Solution

>y

[1]

As we know the divergence theorem is

lfﬁ.ﬁdSz fvﬁvjdv
fvff V.AdV = fvﬂ(aail + aa/;z + a(,i"’)dv
ff ox 9 2y )dV ff (4 — 4y + 22)dV
Va—xZ

2 4 3
J J (4 — 4y + 2z)dzdydx
X==2 y=—~/4—x2 z=0




Here we use the given equation x? + y? = 4, for limits
The surface S of the cylinder consists of a base S; (r = 0), the top S, (r = 3) and the convex

portion S;3(x? + y? = 4). Then

Surface Integral = ff A.fds = jf A. nds; + ff A. nds, + ff /T.ﬁng
S S S, S

On Surface S; (z = 0), A = —k, 4 = 4xi— 2y?j
Therefore 4.7 = (4xi— 2y?)).(=k) = 0

On Surface S, (z = 3), A = k, A = 4xi— 2y?%j + 9k
Therefore 4.7 = (4xi— 2y%j +9k).(k) =9

- ffﬁ.ﬁdsz = 9ﬂ dS, = 9(4rn) = 367

Since we have x? + y? =4 = \/x2 + y2 = 2 = r, radius of the base of the cylinder.
Therefore the area of the base of cylinder is nr? = 4n
On S; (x? + y? = 4). A perpendicular to x> + y? = 4 has the direction
V(x? + y?) = 2xi + 2yj
Then a unit normal is
2xT + 2yj 2t +y))  (xi+y)) (xt+yjf)
\/4x2+4y2:2\/x2+y2: V4 - 2

n=

Since x? + y> =4

A7 = (4xi— 2y%) + 2%k). 3

xt+yj
%=2x2—y

|| @ - yyas,

S3
Since r = 2 is the radius of the base of the cylinder
So, using cylindrical coordinates, x = 2cos 8,y = 2sin6,dS; = 2dfdz
We have



2w 3
J:]-(sz —y3)dS; = J- j[2(2 cos 0)? — (2sin8)3]2dzd6
S5 6=0 z=0
2
= f 48 cos? 0 — 48sin? 0 dO = 48m
0

Then the surface integral= 0 + 36m + 48w = 84m, agreeing with the volume integral and

verifying the divergence theorem.



10

Module No. 55

Another Example: Divergence Theorem

Problem Statement

Evaluate

Lff F.AdV

where F = 4xzi — y?j + yzk and S is the surface of the cube bounded S by
x=0x=1y =0y =1z =0,z= 1.

Solution

By the divergence theorem, the required integral is equal to

[fﬁ.ﬁdSz LU V. Adv

V.A=0.(4xzi — y?*j + yzk)
_ 04xz  0y”® N dyz
- 0x dy 0z

fff\mdv fff(‘”xz Y aayZZ>dV

Now

=ff (42—2y+y)dV=ﬂ (4z —y)dv
R R

111
= f f f (4z — y)dzdydx
000

11

11
=ff222—yzdydx=jf2—ydydx
00 00



Hence

11
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Further Example 1 of Divergence Theorem

Problem Statement
Prove the identity

[ voa = f o

Proof

In the divergence theorem, let A= (p(f where C a constant vector is. Then

fﬂ V. (9C)dV = ff 9C.AdS
v S

Since V. (¢C) = (V¢).C) = C.Vg and ¢C. 7 = C. (pf)

Substituting these values in above integral, we get

fff C.VpdV = ﬂ C. (ph)dS
74 S

Taking C outside the integrals,

C. fﬂ VodV = C. H(q)ﬁ)ds
v S

and since C is an arbitrary constant vector,

fvf f VodV = [ f (pA)dS

Hence the result.

12
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Further Example 2 of Divergence Theorem

A fluid of density p(x, y, z, t) moves with velocity v(x, y, z, t). If there are no sources or sinks,

prove that

dp
V. — =0
S+ %
Solution

Consider an arbitrary surface enclosing a volume V of the fluid. At any time the mass of fluid

szvﬂpdv

within V is

The time rate of increase of this mass is

o= [ o

%4

Let A = velocity v at any point of a moving fluid
Volume of fluid crossing dS in At seconds = volume contained in cylinder of base dS and slant
height vAt
= (vAt).ndS = v.ndS At
Then, volume per second of fluid crossing dS = v.ndS

The relation of mass of fluid per unit time leaving V is

.U pv.ndS
S

and the time rate of increase in mass is

—-gpv.ﬁd5=_gf V.pvdV

by the divergence theorem. Then
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[ %ar=- [ s

fff%+v.(pv)dV= 0
14

Suppose that [[f, % + V. (pv)dV = 0 for all the region V. If we suppose that ‘3—’; + V. (pv)dVv >

0 at a point P, then from the continuity of the derivatives it follows that Z—i + V.(pv)dV > 0in

some region A surrounding P. If T is the boundary of A then

I, ‘3—’; + V. (pv)dV > 0 which contradicts the assumption that the line integral is zero around
every closed curve. Similarly the assumption ‘;—‘; + V. (pv)dV < 0 leads to a contradiction. Hence

the integrand ‘;—‘; + V. (pv)dV must be equal to zer0.

Hence from the continuity of the derivatives it follows that

dp
V+—2=0
I+ %

Where | = pv.

The equation is called the continuity equation. If p is a constant, the fluid is incompressible and
V.v =0, i.e. v is solenoidal.

The continuity equation also arises in electromagnetic theory, where p is the charge density and

J = pv is the current density.



15
Module No. 58

Further Example 3 of Divergence Theorem

Problem Statement

Prove the relation:

fﬂv><§dv=ﬁﬁx§d5
\%4 S

where B is any vector field.

Proof

Since the divergence theorem,

fﬂv.jdv=£fiﬁds

let A = B xC where C is a constant vector. Then
fffv.(ﬁ X E)dvzﬂ(ﬁ x C).AdS
|4 S

V.(Bx C)=C.(vxB)and (B x C).a=B.(C x7) = (C x7).B=C.(AxB),

Since

Then the above integral will become

fvffa(Vxﬁ)dvzga(ﬁxﬁ)ds

Taking C outside the integral,

6jf (Vxﬁ)dv=6.jf(ﬁx§)ds
14 S

and since C Is an arbitrary constant vector,



Hence the result.

jffoEdV=jfﬁx§ds
\%4 S

16
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Stokes’ Theorem

In words we can state Stokes’ theorem as the line integral of the tangential component of a
vector function A taken around a simple closed curve C is equal to the surface integral of the

normal component of the curl of A taken over any surface S having C as its boundary.

Statement

It states that if S is an open, two sided surface bounded by a simple closed curve C, then if A has

continuous first partial derivatives

fﬁ.d? =] (V x 4A).AdS
Cc S

Where C is traversed in the positive direction.

Proof

If 4 is expressed as A= A,i + A,J + Ak, then the divergence theorem can be written as

jf V x (Al + Aof + Azk)dS = 3§ Ardx + Aydy + Azdz
S C
We will prove this theorem for a surface S which has the property that its projection on the xy,

yz and zx planes are regions bounded by simple closed curves as shown in figure.
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[1]
Assume S to have representation z = f(x,y) or x = g(y,z) or y = h(x, z), where f, g, h are
continuous and differentiable functions.

Consider first

f f [V x (4,0)].7dS
S

Since,
i j k
0A 0A; .
vxan=L 9 9 =(_1A__1 )
ox dy 0z 0yz dy
A, 0 0
Therefore,
[V x (4,0)].AdS = (aAl o 12) ds 1
1D]-ndS = aZn.] ayn. (D

If z = f(x,y)is taken the equation of S, then the position vector to any point of S is
?=xi+yj+zk =xi+yj+f(x,k
so that
or 0z

—=j+—k=j+

k
ay y

Q.)lQ.)
< |

But Z—; is a vector tangent to S and thus perpendicular to 7, so that

of
n.—

3y nk=0

Aj+

Q.)lQ)
<IN

or we can write
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.. 0z P
n.j= ayn
Substituting this value in equation (1), we obtain
. 0A,0z . 04, .
[V X (All)]‘l’lds = (—E@nk - —yn. k) ds
_ (6A1 dz N 6A1> A RS )
B 0z dy 0y n. (2)
Nowon S, 4;(x,y,2) = (x,y, f(x,¥)) = F(x,5) (3)
. 0410z | Ay _ OF
Hence equation 5z 3y + %y = 3y and (2) becomes
. oF . oF
[V X (A D)].AdS = —@n. kdS = —@dxdy

Then

HS [Vx(Ali)].ﬁdszg—g—idxdy

where R is the projection of S on the xy-plane.

By the Green’s theorem in the plane, the last integral equals 95F Fdx where T is the boundary of

R. From equation (3), since at each point (x, y) of I the value of F is the same as the value of

A, at each point (x,y, z) of C, and since dx is the same for both curves, we must have

f Fdx = j‘g A;dx

r c
or

HS [V x (4,D)].AdS = 55 A,dx 4)

c

Similarly, by projections on the other coordinate planes, we have

| f 17 (42))].7dS = § Ardy 5)

C

jfs [V x (A3k)].AdS = ff Asdz (6)

Addition of equation (4), (5) and (6) gives us the required results and completes the theorem.
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The theorem is also valid for surfaces S which may not satisfy the restrictions imposed above.
For assume that S can be subdivided into surfaces S; S, Ss ... ..... Sy with boundaries

C;,C,Cs, ... .....C, Which do satisfy the restrictions. Then Stokes' theorem holds for each such
surface. Adding these surface integrals, the total surface integral over S is obtained. Adding the

corresponding line integrals over C; C;, Cs ... ..... Cy, the line integral over C is obtained.
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Stokes’ Theorem in Rectangular Form

Let A = A,1+ A, + Ask and fA = ny1 + n,] + nsk be the outward drawn unit normal to the
surface S. If a, § and y are the angles which the unit normal 7 makes with the positive directions
of x, y and z axes respectively, then

n, =fA.l=cosa,n, =A.j =cosB and n; = A.k = cosy.

The quantities cos a, cos 8, and cos y are the direction cosine of 7. Then

fi=cosai+cosBj+cosyk

Thus
i ]k
vxi=|2 9 9
dx 0dy 0z
Ay Ay A
0A; 0A 0A; 0A 04, O0A)\ .
— (_3__2)i+ <_3__1)A+ <_2__1)k
dy 0z 0x 0z dx  dy
and
(Vx 4A).7
6A3 aAz n aAl aAg n aAz a141 ~ N
=[G -t (G 5+ (G~ 5y ) B Ceose
4+ cosBj+ cosy k)
_ (6A3 6A2> N (aAl DA3> N (E)Az aAl)
=% e cosa e o cosf Ep 3y cosy
Also

A.d7 = (AD + Ay + Ask ). (dxt + dyf + dzk)
= Aldx + Azdy + A3dZ

and the stokes theorem becomes



;

Aidx + A,dy + Azdz

- -

22
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Verification of Stokes’ Theorem by an
Example

Problem Statement

Verify Stokes' theorem for A= (2x — y)i — yz?j — y?zk, where S is the upper half surface
of the sphere x2 + y? + z2 = 1and C is its boundary.

Solution

The stokes’ theorem is

ff)ﬁ.d? =j (V x 4).AdS
Cc S

we will verify the above statement using given vector function A

ZMN

¥+ yirzi=1

. x> +y: =1

z=0
) [1]
Let we solve first §, A.d#

The boundary C of S is a circle in the xy plane of radius one and center at the origin. Let x =

cost,y =sint,z= 0,0 < t < 2m be parametric equations of C.(since r = 1)

55 A.d? = ¢ (2x — y)i — yz%] — y2zk). (dxi + dyj + dzk)
C C



= f (2x — y)dx — yz*dy — y*?zdz

Substitutex = cost ,y =sint,z= 0,0 < t < 2m, we get

24

2
f (2 cost — sint)(—sint)dt
6=0
2 21
) ] _ 1+ cos2t
= f (=2 sintcost + sin?t)dt = j (—sin2t) + (T)dt
6=0 0=0
_|cos2t t sinZtZ"_l_I_ B
T2 2774 |, T27tT2TT
Now, ff; (V x A).AdS
i j k
S 0 0 0
UxAd=| — — —
0x dy 0z
2x —y — yz? y
_(9(=y*2) 9(—yz") P 0(—y%z) 0(2x—y)\. i+ (3(— yz?) 9(2x — y))k
dy 0z 0x 0z 0x dy
= (=2yz+2y2)i—(0—0)j+(0+ Dk =k
Then
jf(vX;T).ﬁds = ff k.Ads =] dxdy
S s R
(Since k.7AdS)
1Vi- 1
j f =4j\/1—x2dx
0 0 0
Let x =sint = dx = costdt,0 <t < ”/Z.Then
/2
ﬂ-(VX/T).ﬁdS=4j V1 —sin?tcostdt
s 0
T[/Z T[/Z

4
=4f cosztdtzif (1 + cos 2t)dt
0



and stokes’ theorem is verified.

_ |t+sin2t "2
= 21

25
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Another Example: Stokes’ Theorem

Problem Statement

Prove
%d?xﬁsz(ﬁxv)xﬁds
Cc S

Proof

Stokes ‘theorem is
j@ A.di = jf(vX;T).ﬁds
C S
In Stokes' theorem, let A = B x C where C a constant vector is. Then

gﬂ(ﬁ x 6. d7t = g(v x (B x 0)).Ads
2@ d7. (B x ¢) = l f [(C.9)B — (v.B)].Ads
25 ¢.(d7x B) = f f [(€.V)B].Ads — f f [C(v.B)]. Ads
¢ 55 (7 x B) = f f ¢.[v(B.7]ds — f f C.[A(V. B)]ds
¢, 2@ @i x B) = C. [ f [V(B.4) — AV. B)|ds

5.§£(d;x§):5.ffmxv)x§ds
C S

Since C is an arbitrary constant vector, therefore



Hence the result.

jgdfxl?:ﬂ-(ﬁxV)xE’)dS
C S

27



28
Module No. 63

Related Theorem: Stokes’ Theorem

Theorem Statement

Prove that a necessary and sufficient condition that fc A.d7 =0 for every closed curve C is that

VXA =0 identically.

Proof

Sufficiently. Suppose V X A = 0.Then by the stokes’ theorem

fﬁ.dfzﬂ(wﬁ).ﬁds
c S

Since Vx A = 0, therefore [f; (V x A).AdS =0

Hence

fﬁ.d?=o
C

Necessity. Suppose 956 A.d# = 0 around every closed path C, and assume V x A =0 at some
point P. Then assuming V X A is continuous there will be a region with P as an interior point,
where V x 4 = 0. Let S be a surface contained in this region whose normal i at each point has

the same direction asV x fT, ie. VXA =afh whereaisa positive constant. Let C be the

boundary of S. Then by Stokes' theorem

fﬁ.d?:jf(wﬁ).ﬁdsejfaﬁ.ﬁds>o
C S S

which contradicts the hypothesis that 95C A.d7 = 0 and shows that V x 4 = 0.

Hence the theorem.
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Related Theorem: Stokes’ Theorem

Problem Statement
Prove that
fgod?=.Ud§><Vg0
. C S
Solution
By Stokes’ theorem, we have
3@ A.di = ﬂ(vX,cf).ﬁds
S

C
Let A = @C where C is a constant non-zero vector, then

2@ @C.d7 = [f(v x (¢C)).AdS

or

5& C.pdi = ff(w x €).dS
S

C

3€5.¢df=ﬂv¢.5xd§=ﬂ5xd§.v¢=ﬂ5.d§xv<p
C S S S
5.56(pd?=5.ffd§xV<p

C S
Since C is an arbitrary constant vector, therefore

(pd?szd!fXV(p
s

sinceVxC=0

or

ﬁ&eﬁ

Hence the result.
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Module No. 65

Further Example 2 of Stokes’ Theorem

Problem Statement

If
A=2yzi— (x+3y—2)] + x2 + 2)k
then using Stokes’ theorem, evaluate
j f (V x 4).AdS
S

over the surface of intersection of the cylinders x? + y? = a?,x? + z2 = a? which is included in
first octant.

Solution

By Stokes’ theorem, we have

ff(VxA) AdS = %Zd?

J\
DplLa ( C
V
2%+ y?=a? A
AI‘O aB>Y
a
C
>

. [1]

= jﬂ 2yzi — (x + 3y — 2)j + (x? + 2)k). (dxi + dyj + dzk)
ABCDA

= .(ﬁ (2yzdx — (x + 3y — 2)dy + (x* + z)dz) (1)

ABCDA
For AB, z = 0 therefore dz = 0 and the integral (1) over the part of the curves becomes

f —(x+3y—2)dy = f—w/az—y + 3y —2)dy

Let x = acos@, y—asm@ dy =acosf0df, 0<6 Sn/z,then
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Vs

/2
j—(x+3y—2)dy=] —(acos 8 + 3asinf — 2)acos 6dO
AB 0

Vs
/2
aZ
=f —[7(1+c0520)+3azsin9c059—2acost9 lde

T
2

0

—a’mr 3

Y/

2 > a“ + 2a

dy = 0 and integral (1) over this part of the curve becomes
a

fd—fd—“z
VALYARS ZZ—2

BC
For CD,x = 0,z = a therefore dx = dz =0 and the integral (1) over this part of the curve

becomes

a sin 260 3
?( >+—azsin29—2asin9
a

2
- 56
red

7T+ 2a| =
> aa

For BC,x = 0,y = a therefor

2

3a
j —(By —2)dy = f ~(By —2)dy =—--2a

CD a
For DA,y = 0 therefore dy = 0 and the integral (1) over this part of the curve becomes
0

f(xz + 2)dz = f(az —z%+2z)dz
DA

23 z2 0
— 2, _ -
a“z 3 + > )
2
_ 2@
_ 3 2
Thus from equation (1), we get
J‘(ng) AdS_—aZn 3, a’ 3a? 2 , a
T T 2 "2 3973

aZ
= —ﬁ(?ﬂl’ + 861)

required solution.



Module No. 66

Further Example 3 of Stokes’ Theorem

Problem Statement
If

fﬁd*— 1affHdS
.aAr = Cat .

c S

where S is any surface bounded by the curve C, show that

VXE = LoH
C ot’

Solution

As we know the Stokes’ theorem

fﬁ.dfzﬁ(wﬁ).ﬁds

c

by the Stokes’ theorem

E d?=j (Vx E).dS

S

ﬁge“
ey

therefore
ﬂ(VXE)dS— fflaH ds
C ot
or
ff VxE+1 as =
Cad B
S
This implies
., 10H
VXE+—=—=0

or

32



is required result.
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Module No. 67

Simply and Multiply Connected Regions

Simply Connected Region
A simple closed curve is a closed curve which does not intersects itself anywhere. For example

the curve in the figure (i) is a simple closed curve

&

while the curve the curve in figure (ii) is not a simple closed curve.

.

(ii)
A region R which is said to be simply connected if any simple closed curve lying in R can be
continuously shrunk to a point. For example, the interior of a rectangle as shown in figure (iii) is

an example of simply connected region.
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(i)
Multiply Connected Regions
A region R which is not simply connected is called multiply connected. For example, the region
R exterior to C, and interior to C; is not simply connected because a circle drawn within R and

enclosing C, cannot shrunk to a point without crossing C, as shown in figure (iv).

(iv)

In other words, we can say that the regions which have holes are called multiply connected.
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Green’s Theorem In the Plane

We will consider the vector function of just x and y and derive a relationship between a line
integral around a closed curve and a double integral over the part of the plane enclosed by the

curve.

Theorem Statement

If R is simply-connected region of the xy-plane bounded by a closed curve C and if M and N are

continuous functions of x and y having continuous derivatives in R, then

5€Md + Nd —ff(aN aM)d d
x e dx dy xay
c R

where C is described in the positive (counter-clockwise) direction.

Proof
We prove the theorem for a closed curve C which has the property that any straight line parallel

to the coordinate axes cuts C in at most two points as shown in figure.
Yy

o —— e —

e

O a b 11
Let the equation of the curves AEB and AFB be y = f;(x) and y = f,(x) respectively. If R is

the region bounded by C, we have
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fz(x)

[opasr= | ] e

y= f1(x)

- f|M(x,y)|§ f2t) dx

a

_ j [M(x, f,(x) — M(x, f,(x))]dx

jM(x fl)dx—jM(x f2)dx

ff Mdx

Then,

ffde— ff dxdy (1)

Similarly let the equation of the curves EAF and EBF be x = g,(y) and x = g,(y) respectively.
Then

gz(y)

oo [| T o

x= gl(y)

f IN G I dy

= f[N(x,gz(x)) — N(x,g1(x))]dy

= fN(x,gl)dy+fN(x,gz)dy

a a

:jgNdy

C
Then,



[/ Sty = i

Adding equation (1) and (2), we get

Hence the theorem.

(2)

38



39
Module No. 69

Related Example: Green’s Theorem

Problem Statement

Verify Green's theorem in the plane for

%(xy + y3)dx + x*dy
C

where C is the closed curve of the region bounded by y = x andy = x2.

Solution

The plane curvesy = x and y = x? intersect at (0,0) and (1,1). Let C; be the curve y = x? and
C, the curve y = x and let the closed curve C be formed from C; and C,.

The positive direction in traversing C is as shown in the adjacent diagram.

y
(L1)

0
[1]

As we know the Green’s theorem

fMd + Nd _ﬁ‘(@N aM)d d
x e dx dy xay
c R

By comparing the given relation with Green’s theorem, we get

M =xy + y?and N = x2, using these values , we must show Green’s theorem.
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Now
ngdx + Ndy =j€(xy + y¥)dx + x*dy
C
Along the curve C;:y = x2,dy = 2dx, while x varies from 0 to 1. The line Integral (1) equals to
fde + Ndy=f(3x3 + xM)dx

+1_19 ,
5 20 )

Along the curve C,:y = x,dy = dx, while x varies from 1 to 0. The line Integral (1) equals to

0 0
fde + Ndy=f2x2dx+x2dx=f3x2dx
1 1

Cz

Thus from equation (1) and (2), we have

1
jg(xy + yHdx + x*dy =——1=——

Now we will calculate the relation

since

then

ff(aN aM)dd —f(z 2y)dxd
ox 3y xdy = x —x — 2y)dxdy
R

1

f f (x — 2y)dydx = f(x —x3)dx

x=0 y=x2

integrating and applying limit, we get



so the theorem is verified.

41
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Module No. 70

Green's Theorem In the Plane in Vector
Notation

First Vector Form (or tangential form) of Green’s Theorem

We have Green’s theorem

6N aM
%de+Ndy f ——— dxdy (D
ow
Mdx + Ndy = (Mi + Nj). (dxi + dyj) = A.d?
where

A = Mi + Nj and d7 = dxi + dyj.
Also, if A = Mi+ Nj, then

I N
5 ON_ oM ON oM
vxd=|0 0 O SRy oy (-
dx dy 0z 0z 0z ox dy
M N O
ON oM
SOthat(VXA)k—E—E

Then from equation (1) Green’s theorem in the plane can be written

fﬁ.dfzﬂ(VxA).EdR

C
where dR = dxdy

A generalization of this surface to S in space having C as boundary leads quite naturally to
Stokes’ theorem. This form of Green’s theorem is sometimes called Stokes’ theorem in the
plane.

The Green’s theorem in plane is a special case of Stokes theorem.



Second Vector Form (or normal form) of Green’s Theorem

As we derive in first vector form of Green’s theorem

Mdx + Ndy = A.d7 = A.Tds

v

0 X
where T = % =unit tangent vector to C as shown in figure.

~

If A is the outward drawn unit normal to C, then T = k X 7. so that

‘«N)

de+Ndy=fT'IA‘ ( )s=(ff><l}).ﬁ
Since 4 = Mi + Nj, therefore

B =Axk=Mi+Nj)xk=Ni—Mj
and

o5 _ON_oM
T 9x dy

fﬁ.ﬁdpjfv BdR
C S

these are the required vector notations of Green’s theorem.

then the equation (1) becomes

where dR = dxdy

ds

43
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Green's Theorem in the Plane as Special case
of Stokes' Theorem

Green’s theorem can be expressed in the plane vector notations which are also named the
tangential form or normal forms of Green’s theorem.

The tangential form of Green’s theorem is also called the first vector form of Green’s theorem.
This generalize form of Green’s theorem in plane also called Stokes’ theorem in the plane. Thus
we can say that Green’ theorem is a special case of Stokes’ theorem when applied to a region in

the xy-plane.
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Module No. 72

Gauss' Divergence Theorem as
Generalization of Green's Theorem

As we derive in first vector form of Green’s theorem

Mdx + Ndy = A.d7 = A.Tds

0 X

where T = % =unit tangent vector to C as shown in figure.

If 74 is the outward drawn unit normal to C, then T = k x 7. so that
Mdx + Ndy = A.Tds = A.(k x f)ds = (4 x k). Ads

Since 4 = Mi + Nj, therefore

—

B =Axk=Mi+Nj)xk=Ni—Mj
and
N oM

gy _oM

dx dy

<

then the equation (1) becomes

fﬁﬁ.ﬁdsz fv.EdR
C S



46

where dR = dxdy

these are the required vector notations of Green’s theorem.

The generalization of Green’s theorem as Gauss’s divergence theorem is also called the second
vector form (normal form) of Green’s theorem.

Generalization of this to the case where the differential arc length ds of a closed curve C is
replaced by the differential of surface area dS of a closed surface S, and the corresponding plane
region R enclosed by C is replaced by the volume V enclosed by S, leads to Gauss' divergence

theorem or Green's theorem in space.

[fﬁ.ﬁdsz gfv.ﬁdv
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Green’s First Identity

Theorem Statement

If ¢ and y are scalar point functions with continuous second order derivatives in a region R

bounded by a closed surface S, then

|| lev + @pramiav = [[ ovp).as
R S

Proof

Since divergence theorem is

[f/f.ﬁds: gf V. AdV

Now substitute 4 = @V in the divergence theorem, we obtain

|| v-comwrav = [[ covp.ds = [ covpas (D)
R S S

But

V. (V) = (Vo). (V) + 9(V. V) = oV + (Vo) (V)
thus the equation (1) becomes

f f f [V + (Vo) (V)] dV = f f (V) dS
R S

Hence the theorem.
Alternative Forms of Green’s first Identity
We know that

.0y . _0¢
Vy.n =3, and V.7 =5,



Thus
Vip.dS = vp.ads = 2L s
on
and
Vo.dS = V. ds = 2L ds
on

Hence the Green’s first Identity can be written as

gf[rpvzw + (V) (V)] dV = g (pg_;/ids

48
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Green’s Second ldentity

If ¢ and y are scalar point functions with continuous second order derivatives in a region R

bounded by a closed surface S, then

fﬂ [pV*Y — V2@l dV = ff(fpvw — YVg).dS
R S

Proof
We have Green’s first identity

(V2 + (Vo) (V)] dV = || (pVy).dS ¢))
] J

Interchanging ¢ and v in equation (1), we obtain

[||wwe + aw@onav = [ wve).as @
R S

Subtracting equation (2) from (1), we have

] f f [V + (V) (V)] — [9VZP + (Vo) (V)] dV = j f WV0) — (pV).dS
R S

fﬂ [pV*Y — V2@l dV = ff(fpvw — YVg).dS
R S

which is called Green’s second identity or symmetrical theorem.

Alternative Forms of Green’s Second ldentity
We know that

L0y . _ 0y
Vy.n = I and Vp.n = In
Thus
= oY
Vip.dS = Vy.AdS = —dS

on



and
Vop.dS = Vo.AdS = 99 45
on
Hence the Green’s Second Identity can be written as

Lff{cpvzw—wvch]dv=£f(<p3—f—wg—‘£)ds

50
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Related Example: Green’s Theorem

Problem Statement
Evaluate
(2.1)
(10x* — 2xy3)dx — 3x%y?dy
(0,0)

along the path x* — 6xy3 = 4y2.

Solution

A direct evaluation is difficult. By comparing it with Green’s Theorem, we get
21
jg Mdx + Ndy = f (10x* — 2xy3)dx — 3x%y2dy
C (0,0)
here M = 10x* — 2xy3 and N = —3x2y? and
a_M = —6x%y = a_N
dy 0x

it follows that the integral is independent of the path. Then we can use any path, for example the
path consisting of straight line segments from (0,0) to (2,0) and then from (2,0) to (2,1).

Along the straight line path from (0,0) to (2,0),y = 0,dy = 0 and the integral equals
2
10
f 10x*dx = ?xs = 2(32) = 64
x=0

Along the straight line path from (2,0)to (2,1),x = 2,dx = 0 and the integral equals

1 y3
j —12y?%dy = —12 (;) =—4(1) = -4
y=0
Then the value of the line integral
21
f (10x* — 2xy3)dx — 3x?y2dy = 64 — 4 = 60

(0,0)



is the required solution.
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Module No. 76
Selected Problem 1: Green’s Theorem

Problem Statement

Prove that
f Mdx + Ndy =0

Mdx + Ndy = 0 around every closed curve C in a simply-connected region if and only
ON oM
ox  dy

everywhere in the region.

Proof

Assume that M and N are continuous and have continuous partial derivatives everywhere in the

region R bounded by C, so that Green's theorem is applicable.

Then
ON oM
f Mdx + Ndy = ff (a—a)dxdy
C R
Sufficient: If
ON oM
ox ~ dy

in R, then Clearly

f’gde+Ndy=0

Necessity: suppose

fde+Ndy=0
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for all curves C. | fa—N - — > 0 at a point P, then from the continuity of the derivatives it

follows that 2 E — E > 0 in some region A surrounding P. If I is the boundary of A then

E)N aM
%de+Ndy f——— dxdy >0

which contradicts the assumptlon that the line integral is zero around every closed curve.

Similarly the assumptlon ——— < 0 leads to a contradiction. Thus a—N — 66—1\; = 0 at all points on

R.
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Selected Problem 2: Green’s Theorem

Problem Statement

Show that the area bounded by a simple closed curve C is given by

1
Ejg xdy — ydx
c

Proof

Since Green’s theorem is

ON aM
fde+Ndy f ——— xdy

Put M = —y and N = x in Green’s theorem, we get

_ydx = @_M _ _
fﬁxdt ydx = ff )dd 2_!; dxdy = 2A

jgxdt—ydx = 2A
c

or

1
AreazAzijgxdy—ydx
c
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Hence the result.

Now we will illustrate this formula through an example
Example Statement

Find the area of the ellipse x = a cos8,y = b sinf
Solution

By making use of above result,

1
Area=A=§3€xdy—ydx
c

21
1
= Ef (a cos@)(b cosB) d6 — (b sinB)(—a sinb)do
0

A4
21 21
1 1
= Ef ab cos?6 df + absin?0do = Ef ab (cos?6 + sin?6)do
0 0
21

is the required area.
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Selected Problem 3: Green’s Theorem

Problem Statement

Evaluate
f (y —sinx)dx + cosx dy
C

where C is the triangle of the adjoining figure:
i.  Directly,

ii. By using Green's theorem in the plane.

Solution
i. Along OA,y = 0,dy = 0 and the integral equals
/> /2

Vs
, _ : _ /2 _
f (0 — sinx)dx + cos x (0) —f |=sinxdx = cosx |,/ = —1
0 0

y
B
(m/2,1)
F 3
A
0 > /2,0 *

Along AB,x ="/, ,dx = 0 and the integral equals to

1
f(y— 1)(0) + 0dy = 0
0



Along BO,y = z?x ,dy = %dx and the integral equals

2 0

2x _ 2 X ]
(— —sinx)dx +—cosxdx = |—+ cosx + —sinx
s s s s -
T/, x="/y

_1n2
T4 7

T

Then the integral alongC=-1+0+1 — i

AN

2 T
T 4

Hence

T 2

—sinx)d dy = ————

f(y sinx)dx + cosx dy 1
c

ii.  Since the green’s theorem is

ngd + Nd —ff(aN aM)d d
x Y= dx dy xay
C R

by comparing with the given integral, we get
f Mdx + Ndy = f (y —sinx)dx + cosx dy
Cc Cc

oM ON

M =y —sinx, N=cosx,g=1a=—sinx

then the equation (1) becomes

= f(y —sinx)dx + cosx dy = jf(—sinx — 1)dxdy
C R

ol = ]
= f | f(—sinx—l)dyldx
x=0 [y:O J

/2
Z_x
= J-I—ysinx—ylg dx
x=0
/2

2x 2x
f (——sinx — —) dx
T T

x=0

58

ey



in agreement with part (i).

7Tz’f=7T/2
——(—xcosx +sinx) ——
n( ) 2
x=0
T 2
T4 7
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