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About the Handouts 
 

The following books have been mainly followed to prepare the slides and handouts: 

 

1. Spiegel, M.R., Theory and Problems of Vector Analysis: And an Introduction to Tensor 

Analysis. 1959: McGraw-Hill. 

2. Spiegel, M.S., Theory and problems of theoretical mechanics. 1967: Schaum. 

3. Taylor, J.R., Classical Mechanics. 2005: University Science Books. 

4. DiBenedetto, E., Classical Mechanics: Theory and Mathematical Modeling. 2010: 

Birkhäuser Boston. 

5. Fowles, G.R. and G.L. Cassiday, Analytical Mechanics. 2005: Thomson Brooks/Cole. 

 

The first two books were considered as main text books. Therefore the students are advised to 

read the first two books in addition to these handouts. In addition to the above mentioned books, 

some other reference book and material was used to get these handouts prepared. 
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Module No. 101 
 

Example of Non- Conservative Field 

 

Problem: 

 

Show that the force field given by  

𝐹⃗ = 𝑥2𝑦𝑧𝑖̂ − 𝑥𝑦𝑧2𝑗̂ + 2𝑥𝑧𝑘̂ 

is non-conservative. 

 

Solution: 

We have 

𝐹⃗ = 𝑥2𝑦𝑧𝑖̂ − 𝑥𝑦𝑧2𝑗̂ + 2𝑥𝑧𝑘̂ 

 

To verify whether the force field F is conservative or not, we will check whether 𝛻 × 𝐹⃗ = 0 or 

not. 

∇ × 𝐹⃗ = |

𝑖̂ 𝑗̂ 𝑘̂
𝜕

𝜕𝑥⁄ 𝜕
𝜕𝑦⁄ 𝜕

𝜕𝑧⁄

𝑥2𝑦𝑧 −𝑥𝑦𝑧2 2𝑥𝑧

| 

 

= 𝑖̂ [
𝜕

𝜕𝑦
(2𝑥𝑧) −

𝜕

𝜕𝑧
(−𝑥𝑦𝑧2)] − 𝑗̂ [

𝜕

𝜕𝑧
(𝑥2𝑦𝑧) −

𝜕

𝜕𝑥
(2𝑥𝑧)] + 𝑘̂ [

𝜕

𝜕𝑥
(−𝑥𝑦𝑧2) −

𝜕

𝜕𝑦
(𝑥2𝑦𝑧)] 

 

= (2𝑥𝑦𝑧)𝑖̂ − (𝑥2𝑦 − 2𝑧)𝑗̂ + (𝑦𝑧2 + 𝑥2𝑧)𝑘̂ 

 

≠ 0 

As we obtain ∇ × 𝐹⃗ ≠ 0 

 

We conclude that 𝐹⃗ is non-conservative. 
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Module No. 102 
 

Introduction to Simple Harmonic Motion 
and Oscillator 

Simple Harmonic Motion (SHM) is a particular type of oscillation and periodic motion in which 

restoring force of an object is directly proportional to the displacement of the object acting in 

opposite direction of displacement.  

Mathematically, the restoring force 𝐹 is given by 

𝐹𝑅 = −𝑘𝑥 

where the subscript 𝑅 represents the restoring force and 𝑘 is the constant of proportionality often 

called the spring constant or modulus of elasticity. 

In Newtonian mechanics, by Newton's second law we have eq. of S.H.M  

𝐹 = 𝑚𝑎 = 𝑚
𝑑2𝑥

𝑑𝑡2
= −𝑘𝑥 

or 

𝑚𝑥̈ + 𝑘𝑥 = 0 

 

This vibrating system is called a simple harmonic oscillator or linear harmonic oscillator.  

This type of motion is often called simple harmonic motion.  

 

The following physical systems are some examples of simple harmonic oscillator 

 

Mass on a spring 

An object of mass m linked to a spring of spring constant k represents the simple harmonic 

motion in closed region. 
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The equation representing the period for the mass attached on a spring 

𝑻 = 𝟐𝝅√
𝒎

𝒌
 

The above equation expresses that the time period of oscillation is independent of amplitude as 

well as the acceleration.  

Simple pendulum 

The movement of the mass attached to a simple pendulum is considered as simple harmonic 

motion. 

 

 The time period of a mass m attached to a pendulum of length l with gravitational 

acceleration  g is given by 

𝑻 = 𝟐𝝅√
𝒍

𝒈
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Module No. 103 
 

Amplitude, Time period, Frequency and 
Energy of S.H.M 

Amplitude 

Amplitude is defined as the maximum distance covered by the oscillating body in one oscillation 

or length of a wave measured from its mean position.  

The amplitude of a pendulum is one-half the distance that the mass covered in moving from one 

terminal to the other. The vibrating sources generate waves, whose amplitude is proportional to 

the amplitude of the vibrating source. 

 

Time Period 

Time period is minimum time required by a oscillation system to complete its one cycle of 

oscillation of the specific system. 

It is denoted by T and measured in seconds. 

 

Frequency 

The frequency (f) of an oscillatory system is the number of oscillations pass through a specific 

point in one second.  

It is measure in hertz (Hz).  

The frequency of S.H.M can be calculate by using the following relation 

𝑓 =
1

𝑇
 

Energy of S.H.M 

If T is the kinetic energy, V the potential energy and 𝐸 =  𝑇 +  𝑉 the total energy of a simple 

harmonic oscillator, then we have 

𝐾. 𝐸 =  𝑇 =
1

2
𝑚𝑣2 

and 

𝑉 =
1

2
𝑘𝑥2 

Then the total energy of S.H.M will be 

𝐸 =
1

2
𝑚𝑣2 +

1

2
𝑘𝑥2 
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Module No. 104 
 

Example of S.H.M 
 

Problem Statement 

A particle of mass 4 moves along 𝑦 axis attracted towards the origin by a force whose magnitude 

is numerically equal to 6𝑦. If the particle is initially at rest at 𝑦 =  10,  

i. The differential equation and initial conditions describing the motion, 

ii. The position of the particle at any time, 

iii. The speed and velocity of the particle at any time, 

iv. The amplitude, time period and frequency of the vibration.  

 

Solution: 

i. Let 𝑟 = 𝑦 be the position vector of the particle.  The acceleration of the particle is  

𝑑2𝑟

𝑑𝑡2
=

𝑑2𝑦

𝑑𝑡2
 

The net force acting on the particle is −6𝑦.  Then by using the Newton's second law, 

−6𝑦 = 4
𝑑2𝑦

𝑑𝑡2
 

or                              
𝑑2𝑦

𝑑𝑡2 +
3

2
𝑦 = 0   

which is the required differential equation. The required initial conditions (I. Cs) are  

𝑦 = 10,  𝑑𝑦/𝑑𝑡 =  0 𝑎𝑡 𝑡 =  0  

  

ii. Since the general solution the diff. eq. is 

When 𝑡 =  0, 𝑥 =  20 𝑠𝑜 𝑡ℎ𝑎𝑡 𝐴 =  20. Thus 

      𝑦 = 𝐴 cos√3/2𝑡 + 𝐵 sin√3/2 𝑡     (1) 

Using I. Cs 

At 𝑡 =  0,  𝑦 = 10. Thus 𝐴 = 10.  So, 

   𝑦 = 10 cos√3/2𝑡 + Bsin √3/2 𝑡     (2) 
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𝑑𝑦

𝑑𝑡
= −10√3/2 sin√3/2 𝑡 + √3/2Bcos√3/2𝑡    

                                                                   (3) 

Since at 𝑡 =  0,⇒  
𝑑𝑦

𝑑𝑡
=  0 

Thus, we get 𝐵 =  0.  Hence (2) becomes 

𝑦 = 10 cos√3/2𝑡   (4) 

This gives the position at any time. 

 

iii.    Speed at any time? 

From (6)     
𝑑𝑦

𝑑𝑡
= −10√3/2 sin√3/2𝑡 

This gives the speed at any time.   

 

iv.      Amplitude, T, F ? 

General form for the position of a particle moving to and fro is 

𝑦(𝑡) = A cos(2𝜋𝑡/T) 

Thus,        𝑦 = 10 cos√3/2𝑡 

Amplitude = 10            

Period = T =  2√
2

3
𝜋  

Frequency = 1 𝑇⁄  
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Module No. 105 
 

Example of Energy of S.H.M 
 

ENERGY OF A SIMPLE HARMONIC OSCILLATOR 

 

Example: 

Find the total energy of the force 𝐹⃗ = −3𝑥𝑖 acting on a simple harmonic oscillator, where 𝑖 

represents the direction.  

 

Solution: 

 

Since the total energy of SHM 

𝐸 = 𝑇 + 𝑉 

By Newton's second law,  

𝐹 = 𝑚𝑎 

therefore 

𝐹 = 𝑚
𝑑𝑣

𝑑𝑡
= −3𝑥  

𝑑𝑣

𝑑𝑡
= −

3

𝑚
𝑥 

Integrating with respect to 𝑡, we have 

𝑣 = −
3

2𝑚
𝑥2 + 𝑐 

𝑐 can be calculated if the initial condition is given. Assuming 𝑣 = 0 initially, which gives 𝑐 = 0.   

Thus                     𝑣 = −
3

2𝑚
𝑥2 

So, 

𝑇 =
9

8𝑚
𝑥4 

Now, as the potential energy is given by V where 𝐹⃗ = −𝛻𝑉  

or        𝐹 = −3𝑥𝑖 = −(
𝜕𝑉

𝜕𝑥
𝑖 +

𝜕𝑉

𝜕𝑦
𝑗 +

𝜕𝑉

𝜕𝑧
𝑘) 
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Then  

𝜕𝑉

𝜕𝑥
= 3𝑥 ,  

𝜕𝑉

𝜕𝑦
= 0,  

𝜕𝑉

𝜕𝑧
= 0 

By integrating, we obtain 

𝑉 =
3

2
𝑥2 + 𝑐1 

Assuming 𝑉 = 0,   corresponding to 𝑥 = 0, we get 𝑐1 = 0. 

So the potential energy is          𝑉 =
1

2
𝑘𝑥2 

Hence  

𝐸 =
9

8𝑚
𝑥4 +

1

2
𝑘𝑥2 
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Module No. 106 
 

Damped Harmonic Oscillator 
 

The forces acting on a harmonic oscillator are called damping forces which tend to decrease the 

amplitude of the successive oscillations or simply force apposing the motion. Since the damping 

force is proportional to the velocity. Thus,  mathematically,  

𝐹𝑑 = −𝑏𝑣 

= −𝑏𝑥̇ 

where 𝑑 represents the damping force and 𝑏 is the damping coefficient. 

The negative sign shows that that direction of 𝐹𝑑 is opposite to the velocity 𝑣.  

As we know that for the restoring force: 

𝑚𝑥̈ + 𝑘𝑥 = 0 

Adding the restoring force with the damping force, the equation of motion of the damped 

harmonic oscillator will be,  

𝑚𝑥̈ + 𝑘𝑥 = −𝑏𝑥̇ 

or  

𝑚𝑥̈ + 𝑏𝑥̇ + 𝑘𝑥 = 0 

Since the mass is not equal to zero, therefore 𝑥̈ +
𝑏

𝑚
𝑥̇ +

𝑘

𝑚
𝑥 = 0 

let  

𝑏

𝑚
= 2𝜁,  √

𝑘

𝑚
= 𝜔0 

then the equation can be written as  

𝑥̈ + 2𝜁𝑥̇ + 𝜔0
2𝑥 = 0 
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Module No. 107 
 

Example of Damped Harmonic Oscillator 
 

Problem Statement 

A particle of mass 4 moves along 𝑦 axis attracted towards the origin by a force whose magnitude 

is numerically equal to 6𝑦. If the particle is initially at rest at 𝑦 = 10. Consider that the particle has 

also a damping force whose magnitude is numerically equal to 6 times the instantaneous speed. 

Find  

i. Position of the particle 

ii. Velocity of the particle at any time  

Solution 

i.    Since we have by Newton's second law 

𝐹 = 𝑚𝑎 = 4𝑦̈ 

According to the given information, the damping force is −6𝑦̇.  

So the net force is 

−6𝑦 − 6𝑦̇ 

Hence,  

4𝑦̈ = −6𝑦 − 6𝑦̇ 

or 

𝑦̈ +
2

3
𝑦̇ +

2

3
𝑦 = 0 

The solution of the above equation is 

𝑦 = 𝑒−√2 3⁄ 𝑡(𝐴 + 𝐵𝑡) 

and  

𝑦̇ = 𝐵𝑒−√2 3⁄ 𝑡 − √2 3⁄ (𝐴 + 𝐵𝑡)𝑒−√2 3⁄ 𝑡 

To find the values of constants, we use I. Cs 

At 𝑡 =  0,  𝑦 = 10 and 𝑑𝑦/𝑑𝑡 =  0; thus,   

𝐴 = 10 

 and           0 = 𝐵(1) − √2 3⁄ (10) 

𝐵 = 10√2 3⁄  

and the solution gives 

𝑦 = 𝑒−√2 3⁄ 𝑡(𝐴 + 𝐵𝑡) 

= 10𝑒−√2 3⁄ 𝑡(1 + √2 3⁄ 𝑡) 
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the position at any time t.   
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Module No. 108 
 

Euler’s Theorem – Derivation 
 

The following theorem, called Euler's theorem, is fundamental in the motion of rigid bodies.  

 

Theorem Statement 

 

“A rotation of a rigid body about a fixed point of the body is equivalent to a rotation about a line 

which passes through the point.”  

 

The line referred to is called the instantaneous axis of rotation. Rotations can be considered as 

finite or infinitesimal. Finite rotations cannot be represented by vectors since the commutative 

law fails. However, infinitesimal rotations can be represented by vectors. 

 

Proof:  

Let O be the fixed point in the body, which we take as a sphere S. Further, we take O at the 

center of the sphere. Let A, B be two distinct points on the sphere. As the body moves, the point 

O (on the axis) remains foxed and A and B suffer displacement. 

 
Let 𝐴’ and 𝐵’ bet the new locations of the points A and B after an infinitesimal time interval 𝛿𝑡 

respectively.We join (A, B) and (𝐴’, 𝐵’) by great circular areas. 

Also we join (𝐴, 𝐴’) and (𝐵, 𝐵’) by mean of great circular arcs. Let A” and B” draw axes at right 

angles, which meat at the point C on the sphere. 

We join C with A, B, 𝐴’, 𝐵’ by means of great circular arcs. 

Consider the spherical triangles ∆𝐶𝐴′𝐴" and ∆𝐶𝐴𝐴". Obviously 
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i. 𝑚 < 𝐶𝐴"A ≅CA"𝐴′ 

ii. 𝐴𝐴"=A"𝐴′ 

iii. 𝐶𝐴" is common to triangle 

Therefore ∆𝐶𝐴𝐴" ≅ ∆𝐶𝐴′𝐴" and it follows that 𝐶𝐴 = 𝐶𝐴’ 

Similarly for the triangle ∆𝐶𝐴𝐵 𝑎𝑛𝑑 ∆𝐶𝐴′𝐵′, we have 

𝐶𝐵 =  𝐶𝐵’, 𝐶𝐴’ =  𝐶𝐴   𝑎𝑛𝑑  𝐴𝐵 = 𝐴’𝐵’ 

The last relation is due to the fact that by the definition of rigid body, the distance between a pair 

of particles remains unchanged. Hence 

∆𝐶𝐴𝐵 ≅  ∆𝐶𝐴′𝐵′ 

The portion of rigid body lying in ∆𝐶𝐴𝐵 has moved to ∆𝐶𝐴′𝐵′. 

In this process the point O and C have remained fixed, Although the later was at rest only 

instantaneously. Therefore the body has under gone a rotation about the axis OC. 

Hence the theorem. 
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Module No. 109 
 

Chasles’ Theorem 
 

Theorem Statement: 

Chasle’s theorem states that the most general rigid body displacement can be produced by a 

translation along a line (called its screw axis) followed (or preceded) by a rotation about that line. 

 

Explanation: 

 

 A rigid body has six degrees of freedom. 

 By Euler’s theorem, three of these are associated with pure rotation. 

 The remaining three must be associated with translation.  

 To describe the general motion of a rigid body, think of the general motion as translation 

of a fixed point 𝑂 in the body to a point 𝑂′ followed by the rotation about an axis through 

𝑂′. 
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Module No. 110 
 

Kinematics of a System of Particles 
(Space, time & matter) 

 

Kinematics is the branch of mechanics deals with the moving objects without reference to the 

forces which cause the motion. 

In other words we can say those kinematics are the features or properties of motion of concerned 

with system of particles (rigid bodies). 

Here some features of rigid body motion are 

 Displacement 

 Position 

 Velocity  

 Linear Velocity & Angular Velocity 

 Linear Acceleration & Angular Acceleration 

 Motion of a Rigid Body (Translation & Rotation) 

 

 

From everyday experience, we all have some idea as to the meaning of each of the following terms 

or concepts. However, we would certainly find it difficult to formulate completely satisfactory 

definitions. We take them as undefined concepts.  

I. Space. This is closely related to the concepts of point, position,' direction and displacement. 

Measurement in space involves the concepts of length or distance, with which we assume 

familiarity. Units of length are feet, meters, miles, etc. 

 

II. Time. This concept is derived from our experience of having one event taking place after, before 

or simultaneous with another event. Measurement of time is achieved, for example, by use of 

clocks. Units of time are seconds, hours, years, etc. 

 

 

III. Matter. Physical objects are composed of "small bits of matter" such as atoms and molecules. 

From this we arrive at the concept of a material object called a particle which can be considered as 

occupying a point in space and perhaps moving as time goes by. A measure of the "quantity of 

matter" associated with a particle is called its mass. Units of mass are grams, kilograms, etc. Unless 

otherwise stated we shall assume that the mass of a particle does not change with time. 
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Module No. 111 
 

The Concept of Rectilinear Motion of 
Particles, Uniform Rectilinear Motion, 

Uniformly Accelerated Rectilinear Motion 
 

When a moving particle remains on a single straight line, the motion is said to be rectilinear. In 

this case, without loss of generality we can choose the 𝑥-axis as the line of motion.  

The general equation of motion is then  

𝐹 = 𝑚𝑎 ⟹ 𝐹(𝑥, 𝑥̇, 𝑥̈) = 𝑚𝑥̈ 

Rectilinear motion for a particle: 

 
Rectilinear motion of a body is defined by considering the two point of a body covered the same 

distance in the parallel direction. The figures below illustrate rectilinear motion for a particle and 

body. 

 

Rectilinear motion for a body: 

 
In the above figures, 𝑥(𝑡) represents the position of the particles along the direction of motion, as 

a function of time t. 

An example of linear motion is an athlete running g along a straight track. 

The rectilinear motion can be of two types:  

i. Uniform rectilinear motion 

ii. Non uniform rectilinear motion 

 

Uniform Rectilinear Motion: 

 

Uniform rectilinear motion is a type of motion in which the body moves with uniform velocity or 

zero acceleration.  
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In contrast, Non uniform rectilinear motion is such type of motion with variable velocity or non-

zero acceleration.  

Uniformly accelerated rectilinear motion: 

 

Uniformly accelerated rectilinear motion is a special case of non-uniform rectilinear motion along 

a line is that which arises when an object is subjected to constant acceleration. This kind of motion 

is called uniformly accelerated motion. 

Uniformly accelerated motion is a type of motion in which the velocity of an object changes by an 

equal amount in every equal intervals of time. 

An example of uniformly accelerated body is freely falling object in which the amount of 

gravitational acceleration remains same. 

𝐹 = 𝑚𝑔 
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Module No. 112 
 

The Concept of Curvilinear Motion of 
Particles 

The motion of a particle moving in a curved path is called curvilinear motion. Example: A stone 

thrown into the air at an angle. 

Curvilinear motion describes the motion of a moving particle that conforms to a known or fixed 

curve. The study of such motion involves the use of two co-ordinate systems, the first being 

planar motion and the latter being cylindrical motion. 

 

Tangential and normal unit vectors are usually denoted by 𝑒𝑡⃗⃗⃗⃗  and 𝑒𝑛⃗⃗⃗⃗⃗ respectively. 

Velocity of Curvilinear motion 

If the tangential and normal unit vectors are 𝑒𝑡⃗⃗⃗⃗  and 𝑒𝑛⃗⃗⃗⃗⃗ respectively, then the velocity will be 

𝑣⃗ =
𝑑𝑠

𝑑𝑡
𝑒𝑡⃗⃗⃗⃗  

You have already learnt that 

𝑣 = vT 

Acceleration of Curvilinear motion 

If the tangential and normal unit vectors are 𝑒𝑡⃗⃗⃗⃗  and 𝑒𝑛⃗⃗⃗⃗⃗ respectively, then the acceleration will be 

𝑎⃗ =
𝑑2𝑠

𝑑𝑡2
𝑒𝑡⃗⃗⃗⃗ +

(𝑑s
𝑑𝑡⁄ )

2

𝜌
𝑒𝑛⃗⃗⃗⃗⃗ 

You have already learnt that 

𝑎 = T
𝑑v

𝑑𝑡
+

v2

r
N 

Example 

 A stone thrown into the air at an angle. 

 A car driving along a curved road. 

 Throwing paper airplanes or paper darts is an example of curvilinear motion. 
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Module No. 113 
 

Example Related to Curvilinear 
Coordinates 

 

Example 1 

 

Problem Statement 

Prove that a cylindrical coordinate system is orthogonal.  

 

Solution 

The position vector of any point in cylindrical coordinates is 

𝑟 = 𝑥𝑖̂ + 𝑦𝑗̂ + 𝑧𝑘̂ 

We studied that the in cylindrical coordinates 

𝑥 = 𝜌 cos𝜑 , 𝑦 = 𝜌 sin 𝜑, 𝑧 = 𝑧 

this implies 

𝑟 = 𝜌 cos𝜑 𝑖̂ + 𝜌 sin𝜑 𝑗̂ + 𝑧𝑘̂ 

The tangent vectors to the ρ, φ and г curves are given respectively by 
𝜕𝑟

𝜕𝜌
 ,

𝜕𝑟

𝜕𝜑
,
𝜕𝑟

𝜕𝑧
 and  where 

𝜕𝑟

𝜕𝜌
= cos𝜑 𝑖̂ + sin𝜑 𝑗̂ 

𝜕𝑟

𝜕𝜑
= −𝜌 sin𝜑 𝑖̂ + 𝜌 cos𝜑 𝑗̂ 

𝜕𝑟

𝜕𝑧
= 𝑘̂ 

The unit vectors in these directions are 

𝑒1 = 𝑒𝜌 =
𝜕𝑟 𝜕𝜌⁄

|𝜕𝑟 𝜕𝜌⁄ |
=

cos𝜑 𝑖̂ + sin𝜑 𝑗̂

|cos 𝜑 𝑖̂ + sin𝜑 𝑗̂|
 

=
cos𝜑 𝑖̂ + sin 𝜑 𝑗̂

√cos2 𝜑 + sin2 𝜑 
= cos𝜑 𝑖̂ + sin𝜑 𝑗̂ 

𝑒2 = 𝑒𝜑 =
𝜕𝑟 𝜕𝜑⁄

|𝜕𝑟 𝜕𝜑⁄ |
=

−𝜌 sin𝜑 𝑖̂ + 𝜌 cos𝜑 𝑗̂

|−𝜌 sin𝜑 𝑖̂ + 𝜌 cos𝜑 𝑗̂|
 

=
𝜌(− sin 𝜑 𝑖̂ + cos𝜑)

√𝜌2 cos2 𝜑 + 𝜌2 sin2 𝜑 
= −sin𝜑 𝑖̂ + cos𝜑 𝑗 ̂

𝑒3 = 𝑒𝑧 =
𝜕𝑟 𝜕𝑧⁄

|𝜕𝑟 𝜕𝑧⁄ |
= 𝑘̂ 

Then 
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𝑒1. 𝑒2 = (cos𝜑 𝑖̂ + sin𝜑 𝑗̂). (− sin𝜑 𝑖̂ + cos𝜑 𝑗̂) 

= −sin𝜑 cos𝜑 +sin𝜑 cos𝜑 = 0 

𝑒2. 𝑒3 = (−sin𝜑 𝑖̂ + cos𝜑 𝑗̂). 𝑘̂ = 0 

𝑒3. 𝑒1 = 𝑘̂. (cos𝜑 𝑖̂ + sin𝜑 𝑗̂) = 0 

and so 𝑒1, 𝑒2 and 𝑒3 are mutually perpendicular and the coordinate system is orthogonal. 

 

Example 2 

 

Problem Statement 

Prove  

𝑑𝑒𝜌

𝑑𝑡
= 𝜑𝑒𝜑 ̇  

 
𝑑𝑒𝜑

𝑑𝑡
= −𝜑𝑒𝜌 ̇  

where dots denote differentiation with respect to time t. 

 

Solution 

We have 

𝑒𝜌 = cos𝜑 𝑖̂ + sin𝜑 𝑗 ̂

and 

𝑒𝜑 = −sin𝜑 𝑖̂ + cos𝜑 𝑗̂ 

Then  

𝑑𝑒𝜌

𝑑𝑡
=

𝑑

𝑑𝑡
(cos𝜑 𝑖̂ + sin𝜑 𝑗̂) 

= −sin 𝜑 𝜑̇𝑖̂ + cos𝜑 𝜑̇𝑗̂ = 𝜑̇(− sin𝜑 𝑖̂ + cos𝜑 𝑗̂) = 𝜑̇𝑒𝜑 

𝑑𝑒𝜑

𝑑𝑡
=

𝑑

𝑑𝑡
(− sin𝜑 𝑖̂ + cos𝜑 𝑗̂) 

= −cos𝜑 𝜑̇𝑖̂ − sin 𝜑 𝜑̇𝑗̂ = −𝜑̇(cos𝜑 𝜑̇𝑖̂ + sin𝜑 𝜑̇𝑗̂) = −𝜑̇𝑒𝜌 
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Module No. 114 
  

Introduction to Projectile, Motion of a 
Projectile 

Introduction to Projectile 

If a ball is thrown from one person to another or an object is dropped from a moving plane, then 

their path of traveling/motion is often called a projectile. If air resistance is negligible, a projectile 

can be considered as a freely falling body so the Eq of motion will be 

m
d2r

dt2
= −mg 

or 

d2r

dt2
= −g 

with appropriate I.Cs 

 

 

Motion of a Projectile with Resistance 

Earlier,  we studied the motion of a projectile under the assumption that air resistance is negligible.  

If we further assume that the motion takes place in the vertical plane, (𝑋𝑌-plane), and the only 

force acting on the projectile is the gravity, then the equation of motion will be  

d2r

dt2
= g⃗⃗ = −gĵ 

Here we will discuss the problem of projectile motion when air resistance is taken into account.  

Assuming the model of retarding force in which 

𝐹 ∞ 𝑣  

or 

𝐹 = −𝑘1𝑣 

Let the initial velocity of the projectile be 𝑣0 and angle of projection be 𝜃 

The initial conditions can be taken as 

𝑥(𝑡 = 0) = 𝑦(𝑡 = 0) = 0 

𝑥̇(𝑡 = 0) = 𝑣0 cos 𝜃 = 𝑢1 

𝑦̇(𝑡 = 0) = 𝑣0 sin 𝜃 = 𝑣1 

The equation of motion in the horizontal and vertical direction can be written as 

𝑚𝑥̈ = −𝑘1𝑥̇  

or     𝑥̈ = −
𝑘1

𝑚
𝑥̇ = −𝑘𝑥̇                                (1) 

    𝑚𝑦̈ = −𝑘𝑦̇ − 𝑚𝑔               (2) 

By the substitution 𝑥̇ = 𝑧 we can solve eq (1) as 
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𝑧 = 𝑥̇ = 𝐴𝑒−𝑘𝑡 

With the initial condition 𝑥̇ = 𝑢1,  when 𝑡 = 0,  we obtain the constant of integration 𝐴 = 𝑢1 

so that 

𝑥̇ = 𝑢1𝑒
−𝑘𝑡 

Another integration gives 

𝑥 = −
𝑢1𝑒

−𝑘𝑡

𝑘
+ 𝐵 

The initial condition 𝑥(0) = 0 gives 𝐵 =
𝑢1

𝑘⁄ . Hence the solution of equation (1) can be 

written as 

                            𝑥 =
𝑢1

𝑘
(1 − 𝑒−𝑘𝑡)  (3) 

We can solve equation (2) in the same manner and obtain 

                   𝑦 = −
𝑔𝑡

𝑘
+

𝑘𝑣1+𝑔

𝑘2
(1 − 𝑒−𝑘𝑡) (4) 

The path of motion can be obtained from (3) and (4) by eliminating 𝑡 

𝑦 =
𝑔

𝑘2
ln (1 −

𝑘𝑥

𝑢1
) +

𝑘𝑣1 + 𝑔

𝑘2

𝑘𝑥

𝑢1
 

which is no longer a parabola. 

We can solve equation (2) in the same manner and obtain 

                   𝑦 = −
𝑔𝑡

𝑘
+

𝑘𝑣1+𝑔

𝑘2
(1 − 𝑒−𝑘𝑡) (4) 

The path of motion can be obtained from (3) and (4) by eliminating 𝑡 

𝑦 =
𝑔

𝑘2
ln (1 −

𝑘𝑥

𝑢1
) +

𝑘𝑣1 + 𝑔

𝑘2

𝑘𝑥

𝑢1
 

which is no longer a parabola. 
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Time of Flight 𝝉 
Time of flight can be found by putting in equation (4) 𝑦 = 0 and 𝑡 = 𝜏 

0 = −
𝑔𝜏

𝑘
+

𝑘𝑣1 + 𝑔

𝑘2
(1 − 𝑒−𝑘𝜏) 

                      𝜏 =
𝑘𝑣1+𝑔

𝑔𝑘
(1 − 𝑒−𝑘𝜏)  (5) 

This equation can be solved exactly for 𝜏.  To find an approximate solution, we expand the 

exponential factor in equation (5), using 

𝑒𝑥 = 1 + 𝑥 +
𝑥2

2!
+

𝑥3

3!
+ ⋯…… .. 

Form equation (5) 

𝜏 =
𝑘𝑣1 + 𝑔

𝑔𝑘
(𝑘𝜏 −

𝑘2𝜏2

𝑘𝜏
+

𝑘3𝜏3

3!
+ ⋯ . . ) 

1 =
𝑘𝑣1 + 𝑔

𝑔𝑘
(𝑘 −

𝑘2𝜏

𝑘𝜏
+

𝑘3𝜏2

3!
+ ⋯ . . ) 

which on simplification gives 

𝜏 =
2𝑣1

𝑘𝑣1 + 𝑔
+

1

3
𝑘𝜏2 + ⋯ . .   

In the limit of small air resistance (i.e. 𝑘 → 0), the above expression reduces to 

𝜏 =
2𝑣1

𝑘𝑣1+𝑔
+

𝑘

3
𝜏2     (6) 

When there is no resistance, (𝑘 = 0),  obtain from (6) 

𝜏0 =
2𝑣1

𝑔
=

2𝑣0 sin 𝜃

𝑔
 

If 𝑘 is non-zero small number, then the time of flight 𝜏 will be very close to 𝜏0. Substituting 𝜏0 for 

𝜏 on the R.H.S of (6), and simplifying we get 

𝜏 =
2𝑣1

𝑔
(1 −

𝑘𝑣1

3𝑔
) 

The above equation gives a formula for approximate time of flight in the presence of a weak 

retarding force. 
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Module No. 115 
  

Conservation of Energy for a System of 
Particles 

Statement 

“The law of conservation of energy describes that the net energy of an isolated system remains 

conserved. Energy can neither be created nor destroyed; rather, it transforms from one form to 

another.”  

  

Theorem Statement 

(Principle of conservation of energy) 

In case of conservative force field, the total energy is a constant. i.e.,  

If 𝑇 is for kinetic energy and 𝑉 is for potential energy, then the total energy 𝐸 is 

𝐸 = 𝑇 +  𝑉 = constant 

 

Explanation 

For a conservative force field, we have already learned that the work done by the system of 

particles is 

Work done = change in kinetic energy = 𝑊 = 𝑇2  –  𝑇1  

Also Work done = change in potential energy =  𝑊 = 𝑉1  –  𝑉2   

By comparing, we get 

𝑇2  –  𝑇1 =  𝑉1  –  𝑉2 

or  

𝑇1 + 𝑉1 = 𝑇2 + 𝑉2 

which can be written as  

1

2
𝑚𝑣1

2 + 𝑉1 =
1

2
𝑚𝑣2

2 + 𝑉2 

. 
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Module No. 116 
   

Conservation of Energy 

Example 

 

Consider the force field 𝐹 = −𝑘𝑟3𝑟 

i. Find whether the given field is conservative or not. 

ii. Find the potential energy of the given force field of part (i). 

iii. For the particle moving in 𝑥𝑦 − plane, find the work done by the force in moving the 

particle from A to B, where A is the point where 𝑟 =  𝑎, and B where 𝑟 = 𝑏. 

iv. If the particle of mass 𝑚 moves with velocity 𝑣 =
𝑑𝑟

𝑑𝑡
 in this field, show that if 𝐸 is the 

constant, total energy then  

v. 
1

2
 𝑚 (

𝑑𝑟

𝑑𝑡
)
2

+
1

5
 𝑘𝑟5 = 𝐸 

 

Solution 

i. As 𝐹⃗ = −𝑘𝑟3𝑟 = −𝑘(𝑥2 + 𝑦2)3/2(𝑥𝑖 + 𝑦𝑗) 

∇ × 𝐹⃗ = |

𝑖 𝑗 𝑘

𝜕 𝜕𝑥⁄ 𝜕 𝜕𝑦⁄ 𝜕 𝜕𝑧⁄

−𝑘(𝑥2 + 𝑦2)3/2𝑥 −𝑘(𝑥2 + 𝑦2)3/2𝑦 0

| 

= 𝑖 [
𝜕

𝜕𝑦
(0) −

𝜕

𝜕𝑧
(−𝑘(𝑥2 + 𝑦2)3/2𝑦)] + 𝑗 [

𝜕

𝜕𝑧
(−𝑘(𝑥2 + 𝑦2)3/2𝑥) −

𝜕

𝜕𝑥
(0)]

+ 𝑘 [
𝜕

𝜕𝑥
(−𝑘(𝑥2 + 𝑦2)3/2𝑦) −

𝜕

𝜕𝑦
(−𝑘(𝑥2 + 𝑦2)3/2𝑥)] 

= −3𝑘(𝑥2 + 𝑦2)
1
2𝑥𝑦 + 3𝑘(𝑥2 + 𝑦2)

1
2𝑥𝑦 = 0 

Thus the given field is conservative. 

ii.  Since the field is conservative there exists a potential V such that 

𝐹 = −𝛻𝑉 

𝐹 = −𝑘𝑟3𝑟 = −𝑘(𝑥2 + 𝑦2)
3
2(𝑥𝑖 + 𝑦𝑗) 

= −𝑘(𝑥2 + 𝑦2)
3
2𝑥𝑖 − 𝑘(𝑥2 + 𝑦2)

3
2𝑦𝑗 = −∇𝑉 

= −
𝜕𝑉

𝜕𝑥
𝑖 −

𝜕𝑉

𝜕𝑦
𝑗 −

𝜕𝑉

𝜕𝑧
𝑘 
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By comparing, we get  

𝜕𝑉

𝜕𝑥
= 𝑘(𝑥2 + 𝑦2)3/2𝑥,     

𝜕𝑉

𝜕𝑦
=𝑘(𝑥2 + 𝑦2)3/2𝑦    and     

𝜕𝑉

𝜕𝑧
= 0 

From which, by omitting the constants, we get 

𝑉 =
1

5
 𝑘(𝑥2 + 𝑦2)5/2 =

1

5
 𝑘𝑟5 

is required potential. 

iii. The velocity potential at point A  

=
1

5
 𝑘𝑎5 

 and the velocity potential at point B  

=
1

5
𝑘𝑏5 

So, the work done from A to B is  

= Potential at A - Potential at B 

=
1

5
 𝑘𝑎5 −

1

5
 𝑘𝑏5 =

1

2
 𝑘(𝑎5 − 𝑏5) 

which is required work done by the given force field. 

iv. Since the kinetic energy of a particle of mass 𝑚 moving with velocity v =
𝑑𝑟

𝑑𝑡
 is 

𝑇 =
1

2
 𝑚𝑣2 =

1

2
 𝑚(

𝑑𝑟

𝑑𝑡
)2 

From part (ii), we have the potential energy 

𝑉 =
1

5
 𝑘𝑟5 

Thus the total energy 𝐸 will be 

𝐸 = 𝑇 + 𝑉 

=
1

2
 𝑚 (

𝑑𝑟

𝑑𝑡
)
2

+
1

5
 𝑘𝑟5 

Hence proved. 
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Module No. 117 
   

Introduction to Impulse – Derivation 
 

 

Impulse is a special type of force defined by applying the integral of a force 𝐹, over the time 

interval, t, for which it acts on the body. 

Impulse is a directional (vector) quantity in the same direction of force as force is also a directional 

quantity. When Impulse is applied to a rigid body, it results a corresponding vector change in its 

linear momentum along the same direction. The SI unit of impulse is the newton second (𝑁 · 𝑠), 

and the dimensionally equivalent unit of momentum is the kilogram meter per second (𝑘𝑔𝑚𝑠−1). 

The particle is located at 𝑃1 and 𝑃2 at times 𝑡1 and 𝑡2 where it has velocities 𝑣1 and 𝑣2  respectively. 

The time integral of the force F given by 

∫ 𝐹𝑑𝑡

𝑡2

𝑡1

 

is called the impulse of the force 𝐹. 

Theorem Statement 

The impulse is equal to the change in momentum; or, in symbols, 

∫ 𝐹𝑑𝑡 = 𝑚𝑣2 − 𝑚𝑣1 = 𝑝2 − 𝑝1

𝑡2

𝑡1

 

Proof 

We have to prove that the impulse of a force is equal to the change in momentum. 

By definition of impulse and Newton's second law, we have 

∫ 𝐹𝑑𝑡 =

𝑡2

𝑡1

∫ 𝑚
𝑑𝑣

𝑑𝑡
𝑑𝑡 =

𝑡2

𝑡1

∫ 𝑚𝑑𝑣 = 𝑚|𝑣|𝑡1
𝑡2 =

𝑡2

𝑡1

𝑚𝑣2 − 𝑚𝑣1 = 𝑝2 − 𝑝1 

where we use the conditions 

𝑣(𝑡1) = 𝑣1  and 𝑣(𝑡2) = 𝑣2 

The theorem is true even when the mass is variable and the force is non-conservative. 
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Module No. 118 
   

Example of Impulse 
 

Example:  

What is the magnitude of the impulse developed by a mass of 200 gm which changes its velocity 

from 5𝑖 − 3𝑗 + 7𝑘 m/sec to 2𝑖 + 3𝑗 + 𝑘 m/sec?  

 

Solution: 

Since we have the following information: 

𝑚 = 200 gm 

𝑣1 = 5𝑖 − 3𝑗 + 7𝑘 

𝑣2 = 2𝑖 + 3𝑗 + 𝑘 

As we know that  

Impulse = 𝑝2 − 𝑝1 

= 𝑚𝑣2 − 𝑚𝑣1 

= 𝑚(𝑣2 − 𝑣1) 

Substituting the values, we get 

Impulse = 200(2𝑖 + 3𝑗 + 𝑘 − (5𝑖 − 3𝑗 + 7𝑘)) 

= 200(−3𝑖 + 6𝑗 − 6𝑘) 

The magnitude of the Impulse will be 

Impulse magnitude = 200√9 + 36 + 36 

= 200√81 

= 200(9) 

= 1800mgm/sec 

= 1.8 N sec 
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Module No. 119 

Torque 

Definition 

Torque is defined as the turning effect of a body. It is trend of an acting force due to which the 

rotational motion of a body changes. It is also called twist and rotational force on an object. 

Mathematically, torque is defined as the cross product of the force vector to the distance vector, 

which causes rotational motion of the body. 

𝝉 = 𝒓⃗⃗ × 𝑭⃗⃗⃗ 

The magnitude of torque depends upon the applied force, the length of the lever arm connecting 

the axis to the point where the force applied, and the angle between the force vector and the length 

of lever arm. Symbolically we can write it as:  

𝝉 = |𝒓||𝑭| 𝐬𝐢𝐧 𝜽 

 

Torque is a vector quantity implies that it has direction as well as magnitude.  

The SI unit for torque is the newton meter (Nm).  

The direction of torque can be approximate using Right Hand Rule. 

 

Theorem: 

The torque acting on a particle equals the time rate of change in its angular momentum, i.e.,  

𝜏 =
𝑑Ω

𝑑𝑡
 

where Ω = r × p is defined angular momentum of the system.  

 

Proof: 

As we know torque is defined as 

𝜏 = 𝑟 × 𝐹 = 𝑟 × 𝑚𝑎 

as m is constant, therefore 

= 𝑚(𝑟 × 𝑎) 

= 𝑚(𝑟 ×
𝑑𝑣

𝑑𝑡
) 

= 𝑚
𝑑

𝑑𝑡
(𝑟 × 𝑣) 

=
𝑑

𝑑𝑡
(𝑟 × 𝑚𝑣) 

=
𝑑

𝑑𝑡
(𝑟 × 𝑝) 

where 𝑝 = 𝑚𝑣 is defined as linear momentum and hence the theorem. 
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Module No. 120 

Example of Torque 

 

Example 

A particle of mass 𝑚 moves Along a space curve defined by 𝑟 = acos𝜔𝑡 𝑖 + 𝑏 sin𝜔𝑡 𝑗.  

 Find 

(i)   The Torque 

 

(ii)  The angular momentum about the origin.  

 

Solution 

(i)  As we know that the torque acting on a particle is equal to the time rate of change of its 

angular momentum, i.e. 

𝜏 =
𝑑Ω

𝑑𝑡
=

𝑑

𝑑𝑡
(𝑟 × 𝑝) 

where 𝑝 = 𝑚𝑣. 

As 𝑟 = acos𝜔𝑡 𝑖 + 𝑏 sin𝜔𝑡 𝑗.  Therefore 

𝑣 =
𝑑𝑟

𝑑𝑡
 

𝑣 = −𝑎𝜔 sin𝜔𝑡 𝑖 + 𝑏𝜔 cos𝜔𝑡 𝑗 

So,  

𝑝 = −𝑎𝑚𝜔 sin𝜔𝑡 𝑖 + 𝑏𝑚𝜔 cos𝜔𝑡 𝑗 

Now 

𝑟 × 𝑝 

= |
𝑖̂ 𝑗̂ 𝑘̂

acos𝜔𝑡 𝑏 sin𝜔𝑡 0
−𝑎𝑚𝜔 sin𝜔𝑡 𝑏𝑚𝜔 cos𝜔𝑡 0

| 

= [𝑎𝑏𝑚𝜔cos2𝜔𝑡 + 𝑎𝑏𝑚𝜔sin2𝜔𝑡]𝑘̂ 

= 𝑎𝑏𝑚𝜔𝑘̂ 
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𝜏 =
𝑑Ω

𝑑𝑡
=

𝑑

𝑑𝑡
(𝑟 × 𝑝) = 0 

(ii)  From part (i), we already have 

  

Ω = 𝑟 × 𝑝 

= 𝑎𝑏𝑚𝜔𝑘̂ 

is the required angular momentum. 
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Module No. 121 

Introduction to Rigid Bodies and Elastic 
Bodies 

Definition of Rigid Bodies 

 When a force is applied to an object/ system of particles, and if the object maintains its 

overall shape, then the object is called a rigid body.  

 Gap between two fixed points on the rigid body remains same regardless of external 

forces exerted on it.  

 We can neglect the deformation of such bodies.  

 A rigid body usually has continuous distribution of mass.  

Definition of Elastic Bodies 

 When a force is applied to a system of particles, it changes the distance between 

individual particles. Such systems are often called deformable or elastic bodies.  

Examples 

 A spring and rubber band are some common examples of elastic bodies. 

 A wheel is a common example of rigid body. 

  

  



42 

 

Module No. 122 

Properties of Rigid Bodies 
 

Following are some of the properties of the rigid bodies.  

 

Degree of freedom 

 

The number of coordinates required to specify the position of a system of one or more particles is 

called the number of degrees of freedom of the system. 

For example a particle moving freely in space requires 3 coordinates, e.g. (x, y, z), to specify its 

position. Thus the number of degrees of freedom is 3. 

Similarly, a system consisting of N particles moving freely in space requires 3N coordinates to 

specify its position. Thus the number of degrees of freedom is 3N.  

 

Translations 

 

A displacement of a rigid body is a direct change of position of its particles. Translational motion 

is the displacement of all particles of the body by the same amount and the line segment joining 

the initial and the final position of the particles represented by parallel vectors.  

Examples of translational motion are particles freely falling down to earth and the motion of a 

bullet fired from a gun. 

 

Rotations 

 

Circular motion of a body about a fixed point or axis is called rotation.  If during a displacement 

the points of the rigid body on some line remains fixed and all other are displaced through the 

same angle, then this displacement is called rotation. A rigid performs rotations around an 

imaginary line called a rotation axis.  

If the axis of rotation passes through the center of mass of the rigid body then body is said to be 

spin or rotate upon itself. If a body rotates about some external fixed point is called revolution or 

orbital motion of the rigid body. The example of revolution is the rotation of earth around sun 

and motion of moon around sun.  

Rotational motion concerns only with rigid bodies. The reverse rotation of a body (inverse 

rotation) is also a rotation.  

A wheel is common examples of rotation. 

  



43 

 

Module No. 123 

Instantaneous Axis and Center of Rotation 

 

Introduction to General Plane Motion 

 

The general plane motion of a rigid body can be considered as:  

 Translational motion along the given fixed plane and rotational motion about a suitable 

axis perpendicular to the plane.  

 This fixed axis is specifically chosen to pass through the center of mass of the rigid body. 

Instantaneous Axis of Rotation  

 

 The axis about which the rigid body rotates is called instantaneous axis of rotation, where 

this axis is perpendicular to the plane. 

 

Instantaneous Center of Rotation 

 

 The point where instantaneous axis meets the fixed plane along which the body performs 

translation motion is described as the instantaneous center of rotation. 
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Module No. 124 

Centre of Mass & Motion of the Center of 
Mass 

 

The center of mass (c.m.) or centroid of system of particles is a hypothetical particle such that if 

the entire mass of the system were concentrated there, the mechanical properties would remain the 

same. In particular expression of linear momentum, angular momentum and kinetic energy assume 

simpler or more convenient forms when referred to the coordinated of this hypothetical particle 

and the equation of motion can be reduced to simpler equation of a single particle.  

Let 𝑟1, 𝑟2, 𝑟3, ……… . , 𝑟𝑁be the position vectors of a system of N particles of masses 

𝑚1, 𝑚2, 𝑚3, ……… . ,𝑚𝑁 respectively [see Fig.].  

 
The center of mass or centroid of the system of particles is defined as that point C having position 

vector  

𝑟𝑐 =
∑ 𝑚𝑖𝑟𝑖𝑖

∑ 𝑚𝑖𝑖
 

 

When the system is moving the position vector will depend on time t and therefore 𝑟𝑐will also be 

a function of t. the velocity and acceleration of center of mass will be then given by 

𝑟̇𝑐 = 𝒗𝒄 =
∑ 𝑚𝑖𝑟𝑖̇𝑖

∑ 𝑚𝑖𝑖
 

𝑟̈𝑐 = 𝒂𝒄 =
∑ 𝑚𝑖𝑟𝑖̈𝑖

∑ 𝑚𝑖𝑖
 

Motion of Center of Mass 
Motion of center of mass can be examined by considering the following points: 
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1.  If a system experiences no external force, the center-of-mass of the system will remain at 

rest, or will move at constant velocity if it is already moving. 

 

2. If there is an external force, the center of mass accelerates according to 𝐹 =  𝑚𝑎. 

 

3. Basically, the center-of-mass of a system can be treated as a point mass, following 

Newton's Laws. 

 

4. If an object is thrown into the air, different parts of the object can follow quite complicated 

paths, but the center-of-mass will follow a parabola. 

 

 
 

5. If an object explodes, the different pieces of the object will follow seemingly independent 

paths after the explosion. The center of mass, however, will keep doing what it was doing 

before the explosion. This is because an explosion involves only internal forces. 
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Module No. 125 

Centre of Mass & Motion of the Center of 
Mass 

The moment of inertia of a rigid body is a property which depends upon its mass and shape, (i.e. 

the mass distribution of the body) and determines its behavior in rotational motion. 

In rotational motion, the moment of inertia plays the same role as the mass in linear motion. 

 

Definition of Moment of Inertia 

Formally the moment of inertia 𝐼 of the particle of mass 𝑚 about a line is defined by 

𝐼 = 𝑚𝑑2 

where 𝑑 is the perpendicular distance between the particle and the line (called the axis). 

 

Moment of Inertia of System of particles 

The moment of inertia of a system of particles, with masses 𝑚1, 𝑚2, 𝑚3, … ,𝑚𝑁   about the line or 

axis AB is defined as 

𝐼 = ∑ 𝑚𝑖

𝑁

𝑖=1
𝑑𝑖

2
 

= 𝑚1𝑑1
2 + 𝑚2𝑑2

2 + ⋯+ 𝑚𝑁𝑑𝑁
2
 

In dimensions, the moment of inertia can be expressed as 

[𝐼] = [𝑀][𝐿2] 

 

Moment of Inertia in Coordinate System  

The moment of inertia of a particle of mass 𝑚 with coordinates (𝑥, 𝑦, 𝑧) relative to the 

orthogonal Cartesian coordinate system𝑂𝑋𝑌𝑍 about 𝑋,  𝑌,  𝑍 axes will be 

𝐼𝑥𝑥 = 𝑚(𝑦2 + 𝑧2) 

𝐼𝑦𝑦 = 𝑚(𝑧2 + 𝑥2) 

𝐼𝑧𝑧 = 𝑚(𝑥2 + 𝑦2) 

 

Product of Inertia 

The product of inertia for the same particle w.r.to the pair of coordinate axes are defined as 

𝐼𝑥𝑦 = −𝑚𝑥𝑦 

𝐼𝑦𝑧 = −𝑚𝑦𝑧 

𝐼𝑧𝑥 = −𝑚𝑧𝑥 

These definitions can be easily generalized to a system of particle and a rigid body. 
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Module No. 126 

Example of moment of Inertia and Product 
of Inertia 

 

Problem Statement: 

Find the moments of inertia of a ring of radius 𝑎 about an axis through center. 

 

Solution: 

Let 𝑀 be the mass and 𝑎 the radius of the ring. Then the mass per unit length will be  𝑀 2𝜋𝑎⁄ . 

We regard this ring to be composed of small elements of mass (𝛿𝑚) each of length 𝛿𝑠,  

we can write it as 

𝛿𝑚

𝛿𝑠
=

𝑀

2𝜋𝑎
⟹ 𝛿𝑚 =

𝑀

2𝜋𝑎
𝛿𝑠 

 
Moment of inertia of the element about an axis through center O and the perpendicular to the 

plane of the ring equals 
𝑀

2𝜋𝑎
𝛿𝑠 𝑎2.  

Therefore the M.I of the whole ring will be 

 

𝐼𝑟𝑖𝑛𝑔 =
𝑀

2𝜋𝑎
𝑎2 ∑ 𝛿𝑠

𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠
=

𝑀𝑎

2𝜋
∫𝑑𝑠 =

𝑀𝑎

2𝜋
× 2𝜋𝑎 = 𝑀𝑎2 

 

Hence 𝑀𝑎2 is the required moment of inertia of the ring. 
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Module No. 127 

Radius of Gyration 
 

Radius of gyration specifies the distribution of the elements of body around the axis in terms of 

the mass moment of inertia, As it is the perpendicular distance from the axis of rotation to a point 

mass m that gives an equivalent inertia to the original object m The nature of the object does not 

affect the concept, which applies equally to a surface bulk mass.  

Mathematically the radius of gyration is the root mean square distance of the object's parts from 

either its center of mass or the given axis, depending on the relevant application. 

Let 𝐼 = ∑ 𝑚𝑖
𝑁
𝑖=1 𝑑𝑖

2
 be the moment of inertia of a system of particles about AB, and  

𝑀 = ∑ 𝑚𝑖
𝑁
𝑖=1  be the total mass of the system.  

Then the quantity K such that 

𝐾2 =
𝐼

𝑀
=

∑ 𝑚𝑖
𝑁
𝑖=1 𝑑𝑖

2

∑ 𝑚𝑖
𝑁
𝑖=1

 

or 

𝐾 = √
𝐼

𝑀
 

 

is called the radius of gyration of the system AB.  

 

Example: 

Find the radius of gyration, K, of the triangular lamina of mass M and moment of inertia 𝐼 =
1

6⁄ 𝑀ℎ2. 

 

Solution: 

Since formula for radius of gyration is given by 

𝐾2 =
𝐼

𝑀
 

by substituting value in above , we get 

𝐾2 =
1

6⁄ 𝑀ℎ2

𝑀
= 1

6⁄ ℎ2 

or      𝐾 =
ℎ

√6
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Principal Axes for the Inertia Matrix 

 

Principal Axes 

 

When a rigid body is rotating about a fixed point O, the angular velocity vector 𝜔 and the 

angular momentum vector L (about O) are  not in general in the same direction. However 

it can be proved that at each point in the body there exists distinct directions, which are 

fixed relative to the body, along which the two vectors are aligned i.e. coincident. Such 

directions are called principal directions and the axes along them are referred to as 

principal axes of inertia. The corresponding moments of inertia are called principal 

moments of inertia. 

 

Orthogonality of Principal Axes 

 

If the principal axes at each point of the body exist, then their orthogonality can be proved by 

stating that axes relative to which product of inertia are zero are the principal axes. 
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Module No. 129 

Introduction to the Dynamics of a System 
of Particles 

 

Dynamics 

 

Dynamics is the branch of mechanics deals with forces and relationship fundamentally to the 

motion but sometimes also to the equilibrium of bodies. 

 

The Dynamics of a System of Particles 

 

Suppose we have a system of N particles in motion under forces. These will be two types of 

forces, internal and external. 

Internal forces act between particles of the system; all other are external. We suppose further that 

the internal forces satisfy Newton’s third law of motion. i.e. Internal forces between a pair of 

particles are equal and opposite  If 𝐹𝑖𝑗
(𝑖𝑛𝑡)

 denotes the internal force on the ith particle due to the 

jth particle, then in the view of this assumption we can write 

𝐹𝑖𝑗
(𝑖𝑛𝑡) = −𝐹𝑗𝑖

(𝑖𝑛𝑡)
          (1) 

The equation of motion for the ith particle of system can therefore be written as 

𝐹𝑖
(𝑒𝑥𝑡)

+ ∑ 𝐹𝑖𝑗
(𝑖𝑛𝑡)𝑁

𝑗=1 = 𝑚𝑖𝑎⃗𝑖         (2) 

where 𝐹𝑖
(𝑒𝑥𝑡)

 denotes the external force on the ith particle, and 𝑎⃗𝑖, the acceleration of the ith 

particle. It is clear from equation (1) that the internal force on a given particle due to itself is zero 

and therefore the term 𝑖 = 𝑗 does not contribute to the sum. 

To obtain an equation of motion for the whole system we sum over i, (from 1 to N), on the both 

sides of equation (2), and obtain 

∑𝐹𝑖
(𝑒𝑥𝑡)

𝑖

+ ∑∑𝐹𝑖𝑗
(𝑖𝑛𝑡)

𝑗

= ∑𝑚𝑖𝑎⃗𝑖

𝑖𝑖

 

or  

𝐹(𝑒𝑥𝑡) + ∑ 𝐹𝑖𝑗
(𝑖𝑛𝑡)

𝑖,𝑗 = ∑ 𝑚𝑖𝑎⃗𝑖𝑖          (3) 

Where 𝐹(𝑒𝑥𝑡) denotes the total external force on the system. Now we will show that because of 

condition (1), the second term on L.H.S of (3) is zero. 

∑𝐹𝑖𝑗
(𝑖𝑛𝑡)

𝑖,𝑗

=
1

2
∑(𝐹𝑖𝑗

(𝑖𝑛𝑡) + 𝐹𝑖𝑗
(𝑖𝑛𝑡))

𝑖,𝑗

 

Since the indices I and j are dummy and vary over the same set of integers, we can interchange 

them in the second sum on the R.H.S of the last equation. Therefore we have  
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∑𝐹𝑖𝑗
(𝑖𝑛𝑡)

𝑖,𝑗

=
1

2
∑(𝐹𝑖𝑗

(𝑖𝑛𝑡) + 𝐹𝑗𝑖
(𝑖𝑛𝑡))

𝑖,𝑗

 

=
1

2
∑(𝐹𝑖𝑗

(𝑖𝑛𝑡) − 𝐹𝑖𝑗
(𝑖𝑛𝑡))

𝑖,𝑗

= 0 

Therefore the equation (3) becomes 

𝐹(𝑒𝑥𝑡) = ∑ 𝑚𝑖𝑎⃗𝑖𝑖           (4) 

In case of centroid, the relation becomes 

∑𝑚𝑖𝑎⃗𝑖

𝑖

= 𝑀𝑎⃗𝑐 

where 𝑟̈𝑐 = 𝑎⃗𝑐 is the acceleration of center of mass (c.m.) and M is the total mass of the system. 

Hence equation (4) can be written as 

𝐹(𝑒𝑥𝑡) = 𝑀𝑎⃗𝑐 =
𝑑

𝑑𝑡
(𝑀𝑣⃗𝑐)         (5) 

If 𝐹(𝑒𝑥𝑡) = 0 then 
𝑑

𝑑𝑡
(𝑀𝑣⃗𝑐) = 0, which implies that 𝑀𝑣⃗𝑐 =constant. 

We conclude that if external forces are on a system of particles are zero, then its momentum will 

be a constant of motions or a conserved quantity. Equation (5) describes the translational motion 

of the system and may be referred to as the translational equation of motion which describes the 

rotational motion of the system, we take the cross product of both sides of equation (2) with 

𝑟𝑖, and obtain  

𝑟𝑖×𝐹𝑖
(𝑒𝑥𝑡)

+ ∑ 𝑟𝑖 × 𝐹𝑖𝑗
(𝑖𝑛𝑡)

𝑁

𝑗=1 

= 𝑚𝑖𝑟𝑖 × 𝑎⃗𝑖 

summing over i 

∑ 𝑟𝑖×𝐹𝑖
(𝑒𝑥𝑡)

+ ∑ 𝑟𝑖 × 𝐹𝑖𝑗
(𝑖𝑛𝑡)𝑁

𝑖,𝑗=1 =𝑖 ∑ 𝑚𝑖𝑟𝑖 × 𝑎⃗𝑖𝑖       (6) 

Now  we will show that in view of our assumption (1) about internal forces, the second term on 

L.H.S of equation (6) is zero. On interchanging the dummy indices and using (1) we have 

∑ 𝑟𝑖 × 𝐹𝑖𝑗
(𝑖𝑛𝑡)

𝑖,𝑗

=
1

2
∑(𝑟𝑖 × 𝐹𝑖𝑗

(𝑖𝑛𝑡)

𝑖,𝑗

+ 𝑟𝑗 × 𝐹𝑗𝑖
(𝑖𝑛𝑡)) 

=
1

2
∑(𝑟𝑖 × 𝐹𝑖𝑗

(𝑖𝑛𝑡) −

𝑖,𝑗

𝑟𝑗 × 𝐹𝑖𝑗
(𝑖𝑛𝑡)) 

=
1

2
∑ (𝑟𝑖 − 𝑟𝑗) × 𝐹𝑖𝑗

(𝑖𝑛𝑡)
𝑖,𝑗          (7) 

The vector 𝑟𝑖 − 𝑟𝑗  is in the direction of the line segment joining the particles I and j and therefore 

it is parallel to 𝐹𝑖𝑗 . Therefore the last term on R.H.S of equation (7) is zero.  

Hence we finally obtain 

∑𝑟𝑖 × 𝐹𝑖𝑗
(𝑒𝑥𝑡)

𝑖,𝑗

= ∑𝑚𝑖𝑟𝑖 × 𝑎⃗𝑖

𝑖

 

or 
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∑ 𝐺𝑖 = 𝐺𝑒𝑥𝑡 =

𝑖

∑𝑚𝑖𝑟𝑖 × 𝑎⃗𝑖

𝑖

=
𝑑

𝑑𝑡
(∑𝑚𝑖𝑟𝑖 × 𝑣⃗𝑖

𝑖

) 

=
𝑑

𝑑𝑡
(∑𝑟𝑖 × 𝑚𝑖𝑣⃗𝑖

𝑖

) 

=
𝑑

𝑑𝑡
∑𝐿𝑖 =

𝑑𝐿

𝑑𝑡
𝑖

 

which is usually written as 

𝑑𝐿

𝑑𝑡
= 𝐺(𝑒𝑥𝑡) 

where 𝐺𝑖
(𝑒𝑥𝑡)

 is the torque or momentum due to external force on the ith particle, and 𝐺𝑖
(𝑒𝑥𝑡) is 

the torque due to all external forces on the system. 

Similarly L is the total angular momentum of the system. 

∑𝑟𝑖 × 𝐹𝑖𝑗
(𝑒𝑥𝑡)

𝑖,𝑗

= ∑𝐺𝑖 = 𝐺

𝑖

 

Thus we have obtained the following two equations of motion for a system of particles. 
𝑑

𝑑𝑡
(𝑀𝑣⃗𝑐) = 𝐹(𝑒𝑥𝑡)           (8) 

and 
𝑑𝐿

𝑑𝑡
= 𝐺(𝑒𝑥𝑡)           (9) 

It follows from equation (8) that if the total external torque on the system is zero, then its angular 

momentum will be a constant of motion or a conserved quantity. 
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Module No. 130 

Introduction to Center of Mass and Linear 
Momentum 

 
The rigid bodies are a system of particles in which the position of particles is relatively fixed. We 

consider such a system of particles in this article and will discuss its center of mass and linear 

momentum. 

 
Center of Mass  

 

Our general system consists of η particles of masses 𝑚1, 𝑚2, …… . . , 𝑚𝑛whose position vectors 

are, respectively, 𝑟1, 𝑟2, …… . . , 𝑟𝑛. We define the center of mass of the system as the point whose 

position vector 𝑟𝑐𝑚  is given by 

𝑟𝑐𝑚 =
𝑚1𝑟1+𝑚2𝑟2+𝑚3𝑟3+⋯…….+𝑚𝑛𝑟𝑛

𝑚1+𝑚2+⋯…..+𝑚𝑛
=

∑ 𝑚𝑖𝑟𝑖
𝑛
𝑖=1

𝑚
      (1) 

where 𝑚 = ∑ 𝑚𝑖  
𝑛
𝑖=1 is the total mass of the system. 

The above definition of center of mass leads us to three equations  

𝑥𝑐𝑚 =
∑ 𝑚𝑖𝑥𝑖

𝑛
𝑖=1

𝑚
, 𝑦𝑐𝑚 =

∑ 𝑚𝑖𝑦𝑖
𝑛
𝑖=1

𝑚
, 𝑧𝑐𝑚 =

∑ 𝑚𝑖𝑧𝑖
𝑛
𝑖=1

𝑚
 

which are the rectangular coordinates of the center of mass of the system. 

 
Linear Momentum 

 

We define the linear momentum ρ of the system as the vector sum of the linear momentum of the 

individual particles, namely,  

𝑝 = ∑𝑝𝑖 = ∑𝑚𝑖𝑣𝑖

𝑖𝑖

 

From equation (1) 

𝑟𝑐𝑚 =
∑ 𝑚𝑖𝑟𝑖

𝑛
𝑖=1

𝑚
      (1) 

𝑟̇𝑐𝑚 = 𝜈𝑐𝑚 =
∑ 𝑚𝑖𝑣𝑖

𝑛
𝑖=1

𝑚
 

it follows that  

𝑝 = 𝑚𝜈𝑐𝑚 

that is, the linear momentum of a system of particles is the product of the velocity of the center  

of mass and the total mass of the system. 
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Module No. 131 

Law of Conservation of Momentum for 
Multiple Particles 

 
Statement 

 

In the absence of the external force, the momentum of the system of particles will be conserved. 

 

Proof 

 

Suppose we have a system of N particles in motion under forces. These will be two types of 

forces, internal and external. 

Suppose now that there are external forces 𝐹1𝐹2, . . . , 𝐹𝑖, , . . . , 𝐹𝑛 acting on the respective particles. 

In addition, there may be internal forces of interaction between any two particles of the system. 

We denote these internal forces by 𝐹𝑖𝑗
(𝑖𝑛𝑡), meaning the force exerted on particle i by particle j. 

Internal Forces act between particles of the system; all over the external. We suppose further that 

the internal force satisfy Newton’s third law of motion. i.e. Internal forces between a pair of 

particles are equal and opposite. 

If  𝐹𝑖𝑗
(𝑖𝑛𝑡) denotes the internal force on the ith particle due to the jth particle, then in the view of 

this assumption we can write 

𝐹𝑗𝑖
(𝑖𝑛𝑡) = −𝐹𝑖𝑗

(𝑖𝑛𝑡)
          (1) 

The equation of motion for the ith particle of the system can therefore be written as 

𝐹𝑖
(𝑒𝑥𝑡) + ∑ 𝐹𝑖𝑗

(𝑖𝑛𝑡)𝑁
𝑗=1 = 𝑚𝑖𝑎𝑖 = 𝑝𝑖̇         (2) 

where 𝐹𝑖
(𝑒𝑥𝑡) denotes the total external force on the ith particle, and  𝑎𝑖 the acceleration of the ith 

particle.  

To obtain an equation of motion for the whole system, we sum over I (from 1 to N), on both 

sides of the equation (2). 

∑𝐹𝑖
(𝑒𝑥𝑡)

𝑖

+ ∑∑𝐹𝑖𝑗
(𝑖𝑛𝑡)

𝑁

𝑗=1𝑖

= ∑𝑚𝑖𝑎𝑖

𝑖

= 𝑝𝑖̇ 

𝐹(𝑒𝑥𝑡) + ∑ 𝐹𝑖𝑗
(𝑖𝑛𝑡)

𝑖,𝑗 = ∑ 𝑚𝑖𝑎𝑖 = 𝑝𝑖̇𝑖         (3) 

where 𝐹(𝑒𝑥𝑡)denotes the total force of the system.  

now we will show that because of equation 1, L.H.S of equation 3 is zero. 
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𝑝𝑖̇ = ∑𝐹𝑖𝑗
(𝑖𝑛𝑡)

𝑖,𝑗

= (
1

2
∑𝐹𝑖𝑗

(𝑖𝑛𝑡)

𝑖,𝑗

+
1

2
∑𝐹𝑖𝑗

(𝑖𝑛𝑡)

𝑖,𝑗

) 

since the indices I and j are dummy and vary over the same set of integers, we can interchange 

them in the second sum on R.H.S of the last equation. Therefore we have 

𝑝𝑖̇ = ∑𝐹𝑖𝑗
(𝑖𝑛𝑡)

𝑖,𝑗

= (
1

2
∑𝐹𝑖𝑗

(𝑖𝑛𝑡)

𝑖,𝑗

+
1

2
∑𝐹𝑗𝑖

(𝑖𝑛𝑡)

𝑖,𝑗

) 

using equation (1), we have 

∑ 𝐹𝑖𝑗
(𝑖𝑛𝑡)

𝑖,𝑗 = (
1

2
∑ 𝐹𝑖𝑗

(𝑖𝑛𝑡)
𝑖,𝑗 −

1

2
∑ 𝐹𝑗𝑖

(𝑖𝑛𝑡)
𝑖,𝑗 )=0 

therefore equation (3) becomes 

𝑝𝑖̇ = 𝐹(𝑒𝑥𝑡) = ∑𝑚𝑖𝑎𝑖

𝑖

 

for centroid, we know that ∑ 𝑚𝑖𝑎𝒊𝑖 = 𝑚𝑎𝑐where  𝑎𝑐is the acceleration of centroid. 

Hence equation can be written as 

𝑝𝑖̇ = 𝐹(𝑒𝑥𝑡) = 𝑀𝑎𝑐 =
𝑑

𝑑𝑡
(𝑀𝑣𝑐) 

If 𝐹(𝑒𝑥𝑡) = 0 then   𝑝𝑖̇ =
𝑑

𝑑𝑡
(𝑀𝑣𝑐) = 0   𝑜𝑟    𝑝 = 𝑀𝑣𝑐 = constant 

We conclude that if external forces are on a system of particles are zero, then its momentum will 

be a constant of motion or a conserved quantity. 
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Module No. 132 

Example of Conservation of Momentum 
 

Problem Statement 

 

A particle 𝐴, of mass 6 kg, travelling in a straight line at 5 ms−1 collides with a particle 𝐵, of 

mass 4 kg, travelling in the same straight line, but in the opposite direction, with a speed of 3 

ms−1. Given that after the collision particle 𝐴 continues to move in the same direction at 1.5 

ms−1, what speed does particle 𝐵 move with after the collision? (© mathcentre 2009) 

 

Given Data 

Mass of particle 𝐴 = 𝑚1 = 6kg 

Velocity of 𝐴 before collision = 𝑢1 =5ms−1 

Velocity of 𝐴 after collision = 𝑣1 =1.5ms−1 

Mass of Particle 𝐵 = 𝑚2 = 4kg 

Velocity of 𝐵 before collision = 𝑢2 = 3ms−1 

  

Required 

Velocity of 𝐵 after collision = 𝑣2 =  ? 

  

 

Solution 

 

It is always useful to depict the collision with the velocities both before and after. 

Using the principle of conservation of momentum: 

 

𝑚1𝑢1  +  𝑚2𝑢2  =  𝑚1𝑣1  +  𝑚2𝑣2  

6 ×  5 +  4 ×  (−3)  =  6 ×  1.5 +  4 × 𝑣2 

9 =  4 × 𝑣2 

𝑣2  =  9 4⁄ =  2.3 𝑚 𝑠−1  

 

So after the collision particle B moves with a speed of 2.3 m s−1, in the same direction as A. 

 

 

 

Example 2 
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Problem Statement 

A particle A, of mass 8 kg, collides with a particle B, of mass m2 kg. The velocity of particle 

A before the collision was (−1𝑖 +  4𝑗) 𝑚 𝑠−1  and the velocity of particle B before the collision 

was (−0.8𝑖 +  1.4𝑗) 𝑚 𝑠−1. Given the velocity of particle A after the collision was 

(−2𝑖 +  2𝑗) 𝑚 𝑠−1, and the velocity of particle B was 3𝑗 𝑚 𝑠−1, what was the mass of particle 

B? 

 

Given Data 

 

Mass of particle A= 𝑚1 = 8kg 

Velocity of A before collision= 𝑢1 = (−1𝑖 +  4𝑗) 𝑚 𝑠−1 

Velocity of A after collision= 𝑣1 = (−2𝑖 +  2𝑗) 𝑚 𝑠−1 

Velocity of B before collision= 𝑢2 = (−0.8𝑖 +  1.4𝑗) 𝑚 𝑠−1 

Velocity of B after collision= 𝑣2 =?3𝑗 𝑚 𝑠−1 

 

Required 

Mass of Particle B= 𝑚2 =? 

 

Solution 

It is always useful to depict the collision with the velocities both before and after. 

Using the principle of conservation of momentum: 

 𝑚1𝑢1 +  𝑚2𝑢2 =  𝑚1𝑣1 +  𝑚2𝑣2  

6 ×  5 +  4 ×  (−3) =  6 ×  1.5 +  4 ×  𝑣2 

9 =  4 ×  𝑣2 

𝑣2 =  9 4⁄ =  2.3ms−1 

So after the collision particle 𝐵 moves with a speed of 2.3 ms−1, in the same direction as 𝐴. 

 

Example 2 

 

Problem Statement 

A particle 𝐴, of mass 8 kg, collides with a particle 𝐵, of mass 2 kg.  The velocity of particle 𝐴 

before the collision was (−1𝑖 +  4𝑗) ms−1 and the velocity of particle 𝐵 before the collision was 

(−0.8𝑖 +  1.4𝑗) ms−1. Given the velocity of particle 𝐴 after the collision was (−2𝑖 +  2𝑗) ms−1, 

and the velocity of particle 𝐵 was 3𝑗 ms−1, what was the mass of particle 𝐵? 

 

Given Data 
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Mass of particle 𝐴 = 𝑚1 = 8kg 

Velocity of 𝐴 before collision = 𝑢1 = (−1𝑖 +  4𝑗)ms−1 

Velocity of 𝐴 after collision = 𝑣1 = (−2𝑖 +  2𝑗)ms−1 

Velocity of 𝐵 before collision = 𝑢2 = (−0.8𝑖 +  1.4𝑗)ms−1 

Velocity of 𝐵 after collision = 𝑣2 = 3𝑗 ms−1 

  

Required 

Mass of Particle 𝐵 = 𝑚2 =  ? 

  

Solution 

By making use of principle of conservation of momentum: 

𝑚1𝑢1 +  𝑚2𝑢2 =  𝑚1𝑣1 +  𝑚2𝑣2  

 8(−1𝑖 +  4𝑗) + 𝑚2(−0.8𝑖 +  1.4𝑗) 

= 8(−2𝑖 +  2𝑗) + 𝑚2(3𝑗) 

−8𝑖 +  32𝑗 + 16𝑖 − 16𝑗 + 𝑚2(−0.8𝑖 +  1.4𝑗) − 𝑚2(3𝑗) = 0 

8𝑖 + 16𝑗 + 𝑚2(−0.8𝑖 −  1.6𝑗) = 0 

8𝑖 + 16𝑗 − 𝑚2(+0.8𝑖 +  1.6𝑗) = 0 

8𝑖 + 16𝑗 = 𝑚2(0.8𝑖 +  1.6𝑗) 

𝑚2 =
0.8𝑖 +  1.6𝑗

8𝑖 + 16𝑗
 

By rationalizing and solving the above fraction, we obtain 

𝑚2 = 10𝑘𝑔 
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Module No. 133 

Angular Momentum – Derivation 

 

Angular momentum of a particle of mass 𝑚, position vector 𝑟 and linear momentum 𝑝 is defined 

as 𝑟 × 𝑝. It is also called moment of momentum. 

Let there be a system consists of N particles with positon vector 𝑟𝑖 and the momentum 𝑝𝑖 (𝑖 =

1,2,3, …… . , 𝑁) then the total angular momentum L is given by 

𝐿 = ∑𝑟𝑖 × 𝑝𝑖 = ∑𝑟𝑖 × (𝑚𝑣𝑖)

𝑖𝑖

 

To find the relation between L and 𝜔,⃗⃗ ⃗⃗  we proceed as follows: 

𝐿 = ∑𝑟𝑖 × (𝑚𝑖𝑣𝑖)

𝑖

 

= ∑𝑟𝑖 × 𝑚𝑖(𝜔⃗⃗⃗ × 𝑟𝑖)

𝑖

 

= ∑𝑚𝑖[𝑟𝑖 × (𝜔⃗⃗⃗ × 𝑟𝑖)

𝑖

] 

= ∑ 𝑚𝑖[(𝑟𝑖. 𝑟𝑖)𝜔⃗⃗⃗ − (𝑟𝑖. 𝜔⃗⃗⃗)𝑟𝑖𝑖 ]         (1) 

 

Here (𝑟𝑖. 𝑟𝑖)𝜔⃗⃗⃗ and (𝑟𝑖. 𝜔⃗⃗⃗)𝑟𝑖 are not parallel vectors. If they were parallel then we could easily say 

that L is parallel to 𝜔⃗⃗⃗. 

 

We conclude that in general L and 𝜔⃗⃗⃗  are not parallel to each other. To find the relationship 

between the vectors L and 𝜔⃗⃗⃗ we proceed as follows: 

Since  

𝑟𝑖 = 𝑥𝑖𝑖̂ + 𝑦𝑖𝑗̂ + 𝑧𝑖𝑘̂ 

therefore 

𝑟𝑖. 𝑟𝑖 = 𝑥𝑖
2 + 𝑦𝑖

2 + 𝑧𝑖
2 

and  

𝜔⃗⃗⃗. 𝑟𝑖 = 𝜔𝑥𝑥𝑖 + 𝜔𝑦𝑦𝑖 + 𝜔𝑧𝑧𝑖 

Therefore substituting these values in equation (1), we have 

𝐿 = ∑ 𝑚𝑖(𝑖 𝑥𝑖
2 + 𝑦𝑖

2 + 𝑧𝑖
2)(𝜔𝑥𝑖̂ + 𝜔𝑦𝑗̂ + 𝜔𝑧𝑘̂) − (𝜔𝑥𝑥𝑖 + 𝜔𝑦𝑦𝑖 + 𝜔𝑧𝑧𝑖)(𝑥𝑖𝑖̂ + 𝑦𝑖𝑗̂ + 𝑧𝑖𝑘̂) 

           (2) 

Writing 

𝐿 = 𝐿𝑥𝑖̂ + 𝐿𝑦𝑗̂ + 𝐿𝑧𝑘̂ ≡ 𝐿1𝑖̂ + 𝐿2𝑗̂ + 𝐿3𝑘̂ 

and  

𝜔 = 𝜔𝑥𝑖̂ + 𝜔𝑦𝑗̂ + 𝜔𝑧𝑘̂ ≡ 𝜔1𝑖̂ + 𝜔2𝑗̂ + 𝜔3𝑘̂ 

and comparing the coefficient of 𝑖̂ on both sides of equation (2), we obtain 
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𝐿𝑥 = ∑𝑚𝑖(

𝑖

𝑥𝑖
2 + 𝑦𝑖

2 + 𝑧𝑖
2)𝜔𝑥 − (𝜔𝑥𝑥𝑖 + 𝜔𝑦𝑦𝑖 + 𝜔𝑧𝑧𝑖)𝑥𝑖 

= ∑𝑚𝑖[

𝑖

𝑥𝑖
2𝜔𝑥 + (𝑦𝑖

2 + 𝑧𝑖
2)𝜔𝑥 − 𝜔𝑥𝑥𝑖

2 − 𝜔𝑦𝑥𝑖𝑦𝑖 − 𝜔𝑧𝑥𝑖𝑧𝑖] 

= 𝜔𝑥 ∑ 𝑚𝑖𝑖 (𝑦𝑖
2 + 𝑧𝑖

2) − 𝜔𝑥𝑥𝑖
2 − 𝜔𝑦 ∑ 𝑚𝑖𝑖 𝑥𝑖𝑦𝑖 − 𝜔𝑧 ∑ 𝑚𝑖𝑖 𝑥𝑖𝑧𝑖]    (3) 

As we studied the definitions of moment of inertia and product of inertia be defined as 

𝐼𝑥𝑥 = ∑𝑚𝑖(𝑦𝑖
2 + 𝑧𝑖

2)

𝑖

 

𝐼𝑦𝑦 = ∑𝑚𝑖(𝑧𝑖
2 + 𝑥𝑖

2)

𝑖

 

𝐼𝑧𝑧 = ∑𝑚𝑖 (𝑥𝑖
2 + 𝑦𝑖

2
)

𝑖

 

and 

𝐼𝑥𝑦 = −∑𝑚𝑖𝑥𝑖𝑦𝑖

𝑖

 

𝐼𝑦𝑧 = −∑𝑚𝑖𝑦𝑖𝑧𝑖

𝑖

 

𝐼𝑧𝑥 = −∑𝑚𝑖𝑥𝑖𝑧𝑖

𝑖

 

Using these definitions and noting that 𝐼𝑥𝑦 = 𝐼𝑦𝑥 etc. we can write 

𝐿𝑥 = 𝐼𝑥𝑥𝜔𝑥 + 𝐼𝑥𝑦𝜔𝑦 + 𝐼𝑥𝑧𝜔𝑧 

Similarly we obtain 

  

𝐿𝑦 = 𝐼𝑦𝑥𝜔𝑥 + 𝐼𝑦𝑦𝜔𝑦 + 𝐼𝑦𝑧𝜔𝑧 

𝐿𝑧 = 𝐼𝑧𝑥𝜔𝑥 + 𝐼𝑦𝑧𝜔𝑦 + 𝐼𝑧𝑧𝜔𝑧 
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Module No. 134 

Angular Momentum in Case of Continuous 
Distribution of Mass 

 

An actual rigid body consists of very large number of particles and therefore we may suppose that 

there is a continuous distribution of mass. If 𝜌(𝑟) denotes density of a volume element 𝑑𝑉, 

surrounding the point 𝑟, then the mass of this element will be 𝜌(𝑟)𝑑𝑉.  

Hence we can write the expression of angular momentum in case of continuous distribution of 

mass by 

𝐼11 ≡ 𝐼𝑥𝑥 = ∫𝜌(𝑟)(𝑦2 + 𝑧2)𝑑𝑉 

where  

𝑟 = (𝑥, 𝑦, 𝑧) ≡ (𝑥1, 𝑥2, 𝑥3),    𝑑𝑉 = 𝑑𝑥𝑑𝑦𝑑𝑧 

Similarly the other two moment of inertia are defined as 

𝐼22 ≡ 𝐼𝑦𝑦 = ∫𝜌(𝑟)(𝑧2 + 𝑥2)𝑑𝑉 

and 

𝐼33 ≡ 𝐼𝑧𝑧 = ∫𝜌(𝑟)(𝑥2 + 𝑦2)𝑑𝑉 

Similarly the product of inertia are defined as 

𝐼12 ≡ 𝐼𝑥𝑦 = −∫𝜌(𝑟)𝑥𝑦𝑑𝑉, 

𝐼23 ≡ 𝐼𝑦𝑧 = −∫𝜌(𝑟)𝑦𝑧𝑑𝑉, 

𝐼31 ≡ 𝐼𝑧𝑥 = −∫𝜌(𝑟)𝑧𝑥𝑑𝑉 

By using these definitions of moment of inertia, we can find the expression of angular momentum 

by using the following result 

𝐿 = 𝐿𝑥𝑖̂ + 𝐿𝑦𝑗̂ + 𝐿𝑧𝑘̂ 

𝐿 = 𝐼𝑥𝑥𝜔𝑥 + 𝐼𝑦𝑦𝜔𝑦 + 𝐼𝑧𝑧𝜔𝑧 + 𝐼𝑥𝑦(𝜔𝑥 + 𝜔𝑦) + 𝐼𝑦𝑧(𝜔𝑦 + 𝜔𝑧) + 𝐼𝑧𝑥(𝜔𝑧 + 𝜔𝑥) 

where 

𝐿𝑥 = 𝐼𝑥𝑥𝜔𝑥 + 𝐼𝑥𝑦𝜔𝑦 + 𝐼𝑥𝑧𝜔𝑧 

𝐿𝑦 = 𝐼𝑦𝑥𝜔𝑥 + 𝐼𝑦𝑦𝜔𝑦 + 𝐼𝑦𝑧𝜔𝑧 

𝐿𝑧 = 𝐼𝑧𝑥𝜔𝑥 + 𝐼𝑧𝑦𝜔𝑦 + 𝐼𝑧𝑧𝜔𝑧 

 

and 𝜔𝑥, 𝜔𝑦, 𝜔𝑧  are the components of angular velocity along (𝑥, 𝑦, 𝑧). 

or 
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[

𝐿𝑥

𝐿𝑦

𝐿𝑧

] = [

𝐼𝑥𝑥 𝐼𝑥𝑦 𝐼𝑥𝑧

𝐼𝑥𝑦 𝐼𝑦𝑦 𝐼𝑦𝑧

𝐼𝑥𝑧 𝐼𝑦𝑧 𝐼𝑧𝑧

] [

𝜔𝑥

𝜔𝑦

𝜔𝑧

] 

where we have used the property of products of inertia that 

𝐼𝑥𝑦 = 𝐼𝑦𝑥, 𝐼𝑦𝑧 = 𝐼𝑧𝑦 and  

𝐼𝑥𝑧 = 𝐼𝑧𝑥 

The above matrix form can be written as  

𝐿 = 𝐼𝜔 
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Module No. 135 

Law of Conservation of Angular 
Momentum 

 

Angular Momentum 

 

The angular momentum of a single particle is defined as the cross product of linear momentum 

and position vector of concerned particle. 

Mathematically  𝐿 = 𝑟 × 𝑚𝑣. 

 

Angular Momentum of System of Particles 

 

The angular momentum L of a system of particles is defined accordingly, as the vector sum of the 

individual angular momentum, namely, 

𝐿 = ∑𝑟𝑖 × 𝑚𝑖𝑣𝑖                                                                                         (1)

𝑛

𝑖=1

 

Law of Conservation of Angular Momentum 

 

The time rate change of angular momentum in the absence of some external forces is zero. 

Mathematically, we can write 

𝒅𝑳

𝒅𝒕
= 𝟎 ⟹ 𝑳 = 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭 

Let us calculate the time derivative of the angular momentum. Using the rule for differentiating 

the cross product, we find 

𝑑𝐿

𝑑𝑡
=

𝑑

𝑑𝑡
(∑𝑟𝑖 × 𝑚𝑖𝑣𝑖

𝑛

𝑖=1

) = ∑(𝑣𝑖 ×

𝑛

𝑖=1

𝑚𝑖𝑣𝑖) + ∑(𝑟𝑖 ×

𝑛

𝑖=1

𝑚𝑖𝑎𝑖) 

Now the first term on the right vanishes, because,𝑣𝑖 × 𝑣𝑖  =  0 and, because 𝑚𝑖𝑎𝑖 is equal to the 

total force acting on particle i, we can write 

𝑑𝐿

𝑑𝑡
= ∑(𝑟𝑖 ×

𝑛

𝑖=1

𝑚𝑖𝑎𝑖) 

𝑑𝐿

𝑑𝑡
= ∑ [𝑟𝑖 × (𝑛

𝑖=1 ∑ 𝐹𝑖
(𝑒𝑥𝑡)

𝑖 + ∑ ∑ 𝐹𝑖𝑗
(𝑖𝑛𝑡)𝑛

𝑗=1
𝑛
𝑖=1 )]      (2) 

𝑑𝐿

𝑑𝑡
= ∑ 𝑟𝑖 × 𝐹𝑖

(𝑒𝑥𝑡)𝑛
𝑖=1 + ∑ ∑ 𝐹𝑖𝑗

(𝑖𝑛𝑡)𝑛
𝑗=1

𝑛
𝑖=1 )       (3) 

where 𝐹𝑖 denotes the total external force on particle 𝑖, and 𝐹𝑖𝑗 denotes the (internal) force  exerted 

on particle i by any other particle 𝑗. Now the double summation on the right consists of pairs of 

terms of the form 



65 

 

(𝑟𝑖 × 𝐹𝑗) + (𝑟𝑗 × 𝐹𝑗𝑖)          (4) 

Denoting the vector displacement of particle 𝑗 relative to particle 𝑖 by 𝑟𝑖𝑗, we see from the triangle 

shown in Figure that 

𝑟𝑖𝑗 = 𝑟𝑗 − 𝑟𝑖           (5) 

Therefore, because 𝐹𝑗𝑖 = -𝐹𝑖𝑗, expression (3) reduces to 

−𝑟𝑖𝑗 × 𝐹𝑖𝑗              (6) 

which clearly vanishes if the internal forces are central, that is, if they act along the lines 

connecting pairs of particles. Hence, the double sum in Equation (3) vanishes. Now the cross 

product (𝑟𝑖 × 𝐹𝑖)is the moment of the external force F. The sum  ∑(𝑟𝑖 × 𝐹𝑖) is, therefore, the 

total moment of all the external forces acting on the system. If we denote the total external 

torque, or moment of force, by N, Equation (3) takes the form  

𝑑𝐿

𝑑𝑡
= 𝑁 

That is, the time rate of change of the angular momentum of a system is equal to the total 

moment of all the external forces acting on the system.  

If a system is isolated, then 𝑁 =  0, and the angular momentum remains constant in both 

magnitude and direction:  

𝐿 =  ∑𝑟𝑖 × 𝑚𝑖𝑣𝑖

𝑛

𝑖=1

= Constant vector                                                     (8) 

This is a statement of the principle of conservation of angular momentum. It is a generalization 

for a single particle in a central field. 
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Module No. 136 

Example Related to Angular Momentum 
 

 

Problem Statement 

 

The moon revolves around the earth so that we always see the same face of the moon. 

i. Find how the spin angular momentum and orbital angular momentum of the moon w.r.t. 

the earth are related? 

ii. Find the change in spin angular momentum of moon so that we could see the entire 

moon’s surface during a month. 

Solution 

 

i. Let 𝑀, 𝑅𝑚 denotes the mass and the radius of the moon respectively. 

 

Then its spin angular momentum i.e. angular momentum about its axis of rotation is given by 

𝐿𝑠 = 𝐼𝜔𝑠 

where 𝐼 is the moment of inertia and 𝜔𝑠 angular velocity of the moon about its own axis 

The moment of inertia of the sphere is  

𝐼 =
2

5
𝑚𝑟2 

by generalizing it for moon, we obtain the moment of inertia for the moon  

𝐼 =
2

5
𝑀𝑅𝑚 

2 

then the angular momentum of moon will be 

𝐿𝑠 =
2

5
𝑀𝑅𝑚 

2𝜔𝑠          (1) 

In addition to spinning about its own axis, the moon is also performing orbital motion about the 

earth. If we denote the orbital angular momentum by 𝐿0, then 

𝐿0 = 𝑅 × (𝑀𝑉) = 𝑅 × (𝑀𝑅𝜔0) 

= 𝑀𝑅2𝜔0           (2) 

∴ 𝑣 = 𝜔𝑟 

where we have treated the moon as a particle and R is the distance between the moon and the 

earth. Since we always see the same face of the moon, the moon makes on rotation about its axis 

in the same time as it makes on revolution around the earth i.e. 𝜔𝑠 = 𝜔0. Form equation (1) and 

(2) we have 

𝐿𝑠

𝐿0
=

2
5

𝑀𝑅𝑚 
2𝜔𝑠

𝑀𝑅2𝜔0
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=
2

5
(
𝑅𝑚 

𝑅
)
2

 

 

ii. If we have to see the entire moon’s surface during a month, then 𝐿𝑠 must either increase 

or decrease by one-half of its present value. 
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Module No. 137 

Kinetic Energy of a System about Principal 
Axes – Derivation 

 

Kinetic Energy 

 

The kinetic energy for a particle is given by the following scalar equation:  

𝑇 =
1

2
𝑚𝑣2 

Where:  

 

 T is the kinetic energy of the particle with respect to ground (an inertial reference frame)  

 m is the mass of the particle  

 v is the velocity of the particle, with respect to ground 

 

Kinetic Energy of a Rigid Body 

 

For a rigid body experiencing planar (two-dimensional) motion, the kinetic energy is given by 

the following general scalar equation:  

𝑇 =
1

2
𝑚𝑣𝑐

2 +
1

2
𝐼𝑐𝜔

2          (1) 

where the first term in equation (1) shows the kinetic energy due to the motion of center of mass 

and second term shows the rotational kinetic energy and subscript c denotes the center of mass 

and 𝑣𝑐 denotes the velocity of c.m and 𝐼𝑐 denotes the inertia matrix w.r.t c.m. 

 

Kinetic Energy of a Rigid Body w.r.t Origin 

If the rigid body is rotating about a fixed point O that is attached to ground, we can express the 

kinetic energy as:  

𝑇 =
1

2
𝐼0𝜔

2 

Where:  

 

𝐼0 is the moment of inertia of the rigid body about an axis passing through the fixed point O, and 

perpendicular to the plane of motion and 𝜔 is the angular velocity.  

 

 

Kinetic Energy of a Rigid Body about Principal Axes 
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If the center of mass is oriented along with origin then the coordinate axes (xyz axes) and the 

principal axes of the rigid body are aligned. In this case, the inertia matrix reduces, i.e. products 

of inertia are zero along the principal axes, (𝐼𝑥𝑦 = 𝐼𝑦𝑧 = 𝐼𝑧𝑥 = 0) . 

For general three-dimensional motion, the kinetic energy of a rigid body about principal axes is 

given by the following general scalar equation:  

𝑇 =
1

2
𝑚𝑣0

2 +
1

2
𝐼𝑥𝜔𝑥

2 +
1

2
𝐼𝑦𝜔𝑦

2 +
1

2
𝐼𝑧𝜔𝑧

2       (3) 

where  𝐼𝑥, 𝐼𝑦, 𝐼𝑧 are the moment of inertia along principal axes (xyz axes) also called principal 

moment of inertia and products of inertia 𝐼𝑥𝑦, 𝐼𝑦𝑧 , 𝐼𝑧𝑥 are zero along the axes  

Equation  (3) is the required expression of Kinetic Energy along principal axes. 

If the rigid body has a fixed point O that is attached to ground, we can give an alternate scalar 

equation for the kinetic energy of the rigid body:  

𝑇 =
1

2
𝐼𝑥𝜔𝑥

2 +
1

2
𝐼𝑦𝜔𝑦

2 +
1

2
𝐼𝑧𝜔𝑧

2 

in this case, the kinetic energy due to the motion of c.m. vanishes. 
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Module No. 138 

Moment of Inertia of a Rigid Body about a 
Given Line 

Let M be the mass of the system and 𝑒̂ a unit vector along the line 𝑙. Then 𝑒̂ = 𝜆𝑖̂ + 𝜇𝑗̂ + 𝜐𝑘̂, 

where (𝜆, 𝜇, 𝜐)are direction cosines of the line. 

If 𝐼𝑙 denotes the record moment of inertia, then  

𝐼𝑙 = ∑𝑚𝑖𝑑𝑖
2

𝑖

 

Form the figure 

𝑑𝑖 = |𝑂𝑃| sin 𝜃𝑖 = |𝑟𝑖| sin 𝜃𝑖 = 𝑟𝑖 sin 𝜃𝑖 = |𝑒𝑖 × 𝑟𝑖| 

Therefore  

𝐼𝑙 = ∑𝑚𝑖|𝑒𝑖 × 𝑟𝑖|
2

𝑖

                                                                                                 (1) 

Now 

|𝑒𝑖 × 𝑟𝑖| = |
𝑖̂ 𝑗̂ 𝑘̂
𝜆 𝜇 𝜐
𝑥𝑖 𝑦𝑖 𝑧𝑖

| 

= (𝜇𝑧𝑖 − 𝜐𝑦𝑖)𝑖̂ + (𝜐𝑥𝑖 − 𝜆𝑧𝑖)𝑗̂ + (𝜆𝑧𝑖 − 𝜐𝑥𝑖)𝑘̂ 

|𝑒𝑖 × 𝑟𝑖|
2 = (𝜇𝑧𝑖 − 𝜐𝑦𝑖)

2 + (𝜐𝑥𝑖 − 𝜆𝑧𝑖)
2 + (𝜆𝑦𝑖 − 𝜇𝑥𝑖)

2 

Hence on substitution in equation (1), we have 

𝐼𝑙 = ∑ 𝑚𝑖[

𝑖

(𝜇𝑧𝑖 − 𝜐𝑦𝑖)
2 + (𝜐𝑥𝑖 − 𝜆𝑧𝑖)

2 + (𝜆𝑦𝑖 − 𝜇𝑥𝑖)
2] 

𝐼𝑙 = ∑𝑚𝑖[

𝑖

𝜇2𝑧𝑖
2 + 𝜐2𝑦𝑖

2 − 2𝜇𝜐𝑦𝑖𝑧𝑖 + 𝜐2𝑥𝑖
2 + 𝜆2𝑧𝑖

2 − 2𝜐𝜆𝑥𝑖𝑧𝑖 + 𝜆𝑦𝑖 + 𝜇𝑥𝑖 − 2𝜇𝜆𝑥𝑖𝑦𝑖] 

= ∑𝑚𝑖[

𝑖

𝜇2(𝑥𝑖
2 + 𝑧𝑖

2) + 𝜐2(𝑥𝑖
2 + 𝑦𝑖

2) + 𝜆2(𝑦𝑖
2 + 𝑧𝑖

2) − 2𝜇𝜆𝑥𝑖𝑦𝑖 − 2𝜇𝜐𝑦𝑖𝑧𝑖 − 2𝜐𝜆𝑥𝑖𝑧𝑖 

= ∑𝑚𝑖[

𝑖

𝜆2(𝑦𝑖
2 + 𝑧𝑖

2) + 𝜇2(𝑥𝑖
2 + 𝑧𝑖

2) + 𝜐2(𝑥𝑖
2 + 𝑦𝑖

2) − 2𝜇𝜆𝑥𝑖𝑦𝑖 − 2𝜇𝜐𝑦𝑖𝑧𝑖 − 2𝜐𝜆𝑥𝑖𝑧𝑖 

= 𝜆2 ∑𝑚𝑖[

𝑖

(𝑦𝑖
2 + 𝑧𝑖

2) + 𝜇2 ∑𝑚𝑖

𝑖

(𝑥𝑖
2 + 𝑧𝑖

2) + 𝜐2 ∑𝑚𝑖

𝑖

(𝑥𝑖
2 + 𝑦𝑖

2) + 2𝜇𝜆(−∑𝑚𝑖

𝑖

𝑥𝑖𝑦𝑖)

+ 2𝜇𝜐(−∑𝑚𝑖

𝑖

𝑦𝑖𝑧𝑖) + 2𝜐𝜆(−∑𝑚𝑖

𝑖

𝑥𝑖𝑧𝑖) 
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or finally, 

𝐼𝑙 = 𝜆2𝐼𝑥𝑥 + 𝜇2𝐼𝑦𝑦 + 𝜐2𝐼𝑧𝑧 + 2𝜇𝜆𝐼𝑥𝑦 + 2𝜇𝜐𝐼𝑦𝑧 + 2𝜐𝜆𝐼𝑧𝑥 

which may also be written as 

𝐼𝑙 = 𝜆2𝐼11 + 𝜇2𝐼22 + 𝜐2𝐼33 + 2𝜇𝜆𝐼12 + 2𝜇𝜐𝐼23 + 2𝜐𝜆𝐼31 
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Module No. 139 

Example of M.I of a Rigid Body About 
Given Line 

Problem Statement 

 

Calculate the moment of inertia of a right circular cone about its axis of symmetry. 

 

Solution 

 

Let M be the mass, a the radius and h the height of right circular cone. We regard the cone as 

composed of elementary circular discs of small thickness each parallel to the base of the cone. 

We choose the z-axis along the axis of symmetry, and consider a typical disc of radius r and 

width  𝛿𝑧 at a distance z from the base. 

Mass of the disc is given by 

𝛿𝑚 = 𝜌𝜋𝑟2𝛿𝑧 

We regard the disk to be composed of concentric elementary circular rings of varying radii say 𝑟′ 

then the mass 𝛿𝑚′ of one circular ring with height 𝛿𝑧 will be 

𝛿𝑚′ = 𝜌2𝜋𝑟′𝛿𝑧 

Then the M.I of one circular ring will be 

𝐼𝑐.𝑟 = 𝜌2𝜋𝑟′𝛿𝑧(𝑟′)2 = 2𝜋𝜌(𝑟′)3𝛿𝑧 

Hence the M.I of the whole disk will be 

𝛿𝐼 = ∑ 2𝜋𝜌(𝑟′)3𝛿𝑧

𝑟𝑖𝑛𝑔𝑠

 

= ∫2

𝑟

0

𝜋(
𝛿𝑚

𝜋𝑟2𝛿𝑧
)(𝑟′)3𝛿𝑧𝑑𝑟′ 

=
2𝛿𝑚

𝑟2
∫(𝑟′)3𝑑𝑟′

𝑟

0

 

𝛿𝐼 =
2𝛿𝑚

4𝑟2
𝑟4 =

1

2
𝛿𝑚𝑟2 

From the similar triangles,  

we have 



73 

 

𝑟

𝑎
=

ℎ − 𝑧

ℎ
     or     𝑟 = 𝑎

ℎ − 𝑧

ℎ
 

Therefore 

𝛿𝑚 = 𝜌𝜋 (𝑎
ℎ − 𝑧

ℎ
)
2

𝛿𝑧 

Since the M.I of the disk is  

𝛿𝐼 =
1

2
𝛿𝑚𝑟2 

On substituting for 𝛿𝑚 and 𝑟, the M.I of the cone about its axis of symmetry will be 

𝐼 =
1

2
∫ 𝜌𝜋 (𝑎

ℎ − 𝑧

ℎ
)
2

(𝑎
ℎ − 𝑧

ℎ
)
2

ℎ

0

𝑑𝑧 

=
1

2

𝜌𝜋𝑎4ℎ

ℎ4
∫(ℎ − 𝑧)4𝑑𝑧

ℎ

0

=
1

2

𝜌𝜋𝑎4ℎ

ℎ4
∫(𝑧 − ℎ)4𝑑𝑧

ℎ

0

 

Since the M.I of the disk is  

𝛿𝐼 =
1

2
𝛿𝑚𝑟2 

On substituting for 𝛿𝑚 and 𝑟, the M.I of the cone about its axis of symmetry will be 

𝐼 =
1

2
∫ 𝜌𝜋 (𝑎

ℎ − 𝑧

ℎ
)
2

(𝑎
ℎ − 𝑧

ℎ
)
2

ℎ

0

𝑑𝑧 

=
1

2

𝜌𝜋𝑎4ℎ

ℎ4
∫(ℎ − 𝑧)4𝑑𝑧

ℎ

0

=
1

2

𝜌𝜋𝑎4ℎ

ℎ4
∫(𝑧 − ℎ)4𝑑𝑧

ℎ

0

 

𝐼 =
𝜌𝜋𝑎4ℎ

10ℎ4
|(𝑧 − ℎ)5|0

ℎ 

=
𝜌𝜋𝑎4ℎ6

10ℎ4
=

𝜌𝜋𝑎4ℎ2

10
 

Since we know that 

𝜌 = density of the cone 
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=
𝑀

(1 3⁄ )𝜋𝑎2ℎ
 

So, 

𝐼 =
3

10
𝑀𝑎2 
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Module No. 140 

Ellipsoid of Inertia 
 

We have obtained the expression of moment of inertia of the given line l in terms of moment and  

product of inertia w.r.t the coordinate axes OXYZ  coordinate system whose origin O lies on the 

line l. 

𝐼𝑙 = 𝐼 = 𝜆2𝐼11 + 𝜇2𝐼22 + 𝜐2𝐼33 + 2𝜇𝜆𝐼12 + 2𝜇𝜐𝐼23 + 2𝜐𝜆𝐼31     

 (1) 

For the ellipsoid of inertia, we chose a point P such that |𝑂𝑃| = 1
√𝐼

⁄ . If (𝑥, 𝑦, 𝑧) are coordinates 

of point P then 

𝜆 =
𝑥

|𝑂𝑃|
= 𝑥√𝐼, 𝜇 =

𝑦

|𝑂𝑃|
= 𝑦√𝐼 , 𝜈 =

𝑧

|𝑂𝑃|
= 𝑧√𝐼 

On eliminating 𝜆, 𝜇, 𝜈 from equation (1), we obtain 

𝐼 = (𝑥√𝐼)2𝐼11 + (𝑦√𝐼)2𝐼22 + (𝑧√𝐼)2𝐼33 + 2(𝑥𝑦√𝐼√𝐼)𝐼12 + 2(𝑦𝑧√𝐼√𝐼)𝐼23 + 2(𝑥𝑧√𝐼√𝐼)𝐼31 

𝐼 = 𝐼[𝑥2𝐼11 + 𝑦2𝐼22 + 𝑧2𝐼33 + 2𝑥𝑦𝐼12 + 2𝑦𝑧𝐼23 + 2𝑧𝑥𝐼31] 

1 = 𝑥2𝐼11 + 𝑦2𝐼22 + 𝑧2𝐼33 + 2𝑥𝑦𝐼12 + 2𝑦𝑧𝐼23 + 2𝑧𝑥𝐼31 

which can also be written as 

𝐼11𝑥
2 + 𝐼22𝑦

2 + 𝐼33𝑧
2 + 2𝐼12𝑥𝑦 + 2𝐼23𝑦𝑧 + 2𝐼31𝑧𝑥 = 1 

Since 𝐼11, 𝐼22, 𝐼33 are all positive, equation (2) represents an ellipsoid. This ellipsoid is called 

ellipsoid of inertia or momental ellipsoid. The momental ellipsoid contains information about 

moments or product of inertia at given point. If P is any point on the ellipsoid of inertia, then 

|𝑂𝑃| = 1
√𝐼

⁄  or 𝐼 = 1
𝑂𝑃2⁄  i.e. the moment of inertia of a rigid body about any line 𝑂𝑃⃗⃗⃗⃗ ⃗⃗  is equals 

to the reciprocal of the square of the length of |𝑂𝑃⃗⃗ ⃗⃗ ⃗⃗ |. 
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Module No. 141 

Rotational Kinetic Energy 

 

Introduction to Kinetic Energy 

 

Kinetic energy is the energy produced in any body during its motion. It is equal to the half of the 

product of mass and square of the velocity of the moving body; 

𝐾. 𝐸.= 𝑇 =
1

2
𝑚𝑣2 

We consider a rigid body in a general state of motion in which it has both translation and rotation 

w.r.t a fixed coordinate system. We suppose that it has an instantaneous angular velocity 𝜔 about 

a reference point C. We will use a model of a rigid body in which it is considered a collection of 

large number N of particles which satisfy the constraint of rigidity. 

If v is the velocity of C, then the velocity 𝑣𝑖  of the ith particle is given by 

𝑣𝑖 = 𝑣 + 𝜔 × 𝑟𝑖 

If 𝑚𝑖 is the mass and 𝑣𝑖   the velocity of the ith particle, then the kinetic energy of the ith particle 

will be 

𝑇𝑖 =
1

2
𝑚𝑖𝑣𝑖

2 

therefore the total kinetic energy of the system will be given by 

𝑇 = ∑𝑇𝑖

𝑁

𝑖=1

= ∑
1

2
𝑚𝑖𝑣𝑖

2

𝑁

𝑖=1

= ∑
1

2
𝑚𝑖(

𝑁

𝑖=1

𝑣 + 𝜔 × 𝑟𝑖)
2 

=
1

2
∑𝑚𝑖[

𝑁

𝑖=1

𝑣2 + 2𝑣.𝜔 × 𝑟𝑖 + (𝜔 × 𝑟𝑖)
2] 

=
1

2
(∑ 𝑚𝑖

𝑁

𝑖=1

)𝑣2 +
1

2
∑𝑚𝑖

𝑁

𝑖=1

2𝑣.𝜔 × 𝑟𝑖 +
1

2
∑𝑚𝑖(𝜔 × 𝑟𝑖)

2

𝑁

𝑖=1

 

=
1

2
𝑀𝑣2 + 𝑣. (𝜔 × ∑𝑚𝑖𝑟𝑖) +

𝑁

𝑖=1

1

2
∑𝑚𝑖(𝜔 × 𝑟𝑖)

2

𝑁

𝑖=1

 

=
1

2
𝑀𝑣2 + 𝑣.𝜔 × ∑ 𝑚𝑖𝑟𝑖 +𝑁

𝑖=1
1

2
∑ 𝑚𝑖(𝜔 × 𝑟𝑖)

2𝑁
𝑖=1       (1) 

 

where ∑ 𝑚𝑖 = 𝑀 𝑁
𝑖=1 is the total mass of the system. 

Now by using the definition of position vector center of mass (c.m.), we have 

𝑟𝑐 =
∑ 𝑚𝑖𝑟𝑖𝑖

∑ 𝑚𝑖𝑖
           (2) 

Now we will discuss the consequence of referring of the position vectors of particle of the system 

to the c.m. If the position vector of the ith particle of the system w.r.t the c.s. , then 

𝑟𝑖 = 𝑟′𝑖 + 𝑟𝑐 
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Then by substitution this expression in the definition of c.m.in (2) , we obtain 

𝑟𝑐 =
∑ 𝑚𝑖(𝑖 𝑟′

𝑖 + 𝑟𝑐)

∑ 𝑚𝑖𝑖
 

𝑟𝑐 =
∑ 𝑚𝑖𝑖 𝑟′

𝑖

∑ 𝑚𝑖𝑖
+

𝑀𝑟𝑐
𝑀

 

𝑟𝑐 =
∑ 𝑚𝑖𝑖 𝑟′

𝑖

∑ 𝑚𝑖𝑖
+ 𝑟𝑐 

or we can write 

𝑟𝑐 =
∑ 𝑚𝑖𝑖 𝑟′

𝑖

𝑀
+ 𝑟𝑐 

which gives 

∑ 𝑚𝑖
𝑖

𝑟′
𝑖 = 0 

Hence if the reference point C is identified with the center of the mass and origin is taken thereat, 

the expression ∑ 𝑚𝑖𝑟𝑖 = 0 𝑁
𝑖=1 and therefore  

𝑇 =
1

2
𝑀𝑣2 +

1

2
∑ 𝑚𝑖(𝜔 × 𝑟𝑖)

2

𝑁

𝑖=1

 

𝑇 = 𝑇𝑡𝑟 + 𝑇𝑟𝑜𝑡 

where 𝑇𝑡𝑟 =
1

2
𝑀𝑣2 is the translational kinetic energy is also equals to the K.E of the center of the 

mass and 𝑡𝑟𝑜𝑡 =
1

2
∑ 𝑚𝑖(𝜔 × 𝑟𝑖)

2𝑁
𝑖=1  is the rotational kinetic energy of the system. 

But we have 

(𝜔 × 𝑟𝑖)
2 = (𝜔 × 𝑟𝑖). (𝜔 × 𝑟𝑖) 

= 𝜔. 𝑟𝑖 × (𝜔 × 𝑟𝑖) 

therefore on substitution 
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𝑇𝑟𝑜𝑡 =
1

2
∑𝑚𝑖[𝜔. 𝑟𝑖 × (𝜔 × 𝑟𝑖)] =

1

2
𝜔. 𝐿

𝑁

𝑖=1

 

Thus we have obtained the following formulas for translational and rotational K.E. of a  rigid 

body 

𝑇𝑡𝑟 =
1

2
𝑀𝑣2 

𝑇𝑟𝑜𝑡 =
1

2
𝜔. 𝐿           (1) 

As we studied the relation 𝐿 = 𝐼𝜔 

By using this value in relation (1) we obtain the rotational kinetic energy in terms of moment of 

inertia. 

𝑇𝑟𝑜𝑡 =
1

2
𝜔. 𝐼𝜔 =

1

2
𝐼𝜔2          (2) 

where 𝐼 is the moment of inertia of the rigid body about the origin and equation (2) is the 

required expression for Rotational Kinetic Energy. 
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Module No. 142 

Moment of Inertia & Angular Momentum 
in Tensor Notation 

 

 

To show that the 3 × 3 inertia matrix (𝐼𝑖𝑗 ) is also a Cartesian tensor of rank 3, we proceed as 

follows. Here we have to distinguish between the particle index and the component index, which 

denotes particle number, will be denoted by Greek letter 𝛼, and will take the value 

1,2, …… . , 𝑁. On the other hand, the component index, which denotes the component number 

will be denotes by the Latin letters such as i and will take the value 1,2,3. 

Using this notation, we can write the angular momentum of the system of N particles as 

𝐿 = ∑𝑟𝛼 × 𝑝𝛼 =

𝛼

∑𝑟𝛼 × (𝑚𝛼𝑣𝛼)

𝛼

 

where 𝑣𝛼  is the velocity of 𝛼𝑡ℎ particle. Continuing we have 

∑𝑚𝛼𝑟𝛼 × 𝑣𝛼 =

𝛼

∑𝑚𝛼𝑟𝛼 × (𝜔 × 𝑟𝛼) ,                                                                             ∴ 𝑣𝛼 = 𝜔 × 𝑟𝛼
𝛼

 

Recall that every particle of the rigid body has the same angular velocity at a given 𝑡.   

Simplification of the above reduces to 

𝐿 = ∑𝑚𝛼((𝑟𝛼. 𝑟𝛼)𝜔 − (𝜔. 𝑟𝛼)𝑟𝛼)

𝛼

 

= ∑𝑚𝛼(𝑟𝛼
2𝜔 − (𝜔. 𝑟𝛼)𝑟𝛼)

𝛼

 

But 

𝜔. 𝑟𝛼 = ∑𝜔𝑖𝑟𝛼,𝑖 =

3

𝑖=1

∑𝜔𝑖𝑥𝛼,𝑖 =

3

𝑖=1

∑𝜔𝑗𝑥𝛼,𝑗

3

𝑗=1

 

where  

𝑟𝛼 = (𝑥𝛼 , 𝑦𝛼, 𝑧𝛼) = (𝑥𝛼,1, 𝑥𝛼,2, 𝑥𝛼,3) ≡ 𝑥𝛼,𝑖  

Making substitution and taking the ith component of the expression of angular momentum, 

we have 

𝐿𝑖 = ∑𝑚𝛼 (𝑟𝛼
2𝜔𝑖 − (∑𝜔𝑗

𝑗

𝑥𝛼,𝑗)𝑥𝛼,𝑖)

𝛼

 

But 𝜔𝑖 = ∑ 𝜔𝑗𝑗 𝛿𝑖𝑗; where 𝛿𝑖𝑗 = {
0, 𝑖 ≠ 𝑗
1, 𝑖 = 𝑗

, thus 
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therefore 

𝐿𝑖 = ∑𝑚𝛼 (𝑟𝛼
2 ∑𝜔𝑗

𝑗

𝛿𝑖𝑗 − ∑𝜔𝑗

𝑗

𝑥𝛼,𝑗𝑥𝛼,𝑖)

𝛼

 

𝐿𝑖 = ∑𝑚𝛼 ∑(𝑟𝛼
2𝛿𝑖𝑗 − 𝑥𝛼,𝑗𝑥𝛼,𝑖)𝜔𝑗

𝑗𝛼

 

𝐿𝑖 = ∑𝜔𝑗

𝑗

∑𝑚𝛼(𝑟𝛼
2𝛿𝑖𝑗 − 𝑥𝛼,𝑗𝑥𝛼,𝑖)

𝛼

 

which can also be expressed as 

𝐿𝑖 = ∑ 𝜔𝑗𝑗 𝐼𝑖𝑗                       (1) 

where  

𝐼𝑖𝑗 = ∑ 𝑚𝛼(𝑟𝛼
2𝛿𝑖𝑗 − 𝑥𝛼,𝑗𝑥𝛼,𝑖)𝛼         (2) 

Equation (1) shows that the component of angular momentum depends not only on the angular 

velocity 𝜔 but also on the inertia tensor 𝐼𝑖𝑗.  

Since the angular velocity (𝜔𝑖) and the angular momentum (𝐿𝑖) are known to be cartesion tensor 

of rank 1, it follows from the quotient theorem 𝐼𝑖𝑗 that 𝐼𝑖𝑗  is a tensor of rank 2. It is called the 

inertia tensor.  
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Module No. 143 

Introduction to Special Moments of Inertia 

 

 

In this module, we will study some special moment of inertia. In order to introduce the moment 

of inertia of some specific shapes and special rigid bodies, we assume that the rigid body is of 

uniform density of particles.  

 

Solid Circular Cylinder  

 

We assume the radius of cylinder is 𝒂 and mass 𝑀 about axis of cylinder. 

𝐼 =
1

2
𝑀𝑎2 

Hollow Circular Cylinder  

 

We assume the radius of cylinder is 𝒂 and mass 𝑀 about axis of cylinder. 

We consider the thickness of Wall of cylinder is negligible. 

𝐼 = 𝑀𝑎2 

Solid Sphere  

 

We assume the radius of sphere is 𝒂 and mass 𝑀 about a diameter. 

𝐼 =
2

5
𝑀𝑎2 

Hollow Sphere  

 

We assume the radius of sphere is 𝒂 and mass 𝑀 about a diameter. 

We consider the thickness of sphere is negligible. 

𝐼 = 𝑀𝑎2 

Rectangular Plate  

 

We consider sides of length 𝒂 and 𝒃, and mass M about an axis perpendicular to the plate 

through the center of mass. 

𝐼 =
1

12
𝑀(𝑎2 + 𝑏2) 

Thin Rod  

 

We assume the length of rod is 𝒂 and mass M about an axis perpendicular to the rod through the 

center of mass. 
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𝐼 =
1

12
𝑀𝑎2 

Triangular Lamina 

 

We assume the height 𝒉 and mass M of lamina. 

𝐼 =
1

6
𝑀ℎ2 

Right Circular Cone 

 

We assume the radius of the circular cone is 𝑎 and mass M.  

𝐼 =
3

10
𝑀𝑎2 
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Module No. 144 

M.I. of the Thin Rod – Derivation 

 

Problem Statement 

 

Calculate the moment of inertia of a uniform rod of length 𝑙 about an axis perpendicular to the 

rod and passing through an end point. 

 

Solution 

 

Let the 𝑋 − 𝑎𝑥𝑖𝑠 be chosen along the length of the rod, with origin at one end point as shown in 

the figure. Let 𝑀 and 𝑎 be the mass and length of rod respectively.  We suppose the rod to be 

composed of small elements. 

Let 𝑑𝑚 and 𝑑𝑥 be the mass and the length of the specific element of the rod at a distance 𝑥 from 

the end point O. 

 

Then 

𝑑𝑚

𝑑𝑥
=

𝑀

𝑎
    

⟹ 𝑑𝑚 =  
𝑀

𝑎
𝑑𝑥 

Then the moment of inertia of this element about the given axis is  

𝐼𝑒𝑙𝑒𝑚𝑒𝑛𝑡 = 𝑑𝑚𝑥2 =
𝑀

𝑎
𝑥2𝑑𝑥 
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Hence the moment of inertia of the whole rod will be 

𝐼 = ∑
𝑀

𝑎
𝑎𝑙𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

𝑥2𝑑𝑥 

=
𝑀

𝑎
∫ 𝑥2𝑑𝑥

𝑎

0

 

=
𝑀

𝑎
. |

𝑥3

3
|
0

𝑎

=
𝑀

𝑎

𝑎3

3
 

=
1

3
𝑀𝑎2 
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Module No. 145 

M.I. of Hoop or Circular Ring – Derivation 

Problem Statement 

Calculate the moment of inertia of a hoop of mass 𝑀 and radius 𝑟 about an axis passing through 

its center. 

 

Proof 

Let 𝑀 be the mass and 𝑟 the radius of the hoop. Then we can define the density of the hoop by 

𝜌 =
mass

area
=

𝑀

2𝜋𝑟𝑑𝑟
 

 

We consider this hoop to be composed of small masses (𝛿𝑚) each of length 𝛿𝑠. 

We can write it as 

𝜌 =
𝑀

2𝜋𝑟𝑑𝑟
=

𝛿𝑚

𝑑𝑟𝛿𝑠
 

⟹ 𝛿𝑚 =
𝑀

2𝜋𝑟
𝛿𝑠 

Moment of inertia of the small portion of the hoop of mass 𝛿𝑚 about an axis through center and 

perpendicular to the plane of the ring equals 

 

𝐼𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 = 𝛿𝑚𝑟2 

=
𝑀

2𝜋𝑟
𝛿𝑠 𝑟2 =

𝑀𝑟

2𝜋
𝛿𝑠 

Therefore the 𝑀. 𝐼 of the  

whole ring/hoop will be 
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𝐼 =
𝑀𝑟

2𝜋
∑ 𝛿𝑠

𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠
 

𝐼 =
𝑀𝑟

2𝜋
∫𝑑𝑠 

=
𝑀𝑟

2𝜋
2𝜋𝑟 

= 𝑀𝑟2 

 Hence we obtain 𝑀𝑟2 as the moment of inertia of the hoop. 
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Module No. 146 

M.I. of Annular Disk - Derivation 
Problem 

Calculate the moment of inertia of annular disk of mass 𝑀. The inner radius of the annulus is 𝑅1 

and the outer radius is 𝑅2 about an axis passing through its center. 

 

Solution 

Subdivide the annulur disk into concentric rings one of which is shown in the fig.  

Let the mass of the ring is 𝑑𝑚, and the radius be 𝑟, then the moment of inertia of the ring will be: 

𝐼𝑟𝑖𝑛𝑔 = 𝑟2𝑑𝑚 

 

 

The Surface area of the ring is 

Area = (2𝜋𝑟)𝑑𝑟 = 2𝜋𝑟𝑑𝑟 

Since the surface area of the  

annulus is 

𝜋(𝑅2
2 − 𝑅1

2) 

Therefore, we can have 
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𝑑𝑚

𝑀
=

2𝜋𝑟𝑑𝑟

𝜋(𝑅2
2 − 𝑅1

2)
 

𝑑𝑚 =
2𝑟𝑑𝑟

(𝑅2
2 − 𝑅1

2)
𝑀 

Since the moment of Inertia of the ring is: 

𝐼𝑟𝑖𝑛𝑔 = 𝑟2𝑑𝑚 

or  

𝐼𝑟𝑖𝑛𝑔 = 𝑟2
2𝑟𝑑𝑟

𝑅2
2 − 𝑅1

2 𝑀 =
2𝑀𝑟3𝑑𝑟

𝑅2
2 − 𝑅1

2 

Thus the total M.I of the annulur disk will be 

𝐼 = ∫ 𝐼𝑟𝑖𝑛𝑔

𝑅2

𝑟=𝑅1

 

𝐼 = ∫
2𝑀𝑟3𝑑𝑟

𝑅2
2 − 𝑅1

2

𝑅2

𝑟=𝑅1

 

=
2𝑀

𝑅2
2 − 𝑅1

2 ∫ 𝑟3𝑑𝑟

𝑅2

𝑟=𝑅1

 

=
2𝑀

𝑅2
2 − 𝑅1

2 |
𝑟4

4
|
𝑅1

𝑅2

 

=
2𝑀

𝑅2
2 − 𝑅1

2

𝑅2
4 − 𝑅1

4

4
 

𝐼 =
1

2
𝑀(𝑅2

2 + 𝑅1
2) 
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Module No. 147 

M.I. of a Circular Disk - Derivation 
 

Problem 

To find the moment of inertia of a circular disk of radius 𝑎, and mass 𝑀 about the axis of the disk. 

 

Solution 

Subdivide the disk into concentric rings one of which is the element (ring) shown in the fig.  

 

Let the mass the of the ring is 𝑑𝑚, then the moment of inertia of the ring will be: 

𝐼𝑟𝑖𝑛𝑔 = 𝑟2𝑑𝑚 

The Surface area this element is 

Area = (2𝜋𝑟)𝑑𝑟 = 2𝜋𝑟𝑑𝑟 

Since we have 

𝑑𝑚

𝑀
=

2𝜋𝑟𝑑𝑟

𝜋𝑎2
 

𝑑𝑚 =
2𝑟𝑑𝑟

𝑎2
𝑀 

Since the moment of Inertia of the ring is: 
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𝐼𝑟𝑖𝑛𝑔 = 𝑟2𝑑𝑚 

or  

𝐼𝑟𝑖𝑛𝑔 = 𝑟2
2𝑟𝑑𝑟

𝑎2
𝑀 =

2𝑀𝑟3𝑑𝑟

𝑎2
 

Thus the total moment of inertia of the circular disk will be 

𝐼𝑑𝑖𝑠𝑘 = ∫ 𝐼𝑟𝑖𝑛𝑔

𝑎

𝑟=0

 

𝐼𝑑𝑖𝑠𝑘 = ∫
2𝑀𝑟3𝑑𝑟

𝑎2

𝑎

𝑟=0

 

=
2𝑀

𝑎2
∫ 𝑟3𝑑𝑟

𝑎

𝑟=0

 

=
2𝑀

𝑎2
|
𝑟4

4
|
0

𝑎

=
2𝑀

𝑎2

𝑎4

4
 

𝐼𝑑𝑖𝑠𝑘 =
1

2
𝑀𝑎2 

which is M.I of a disk. 
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Module No. 148 

Rectangular Plate – Derivation 

Problem Statement 

 

Calculate the inertia matrix of a uniform rectangular plate with sides 𝒂 and 𝒃 about its side. 

 

Solution 

We consider a rectangular plate (lamina) of sides of length a and b. We consider an element of 

length 𝑑𝑥 and 𝑑𝑦.  

 
The mass of selected element will be 

𝑑𝑚 = 𝜌𝑑𝑥𝑑𝑦 

Its moment of inertia about the y-axis is  

 

𝜌𝑑𝑥𝑑𝑦𝑥2 = 𝜌𝑥2𝑑𝑥𝑑𝑦. 

Thus the total moment of inertia is 

𝐼 = ∫ ∫ 𝜌𝑥2𝑑𝑥𝑑𝑦

𝑏

𝑦=0

𝑎

𝑥=0

 

= 𝜌𝑏 ∫𝑥2

𝑎

0

= 𝜌𝑏 |
𝑥3

3
|
0

𝑎

=
1

3
𝜌𝑏𝑎3 

Since the total mass of rectangular plate is  

𝑀 = 𝜌𝑎𝑏 

the moment o inertia will be 

𝐼 =
1

3
𝑀𝑎2 
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Module No. 149 

M.I. of Square Plate – Derivation 

Problem Statement 

 

Calculate the moment of inertia of a uniform square plate with sides 𝒂 about any axis through its 

center and lying in the plane of plate. 

 

Solution 

 

Consider a uniform square plate with length of its side to be 𝑎, we have to find out M.I. of this 

plate about any axis, through its center.  

We consider this axis as 𝑦 − 𝑎𝑥𝑖𝑠. 

Let 𝜌 be the density of plate and the total area of square plate is 𝑎2. 

So density will be 

𝜌 =
𝑀

𝑎2
 

We assume that the plate has been divided into vertical strips. Let us consider a strip from the 

whole square as shown in figure. 

 
The strips are chosen in this way because each point on a particular strip is approximately the 

same distance from axis of rotation i.e. y-axis, the mass of the strip is 𝛿𝑚  and the width of each 

strip is 𝛿𝑥, then the area of the strip will be 𝑎𝛿𝑥, so  

𝛿𝑚 = 𝜌𝑎𝛿𝑥 

Let the distance of the strip from y-axis is 𝑥, then the moment of inertia of strip will be 

𝛿𝐼 = 𝛿𝑚𝑥2 = 𝑥2𝜌𝑎𝛿𝑥 

So the moment of inertia of square is 

𝐼𝑠𝑞𝑢𝑎𝑟𝑒 = ∑ 𝑥2𝜌𝑎𝛿𝑥

𝑎𝑙𝑙 𝑠𝑡𝑟𝑖𝑝𝑠
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𝐼𝑠𝑞𝑢𝑎𝑟𝑒 = ∫ 𝑥2𝜌𝑎𝑑𝑥

𝑎
2⁄

−𝑎
2⁄

= 𝜌𝑎 ∫ 𝑥2𝑑𝑥

𝑎
2⁄

−𝑎
2⁄

 

= 𝜌𝑎 |
𝑥3

3
|
−𝑎

2⁄

𝑎
2⁄

=
𝜌𝑎

3
|
𝑎3

8
−

(−𝑎3)

8
| 

=
𝜌𝑎

3
(
𝑎3

4
) =

𝜌𝑎4

12
 

Now substitute 𝜌 =
𝑀

𝑎2
, we obtain 

𝐼𝑠𝑞𝑢𝑎𝑟𝑒 =
𝑀𝑎2

12
 

  



94 

 

Module No. 150 

M.I. of Triangular Lamina – Derivation 

 

Problem Statement 

 

Find the moment of inertia of a uniform triangular lamina of mass 𝑀 about one of its sides. 

 

Solution 

 

Let ABC be the lamina. We will find its M.I. about one of its side BC. We choose the X-axis and 

the origin as shown in figure. 

 
At a distance x from BC we consider a strip of lamina of width dx. If the mass of the strip is dm 

then its moment of inertia about BC is = 𝑥2𝑑𝑚. 

To find dm we note that the triangles ABC and ADE are similar. Therefore the ratios of sides are 

the same. 

Hence 

𝐷𝐸

𝐵𝐶
=

ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝐴𝐷𝐸

ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝐴𝐵𝐶
=

ℎ − 𝑥

ℎ
 

which gives 

𝐷𝐸 =
ℎ − 𝑥

ℎ
× 𝐵𝐶 =

ℎ − 𝑥

ℎ
× 𝑎 

where h is the height of the triangle ABC at base BC and a is the length of BC. Now 

𝛿𝑚 = 𝜌(𝑎𝑟𝑒𝑎) = 𝜌𝐷𝐸𝛿𝑥 

= 𝑎 (
ℎ − 𝑥

ℎ
)𝛿𝑥𝜌 
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where 𝜌 is the density. 

Therefore the moment of inertia of triangular lamina about the side BC is 

𝐼 = ∫𝑥2𝑑𝑚 =∫𝑎 (
ℎ − 𝑥

ℎ
) 𝑥2𝑑𝑥𝜌

ℎ

0

 

=
𝜌𝑎

ℎ
∫𝑥2(ℎ − 𝑥)𝑑𝑥

ℎ

0

=
𝜌𝑎

ℎ
∫(ℎ𝑥2 − 𝑥3)𝑑𝑥

ℎ

0

 

=
𝜌𝑎

ℎ
|ℎ

𝑥3

3
−

𝑥4

4
|
0

ℎ

 

=
𝜌𝑎

ℎ
(
ℎ4

3
−

ℎ4

4
) =

𝜌𝑎ℎ3

12
 

Now substitute density= 𝜌 =
𝑀𝑎𝑠𝑠

𝐴𝑟𝑒𝑎
=

𝑀

1 2⁄ 𝑎ℎ
 

we obtain 

𝐼 =
1

6
𝑀ℎ2 

Hence the required expression for moment of inertia of the triangular lamina is 
1

6
𝑀ℎ2. 
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Module No. 151 

M.I. of Elliptical Plate along its Major Axis 
– Derivation 

 

Problem Statement 

 

Find the M.I. of a uniform elliptical plate with semi major axes and semi minor axes a, b 

respectively about its major axes. 

 

Solution 

 

We consider the elliptical plate as 

𝑥2

𝑎2 +
𝑦2

𝑏2 = 1           (1) 

with semi major axes along x-axis as shown in figure. 

From (1) we have  

𝑦 = ±
𝑏

𝑎
√𝑎2 − 𝑥2  

So, let 𝑦1 =
𝑏

𝑎
√𝑎2 − 𝑥2,  

We consider a small element of plate of mass 𝛿𝑚 of the elliptical plate will be 𝜌𝑑𝑠 which will be 

equal to 𝜌𝑑𝑥𝑑𝑦. The moment of inertia if this element along x-axis will be equal to 𝐼 = 𝛿𝑚𝑦2. 

 
Then the moment of inertia of whole plate will be 

𝐼𝑥 = ∫(𝛿𝑚)𝑦2 = ∫ 𝜌𝑑𝑠

𝑝𝑙𝑎𝑡𝑒

𝑦2 



97 

 

= 𝜌 ∫

(

 
 

∫ 𝑦2𝑑𝑦

𝑏
𝑎
√𝑎2−𝑥2

−
𝑏
𝑎
√𝑎2−𝑥2

)

 
 

𝑑𝑥

𝑎

−𝑎

 

= 𝜌 ∫
2𝑦1

2

3
𝑑𝑥

𝑎

−𝑎

=
2𝜌

3
∫

𝑏3

𝑎3
(𝑎2 − 𝑥2)

3
2⁄ 𝑑𝑥

𝑎

−𝑎

 

due to symmetry, we can write it as 

=
4𝜌𝑏3

3𝑎3
∫(𝑎2 − 𝑥2)

3
2⁄

𝑎

0

𝑑𝑥 

By making use of polar coordinates, substitute 𝑥 = 𝑎 sin 𝜃, then 𝑑𝑥 = 𝑎 cos 𝜃 this integral 

becomes 

𝐼𝑥 =
4𝜌𝑏3

3𝑎3
∫ 𝑎3 cos3 𝜃 (𝑎 cos 𝜃

𝜋
2⁄

0

)𝑑𝜃 

=
4𝜌𝑎𝑏3

3
∫ cos4 𝜃

𝜋
2⁄

0

𝑑𝜃 

=
4𝜌𝑎𝑏3

3

1 × 3

2 × 4
×

𝜋

2
 

=
1

4
𝜌𝑎𝑏3𝜋 

=
1

4
𝑎𝑏3𝜋 ×

𝑀

𝜋𝑎𝑏
=

1

4
𝑀𝑏2 

where for elliptical plate, we have 

𝜌 =
𝑀

𝜋𝑎𝑏
 

is the required expression for M.I. 
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Module No. 152 

M.I. of a Solid Circular Cylinder - 
Derivation 

 

Problem Statement 

 

To find the moment of inertia of a solid circular cylinder of radius 𝑎, mass 𝑀 and the height of 

the cylinder ℎ about the axis of the cylinder. 

 

Solution 

 

Let’s subdivide the solid circular cylinder into concentric cylindrical shells/ hollow cylinders, 

one of which is  shown in the fig.  

 

Let the mass of one shell is𝑑𝑚, height is same as ℎ, thickness be 𝑑𝑟 and the radius be 𝑟 then the 

density of the shell will be 

𝜌 =
𝑑𝑚

2𝜋𝑟𝑑𝑟ℎ
 

or 

𝑑𝑚 = 2𝜋𝜌𝑟𝑑𝑟ℎ 

Since we have 
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𝜌 =
𝑀

𝑉𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟
=

𝑀

𝜋𝑎2ℎ
=

𝑑𝑚

2𝜋𝑟𝑑𝑟ℎ
 

or 

𝑑𝑚 =
2𝑀

𝑎2
𝑟𝑑𝑟 

Since the moment of inertia of the shell will be: 

𝐼𝑠ℎ𝑒𝑙𝑙 = 𝑟2𝑑𝑚  

or  

𝐼𝑠ℎ𝑒𝑙𝑙 = 𝑟2
2𝑀

𝑎2
𝑟𝑑𝑟 =

2𝑀

𝑎2
𝑟3𝑑𝑟 

Thus the total moment of inertia of the solid circular cylinder will be 

𝐼𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 = ∫ 𝐼𝑠ℎ𝑒𝑙𝑙

𝑎

𝑟=0

 

𝐼𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 = ∫
2𝑀

𝑎2
𝑟3𝑑𝑟

𝑎

𝑟=0

 

=
2𝑀

𝑎2
∫ 𝑟3𝑑𝑟

𝑎

𝑟=0

 

=
2𝑀

𝑎2
|
𝑟4

4
|
0

𝑎

=
2𝑀

𝑎2

𝑎4

4
 

𝐼𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 =
1

2
𝑀𝑎2 

is the M.I of solid cylinder.  
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Module No. 153  

M.I. of Hollow Cylindrical Shell - 
Derivation 

 

Problem 

To find the moment of inertia of a hollow open cylindrical shell of radius 𝑅, thickness 𝑑𝑅, mass 

𝑀 and height of shell ℎ about the axis of shell. 

 

Solution 

Let’s subdivide the hollow shell into small hoops/ rings, one of which is shown in the figure.  

 

Let the mass of one ring is𝑑𝑚, height is 𝑑ℎ, thickness be 𝑑𝑟 and the radius be 𝑅, then the mass 

of one ring will be 
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𝑑𝑚 = 𝜌2𝜋𝑅𝑑𝑅𝑑ℎ 

Hence the moment of inertia of the ring of radius 𝑅 will be 

𝐼𝑟𝑖𝑛𝑔 = 𝑑𝑚𝑅2 

or 

𝐼𝑟𝑖𝑛𝑔 = (𝜌2𝜋𝑅𝑑𝑅𝑑ℎ)𝑅2 = 2𝜌𝜋𝑅3𝑑𝑅𝑑ℎ 

In order to obtain the moment of inertia for the whole hollow cylindrical open shell, we will 

integrate 

𝐼 = ∫ 𝐼𝑟𝑖𝑛𝑔 = ∫2𝜌𝜋𝑅3𝑑𝑅𝑑ℎ

ℎ

0

 

𝐼 = 2𝜌𝜋𝑅3𝑑𝑅 ∫𝑑ℎ

ℎ

0

 

= 2𝜌𝜋𝑅3𝑑𝑅ℎ 

Since the density of the hollow cylindrical shell is 

𝜌 =
𝑀

2𝜋𝑅𝑑𝑅ℎ
 

Therefore 

𝐼 = 𝑀𝑅2 

is the M.I of hollow cylindrical open shell.  
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Module No. 154  

M.I of Solid Sphere - Derivation 
 

Problem 

Find the moment of inertia of a uniform solid sphere of radius 𝒂 and mass 𝑴 about an axis (the 

z-axis) passing through the center. 

Solution 

For a uniform solid sphere, due to symmetry, we have 

𝐼𝑥𝑥 = 𝐼𝑦𝑦 = 𝐼𝑧𝑧  

In order to calculate the moment of Inertia of the sphere, we split the sphere into thin circular 

discs, one of which is shown in Figure. 

 

We have already derived the expression for the moment of inertia of a representative disc of 

radius 𝑥, which is 

𝐼𝑑𝑖𝑠𝑘 =
1

2
𝑥2𝑑𝑚 

of an elementary disc of mass 𝑑𝑚 and the radius 𝑥. 

As we know the mass = (density)(Area of disc) 

therefore 
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𝑑𝑚 = 𝜌𝜋𝑥2 

Hence moment of inertia of the sphere along z-axis will be 

𝐼𝑧𝑧 = ∫
1

2
𝜌𝜋𝑥4𝑑𝑧

𝑎

−𝑎

 

Now, to write “𝑥”in  

terms of 𝑧, we make  

a triangle as shown in fig, 

where 

𝑎2 = 𝑥2 + 𝑧2,   ⟹ 𝑥2 = 𝑎2 − 𝑧2 

𝐼𝑧𝑧 = ∫
1

2
𝜌𝜋(𝑎2 − 𝑧2)2𝑑𝑧

𝑎

−𝑎

 

=
8

15
𝜋𝜌𝑎5  

Since the mass of the sphere is 

𝑀 =
4

3
𝜋𝑎3𝜌 

Therefore 

𝐼𝑧𝑧 =
2

5
𝑀𝑎2 

Also 

𝐼𝑥𝑥 = 𝐼𝑦𝑦 = 𝐼𝑧𝑧 =
2

5
𝑀𝑎2 

is the required moment of inertia of the sphere. 
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Module No. 155  

M.I. of the Hollow Sphere – Derivation 
 

Problem 

A thin uniform hollow sphere has a radius 𝑹 and mass 𝑴. Calculate its moment of inertia about 

any axis through its center. 

 

Solution 

In order to calculate the moment of inertia of the hollow sphere, we split the hollow sphere into 

thin hoops (rings), as shown in Figure. 

 

We have already derived the expression for the moment of inertia of a representative hoop of 

radius 𝑥, which is  

𝐼 = 𝑑𝑚𝑥2 

of an elementary ring of mass 𝑑𝑚 and the radius 𝑥.  

The volume of the elementary ring is  

𝑑𝑉 = 2𝜋𝑥𝑅𝑑𝜃𝑑𝑅 

As we know the mass =  (density)(volume) 
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𝑑𝑚 = 𝜌𝑑𝑉 

therefore 

𝑑𝑚 = 𝜌2𝜋𝑥𝑅𝑑𝑅𝑑𝜃 

Hence the moment of inertia of the small ring of radius 𝑥 will be 

𝐼𝑟𝑖𝑛𝑔 = 𝑑𝑚𝑥2 

or 

𝐼𝑟𝑖𝑛𝑔 = (2𝜋𝑥𝜌𝑅𝑑𝑅𝑑𝜃)𝑥2 = 2𝜋𝜌𝑅𝑑𝑅𝑥3𝑑𝜃 

which is the moment of inertia of ring of radius 𝑥 chosen from the hollow sphere.  

In order to obtain the moment of inertia for the whole hollow sphere, we will integrate 

𝐼 = ∫ 𝐼𝑟𝑖𝑛𝑔 = ∫ 2𝜋𝜌𝑅𝑑𝑅𝑥3𝑑𝜃

𝜋
2⁄

−𝜋
2⁄

 

due to symmetry, we can write 

𝐼 = 4𝜋𝜌𝑅𝑑𝑅 ∫ 𝑥3𝑑𝜃

𝜋
2⁄

0

 

To solve the integral, we need to write 𝑥 in terms of 𝜃. From fig we have 

𝑥 = 𝑅 cos 𝜃 

The integral becomes, 

𝐼 = 4𝜋𝜌𝑅𝑑𝑅 ∫ (𝑅 cos 𝜃)3𝑑𝜃

𝜋
2⁄

0

 

𝐼 = 4𝜋𝜌𝑅4𝑑𝑅 ∫ cos3 𝜃 𝑑𝜃

𝜋
2⁄

0

 

𝐼 = 4𝜋𝜌𝑅4𝑑𝑅 ∫ cos 𝜃 cos2 𝜃 𝑑𝜃

𝜋
2⁄

0
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𝐼 = 4𝜋𝜌𝑅4𝑑𝑅 ∫ cos 𝜃 (1 − sin2 𝜃)𝑑𝜃

𝜋
2⁄

0

 

𝐼 = 4𝜋𝜌𝑅4𝑑𝑅 ∫ cos 𝜃 (1 − sin2 𝜃)𝑑𝜃

𝜋
2⁄

0

 

𝐼 = 4𝜋𝜌𝑅4𝑑𝑅(∫ cos 𝜃 𝑑𝜃

𝜋
2⁄

0

− ∫ sin2 𝜃 cos 𝜃 𝑑𝜃)

𝜋
2⁄

0

 

𝐼 = 4𝜋𝜌𝑅4𝑑𝑅 |sin 𝜃 −
sin3 𝜃

3
|
0

𝜋
2⁄

 

= 4𝜋𝜌𝑅4𝑑𝑅 (1 −
1

3
) 

= 4𝜋𝜌𝑅4𝑑𝑅 ×
2

3
 

=
8

3
𝜋𝜌𝑅4𝑑𝑅 

Since the density of the hollow sphere is 

𝜌 =
𝑀

𝑉
=

𝑀

4𝜋𝑅2𝑑𝑅
 

Hence M.I of hollow sphere will be 

𝐼 =
2

3
𝑀𝑅2 

  



107 

 

Module No. 156  

Inertia Matrix / Tensor of solid Cuboid 

 

Problem Statement 

Calculate the inertia matrix / inertia tensor of uniform solid cube at one of its corners. 

Solution 

Let the length of the edges be 𝑎 of each side and let the axes be chosenalong the edges as shown 

in the figure.  

 

By definition 

𝐼11 ≡ 𝐼𝑥𝑥 = ∫𝜌(𝑟)(𝑦2 + 𝑧2)𝑑𝑉 

Since the box is made of uniform material, the density 𝜌 must be constant. Therefore 

𝐼𝑥𝑥 = 𝜌 ∫ ∫∫(𝑦2 + 𝑧2)𝑑𝑥𝑑𝑦𝑑𝑧

𝑎

0

𝑎

0

𝑎

0

 

= 𝜌 ∫ ∫(𝑦2 + 𝑧2)𝑑𝑦𝑑𝑧

𝑎

0

𝑎

0

∫𝑑𝑥

𝑎

0

 

= 𝜌𝑎 ∫∫(𝑦2 + 𝑧2)𝑑𝑦𝑑𝑧

𝑎

0

𝑎

0

 



108 

 

= 𝜌𝑎 [∫ ∫𝑦2𝑑𝑦𝑑𝑧

𝑎

0

𝑎

0

+ ∫ ∫𝑧2𝑑𝑦𝑑𝑧

𝑎

0

𝑎

0

] 

= 𝜌 (
𝑎4

3
+

𝑎4

3
) 

𝐼𝑥𝑥 = 𝜌𝑎 (
2𝑎4

3
) = 𝜌 (

2𝑎5

3
) 

Since we know that for the cube 

𝜌 =
𝑀

𝑎3
 

We obtain 

𝐼𝑥𝑥 =
2𝑀

3
𝑎2 

Similarly, due to symmetry, we can write 

𝐼𝑦𝑦 =
2𝑀

3
𝑎2 

𝐼𝑧𝑧 =
2𝑀

3
𝑎2 

Now for the product of inertia, we have 

𝐼12 = −∫𝜌𝑥𝑦𝑑𝑉 

= −𝜌 ∫∫ ∫𝑥𝑦𝑑𝑥𝑑𝑦𝑑𝑧

𝑎

0

𝑎

0

𝑎

0

 

= −𝜌 ∫𝑥𝑑𝑥 ∫ 𝑦𝑑𝑦 ∫ 𝑑𝑧

𝑎

0

𝑎

0

𝑎

0

 

= −𝜌𝑎
𝑎2

2

𝑎2

2
= −𝜌

𝑎5

4
 

Again using  

𝜌 =
𝑀

𝑎3
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We obtain 

𝐼12 = −
𝑀𝑎2

4
 

Similarly, 

𝐼12 = −
𝑀𝑎2

4
 

𝐼12 = −
𝑀𝑎2

4
 

The required inertia matrix / inertia tensor will be 

𝐼𝑖𝑗 =

[
 
 
 
 
 
 
2𝑀

3
𝑎2 −

𝑀𝑎2

4
−

𝑀𝑎2

4

−
𝑀𝑎2

4

2𝑀

3
𝑎2 −

𝑀𝑎2

4

−
𝑀𝑎2

4
−

𝑀𝑎2

4

2𝑀

3
𝑎2

]
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Module No. 157  

Inertia Matrix / Tensor of solid Cuboid 
 

Problem Statement 

Calculate the inertia matrix of uniform solid cuboid (parallelepiped) at one of its corner. 

Solution 

Let the length of the edges be 𝑎, 𝑏, 𝑐 and let the axes be chosen along the edges as shown in the 

figure.  

 

By definition 

𝐼11 ≡ 𝐼𝑥𝑥 

= ∫𝜌(𝑟)(𝑦2 + 𝑧2)𝑑𝑉 

Since the box is made of uniform material, the density 𝜌 must be constant. Therefore 

𝐼𝑥𝑥 = 𝜌 ∫∫∫(𝑦2 + 𝑧2)𝑑𝑥𝑑𝑦𝑑𝑧

𝑐

0

𝑏

0

𝑎

0

 

= 𝜌 ∫∫(𝑦2 + 𝑧2)𝑑𝑦𝑑𝑧

𝑐

0

𝑏

0

∫𝑑𝑥

𝑎

0
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= 𝜌𝑎 ∫∫(𝑦2 + 𝑧2)𝑑𝑦𝑑𝑧

𝑐

0

𝑏

0

 

= 𝜌𝑎 [∫∫𝑦2𝑑𝑦𝑑𝑧

𝑐

0

𝑏

0

+ ∫∫𝑧2𝑑𝑦𝑑𝑧

𝑐

0

𝑏

0

] 

= 𝜌𝑎 (𝑐
𝑏3

3
+ 𝑏

𝑐3

3
) 

𝐼𝑥𝑥 = 𝜌
𝑎𝑏𝑐

3
(𝑏2 + 𝑐2) 

using relation 

𝜌 =
𝑀

𝑎𝑏𝑐
 

𝐼𝑥𝑥 =
𝑀

3
(𝑏2 + 𝑐2) 

Similarly, due to symmetry, we can write 

𝐼𝑦𝑦 =
𝑀

3
(𝑎2 + 𝑐2) 

𝐼𝑧𝑧 =
𝑀

3
(𝑎2 + 𝑏2) 

Now for the product of inertia, we have 

𝐼12 = −∫𝜌𝑥𝑦𝑑𝑉 

= −𝜌 ∫∫∫𝑥𝑦𝑑𝑥𝑑𝑦𝑑𝑧

𝑐

0

𝑏

0

𝑎

0

 

= −𝜌 ∫𝑥𝑑𝑥 ∫𝑦𝑑𝑦 ∫𝑑𝑧

𝑐

0

𝑏

0

𝑎

0

 

−𝜌𝑐
𝑎2

2

𝑏2

2
= −𝜌

𝑎2𝑏2𝑐

4
 

Again using  
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𝜌 =
𝑀

𝑎𝑏𝑐
 

we get 

𝐼12 = −
𝑀𝑎𝑏

4
 

Similarly, 

𝐼23 = −
𝑀𝑏𝑐

4
 

𝐼31 = −
𝑀𝑎𝑐

4
 

The required inertia matrix / inertia tensor will be 

𝐼𝑖𝑗 = 

[
 
 
 
 
 
𝑀

3
(𝑏2 + 𝑐2) −

𝑀𝑎𝑏

4
−

𝑀𝑎𝑐

4

−
𝑀𝑎𝑏

4

𝑀

3
(𝑎2 + 𝑐2) −

𝑀𝑏𝑐

4

−
𝑀𝑎𝑐

4
−

𝑀𝑏𝑐

4

𝑀

3
(𝑎2 + 𝑏2)]
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Module No. 158 

M.I of Hemi-Sphere – Derivation 
 

Problem Statement 

Find the moment of inertia of a uniform hemisphere of radius 𝑎 about its axis of symmetry. 

 

Solution 

We will use the spherical polar coordinates (𝑟, 𝜃, 𝜑).  Their use makes computational work 

simpler.  

Their range of variation for hemisphere will be 

0 ≤ 𝑟 < 𝑎 

0 ≤ 𝜃 ≤ 𝜋
2⁄  

0 ≤ 𝜑 ≤ 2𝜋 

𝑥 = 𝑟 sin 𝜃 cos𝜑 ,     

𝑦 = 𝑟 sin 𝜃 sin𝜑 ,   𝑧 = 𝑟 cos 𝜃 

We choose the z-axis as the axis of symmetry.  

 

Hence 
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𝐼𝑧𝑧 = ∫𝜌(𝑟)(𝑥2 + 𝑦2)𝑑𝑉 

= 𝜌 ∫(𝑥2 + 𝑦2)𝑑𝑉 

Now calculate 𝑥2 + 𝑦2 in terms of sp. coordinates 

𝑥2 + 𝑦2 = 𝑟2(sin2 𝜃 cos2 𝜑 + sin2 𝜃 sin2 𝜑) 

= 𝑟2 sin2 𝜃 (cos2 𝜑 + sin2 𝜑) 

= 𝑟2 sin2 𝜃 

and the element of volume in spherical polar coordinates is given by 

𝑑𝑉 = 𝑑𝑟(𝑟𝑑𝜃)(𝑟 sin 𝜃𝑑𝜑) = 𝑟2 sin 𝜃 𝑑𝑟𝑑𝜃𝑑𝜑   

Therefore 

𝐼𝑧𝑧 = 𝜌 ∫ ∫ ∫ 𝑟4 sin3 𝜃

2𝜋

0

𝜋
2⁄

0

𝑎

0

𝑑𝑟𝑑𝜃𝑑𝜑 

= ∫ 𝑟4𝑑𝑟

𝑎

0

∫ sin3 𝜃 𝑑𝜃

𝜋
2⁄

0

∫ 𝑑𝜑

2𝜋

0

 

= 2𝜋𝜌
𝑎5

5
∫ sin3 𝜃 𝑑𝜃

𝜋
2⁄

0

 

= 2𝜋𝜌
𝑎5

5
∫

3 sin 𝜃 − sin 3𝜃

4
𝑑𝜃

𝜋
2⁄

0

 

= (2𝜋𝜌
𝑎5

5
)
1

4
|−3 cos 𝜃 +

cos 3𝜃

3
|
0

𝜋
2⁄

 

= 𝜋𝜌
𝑎5

10
[(0) − (−3 + 1/3)] 

= 𝜋𝜌
𝑎5

10
(
8

3
) 
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= 4𝜋𝜌
𝑎5

15
 

By using the relation for density 

𝜌 =
𝑀

2
3⁄ 𝜋𝑎3

 

we obtain 

𝐼𝑧𝑧 =
2

5
𝑀𝑎2 

which is required expression for moment of inertia of hemisphere. 
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Module No. 159 

M.I. of Ellipsoid –Derivation 
 

Problem 

Find the moment of inertia and product of inertia for the ellipsoid 

𝑥2

𝑎2
+

𝑦2

𝑏2
+

𝑧2

𝑐2
= 1 

w.r.to its axes of symmetry. 

Solution 

By definition 

𝐼11 ≡ 𝐼𝑥𝑥 

= ∫ 𝜌(𝑟)(𝑦2 + 𝑧2)𝑑𝑉

𝑒𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑

 

If we put 

𝑥

𝑎
= 𝑥′,  

𝑦

𝑏
= 𝑦′,  

𝑧

𝑐
= 𝑧′ 

then  

𝑥 = 𝑎𝑥′,  𝑦 = 𝑏𝑦′,  𝑧 = 𝑐𝑧′ 

⟹ 𝑑𝑥 = 𝑎𝑑𝑥′,   𝑑𝑦 = 𝑏𝑑𝑦′,   𝑑𝑧 = 𝑐𝑑𝑧′ 

and  

𝑑𝑉 = 𝑑𝑥𝑑𝑦𝑑𝑧 = 𝑎𝑏𝑐𝑑𝑥′𝑑𝑦′𝑑𝑧′ 

Now under the above transformation, the given ellipsoid is transformed into the unit sphere S: 

𝑥′2 + 𝑦′2 + 𝑧′2 = 1 

The integration is now over the region enclosed by the unit sphere. 
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𝐼11 = 𝜌 ∫(𝑏2𝑦′2 + 𝑐2𝑧′2)𝑎𝑏𝑐𝑑𝑥′𝑑𝑦′𝑑𝑧′

𝑅

 

or 

𝐼11 = 𝜌𝑎𝑏3𝑐 ∫ 𝑦′2𝑑𝑉′ + 𝜌𝑎𝑏𝑐3 ∫ 𝑧′2𝑑𝑉′

𝑅𝑅

 

where 𝑑𝑉′ = 𝑑𝑥′𝑑𝑦′𝑑𝑧′ 

Now because of symmetry 

∫ 𝑦′2

𝑅

𝑑𝑉′ = ∫ 𝑧′2

𝑅

𝑑𝑉′ 

Now we solve one integral.  

We use the spherical polar coordinates (𝑟, 𝜃, 𝜑).   

Their range of variation will be 

0 ≤ 𝑟 < 1,   0 ≤ 𝜃 ≤ 𝜋,   0 ≤ 𝜑 ≤ 2𝜋 

𝑥 = 𝑟 sin 𝜃 cos𝜑 ,   𝑦 = 𝑟 sin 𝜃 sin 𝜑 ,  𝑧 = 𝑟 cos 𝜃 

and  

𝑑𝑉′ = 𝑑𝑟(𝑟𝑑𝜃)(𝑟 sin 𝜃𝑑𝜑) = 𝑟2 sin 𝜃 𝑑𝑟𝑑𝜃𝑑𝜑   

Thus   

∫ 𝑦′2

𝑆

𝑑𝑉′ = ∫∫ ∫ 𝑟4 sin3 𝜃

2𝜋

0

𝜋

0

1

0

sin2 𝜑 𝑑𝑟𝑑𝜃𝑑𝜑 

= ∫𝑟4𝑑𝑟

1

0

∫ sin3 𝜃 𝑑𝜃

𝜋

0

∫ sin2 𝜑 𝑑𝜑

2𝜋

0

 

=
1

5

1

4
|−3 cos 𝜃 +

cos 3𝜃

3
|
0

𝜋 1

2
|𝜑 −

sin 2𝜑

2
|
0

2𝜋

 

Thus   
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∫ 𝑦′2

𝑆

𝑑𝑉′ =
2𝜋

15
 

Therefore on substitution 

𝐼11 = 𝜌𝑎𝑏3𝑐
2𝜋

15
+ 𝜌𝑎𝑏𝑐3

2𝜋

15
 

𝐼11 = 𝜌𝑎𝑏𝑐
2𝜋

15
(𝑏2 + 𝑐2) 

=
𝑀

(4 3⁄ )𝜋𝑎𝑏𝑐
𝑎𝑏𝑐 ×

2𝜋

15
(𝑏2 + 𝑐2) 

𝐼11 =
𝑀

10
(𝑏2 + 𝑐2) 

Similarly, 

𝐼22 =
𝑀

10
(𝑐2 + 𝑎2) 

𝐼33 =
𝑀

10
(𝑎2 + 𝑏2) 

For product of inertia 

𝐼12 ≡ 𝐼𝑥𝑦 = − ∫ 𝑥𝑦𝑑𝑉

𝑒𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑

 

= −𝜌 ∫ 𝑎𝑥′𝑏𝑦′(𝑎𝑏𝑐𝑑𝑥′𝑑𝑦′𝑑𝑧′

𝑅

) 

= −𝜌𝑎2𝑏2𝑐 ∭𝑥′𝑦′𝑑𝑥′𝑑𝑦′𝑑𝑧′

𝑅

  

Using the polar coordinates (𝑟,  𝜃,  𝜑)  

𝐼12 = −𝜌𝑎2𝑏2𝑐 ∫ ∫ ∫𝑟 sin 𝜃 cos𝜑(

1

0

𝜋

0

2𝜋

0

rsin 𝜃 sin𝜑)𝑟2 sin 𝜃 𝑑𝑟𝑑𝜃𝑑𝜑 

= 0  
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Similarly, we can obtain 

𝐼23 = 0 

𝐼31 = 0 
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Module No. 160 

Example 1 of Moment of Inertia 
 

Problem 

Particles of masses 2𝑚, 3𝑚 and 4𝑚 are held in a rigid light framework at points (0,1,1), (1,1,0) 

and (−1,  0,  1) resp.  

Show that the M. I. of the system about the 𝑥, 𝑦, 𝑧 − axis are 11, 13,  12 respectively. 

Solution 

Since the masses are 2, 3 and 4 i.e. 𝑚1 = 2,  𝑚2 = 3 and 𝑚3 = 4, and the points are given by 

𝑃1(0,1,1), 𝑃2(1,1,0) and 𝑃3(−1,0,1). 

We are required to find out the moment of inertia about x-axis, y-axis and z-axis i.e. 𝐼𝑥𝑥, 𝐼𝑦𝑦, 𝐼𝑧𝑧 . 

𝐼𝑥𝑥 = ∑𝑚𝑖(

𝑖

𝑦𝑖
2 + 𝑧𝑖

2) 

= 𝑚1(𝑦1
2 + 𝑧1

2) + 𝑚2(𝑦2
2 + 𝑧2

2) + 𝑚3(𝑦3
2 + 𝑧3

2) 

= 2(1 + 1) + 3(1 + 0) + 4(1 + 0) 

= 4 + 3 + 4 = 11 

So, 

𝐼𝑥𝑥 = 11 

𝐼𝑦𝑦 = ∑𝑚𝑖(

𝑖

𝑥𝑖
2 + 𝑧𝑖

2) 

= 𝑚1(𝑥1
2 + 𝑧1

2) + 𝑚2(𝑥2
2 + 𝑧2

2) + 𝑚3(𝑥3
2 + 𝑧3

2) 

= 2(0 + 1) + 3(1 + 0) + 4(1 + 1) 

= 2 + 3 + 8 = 1 

So, 

𝐼𝑦𝑦 = 13 



121 

 

𝐼𝑧𝑧 = ∑𝑚𝑖(𝑥𝑖
2 +

𝑖

𝑦𝑖
2) 

= 𝑚1(𝑦1
2 + 𝑥1

2) + 𝑚2(𝑥2
2 + 𝑦2

2) + 𝑚3(𝑥3
2 + 𝑦3

2) 

= 2(0 + 1) + 3(1 + 1) + 4(1 + 0) 

= 2 + 6 + 4 = 12 

So, 

𝐼𝑧𝑧 = 12 

  

 Hence Showed  
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Module No. 161 

Example 2 of Moment of Inertia 
 

Problem Statement 

A boy of mass         𝑀 = 30kg is running with a velocity of 3 m/sec on ground just tangentially 

to a merry-go-round which is at rest. The boy suddenly jumps on the merry-go-round. Calculate 

the angular velocity acquired by the system. The merry-go-round has a radius of 𝑟 = 2m and a 

mass 𝑚 = 120kg and its moment of inertia is 120 kgm−2. 

Solution 

The merry-go-round rotates about an axis which we regard as passing through its c.m.  

Let’s give the following notations: 

 M.I of boy = 𝐼1 

 M.I of merry go round = 𝐼2  

 Vel. of boy = 𝑣1  

 Vel. of merry go round = 𝑣2 

 Angular vel. of boy = 𝜔1 

 Angular vel. of merry go round = 𝜔2 

The moment of inertia 𝐼1 of the boy about the axis of rotation can be found by 

𝐼1 = 𝑀𝑑2 = 30 × 22 = 120𝑘𝑔𝑚−2 

The moment of inertia 𝐼2 of merry go round is given to be 

𝐼2 = 120𝑘𝑔𝑚−2 

Since the velocity of the boy about the merry-go-round is 𝑣1 = 3ms−1, therefore his angular 

velocity 𝜔1 about the axis of rotation is therefore 

𝜔1 =
𝑣

𝑑
=

3

2
= 1.5 radian per second 

Initially the merry go round is at rest, therefore 𝑣2 = 0, and thus its angular velocity 𝜔2 = 0.  

We ignore friction and therefore there is no external torque on the system.  

Hence by the law of conservation of angular momentum 

(𝐼1 + 𝐼2)𝜔 = 𝐼1𝜔1 + 𝐼2𝜔2 

𝜔 =
𝐼1𝜔1 + 𝐼2𝜔2

(𝐼1 + 𝐼2)
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where 𝜔 is the angular velocity of the system when the boy jumps on the merry-go-round. 

𝜔 =
120(5) + 0

120 + 120
 

= 0.75 radian per sec 
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Module No. 162 

Example 3 of Moment of Inertia 
 

 

Problem Statement[1] 

Two particles of masses 𝑚1 and 𝑚2 are connected by a rigid massless rod of length 𝑙 and moves 

freely in a plane. Show that the   M. I. of the system about an axis perpendicular to the plane and 

passing through the center of mass is 𝑀𝑙2 where  

𝑀 =
𝑚1𝑚2

𝑚1 + 𝑚2
 

Solution 

Let 𝑟1 be the distance of mass 𝑚1 from center of mass 𝐶. Then 𝑙 − 𝑟1 is the distance of the mass 

𝑚2 from 𝐶.Since 𝐶 is the center of the mass.  

 

So,  

𝑚1𝑟1 = 𝑚2(𝑙 − 𝑟1) 

⟹ 𝑚1𝑟1 = 𝑚2𝑙 − 𝑚2𝑟1 

⟹ (𝑚1 + 𝑚2)𝑟1 = 𝑚2𝑙 

⟹ 𝑟1 =
𝑚2𝑙

(𝑚1 + 𝑚2)
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⟹ 𝑙 − 𝑟1 = 𝑙 −
𝑚2𝑙

(𝑚1 + 𝑚2)
 

⟹ 𝑙 − 𝑟1 =
𝑚1𝑙 + 𝑚2𝑙 − 𝑚2𝑙

(𝑚1 + 𝑚2)
 

⟹ 𝑙 − 𝑟1 =
𝑚1𝑙

(𝑚1 + 𝑚2)
 

Thus the M.I. about an axis through 𝐶 is 

𝑚1𝑟1
2 + 𝑚2(𝑙 − 𝑟1

2)2 

= 𝑚1 (
𝑚2𝑙

𝑚1 + 𝑚2
)
2

+ 𝑚2 (
𝑚1𝑙

𝑚1 + 𝑚2
)
2

 

=
𝑚1𝑚2𝑙

2

(𝑚1 + 𝑚2)2
(𝑚1 + 𝑚2) =

𝑚1𝑚2

𝑚1 + 𝑚2
𝑙2 

𝐼 = 𝑀𝑙2 

where  

𝑀 =
𝑚1𝑚2

𝑚1 + 𝑚2
 

Hence showed. 
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Module No. 163 

Example 4 of Moment of Inertia 
 

Problem (© engineering.unl.edu) 

Calculate the moment of inertia of the shaded area given in figure about y-axis.  

 

 

Solution 

Here, we have 

𝑦 = 𝑥2/3           (1) 

We consider an elementary strip from the shaded area whose M.I is 

𝐼𝑠𝑡𝑟𝑖𝑝 =
1

3
𝑥2(𝑥𝑑𝑦) =

1

3
𝑥3𝑑𝑦 
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Then by integration, we obtain the moment of inertia of the whole shaded area 

𝐼𝑦 = √3∫𝑦
3

2⁄ 𝑑𝑦

4

1

= √3
2

5
|𝑦

5
2⁄ |

1

4

 

= √3
2

5
[(4)

5
2⁄ − (1)

5
2⁄ ] 

=
2√3

5
[(4)

5
2⁄ − (1)

5
2⁄ ] 

=
2√3

5
(32 − 1) 

= 21.5 inch4 
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By using (1), we get 

𝐼𝑠𝑡𝑟𝑖𝑝 = √3𝑦
3

2⁄ 𝑑𝑦 
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Module No. 164 

Example 5 of Moment of Inertia 
 

Problem 

Determine the moment of inertia of the shaded area shown in figure with respect to each of the 

coordinate axes. 

 

 

Solution 

Here we have 

𝑦 = 𝑘𝑥2          (1) 

From fig. we have  

𝑥 = 𝑎,  𝑦 = 𝑏,  then 

𝑏 = 𝑘𝑎2 ⟹ 𝑘 =
𝑏

𝑎2
 

Substituting the value  

of k in (1), we obtain 

𝑦 =
𝑏

𝑎2
𝑥2  or 𝑥 =

𝑎

√𝑏
√𝑦 

Now the moment of inertia along x-axis will be 
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𝐼𝑥 = ∫ 𝑦2𝑑𝐴 = ∫𝑦2(𝑎 − 𝑥)𝑑𝑦

𝑏

0𝐴

 

= ∫𝑦2 (𝑎 −
𝑎

√𝑏
√𝑦)𝑑𝑦

𝑏

0

 

= 𝑎 ∫𝑦2𝑑𝑦 −
𝑎

√𝑏
∫𝑦

5
2⁄ 𝑑𝑦

𝑏

0

𝑏

0

 

= 𝑎 |
𝑦3

3
|
0

𝑏

−
𝑎

√𝑏
|
2

7
𝑦

7
2⁄ |

0

𝑏

 

=
𝑎𝑏3

3
−

𝑎

√𝑏

2

7
𝑏

7
2⁄  

=
𝑎𝑏3

3
−

2𝑎𝑏3

7
 

𝐼𝑥 =
𝑎𝑏3

21
 

𝐼𝑦 = ∫ 𝑥2𝑑𝐴 = ∫ 𝑥2𝑦𝑑𝑥

𝑎

0𝐴

 

=
𝑏

𝑎2
|
𝑥5

5
|
0

𝑎

=
𝑏

𝑎2

𝑎5

5
 

𝐼𝑦 =
𝑎3𝑏

5
 

Hence   

𝐼𝑥 =
𝑎𝑏3

21
 

and  

𝐼𝑦 =
𝑎3𝑏

5
 

are moment of inertia about x-axis and y-axis respectively. 
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Module No. 165 

Example 5 of Moment of Inertia 
 

Theorem Statement 

The moment of inertia of a rigid body about a given axis is equal to the same about a parallel 

axis through the centroid plus the moment of inertia due to the total mass placed at the centroid, 

(the last quantity will be referred to as moment of inertia of the centroid). 

Proof 

By definition, if 𝐼 denotes the M.I about the given axis, and 𝑑𝑖  denotes the distance of 𝑖𝑡ℎ particle 

from the given axis, then 

𝐼 = ∑𝑚𝑖𝑑𝑖
2

𝑖

 

If 𝑒 is the unit vector in the direction of the axis, then we have the following result 

𝑑𝑖
2 = (𝑒 × 𝑟𝑖)

2 

 

Let 𝑟𝑐  denotes the position vector of the centroid and  

𝑟𝑖
′ the position vector of the 𝑖𝑡ℎ particle w.r.t to the centroid, then 
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𝑟𝑖 = 𝑟𝑐 + 𝑟𝑖
′ 

On making substitutions, we obtain 

𝐼 = ∑𝑚𝑖 [𝑒 × (𝑟𝑐 + 𝑟𝑖
′)]

2

𝑖

 

= ∑𝑚𝑖 [𝑒 × 𝑟𝑐 + 𝑒 × 𝑟𝑖
′]

2

𝑖

 

= ∑𝑚𝑖

𝑖

[(𝑒 × 𝑟𝑐 )
2 + (𝑒 × 𝑟𝑖

′)2 + 2(𝑒 × 𝑟𝑐 ) . (𝑒 × 𝑟𝑖
′)] 

= ∑𝑚𝑖(𝑒 × 𝑟𝑐 )
2 + ∑𝑚𝑖

𝑖

(𝑒 × 𝑟𝑖
′)2

𝑖

 

+2(𝑒 × 𝑟𝑐 ) .∑𝑚𝑖(𝑒 × 𝑟𝑖
′)

𝑖

 

= ∑ 𝑚𝑖𝑑𝑐
2 + ∑𝑚𝑖

𝑖

𝑑𝑖
′2 + 2(𝑒 × 𝑟𝑐 ) . 𝑒 × ∑𝑚𝑖𝑟𝑖

′

𝑖𝑖

 

But ∑ 𝑚𝑖𝑟𝑖
′

𝑖 = 0 (We studied in earlier module).  

Therefore 

𝐼 = (∑𝑚𝑖)𝑑𝑐
2 + ∑𝑚𝑖

𝑖

𝑑𝑖
′2

𝑖

 

= 𝑀𝑑𝑐
2 + 𝐼′ 

where  

𝑀 = ∑𝑚𝑖

𝑖

 

is the total mass of the system. 

or  

𝐼 = 𝐼0 + 𝐼′ 

where 𝐼0 denotes the moment of inertia of the centroid, and 𝐼′ denotes the M.I of the system 

w.r.to a parallel axis through the centroid.   
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Module No. 166 

Example 1 of Parallel Axis Theorem 
 

Problem 

Use the parallel axis theorem to find the moment of inertia of a solid circular cylinder about a 

line on the surface of the cylinder and parallel to axis of cylinder. 

Solution 

Suppose the cross section of cylinder as in figure. Then the axis of the cylinder is passing 

through the point 𝐶, while the line on the surface of cylinder is passing through 𝐴. So, we have to 

find out M.I of circular cylinder about a line passing through the point 𝐴 whose radius is 𝑎 

(radius of circular cylinder) and mass is 𝑀. 

 

By parallel axis theorem 

  𝐼𝐴 = 𝐼𝑐 + 𝑀𝑎2         (1)  

Since 𝐼𝐶 which is the moment of inertia of a solid circular cylinder about an axis passing from 

the center of mass is defined by 

    𝐼𝐶 =  
1

2
 𝑀𝑎2                                                                                                      (2) 

where 𝑎 is the radius of a solid circular cylinder. 

By substituting equation (2) in equation (1) we have 

𝐼𝐴 = 
1

2
 𝑀𝑎2 + 𝑀𝑎2 
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⟹    

𝐼𝐴 = (
1

2
+ 1) 𝑀𝑎2 

    𝐼𝐴 = 
3

2
𝑀𝑎2 
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Module No. 167 

Example 2 of Parallel Axis Theorem 
 

Problem 

Prove that the moment of inertia of a uniform right circular cone using parallel axis theorem of  

mass 𝑚, height ℎ and semi vertical angle 𝛼 about a diameter of its base is  

𝑀ℎ2(3 tan2 𝛼 + 2) 20⁄  

Solution 

In the case of M.I about its diameter, we consider the elementary disc of mass 𝛿𝑚 whose 

moment of inertia about a diameter will be  

𝛿𝐼0 =
1

4
𝑟2𝛿𝑚 

 

 

We note that the diameter passes through the center (which is also the centroid) of the 

elementary disc. 

Hence by parallel axis theorem, the M.I. 𝛿𝐼 of the elementary disc about a parallel axis (parallel 

diameter) at the base is given by  
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𝛿𝐼 = 𝛿𝐼0 + (𝛿𝑚)𝑧2 

=
1

4
𝑟2𝛿𝑚 + 𝛿𝑚𝑧2 = 𝛿𝑚(

1

4
𝑟2 + 𝑧2) 

= 𝜌𝜋𝑟2𝛿𝑧(
1

4
𝑟2 + 𝑧2) = 𝜌𝜋 (

1

4
𝑟4 + 𝑟2𝑧2) 𝛿𝑧 

From the similar triangles,  

we have 

𝑟

𝑎
=

ℎ − 𝑧

ℎ
     or     𝑟 = 𝑎

ℎ − 𝑧

ℎ
 

 

Therefore = 𝜌𝜋 [
𝑎4

4ℎ4 (ℎ − 𝑧)4 +
𝑎2

ℎ2 (ℎ − 𝑧)2𝑧2] 𝛿𝑧 

= 𝜌𝜋 [
𝑎4

4ℎ4
(ℎ − 𝑧)4 +

𝑎2

ℎ2
(ℎ2𝑧2 − 2ℎ𝑧3 + 𝑧4)] 𝛿𝑧 

Therefore M.I of complete right circular cone about a diameter is given by 

𝐼 = 𝜌𝜋 ∫{
𝑎4

4ℎ4
(ℎ − 𝑧)4 +

𝑎2

ℎ2
(ℎ2𝑧2 − 2ℎ𝑧3 + 𝑧4)}

ℎ

0

𝛿𝑧 

𝐼 = 𝜌𝜋 (
𝑎4

4ℎ4

ℎ5

5
+

𝑎2

ℎ2

ℎ5

30
) 

Since we know that 𝜌 =
𝑀

(1 3⁄ )𝜋𝑎2ℎ
 

𝐼 =
𝑀

20
(3𝑎2 + 2ℎ2) 
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Since the semi vertical angle of  

the right circular cone is 𝛼,  

So by right triangle AOB, we have 

tan𝛼 =
𝐴𝑂

𝑂𝐵
=

𝑎

ℎ
 

 

𝑎 = ℎ tan𝛼   

Therefore 

𝐼 =
𝑀

20
[3(htan𝛼)2 + 2ℎ2] 

or 

𝐼 =
𝑀ℎ2

20
[3 tan2 𝛼 + 2] 

Hence proved. 
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Module No. 168 

Example 3 of Parallel Axis Theorem 
 

Problem[1] 

Find the moment of inertia of a uniform circular cylinder of length 𝑏 and radius 𝑎 about an axis 

through the center and perpendicular to the central axis, namely 𝐼𝑥 or 𝐼𝑦. 

Solution 

Consider the elementary disc of mass 𝑑𝑚 and thickness 𝑑𝑧 located at a distance 𝑧 from the 𝑥𝑦 

plane. Then the moment of inertia about a diameter will be  

𝛿𝐼0 =
1

4
𝑎2𝑑𝑚 

 

Then, using the parallel-axis theorem, moment of inertia of the thin disc about the 𝑥 − 𝑎𝑥𝑖𝑠 will 

be 

𝑑𝐼𝑥 =
1

4
𝑎2𝑑𝑚 + 𝑧2𝑑𝑚 

where 𝑑𝑚 = 𝜌𝜋𝑎2𝑑𝑧. 

Thus 
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𝐼𝑥 = 𝜌𝜋𝑎2 ∫ (
1

4
𝑎2 + 𝑧2)

𝑏
2⁄

−𝑏
2⁄

𝑑𝑧 

= 𝜌𝜋𝑎2 (
1

4
𝑎2𝑏 +

1

12
𝑏3) 

but the mass of the cylinder 𝑚 is 𝜌𝜋𝑎2𝑏,  

therefore 

𝐼𝑥 = 𝑚 (
1

4
𝑎2 +

1

12
𝑏2) 

Due to symmetry we have 

𝐼𝑥 = 𝐼𝑦 = 𝑚 (
1

4
𝑎2 +

1

12
𝑏2) 
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Module No. 169 

Example 4 of Parallel Axis Theorem 
 

Problem 

Calculate the moment of inertia 𝐼𝑐𝑚 for a uniform rod of length 𝑙 and mass 𝑀 rotating about an 

axis through the center, perpendicular to the rod. 

Solution 

In order to calculate the moment of inertia through the center of mass c.m., we use parallel axes 

theorem. 

In a transparent notation 

𝐼𝑙 = 𝐼𝑐𝑚 + 𝑀𝑑2              (1) 

where 𝑑 is the distance between the origin and the center of mass and 𝑑 = 𝑙
2⁄ . 

Also 𝐼𝑙 is the moment of inertia of rod about one of its end (which we calculated earlier). 

Here 

                   𝐼𝑙 =
1

3
𝑀𝑙2          (2) 

From (1), we have 

𝐼𝑐𝑚 = 𝐼𝑙 − 𝑀𝑑2 

Substituting value from (2) in (1) 

𝐼𝑐𝑚 =
1

3
𝑀𝑙2 − 𝑀 (

𝑙

2
)

2

=
1

3
𝑀𝑙2 −

1

4
𝑀𝑙2 

𝐼𝑐𝑚 =
1

12
𝑀𝑙2 

which is required moment of inertia about its center of mass. 
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Module No. 170 

Perpendicular Axis Theorem 
 

Theorem Statement 

The moment of inertia of a plane rigid body about an axis perpendicular to the body is equal to 

the sum of the moment of inertia about two mutually perpendicular axis lying in the plane of the 

body and meeting at the common point with the given axis. 

Proof 

We choose the coordinates such that 𝑋𝑌 axes lie in the plane of the rigid body and the 𝑍-axis is 

perpendicular to it. 

 

Then the theorem can be stated as 

𝐼33 = 𝐼11 + 𝐼22       

𝑜r 

𝐼𝑧𝑧 = 𝐼𝑥𝑥 + 𝐼𝑦𝑦 

where 𝐼11 = 𝐼𝑥𝑥 etc. are M.I about the 𝑥-axis etc. 

Since the 𝑧-axis has been  

chosen to be perpendicular  

to the laminar body, therefore 

𝐼33 = 𝐼𝑧𝑧 = ∑ 𝑚𝑖𝑑𝑖
2

𝑖
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where 𝑑𝑖  is the distance of the 𝑖𝑡ℎ particle (lying in the 𝑥𝑦-plane) from the 𝑧-axis.  

If we denote the coordinate of this particle by (𝑥𝑖, 𝑦𝑖), then 

𝑑𝑖
2 = 𝑥𝑖

2 + 𝑦𝑖
2 

and therefore 

𝐼33 = 𝐼𝑧𝑧 = ∑𝑚𝑖(

𝑖

𝑥𝑖
2 + 𝑦𝑖

2) 

= ∑𝑚𝑖𝑥𝑖
2

𝑖

+ ∑𝑚𝑖𝑦𝑖
2

𝑖

 

= 𝐼𝑥𝑥 + 𝐼𝑦𝑦 

 Hence the proof. 
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Module No. 171 

Example 1 of Perpendicular Axis Theorem 
 

Problem Statement 

Find the moment of inertia of a uniform circular plate (or disc) about any diameter. 

Proof 

Since we have deduced that moment of inertia of a uniform circular disc is  

𝐼𝑑𝑖𝑠𝑐 =  
1

2
 M𝑎2  

which is about a line passing through center and perpendicular to the plane. 

 

Considering the same axis with same terms in 3-dim body (i.e. 𝑧 − 𝑎𝑥𝑖𝑠 passing through center 

of mass and perpendicular to 𝑥𝑦 − 𝑝𝑙𝑎𝑛𝑒), we have using perpendicular axis theorem 

                            𝐼𝑧𝑧 = 𝐼𝑥𝑥 + 𝐼𝑦𝑦   (1) 

We have to find out M.I. of uniform circular plate (disc) about any of its diameters which are 

along 𝑥 − 𝑎𝑥𝑖𝑠 and 𝑦 − 𝑎𝑥𝑖𝑠  (i.e. we have to find out 𝐼𝑥𝑥 𝑜𝑟 𝐼𝑦𝑦 both of them are equal to 𝐼𝑑) 

Since       

𝐼𝑥𝑥 = 𝐼𝑑 = 𝐼𝑦𝑦 

So equation (1) becomes  

𝐼𝑧𝑧 = 𝐼𝑑 + 𝐼𝑑 
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or  

𝐼𝑧𝑧 = 2𝐼𝑑 

𝐼𝑑 =
1

2
𝐼𝑧𝑧 

𝐼𝑑 =  
1

2
(
1

2
 M𝑎2) 

(∴ 𝐼𝑧𝑧 = 𝐼𝑑𝑖𝑠𝑐 = 
1

2
 M𝑎2) 

𝐼𝑑 =
1

4
𝑀𝑎2 

  

where 𝑀 is the mass of disc and a is its radius. 
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Module No. 172 

Example 2 of Perpendicular Axis Theorem 
 

Problem Statement 

Find the M.I. of a uniform elliptical lamina with semi major axes and semi minor axes 𝑎, 𝑏 

respectively about respective axes (x, y, z-axis) using perpendicular axis theorem. 

Proof 

We consider the elliptical plate as 

𝑥2

𝑎2
+

𝑦2

𝑏2
= 1         (1) 

with semi major axes along x-axis as shown in figure. 

 

From (1) we have  

𝑦 = ±
𝑏

𝑎
√𝑎2 − 𝑥2  

let 𝑦1 =
𝑏

𝑎
√𝑎2 − 𝑥2 

We consider a small element  

of mass 𝛿𝑚 of the elliptical  

plate, then we will have  

𝛿𝑚 = 𝜌𝑑𝑠 = 𝜌𝑑𝑥𝑑𝑦 
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The moment of inertia of this element along     x-axis will be equal to 𝐼 = 𝛿𝑚𝑦2. 

Then the moment of inertia of whole plate will be 

𝐼𝑥𝑥 = ∫(𝛿𝑚)𝑦2 = ∫ 𝜌𝑑𝑠
𝑝𝑙𝑎𝑡𝑒

𝑦2  

= 𝜌 ∫ ( ∫ 𝑦2𝑑𝑦

𝑦1

−𝑦1

)𝑑𝑥

𝑎

−𝑎

 

= 𝜌 ∫
2𝑦1

3

3
𝑑𝑥

𝑎

−𝑎

=
2𝜌

3
∫

𝑏3

𝑎3
(𝑎2 − 𝑥2)

3
2⁄ 𝑑𝑥

𝑎

−𝑎

 

due to symmetry, we can write it as 

=
4𝜌𝑏3

3𝑎3
∫(𝑎2 − 𝑥2)

3
2⁄

𝑎

0

𝑑𝑥 

By making use of polar coordinates,  

substitute 𝑥 = 𝑎 sin 𝜃, then 𝑑𝑥 = 𝑎 cos 𝜃 this integral becomes 

𝐼𝑥𝑥 =
4𝜌𝑏3

3𝑎3
∫ 𝑎3 cos3 𝜃 (𝑎 cos 𝜃

𝜋
2⁄

0

)𝑑𝜃 

=
4𝜌𝑎𝑏3

3
∫ cos4 𝜃

𝜋
2⁄

0

𝑑𝜃 

=
1

4
𝜌𝑎𝑏3𝜋 

for elliptical plate, we have 

𝜌 =
𝑀

𝜋𝑎𝑏
 

Thus 

𝐼𝑥𝑥 =
1

4
𝑎𝑏3𝜋 ×

𝑀

𝜋𝑎𝑏
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𝐼𝑥𝑥 =
1

4
𝑀𝑏2 

Similarly, about y-axis 

𝐼𝑦𝑦 = ∫(𝛿𝑚)𝑥2 = ∫ 𝜌𝑑𝑠

𝑝𝑙𝑎𝑡𝑒

𝑥2 

= 𝜌 ∫( ∫ 𝑥2𝑑𝑥

𝑥1

−𝑥1

)𝑑𝑦

𝑏

−𝑏

 

= 𝜌 ∫
2𝑥1

2

3
𝑑𝑦

𝑏

−𝑏

=
2𝜌

3
∫

𝑏3

𝑎3
(𝑎2 − 𝑦2)

3
2⁄ 𝑑𝑦

𝑏

−𝑏

 

due to symmetry, we can write it as 

=
4𝜌𝑏3

3𝑎3
∫(𝑎2 − 𝑦2)

3
2⁄

𝑏

0

𝑑𝑦 

Using polar coordinates, substitute 𝑦 = 𝑏 sin 𝜃, then 𝑑𝑦 = 𝑏 cos 𝜃 𝑑𝜃 this integral becomes 

𝐼𝑦𝑦 =
4𝜌𝑎3

3𝑏3
∫ 𝑏3 cos3 𝜃 (𝑏 cos 𝜃

𝜋
2⁄

0

)𝑑𝜃 

=
4𝜌𝑎3𝑏

3
∫ cos4 𝜃

𝜋
2⁄

0

𝑑𝜃 

=
4𝜌𝑎3𝑏

3

3

8
×

𝜋

2
 

=
1

4
𝜌𝑎3𝑏𝜋 

=
1

4
𝑎3𝑏𝜋 ×

𝑀

𝜋𝑎𝑏
 

𝐼𝑦𝑦 =
1

4
𝑀𝑎2 

now using perpendicular axis theorem, we obtain 
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𝐼𝑧𝑧 = 𝐼𝑥𝑥 + 𝐼𝑦𝑦 

=
1

4
𝑀𝑏2 +

1

4
𝑀𝑎2 

𝐼𝑧𝑧 =
1

4
𝑀(𝑎2 + 𝑏2) 

which is M.I. of elliptical lamina along z-axis 
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Module No. 173 

Example 3 of Perpendicular Axis Theorem 
 

Problem 

Find the moment of inertia of a rectangular plate with sides 𝑎 and 𝑏 about an axis perpendicular 

to the plate and passing through a vertex using perpendicular axis theorem. 

Solution 

We consider a rectangular plate (lamina) of sides of length 𝑎 and 𝑏. We consider an element of 

length 𝑑𝑥 and 𝑑𝑦 as shown in figure.  

 

We find the M.I about 𝑦 − 𝑎𝑥𝑖𝑠. 

The mass of selected element will be 

𝑑𝑚 = 𝜌𝑑𝑥𝑑𝑦 

It’s moment of inertia about the 𝑦 − 𝑎𝑥𝑖𝑠 is  

  

𝐼𝑒𝑙𝑒𝑚𝑒𝑛𝑡 = 𝜌𝑑𝑥𝑑𝑦𝑥2 = 𝜌𝑥2𝑑𝑥𝑑𝑦. 

where 𝑥 is the perpendicular distance from the element to the 𝑦 − 𝑎𝑥𝑖𝑠. 
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Thus the total moment of inertia about y-axis is 

𝐼𝑦 = ∫ ∫ 𝜌𝑥2𝑑𝑥𝑑𝑦

𝑏

𝑦=0

𝑎

𝑥=0

 

= 𝜌𝑏 ∫𝑥2

𝑎

0

= 𝜌𝑏 |
𝑥3

3
|
0

𝑎

=
1

3
𝜌𝑏𝑎3 

Since the density of the rectangular plate is  

𝜌 =
𝑀

𝑎𝑏
 

the moment of inertia will be 

𝐼𝑦 =
1

3
𝑀𝑎2 

In the similar manner, we will calculate the moment of inertia about x-axis 

The total moment of inertia about x-axis is 

𝐼𝑥 = ∫ ∫ 𝜌𝑦2𝑑𝑥𝑑𝑦

𝑏

𝑦=0

𝑎

𝑥=0

 

= 𝜌𝑎 ∫𝑦2𝑑𝑦

𝑏

0

= 𝜌𝑏 |
𝑦3

3
|
0

𝑏

=
1

3
𝜌𝑎𝑏3 

Using the relation of the total mass of rectangular plate  

𝑀 = 𝜌𝑎𝑏 

Then the moment of inertia will be 

𝐼𝑥 =
1

3
𝑀𝑏2 

Thus by using perpendicular axes theorem, we obtain the moment of inertia along z-axis 

𝐼𝑧 = 𝐼𝑥 + 𝐼𝑦 

𝐼𝑧 =
1

3
𝑀𝑏2 +

1

3
𝑀𝑎2 
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𝐼𝑧 =
1

3
𝑀(𝑎2 + 𝑏2) 

which are the required moments of inertia of rectangle along 𝑥, 𝑦, 𝑧-axis. 
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Module No. 174 

Problem of Moment of Inertia 
 

Problem 

Find the moment of inertia about the line of an apparatus (as shown in figure) consisting of a sphere 

of mass 𝑀 and radius 𝑏 attached to a rod of length 2𝑎 & mass 𝑚. 

 

Solution 

Since from the figure it is clear that 𝑏 is the radius of the sphere whose mass is 𝑀 and is attached 

to the rod of length 2𝑎 whose mass is 𝑚. 

 

Therefore 

𝐼𝐿 = 𝐼1𝐿 + 𝐼2𝐿                                     

where 𝐼1𝐿 is the M.I. of a rod of length 2𝑎 about 𝐿 and 𝐼2𝐿 is the M.I. of a sphere of radius 𝑏 

about the line 𝐿, then 
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𝐼1𝐿 = ∫ 𝜌𝑥2𝑑𝑥

2𝑎

0

 

= 𝜌 |
𝑥3

3
|
0

2𝑎

= 𝜌
8

3
𝑎3 

using relation for 𝜌, we get 

𝐼1𝐿 =
4

3
𝑚𝑎2                                                   (2) 

Now 

𝐼2𝐿 = 𝐼′ + 𝑀𝑑2 

where 𝐼′ is the MI of sphere about its diameter 

𝐼2𝐿 =
2

5
𝑀𝑏2 + 𝑀(2𝑎 + 𝑏)2                       (3) 

Substituting equation (2) & (3) in (1), we get 

𝐼𝐿 =
4

3
𝑚𝑎2 +

2

5
𝑀𝑏2 + 𝑀(2𝑎 + 𝑏)2 

which is the required M.I. of the apparatus. 
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Module No. 175 

Existence of Principle Axes 
Introduction 

The axes relative to which product of inertia are zero are called the principal axes and the 

moment of inertia along these axes are called principal moment of inertia. 

Theorem Statement 

For a rigid body, there exist a set of three mutually orthogonal axes called principal axes 

relative to which the product of inertia are zero and 𝜔⃗⃗⃗ and 𝐿 are considered along the 

same direction. 

Proof 

We assume that there exists an axis through a point 𝑂 of the rigid body such that angular velocity 

𝜔⃗⃗⃗ and angular momentum 𝐿 of the body are parallel to this axis. Then we can write 

𝐿 = 𝐼𝜔⃗⃗⃗   (1) 

where 𝐼 is a constant of proportionality. 

Form equation (1), we have 

𝐿1 = 𝐼𝜔1,   𝐿2 = 𝐼𝜔2,   𝐿3 = 𝐼𝜔3 

Also from the general theory of angular momentum 

𝐿𝑖 = ∑ 𝐼𝑖𝑗𝑗 𝜔𝑗      (2) 

From equation (1) and (2), we have 

𝐿1 = 𝐼11𝜔1 + 𝐼12𝜔2 + 𝐼13𝜔3 = 𝐼𝜔1  

𝐿2 = 𝐼21𝜔1 + 𝐼22𝜔2 + 𝐼23𝜔3 = 𝐼𝜔2  

𝐿3 = 𝐼31𝜔1 + 𝐼32𝜔2 + 𝐼33𝜔3 = 𝐼𝜔3  

which can also be written as 

(𝐼11−𝐼)𝜔1 + 𝐼12𝜔2 + 𝐼13𝜔3 = 0 

𝐼21𝜔1 + (𝐼22−𝐼)𝜔2 + 𝐼23𝜔3 = 0 

               𝐼31𝜔1 + 𝐼32𝜔2 + (𝐼33 − 𝐼)𝜔3 = 0          (3) 
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Equation (3) is a system of three homogeneous linear algebraic equation in the unknown 

𝜔1, 𝜔2, 𝜔3.  

This system will have a non-trivial solution, i.e. (𝜔⃗⃗⃗ ≠ 0),  if the determinant of the matrix of 

coefficients is zero. i.e.  

|
𝐼11 − 𝐼 𝐼12 𝐼13

𝐼21 𝐼22 − 𝐼 𝐼23

𝐼31 𝐼32 𝐼33 − 𝐼
| = 0          (4) 

This is a cubic equation in 𝐼 and will in general have three roots. Equation (4) is called 

characteristic equation of the matrix (𝐼𝑖𝑗).  

The roots of equation (4) are called eigen values of the inertia matrix (𝐼𝑖𝑗). 

The problem of finding principal moment of inertia and directions of inertia has been reduced to 

that of finding the eigenvalues and eigenvectors of a symmetric 3 × 3 matrix. 

The following results from the eigenvalue theory of matrices will deduce further results about the 

principal moments and directions (axes) of inertia. 

Related Theorems 

 Theorem 1 

A 3 × 3 symmetrical matrix has three real eigenvalues, which may be distinct or repeated. 

 Theorem 2 

The eigenvectors of a symmetrical matrix corresponding to distinct eigenvalues are orthogonal. 

 Theorem 3 

It is always possible to find three mutually orthogonal eigenvectors for a    3 × 3 symmetric 

matrix, whether the eigenvalues are distinct or repeated. 

Results 

In the light of above theorems, we deduce the following results about the inertia matrix 𝐼𝑚𝑎𝑡 at 

point 𝑂 of a rigid body. 

i. The principal of moment of inertia are always real numbers. This is obviously physical 

because the moment of inertia is defined as the quantity ∑ 𝑚𝑖𝑑𝑖
2 𝑖 where 𝑚𝑖  and 𝑑𝑖 are 

both real. 
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ii. When all three principal moments 𝐼1, 𝐼2, 𝐼3  are distinct, then by the theorem 2, three 

mutually orthogonal principal axes can be found. 

iii. When 𝐼1 = 𝐼2 but 𝐼1 ≠ 𝐼3, then by the theorem 3, we can still determine three mutually 

orthogonal principal axes, because the inertia matrix is symmetric. 
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Module No. 176 

Determination of Principal Axes of Other 
Two When One is known 

 

In many instances a body possesses sufficient symmetry so that at least one principal axis can be 

found by inspection, i.e;the axis can be chosen so as to make two of the three products of inertia 

vanish.  

We consider a plane rigid body i.e. a 2D body; for example a plate of uniform thickness. Such a 

system can be regarded as a coplanar distribution of mass.  

Since there are three mutually orthogonal principal axes, one of them must be perpendicular to 

the plane of the body. 

The other two axes will lie in the plane of lamina.  

We choose 𝑋 and 𝑌 axes in the plane of lamina, and the 𝑍 axis perpendicular to its plane, as 

shown in figure. 

𝐼𝑥𝑧 = 𝐼𝑦𝑧 = 0     whereas 𝐼𝑥𝑦 ≠ 0   (1) 

Since we have obtained the following equations for principal axes. 

(𝐼11 − 𝐼)𝜔1 + 𝐼12𝜔2 + 𝐼13𝜔3 = 0 

𝐼21𝜔1 + (𝐼22 − 𝐼)𝜔2 + 𝐼23𝜔3 = 0 

𝐼31𝜔1 + 𝐼32𝜔2 + (𝐼33 − 𝐼)𝜔3 = 0        (2) 

By making use of (1), and using the first two equations of (2), we obtain 

(𝐼11 − 𝐼)𝜔1 + 𝐼12𝜔2 = 0 

𝐼21𝜔1 + (𝐼22 − 𝐼)𝜔2 = 0 

Since the principal axes perpendicular to the plane of lamina is supposed to be known, and we 

are interested in determining the principal axes in XY-plane, therefore we didn’t consider third 

eq. of (2). 

Let 𝑂𝑃1,  𝑂𝑃2 denote the principal axes in the XY-plane and let 𝜑 denote the angle between the 

𝑂𝑃1  and the 𝑋 − 𝑎𝑥𝑖𝑠.  
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We define  

tan𝜑 = 𝜔2 𝜔1⁄  

which can also be written as 

                    
𝜔1

cos𝜑
=

𝜔2

sin 𝜑
= 𝑘,               (3) 

where 𝑘 is any arbitrary constant.  

Substituting for 𝜔1,  𝜔2 from equation (3) in (2) we have, after simplification 

(𝐼11 − 𝐼) cos𝜑 + 𝐼12 sin𝜑 = 0 

𝐼21 cos𝜑 + (𝐼22 − 𝐼) sin𝜑 = 0 

These equations can be put in the form 

𝐼11 − 𝐼 = −𝐼12

sin𝜑

cos𝜑
,   𝐼22 − 𝐼 = −𝐼12

cos𝜑

sin𝜑
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Module No. 177 

Determination of Principal Axes by 
Diagonalizing the Inertia Matrix 

 

Introduction 

Suppose a rigid body has no axis of symmetry. Even so, the tensor that represents the moment of 

inertia of such a body, is characterized by a real, symmetric 3 × 3 matrix that can be 

diagonalized. The resulting diagonal elements are the values of the principal moments of inertia 

of the rigid body.  

The axes of the coordinate system, in which this matrix is diagonal, are the principal axes of the 

body, because all products of inertia have vanished.  

Thus, finding the principal axes and corresponding moments of inertia of any rigid body, 

symmetric or not, is virtually the same as to diagonalzing its moment of inertia matrix.  

Explanation 

There are a number of ways to diagonalize a real, symmetric matrix. We present here a way that 

is quite standard.  

First, suppose that we have found the coordinate system (principal axes) in which all products of 

inertia vanish and the resulting moment of inertia tensor is now represented by a diagonal matrix 

whose diagonal elements are the principal moments of inertia.  

Let 𝑒𝑖 be the unit vectors that represent this coordinate system, that is, they point along the 

direction along the three principal axes of the rigid body.  

If the moment of inertia tensor is "dotted" with one of these unit vectors, the result is equivalent 

to a simple multiplication of the unit vector by a scalar quantity, i.e. 

 𝐼𝑒𝑖 = 𝜆𝑒𝑖                                                                      (1) 

The quantities 𝜆𝑖 are just the principal M.I about their respective principal axes.The problem of 

finding the principal axes is one of finding those vectors 𝑒𝑖 that satisfy the condition 

                    (𝐼 − 𝜆𝐼)𝑒𝑖 = 0                                         (2) 

In general this condition is not satisfied for any arbitrary set of orthonormal unit vectors 𝑒𝑖. It is 

satisfied only by a set of unit vectors aligned with the principal axes of the rigid body.  
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Any arbitrary 𝑥𝑦𝑧 coordinate system can always be rotated such that the coordinate axes line up 

with the principal axes. The unit vectors specifying these coordinate axes then satisfy the 

condition in eq (2). This condition is equivalent to vanishing of the following determinant  

                         |𝐼 − 𝜆𝐼| = 0                  (3) 

Explicitly, this equation reads 

|
𝐼11 − 𝐼 𝐼12 𝐼13

𝐼21 𝐼22 − 𝐼 𝐼23

𝐼31 𝐼32 𝐼33 − 𝐼
| = 0 

It is a cubic in 𝜆, namely,  

       − 𝜆3 +  𝐴𝜆2 +  𝐵𝜆 +  𝐶 =  0        (4) 

in which 𝐴,  𝐵, and 𝐶 are functions of the 𝐼's. The three roots 𝜆1,   𝜆2 and 𝜆3 are the three 

principal moments of inertia.  

We now have the principal moments of inertia, but the task of specifying the components of the 

unit vectors representing the principal axes in terms of our initial coordinate system remains to 

be solved.  

Here we can make use of the fact that when the rigid body rotates about one of its principal axes; 

the angular momentum vector is in the same direction as the angular velocity vector.  

Let the angles of one of the principal axes relative to the initial 𝑥𝑦𝑧 coordinate system be 

𝛼, 𝛽 and 𝛾 and let the body rotate about this axis. Therefore, a unit vector pointing in the 

direction of this principal axis has components (cos 𝛼, cos 𝛽, cos 𝛾).   

Using eq (1),  

𝐼𝑒1 =  𝜆1𝑒1 

where 𝜆1, the first principal moment of the three (𝜆1,  𝜆2,  𝜆3), is obtained by solving eq (4). 

In matrix form 

[

𝐼11 −  𝜆1 𝐼12 𝐼13

𝐼21 𝐼22 −  𝜆1 𝐼23

𝐼31 𝐼32 𝐼33 −  𝜆1

] [

cos 𝛼
cos 𝛽
cos 𝛾

] = 0 

 The direction cosines may be found by solving the above equations.  

 The solutions are not independent. They are subject to the constraint 
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cos2 𝛼 + cos2 𝛽 + cos2 𝛾 = 1 

 In other words the resultant vector 𝑒1 specified by these components is a unit vector.  
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Module No. 178 

Relation of Fixed and Rotating Frames of 
Reference 

 

In order to derive the relationship between fixed and rotating frames of reference, we will study 

the following theorem[1,2]. 

Rotating Axes Theorem 

 Theorem Statement 

If a time dependent vector function 𝐴 is represented by 𝐴𝑓 and 𝐴𝑟 in fixed and rotating coordinate 

system, then 

(
𝑑𝐴

𝑑𝑡
)

𝑓

= (
𝑑𝐴

𝑑𝑡
)

𝑟

+ 𝜔 × 𝐴𝑟  

where it is understood that the origins of the two systems coincide at 𝑡 = 0 

 Proof 

We denote the fixed and rotating coordinate systems by 𝑂𝑋0𝑌0𝑍0 and 𝑂𝑋𝑌𝑍 and denote the 

associated unit vectors by {𝑖0, 𝑗0, 𝑘0} and {𝑖, 𝑗, 𝑘}.  

Consider a vector 𝐴 which is changing with time. To an observer fixed relative to 𝑂𝑋𝑌𝑍 system, 

the time rate of change of 𝐴 = 𝐴1𝑖̂ + 𝐴2𝑗̂ + 𝐴3𝑘̂ will be  

𝑑

𝑑𝑡
𝐴𝑟 =

𝑑

𝑑𝑡
𝐴1𝑖̂ +

𝑑

𝑑𝑡
𝐴2𝑗̂ +

𝑑

𝑑𝑡
𝐴3𝑘̂ 

where 
𝑑𝐴𝑟

𝑑𝑡
 denotes the time derivative of 𝐴 relative to the rotating frame of reference.  

However, the time rate of change of 𝐴 relative to the fixed system 𝑂𝑋0𝑌0𝑍0 symbolized by the 
𝑑𝐴𝑓

𝑑𝑡
 needs to be found.  

To the fixed observer the unit vectors 𝑖,  𝑗,  𝑘 actually change with time.   

Thus 
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𝑑

𝑑𝑡
𝐴𝑓 =

𝑑

𝑑𝑡
(𝐴1𝑖̂ + 𝐴2𝑗̂ + 𝐴3𝑘̂) 

=
𝑑𝐴1

𝑑𝑡
𝑖̂ +

𝑑𝐴2

𝑑𝑡
𝑗̂ +

𝑑𝐴3

𝑑𝑡
𝑘̂ + 𝐴1

𝑑𝑖̂

𝑑𝑡
+ 𝐴2

𝑑𝑗̂

𝑑𝑡
+ 𝐴3

𝑑𝑘̂

𝑑𝑡
 

 

𝑑𝐴𝑓

𝑑𝑡
=

𝑑𝐴𝑟

𝑑𝑡
+ 𝐴1

𝑑𝑖̂

𝑑𝑡
+ 𝐴2

𝑑𝑗̂

𝑑𝑡
+ 𝐴3

𝑑𝑘̂

𝑑𝑡
        (1) 

Since 𝑖̂ is a unit vector, 𝑑𝑖̂/𝑑𝑡 is perpendicular to 𝑖̂. Then 
𝑑𝑖̂

𝑑𝑡
 must lie in the plane of  𝑗̂ and 𝑘̂. 

Therefore 

                   
𝑑𝑖̂

𝑑𝑡
= 𝛼1𝑗̂ + 𝛼2𝑘̂                             (2) 

Similarly,          

                   
𝑑𝑗̂

𝑑𝑡
= 𝛼3𝑘̂ + 𝛼4𝑖̂                             (3) 

                    
𝑑𝑘̂

𝑑𝑡
= 𝛼5𝑖̂ + 𝛼6𝑗̂                           (4) 

Form 𝑖̂. 𝑗̂ = 0, differentiation yields  

𝑖̂.
𝑑𝑗̂

𝑑𝑡
+ 𝑗̂.

𝑑𝑖̂

𝑑𝑡
= 0 ⟹ 𝑖̂.

𝑑𝑗̂

𝑑𝑡
= −𝑗̂.

𝑑𝑖̂

𝑑𝑡
 

But from (2), we have 

𝑗̂.
𝑑𝑖̂

𝑑𝑡
= 𝛼1 and 𝑖̂.

𝑑𝑗̂

𝑑𝑡
= 𝛼4 

⟹ 𝛼4 = −𝛼1 

Similarly form 𝑖̂. 𝑘̂ = 0 we obtain  

𝑖̂.
𝑑𝑘̂

𝑑𝑡
+ 𝑘̂.

𝑑𝑖̂

𝑑𝑡
= 0 ⟹ 𝑖̂.

𝑑𝑘̂

𝑑𝑡
= −𝑘̂.

𝑑𝑖̂

𝑑𝑡
 

From (3), we have 

𝑘̂.
𝑑𝑖̂

𝑑𝑡
= 𝛼2 and 𝑘̂.

𝑑𝑗̂

𝑑𝑡
= 𝛼5 

⟹ 𝛼5 = −𝛼2 
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and from 𝑗̂. 𝑘̂ = 0 we obtain  

𝑗̂.
𝑑𝑘̂

𝑑𝑡
+ 𝑘̂.

𝑑𝑗̂

𝑑𝑡
= 0 ⟹ 𝑗̂.

𝑑𝑘̂

𝑑𝑡
= −𝑘̂.

𝑑𝑗̂

𝑑𝑡
 

From (4), we have 

𝑘̂.
𝑑𝑗̂

𝑑𝑡
= 𝛼2 and 𝑗̂.

𝑑𝑘̂

𝑑𝑡
= 𝛼5 

⟹ 𝛼6 = −𝛼3 

Then 

𝑑𝑖̂

𝑑𝑡
= 𝛼1𝑗̂ + 𝛼2𝑘̂ 

𝑑𝑗̂

𝑑𝑡
= 𝛼3𝑘̂ − 𝛼1𝑖 ̂

𝑑𝑘̂

𝑑𝑡
= −𝛼2𝑖̂ − 𝛼3𝑗̂ 

follows that 

𝐴1

𝑑𝑖̂

𝑑𝑡
+ 𝐴2

𝑑𝑗̂

𝑑𝑡
+ 𝐴3

𝑑𝑘̂

𝑑𝑡
= (−𝛼1𝐴2 − 𝛼2𝐴3)𝑖̂ + (−𝛼1𝐴1 − 𝛼3𝐴3)𝑗̂ + (−𝛼2𝐴1 − 𝛼3𝐴2)𝑘̂ 

where 

𝜔⃗⃗⃗ = 𝜔1𝑖̂ + 𝜔2𝑗̂ + 𝜔3𝑘̂ 

The vector quantity 𝜔⃗⃗⃗ is the angular velocity of the moving system relative to the fixed system. 

Thus from (1) and (5), we obtain  

  

(
𝑑𝐴

𝑑𝑡
)

𝑓

= (
𝑑𝐴

𝑑𝑡
)

𝑟

+ 𝜔 × 𝐴 
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Module No. 179 

Equation of Motion in Rotating Frame of 
Reference 

There are two cases to be discussed in this article. Frist is when the origins of fixed and rotating 

coordinate system coincide and other is when the origins of two system are distant.  

Case I 

In this case we consider the origins of the fixed and rotating coordinate system coincide. This 

case was earlier discussed in detail, where it was found that:  

To an observer fixed relative to 𝑂𝑋𝑌𝑍 system, the time rate of change of 𝑟 = 𝑟1𝑖̂ + 𝑟2𝑗̂ + 𝑟3𝑘̂ 

will be 

𝑑

𝑑𝑡
𝑟𝑟 =

𝑑

𝑑𝑡
𝑟1𝑖̂ +

𝑑

𝑑𝑡
𝑟2𝑗̂ +

𝑑

𝑑𝑡
𝑟3𝑘̂            (1) 

where 
𝑑𝑟𝑟

𝑑𝑡
 denotes the time derivative of 𝑟 relative to the rotating frame of reference.  

 

However, the time rate of change of 𝑟 relative to fixed system 𝑂𝑋0𝑌0𝑍0 symbolized by 
𝑑𝑟𝑓

𝑑𝑡
 will 

be  

𝑑𝑟𝑓

𝑑𝑡
= (

𝑑𝑟

𝑑𝑡
)
𝑓

= (
𝑑𝑟

𝑑𝑡
)
𝑟
+ 𝜔 × 𝑟           (2) 

or in operator form, we can write 

(
𝑑

𝑑𝑡
)
𝑓

= (
𝑑

𝑑𝑡
)
𝑟
+ 𝜔 × 
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Differentiating both sides of (2) w.r.t the fixed coordinate system, we have 

(
𝑑

𝑑𝑡
)
𝑓
𝑣𝑓 = (

𝑑

𝑑𝑡
)
𝑓
(𝑣𝑟 + 𝜔 × 𝑟) 

by applying operator, we have 

(
𝑑

𝑑𝑡
)
𝑓
𝑣𝑓 = (

𝑑

𝑑𝑡
+ 𝜔 ×)

𝑟
(𝑣𝑟 + 𝜔 × 𝑟) 

= 𝑎𝑟 + 2𝜔 ×
𝑑𝑟

𝑑𝑡
+ 𝜔̇ × 𝑟 + 𝜔 × (𝜔 × 𝑟) 

or 

𝑎𝑓 = 𝑎𝑟 + 2𝜔 × 𝑣𝑟 + 𝜔̇ × 𝑟 + 𝜔 × (𝜔 × 𝑟)           

(3) 

where 

𝑎𝑓 =
𝑑𝑣𝑓

𝑑𝑡
,        𝑎𝑟 =

𝑑𝑣𝑟

𝑑𝑡
  

are the acceleration in the fixed and rotating coordinate systems. The relation (3) is referred as 

Coriolis theorem. The term 2𝜔 × 𝑣𝑟 is called Coriolis acceleration, whereas the term 𝜔 × (𝜔 ×

𝑟) is called centripetal acceleration. 

The equations of motion in fixed and moving/ rotating coordinate system are 

𝐹 = 𝑚𝑎𝑓 ,        𝐹
′ = 𝑚𝑎𝑟 

where F and 𝐹′ are the total forces in the fixed and the rotating coordinate systems.  

On making substitution for 𝑎𝑓 from (3) in equation 𝐹 = 𝑚𝑎𝑓 ,  we obtain 

These forces are called fictitious or apparent or inertial forces. They do not have physical forces 

and do not arise from interactions of the particles.  

Case II 

In this case we consider the origins of fixed and rotating coordinate systems are not coincident. 

We have 

(𝑟)𝑓 = 𝑅 = (𝑟)𝑟 + 𝑟0 

= 𝑥𝑖̂ + 𝑦𝑗̂ + 𝑧𝑘̂ + 𝑟0 
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where 𝑟0 is the position vector of the origin of the rotating system w.r.t the origin of the fixed 

system.  

 

Therefore 

(
𝑑𝑟

𝑑𝑡
)
𝑓

=
𝑑𝑟0
𝑑𝑡

+
𝑑

𝑑𝑡
(𝑥𝑖̂ + 𝑦𝑗̂ + 𝑧𝑘̂) 

𝑣𝑓 = 𝑣0 + (𝑥̇𝑖̂ + 𝑦̇𝑗̂ + 𝑧̇𝑘̂) + 𝑥
𝑑𝑖̂

𝑑𝑡
+ 𝑦

𝑑𝑗̂

𝑑𝑡
+ 𝑧

𝑑𝑘̂

𝑑𝑡
 

𝑣𝑓 = 𝑣0 + 𝑣𝑟 + 𝜔 × 𝑟 

where 𝑟 ≡ (𝑟)𝑟. 

Similarly the acceleration in the two systems will be related by 

𝑎𝑓 = 𝑎0 + 𝑎𝑟 + 2𝜔 × 𝑣𝑟 + 𝜔̇ × 𝑟 + 𝜔 × (𝜔 × 𝑟) 
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Module No. 180 

Example 1 of Equation of Motion in 
Rotating Frame of Reference 

 

Problem Statement 

The angular velocity of a rotating coordinate system 𝑂𝑋𝑌𝑍 relative to a fixed coordinate system 

𝑂𝑋0𝑌0𝑍0 is 

𝜔⃗⃗⃗ = 2𝑡𝑖̂ − 𝑡2𝑗̂ + (2𝑡 + 4)𝑘̂ 

where 𝑡 is the time and {𝑖̂, 𝑗̂, 𝑘̂} unit vectors associated with 𝑂𝑋𝑌𝑍. The position vector of a 

particle at time 𝑡 in the body system (𝑂𝑋𝑌𝑍 system) is given by 

𝑟 = (𝑡2 + 1)𝑖̂ − 6𝑡𝑗̂ + 4𝑡3𝑘̂ 

To Find 

i. The apparent and true velocities at time   𝑡 = 1. 

ii. The apparent and true acceleration at time 𝑡 = 1 

Solution 

 The apparent velocity is given by 

𝑣𝑟 = (
𝑑𝑟

𝑑𝑡
)
𝑟

=
𝑑

𝑑𝑡
[(𝑡2 + 1)𝑖̂ − 6𝑡𝑗̂ + 4𝑡3𝑘̂] 

= 𝑖̂
𝑑

𝑑𝑡
(𝑡2 + 1) − 𝑗̂

𝑑

𝑑𝑡
6𝑡 + 𝑘̂

𝑑

𝑑𝑡
4𝑡3 

= 2𝑡𝑖̂ − 6𝑗̂ + 12𝑡2𝑘̂ 

Therefore the apparent velocity at time 𝑡 = 1  is given by 

𝑣𝑟(𝑡 = 1) = 2𝑖̂ − 6𝑗̂ + 12𝑘̂ 

The true velocity at any time t is given by 

𝑣𝑓 = 𝑣𝑟 + 𝜔⃗⃗⃗ × 𝑟 
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= 2𝑖̂ − 6𝑗̂ + 12𝑘̂ + |
𝑖̂ 𝑗̂ 𝑘̂

2𝑡 −𝑡2 2𝑡 + 4
𝑡2 + 1 −6𝑡 4𝑡3

| 

Therefore  

𝑣𝑓(𝑡 = 1) = 2𝑖̂ − 6𝑗̂ + 12𝑘̂ + |
𝑖̂ 𝑗̂ 𝑘̂
2 −1 6
2 −6 4

| 

= 34𝑖̂ − 2𝑗̂ + 2𝑘̂ 

ii.  For apparent acceleration 

𝑎𝑟 =
𝑑𝑣𝑟

𝑑𝑡
=

𝑑

𝑑𝑡
(2𝑡𝑖̂ − 6𝑗̂ + 12𝑡2𝑘̂) 

= 2𝑖̂ + 24𝑡𝑘̂ 

Therefore 

𝑎𝑟(𝑡 = 1) = 2𝑖̂ + 24𝑘̂ 

For true acceleration we have 

𝑎𝑓 = 𝑎𝑟 + 2𝜔 × 𝑣𝑟 + 𝜔̇ × 𝑟 + 𝜔 × (𝜔 × 𝑟)           

(1) 

now  

𝜔(𝑡 = 1) = 2𝑖̂ − 𝑗̂ + 6𝑘̂ 

and 

𝜔̇ = 2𝑖̂ − 2𝑡𝑗̂ + 2𝑘̂ 

𝜔̇(𝑡 = 1) = 2𝑖̂ − 2𝑗̂ + 2𝑘̂ 

Since 𝑟 = (𝑡2 + 1)𝑖̂ − 6𝑡𝑗̂ + 4𝑡3𝑘̂ and  

𝑣𝑟 = 2𝑡𝑖̂ − 6𝑗̂ + 12𝑡2𝑘̂, therefore 

𝜔̇ × 𝑟 = |
𝑖̂ 𝑗̂ 𝑘̂
2 −2 2
2 −6 4

| = 4𝑖̂ − 4𝑗̂ − 8𝑘̂ 

and 
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2𝜔 × 𝑣𝑟 = 2 |
𝑖̂ 𝑗̂ 𝑘̂
2 −1 6
2 −6 12

| 

= 2(24𝑖̂ − 12𝑗̂ − 10𝑘̂) 

Also since 

𝜔 × 𝑟 = |
𝑖̂ 𝑗̂ 𝑘̂
2 −1 6
2 −6 4

| = 32𝑖̂ + 4𝑗̂ − 10𝑘̂ 

Therefore 

𝜔 × (𝜔 × 𝑟) = |
𝑖̂ 𝑗̂ 𝑘̂
2 −1 6
32 4 −10

| 

= −14𝑖̂ + 212𝑗̂ + 40𝑘̂ 

Hence on making substitution, we have 

𝑎𝑓 = (2𝑖̂ + 24𝑡𝑘̂) + (4𝑖̂ − 4𝑗̂ − 8𝑘̂) + 2(24𝑖̂ − 12𝑗̂ − 10𝑘̂) + (−14𝑖̂ + 212𝑗̂ + 40𝑘̂) 

= 40𝑖̂ + 184𝑗̂ + 36𝑘̂ 

which is required true acceleration.  
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Module No. 181 

Example 2 of Equation of Motion in 
Rotating Frame of Reference 

 

Problem Statement 

A coordinate system OXYZ rotates with angular velocity 𝜔⃗⃗⃗ = 2𝑖̂ − 3𝑗̂ + 5𝑘̂ relative to the fixed 

coordinate system O𝑋0𝑌0𝑍0 both systems having the same origin. If 𝐴 = sin 𝑡 𝑖̂ − cos 𝑡 𝑗̂ + 𝑒−𝑡𝑘̂ 

where 𝑖̂, 𝑗̂, 𝑘̂ refer to the rotating coordinate system OXYZ then find 
𝑑𝐴

𝑑𝑡
 and 

𝑑2𝐴

𝑑𝑡2
 w.r.to  

i. Fixed system 

ii. The rotating system 

Solution 

i. To find 
𝑑𝐴

𝑑𝑡
 and 

𝑑2𝐴

𝑑𝑡2  in the fixed system, we have to apply the following formulas 

(
𝑑𝐴⃗

𝑑𝑡
)
𝑓

= (
𝑑𝐴⃗

𝑑𝑡
)
𝑟
+ 𝜔⃗⃗⃗ × 𝐴         (1) 

(
𝑑2𝐴⃗

𝑑𝑡2)
𝑓

= (
𝑑2𝐴⃗

𝑑𝑡2)
𝑟
+ 2𝜔⃗⃗⃗ ×

𝑑𝐴⃗

𝑑𝑡
+

𝑑𝜔⃗⃗⃗⃗

𝑑𝑡
× 𝐴 + 𝜔⃗⃗⃗ × (𝜔⃗⃗⃗ × 𝐴)                   (2) 

(
𝑑𝐴

𝑑𝑡
)

𝑟

= [
𝑑𝐴

𝑑𝑡
]
𝑟

=
𝑑𝐴𝑟

𝑑𝑡
 

=
𝑑

𝑑𝑡
(sin 𝑡 𝑖̂ − cos 𝑡 𝑗̂ + 𝑒−𝑡𝑘̂) 

= cos 𝑡 𝑖̂ + sin 𝑡 𝑗̂ − 𝑒−𝑡𝑘̂ 

𝜔⃗⃗⃗ × 𝐴 = |
𝑖̂ 𝑗̂ 𝑘̂
2 −3 5

sin 𝑡 − cos 𝑡 𝑒−𝑡

| 

𝜔⃗⃗⃗ × 𝐴 = (−3𝑒−𝑡 + 5 cos 𝑡)𝑖̂ − (2𝑒−𝑡 − 5 sin 𝑡)𝑗̂ + (−2 cos 𝑡 + 3 sin 𝑡)𝑘̂ 

(
𝑑𝐴

𝑑𝑡
)

𝑓

= cos 𝑡 𝑖̂ + sin 𝑡 𝑗̂ − 𝑒−𝑡𝑘̂ + (−3𝑒−𝑡 + 5 cos 𝑡)𝑖̂ − (2𝑒−𝑡 − 5 sin 𝑡)𝑗̂

+ (−2 cos 𝑡 + 3 sin 𝑡)𝑘̂ 
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= (cos 𝑡 + 5 cos 𝑡 − 3𝑒−𝑡)𝑖̂ + (5 sin 𝑡 + sin 𝑡 − 2𝑒−𝑡)𝑗̂ + (−𝑒−𝑡 − 2 cos 𝑡 + 3 sin 𝑡)𝑘̂ 

= (6 cos 𝑡 − 3𝑒−𝑡)𝑖̂ + (6 sin 𝑡 − 2𝑒−𝑡)𝑗̂ + (−𝑒−𝑡 − 2 cos 𝑡 + 3 sin 𝑡)𝑘̂ 

Now for solving equation (2), we proceed as follows 

(
𝑑2𝐴

𝑑𝑡2
)

𝑟

=
𝑑

𝑑𝑡
(
𝑑𝐴

𝑑𝑡
)

𝑟

=
𝑑

𝑑𝑡
(cos 𝑡 𝑖̂ + sin 𝑡 𝑗̂ − 𝑒−𝑡𝑘̂) 

= (−sin 𝑡 𝑖̂ + cos 𝑡 𝑗̂ + 𝑒−𝑡𝑘̂) 

2𝜔⃗⃗⃗ × (
𝑑𝐴

𝑑𝑡
)

𝑟

= 2(2𝑖̂ − 3𝑗̂ + 5𝑘̂) × (cos 𝑡 𝑖̂ + sin 𝑡 𝑗̂ − 𝑒−𝑡𝑘̂) 

= (4𝑖̂ − 6𝑗̂ + 10𝑘̂) × (cos 𝑡 𝑖̂ + sin 𝑡 𝑗̂ − 𝑒−𝑡𝑘̂) 

= |
𝑖̂ 𝑗̂ 𝑘̂
4 −6 10

cos 𝑡 sin 𝑡 −𝑒−𝑡

| 

2𝜔⃗⃗⃗ × (
𝑑𝐴

𝑑𝑡
)

𝑟

 

= (6𝑒−𝑡 − 10 sin 𝑡)𝑖̂ + (4𝑒−𝑡 + 10 cos 𝑡)𝑗̂ + (4 sin 𝑡 + 6 cos 𝑡)𝑘̂ 

𝜔⃗⃗⃗ = 2𝑖̂ − 3𝑗̂ + 5𝑘̂ ⟹ 𝜔̇⃗⃗⃗ =
𝑑𝜔⃗⃗⃗

𝑑𝑡
= 0 

So,  

𝑑𝜔⃗⃗⃗

𝑑𝑡
× 𝐴 = 0 × (sin 𝑡 𝑖̂ − cos 𝑡 𝑗̂ + 𝑒−𝑡𝑘̂) = 0 

𝜔⃗⃗⃗ × (𝜔⃗⃗⃗ × 𝐴) = (2𝑖̂ − 3𝑗̂ + 5𝑘̂) × [(2𝑖̂ − 3𝑗̂ + 5𝑘̂) × (sin 𝑡 𝑖̂ − cos 𝑡 𝑗̂ + 𝑒−𝑡𝑘̂)] 

= (2𝑖̂ − 3𝑗̂ + 5𝑘̂) × [(−3𝑒−𝑡 + 5 cos 𝑡)𝑖̂ − (2𝑒−𝑡 − 5 sin 𝑡)𝑗̂ + (−2 cos 𝑡 + 3 sin 𝑡)𝑘̂] 

= |
𝑖̂ 𝑗̂ 𝑘̂
2 −3 5

−3𝑒−𝑡 + 5 cos 𝑡 −2𝑒−𝑡 + 5 sin 𝑡 −2 cos 𝑡 + 3 sin 𝑡

| 

= (6 cos 𝑡 − 9 sin 𝑡 − 25 sin 𝑡 + 10𝑒−𝑡)𝑖̂ + (4 cos 𝑡 − 6 sin 𝑡 − 15𝑒−𝑡 + 25 cos 𝑡)𝑗̂ + (4𝑒−𝑡

− 10 sin 𝑡 + 9𝑒−𝑡 − 15 cos 𝑡)𝑘̂ 
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= (6 cos 𝑡 − 34 sin 𝑡 + 10𝑒−𝑡)𝑖̂ + (29 cos 𝑡 − 6 sin 𝑡 − 15𝑒−𝑡)𝑗̂

+ (−4𝑒−𝑡 + 10 sin 𝑡 + 9𝑒−𝑡 − 15 cos 𝑡)𝑘̂ 

= (− sin 𝑡 𝑖̂ + cos 𝑡 𝑗̂ + 𝑒−𝑡𝑘̂) + (6𝑒−𝑡 − 10 sin 𝑡)𝑖̂ + (4𝑒−𝑡 + 10 cos 𝑡)𝑗̂ + (4 sin 𝑡 + 6 cos 𝑡)𝑘̂

+ 0 + (6 cos 𝑡 − 34 sin 𝑡 + 10𝑒−𝑡)𝑖̂ + (29 cos 𝑡 − 6 sin 𝑡 − 15𝑒−𝑡)𝑗̂ + (10 sin 𝑡

− 13𝑒−𝑡 + 15 cos 𝑡)𝑘̂ 

(
𝑑2𝐴

𝑑𝑡2
)

𝑓

= (6 cos 𝑡 − 45 sin 𝑡 + 16𝑒−𝑡)𝑖̂ + (40 cos 𝑡 − 6 sin 𝑡 − 11𝑒−𝑡)𝑗̂

+ (14 sin 𝑡 − 12𝑒−𝑡 + 21 cos 𝑡)𝑘̂ 

ii.     The rotating system 

(
𝑑𝐴

𝑑𝑡
)

𝑟

= [
𝑑𝐴

𝑑𝑡
]
𝑟

=
𝑑𝐴𝑟

𝑑𝑡
 

=
𝑑

𝑑𝑡
(sin 𝑡 𝑖̂ − cos 𝑡 𝑗̂ + 𝑒−𝑡𝑘̂) 

= cos 𝑡 𝑖̂ + sin 𝑡 𝑗̂ − 𝑒−𝑡𝑘̂ 

(
𝑑2𝐴

𝑑𝑡2
)

𝑟

=
𝑑

𝑑𝑡
(
𝑑𝐴

𝑑𝑡
)

𝑟

 

                                =
𝑑

𝑑𝑡
(cos 𝑡 𝑖̂ + sin 𝑡 𝑗̂ − 𝑒−𝑡𝑘̂) 

= (−sin 𝑡 𝑖̂ + cos 𝑡 𝑗̂ + 𝑒−𝑡𝑘̂) 
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Module No. 182 

Example 3 of Equation of Motion in 
Rotating Frame of Reference 

 

Problem Statement 

A bead slides on a smooth helix whose central axis is vertical. The helix is forced to rotate about 

its central axis with constant angular speed 𝜔.  Find the equation of motion of the bead relative to 

the helix. 

Solution 

We choose a coordinate 𝑂𝑋𝑌𝑍 fixed in the helix such that 𝑍-axis is coincident with the axis of 

the helix. 

 

 Then the parametric eqs. of the helix are given by 

𝑥 = 𝑎 cos 𝜃 , 𝑦 = 𝑎 sin 𝜃, 

𝑧 = 𝑏𝜃 

In vector form these can be written as 

𝑟 = 𝑎 cos 𝜃 𝑖̂ + 𝑎 sin 𝜃 𝑗̂ + 𝑏𝜃𝑘̂ 

where 𝑖̂, 𝑗̂, 𝑘̂ point along the coordinate axis. Here 𝑘̂ is constant but 𝑖̂, 𝑗̂ are variable.  
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The equation of motion in the rotating coordinate system is given by 

𝑚𝑎𝑟 = 𝐹 − 2𝑚𝜔 × 𝑣𝑟 − 𝑚𝜔̇ × 𝑟 − 𝑚𝜔 × (𝜔 × 𝑟)                                  (1) 

In this problem, since 𝜔 is constant, 

𝜔 = 𝜔𝑘̂ ,          𝜔̇ = 0                                                 (2) 

Also 

𝑣𝑟 = 𝑟̇ = (−𝑎 sin 𝜃 𝑖̂ + 𝑎 cos 𝜃 𝑗̂ + 𝑏𝑘̂)𝜃̇            (3) 

and 

𝑎𝑟 = 𝑟̈ =
𝑑

𝑑𝑡
[(−𝑎 sin 𝜃 𝑖̂ + 𝑎 cos 𝜃 𝑗̂ + 𝑏𝑘̂)𝜃̇]

𝑟
 

= (−𝑎 sin 𝜃 𝑖̂ + 𝑎 cos 𝜃 𝑗̂ + 𝑏𝑘̂)𝜃̈ +(−𝑎 cos 𝜃 𝑖̂ − 𝑎 sin 𝜃 𝑗̂)𝜃̇2                                               (4) 

If 𝐹 denotes the external force in the fixed (space) coordinate system, then 

𝐹 = −𝑚𝑔𝑘̂ + 𝑅                           (5) 

where 𝑅 is the reaction of the helix on the bead. 

Before making substitution from equation (2-5) into equation (1), we obtain simplified 

expression for the second, and the fourth terms of (1), (the third term being zero). 

𝜔 × 𝑣𝑟 = 𝜔𝑘̂ × (−𝑎 sin 𝜃 𝑖̂ + 𝑎 cos 𝜃 𝑗̂ + 𝑏𝑘̂)𝜃̇ 

= 𝜔𝑎(− sin 𝜃 𝑗̂ − cos 𝜃 𝑖̂)𝜃̇                   (6) 

and 

𝜔 × 𝑟 = 𝜔𝑘̂ × (𝑎 cos 𝜃 𝑖̂ + 𝑎 sin 𝜃 𝑗̂ + 𝑏𝜃𝑘̂) 

= 𝜔𝑎(cos 𝜃 𝑗̂ − sin 𝜃 𝑖̂) 

𝜔 × (𝜔 × 𝑟) = 𝜔2𝑎𝑘̂ × (cos 𝜃 𝑗̂ − sin 𝜃 𝑖̂) 

= 𝜔2𝑎(−cos 𝜃 𝑖̂ − sin 𝜃 𝑗̂)             (7) 

Therefore on making substitutions from (4), (5), (6) and (7) into (1), we obtain 

𝑚(−𝑎 sin 𝜃 𝑖̂ + 𝑎 cos 𝜃 𝑗̂ + 𝑏𝑘̂)𝜃̈ − 𝑚𝑎(cos 𝜃 𝑖̂ + sin 𝜃 𝑗̂) = −𝑚𝑔𝑘̂ + 𝑅 + 2𝑚𝜔𝑎(sin 𝜃 𝑗̂ +

cos 𝜃 𝑖̂) + 𝑚𝑎𝜔2(cos 𝜃 𝑖̂ + sin 𝜃 𝑗̂)            
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𝑚(−𝑎 sin 𝜃 𝑖̂ + 𝑎 cos 𝜃 𝑗̂ + 𝑏𝑘̂)𝜃̈ − 𝑚𝑎(cos 𝜃 𝑖̂ + sin 𝜃 𝑗̂) = −𝑚𝑔𝑘̂ + 𝑅 + (2𝑚𝜔𝑎 +

𝑚𝑎𝜔2) (sin 𝜃 𝑗̂ + cos 𝜃 𝑖̂)                                 (8) 

Now if we write 

𝑣𝑟 = (−𝑎 sin 𝜃 𝑖̂ + 𝑎 cos 𝜃 𝑗̂ + 𝑏𝑘̂)𝜃̇ = 𝑢𝜃̇ 

Then it is clear that the vector 𝑢 is tangent to the helix. Since 𝑅 is normal to the helix, 

𝑅.  𝑣𝑟 = 𝑅. 𝑢𝜃̇ = 0 

Rewriting (8) in terms of 𝑢 (after eliminating the common factor 𝑚), we have 

𝑢𝜃̈ − 𝑎(cos 𝜃 𝑖̂ + sin 𝜃 𝑗̂)𝜃̇2 = −𝑔𝑘 + 𝑅 + (2𝜔𝑎 + 𝑎𝜔2)(cos𝜃 𝑖̂ + sin 𝜃 𝑗̂)                   (9) 

Taking dot product of both sides of (9) with u, we have 

𝑢. 𝑢𝜃̈ − 𝑎𝑢. (cos 𝜃 𝑖̂ + sin 𝜃 𝑗̂)𝜃̇2 = −𝑔𝑘. 𝑢 + 𝑅. 𝑢 + (2𝜔𝑎 + 𝑎𝜔2)(cos𝜃 𝑖̂ + sin 𝜃 𝑗̂). 𝑢       (10) 

Now  

𝑢. 𝑢 = 𝑎2 sin2 𝜃 + 𝑎2 cos2 𝜃 + 𝑏2 = 𝑎2 + 𝑏2 

 𝑘̂. 𝑢 = 𝑘̂. (−𝑎 sin 𝜃 𝑖̂ + 𝑎 cos 𝜃 𝑗̂ + 𝑏𝑘̂) = 𝑏 

𝑅. 𝑢 = 0 

(sin 𝜃 𝑗̂ + cos 𝜃 𝑖̂). 𝑢 = (sin 𝜃 𝑗̂ + cos 𝜃 𝑖̂). (−𝑎 sin 𝜃 𝑖̂ + 𝑎 cos 𝜃 𝑗̂ + 𝑏𝑘̂) 

= 𝑎 cos 𝜃 sin 𝜃 − 𝑎 cos 𝜃 sin 𝜃 

= 0 

Therefore (10) reduces to 

(𝑎2 + 𝑏2)𝜃̈ = −𝑔𝑏  

or 

𝜃̈ = −
𝑔𝑏

(𝑎2 + 𝑏2)
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Module No. 183 

Example 4 of Equation of Motion in 
Rotating Frame of Reference 

 

Problem Statement 

Prove that the centrifugal force acting on a particle of mass 𝑚 on the earth’s surface is the vector 

directed away from the earth’s center and perpendicular to the angular velocity vector 𝜔⃗⃗⃗.  

i. Show that its magnitude is 𝑚𝜔2𝑟𝑒 cos 𝜆. 

ii. Determine the places on the surface of the earth where centrifugal force will be maximum 

or minimum. 

 Solution 

i. Since centrifugal force is −𝑚𝜔⃗⃗⃗ × (𝜔⃗⃗⃗ × 𝑟𝑒).    

We have to show that it’s vector is directed away from center of the earth and perpendicular to 

the angular velocity vector 𝜔⃗⃗⃗ and its magnitude is 𝑚𝜔2𝑟𝑒 cos 𝜆  

where 𝜆 is the latitude as shown in figure and 𝑟𝑒 is the radius of the earth.  

 

It is quite clear that the particle is moving away from the center of earth and centrifugal force is 

produced in the opposite direction of the path of the particle.  
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It can be observed from the given figure that the movement of the particle (i.e. 𝑚𝜔⃗⃗⃗ × (𝜔⃗⃗⃗ × 𝑟𝑒)) is 

perpendicular to the angular velocity 𝜔⃗⃗⃗ and vector 𝜔⃗⃗⃗ × 𝑟𝑒 ,  becomes centrifugal force in the 

opposite direction of the particle, so its centrifugal force is also perpendicular to 𝜔⃗⃗⃗ and 𝜔⃗⃗⃗ × 𝑟𝑒 .   

Now we move onto the proof of magnitude of centrifugal force, since 

𝐹⃗𝑐𝑓 = −𝑚𝜔⃗⃗⃗ × (𝜔⃗⃗⃗ × 𝑟𝑒) 

We need to show that 

|𝐹⃗𝑐𝑓| = |−𝑚𝜔⃗⃗⃗ × (𝜔⃗⃗⃗ × 𝑟𝑒)| = 𝑚𝜔2𝑟𝑒 cos 𝜆 

Now we assume that the motion takes place in the 𝑋𝑍-plane.  

Then, 

𝑒̂ = 𝑘̂ cos 𝜃 + 𝑖̂ sin 𝜃 

 = 𝑘̂ cos(𝜋 2⁄ − 𝜆) + 𝑖̂ sin(𝜋 2⁄ − 𝜆) 

𝑒̂ = 𝑘̂ sin 𝜆 + 𝑖̂ cos 𝜆 

Consider the centrifugal force 

= −𝑚𝜔⃗⃗⃗ × (𝜔⃗⃗⃗ × 𝑟𝑒) 

If 𝑒̂ denotes a unit vector along the NS-axis, then we can write 𝜔⃗⃗⃗ = 𝜔𝑒̂ and the expression 

becomes 𝜔⃗⃗⃗ × (𝜔⃗⃗⃗ × 𝑟𝑒) = 𝜔2𝑒̂ × (𝑒̂ × 𝑟𝑒) 

 −𝜔2𝑒̂ × (𝑒̂ × 𝑟𝑒) = −𝜔2[(𝑒̂. 𝑟𝑒)𝑒̂ − (𝑒̂. 𝑒̂)𝑟𝑒] 

= −𝜔2[(𝑒̂. 𝑟𝑒)𝑒̂ − 𝑟𝑒] 

Now 

𝑒̂. 𝑟𝑒 = (𝑘̂ sin 𝜆 + 𝑖̂ cos 𝜆). 𝑟𝑒𝑘̂ 

= 𝑟𝑒 cos 𝜃 = cos(𝜋 2⁄ − 𝜆) = 𝑟𝑒 sin 𝜆 

 So expression (1) becomes 

−𝜔⃗⃗⃗ × (𝜔⃗⃗⃗ × 𝑟𝑒) = −𝜔2𝑟𝑒 sin 𝜆 (𝑘̂ sin 𝜆 + 𝑖̂ cos 𝜆) + 𝜔2𝑟𝑒𝑘̂ 

= (−𝜔2𝑟𝑒 sin2 𝜆 + 𝜔2𝑟𝑒)𝑘̂ − 𝜔2𝑟𝑒 sin 𝜆 cos 𝜆 𝑖̂ 

= (−𝜔2𝑟𝑒(1 − cos2 𝜆) + 𝜔2𝑟𝑒)𝑘̂ − 𝜔2𝑟𝑒 sin 𝜆 cos 𝜆 𝑖̂ 
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 |𝐹⃗𝑐𝑓| = |−𝑚𝜔⃗⃗⃗ × (𝜔⃗⃗⃗ × 𝑟𝑒)| = |−𝑚((−𝜔2𝑟𝑒(1 − cos2 𝜆) + 𝜔2𝑟𝑒)𝑘̂ − 𝜔2𝑟𝑒 sin 𝜆 cos 𝜆 𝑖̂)| 

= |−𝑚(𝜔2𝑟𝑒 cos2 𝜆)𝑘̂ + 𝑚𝜔2𝑟𝑒 sin 𝜆 cos 𝜆 𝑖̂)| 

= 𝑚√(𝜔2𝑟𝑒 cos2 𝜆)2 + (𝜔2𝑟𝑒 sin 𝜆 cos 𝜆)2 

 = 𝑚√𝜔4𝑟𝑒2 cos4 𝜆 + 𝜔4𝑟𝑒2 cos2 𝜆 sin2 𝜆 

= 𝑚√𝜔4𝑟𝑒2 cos4 𝜆 + 𝜔4𝑟𝑒2 cos2 𝜆 (1 − cos2 𝜆) 

= 𝑚√𝜔4𝑟𝑒2 cos4 𝜆 + 𝜔4𝑟𝑒2 cos2 𝜆 − 𝜔4𝑟𝑒2 cos4 𝜆 

= 𝑚√𝜔4𝑟𝑒2 cos2 𝜆 

|𝐹⃗𝑐𝑓| = 𝑚𝜔2𝑟𝑒 cos 𝜆 

Hence the required result. 

 The centrifugal force will be maximum at 𝜆 = 0,  where cos 𝜆 = 1 (maximum) i.e. at equator 

and minimum will be at NS-poles i.e. at    𝜆 = 𝜋
2⁄   where cos 𝜆 = 0  (minimum). 
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Module No. 184 

Example 5 of Equation of Motion in 
Rotating Frame of Reference 

 

Problem Statement 

A coordinate system 𝑂𝑋𝑌𝑍 is rotating with angular velocity 𝜔⃗⃗⃗ = 5𝑖̂ − 4𝑗̂ − 10𝑘̂ relative to fixed 

coordinate system 𝑂𝑋0𝑌0𝑍0 both systems having the same origin. Find the velocity of the 

particle at rest in the 𝑂𝑋𝑌𝑍 system at the point (3,1, −2) as seen by an observer in the fixed 

system. 

Solution 

Since the given angular velocity is   

𝜔⃗⃗⃗ = 5𝑖̂ − 4𝑗̂ − 10𝑘̂ 

and the point P(3,1, −2) at rest in 𝑂𝑋𝑌𝑍 system.  

Then 

𝑂𝑃⃗⃗⃗⃗ ⃗⃗ = 𝑟 = 3𝑖̂ + 𝑗̂ − 2𝑘̂ 

Also, we know the equation of motion in case when the origins of the coordinate systems 

coincide each other 

𝑣𝑓⃗⃗⃗⃗⃗ = 𝑣𝑟⃗⃗ ⃗⃗ + 𝜔⃗⃗⃗ × 𝑟 

But we have to find out the velocity of the particle at rest in 𝑂𝑋𝑌𝑍 system at P(3,1, −2).  

i.e. 

𝑣𝑓⃗⃗⃗⃗⃗ = 𝑣0⃗⃗⃗⃗⃗ + 𝜔⃗⃗⃗ × 𝑟 

𝑣𝑓⃗⃗⃗⃗⃗ = (0,0,0) + (5𝑖̂ − 4𝑗̂ − 10𝑘̂) × (3𝑖̂ + 1𝑗̂ − 2𝑘̂) 

= (0𝑖̂ + 0𝑗̂ + 0𝑘̂) + |
𝑖̂ 𝑗̂ 𝑘̂
5 −4 −10
3 1 −2

| 

= (0𝑖̂ + 0𝑗̂ + 0𝑘̂) + ((8 + 10)𝑖̂ − (−10 + 30)𝑗̂ + (5 + 12)𝑘̂) 
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= (0𝑖̂ + 0𝑗̂ + 0𝑘̂) + (18𝑖̂ − 20𝑗̂ + 17𝑘̂) 

Hence 

𝑣𝑓⃗⃗⃗⃗⃗ = 18𝑖̂ − 20𝑗̂ + 17𝑘̂ 

is the required velocity of the system. 
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Module No. 185 

General Motion of a Rigid Body 
 

In general motion of the body, (i.e. no point of the body is fixed in space), let 𝑭𝑒𝑥𝑡 be the total 

external force on the rigid body and 𝐺𝑐
𝑒𝑥𝑡 the total external torque about its center of mass (i.e. 

centroid). Then the equations of motion are 

 𝑀𝒂𝑐 =𝑭𝑒𝑥𝑡      (1) 

and 

  𝑳𝑐̇ = 𝑮𝑐
𝑒𝑥𝑡     (2) 

where 𝒂𝑐 is the acceleration of the c.m. and 𝑳𝑐 is the total angular momentum about it.  

Now we resolve the vectors 𝒂𝑐,𝑭𝑒𝑥𝑡,𝑮𝑐
𝑒𝑥𝑡and 𝑳 along the unit vector 𝑖,  𝑗,  𝑘 taken along the 

principal axes at the mass center.  

The triad of vectors 𝑖,  𝑗,  𝑘 may be inferred to as a principal triad. It will be assumed to be 

permanently a principal triad.  

Let Ω⃗⃗⃗ be its angular velocity. If the triad is fixed in the body then Ω⃗⃗⃗ = ω⃗⃗⃗, the angular velocity of 

the body. 

Now using the operator: (
𝑑

𝑑𝑡
)
𝑓

= (
𝑑

𝑑𝑡
)
𝑟
+ 𝜔 × 

(
𝑑𝐹⃗

𝑑𝑡
)

𝑓

= (
𝑑𝐹⃗

𝑑𝑡
)

𝑟

+  ω⃗⃗⃗ ×  𝐹⃗ 

which relates the rate of change of a vector in a fixed (i.e. inertial) frame and a rotating frame, 

we have (on dropping the suffix r) 

𝑎𝑓 ≡ (
𝑑𝑣⃗

𝑑𝑡
)

𝑓

=
𝑑𝑣⃗

𝑑𝑡
+ Ω⃗⃗⃗ × 𝑣⃗         (∴ 𝒗𝑟 =  𝒗) 

or     𝑎𝑓 =  
𝑑𝑣

𝑑𝑡
 + Ω⃗⃗⃗ x 𝑣⃗    (3) 

where 𝑣 =  𝑣1𝑖 + 𝑣2𝑗 + 𝑣3𝑘 is the velocity of the mass center (in the rotating coordinate system). 

Substituting for 𝑎𝑓 = 𝑎𝑐 from equation (3) into (1), we obtain 
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𝑀(
𝑑𝒗

𝑑𝑡
+ Ω⃗⃗⃗ × 𝒗) = 𝑭𝑒𝑥𝑡 

which is equivalent to 

    

𝑀(𝑣1̇ +  Ω2𝑣3 +  Ω3𝑣2) =  𝐹1

𝑀(𝑣2̇ +  Ω3𝑣1 +  Ω1𝑣3) =  𝐹2

𝑀(𝑣3̇ +  Ω1𝑣2 +  Ω2𝑣1) =  𝐹3

} (4) 

 

From (2), on using 

(
𝑑𝐿

𝑑𝑡
)𝑓 =

𝑑𝐿

𝑑𝑡
+ 𝛺 x 𝐿   

and the relation 𝐿 =  𝐼1𝜔1𝑖̂ +  𝐼2𝜔2𝑗̂ +  𝐼3𝜔3𝑘̂, we obtain the equations 

  

𝐼1ω1̇ 𝑖̂ +  𝐼2ω2̇ 𝑗̂ +  𝐼3ω3̇ 𝑘̂ + (Ω2𝐿3 −  Ω3𝐿2)𝑖̂ + (Ω2𝐿1 −  Ω1𝐿3)𝑗̂ +  (Ω1𝐿2 −  Ω2𝐿1)𝑘̂ = 𝐺⃗ 

From this vector equation we obtain the following three scalar equations 

𝐼1ω1 +  Ω2𝐿3 −  Ω3𝐿2 =  𝐺1 

𝐼2ω2 +  Ω3𝐿1 −  Ω1𝐿3 =  𝐺2 

and 

𝐼3ω3 +  Ω1𝐿2 −  Ω2𝐿1 =  𝐺3 

where on using the results 

 𝐿1 = 𝐼1ω1, 𝐿2 = 𝐼2ω2,  𝐿3 = 𝐼3ω3 

we have 

 

𝐼1ω1 +  ω3Ω2I3 −  ω2Ω3I2 =  𝐺1

𝐼2ω2 +  ω1Ω3I1 −  ω3Ω1I3 =  𝐺2

𝐼3ω3 +  ω2Ω1I2 −  ω1Ω2I1 =  𝐺3

}       (5) 

where 𝐼1,  𝐼2,  𝐼3 denote principal M.I at the centroid of the body.  

The set of eqs (4) and (5) constitute six equations for the components of velocity of centroid and 

the components of angular velocity of the body.   
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Module No. 186 

Equation of Motion Relative to Coordinate 
System Fixed on Earth 

 

We derived the equation of motion when the origins of fixed and rotating coordinate systems are 

distant. 

𝑎⃗𝑓 = 𝑎⃗0 + 𝑎⃗𝑟 + 2𝜔⃗⃗⃗ × 𝑣⃗𝑟 + 𝜔̇⃗⃗⃗ × 𝑟 + 𝜔⃗⃗⃗ × (𝜔⃗⃗⃗ × 𝑟)      (1) 

From (1) the most general from of the equation of motion in a moving frame can be written as 

𝑚 (
𝑑2𝑟

𝑑𝑡2)
𝑟

= 𝐹⃗ − 𝑚𝜔̇⃗⃗⃗ × 𝑟 − 2𝑚𝜔⃗⃗⃗ × 𝑣𝑟 − 𝑚𝜔⃗⃗⃗ × (𝜔⃗⃗⃗ × 𝑟) − 𝑚𝑎⃗0    (2) 

where the subscript 𝑟 refers to the rotating frame, 𝐹⃗ is the total external force in the fixed 

coordinate system and 𝑎⃗0 is the acceleration of the origin 𝑂 in moving (rotating) coordinate 

system, 𝑂𝑋𝑌𝑍. In the case of the earth, which is a rotating coordinate system, we choose the 

origin as a point fixed on the earth. 

We choose the fixed coordinate system at the center 𝐶 of the earth and denote it by 𝐶𝑋0𝑌0𝑍0 . 

For a particle near the surface of the earth 

    𝐹⃗ = 𝑚𝑔⃗                (3) 

where 𝑔⃗ is the acceleration due to gravity.  

𝑎⃗0, the acceleration of the origin 𝑂 is the centripetal acceleration of 𝑂 due to the rotation of the 

earth. It may be represented as 

         𝑎⃗0 = 𝜔⃗⃗⃗ × (𝜔⃗⃗⃗ × 𝑟𝑒)               (4) 

Therefore on substitution from (3) and (4) into (2), we obtain 

𝑚 (
𝑑2𝑟

𝑑𝑡2
)
𝑟

= 𝑚𝑔⃗ − 𝑚𝜔̇⃗⃗⃗ × 𝑟 − 2𝑚𝜔⃗⃗⃗ × 𝑣𝑟 − 𝑚𝜔⃗⃗⃗ × (𝜔⃗⃗⃗ × 𝑟) − 𝑚𝜔⃗⃗⃗ × (𝜔⃗⃗⃗ × 𝑟𝑒)         (5) 

which gives the full equation of motion for a particle of mass 𝑚 w.r.t. a coordinate system fixed 

on the earth. 

Next we obtain a simple form of (5) taking into account the fact that the angular velocity 𝜔⃗⃗⃗ of 

the earth is nearly constant both in magnitude and direction, (which is along NS i.e. North-South 

polar line), and of small magnitude. In fact 
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𝜔 = |𝜔⃗⃗⃗| =
2𝜋 radian

24 hours
 

=
2𝜋

86400
 radian per second 

= 7.27 × 10−5rad/sec 

Since 𝜔⃗⃗⃗ may be taken as constant, 𝜔̇⃗⃗⃗ = 0.  Since the fourth term on R.H.S. of (5) has the 

magnitude 𝑚𝜔2r (where r is the distance of the particle from the NS-axis), is negligibly small 

because of 𝜔2.   However the fifth term 𝑚𝜔⃗⃗⃗ × (𝜔⃗⃗⃗ × 𝑟𝑒), the last term of equation (5) is not 

negligible because |𝑟𝑒| (the magnitude of the radius of the earth) is very large.  

Hence equation (5) can be written as 

𝑚 (
𝑑2𝑟

𝑑𝑡2
)

𝑟

= 𝑚𝑔⃗ − 2𝑚𝜔⃗⃗⃗ × 𝑣𝑟 − 𝑚𝜔⃗⃗⃗ × (𝜔⃗⃗⃗ × 𝑟𝑒) 

which is a second order differential equation in 𝑟 ⃗⃗⃗ and may also written as 

𝑚
𝑑2𝑟

𝑑𝑡2 + 2𝑚𝜔⃗⃗⃗ ×
𝑑𝑟

𝑑𝑡
= 𝑚𝑔⃗ − 𝑚𝜔⃗⃗⃗ × (𝜔⃗⃗⃗ × 𝑟𝑒)    (6) 

where we have dropped the subscript 𝑟, it being understood that the terms on L.H.S of (6) refer 

to the rotating coordinate system. 

If 𝑒̂ denotes a unit vector along the NS-axis, then we can write 𝜔⃗⃗⃗ = 𝜔𝑒̂,  and equation of motion 

takes the form 

𝑟̈ + 2𝜔𝑒̂ × 𝑟 = 𝑔⃗ − 𝜔2𝑒̂ × (𝑒̂ × 𝑟𝑒) 

 

 

 

 

 

 


