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Analysis. 1959: McGraw-Hill.

Spiegel, M.S., Theory and problems of theoretical mechanics. 1967: Schaum.

Taylor, J.R., Classical Mechanics. 2005: University Science Books.

DiBenedetto, E., Classical Mechanics: Theory and Mathematical Modeling. 2010:
Birkhduser Boston.

Fowles, G.R. and G.L. Cassiday, Analytical Mechanics. 2005: Thomson Brooks/Cole.

The first two books were considered as main text books. Therefore the students are advised to
read the first two books in addition to these handouts. In addition to the above mentioned books,
some other reference book and material was used to get these handouts prepared.
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Module No. 101

Example of Non- Conservative Field

Problem:

Show that the force field given by
F = x%yzi — xyz?] + 2xzk
IS non-conservative.

Solution:
We have

F = x2yzi — xyz?] + 2xzk

To verify whether the force field F is conservative or not, we will check whether V7 x F=0or
not.

~

; j k
VxF = a/ax a/ay a/az

x?yz —xyz? 2xz
d o) 0 d ~[0 d
_ |2 9o 2y O R N
=1 3y (2xz) E)z( xXyz )] ][62 (x“yz) I (ZXZ)] +k[6x( xyz*) 3y (x YZ)]

= (2xyz)i — (x%y — 22)] + (vz% + x?2)k

*0
As we obtain V x F = 0

We conclude that F is non-conservative.
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Module No. 102

Introduction to Simple Harmonic Motion
and Oscillator

Simple Harmonic Motion (SHM) is a particular type of oscillation and periodic motion in which
restoring force of an object is directly proportional to the displacement of the object acting in
opposite direction of displacement.

Mathematically, the restoring force F is given by
FR = _kx

where the subscript R represents the restoring force and k is the constant of proportionality often
called the spring constant or modulus of elasticity.

In Newtonian mechanics, by Newton's second law we have eq. of S.H.M

d?x
F=ma=mﬁ=—kx
or
mi+kx=0

This vibrating system is called a simple harmonic oscillator or linear harmonic oscillator.

This type of motion is often called simple harmonic motion.

The following physical systems are some examples of simple harmonic oscillator

Mass on a spring
An object of mass m linked to a spring of spring constant k represents the simple harmonic
motion in closed region.



I+z

The equation representing the period for the mass attached on a spring

-

The above equation expresses that the time period of oscillation is independent of amplitude as
well as the acceleration.

Simple pendulum

The movement of the mass attached to a simple pendulum is considered as simple harmonic
motion.

The time period of a mass m attached to a pendulum of length | with gravitational

acceleration g is given by
l
T=2m |—
9

12
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Module No. 103

Amplitude, Time period, Frequency and
Energy of S.H.M

Amplitude

Amplitude is defined as the maximum distance covered by the oscillating body in one oscillation
or length of a wave measured from its mean position.

The amplitude of a pendulum is one-half the distance that the mass covered in moving from one
terminal to the other. The vibrating sources generate waves, whose amplitude is proportional to
the amplitude of the vibrating source.

Time Period

Time period is minimum time required by a oscillation system to complete its one cycle of
oscillation of the specific system.

It is denoted by T and measured in seconds.

Frequency

The frequency (f) of an oscillatory system is the number of oscillations pass through a specific
point in one second.

It is measure in hertz (Hz).

The frequency of S.H.M can be calculate by using the following relation

1
=7

Energy of S.H.M

If T is the kinetic energy, V the potential energy and E = T + V the total energy of a simple
harmonic oscillator, then we have

and

Then the total energy of S.H.M will be

1
E = —mv? + = kx?
o mv +2 X
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Example of S.H.M

Problem Statement
A particle of mass 4 moves along y axis attracted towards the origin by a force whose magnitude
is numerically equal to 6y. If the particle is initially at restat y = 10,
i.  The differential equation and initial conditions describing the motion,
Ii.  The position of the particle at any time,
iii.  The speed and velocity of the particle at any time,
Iv.  The amplitude, time period and frequency of the vibration.

[
g

Solution:

i Let r = y be the position vector of the particle. The acceleration of the particle is

d’r _d?y
dt2  dt?
The net force acting on the particle is —6y. Then by using the Newton's second law,
d?y
—6y = 4 —=
Y dt?
d’y 3
or F + Ey =0

which is the required differential equation. The required initial conditions (l. Cs) are
y =10, dy/dt = Oatt = 0

ii.  Since the general solution the diff. eq. is

Whent = 0,x = 20sothat A = 20. Thus
y=Acoth+Bsin 3/2t Q)

Using I. Cs

Att = 0, y =10. Thus A = 10. So,

y = 10cos/3/2t + Bsin/3/2 ¢ (2)



d .
~ = —10,/3/2sin\/3/2t +/3/2Bcos[3/2t
3)
dy

Sinceatt = 0,=> == 0
dt

Thus, we get B = 0. Hence (2) becomes
y = 10cos+/3/2t 4)
This gives the position at any time.

iii.  Speed at any time?
From (6) <X = —10,/3/2sin/3/2t
This gives the speed at any time.

iv. Amplitude, T, F ?
General form for the position of a particle moving to and fro is
y(t) = Acos(2mt/T)
Thus, y =10cos+/3/2t

Period =T = Z\En

Amplitude = 10

Frequency = 1/T
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Example of Energy of S.H.M

ENERGY OF A SIMPLE HARMONIC OSCILLATOR

Example:

Find the total energy of the force F = —3xi acting on a simple harmonic oscillator, where i
represents the direction.

Solution:

Since the total energy of SHM

E=T+V
By Newton's second law,
F =ma
therefore
F=m® = 3
=m-— x
dv. 3
dat mx
Integrating with respect to t, we have
3
2
=——x%+
v me C

c can be calculated if the initial condition is given. Assuming v = 0 initially, which gives ¢ = 0.

3
Thus v=——x?
2m

So,

9
T =—x*
8mx

Now, as the potential energy is given by V where F=-vmv

o F=-3xi=-Gi+Zj+5k



Then

o, W _ W
ax Xy T Bz

By integrating, we obtain

3
V=Ex + ¢

Assuming V = 0, correspondingtox = 0, we getc; = 0.
So the potential energy is V= %kx2

Hence
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Damped Harmonic Oscillator

The forces acting on a harmonic oscillator are called damping forces which tend to decrease the
amplitude of the successive oscillations or simply force apposing the motion. Since the damping
force is proportional to the velocity. Thus, mathematically,

F; = —bv
= —bx
where d represents the damping force and b is the damping coefficient.
The negative sign shows that that direction of F,; is opposite to the velocity v.
As we know that for the restoring force:
mi+kx =0

Adding the restoring force with the damping force, the equation of motion of the damped
harmonic oscillator will be,

mx + kx = —bx
or
miX+bx+kx=0
Since the mass is not equal to zero, therefore X + %x + %x =0

let

then the equation can be written as

¥+ 20%x+ wix =0
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Example of Damped Harmonic Oscillator

Problem Statement
A particle of mass 4 moves along y axis attracted towards the origin by a force whose magnitude
is numerically equal to 6y. If the particle is initially at rest at y = 10. Consider that the particle has
also a damping force whose magnitude is numerically equal to 6 times the instantaneous speed.
Find

i.  Position of the particle

ii.  Velocity of the particle at any time
Solution
i. Since we have by Newton's second law

F=ma=4y

According to the given information, the damping force is —6y.
So the net force is

—6y — 6y
Hence,
4y = —6y — 6y

or

"+2'+2 =0
ytzy+3y=

The solution of the above equation is
y = e V2/3{(A + Bt)

and
y = BeV2/3t _ [2/3 (A + Bt)eV2/3t
To find the values of constants, we use I. Cs
Att = 0, y = 10and dy/dt = 0; thus,
A =10
and 0 = B(1) —/2/3 (10)
B =1042/3

and the solution gives
y = e V2/3t(A + Bt)
= 10e~V2/3t(1 +,/2/3 1)



the position at any time t.

20
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Euler’s Theorem - Derivation

The following theorem, called Euler's theorem, is fundamental in the motion of rigid bodies.

Theorem Statement

“A rotation of a rigid body about a fixed point of the body is equivalent to a rotation about a line
which passes through the point.”

The line referred to is called the instantaneous axis of rotation. Rotations can be considered as
finite or infinitesimal. Finite rotations cannot be represented by vectors since the commutative
law fails. However, infinitesimal rotations can be represented by vectors.

Proof:
Let O be the fixed point in the body, which we take as a sphere S. Further, we take O at the
center of the sphere. Let A, B be two distinct points on the sphere. As the body moves, the point

O (on the axis) remains foxed and A and B suffer displacement.
/

Let A’ and B’ bet the new locations of the points A and B after an infinitesimal time interval 6t
respectively.We join (A, B) and (4’, B’) by great circular areas.

Also we join (4,A”) and (B, B’) by mean of great circular arcs. Let A” and B” draw axes at right
angles, which meat at the point C on the sphere.

We join C with A, B, A’, B’ by means of great circular arcs.

Consider the spherical triangles ACA’A" and ACAA". Obviously
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i. m<CA"A=CA"A
ii.  AA"=A"A’
iii. CA" iscommon to triangle

Therefore ACAA" = ACA’A" and it follows that CA = CA’
Similarly for the triangle ACAB and ACA'B’, we have
CB = CB, CA = CA and AB = AP’

The last relation is due to the fact that by the definition of rigid body, the distance between a pair
of particles remains unchanged. Hence

ACAB = ACA'B’
The portion of rigid body lying in ACAB has moved to ACA'B’.
In this process the point O and C have remained fixed, Although the later was at rest only
instantaneously. Therefore the body has under gone a rotation about the axis OC.
Hence the theorem.
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Chasles’ Theorem

Theorem Statement:

Chasle’s theorem states that the most general rigid body displacement can be produced by a
translation along a line (called its screw axis) followed (or preceded) by a rotation about that line.

Explanation:

A rigid body has six degrees of freedom.

By Euler’s theorem, three of these are associated with pure rotation.

The remaining three must be associated with translation.

To describe the general motion of a rigid body, think of the general motion as translation
of a fixed point O in the body to a point O’ followed by the rotation about an axis through
0'.

YV V V
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Kinematics of a System of Particles
(Space, time & matter)

Kinematics is the branch of mechanics deals with the moving objects without reference to the
forces which cause the motion.
In other words we can say those kinematics are the features or properties of motion of concerned
with system of particles (rigid bodies).
Here some features of rigid body motion are
» Displacement
Position
Velocity
Linear Velocity & Angular Velocity
Linear Acceleration & Angular Acceleration
Motion of a Rigid Body (Translation & Rotation)

YV V VY

From everyday experience, we all have some idea as to the meaning of each of the following terms
or concepts. However, we would certainly find it difficult to formulate completely satisfactory
definitions. We take them as undefined concepts.

I, Space. This is closely related to the concepts of point, position,' direction and displacement.
Measurement in space involves the concepts of length or distance, with which we assume
familiarity. Units of length are feet, meters, miles, etc.

II.  Time. This concept is derived from our experience of having one event taking place after, before
or simultaneous with another event. Measurement of time is achieved, for example, by use of
clocks. Units of time are seconds, hours, years, etc.

1. Matter. Physical objects are composed of "small bits of matter" such as atoms and molecules.
From this we arrive at the concept of a material object called a particle which can be considered as
occupying a point in space and perhaps moving as time goes by. A measure of the "quantity of
matter" associated with a particle is called its mass. Units of mass are grams, kilograms, etc. Unless
otherwise stated we shall assume that the mass of a particle does not change with time.
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The Concept of Rectilinear Motion of
Particles, Uniform Rectilinear Motion,
Uniformly Accelerated Rectilinear Motion

When a moving particle remains on a single straight line, the motion is said to be rectilinear. In
this case, without loss of generality we can choose the x-axis as the line of motion.
The general equation of motion is then
F =ma= F(x,x,X) = m¥
Rectilinear motion for a particle:

R —
x(1)

Rectilinear motion of a body is defined by considering the two point of a body covered the same
distance in the parallel direction. The figures below illustrate rectilinear motion for a particle and
body.

Rectilinear motion for a body:

)

x(1)

In the above figures, x(t) represents the position of the particles along the direction of motion, as
a function of time t.
An example of linear motion is an athlete running g along a straight track.
The rectilinear motion can be of two types:
i.  Uniform rectilinear motion
ii. ~ Non uniform rectilinear motion

Uniform Rectilinear Motion:

Uniform rectilinear motion is a type of motion in which the body moves with uniform velocity or
zero acceleration.
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In contrast, Non uniform rectilinear motion is such type of motion with variable velocity or non-
zero acceleration.
Uniformly accelerated rectilinear motion:

Uniformly accelerated rectilinear motion is a special case of non-uniform rectilinear motion along
a line is that which arises when an object is subjected to constant acceleration. This kind of motion

is called uniformly accelerated motion.
Uniformly accelerated motion is a type of motion in which the velocity of an object changes by an
equal amount in every equal intervals of time.
An example of uniformly accelerated body is freely falling object in which the amount of
gravitational acceleration remains same.

F =mg
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The Concept of Curvilinear Motion of
Particles

The motion of a particle moving in a curved path is called curvilinear motion. Example: A stone
thrown into the air at an angle.

Curvilinear motion describes the motion of a moving particle that conforms to a known or fixed
curve. The study of such motion involves the use of two co-ordinate systems, the first being
planar motion and the latter being cylindrical motion.

Tangential and normal unit vectors are usually denoted by e; and e,, respectively.
Velocity of Curvilinear motion
If the tangential and normal unit vectors are e; and e,, respectively, then the velocity will be

V=l
You have already learnt that
v=vT

Acceleration of Curvilinear motion
If the tangential and normal unit vectors are e; and e, respectively, then the acceleration will be

d2s (ds/dt)z .

a = dt2 t + p n
You have already learnt that
dv v?
a=T—+—N
dt r

Example
» A stone thrown into the air at an angle.
» A car driving along a curved road.
» Throwing paper airplanes or paper darts is an example of curvilinear motion.
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Example Related to Curvilinear
Coordinates

Example 1

Problem Statement
Prove that a cylindrical coordinate system is orthogonal.

Solution
The position vector of any point in cylindrical coordinates is
#=xi+yj+zk
We studied that the in cylindrical coordinates
X =pCcose, y = psing, zZ=z
this implies

?=pcospi+psingj+zk

. . or oOr 0
The tangent vectors to the p, ¢ and r curves are given respectively by i =, a—; and where

o9
ar P4 sino
ap—cosgol sinQ |J

_(p= —psinpi+pcosej

(')r_k
0z

The unit vectors in these directions are
ar/adp cospi+sing]

1= = |or/dp|  |cos@i+sing ]|

_ cos@i+sing]

=cospl+sing]

_\/coszg0+sin2go
_0r/0p  —psingl+pcosg]
¢ |or/dp| |-psingi+pcose]l

p(—=singi+ cos ) R .
= = —singpi+cose ]

Jp?cos2 g + p?sinZ @
B or/oz
Z" |or/oz|

e, =e¢

=k

9329

Then
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e;.e; = (cospi+singjf).(—sinpi+cosej)
= —singpcosg +sinpcosp =0
ey.e3 = (—singi+cosgj).k=0
es.e; = k.(cospi+singj) =0
and so ey, e, and e5 are mutually perpendicular and the coordinate system is orthogonal.

Example 2

Problem Statement

Prove
de
P _ .
dr P
de
() _ .
ar %

where dots denote differentiation with respect to time t.

Solution
We have
e, =cos@i+singj
and
e, =—sinpi+cosej
Then
de, B

d C e
W—E(cos<pl+sm<p])

=—singp @i+ cosppj=@(—sinpi+cospj) = ge,
de d
e % N N
7 dt( singpi+cosq]j)

= —cos@ ¢l —sing ¢j = —@(cos ¢ @i + sin g @f) = —¢e,
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Introduction to Projectile, Motion of a
Projectile

Introduction to Projectile

If a ball is thrown from one person to another or an object is dropped from a moving plane, then
their path of traveling/motion is often called a projectile. If air resistance is negligible, a projectile
can be considered as a freely falling body so the Eq of motion will be

d?r
m @ = 8
or
d?r
=t

with appropriate 1.Cs

Motion of a Projectile with Resistance
Earlier, we studied the motion of a projectile under the assumption that air resistance is negligible.
If we further assume that the motion takes place in the vertical plane, (XY-plane), and the only
force acting on the projectile is the gravity, then the equation of motion will be
d’r X
a2 g= "8
Here we will discuss the problem of projectile motion when air resistance is taken into account.
Assuming the model of retarding force in which
Foov
or
F =—-kv
Let the initial velocity of the projectile be v, and angle of projection be 8
The initial conditions can be taken as
x(t=0)=y(t=0)=0
x(t=0)=1vycos0 =u,
y(t=0)=v,sinf = v,
The equation of motion in the horizontal and vertical direction can be written as

o ki
or = —X = kx 1)
my = —ky —mg 2

By the substitution x = z we can solve eq (1) as
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z=x=Ae™*
With the initial condition x = u,, when t = 0, we obtain the constant of integration A = u,
so that
x =ue
Another integration gives

+B

The initial condition x(0) = 0 gives B = ul/k. Hence the solution of equation (1) can be
written as
x = %(1 —e~kt) (3)
We can solve equation (2) in the same manner and obtain
y=-L 4281 - evkt) (4)
The path of motion can be obtained from (3) and (4) by eliminating t
g ln( kx) kv, + g kx

1-—)+ =
Y= k2 U, k2  w,

which is no longer a parabola.
We can solve equation (2) in the same manner and obtain
y=-L4+200 1 —e7i) (4)
The path of motlon can be obtained from (3) and (4) by eliminating t
g kx) kv, + g kx
y—kzln(l + P

which is no longer a parabola.

path with no air resistance

y _ S

- -~

path with
air resistance
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Time of Flight =

Time of flight can be found by putting in equation (4) y =0andt =1
gt kvitg
0=t

__kvi+g -k
r=—22(1-e) (5)

(1—e7k7)

This equation can be solved exactly for z. To find an approximate solution, we expand the
exponential factor in equation (5), using

x? x3
e*=1 +x+§+§+---........
Form equation (5)
kv, + g k?t? k373
T = oK (kr— o= + 3 +>
kv, + g k?t k312
which on simplification gives
21y 1
T= kvs +g+§kT + el
In the limit of small air resistance (i.e. k — 0), the above expression reduces to
L W (6)
kvi+g 3

When there is no resistance, (k = 0), obtain from (6)
2v;y 2vysinf

Tg = =

g g
If k is non-zero small number, then the time of flight T will be very close to t,. Substituting 7, for
7 on the R.H.S of (6), and simplifying we get

AV kv,

r="2(1-32)
Y 39

The above equation gives a formula for approximate time of flight in the presence of a weak
retarding force.
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Conservation of Energy for a System of
Particles

Statement
“The law of conservation of energy describes that the net energy of an isolated system remains
conserved. Energy can neither be created nor destroyed; rather, it transforms from one form to
another.”

Theorem Statement

(Principle of conservation of energy)

In case of conservative force field, the total energy is a constant. i.e.,

If T is for kinetic energy and V' is for potential energy, then the total energy E is
E =T + V = constant

Explanation
For a conservative force field, we have already learned that the work done by the system of
particles is
Work done = change in kineticenergy=W =T, - T
Also Work done = change in potential energy= W =V, - 1,
By comparing, we get
InLL-T1=V, -V,
or
TL,+Vi=T,+V,
which can be written as

2 1 2
Emvl + V1 = Emvz + V2
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Conservation of Energy

Example

Consider the force field F = —kr37
i.  Find whether the given field is conservative or not.
ii.  Find the potential energy of the given force field of part (i).
iii.  For the particle moving in xy — plane, find the work done by the force in moving the

particle from A to B, where A is the point where r = a, and B where r = b.
iv.  If the particle of mass m moves with velocity v = % in this field, show that if E is the
constant, total energy then

2
V. lm(ﬂ) +krS=E
2 \at 5

Solution
i AsF = —kr37 = —k(x% + y2)3/2(xi + vj)
i j k
VXF = d/0x a/0dy 9/0z
_k(x2 +y2)3/2x _k(xZ +y2)3/2y 0
= i[5 (0 — - (ke + y52y)| 4 [ (kx4 y1)2) ~ 2 (0)]
dy 0z 0z 0x

k[ (kG2 + 7207729) = o (ke + 72972

1 1
= —3k(x? + y?)2xy + 3k(x? + y*)2xy = 0
Thus the given field is conservative.
ii. Since the field is conservative there exists a potential V such that

F=-Vv
3
F = —kr37 = —k(x* + y*)2(xi + yj)

3 3
= —k(x? + y?)2xi — k(x? + y?)2yj = =VV
v v av

ax ' dy 0z
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By comparing, we get
LA k(x? + y?)3/%x, a—V:k(x2 +v2)3/2y  and Y=o
ax ay 0z
From which, by omitting the constants, we get

V= % k(x? + y?)3/? = % kr®
is required potential.

iii.  The velocity potential at point A
and the velocity potential at point B

So, the work done from A to B is

= Potential at A - Potential at B

1 1 1
e T N S 5 _ 15
= ka® — ¢ kb® = k(a® ~ b%)

which is required work done by the given force field.

iv.  Since the kinetic energy of a particle of mass m moving with velocity v = % is

T_l 2_1 dr2
=z M= mg)

From part (ii), we have the potential energy
1
V= g kTs

Thus the total energy E will be

Hence proved.
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Introduction to Impulse - Derivation

Impulse is a special type of force defined by applying the integral of a force F, over the time
interval, t, for which it acts on the body.

Impulse is a directional (vector) quantity in the same direction of force as force is also a directional
quantity. When Impulse is applied to a rigid body, it results a corresponding vector change in its
linear momentum along the same direction. The Sl unit of impulse is the newton second (N - s),
and the dimensionally equivalent unit of momentum is the kilogram meter per second (kgms™1).
The particle is located at P; and P, at times t; and t, where it has velocities v, and v, respectively.

The time integral of the force F given by
2

[ rac

t1
is called the impulse of the force F.
Theorem Statement
The impulse is equal to the change in momentum; or, in symbols,
t2
f Fdt =mv, —mv, =p, — p;
%1
Proof
We have to prove that the impulse of a force is equal to the change in momentum.
By definition of impulse and Newton's second law, we have
t, t, t,
dv "
] Fdt = j madt = j mdv = m|v|? =mv, —mv, =p; —p;
ty ty ty
where we use the conditions
v(t;) = v, and v(ty) = v,
The theorem is true even when the mass is variable and the force is non-conservative.
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Example of Impulse

Example:
What is the magnitude of the impulse developed by a mass of 200 gm which changes its velocity
from 5i — 3j + 7k m/sec to 2i + 3j + k m/sec?

Solution:
Since we have the following information:
m = 200 gm
v, =5i—3j + 7k
v,=2i+3j+k
As we know that

Impulse = p, — p;
= mv, — mv;
=m(v, — V1)
Substituting the values, we get
Impulse = 200(2i + 3j + k — (5i — 3j + 7k))
= 200(—3i + 6j — 6k)
The magnitude of the Impulse will be
Impulse magnitude = 200v9 + 36 + 36
= 200v81
=200(9)
= 1800mgm/sec

= 1.8 N sec
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Torque

Definition
Torque is defined as the turning effect of a body. It is trend of an acting force due to which the
rotational motion of a body changes. It is also called twist and rotational force on an object.
Mathematically, torque is defined as the cross product of the force vector to the distance vector,
which causes rotational motion of the body.
T=7xF

The magnitude of torque depends upon the applied force, the length of the lever arm connecting
the axis to the point where the force applied, and the angle between the force vector and the length
of lever arm. Symbolically we can write it as:

T = |r||F|sin 6

Torque is a vector quantity implies that it has direction as well as magnitude.
The Sl unit for torque is the newton meter (Nm).
The direction of torque can be approximate using Right Hand Rule.

Theorem:
The torque acting on a particle equals the time rate of change in its angular momentum, i.e.,
aq
T=—
dt

where Q = r X p is defined angular momentum of the system.

Proof:
As we know torque is defined as
T=rXF=rXma
as m is constant, therefore
=m(r X a)

=m(r It
= mdt (rxv)
_d
=7 (r x mv)
where p = mv is defined as linear momentum and hence the theorem.



39

Module No. 120
Example of Torque

Example

A particle of mass m moves Along a space curve defined by r = acos wt i + b sin wt j.
» Find

(1) The Torque

(it) The angular momentum about the origin.

Solution

(i) Aswe know that the torque acting on a particle is equal to the time rate of change of its
angular momentum, i.e.

_do_d
T TV P)

where p = mv.

Asr =acoswti+ bsinwtj. Therefore

dr
by
vV =—awsinwti+ bw cos wt j
So,
p = —amw sin wt i + bmw cos wt j
Now
rXp
i j k
= acos wt b sin wt 0

—amw sinwt bmwcoswt 0

= [abmwcos?wt + abmwsinwt]k

~

= abmwk



(i1) From part (i), we already have

is the required angular momentum.
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Introduction to Rigid Bodies and Elastic

Bodies
Definition of Rigid Bodies

» When a force is applied to an object/ system of particles, and if the object maintains its
overall shape, then the object is called a rigid body.

» Gap between two fixed points on the rigid body remains same regardless of external
forces exerted on it.

» We can neglect the deformation of such bodies.
» Arigid body usually has continuous distribution of mass.
Definition of Elastic Bodies

» When a force is applied to a system of particles, it changes the distance between
individual particles. Such systems are often called deformable or elastic bodies.

Examples
» A spring and rubber band are some common examples of elastic bodies.

» A wheel is a common example of rigid body.

41



42

Module No. 122
Properties of Rigid Bodies

Following are some of the properties of the rigid bodies.

Degree of freedom

The number of coordinates required to specify the position of a system of one or more particles is
called the number of degrees of freedom of the system.

For example a particle moving freely in space requires 3 coordinates, e.g. (X, Y, z), to specify its
position. Thus the number of degrees of freedom is 3.

Similarly, a system consisting of N particles moving freely in space requires 3N coordinates to
specify its position. Thus the number of degrees of freedom is 3N.

Translations

A displacement of a rigid body is a direct change of position of its particles. Translational motion
is the displacement of all particles of the body by the same amount and the line segment joining
the initial and the final position of the particles represented by parallel vectors.

Examples of translational motion are particles freely falling down to earth and the motion of a
bullet fired from a gun.

Rotations

Circular motion of a body about a fixed point or axis is called rotation. If during a displacement
the points of the rigid body on some line remains fixed and all other are displaced through the
same angle, then this displacement is called rotation. A rigid performs rotations around an
imaginary line called a rotation axis.

If the axis of rotation passes through the center of mass of the rigid body then body is said to be
spin or rotate upon itself. If a body rotates about some external fixed point is called revolution or
orbital motion of the rigid body. The example of revolution is the rotation of earth around sun
and motion of moon around sun.

Rotational motion concerns only with rigid bodies. The reverse rotation of a body (inverse
rotation) is also a rotation.

A wheel is common examples of rotation.
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Instantaneous Axis and Center of Rotation

Introduction to General Plane Motion

The general plane motion of a rigid body can be considered as:
» Translational motion along the given fixed plane and rotational motion about a suitable
axis perpendicular to the plane.
» This fixed axis is specifically chosen to pass through the center of mass of the rigid body.
Instantaneous Axis of Rotation

» The axis about which the rigid body rotates is called instantaneous axis of rotation, where
this axis is perpendicular to the plane.

Instantaneous Center of Rotation

» The point where instantaneous axis meets the fixed plane along which the body performs
translation motion is described as the instantaneous center of rotation.
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Centre of Mass & Motion of the Center of
Mass

The center of mass (c.m.) or centroid of system of particles is a hypothetical particle such that if
the entire mass of the system were concentrated there, the mechanical properties would remain the
same. In particular expression of linear momentum, angular momentum and Kinetic energy assume
simpler or more convenient forms when referred to the coordinated of this hypothetical particle
and the equation of motion can be reduced to simpler equation of a single particle.

Let r,7m,13, .. ......., ybE the position vectors of a system of N particles of masses
my, My, My, ... ... ..., My respectively [see Fig.].

>

X

The center of mass or centroid of the system of particles is defined as that point C having position
vector
i mt;
T, =
Xim;

When the system is moving the position vector will depend on time t and therefore r.will also be
a function of t. the velocity and acceleration of center of mass will be then given by

b=, = 2yt
xim;
i —a = Ximt;
Xim;

Motion of Center of Mass
Motion of center of mass can be examined by considering the following points:
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=

If a system experiences no external force, the center-of-mass of the system will remain at
rest, or will move at constant velocity if it is already moving.

2. If there is an external force, the center of mass accelerates accordingto F = ma.

3. Basically, the center-of-mass of a system can be treated as a point mass, following
Newton's Laws.

4. If an object is thrown into the air, different parts of the object can follow quite complicated
paths, but the center-of-mass will follow a parabola.

5. If an object explodes, the different pieces of the object will follow seemingly independent
paths after the explosion. The center of mass, however, will keep doing what it was doing
before the explosion. This is because an explosion involves only internal forces.
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Centre of Mass & Motion of the Center of
Mass

The moment of inertia of a rigid body is a property which depends upon its mass and shape, (i.e.
the mass distribution of the body) and determines its behavior in rotational motion.
In rotational motion, the moment of inertia plays the same role as the mass in linear motion.

Definition of Moment of Inertia
Formally the moment of inertia I of the particle of mass m about a line is defined by
I = md?
where d is the perpendicular distance between the particle and the line (called the axis).

Moment of Inertia of System of particles
The moment of inertia of a system of particles, with masses m;, m,, ms, ..., m,, about the line or

axis AB is defined as
N
I = mi diz
i=1

= mldlz + mzdzz + -+ mNdNZ
In dimensions, the moment of inertia can be expressed as
[1] = [M][L?]

Moment of Inertia in Coordinate System
The moment of inertia of a particle of mass m with coordinates (x, y, z) relative to the
orthogonal Cartesian coordinate systemOXYZ about X, Y, Z axes will be

L = m(yz + ZZ)

I, = m(z* + x*%)

I, = m(x* + y?)

Product of Inertia

The product of inertia for the same particle w.r.to the pair of coordinate axes are defined as

Iy = —mxy
ly, = —myz
I,, = —mzx

These definitions can be easily generalized to a system of particle and a rigid body.
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Example of moment of Inertia and Product
of Inertia

Problem Statement:
Find the moments of inertia of a ring of radius a about an axis through center.

Solution:
Let M be the mass and a the radius of the ring. Then the mass per unit length will be M/Zna'
We regard this ring to be composed of small elements of mass (6m) each of length Js,
we can write it as
om M

s 2ma 0T gna 08

Moment of inertia of the element about an axis through center O and the perpendicular to the
plane of the ring equals %65 a?.
Therefore the M.I of the whole ring will be

M ) Ma Ma 5
Ling = 5—a Z 6s =— | ds =——X 2na = Ma
elements 2

2ma 2T

Hence Ma? is the required moment of inertia of the ring.
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Radius of Gyration

Radius of gyration specifies the distribution of the elements of body around the axis in terms of
the mass moment of inertia, As it is the perpendicular distance from the axis of rotation to a point
mass m that gives an equivalent inertia to the original object m The nature of the object does not
affect the concept, which applies equally to a surface bulk mass.

Mathematically the radius of gyration is the root mean square distance of the object's parts from
either its center of mass or the given axis, depending on the relevant application.

Let] = ¥V, m; d;* be the moment of inertia of a system of particles about AB, and
M = YN . m; be the total mass of the system.
Then the quantity K such that

or
K = i
M

is called the radius of gyration of the system AB.

Example:
Find the radius of gyration, K, of the triangular lamina of mass M and moment of inertia I =

1/ mh2.

Solution:
Since formula for radius of gyration is given by
K?=-
M
by substituting value in above , we get
1/ MhZ
2__16 —1/ 32
K? = T /6h
h
or K = ﬁ
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Principal Axes for the Inertia Matrix

Principal Axes

When a rigid body is rotating about a fixed point O, the angular velocity vector w and the
angular momentum vector L (about O) are not in general in the same direction. However
it can be proved that at each point in the body there exists distinct directions, which are
fixed relative to the body, along which the two vectors are aligned i.e. coincident. Such
directions are called principal directions and the axes along them are referred to as
principal axes of inertia. The corresponding moments of inertia are called principal
moments of inertia.

Orthogonality of Principal Axes

If the principal axes at each point of the body exist, then their orthogonality can be proved by
stating that axes relative to which product of inertia are zero are the principal axes.
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Introduction to the Dynamics of a System
of Particles

Dynamics

Dynamics is the branch of mechanics deals with forces and relationship fundamentally to the
motion but sometimes also to the equilibrium of bodies.

The Dynamics of a System of Particles

Suppose we have a system of N particles in motion under forces. These will be two types of
forces, internal and external.

Internal forces act between particles of the system; all other are external. We suppose further that
the internal forces satisfy Newton’s third law of motion. i.e. Internal forces between a pair of
particles are equal and opposite If Fi(J.i"t) denotes the internal force on the ith particle due to the

jth particle, then in the view of this assumption we can write

(int) _ (int)
F; ~F; (1)
The equation of motion for the ith particle of system can therefore be written as
FO 4 3N FI = mya, 2)

where Fi(ext) denotes the external force on the ith particle, and a;, the acceleration of the ith
particle. It is clear from equation (1) that the internal force on a given particle due to itself is zero
and therefore the term i = j does not contribute to the sum.

To obtain an equation of motion for the whole system we sum over i, (from 1 to N), on the both
sides of equation (2), and obtain

(ext) (int) _ S
YA s Y Y A - Yo
i i i
or

FEO + 3, F(mt) Yim;d; (3)
Where F(*) denotes the total external force on the system. Now we will show that because of
condition (1), the second term on L.H.S of (3) IS zero.

Z F(lnt) Z (F(_int) " Fi(jint))

Since the indices I and j are dummy and vary over the same set of integers, we can interchange
them in the second sum on the R.H.S of the last equation. Therefore we have
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. 1 ; .
(int) _ — (int) (int)
DS =5 > S+ F)
Lj ij
1 . .
— EZ(Fi(jmt) _ Fi(jmt)) =0
Lj

Therefore the equation (3) becomes
F(ext) = Zi m; ai (4)
In case of centroid, the relation becomes

Zmlﬁi = M&C
i

where #. = d, is the acceleration of center of mass (c.m.) and M is the total mass of the system.
Hence equation (4) can be written as

FExD = Md, = = (M#,) (5)
If F(¢XD) = ( then %(Mﬁc) = 0, which implies that M9, =constant.

We conclude that if external forces are on a system of particles are zero, then its momentum will
be a constant of motions or a conserved quantity. Equation (5) describes the translational motion
of the system and may be referred to as the translational equation of motion which describes the
rotational motion of the system, we take the cross product of both sides of equation (2) with

r;, and obtain

N
(ext) (int) _ -
riXP; + Z T X FU =m;r; X a;
j=1

summing over i

ZirixFi(eXt) +XViom ¥ Fi(jlnt) =Yim1; X 4; (6)
Now we will show that in view of our assumption (1) about internal forces, the second term on
L.H.S of equation (6) is zero. On interchanging the dummy indices and using (1) we have

. 1 . .
(int) _ (int) (int)
ZrixFij _Ez(riXFij +TJ'XF}'i )
i,j ij
1 int int
= EZ(ri X Fi(jm ) —1; X Fl.(]-m ))
ij

) ,
= =% (i — 1) X F{™ (7)
The vector r; — 7; is in the direction of the line segment joining the particles I and j and therefore
it is parallel to F;; . Therefore the last term on R.H.S of equation (7) is zero.

Hence we finally obtain
Z T X Fig-ex’:) = Z m;r; X C_ii
iLj i

or



d
i i i
d S
= E(Z T X mivi)
L
d

_ ZL _dL
T dt T dt

l
which is usually written as
% = G (ext)
dt
where G;*? is the torque or momentum due to external force on the ith particle, and G;©*? is
the torque due to all external forces on the system.

Similarly L is the total angular momentum of the system.
Zri X Fl,(j?xt) — Z Gi=G
Lj i
Thus we have obtained the following two equations of motion for a system of particles.

d -

E(Mvc) = F(ext) (8)
and

aL _ ~(ext)

=G )
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It follows from equation (8) that if the total external torque on the system is zero, then its angular

momentum will be a constant of motion or a conserved quantity.
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Introduction to Center of Mass and Linear
Momentum

The rigid bodies are a system of particles in which the position of particles is relatively fixed. We
consider such a system of particles in this article and will discuss its center of mass and linear
momentum.

Center of Mass

Our general system consists of ) particles of masses my, my, ... ....., m,Whose position vectors
are, respectively, 4,15, ... ....., 1. We define the center of mass of the system as the point whose
position vector r,,,, is given by
MU M Mary Mty Y myTy
Tem = Mmy+Mmy+-tm T oom @
1 2 I n

where m = Y;I*.; m; is the total mass of the system.
The above definition of center of mass leads us to three equations
_ i=1 X _ =1 MY Yieq MiZ;

xcm m 'ycm m recm m

which are the rectangular coordinates of the center of mass of the system.

Linear Momentum

We define the linear momentum p of the system as the vector sum of the linear momentum of the
individual particles, namely,

From equation (1)

n

i=1 M1
Ty = 1
m =TT (D)
7 —v. = ?=1mivl
cm cm m

it follows that
p=mMvVey

that is, the linear momentum of a system of particles is the product of the velocity of the center
of mass and the total mass of the system.
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Law of Conservation of Momentum for
Multiple Particles

Statement

In the absence of the external force, the momentum of the system of particles will be conserved.

Proof

Suppose we have a system of N particles in motion under forces. These will be two types of
forces, internal and external.

Suppose now that there are external forces F; F,, ..., F;,,..., F, acting on the respective particles.
In addition, there may be internal forces of interaction between any two particles of the system.
We denote these internal forces by F; j(i"t), meaning the force exerted on particle i by particle j.
Internal Forces act between particles of the system; all over the external. We suppose further that
the internal force satisfy Newton’s third law of motion. i.e. Internal forces between a pair of
particles are equal and opposite.

If Fl-j(i”t) denotes the internal force on the ith particle due to the jth particle, then in the view of

this assumption we can write
(int)

Fji(int) = —F;; (1)
The equation of motion for the ith particle of the system can therefore be written as

FeO + 30 Fy ™ = mya; = p, )
where F;(¢*® denotes the total external force on the ith particle, and a; the acceleration of the ith

particle.
To obtain an equation of motion for the whole system, we sum over | (from 1 to N), on both
sides of the equation (2).

N
z Fe* 4 Z Z Fy 0 = Z m;a; = p,
i

7 T j=1
FEext + 3 F 0 =% ma; = p, 3)
where F(€*Ddenotes the total force of the system.
now we will show that because of equation 1, L.H.S of equation 3 is zero.
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i 1 . 1 ;
P, = Z Fij(mt) - Ez Fij(mt) + Ez Fij(mt)
Lj ij i

since the indices | and j are dummy and vary over the same set of integers, we can interchange
them in the second sum on R.H.S of the last equation. Therefore we have

. ; 1 , 1 .
b, = z Fij(mt) — Ez Fij(mt) + Ez F}-i(mt)
Lj Lj ij
using equation (1), we have
(int) _ (1 (int) _ 1 (int) \ =
i Fyt = (EZi,jFij =T )—0
therefore equation (3) becomes

p, = Fe0 = Z m;a;
7

for centroid, we know that };; m;a; = ma.where a_is the acceleration of centroid.
Hence equation can be written as

d
by = F* = Ma, = - (Mv,)

If Fex) = ( then p, = %(Mvc) =0 or p= Mv, = constant

We conclude that if external forces are on a system of particles are zero, then its momentum will
be a constant of motion or a conserved quantity.



Module No. 132
Example of Conservation of Momentum

Problem Statement

A particle A, of mass 6 kg, travelling in a straight line at 5 ms~? collides with a particle B, of
mass 4 kg, travelling in the same straight line, but in the opposite direction, with a speed of 3
ms~1. Given that after the collision particle A continues to move in the same direction at 1.5

ms~1, what speed does particle B move with after the collision? (© mathcentre 2009)

Given Data

Mass of particle A = m,; = 6kg

Velocity of A before collision = u; =5ms™1
Velocity of A after collision = v; =1.5ms™?!

Mass of Particle B = m, = 4kg
Velocity of B before collision = u, =3ms™?!

Required
Velocity of B after collision = v, = ?

Solution

It is always useful to depict the collision with the velocities both before and after.
Using the principle of conservation of momentum:

miuq + myu, = My, + myUy
6 X5+4%Xx(=3)=6XxX15+4Xuv,
9=4><172

v, = 9/y=23ms™}

So after the collision particle B moves with a speed of 2.3 m s—1, in the same direction as A.

Example 2

S7
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Problem Statement

A particle A, of mass 8 kg, collides with a particle B, of mass mz2kg. The velocity of particle

A before the collision was (—1i + 4j) m s~! and the velocity of particle B before the collision
was (—0.8i + 1.4j) m s~1. Given the velocity of particle A after the collision was

(—2i + 2j) ms~1, and the velocity of particle B was 3j m s~1, what was the mass of particle
B?

Given Data

Mass of particle A= m, = 8kg

Velocity of A before collision=u; = (=1i + 4j) ms~!
Velocity of A after collision=v; = (=2i + 2j) ms™?
Velocity of B before collision=u, = (—0.8i + 1.4j) ms™~?!
Velocity of B after collision= v, =?3j m s~

Required
Mass of Particle B= m, =?

Solution
It is always useful to depict the collision with the velocities both before and after.
Using the principle of conservation of momentum:

miu; + myu, = mv; + myv,
6 X5+4%Xx(=3)=6XxX15+4Xnv,
9 =4 X v,
v, = 9/y= 23ms™
So after the collision particle B moves with a speed of 2.3 ms™1, in the same direction as A.

Example 2

Problem Statement
A particle A, of mass 8 kg, collides with a particle B, of mass 2 kg. The velocity of particle A

before the collision was (—1i + 4j) ms™* and the velocity of particle B before the collision was
(—0.8i + 1.4j) ms™1. Given the velocity of particle A after the collision was (—2i + 2j) ms™?,
and the velocity of particle B was 3j ms~1, what was the mass of particle B?

Given Data
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Mass of particle A = m,; = 8kg

Velocity of A before collision = u; = (—1i + 4/)ms™?!
Velocity of A after collision = v; = (=2i + 2j)ms™!
Velocity of B before collision = u, = (—0.8i + 1.4j)ms™?
Velocity of B after collision = v, = 3j ms™?!

Required
Mass of Particle B =m, = ?

Solution
By making use of principle of conservation of momentum:
muq + myu, = myv, + myv,
8(—1i + 4j) + m2(—0.8i + 1.4j)
=8(-2i + 2j) +m,(3))
—8i + 32j + 16i — 16§ + m2(—0.8i + 1.4j) —m,(3j) =0
8i + 16/ + m,(—0.8i — 1.6§) =0
8i + 16j —m,(+0.8i + 1.6j) =0
8i + 16j = m,(0.8i + 1.6j)
0.8i + 1.6j
M= Tgi 16
By rationalizing and solving the above fraction, we obtain
m, = 10kg
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Module No. 133
Angular Momentum - Derivation

Angular momentum of a particle of mass m, position vector r and linear momentum p is defined
asr X p. Itis also called moment of momentum.

Let there be a system consists of N particles with positon vector r; and the momentum p; (i =
1,2,3,......., N) then the total angular momentum L is given by

L=Zrixpi =Zri><(mvi)

l 2

To find the relation between L and w, we proceed as follows:
L= Zri X (ml-vl-)
i
= Zri X ml(5 X T'l')
i
= Zmi[ri X (& X 1)]
i
= Ximy[(ri )@ — (1. )] 1)

Here (r;.7;))w and (7;. w)r; are not parallel vectors. If they were parallel then we could easily say
that L is parallel to @.

We conclude that in general L and @ are not parallel to each other. To find the relationship
between the vectors L and « we proceed as follows:

Since
1 = xl + yif + z;k
therefore
1.1 = X2 + y;i% + z;?
and

W. 1 = WyX; + wyy; + W,z
Therefore substituting these values in equation (1), we have
L=Yimi(x? + 52+ z2)(wxl + wyf + wk) — (wex; + wyy; + 0,2) (x;8 + yif + z;k)
)
Writing
L=Ly0+Lyj+ Lk =Li+L,j+ Lk
and
W = Wyl + wyj + Wk = wil + w,f + w3k
and comparing the coefficient of i on both sides of equation (2), we obtain



L, = Z m;(x;% + yi% + 22wy, — (Wyx; + wyY; + W Z)X;
i

= Z m;[x 2wy + (% + 22wy — Wy Xi* — Wy XY — Wx;Z;]
i

= Wy XMy ()’iz + ZiZ) - a)xxiz — Wy Xim Xy — Wz XM X;Z;] (3)
As we studied the definitions of moment of inertia and product of inertia be defined as

Lex = Zmi(yiz + Ziz)
i

Iy, = z mi(Ziz + xiz)
i

I, = zmi (xiz + }’iz)

i

Ly = _Zmixiyi
i

Iy, = — Z m;y;z;
i

Iy = — Z m;x;z;
i

Using these definitions and noting that I, = I,,, etc. we can write
Ly = Liywy + Iyywy + [0,

and

Similarly we obtain

Ly, = Loy, + L wy, + 1,0,
L, = liywy + Iy,0y + 1,0,

61
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Module No. 134
Angular Momentum in Case of Continuous
Distribution of Mass

An actual rigid body consists of very large number of particles and therefore we may suppose that
there is a continuous distribution of mass. If p(r) denotes density of a volume element dV/,
surrounding the point r, then the mass of this element will be p(r)dV.

Hence we can write the expression of angular momentum in case of continuous distribution of
mass by

b =l = [ PO + 20
where
r=0x7y,2) = (x1,%3,x3), dV =dxdydz
Similarly the other two moment of inertia are defined as
Ly =1, = fp(r)(z2 + x2)dV
and

Iy =1, = j P (2 + y2)dV

Similarly the product of inertia are defined as

Ii; =1y = —jp(r)xde,
s = Iy, == [ pGyady,

I3, =1, = —Jp(r)zde
By using these definitions of moment of inertia, we can find the expression of angular momentum
by using the following result
L=Ldi+L,j+Lsk
L = Lywy + Lyw, + 1,0, + Ixy(wx + wy) + Iyz(wy + wz) + I, (w, + w,)

where

Ly = Liywy + Lyywy + [0,

Ly, = Lo, + L wy, + 1,0,

L, = Lywy + Iyw, + [0,

and wy, w,, w, are the components of angular velocity along (x, y, z).
or



L, Lyx Ixy Ly,
Lyl =Ly Ly I, [

Lz Ixz Iyz Izz
where we have used the property of products of inertia that

Ly = Ly, 1y, = I, and

The above matrix form can be written as

wx
Wy,
wZ

|
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Module No. 135
Law of Conservation of Angular
Momentum

Angular Momentum

The angular momentum of a single particle is defined as the cross product of linear momentum
and position vector of concerned particle.
Mathematically L =r x mv.

Angular Momentum of System of Particles

The angular momentum L of a system of particles is defined accordingly, as the vector sum of the

individual angular momentum, namely,
n

L= i X m;v; (1)
2,
Law of Conservation of Angular Momentum

The time rate change of angular momentum in the absence of some external forces is zero.

Mathematically, we can write

dL
— =0 = L = constant
dt

Let us calculate the time derivative of the angular momentum. Using the rule for differentiating
the cross product, we find

dL  d (< Y \
—== Zri xmv; | = Z(vi Xm;v;) + Z(Ti X m;a;)
i=1

i=1 i=1
Now the first term on the right vanishes, because,v; X v; = 0 and, because m;a; is equal to the

total force acting on particle i, we can write

dlL <
i Z(Ti X m;a;)
i=1

dL J

L= [ % (80 R0 + 0, By Fy ) 2)
dL i

o _ ?:1ri % Fi(ext) + Z?=1 Z;’lzl Fij(mt)) (3)

where F; denotes the total external force on particle i, and F;; denotes the (internal) force exerted

on particle i by any other particle j. Now the double summation on the right consists of pairs of
terms of the form
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(i xF)+ (rj X Fﬂ) 4)
Denoting the vector displacement of particle j relative to particle i by r;;, we see from the triangle
shown in Figure that

rp =11 )
Therefore, because Fj; = -F;;, expression (3) reduces to
—13; X Fij (6)

which clearly vanishes if the internal forces are central, that is, if they act along the lines
connecting pairs of particles. Hence, the double sum in Equation (3) vanishes. Now the cross
product (r; X F;)is the moment of the external force F. The sum ) (r; X F;) is, therefore, the
total moment of all the external forces acting on the system. If we denote the total external
torque, or moment of force, by N, Equation (3) takes the form

dL

==
That is, the time rate of change of the angular momentum of a system is equal to the total
moment of all the external forces acting on the system.
If a system is isolated, then N = 0, and the angular momentum remains constant in both

magnitude and direction:
n

L = Z 1; X m;v; = Constant vector (8)
i=1
This is a statement of the principle of conservation of angular momentum. It is a generalization
for a single particle in a central field.
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Module No. 136
Example Related to Angular Momentum

Problem Statement

The moon revolves around the earth so that we always see the same face of the moon.
i.  Find how the spin angular momentum and orbital angular momentum of the moon w.r.t.
the earth are related?
ii.  Find the change in spin angular momentum of moon so that we could see the entire
moon’s surface during a month.

Solution

i. Let M, R,, denotes the mass and the radius of the moon respectively.

Then its spin angular momentum i.e. angular momentum about its axis of rotation is given by
Ly = lwg
where I is the moment of inertia and w, angular velocity of the moon about its own axis

The moment of inertia of the sphere is

2
I = =mr?

5
by generalizing it for moon, we obtain the moment of inertia for the moon

2 2
I =<MRy,

then the angular momentum of moon will be
Ls ==MRy w; 1)
In addition to spinning about its own axis, the moon is also performing orbital motion about the
earth. If we denote the orbital angular momentum by L, then
Lo =R x (MV) =R x (MRw,)
= MR?w, )
SV = wr
where we have treated the moon as a particle and R is the distance between the moon and the
earth. Since we always see the same face of the moon, the moon makes on rotation about its axis
in the same time as it makes on revolution around the earth i.e. wy = w,. Form equation (1) and
(2) we have
L, EMRy o,

L, MR2w,
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=20y
5\ R

If we have to see the entire moon’s surface during a month, then Lg must either increase
or decrease by one-half of its present value.
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Module No. 137
Kinetic Energy of a System about Principal
Axes - Derivation

Kinetic Energy

The kinetic energy for a particle is given by the following scalar equation:

1
Tzzmv2

Where:

» T is the kinetic energy of the particle with respect to ground (an inertial reference frame)
» m is the mass of the particle
» v is the velocity of the particle, with respect to ground

Kinetic Energy of a Rigid Body

For a rigid body experiencing planar (two-dimensional) motion, the kinetic energy is given by
the following general scalar equation:

T = %mvc2 + %Ica)2 1)
where the first term in equation (1) shows the kinetic energy due to the motion of center of mass

and second term shows the rotational Kinetic energy and subscript ¢ denotes the center of mass
and v, denotes the velocity of c.m and I. denotes the inertia matrix w.r.t c.m.

Kinetic Energy of a Rigid Body w.r.t Origin
If the rigid body is rotating about a fixed point O that is attached to ground, we can express the

Kinetic energy as:
1

T == w?
2 0?

Where:

I, is the moment of inertia of the rigid body about an axis passing through the fixed point O, and
perpendicular to the plane of motion and w is the angular velocity.

Kinetic Energy of a Rigid Body about Principal Axes
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If the center of mass is oriented along with origin then the coordinate axes (xyz axes) and the
principal axes of the rigid body are aligned. In this case, the inertia matrix reduces, i.e. products
of inertia are zero along the principal axes, (I,y, = I, = I, = 0).
For general three-dimensional motion, the kinetic energy of a rigid body about principal axes is
given by the following general scalar equation:
T = %mvoz + %wa,% + %Iya)f, + ilzwzz (3)
where Iy, L, I, are the moment of inertia along principal axes (xyz axes) also called principal
moment of inertia and products of inertia I, I,,, I, are zero along the axes

Equation (3) is the required expression of Kinetic Energy along principal axes.

If the rigid body has a fixed point O that is attached to ground, we can give an alternate scalar
equation for the kinetic energy of the rigid body:

2 2, 1
T = Elxwx + Elywy + EIZ(UZ

in this case, the kinetic energy due to the motion of c.m. vanishes.
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Module No. 138
Moment of Inertia of a Rigid Body about a
Given Line

Let M be the mass of the system and é a unit vector along the line I. Then & = Ai + uj + vk,
where (4, u, v)are direction cosines of the line.
If I; denotes the record moment of inertia, then

Il = z mldlz
i

d; = |OP|sin8; = |r;| sinB; = r;sin6; = |e; X 1;|

Form the figure

Therefore
I =zmi|eixri 2 (1)
i
Now
i j k
le;Xnil =2 u v
Xi Vi Zi

= (uz; — vyl + (vx; — Az)j + (Az; — vxk
le; X 1i]? = (uz; —vy)? + (vx; — A2)* + (Ay; — pxy)?
Hence on substitution in equation (1), we have

I = 2 m;[ (uz; —vy)? + (ux; — Az;)* + (Ay; — px;)?]
7
I, = Z m;[ 12z + v2y;? — 2uvy;z; + vix? + A1%z;2 — 2vdx;z; + Ay, + ux; — 2uldx;y;]
;

= z m;[ p? (% + z;%) + 02 (% + ;%) + 22 (yi* + 2%) — 2pdxy; — 2uvy;z; — 2vAx;z;

;
= z m;[ A2 (yi® + z2) + p? (2 + z%) + 02 (2 + yi?) — 2pAxgy; — 2pvy;z — 20Xz,

;

=12 Z m;[ (v + z;?) + u? Z m; (x;* + z;%) + v? Z m; (x;* + y;%) + 2pA(— z m; X;y;)
; ; i 7

+ 2pv(— Z m; yiz;) + 2vA(— Z m; x;Z;)
i i



or finally,

I, = XLy + ulyy, + V21, + 2udlyy, + 2pvly, + 20ALL,
which may also be written as

I, = 2211 + ply, + V2155 + 2ull, + 2pvlys + 2015,
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Module No. 139
Example of M.I of a Rigid Body About
Given Line

Problem Statement

Calculate the moment of inertia of a right circular cone about its axis of symmetry.

Solution

Let M be the mass, a the radius and h the height of right circular cone. We regard the cone as
composed of elementary circular discs of small thickness each parallel to the base of the cone.
We choose the z-axis along the axis of symmetry, and consider a typical disc of radius r and
width 6z at a distance z from the base.
Mass of the disc is given by
Sm = pnr?éz

We regard the disk to be composed of concentric elementary circular rings of varying radii say r
then the mass 6m’ of one circular ring with height 6z will be

om' = p2nr'dz

4

Then the M.I of one circular ring will be
I, = p2nr'6z(r")? = 2mp(r')36z
Hence the M. of the whole disk will be

81 = Z 2mtp(r")36z

rings

r

ém
= f 21( Y(r")36zdr’

nr2édz

0

25mr N3 g
=2 f(r)dr
0

26m 1
= r* ==6mr?

ol =
412 2

From the similar triangles,

we have
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Therefore

Since the M.I of the disk is

S = 5 Smr?

On substituting for §m and r, the M.I of the cone about its axis of symmetry will be

h 2
_1[ (h—z g
0
1 4‘hh 1 4hh
_lpma o =_p7Ta 4
=5 j(h z)*dz > he f(z h)*dz
0 0
Since the M.I of the disk is
61—16 2
—E mr

On substituting for §m and r, the M.1 of the cone about its axis of symmetry will be

h 2
2 (5
= pn a— z
0
1 pra*h 1pma*h
= j(h—z)4dz—2pnh4 J(z—h)“‘dz
0
pra*h
=222 - ol

_ pra*h® _ pma*h?
~ 10h* 10

Since we know that

p = density of the cone



So,
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Module No. 140
Ellipsoid of Inertia

We have obtained the expression of moment of inertia of the given line I in terms of moment and
product of inertia w.r.t the coordinate axes OXYZ coordinate system whose origin O lies on the
line I.
I, =1 =221, + u?lyy + v2l35 + 2url;, + 2uvl,; + 205,

(1)

For the ellipsoid of inertia, we chose a point P such that |OP| = 1/\/7. If (x,y,z) are coordinates

of point P then

X y Z
A=_= I, == I, = = i
OP i, op 0P| wI, v OP zVi

On eliminating 4, u, v from equation (1), we obtain
I = VD2l + WWD2Lyy + (VD 2153 + 2(cyVIND 1, + 2(yzVIVD Ly + 2(xzVIND I3,
I =1[x?1; + V%, + 22133 + 2xyl,, + 2yzlys + 2zx154]
1=x%1; + V2L, + z%135 + 2xy1, + 2yzly5 + 22x13,
which can also be written as
L1 x? + Lypy? + 1332 + 21 ,xy + 21,3y + 215,zx = 1
Since 144, I,,, I35 are all positive, equation (2) represents an ellipsoid. This ellipsoid is called
ellipsoid of inertia or momental ellipsoid. The momental ellipsoid contains information about
moments or product of inertia at given point. If P is any point on the ellipsoid of inertia, then

|oP| = 1/\/7 orl = 1/0P2 i.e. the moment of inertia of a rigid body about any line OP is equals

to the reciprocal of the square of the length of |0P|.
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Module No. 141
Rotational Kinetic Energy

Introduction to Kinetic Energy

Kinetic energy is the energy produced in any body during its motion. It is equal to the half of the
product of mass and square of the velocity of the moving body;

1
K.E=T= Emv2

We consider a rigid body in a general state of motion in which it has both translation and rotation
w.r.t a fixed coordinate system. We suppose that it has an instantaneous angular velocity w about
a reference point C. We will use a model of a rigid body in which it is considered a collection of
large number N of particles which satisfy the constraint of rigidity.
If v is the velocity of C, then the velocity v; of the ith particle is given by

Vi=v+wXr;
If m; is the mass and v; the velocity of the ith particle, then the kinetic energy of the ith particle
will be

T; = =m;v?
L 2 L1

therefore the total kinetic energy of the system will be given by
N N N
1 2 1 2
T = ZTL- = zzmivi = zzmi(v +wXr)
i=1 i=1 i=1
N

1
= EZmi[vz +2v.w X1 + (0 X 17)?]
i=1

N N N

1 , 1 1 )

=E Zmi v +52mi2v.wxri+52mi(w><ri)
N N

l l
1 1
= EMVZ + v. ((A) X Zmiri) +Ez mi(w X Ti)z
i=1 i=1

= %Mv2 +v.0 XYL mr +%Z?’=1mi(w X 1;)? 1)

where Y:¥ . m; = M is the total mass of the system.
Now by using the definition of position vector center of mass (c.m.), we have

r, = S 2)

Xim;
Now we will discuss the consequence of referring of the position vectors of particle of the system
to the c.m. If the position vector of the ith particle of the system w.r.t the c.s. , then

r=r;+r,
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>

Center of Mass

o

Then by substitution this expression in the definition of c.m.in (2) , we obtain
CXim(r'i + 1)
c Xim;
o ximyr'y  Mr,

e Xim; M

. _ZimiT'i .
c — c
xim;
or we can write
!
.= LA R Ml l+rc

which gives

Zmi'f’l’ =0
i

Hence if the reference point C is identified with the center of the mass and origin is taken thereat,
the expression X, m;r; = 0 and therefore

1 . 1% .
T = EMU + EZ m;(w X 1y)
i=1
T =Ty + Trot
where Ty, = %Mv2 is the translational kinetic energy is also equals to the K.E of the center of the
mass and t,.,; = %Z?Ll m;(w X 1;)?% is the rotational kinetic energy of the system.

But we have
(wx1)?=(wX7).(wX7)
=w.1; X (wX1)
therefore on substitution
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N
Tooe = %Z milw.r; X (@ X )] = %a).L

i=1
Thus we have obtained the following formulas for translational and rotational K.E. of a rigid
body

1 2
Ttr = EMU

Tror = 5.1 1)
As we studied the relation L = [w
By using this value in relation (1) we obtain the rotational kinetic energy in terms of moment of
inertia.
Trot =%w.1w =%1w2 2

where I is the moment of inertia of the rigid body about the origin and equation (2) is the
required expression for Rotational Kinetic Energy.



79

Module No. 142
Moment of Inertia & Angular Momentum
in Tensor Notation

To show that the 3 x 3 inertia matrix (/;;) is also a Cartesian tensor of rank 3, we proceed as
follows. Here we have to distinguish between the particle index and the component index, which
denotes particle number, will be denoted by Greek letter «, and will take the value

1,2, ......., N. On the other hand, the component index, which denotes the component number
will be denotes by the Latin letters such as i and will take the value 1,2,3.

Using this notation, we can write the angular momentum of the system of N particles as

L=Zraxpa =Zrax(mava)

a a
where v, is the velocity of ath particle. Continuing we have

ZmaTaXUa=2marax(wxra), Vg = WXy

a a
Recall that every particle of the rigid body has the same angular velocity at a given t.
Simplification of the above reduces to

L= Z M (T Te) 0 — (0. 75)7,)

= Z ma(razw - (w'ra)ra)
a
But

3 3
Ww.Ty = E (l)iTa’i E wlxai E wjxa_j

i=1 i=1 j=1
where
T = (xa' ya'Za) = (xa,l'xa,z'xa,S) = Xq,i

Making substitution and taking the i'! component of the expression of angular momentum,

— 2
L = Z mg | 7°w; — (Z Wj Xg,j)Xq,i
J

a

we have

0, i#j

| g thus

But w; = X; wj 8;;; where §;; ={
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therefore

— 2
Li = Z Mme | 7o Z (L)j 6,_1 — Z (L)j xa‘jxa‘l-
a J j
2
z Mg Z(ra 8ij — xa,jxa,i)wj
a J
— 2
L= Z w; z Ma(1a?81j = XajXai)

L;

j a
which can also be expressed as
where
lij = Yo Ma(15°6;j — Xa,jXa,) (2)

Equation (1) shows that the component of angular momentum depends not only on the angular
velocity w but also on the inertia tensor ;.

Since the angular velocity (w;) and the angular momentum (L;) are known to be cartesion tensor
of rank 1, it follows from the quotient theorem I;; that I;; is a tensor of rank 2. It is called the
inertia tensor.
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Module No. 143
Introduction to Special Moments of Inertia

In this module, we will study some special moment of inertia. In order to introduce the moment
of inertia of some specific shapes and special rigid bodies, we assume that the rigid body is of
uniform density of particles.

Solid Circular Cylinder

We assume the radius of cylinder is a and mass M about axis of cylinder.

1
IZEMG,Z

Hollow Circular Cylinder

We assume the radius of cylinder is a and mass M about axis of cylinder.
We consider the thickness of Wall of cylinder is negligible.

I = Ma?
Solid Sphere
We assume the radius of sphere is a and mass M about a diameter.
I = 2M 2
= 5 a

Hollow Sphere

We assume the radius of sphere is a and mass M about a diameter.
We consider the thickness of sphere is negligible.

[ = Ma?
Rectangular Plate

We consider sides of length a and b, and mass M about an axis perpendicular to the plate
through the center of mass.
1 2 2
I = EM(CL +b )
Thin Rod

We assume the length of rod is a and mass M about an axis perpendicular to the rod through the
center of mass.



Triangular Lamina

We assume the height h and mass M of lamina.
I = 1Mh2
6

Right Circular Cone

We assume the radius of the circular cone is a and mass M.

=2 M2
“10¢

82
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Module No. 144
M.I. of the Thin Rod - Derivation

Problem Statement

Calculate the moment of inertia of a uniform rod of length [ about an axis perpendicular to the
rod and passing through an end point.

Solution

Let the X — axis be chosen along the length of the rod, with origin at one end point as shown in
the figure. Let M and a be the mass and length of rod respectively. We suppose the rod to be
composed of small elements.

Let dm and dx be the mass and the length of the specific element of the rod at a distance x from
the end point O.

Then

dm_

X

SHES

M
= dm= —dx
a

Then the moment of inertia of this element about the given axis is

,_ M,
Lojement = dmx*® = Ex dx



Hence the moment of inertia of the whole rod will be

M
I = Z —x2%dx
a

all elements

M
=—fx2dx
a
0
3 x3a_M
T a3 a
0

84
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Module No. 145
M.IL. of Hoop or Circular Ring - Derivation

Problem Statement

Calculate the moment of inertia of a hoop of mass M and radius r about an axis passing through
its center.

Proof
Let M be the mass and r the radius of the hoop. Then we can define the density of the hoop by
__mass _ M
p= area  2mrdr
y
A dr
r
<€ > X
v

We consider this hoop to be composed of small masses (dm) each of length és.
We can write it as

_ M _ om
p= 2nrdr  drés
= dm = —39s

27T

Moment of inertia of the small portion of the hoop of mass §m about an axis through center and
perpendicular to the plane of the ring equals

— 2
Iparticle = émr
M Mr

=—90sr?=

—94
27T 2T S

Therefore the M. I of the
whole ring/hoop will be



Mr
I = —z os
21 particles

=My
21 s
_Mr2

T2 T

= Mr?

> Hence we obtain Mr? as the moment of inertia of the hoop.

86
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Module No. 146
M.I. of Annular Disk - Derivation

Problem

Calculate the moment of inertia of annular disk of mass M. The inner radius of the annulus is R,
and the outer radius is R, about an axis passing through its center.

Solution
Subdivide the annulur disk into concentric rings one of which is shown in the fig.
Let the mass of the ring is dm, and the radius be r, then the moment of inertia of the ring will be:

Liing = r*dm

The Surface area of the ring is
Area = (2nr)dr = 2nrdr
Since the surface area of the
annulus is
m(R3 — R{)

Therefore, we can have



dm

M

dm =

Since the moment of Inertia of the ring is:

_ 2nrdr
- m(R3 —RY)

2rdr
(RZ—R?) )

Lying = r*dm

or

2

2rdr 2Mr3dr

SRR R -R

Thus the total M.I of the annulur disk will be

I

I =

RZ—_R?

Ry
= f Iring
T=Rq

R>
f 2Mr3dr
R; — R}

r=R;

Rz

2M
f r3dr

RZ—_R?

T'=R1

Ry
.r.4-

2M

4

Ry

2M RY—R?

RI—RZ 4

1
—M(Rz + R?)
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Module No. 147
M.I. of a Circular Disk - Derivation

Problem

To find the moment of inertia of a circular disk of radius a, and mass M about the axis of the disk.

Solution
Subdivide the disk into concentric rings one of which is the element (ring) shown in the fig.

y
A

dr

v

Let the mass the of the ring is dm, then the moment of inertia of the ring will be:
Ling = r*dm
The Surface area this element is
Area = (2nr)dr = 2nrdr

Since we have

dm 2nrdr

M  7a?
2rdr

dm = >
a

Since the moment of Inertia of the ring is:



or

Ling = r*dm

2rdr 2Mr3dr
a

a’

Thus the total moment of inertia of the circular disk will be

which is M.I of a disk.

a
Laisie = flring
r=0

a
2Mr3dr
Lyisk = fT
r=0

a
2M 3
=— fr dr
r=0
2M |r* 2M a*
= =5
as |4 o a* 4
lgisk = s Ma?

90
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Module No. 148
Rectangular Plate - Derivation

Problem Statement

Calculate the inertia matrix of a uniform rectangular plate with sides a and b about its side.

Solution
We consider a rectangular plate (lamina) of sides of length a and b. We consider an element of
length dx and dy.

y

A
L Qo

b T
dx

ol. . >x

a
The mass of selected element will be
dm = pdxdy

Its moment of inertia about the y-axis is

pdxdyx? = px?dxdy.
Thus the total moment of inertia is

Since the total mass of rectangular plate is
M = pab
the moment o inertia will be
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Module No. 149
M.IL. of Square Plate - Derivation

Problem Statement

Calculate the moment of inertia of a uniform square plate with sides a about any axis through its
center and lying in the plane of plate.

Solution

Consider a uniform square plate with length of its side to be a, we have to find out M.I. of this
plate about any axis, through its center.

We consider this axis as y — axis.

Let p be the density of plate and the total area of square plate is a?.

So density will be
M
p= 22
We assume that the plate has been divided into vertical strips. Let us consider a strip from the
whole square as shown in figure.

y
A dx
19
a |
<« 1 —>x
:
s —a /2
\ 4

The strips are chosen in this way because each point on a particular strip is approximately the
same distance from axis of rotation i.e. y-axis, the mass of the strip is ém and the width of each
strip is 6x, then the area of the strip will be adx, so
dm = padx
Let the distance of the strip from y-axis is x, then the moment of inertia of strip will be
51 = dmx? = x?padx
So the moment of inertia of square is
Isquare = Z xzpa6x

all strips



Now substitute p = % we obtain

) e
Lsquare = fxzpadx=pa fxzdx
-4 )
3 a/Z 3 A3
B X pala® (—a’)
~ P o, 318 8
_pa(a®\ pa*
S 3\4) 12
Ma?

I square — 7
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Module No. 150
M.IL of Triangular Lamina - Derivation

Problem Statement
Find the moment of inertia of a uniform triangular lamina of mass M about one of its sides.

Solution

Let ABC be the lamina. We will find its M.I. about one of its side BC. We choose the X-axis and
the origin as shown in figure.

A

e e e i I T N RSP

B 0 C

At a distance x from BC we consider a strip of lamina of width dx. If the mass of the strip is dm
then its moment of inertia about BC is = x?dm.

To find dm we note that the triangles ABC and ADE are similar. Therefore the ratios of sides are
the same.

Hence
DE  heightof ADE h—x
BC  heightof ABC  h
which gives
DE = A X BC = A X a

where h is the height of the triangle ABC at base BC and a is the length of BC. Now
ém = p(area) = pDEéx

B h—xg
= a~—) o0




where p is the density.
Therefore the moment of inertia of triangular Iamina about the side BC is

1——J‘ x*dm = f

= Jﬂ 2(h——x)dx-— f(hx —x3)dx

dep

pal, x* x4
Y
pa (h* h*\ pah®
=I<?_Z>=1Z
Now substitute density= p = IZ::: = 1/1;4ah
we obtain
1=1MM
6

Hence the required expression for moment of inertia of the triangular lamina is %Mhz.
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Module No. 151
M.IL. of Elliptical Plate along its Major Axis
- Derivation

Problem Statement

Find the M.I. of a uniform elliptical plate with semi major axes and semi minor axes a, b
respectively about its major axes.

Solution

We consider the elliptical plate as

x2 y2

with semi major axes along x-axis as shown in figure.
From (1) we have

b
y = ia [a2 — x2
So, let y, =§ a? — x2,

We consider a small element of plate of mass ém of the elliptical plate will be pds which will be
equal to pdxdy. The moment of inertia if this element along x-axis will be equal to I = émy?2.

0 b
om

Then the moment of inertia of whole plate will be

I, = f(Sm)yz = f pds y?

plate
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Y Ny \
4 /

_%/az_xz

a
2y? 2p (b3 3
=p f dx =3 E(az—xz) /2dx

—-a
due to symmetry, we can write it as

—-a

a
4pb3
- 3pa3 f(az — x2)°2dx

By making use of polar coordinates, substitute x = a sin 8, then dx = a cos 6 this integral

becomes

TL'
4pb3
j a3 cos3 6 (acos 0)do
0
4 b3ﬂ/2
a
_ZP fcos‘*@d@
0
4pab31><3 i
3 2><4 2
— 1 b3
—Zpa T
-1 b3m X M —1Mb2
—4a & mab 4
where for elliptical plate, we have
_ M
p mab

is the required expression for M.I.
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Module No. 152
M.IL. of a Solid Circular Cylinder -
Derivation

Problem Statement

To find the moment of inertia of a solid circular cylinder of radius a, mass M and the height of
the cylinder h about the axis of the cylinder.

Solution

Let’s subdivide the solid circular cylinder into concentric cylindrical shells/ hollow cylinders,
one of which is shown in the fig.

Let the mass of one shell isdm, height is same as h, thickness be dr and the radius be r then the
density of the shell will be

_dm
p= 2nrdrh
or
dm = 2nprdrh

Since we have
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M M_dm

p= Veytinder " ma’h  2mrdrh
or

2M

dm = — rdr
a

Since the moment of inertia of the shell will be:
Lshey = r2dm
or

, 2M 2M
Ihett =71 a—rdr = a—r 3dr

Thus the total moment of inertia of the solid circular cylinder will be

a
cylmder = j shell

r=0

a
j 2M
cylmder a2

r=0

a
2M
=— jr3dr
a
r=0

2M |r4|®

a?

2Ma
az 4

r

1 =
0

— 2
Icylinder - E Ma

is the M.I of solid cylinder.
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Module No. 153
M.IL. of Hollow Cylindrical Shell -
Derivation

Problem

To find the moment of inertia of a hollow open cylindrical shell of radius R, thickness dR, mass
M and height of shell h about the axis of shell.

Solution

Let’s subdivide the hollow shell into small hoops/ rings, one of which is shown in the figure.

Z

<> dR

i
A

Let the mass of one ring isdm, height is dh, thickness be dr and the radius be R, then the mass
of one ring will be
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dm = p2nRdRdh
Hence the moment of inertia of the ring of radius R will be
Ling = dmR?
or
Ling = (p2nRARAR)R* = 2pnR*dRdh

In order to obtain the moment of inertia for the whole hollow cylindrical open shell, we will
integrate

h
I = jlrmg = ijnR3deh
0

h
I = 2an3dedh
0

= 2pnR3dRh
Since the density of the hollow cylindrical shell is

M

P = 2XRdRR

Therefore
I = MR?

is the M.I of hollow cylindrical open shell.
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Module No. 154
M.I of Solid Sphere - Derivation

Problem

Find the moment of inertia of a uniform solid sphere of radius a and mass M about an axis (the
z-axis) passing through the center.

Solution
For a uniform solid sphere, due to symmetry, we have

Ly = Iyy =1y

In order to calculate the moment of Inertia of the sphere, we split the sphere into thin circular
discs, one of which is shown in Figure.

Idz

e
X
!

We have already derived the expression for the moment of inertia of a representative disc of
radius x, which is

1
laisk = Exzdm

of an elementary disc of mass dm and the radius x.
As we know the mass = (density)(Area of disc)

therefore



dm = prx?
Hence moment of inertia of the sphere along z-axis will be

a
1
I, = fzpnx“dz
—-a

[IPPS2

Now, to write “x”in
terms of z, we make
a triangle as shown in fig,

where

a?=x*>+z%2, =>x*=a?-z

1
I, = fzpn(az —z%)2%dz

—-a
8 5
= —mpa
5P

Since the mass of the sphere is

M = 4 3
= 37Ta p
Therefore
2
IZZ = EMCI,2
Also

2 2
Lix = lyy = I = £ Ma

is the required moment of inertia of the sphere.
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Module No. 155
M.IL. of the Hollow Sphere - Derivation

Problem

A thin uniform hollow sphere has a radius R and mass M. Calculate its moment of inertia about
any axis through its center.

Solution

In order to calculate the moment of inertia of the hollow sphere, we split the hollow sphere into
thin hoops (rings), as shown in Figure.

> dR

e 8
=

de

We have already derived the expression for the moment of inertia of a representative hoop of
radius x, which is

I = dmx?
of an elementary ring of mass dm and the radius x.
The volume of the elementary ring is

dV = 2nxRdOdR

As we know the mass = (density)(volume)
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dm = pdV
therefore
dm = p2nxRdRdO

Hence the moment of inertia of the small ring of radius x will be

Ling = dmx?®

or
Lying = 2nxpRARd6)x* = 2npRdRx*d6
which is the moment of inertia of ring of radius x chosen from the hollow sphere.

In order to obtain the moment of inertia for the whole hollow sphere, we will integrate

/2

I = f]ring = f 2mpRARx3d0

/2
due to symmetry, we can write
/2

I = 47rdeRj x3do
0

To solve the integral, we need to write x in terms of 8. From fig we have
X =Rcosf
The integral becomes,

"/,

I = 47TdeRf (R cos 0)3do
0
/s

I = 47TpR4de cos30do
0

/2
1= 4npR4de cos 6 cos? 6 df
0
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/s
1= 4npR4de cos @ (1 —sin? §)d@
0

/2
I = 47TpR4de cos 6 (1 —sin? )do
0
/2 /2
I = 47rpR4dR(f cos 0 df — f sin? @ cos 0 d6)
0

0

VA
sin® 9 /2

3

I = 4mpR*dR |sin 6 —

0

1
= 4npR*dR (1 - —)

3
2
= 4mpR*dR X 3
_8 R*dR
Since the density of the hollow sphere is
_ M _ M
P =V T anR24R
Hence M. of hollow sphere will be
2
| = =MR?
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Module No. 156
Inertia Matrix / Tensor of solid Cuboid

Problem Statement

Calculate the inertia matrix / inertia tensor of uniform solid cube at one of its corners.
Solution

Let the length of the edges be a of each side and let the axes be chosenalong the edges as shown
in the figure.

By definition
Iy = Ly = fp(r)(yz +2%)dV

Since the box is made of uniform material, the density p must be constant. Therefore

a a a
Ixx=pfjj(y2+zz)dxdydz
00 0

a a a
= pJ f(yz +Z2)ddeJ dx
00 0

a a
= paj J(y2 + z2)dydz
00
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Since we know that for the cube

We obtain

Similarly, due to symmetry, we can write

Again using
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We obtain
. Ma?
12 — 4
Similarly,
L Ma?
12 — 4
. Ma?
12 — 4
The required inertia matrix / inertia tensor will be
[2M Ma? Ma?
_a — —
3 4 4
Ma* 2M Ma?
4 3 4
Ma? Ma®> 2M
— — —a
4 4 3 .
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Module No. 157
Inertia Matrix / Tensor of solid Cuboid

Problem Statement
Calculate the inertia matrix of uniform solid cuboid (parallelepiped) at one of its corner.

Solution

Let the length of the edges be a, b, c and let the axes be chosen along the edges as shown in the
figure.

By definition

I11 = Ly

= [ b0 + 2230

Since the box is made of uniform material, the density p must be constant. Therefore

Cc

a b
Ly = pf f f(y2 + z2)dxdydz
00 0

c a

b
= pff(yz +zz)dydzfdx
00

0



abc
Lx = pT(bz +c?)
using relation
M
p= abc

Similarly, due to symmetry, we can write
M
L, = = (a? + ¢?)

M
I, = ?(az + bz)

Now for the product of inertia, we have

Again using
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_ M
p= abc

we get

- Mab

12 — 4
Similarly,

; Mbc

23 — 4

L. = Mac

31 = 2

The required inertia matrix / inertia tensor will be

Iij ==
rM b2 4 o2 Mab Mac
g ("% 4 4
Mab M 2 4 2 Mbc
4 3 (@ +¢) 4
Mac Mbc M 2 4 2
4 4 3 (@ )]
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Module No. 158
M.I of Hemi-Sphere - Derivation

Problem Statement

Find the moment of inertia of a uniform hemisphere of radius a about its axis of symmetry.

Solution

We will use the spherical polar coordinates (r, 8, ¢). Their use makes computational work
simpler.

Their range of variation for hemisphere will be
0<r<a
0<6<T7/,
0<¢p<2rm
x =rsinfcosg,
y =rsinfsing, z=rcosf

We choose the z-axis as the axis of symmetry.

Hence
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I, = f PG +y2)dV

=p f(x2 +y?)av
Now calculate x2 + y? in terms of sp. coordinates
x% + y? = r2(sin? 0 cos? ¢ + sin? 0 sin? @)
= r2sin? 6 (cos? ¢ + sin? @)
=1r2sin%0

and the element of volume in spherical polar coordinates is given by

dV = dr(rd0)(r sin8de) = r?sin 6 drdfde
Therefore

”/2 27T

a
IZZ=pfj jr4sin30drd0dg0
00 0

T/,

a
fr“drf sin Hdef do
0

0
/2

a
= an?j sin® 0 d@

TL'
a 3sinfd — sin 360
— de
5

0

cos 360 /2

= (27tp | —3cosO +
0

aS
= mp = [(0) = (=3 +1/3)]

B a® 8
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= 4mp a_S
15
By using the relation for density
M
p= 2/3 a3
we obtain
I, = gMaZ

which is required expression for moment of inertia of hemisphere.
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Module No. 159
M.IL. of Ellipsoid -Derivation

Problem

Find the moment of inertia and product of inertia for the ellipsoid

w.r.to its axes of symmetry.

Solution
By definition
L1 = Ly
= | p0* +20av
ellipsoid
If we put
X A y R/ z R
a X b Yo c d
then
x=ax',y=by', z=cZ
= dx = adx', dy = bdy', dz = cdz'
and

dV = dxdydz = abcdx'dy'dz’
Now under the above transformation, the given ellipsoid is transformed into the unit sphere S:
x?+y?+7%2=1

The integration is now over the region enclosed by the unit sphere.
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Li=p f (b2y'? + c2Zz'*)abcdx'dy'dz’'
R

or

I = pab3cf y"?dV' + pabc3 f z"%dV’
R R

where dV' = dx'dy'dz’
Now because of symmetry

j y2dv' = f 2" dv’

R R

Now we solve one integral.
We use the spherical polar coordinates (r, 8, ).
Their range of variation will be
0<r<1, 0<60<m 0<¢p<2nm
x =rsinfcose, y=rsinfsing, z=rcosf
and
dV' = dr(rd8)(r sin8de) = r?sin 0 drdfde

Thus

27T

j r*sin3 6 sin? ¢ drdfde
0

1
frov-
0

1 T
=fr4drfsm Hdef sin? @ do
0 0

cos 30"

o —_

sin 2¢|*"
2

_1 | 3 0+
2 cos

0

Thus
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f 2 gy = 2T
Y ~ 15
S
Therefore on substitution
2T 2T
I, = pab3c— + pabc® —

15 15
21
— 2 2
I, = pabc—15 (b* +c?)

_ M
~ (4/3)mabc

abc X i—:(bz +c?)
Ii; = %(bz +c?)
Similarly,
I, = %(c2 + a?)
I33 = i/l_o(az +b?)

For product of inertia

Lip =1y = — f xydV
ellipsoid

= —pj ax'by'(abcdx'dy'dz")
R

= —pazbchff x'y'dx'dy'dz’
R

Using the polar coordinates (r, 6, @)

2T

w1
I, = —pazbch JJrsianos @(rsin @ sin ¢)r?sin 6 drdfde
0 00

=0
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Similarly, we can obtain
123 = 0

131:0
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Module No. 160
Example 1 of Moment of Inertia

Problem

Particles of masses 2m, 3m and 4m are held in a rigid light framework at points (0,1,1), (1,1,0)
and (—1, 0, 1) resp.

Show that the M. I. of the system about the x, y, z — axis are 11, 13, 12 respectively.
Solution

Since the masses are 2, 3and 4 i.e. m; = 2, m, = 3 and m3 = 4, and the points are given by
P;(0,1,1), P,(1,1,0) and P3(—1,0,1).

We are required to find out the moment of inertia about x-axis, y-axis and z-axis i.e. Ly, Iy, I,
Ly = Z Tni(yi2 + le)
i

=my(yf +2f) + my(y3 + 23) + m3(y3 + 23)
=2(1+1)+3(14+0)+4(1+0)
=4+3+4=11
So,

I, =11
Iyy = Zml(xlz +Zi2)
i

=my (xf +27) + my(x3 + 23) + ma(x3 + 23)
=2(0+1)+3(14+0)+4(1+1)
=2+3+8=1
So,

yy =13



So,

» Hence Showed

I, = Zmi(xiz +yi2)
i

=my(yf + x7) + my (x5 + y3) + ma (x5 + y3)
=2(0+1)+3(1+1)+4(14+0)

=2+6+4=12

I, =12
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Module No. 161
Example 2 of Moment of Inertia

Problem Statement

A boy of mass M = 30kg is running with a velocity of 3 m/sec on ground just tangentially
to a merry-go-round which is at rest. The boy suddenly jumps on the merry-go-round. Calculate
the angular velocity acquired by the system. The merry-go-round has a radius of r = 2m and a

mass m = 120kg and its moment of inertia is 120 kgm 2.

Solution
The merry-go-round rotates about an axis which we regard as passing through its c.m.
Let’s give the following notations:
» M.lofboy=1,
M.I of merry go round = I,
Vel. of boy = v;
Vel. of merry go round = v,

Angular vel. of boy = w,

YV V VYV VY V

Angular vel. of merry go round = w,

The moment of inertia I; of the boy about the axis of rotation can be found by
I, = Md? = 30 x 22 = 120kgm™2
The moment of inertia I, of merry go round is given to be
I, = 120kgm™?2
Since the velocity of the boy about the merry-go-round is v; = 3ms™1, therefore his angular

velocity w, about the axis of rotation is therefore

v 3
Wy, = 1=37° 1.5 radian per second

Initially the merry go round is at rest, therefore v, = 0, and thus its angular velocity w, = 0.
We ignore friction and therefore there is no external torque on the system.
Hence by the law of conservation of angular momentum
(L+L)w=Lw+ Lw,
Loy + Lo,
A
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where w is the angular velocity of the system when the boy jumps on the merry-go-round.
120(5) + 0
“ =120+ 120
= (0.75 radian per sec
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Module No. 162
Example 3 of Moment of Inertia

Problem Statement(tl

Two particles of masses m; and m, are connected by a rigid massless rod of length [ and moves
freely in a plane. Show that the M. I. of the system about an axis perpendicular to the plane and

passing through the center of mass is M 1% where

mpm,
my +m,

Solution

Let r, be the distance of mass m, from center of mass C. Then [ — r; is the distance of the mass
m, from C.Since C is the center of the mass.

So,
myry = my(l —11)
= myr = myl —myn
= (Mmy + my)ry = myl

m,l
=>n=——T
P (my +my)
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=1 =1 my |
ne (m; + my)
mll + mzl - mzl
= l -1 =
(my + my)
=1 = ml
ne (my + my)

Thus the M.I. about an axis through C is

mlrlz + mz (l - T12)2

myl  \* N
= (g ™ ()
my +m, my +m,

mym,l? mym,
= 2 (ml + mZ) = lz
(my +my) my +m;
I = MI?
where
o mm,
T my+m,

Hence showed.
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Module No. 163
Example 4 of Moment of Inertia

Problem (© engineering.unl.edu)

Calculate the moment of inertia of the shaded area given in figure about y-axis.

y
4"
y=x%/3

1Il

0lL—=" - x
Solution
Here, we have
y=x%/3 (1)

We consider an elementary strip from the shaded area whose M.I is

Lo =1x2(xd )=1x3d
strip 3 y 3 y
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Then by integration, we obtain the moment of inertia of the whole shaded area
4
3 2| 5,14
Iy =\/§fy fady =3z |y
1
1

= ViZ[@% - 1
2\/_[(4)5/2 _ (1)5/2]

=£(32— 1)

= 21.5inch*
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By using (1), we get

3
Istrip = \/§y /Zdy
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Module No. 164
Example 5 of Moment of Inertia

Problem

Determine the moment of inertia of the shaded area shown in figure with respect to each of the
coordinate axes.

Solution

Here we have

y = kx? 1)
From fig. we have

x =a, y=>b, then

b
b=ka*=k=—
a
Substituting the value
of kin (1), we obtain
b a
— = 2 -
y = 2 X orx \/E\/;

Now the moment of inertia along x-axis will be
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b

L = f y*dA = fyz(a—x)dy

LS
o

Hence

and

are moment of inertia about x-axis and y-axis respectively.
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Module No. 165
Example 5 of Moment of Inertia

Theorem Statement

The moment of inertia of a rigid body about a given axis is equal to the same about a parallel
axis through the centroid plus the moment of inertia due to the total mass placed at the centroid,
(the last quantity will be referred to as moment of inertia of the centroid).

Proof

By definition, if I denotes the M.I about the given axis, and d; denotes the distance of it" particle
from the given axis, then
i

If e is the unit vector in the direction of the axis, then we have the following result

diz = (e X Ti)z

Let . denotes the position vector of the centroid and

r{ the position vector of the i*" particle w.r.t to the centroid, then
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— !
r,=r,+mn

On making substitutions, we obtain

I = Zmi [e X (r, + ri')]z

i

2
=Zmi[exrc +e><rl-’]

i

=Zmi [(e X1 )%+ (exr)? +2(e xrc).(e xri’)]

i
= Zmi(e Xr.)? +Zmi (e X 1/)?
i i
+2 (e xrc).Zmi(e X 17)
i
=zmidcz +Zmid{2 +2(e><rc).e><2miri’
i i i

But >;; m;r; = 0 (We studied in earlier module).

Therefore

[ = (z m)d? + z m; d!?
i i

=Md.S +1'

where

M=Zmi
i

is the total mass of the system.
or
I=1,+TI

where I, denotes the moment of inertia of the centroid, and I’ denotes the M.I of the system
w.r.to a parallel axis through the centroid.



133

Module No. 166
Example 1 of Parallel Axis Theorem

Problem

Use the parallel axis theorem to find the moment of inertia of a solid circular cylinder about a
line on the surface of the cylinder and parallel to axis of cylinder.

Solution

Suppose the cross section of cylinder as in figure. Then the axis of the cylinder is passing
through the point C, while the line on the surface of cylinder is passing through A. So, we have to
find out M.1 of circular cylinder about a line passing through the point A whose radius is a
(radius of circular cylinder) and mass is M.

By parallel axis theorem
Li=1.+Ma*> (1)

Since I, which is the moment of inertia of a solid circular cylinder about an axis passing from
the center of mass is defined by

Ie = 5 Ma? 2)
where a is the radius of a solid circular cylinder.
By substituting equation (2) in equation (1) we have
1

I, == Ma* + Ma?
2
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=

I, =G +1) Ma?
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Module No. 167
Example 2 of Parallel Axis Theorem

Problem

Prove that the moment of inertia of a uniform right circular cone using parallel axis theorem of
mass m, height h and semi vertical angle a about a diameter of its base is

Mh?(3tan? a + 2)/20

Solution

In the case of M.l about its diameter, we consider the elementary disc of mass §m whose
moment of inertia about a diameter will be

81 _1 2§
0o =5Tom

> N

om

We note that the diameter passes through the center (which is also the centroid) of the
elementary disc.

Hence by parallel axis theorem, the M.I. 81 of the elementary disc about a parallel axis (parallel
diameter) at the base is given by
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851 = 61y + (6m)z?

1 1
= Zrz&n + dmz? = 6m(Zr2 + z2)

1 1
= prtrZSZ(Z r2+z%) =pn (ZrA‘ + r222> 8z

From the similar triangles,

we have

0z

Therefore = prt [ (h — 2)* + & (h — 2)°2%| 62
a4 4 az 2,2 3 4
=pnlm(h—z) +ﬁ(h z°—2hz° +z )l(ﬁz

Therefore M.I of complete right circular cone about a diameter is given by

‘ a* a?
I = pnf {4_h4 (h—2)*+ n (h?z% — 2hz® + 24)} 5z
0

a* h®> a?h°
I = -
pr <4h4 5 +h230>

Since we know that p = Waymath

= ﬂ(3a2 + 2h?)
20
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Since the semi vertical angle of
the right circular cone is a,

So by right triangle AOB, we have

. _ AO _a
ana = 5= %
A
a
- a(
(4] B
a=htana
Therefore
M
I = —[3(htan a)? + 2h?]
20
or
Mh?
— 2
I = 50 [3tan” a + 2]

Hence proved.
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Module No. 168
Example 3 of Parallel Axis Theorem

Problem[!

Find the moment of inertia of a uniform circular cylinder of length b and radius a about an axis
through the center and perpendicular to the central axis, namely I, or I,,.

Solution

Consider the elementary disc of mass dm and thickness dz located at a distance z from the xy
plane. Then the moment of inertia about a diameter will be

ol —1 2d
O—Za m

z

Then, using the parallel-axis theorem, moment of inertia of the thin disc about the x — axis will
be

1
dl, = Zazdm + z%dm

where dm = pra®dz.

Thus
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b/2

1
I, = prra? f (Zaz + ZZ> dz
_b/2

1 1
— 2(= .2 —p3
pra (4a b + v )
but the mass of the cylinder m is pra?b,

therefore

Due to symmetry we have



140

Module No. 169
Example 4 of Parallel Axis Theorem

Problem

Calculate the moment of inertia I ,,, for a uniform rod of length [ and mass M rotating about an
axis through the center, perpendicular to the rod.

Solution

In order to calculate the moment of inertia through the center of mass c.m., we use parallel axes
theorem.

In a transparent notation
L=1I,, +Md? 1)
where d is the distance between the origin and the center of mass and d = l/z.

Also I; is the moment of inertia of rod about one of its end (which we calculated earlier).

Here
1.2
I, = EMl (2)

From (1), we have

Substituting value from (2) in (1)

1 N 11
Icm :§Ml —M<E) :§Ml —ZMZ
1
Icm:EMlz

which is required moment of inertia about its center of mass.
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Perpendicular Axis Theorem

Theorem Statement

The moment of inertia of a plane rigid body about an axis perpendicular to the body is equal to
the sum of the moment of inertia about two mutually perpendicular axis lying in the plane of the

body and meeting at the common point with the given axis.

Proof

We choose the coordinates such that XY axes lie in the plane of the rigid body and the Z-axis is

perpendicular to it.

Then the theorem can be stated as
I3z =111 + I
or
Iz = Lex + 1y
where I;; = I, etc. are M.1 about the x-axis etc.
Since the z-axis has been
chosen to be perpendicular

to the laminar body, therefore

133 = IZZ = Z mldlz
i

y
4 Xi (xi, ¥i)
,’xiz + J’iz ¥y
d;
x
0 >
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where d; is the distance of the it" particle (lying in the xy-plane) from the z-axis.
If we denote the coordinate of this particle by (x;, y;), then
a? = xf +7

and therefore

133 = Izz = Zml(xlz +y12)

l
_ 2 2
= z mix; + Z m;y;
i i

= Ly + 1y

» Hence the proof.
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Module No. 171
Example 1 of Perpendicular Axis Theorem

Problem Statement

Find the moment of inertia of a uniform circular plate (or disc) about any diameter.

Proof

Since we have deduced that moment of inertia of a uniform circular disc is
1
Lyjsc = Py Ma?

which is about a line passing through center and perpendicular to the plane.

Considering the same axis with same terms in 3-dim body (i.e. z — axis passing through center
of mass and perpendicular to xy — plane), we have using perpendicular axis theorem

Izz = Ixx + Iyy (1)

We have to find out M.I. of uniform circular plate (disc) about any of its diameters which are
along x — axis and y — axis (i.e. we have to find out I, or I, both of them are equal to I;)

Since
Ly =1g =1y
So equation (1) becomes

L,=1;+1,



or

I, =24

1
( Izz = Idisc = E Maz)

where M is the mass of disc and a is its radius.

144
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Module No. 172
Example 2 of Perpendicular Axis Theorem

Problem Statement

Find the M.I. of a uniform elliptical lamina with semi major axes and semi minor axes a, b
respectively about respective axes (X, y, z-axis) using perpendicular axis theorem.

Proof

We consider the elliptical plate as

x2 yZ
Stm=1 O

with semi major axes along x-axis as shown in figure.

1 b
om

From (1) we have

lety, = gm

We consider a small element
of mass dm of the elliptical
plate, then we will have

dm = pds = pdxdy
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The moment of inertia of this element along  x-axis will be equal to I = §my?2.

Then the moment of inertia of whole plate will be

= [(6m)y? = fplate pds y?

due to symmetry, we can write it as

a
4pb3
_P f(az—x2)3/2dx

3a3

By making use of polar coordinates,

substitute x = a sin 8, then dx = a cos 6 this integral becomes

4pb3

7T
J a3 cos3 6 (acosB)db
0

4pab3

7T
f cos* 0 de
0

— 1 b3

= 4pa T
for elliptical plate, we have

M

p= mab

Thus
1 M
Ly =—ab3m x —

4 wab
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1 2
&x::ZA4b

Similarly, about y-axis

due to symmetry, we can write it as

b
4pb3 3
~ 353 j(az_yz) /2 dy
0

Using polar coordinates, substitute y = b sin 8, then dy = b cos 8 d8 this integral becomes

T/,

4pa’
I, =P fb3cos30(bcost9)d0
0

yy — 3ph3

/s
j cos* 6 do

0

B 4pab

4pa®b3 w
= — X —
3 8 2

_.1 3b
—-4pa Vs

1 3 M
= — X —
4 aor mab

1

— 2
@y——zﬂhl

now using perpendicular axis theorem, we obtain
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Iz = Lex + 1y

—1Mb2+1M 2
2 2

1
IZZ = ZM(CLZ + bz)

which is M.1. of elliptical lamina along z-axis
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Module No. 173
Example 3 of Perpendicular Axis Theorem

Problem

Find the moment of inertia of a rectangular plate with sides a and b about an axis perpendicular
to the plate and passing through a vertex using perpendicular axis theorem.

Solution

We consider a rectangular plate (lamina) of sides of length a and b. We consider an element of
length dx and dy as shown in figure.

y
A
{dy
b >
dx
v x
0 % P )
a
We find the M.l about y — axis.
The mass of selected element will be
dm = pdxdy

It’s moment of inertia about the y — axis is

letement = pdxdyx® = px*dxdy.

where x is the perpendicular distance from the element to the y — axis.
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Thus the total moment of inertia about y-axis is

a b
I, = f fpxzdxdy
x=0 y=0

a
PEIR |
=pbfx2 = pb|—| ==pba3
3 3
0 O
Since the density of the rectangular plate is
_ M
P=ab
the moment of inertia will be
1
Iy = §Ma2

In the similar manner, we will calculate the moment of inertia about x-axis

The total moment of inertia about x-axis is

a b
L = f fpyzdxdy
x=0y=0

b

=pajy%y=pb
0 0

31b

y 1
3

= §pab3

Using the relation of the total mass of rectangular plate
M = pab
Then the moment of inertia will be

1—1MN
X3

Thus by using perpendicular axes theorem, we obtain the moment of inertia along z-axis

I, =L +1,

1 2 1 2
Qv::§A4b 4—§A4a
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1
M(a?* + b?)

IZ:§

which are the required moments of inertia of rectangle along x, y, z-axis.
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Module No. 174
Problem of Moment of Inertia

Problem

Find the moment of inertia about the line of an apparatus (as shown in figure) consisting of a sphere
of mass M and radius b attached to a rod of length 2a & mass m.

Solution

Since from the figure it is clear that b is the radius of the sphere whose mass is M and is attached
to the rod of length 2a whose mass is m.

Therefore
I, =1L+

where I, is the M.I. of a rod of length 2a about L and I,; is the M.I. of a sphere of radius b
about the line L, then



2a
I, = f px2dx
0
~ 312a ~ 8 ,
=rl3 o= p3a
using relation for p, we get
I, = %ma2
Now
L, =1+ Md?

where I' is the Ml of sphere about its diameter

IZL = szZ +M(2a+ b)Z
5

Substituting equation (2) & (3) in (1), we get

4 2
I, = =ma®* + =Mb? + M(2a + b)?

L=3 5

which is the required M.I. of the apparatus.

(2)

(3)

153
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Module No. 175
Existence of Principle Axes

Introduction

The axes relative to which product of inertia are zero are called the principal axes and the
moment of inertia along these axes are called principal moment of inertia.

Theorem Statement

For a rigid body, there exist a set of three mutually orthogonal axes called principal axes
relative to which the product of inertia are zero and « and L are considered along the
same direction.

Proof

We assume that there exists an axis through a point O of the rigid body such that angular velocity
« and angular momentum L of the body are parallel to this axis. Then we can write

L=1w Q)
where I is a constant of proportionality.
Form equation (1), we have
Li =1wq, Ly =1lw,, Lz =lw;
Also from the general theory of angular momentum
Li=%; Ijj w; )
From equation (1) and (2), we have
Ly =Ly + 03 + 13wz = [w,
Ly = Liwy + Iw; + [zws = [w;
Ly = 3101 + [30; + I3303 = [w3
which can also be written as
(li1—Dw1 + Ipwy + Ii3wz =0
L1001 + (Iz2—Dwy + 303 =0

3101 + I30; + (I33 — Dwsz =0 (3)
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Equation (3) is a system of three homogeneous linear algebraic equation in the unknown
w1, Wy, W3.

This system will have a non-trivial solution, i.e. (w # 0), if the determinant of the matrix of
coefficients is zero. i.e.

i1 —1 I, I3
121 122 —1 123 =0 (4)
I34 I3, I35 —1

This is a cubic equation in I and will in general have three roots. Equation (4) is called
characteristic equation of the matrix (/;;).

The roots of equation (4) are called eigen values of the inertia matrix (/).

The problem of finding principal moment of inertia and directions of inertia has been reduced to
that of finding the eigenvalues and eigenvectors of a symmetric 3 x 3 matrix.

The following results from the eigenvalue theory of matrices will deduce further results about the
principal moments and directions (axes) of inertia.

Related Theorems
» Theorem 1
A 3 x 3 symmetrical matrix has three real eigenvalues, which may be distinct or repeated.
» Theorem 2
The eigenvectors of a symmetrical matrix corresponding to distinct eigenvalues are orthogonal.

» Theorem 3

It is always possible to find three mutually orthogonal eigenvectors fora 3 x 3 symmetric
matrix, whether the eigenvalues are distinct or repeated.

Results

In the light of above theorems, we deduce the following results about the inertia matrix I __ at

mat

point O of a rigid body.

I.  The principal of moment of inertia are always real numbers. This is obviously physical

because the moment of inertia is defined as the quantity ., m;d? where m; and d; are
both real.



When all three principal moments I, I, I, are distinct, then by the theorem 2, three
mutually orthogonal principal axes can be found.

When I, = I, but I; # I3, then by the theorem 3, we can still determine three mutually
orthogonal principal axes, because the inertia matrix is symmetric.

156
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Module No. 176

Determination of Principal Axes of Other
Two When One is known

In many instances a body possesses sufficient symmetry so that at least one principal axis can be
found by inspection, i.e;the axis can be chosen so as to make two of the three products of inertia
vanish.

We consider a plane rigid body i.e. a 2D body; for example a plate of uniform thickness. Such a
system can be regarded as a coplanar distribution of mass.

Since there are three mutually orthogonal principal axes, one of them must be perpendicular to
the plane of the body.

The other two axes will lie in the plane of lamina.

We choose X and Y axes in the plane of lamina, and the Z axis perpendicular to its plane, as
shown in figure.

Iy, =1L,, =0 whereas I, # 0 1)
Since we have obtained the following equations for principal axes.
(11 = Dwy + I1;0; + 303 =0
L1y + (I = Dw; + 3wz =0
L3101 + Iz, + (I33 — Dwz =0 (2)
By making use of (1), and using the first two equations of (2), we obtain
(11 —Dwy + [0, =0
Lywy + (I = Dw,; =0

Since the principal axes perpendicular to the plane of lamina is supposed to be known, and we
are interested in determining the principal axes in XY -plane, therefore we didn’t consider third
eq. of (2).

Let OP;, OP, denote the principal axes in the XY-plane and let ¢ denote the angle between the
OP, and the X — axis.
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> <
-

@
\ > X

We define

which can also be written as

= =k, (3)

cos @ " sin Q -
where k is any arbitrary constant.
Substituting for w4, w, from equation (3) in (2) we have, after simplification
(I;7—I)cos@ + I;,singp =0
Iy cosp + (I, —I)sing =0
These equations can be put in the form

sin @ cos ¢
—, Iy = = =1, —
cosp’ 12 sing

Ly —1=—-I
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Module No. 177
Determination of Principal Axes by
Diagonalizing the Inertia Matrix

Introduction

Suppose a rigid body has no axis of symmetry. Even so, the tensor that represents the moment of
inertia of such a body, is characterized by a real, symmetric 3 x 3 matrix that can be
diagonalized. The resulting diagonal elements are the values of the principal moments of inertia
of the rigid body.

The axes of the coordinate system, in which this matrix is diagonal, are the principal axes of the
body, because all products of inertia have vanished.

Thus, finding the principal axes and corresponding moments of inertia of any rigid body,
symmetric or not, is virtually the same as to diagonalzing its moment of inertia matrix.

Explanation

There are a number of ways to diagonalize a real, symmetric matrix. We present here a way that
IS quite standard.

First, suppose that we have found the coordinate system (principal axes) in which all products of
inertia vanish and the resulting moment of inertia tensor is now represented by a diagonal matrix
whose diagonal elements are the principal moments of inertia.

Let e; be the unit vectors that represent this coordinate system, that is, they point along the
direction along the three principal axes of the rigid body.

If the moment of inertia tensor is "dotted" with one of these unit vectors, the result is equivalent
to a simple multiplication of the unit vector by a scalar quantity, i.e.

Iel- = /1€i (1)

The quantities A; are just the principal M.l about their respective principal axes.The problem of
finding the principal axes is one of finding those vectors e; that satisfy the condition

(I—-ADe; =0 (2)

In general this condition is not satisfied for any arbitrary set of orthonormal unit vectors e;. It is
satisfied only by a set of unit vectors aligned with the principal axes of the rigid body.
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Any arbitrary xyz coordinate system can always be rotated such that the coordinate axes line up
with the principal axes. The unit vectors specifying these coordinate axes then satisfy the
condition in eq (2). This condition is equivalent to vanishing of the following determinant

I —2AIl=0 (3)
Explicitly, this equation reads
111 —1 112 113
Iy ILpx—=1 Iz [=0
131 132 133 —1

Itis a cubic in A, namely,
B4+ A¥ +BA+C=0 (4

in which A4, B, and C are functions of the I's. The three roots 1,, A, and A5 are the three
principal moments of inertia.

We now have the principal moments of inertia, but the task of specifying the components of the
unit vectors representing the principal axes in terms of our initial coordinate system remains to
be solved.

Here we can make use of the fact that when the rigid body rotates about one of its principal axes;
the angular momentum vector is in the same direction as the angular velocity vector.

Let the angles of one of the principal axes relative to the initial xyz coordinate system be
a, S and y and let the body rotate about this axis. Therefore, a unit vector pointing in the
direction of this principal axis has components (cos a, cos 8, cos y).

Using eq (1),
161 = Alel
where A, the first principal moment of the three (1,, 4,, 43), is obtained by solving eq (4).

In matrix form

L — A4 Iy, i3 cosa
I, I — A4 I3 [COS ﬁ] =0
cos
I3 Iy, Isg— A,) %Y

» The direction cosines may be found by solving the above equations.

» The solutions are not independent. They are subject to the constraint



161

cos?a + cos? f + cos?y =1

> In other words the resultant vector e; specified by these components is a unit vector.
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Module No. 178
Relation of Fixed and Rotating Frames of
Reference

In order to derive the relationship between fixed and rotating frames of reference, we will study
the following theorem!*21,

Rotating Axes Theorem
» Theorem Statement

If a time dependent vector function Ais represented by /Tf and ffr in fixed and rotating coordinate

dA\  (dA h
E = E +wXA,
f r

where it is understood that the origins of the two systems coincide at t = 0

system, then

> Proof

We denote the fixed and rotating coordinate systems by 0X,Y,Z, and 0XYZ and denote the
associated unit vectors by {iy, jo, ko} and {i, j, k}.

Consider a vector A which is changing with time. To an observer fixed relative to OXYZ system,
the time rate of change of A = A,1 + A,J + Ak will be

dA —dA“+dA“+dAIE
ac T @t Tt T
where d:tr denotes the time derivative of A relative to the rotating frame of reference.

However, the time rate of change of A relative to the fixed system 0X,Y,Z, symbolized by the

d
% needs to be found.

To the fixed observer the unit vectors i, j, k actually change with time.

Thus
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d d ) R

EAI-‘ = E(All +A2] +A3k)
_dA1A+dA2A+dA3E+A dz+A dj_l_ dk
BT TR, Yat " 7?de T3 de

dA dA di daj dk
f r J
R + A, —

dt dt Ldt

tA, A (D

Since 1 is a unit vector, di/dt is perpendicular to 7. Then Z—i must lie in the plane of jand k.

Therefore
di . -
i aj + ayk (2)
Similarly,
dj S
- azk + a,l (3)
dk .
a asl + agj 4)
Form i.j = 0, differentiation yields
Y di i
Bat T ar T Far T at
But from (2), we have
di dj
].E—alandl praair’
=4 ayp = —aq
Similarly form 1.k = 0 we obtain
AdA+IE di_O:AdlAc_ 7 di
T t A TERrT:
From (3), we have
P and =
.dt—azan .dt—aS

=>0(5 = —a,



and from j. k = 0 we obtain

From (4), we have

~dj L dk
k.dt =a, and].dt = Qg

Then
follows that
A di+A 4 +A dk
Ydt  T%dr 3 dt
where

dk EW—O=Vd
dt = dt Jde
- dg = —Q3
dai .
T aj + ayk
dj « .
- aszk — a;l
dk X X
dt = —al —a3)

164

= (—ayd; — ayA3) + (—a1 Ay — azds)f + (—ayA;y — azdy)k

a = wli+a)zj+w3k

The vector quantity  is the angular velocity of the moving system relative to the fixed system.

Thus from (1) and (5), we obtain

<d/f> _(dﬁ)
dt) —\dt),

+wXxXA
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Module No. 179
Equation of Motion in Rotating Frame of
Reference

There are two cases to be discussed in this article. Frist is when the origins of fixed and rotating
coordinate system coincide and other is when the origins of two system are distant.

Case |

In this case we consider the origins of the fixed and rotating coordinate system coincide. This
case was earlier discussed in detail, where it was found that:

~

To an observer fixed relative to 0XYZ system, the time rate of change of r = i + r,j + 13k
will be

d d . d | d .
arr = %rll +Erzj +Er3k (D

where % denotes the time derivative of r relative to the rotating frame of reference.

ZOZ

However, the time rate of change of r relative to fixed system 0X,Y,Z, symbolized by % will
be

drf_(dr> _(dr) b x )
at \dt), \at), """ 2)

or in operator form, we can write

(), =), +ox
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Differentiating both sides of (2) w.r.t the fixed coordinate system, we have

(2)=(2), 0

by applying operator, we have

(Ge), = (G ox) e rox
dtfv_ T W r(vr W X7T)

dr

=a,+ 2w X
" dt

+toXr+wX(wXr)

or

ar = ar + 20 XV + 0 X1+ 0 X (0 XT)

(3)
where

dvf d'l]r
U= YT

are the acceleration in the fixed and rotating coordinate systems. The relation (3) is referred as

Coriolis theorem. The term 2w X v, is called Coriolis acceleration, whereas the term w X (v X
r) is called centripetal acceleration.

The equations of motion in fixed and moving/ rotating coordinate system are

F =mas, F' =ma,
where F and F' are the total forces in the fixed and the rotating coordinate systems.
On making substitution for a, from (3) in equation F = may, we obtain

These forces are called fictitious or apparent or inertial forces. They do not have physical forces
and do not arise from interactions of the particles.

Case Il

In this case we consider the origins of fixed and rotating coordinate systems are not coincident.
We have

(rf=R=()r+1,

= xi +yj + zk + 1,
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where 1y, is the position vector of the origin of the rotating system w.r.t the origin of the fixed
system.

Z
N
Z, P
N
z -
>Y
7o/ 0

Therefore

(dr) _dr0+d S v+ 2k
dt/;  dt g Y2k

TR T VLI dk
vy = vy + (XU + yj + zk) xdt ydt Z

Ve =Vy+ VU +wXT
where r = (1),
Similarly the acceleration in the two systems will be related by

ar=ap+a, +20 X1+ 0 X1+ w X (wXT)
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Module No. 180
Example 1 of Equation of Motion in
Rotating Frame of Reference

Problem Statement

The angular velocity of a rotating coordinate system OXYZ relative to a fixed coordinate system
0X,YoZ, is

@ = 2ti — t?f + 2t + )k

where ¢ is the time and {3, j, k} unit vectors associated with 0XYZ. The position vector of a
particle at time t in the body system (0XYZ system) is given by

r=(t* + 1)i — 6t] + 4t3k
To Find
i.  The apparent and true velocities at time t = 1.
ii.  The apparent and true acceleration attime t = 1
Solution

The apparent velocity is given by

dr d ~
— — 2 NG 3
v, = (dt)r o [(£2 + i — 6t] + 4t3k]

d(t2+1) Ad6t+fcd4t3
dt Jae dt

=1
= 2ti — 6] + 12t%k
Therefore the apparent velocity at time t = 1 is given by
v(t=1) =20 — 6] + 12k

The true velocity at any time t is given by

V=V, + W XT
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A i j k
=2i—6]+12k+| 2t —t* 2t+4
t?24+1 -6t 4t

Therefore
|t 7k
ve(t=1)=2i—-6/j+12k+[2 -1 6
2 -6 4
=341 - 2] + 2k
ii. For apparent acceleration
dv, d ~
= = —(2ti — 6] + 12t?
a = — dt( ti — 6] + 12t%k)

= 20 + 24tk
Therefore
a,(t =1) =21+ 24k

For true acceleration we have
ar =ar + 20 X+ 0 X1+ 0 X (0 XT)
1)
now

w(t=1)=21—j+6k
and

o = 20— 2tj + 2k

ot =1) =2i—2j+ 2k

Since r = (t? + 1)i — 6t + 4t3k and

v, = 2t — 6] + 12t%k, therefore

i j k
wXr=|2 —2 2(=41—4j—8k
2 —6 4

and
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~

it ]k
20Xv. =22 -1 6
2 —6 12

= 2(241 — 12j — 10k)

Also since
i k ~
wXr=12 -1 6|=321+4]j—10k
2 —6 4
Therefore
i g k
wX(@Xr)=|2 -1 6
32 4 -10

= —141 + 212j + 40k
Hence on making substitution, we have
ar = (20 + 24tk) + (41 — 4f — 8k) + 2(241 — 12j — 10k) + (—141 + 212] + 40k)
= 407 + 184] + 36k

which is required true acceleration.
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Module No. 181
Example 2 of Equation of Motion in
Rotating Frame of Reference

Problem Statement

A coordinate system OXYZ rotates with angular velocity @ = 2i — 3] + 5k relative to the fixed
coordinate system OX,Y,Z, both systems having the same origin. If A =sinti— cos ti+e tk

~ 2
where i, j, k refer to the rotating coordinate system OXYZ then find Z—f and ZT? w.r.to

I.  Fixed system

ii.  The rotating system

Solution
2
i. Tofind Z—': and 27;1 in the fixed system, we have to apply the following formulas
dA dA -7
(%), = (&), +@ x4 1)
d?A d?A S dA  dB 2 @
(ﬁ)f—(F)r'i'ZCUXE-FEXA-Fa)X(a)XA) (2)

dA\ [dA] _dA4,
de) —|dt] — dt

d ~
=E(sinti—costj+e‘tk)

@xA=(-3et+5cost)l— (2et —5sint)j + (—2cost + 3sint)k

A N
<—> =costi+sintj—etk+ (—3e t+5cost)i— (2e"t — 5sint)jf
f

QU

t
+ (=2cost + 3sint)k
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= (cost + 5cost —3e H)i+ (5sint +sint —2e~8)j + (—e ¢ —2cost + 3sint)k
= (6cost —3e t)i+ (6sint —2e7t)j+ (—e t — 2cost + 3sint)k

Now for solving equation (2), we proceed as follows

d?A\ _d (dA\ _d st ot
dtzr_dt dtr—dt(COSl sintj—e~"k)

= (—sinti+costj+ e tk)

-

dA - -
2w X (E) = 2(21—3j 4+ 5k) x (costi+sintj— e tk)

r

= (41— 6] + 10k) x (costi+sintj— e~ tk)
i 7k
4 —6 10

cost sint —et

2w X < )
dt

= (6e "t —10sint)i + (4e ' + 10 cost)j + (4sint + 6 cost)k

= 21— 3]+ 5k '—d =0
= — e = —=
W {—3j W=

So,

do - X X -
ExA=0><(sintl—cost]+e‘tk) =0

@ x (@ x A) = (21 — 3] + 5k) x [(21 — 3] + 5k) x (sinti—cost ]+ e k)]
= (21— 3j+ 5k) x [(—3et + 5cost)i — (2e "t — 5sint)j + (—2 cost + 3sint)k|
i j k
= 2 -3 5
—3e t+5cost —2e '+ 5sint —2cost+ 3sint

= (6cost —9sint — 25sint + 10e™ )i+ (4cost — 6sint — 15e~t + 25 cost)j + (4e~*
—10sint + 9e~t — 15 cos t)k
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= (6cost —34sint + 10e t)i + (29 cost — 6sint — 15e75)f
+ (—4e t 4+ 10sint + 9e~t — 15cos )k

= (—sinti+costj+e tk)+ (6et —10sint)i + (4e ¢ + 10 cost)j + (4sint + 6 cos t)k
+ 0+ (6cost —34sint + 10e t)i + (29 cost — 6sint — 15e75)j + (10sint
—13e7t +15cost)k
d*A | s | ene
Tz = (6cost —45sint + 16e7 )i+ (40cost — 6sint — 11e7t)j
f

+ (14sint — 12e~t + 21 cost)k

ii.  The rotating system

(dﬁ) ~ dﬁl _ dA,
dt ) ~ |dt| — dt
T s

d -
=E(sinti—costj+e_tk)

=costi+sintj—e 'k

d?A\ _ d (dA
at2 ] — de\dt
T T
= % (costi+sintj— e tk)

= (—sinti+cost]+ e~ tk)
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Module No. 182
Example 3 of Equation of Motion in
Rotating Frame of Reference

Problem Statement

A bead slides on a smooth helix whose central axis is vertical. The helix is forced to rotate about
its central axis with constant angular speed w. Find the equation of motion of the bead relative to
the helix.

Solution

We choose a coordinate OXYZ fixed in the helix such that Z-axis is coincident with the axis of
the helix.

Then the parametric egs. of the helix are given by
x=acosf,y =asinb,
z = bl
In vector form these can be written as
?=acosfi+asin@j+ bok

where 1, j, k point along the coordinate axis. Here k is constant but , j are variable.
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The equation of motion in the rotating coordinate system is given by
ma, =F —2mw X v, —mw Xr —mw X (0w X 1) Q)

In this problem, since w is constant,

w = wk, w=0 2)
Also

v, =7 = (—asinfi+acosfj+ bk)d 3)
and

L d PO NP
ar=r=a[(—asm01+acosé’]+bk)9]r

=(—asin@i+acos@j+bk)d +(—acosi—asin@ j)6? (4)
If F denotes the external force in the fixed (space) coordinate system, then

F = —mgl? + R ()
where R is the reaction of the helix on the bead.

Before making substitution from equation (2-5) into equation (1), we obtain simplified
expression for the second, and the fourth terms of (1), (the third term being zero).

w X v, = wk X (—asinfi+acos@j+ bk)d

= wa(—sinfj— cos O )8 (6)
and

w X1 =wkx (ac059i+asint9j+b0fc)

= wa(cosB]—sinO1)

w X (wXx71)=w?ak x (cos@ j —sin O 1)
= w?a(—cosfi—sinb})) )
Therefore on making substitutions from (4), (5), (6) and (7) into (1), we obtain

m(—a sinfi+acosfj+ bE)é —ma(cosO1i+sinbj) = —mgk + R + 2mwa(sin @ +
cos 1) + maw?(cosO 1+ sinbj)
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m(—a sinfi+acosfj+ blAc)é —ma(cosO1i+sinbj) = —mgk + R + 2mwa +
maw?) (sinf j + cos O 1) (8)
Now if we write
vy = (—asin9i+ acosfj+ blAc)H' =uf
Then it is clear that the vector u is tangent to the helix. Since R is normal to the helix,
R.v,=Ruf =0
Rewriting (8) in terms of u (after eliminating the common factor m), we have
ub — a(cos@1i+sinh)B? = —gk + R + (Qwa + aw?)(cos 8 i + sin B f) 9)
Taking dot product of both sides of (9) with u, we have
u.uf — au.(cos @1 +sin6)8? = —gk.u + R.u + Qwa + aw?)(cosOi+sinfj).u  (10)
Now
w.u = a®sin® 6 + a® cos® 6 + b? = a* + b?
ku=k (—asinfi+acos6j+bk)=>b
Ru=0
(sin@j+ cosfO1i).u=(sinfj+ cosfi). (—a sinfi+acosfj+ blAc)
=acosf@sinf —acosfsinf
=0
Therefore (10) reduces to
(a®? +b*)B = —gb
or

_ gb
(a2 +b?)
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Module No. 183
Example 4 of Equation of Motion in
Rotating Frame of Reference

Problem Statement

Prove that the centrifugal force acting on a particle of mass m on the earth’s surface is the vector
directed away from the earth’s center and perpendicular to the angular velocity vector .

i.  Show that its magnitude is mw?r, cos A.

ii.  Determine the places on the surface of the earth where centrifugal force will be maximum
or minimum.

Solution

i.  Since centrifugal force is —mw X (W X 7).

We have to show that it’s vector is directed away from center of the earth and perpendicular to
the angular velocity vector @ and its magnitude is mw?r, cos A

where A is the latitude as shown in figure and 7, is the radius of the earth.

>X

S

It is quite clear that the particle is moving away from the center of earth and centrifugal force is
produced in the opposite direction of the path of the particle.
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It can be observed from the given figure that the movement of the particle (i.e. m& x (@ X 7,)) is
perpendicular to the angular velocity @ and vector @ X r,, becomes centrifugal force in the
opposite direction of the particle, so its centrifugal force is also perpendicular to @ and @ X 7,.

Now we move onto the proof of magnitude of centrifugal force, since

Fop = —m@ X (@ X 1)
We need to show that
|ﬁcf| =|-mw x (& X 7,)| = mw?r, cos A

Now we assume that the motion takes place in the XZ-plane.
Then,

é="kcosf +isin@
=k cos(™/, — 2) +isin("/, — 1)

é =ksinA+icosA
Consider the centrifugal force

=—mw X (@ X7,)

If & denotes a unit vector along the NS-axis, then we can write @ = wé and the expression
becomes @ X (& X 7,) = w?é X (é X 1)

—w?e x (8 X7, = —w?[(8.1,)é — (6.8)7]
= —w?[(e.7,)é — 7]
Now
é.7, = (ksind+icosd).n.k
=71,c080 = cos(”/z — 1) =1,sin1
So expression (1) becomes
—& X (@ X7) = —w?r,sind (ksinA + icosd) + w?r.k
= (—w?7, sin? 1 + w?r,)k — w?r, sinAcos A1

= (—w?n,(1 — cos? 1) + w?r,)k — w?r,sinAcos A1
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|ﬁcf| = |-md& x (& x 7,)| = |-m((—w?7,(1 — cos? 1) + w?r,)k — w?r, sin Acos A1)|

= |-m(w?7, cos? D)k + mw?r, sin A cos A 1)|

= m\/(a)zre cos? 1)? + (w?r, sin A cos 1)?

= my/w*1,2 cos* 1 + w*1,% cos? Asin2 A

= my w*r,2 cos* A + w*r,2 cos? A (1 — cos? 1)

= my w*r,2 cos* 1 + w*r,2 cos? A — w*r,2 cos* 1
= my/w*r,% cos? A
|17"Cf| = mw?r, cos A
Hence the required result.

The centrifugal force will be maximum at A = 0, where cos A = 1 (maximum) i.e. at equator
and minimum will be at NS-polesi.e.at 1= 7T/Z where cos A = 0 (minimum).
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Module No. 184
Example 5 of Equation of Motion in
Rotating Frame of Reference

Problem Statement

A coordinate system OXYZ is rotating with angular velocity @ = 5i — 4j — 10k relative to fixed
coordinate system 0X,Y,Z, both systems having the same origin. Find the velocity of the
particle at rest in the 0XYZ system at the point (3,1, —2) as seen by an observer in the fixed
system.

Solution
Since the given angular velocity is

@ = 50— 4 — 10k
and the point P(3,1, —2) at rest in OXYZ system.

Then

—

OP =7#=3i+j—2k

Also, we know the equation of motion in case when the origins of the coordinate systems
coincide each other

—

= U—r) +wX7
But we have to find out the velocity of the particle at rest in 0XYZ system at P(3,1, —2).
i.e.

—

=v0+5><?

N

v7 = (0,0,0) + (5{ — 4f — 10k) x (31 + 1j — 2k)

~

Gk
=(00+0/+0k)+|5 —4 —10
3 1 -2

= (00+ 07 + 0k) + ((8 + 10)i — (—10 + 30)] + (5 + 12)k)
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= (0f + 0f + 0k) + (181 — 20 + 17k)
Hence
vf = 181 — 20f + 17k

is the required velocity of the system.



183

Module No. 185
General Motion of a Rigid Body

In general motion of the body, (i.e. no point of the body is fixed in space), let Fé*t be the total
external force on the rigid body and G&** the total external torque about its center of mass (i.e.
centroid). Then the equations of motion are

Ma, =F°¢** Q)
and
L. =G )
where a. is the acceleration of the c.m. and L. is the total angular momentum about it.

Now we resolve the vectors a.,Fé*,G¢*and L along the unit vector i, j, k taken along the
principal axes at the mass center.

The triad of vectors i, j, k may be inferred to as a principal triad. It will be assumed to be
permanently a principal triad.

Let Q) be its angular velocity. If the triad is fixed in the body then © = @, the angular velocity of
the body.

Now using the operator: (%)f = (%)r + w X

dF\ _ (dF LS F
de ). — \dt @
f r
which relates the rate of change of a vector in a fixed (i.e. inertial) frame and a rotating frame,
we have (on dropping the suffix r)
dv av. -
ar = a :E-I_va (~v,=v)
f

or af= %+5x5 (3)

where v = v,i + v,j + v3k is the velocity of the mass center (in the rotating coordinate system).
Substituting for a; = a, from equation (3) into (1), we obtain
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M(d—v+ Q xv) = Fext
dt
which is equivalent to

M(Ul + Q2173 + 93172) == F1
MW, + Qzv; + Qv3) = F, (4)
M(Ug + lez + szl) == F3

From (2), on using
dL dL
(E)f = a +0OXL

and the relation L = Lw,i + Lw,] + L;wsk, we obtain the equations

L6t + L6of + 63k + (QuLs — QzLy)i+ (Qply — QiLs)j + (QuLy — QuL )k =G
From this vector equation we obtain the following three scalar equations
Lwy + QyL; — Q3L, = G4
Lw, + Q3L; — QL; = G,
and
Lwz + QqL, — QL = G5
where on using the results
Li=Lw, Ly, = Lwy, Ly =303
we have

11(1)1 + (1)3.0.2[3 - (1)293[2 = Gl
Lw; + w1 Q3 — w3yl3 = G )
13(1)3 + (1)29112 - (1)19211 = G3

where I, I,, I5 denote principal M.I at the centroid of the body.

The set of egs (4) and (5) constitute six equations for the components of velocity of centroid and
the components of angular velocity of the body.
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Module No. 186
Equation of Motion Relative to Coordinate
System Fixed on Earth

We derived the equation of motion when the origins of fixed and rotating coordinate systems are
distant.

&f=&0+&r+25)’xﬁr+w—"x?+5x(5xf’) (1)
From (1) the most general from of the equation of motion in a moving frame can be written as

d%v g = - — — — - -
m(d—t;) =F—-—mwX7—2mw X v, —mw X (0 X71)—ma, (2)
r

where the subscript r refers to the rotating frame, F is the total external force in the fixed
coordinate system and d,, is the acceleration of the origin O in moving (rotating) coordinate
system, OXYZ. In the case of the earth, which is a rotating coordinate system, we choose the
origin as a point fixed on the earth.

We choose the fixed coordinate system at the center C of the earth and denote it by CX,Y,Z,, .
For a particle near the surface of the earth

F=mg ©)
where g is the acceleration due to gravity.

d,, the acceleration of the origin O is the centripetal acceleration of O due to the rotation of the
earth. It may be represented as

dy = X (@ X 7,) 4)
Therefore on substitution from (3) and (4) into (2), we obtain

22 .

m(%) =mg—mw X7 —2mw X v, —ma X (0 X7) —mu X (0 X7,) (5)
T

which gives the full equation of motion for a particle of mass m w.r.t. a coordinate system fixed

on the earth.

Next we obtain a simple form of (5) taking into account the fact that the angular velocity @ of
the earth is nearly constant both in magnitude and direction, (which is along NS i.e. North-South
polar line), and of small magnitude. In fact



186

21 radian

w = |5| =
24 hours

_ 2T
"~ 86400

radian per second

= 7.27 X 10~°rad/sec

Since @ may be taken as constant, @ = 0. Since the fourth term on R.H.S. of (5) has the
magnitude mw?r (where r is the distance of the particle from the NS-axis), is negligibly small

because of w?. However the fifth term ma x (& X 7,), the last term of equation (5) is not
negligible because |7, | (the magnitude of the radius of the earth) is very large.

Hence equation (5) can be written as

dZF - — —> —> -
m<ﬁ> =mg —2mw X v, —mw X (0 X 7,)

r

—

which is a second order differential equation in  and may also written as

d*#

m
dat?

+2m5x%:mg’—m5x(5xf’e) (6)

where we have dropped the subscript r, it being understood that the terms on L.H.S of (6) refer
to the rotating coordinate system.

If & denotes a unit vector along the NS-axis, then we can write @ = wé, and equation of motion
takes the form

—w?ex(ex?n)

=
+
[\
e
>
X
=
Il
«Q,



