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Chapter 1 

The Real and Complex 
Number Systen1s 

Exercise 1.1 If r is rational (r =f. 0) and x is irrational, prove that r + x and 
rx are irrational. 

Solution. If r and r + x were both rational, then x = r + x - r would also be 
rational. Similarly if rx were rational, then x = 7 would also be rational. 

Exercise 1.2 Prove that there is no rational number whose square is 12. 

First Solution. Since v'f2 = 2.)3, we can inv~ke the previous problem and 
prove that .J3 is irrational. If m and n are integers having no common factor 
and such that m 2 ....:. 3n2 , then m is divisible by 3 (since if m 2 is divisible by 3, 
so ism). Let m = 3k. Then m2 = 9k2 , and we have 3k2 = n 2 . It then follows 
that n is also divisible by 3 contradicting the assumption that m and n have no 
common factor. 

Second Solution. Suppose m 2 = 12n2
, where m and n have no common factor. 

It follows that m must be even, and therefore n must be odd. Let m = 2r. 
Then we have r 2 = 3n2 , so that r is also odd. Let r = 2s + 1 and n = 2t + 1. 
Then 

4s2 + 4s + 1 = 3(4t2 + 4t + 1) = 12t2 + 12t + 3, 

so that 

4( s2 + s - 3t2 
- 3t) = 2. 

But this is absurd, since 2 cannot be a multiple of 4. 
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Exercise 1.3 Prove Proposition 1.15, i.e., prove the following statements: 
(a) If x =f. 0 and xy = xz, then y = z. 
(b) If x =f. 0 and xy = x, then y = 1. 
(c) If x =f. 0 and xy = 1, then y = 1/x. 
(d) If x =f. 0, then 1/(1/x) = x. 

Solution. (a) Suppose x ::J. 0 and xy = xz. By Axiom (M5) there exists an 
element 1/x such that 1/x = 1. By (M3) and (M4) we have (1/x)(xy) = 
((1/x)x)y = ly = y, and similarly (1/x)(xz) = z. Hence y = z. 

(b) Apply (a) with z = 1. 

(c) Apply (a) with z = ljx. 
(d) Apply (a) with x replaced by 1/x, y = 1/(1/x), and z = x. 

Exercise L4 Let E be a nonempty subset of an ordered set; suppose a is a 
lower bound of E, and f3 is an upper bound of E. Prove that a< {3. 

Solution. Since E is nonempty, there exists x E E. Then by definition of lower 
and upper bounds we have a :::; x :::; {3, and hence by property ii in the definition 
of an ordering, we have a< f3 unless a= x = {3. 

Exercise 1.5 Let A be a nonempty set of real numbers which is bounded below. 
Let -A be the set of all numbers -x, where x EA. Prove that 

inf A=- sup( -A). 

Solution: We need to prove that -sup( -A) is the greatest lower bound of A. 
For brevity, let a= -sup( -A). We need to show that a:::; x for all x E A and 
a ~ f3 if f3 is any lower bound of A. 

Suppose x EA. Then, -x E -A, and, hence -x:::; sup( -A). It follows that 
x ~ -sup( -A), i.e., a:::; x. Thus a is a lower bound of A. 

Now let f3 be any lower bound of A. This means f3 :::; x for all x in A. 
Hence -x:::; -{3 for all x E A, which says y:::; -{3 for ally E -A. This means 
-{3 is an upper bound of -A. Hence -{3 ~ sup( -A) by definition of sup, i.e., 
f3:::; -sup( -A), and so- sup( -A) is the greatest lower bound of A. 

Exercise 1.6 Fix b > 1. 
(a) If m, n, p, q are integers, n > 0, q > 0, and r = mjn = pjq, prove that 

Hence it makes sense to define br = (bm) l/n. 

(b) Prove that br+s = brbs if r and s are rational. 
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(c) If x is real, define B ( x) to be the set of all numbers bt, where t is rational 
and t ::; x. Prove that 

br = supB(r) 

when r is rational. Hence it makes sense to define 

bx =sup B(x) 

for every real x. 

(d) Prove that bx+y = bx bY for all real x and y. 

Solution. (a) Let k = mq == np. Since there is only one positive real number c 
such that cnq = bk (Theorem 1.21), if we prove that both (bm)lfn and (bP) 1 fq 
have this property, it will follow that they are equal. The proof is then a routine 
computation: ((bm)Ifntq = (bm)q = bmq = bk, and similarly for (bP) 1 fq. 

(b) Let r = !!!:. and s = ..!!.. • Then r + s = mw+vn and n w nw ' 

by the laws of exponents for integer exponents. By the corollary to Theorem 
1.21 we then have 

where the last equality follows from part (a). 

(c) It will simplify things later on if we amend the definition of B(x) slightly, 
by defining it as {bt : t rational, t < x }. It is then slightly more difficult to 
prove that br = sup B(r) if r is rational, but the technique of Problem 7 comes 
to our rescue. Here is how: It is obvious that br is an upper bound of B(r). 
We need to show that it is the least upper bound. The inequality b1 fn < t if 
n > (b- 1)/(t- 1) is proved just as in Problem 7 below. It follows that if 
0 < x < br, there exists an integer n with b1fn < br jx, i.e., x < br-l/n E B(r). 
Hence x is not an upper bound of B(r), and so br is the least upper bound. 

(d) By definition bx+y = supB(x + y), where B(x + y) is the set of all 
numbers bt with t rational and t < x + y. Now any rational number t that is 
less than x + y can be written as r + s, where r and s are rational, r < x, and 
s < y. To do this, let r be any rational number satisfying t- y < r < x, and 
let s = t- r. Conversely any pair of rational numbers r, s with r < x, s < y 
gives a rational sum t = r + s < x + y. Hence B(x + y) can be described as the 
set of all numbers brbs with r·< x, s < y, and rands rational, i.e., B(x+y) is 
the set of all products uv, where u E B(x) and v E B(y). 

Since any such product is less than supB(x)supB(y), we see that the num­
ber M = sup B(x) sup B(y) is an upper bound for B(x + y). On the other 
hand, suppose 0 < c < supB(x)supB(y). Then cj(supB(x)) < supB(y). Let 
m = (1/2)(c/(supB(x)) + supB(y)). Then c/ supB(x) < m < supB(y), and 
there exist u E B(x), v E B(y) such that cjm < u and m < v. Hence we have 
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c = (cjm)m < uv E B(x + y), and soc is not an upper bound for B(x + y). It 
follows that supB(x) supB(y) is the least upper bound of B(x + y), i.e., 

as required. 

Exercise 1.7 Fix b > 1, y > 0, and prove that there is a unique real x such 
that bx = y, by completing the following outline. (This xis called the logarithm 
of y to the base b.) 

(a) For any positive integer n, bn - 1 2: n(b - 1). 

(b) Hence b-12: n(b1 fn -1). 

(c) If t > 1 and n > (b- 1)/(t- 1), then b1fn < t. 
(d) If w is such that bw < y, then bw+(l/n) < y for sufficiently large n; to see 

this apply part (c) with t = y · b-w. 

(e) If bw > y, then bw-(l/n) > y for sufficiently large n. 

(f) Let A be the set of all w such that bw < y, and show that x = sup A 
satisfies bw = y. 

(g) Prove that this x is unique. 

Solution. (a) The inequality bn - 1 2: n(b- 1) is equality if n = 1. Then, by 
induction bn+l -1 = bn+1 -b+ (b-1) = b(bn -1) + (b-1) 2: bn(b-1) + (b-1) = 
(bn + 1)(b- 1) 2: (n + 1)(b- 1). 

(b) Replace b by b1fn in part (a). 

(c) The inequality n > (b -1)/(t- 1) can be rewritten as n(t- 1) > (b -1), 
and since b- 1 2: n(b1fn- 1), we have n(t- 1) > n(b1fn- 1), which implies 
t > blfn. 

(d) The application of part (c) with t = y · b-w > 1 is immediate. 

(e) The application of part (c) with t = bw · (1 j y) yields the result, as in 
part (d) above. 

(f) There are only three possibilities for the number x =sup A: 1) bx < y; 2) 
bx > y; 3) bx = y. The first assumption, by part (d), implies that x+ (1/n) E A 
for large n, contradicting the assumption that xis an upper bound for A. The 
second, by part (e), implies that x- (1/n) is an upper bound for A if n is large, 
contradicting the assumption that x is the smallest upper bound. Hence the 
only remaining possibility is that bx = y. 

(g) Suppose z =/:. x, say z > x. Then bz = bx+(z-x) = bxbz-x > bx = y. 
Hence x is unique. (It is easy to see that bw > 1 if w > 0, since there is a 
positive rational number r = 7: with 0 < r < w, and br = (bm )1/n. Then 
bm > 1 since b > 1, and (bm)lfn > 1 since 1n = 1 < bm.) 
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Exercise 1.8 Prove that no order can be defined in the complex field that turns 
it into an ordered field. Hint: -1 is a square. 

Solution. By Part (a) of Proposition 1.18, either i or -i must be positive. Hence 
-1 = i 2 = ( -i)2 must be positive. But then 1 = ( -1)2, must also be positive, 
and this contradicts Part (a) of Proposition 1.18, since 1 and -1 cannot both 
be positive. 

Exercise 1.9 Suppose z = a+ bi, w = c + di. Define z < w if a < c, and 
also if a = c but b < d. Prove that this turns the set of all complex numbers 
into an ordered set. (This type of order relation is called a dictionary order, or 
lexicographic order, for obvious reasons.) Does this ordered set have the least 
upper bound property? 

Solution. We need to show that either z < w or z = w, or w < z. Now sin~e 
the real numbers are ordered, we have a < c or a = c, or c < a. In the first 
case z < w; in the third case w < z. Now consider the second case. We must 
have b < d or b = d or d < b. In the first of these cases z < w, in the third case 
w < z, and in the second case z = w. 

We also need to show that if z <wand w < u, then z < u. Let u = e + fi. 
Since z < w, we have either a < cor a= c and b < d. Since w < u we have 
either c < for c = f and d <g. Hence there are four possible cases: 

Case 1: a< c and c <f. Then a< f and so z < u, as required. 
Case 2: a < c and c = f and d < g. Again a < f, and z < u. 
Case 3: a = c and b < d and c < f. Once again. a < f and so z < u. 
Case 4: a= c and b < d and c = j, and d <g. Then a= f and b < g, and 

so z < u. 

Ex~rcise 1.10 Suppose z =a+ bi, w = u + iv, and 

a= ('wl2+ ur/2, b = cwl2- ur/2. 

Prove that z2 = w if v 2: 0 and that (z)2 = w if v :::; 0. Conclude that every 
complex number (with one exception) has two complex square roots. 

Solution. 

Now 
a2 _ b2 = !w! + u _ !w! - u = u 

2 2 ' 

and, since ( xy) 112 . x 112y112, 

_ (!w!+u!w!-u)l/2_ (!w! 2 -u2)1/2 2ab - 2 
2 2 

- 2 
4 

. 
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Hence 

2ab = 2( (~) 
2r12 

Now (x2)112 = x if x 2: 0 and (x2)112 = -x if x ~ 0. We conclude that 2ab = v 
if v 2: 0 and 2ab = -v if v ~ 0. Hence z2 = w if v 2: 0. Replacing b by -b, we 
find that (z) 2 = w if v ~ 0. 

Hence every non-zero complex number has (at least) two complex square 
roots. 

Exercise 1.11 If z is a complex number, prove that there exists an r > 0 and a 
complex number w with lwl = 1 such that z = rw. Are wand r always uniquely 
determined by z? 

Solution. If z =' 0, we take r = 0, w = 1. (In this case w is not unique.) 
Otherwise we taker= !zl and w = z/lzl, and these choices are unique, since if 
z = rw, we must haver= r!wl = !rw! = !z!, zjr. 

Exercise 1.12 If z1 , ... , Zn are complex, prove that 

Solution. The case n = 2 is Part (e) of Theorem 1.33. We can then apply this 
result and induction on n to get 

!(zl + Z2 + · · · + Zn-l) + Znl 
< !zl + Z2 + · · · + Zn-ll + lzn I 
< lz1l + lz2l + · · · + lzn-11 + lznl· 

Exercise 1.13 If x, yare complex, prove that 

j!xl-iYII ~ !x- Yl· 

Solution. Since x = x- y + y, the triangle inequality gives 

lxl ~ !x- Yl + IYI, 

so that lxl- !YI ~ !x- Yl· Similarly IY!-!xl ~ !x- Yl· Since !xl- IYI is a real 
number we have either j!x!-IYII = !xi-IYI or j!xi-IY!I = IYI-!xl. In either 
case, we have shown that jlxl - IYII ~ lx- Yl· 
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Exercise 1.14 If z is a complex number such that \z\ = 1, that is, such that 
zz = 1, compute 

Solution. \1 + z\ 2 = (1 + z)(1 + z) = 1 + z + z + zz = 2 + z + z. Similarly 
\1- z\2 = (1- z)(1- z) = 1- z- z + zz = 2- z- z. Hence 

\1 + z\ 2 + \1- z\ 2 = 4. 

Exercise 1.15 Under what conditions does equality hold in the Schwarz in­
equality? 

Solution. The proof of Theorem 1.35 shows that equality can hold if B = 0 or 
if Baj- Cb.i = 0 for all j, i.e., the numbers aj are proportional to the numbers 
bj. (In terms of linear algebra this means the vectors a = ( a1, a2, ... , an) and 
b = (bll b2, ... , bn) in complex n-dimensional space are linearly dependent. Con­
versely, if these vectors are linearly independent, then strict inequality holds.) 

Exercise 1.16 Suppose k 2: 3, x, y E Rk, \x- y\ = d > 0, and r > 0. Prove: 

(a) If 2r > d, there are infinitely many z E Rk such that 

\z - x\ = \z - y\ = r. 

(b) If 2r = d, there is exactly one such z. 

(c) If 2r < d, there is no such z. 

How must these statements be modified if k is 2 or 1? 

Solution. (a) Let w be any vector satisfying the following two equations: 

w·(x-y) 

\w\2 

From linear algebra it is known that all but one of the components of a solution 
w of the first equation can be arbitrary. The remaining component is then 
uniquely determined. Also, if w i~ any non-zero solution of the first equation, 
there is a unique positive number t such that tw satisfies both equations. (For 
example, if x 1 =/:. y1 , the first equation is satisfied whenever 

Z2(X2- Y2) + ... + Zk(Xk - Yk) 
Zl = . 

Yl- Xl 

If (z1 , z2, ... , zk) satisfies this equation, so does (tz1 , tz2, ... , tzk) for any real 
number t.) Since at least two of these components can vary independently, we 
can find a solution with these components having any prescribed ratio. This 
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ratio does not change when we multiply by the positive number t to obtain 
a solution of both equations. Since there are infinitely many ratios, there are 
infinitely many distinct solutions. For each such solution w the vector z -
~x + ~y + w is a solution of the required equation. For 

ly;x+wl2 

l
y-xl2 x-y 2 
-2- +2w·-2-+lwl 

·d2 d2 
- +0+r2--
4 4 

r2 
' 

and a similar relation holds for iz - y! 2 . 

(b) The proof of the triangle inequality shows that equality can hold in this 
inequality only if it holds in the Schwarz inequality, i.e., one of the two vectors 
is a scalar multiple of the other. Further examination of the proof shows that 
the scalar must be nonnegative. Now the conditions of this part of the problem 
show that 

!x- Yl = d = !x- zi + iz - Yl· 
Hence it follows that there is a nonnegative scalar t such that 

x- z = t(z- y). 

However, the hypothesis also shows immediately that t = 1, and so z is uniquely 
determined as 

x+y 
Z= -2-. 

(c) If z were to satisfy this condition, the triangle inequality would be vio­
lated, i.e., we would have 

lx- Yl = d > 2r = lx- zi + !z- Yl· 

When k = 2, there are precisely 2 solutions in case (a). When k = 1, there 
are no solutions in case (a). The conclusions in cases (b) and (c) do not require 
modification. 

Exercise 1.17 Prove that 

if x E Rk and y E Rk. Interpret this geometrically as a statement about 
parallelograms. 

Solution. The proof is a routine computation, using the relation 
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If x and y are the sides of a parallelogram, then x + y and x - y are its 
diagonals. Hence this result says that the sum of the squares on the diagonals 
of a parallelogram equals the sum of the squares on the sides. 

Exercise 1.18 If k 2:: 2 and x E Rk, prove that there exists y E Rk such that 
y =I= 0 but x · y = 0. Is this also true if k = 1? 

Solution. If x has any components equal to 0, then y can be taken to have 
the corresponding components. equal to 1 and all others equal to 0. If all the 
components of x are nonzero, y can be taken as ( -x2 , x 1 , 0, ... , 0). This is, of 
course, not true when k = 1, since the product of two nonzero real numbers is 
nonzero. 

Exercise 1.19 Suppose a E Rk, bE Rk. Find c E Rk and r > 0 such that 

lx - ai = 2jx- hi 

if and only if lx- cl = r. (Solution: 3c = 4b- a, 3r = 2lb- a!.) 

Solution. Since the solution is given to us, all we have to do is verify it, i.e., we 
need to show that the equation 

lx-al = 2lx- bl 

is equivalent to lx- cl = r, which says 

I 
4 1 I 2 x- -b+ -a= -lb-al 3 3 3 . 

If we square both sides of both equations, we an equivalent pair of equations, 
the first of which reduces to 

3lxl 2 + 2a · x- 8b · x- lal2 + 4lbl 2 = 0, 

and the second of which reduces to this equation divided by 3. Hence these 
equations are indeed equivalent. 

Exercise 1.20 With reference to the Appendix, suppose that property (III) 
were omitted from the definition of a cut. Keep the same definitions of order 
and addition. Show that the resulting ordered set has the least-upper-bound 
property, that addition satisfies axioms (A1) to (A4) (with a slightly different 
zero element!) but that (A5) fails. 

Solution. We are now defining a cut to be a proper subset of the rational 
numbers that contains, along with each of its elements, all smaller rational 
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numbers. Order is defined by containment. Now given a set A of cuts having an 
upper bound {3, let a be the union of all the cuts in A. Obviously a is properly 
contained in {3, and so is a proper subset of the rationals. It also obviously 
satisfies the property that if p E a and q < p, then q E a; hence a is a cut. It is 
further obvious that a contains each elements of A, and so is an upper bound 
for A. It remains to prove that there is no smaller upper bound. 

To that end, suppose, "/ < a, then a contains an element x not in "Y· By 
definition of a, x must belong to some cut b in A. But then "Y < b, and so "Y is 
not an upper bound for A. Thus a is the least upper bound. 

The proof given in the text goes over without any change to show that (Al), 
(A2), and (A3) hold. As for (A4) let 0 = {r : r ~ 0}. We claim 0 +a = a. 
The proof is easy. First, we obviously have 0 +a~ a. For r + s ~ s if r ~ 0. 
Hence r + s E a if s E a. Conversely a ~ 0 +a, since each s in a can be written 
as 0 + s. 

Unfortunately, if 0' = { r : r < 0}, there is no element a such that a + 0' = 

0. For a + 0' has no largest element. If x = r + s E a + 0', where r E a and 
s E 0', there is an element t E 0' with t > s, and so r+t E a+O' and r+t > s. 
Since 0 has a largest element (namely 0), these two sets cannot be equal. 


