Practice Questions Lecture # 7 and 8

Question #1

Determine whether the following system has a trivial solution or non-trivial solution:

$$x_1 - 2x_2 + x_3 = 0$$

$$3x_2 - 3x_3 = 0$$

$$x_1 - 3x_2 = 0$$

Solution:

The coefficient matrix is

$$\begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 3 & -3 & 0 \\ 1 & -3 & 0 & 0 \end{bmatrix}$$
$$\begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & -1 & -1 & 0 \\ \end{bmatrix} \frac{1}{3R_2, R_3 - R_1}$$
$$\begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & -2 & 0 \end{bmatrix} R_3 + R_2$$

The corresponding system of equations will be

$$x_1 - 2x_2 + x_3 = 0$$

$$x_2 - x_3 = 0$$

$$-2x_3 = 0$$

By backward substitution, we get $x_1 = 0$, $x_2 = 0$, $x_3 = 0$. Thus, the given system has only the trivial solution.

Question # 2

Solve the following system using the reduced echelon form:

$$x_1 + 4x_2 + 6x_3 = 0$$

- 2x_1 - 5x_3 = 0
$$3x_2 - 7x_3 = 0$$

Solution:

Given system of equation could be translated into matrix form as

1 4 6 -2 0 -5 0 3 -7

add 2 times the 1st row to the 2nd row

1	4	6
0	8	7
0	3	-7

Multiply the 2nd row by 1/8

1	4	6
0	1	7
-		8
0	3	-7

add -3 times the 2nd row to the 3rd row \square

1	4	6
0	1	7
0	0	-77 8

Multiply the 3rd row by -8/77

0	1	7
		8
0	0	1

add -7/8 times the 3rd row to the 2nd row

1	4	6
0	1	0
0	0	1

add -6 times the 3rd row to the 1st row

- 1 4 0
- 0 1 0
- 0 0 1

add -4 times the 2nd row to the 1st row

1	0	0	
0	1	0	
0	0	1	

Question # 3

Check whether $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ is linearly dependent or not?

where
$$\vec{v}_1 = \begin{bmatrix} -2\\1\\3 \end{bmatrix}$$
, $\vec{v}_2 = \begin{bmatrix} 1\\0\\2 \end{bmatrix}$ and $\vec{v}_3 = \begin{bmatrix} 2\\-2\\1 \end{bmatrix}$

Solution:

The set $S = {v_1, v_2, v_3}$ of vectors in R^3 is **linearly independent** if the only solution of

is
$$c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 \mathbf{v}_3 = 0$$

Otherwise (i.e., if a solution with at least some nonzero values exists), S is linearly dependent.

With our vectors \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 , becomes:

$$c_{1}\begin{bmatrix} -2\\ 1\\ 3\end{bmatrix} + c_{2}\begin{bmatrix} 1\\ 0\\ 2\end{bmatrix} + c_{3}\begin{bmatrix} 2\\ -2\\ 1\end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0\\ 0\end{bmatrix}$$

Rearranging the left hand side yields

$$\begin{array}{c}
-2 c_1 +1 c_2 +2 c_3 \\
1 c_1 +0 c_2 -2 c_3 \\
3 c_1 +2 c_2 +1 c_3
\end{array} = \begin{array}{c}
0 \\
0 \\
0
\end{array}$$

The matrix equation above is equivalent to the following homogeneous system of equations

```
\begin{array}{rrrrr} -2 \ c_1 & +1 \ c_2 & +2 \ c_3 = 0 \\ 1 \ c_1 & +0 \ c_2 & -2 \ c_3 = 0 \\ 3 \ c_1 & +2 \ c_2 & +1 \ c_3 = 0 \end{array}
```

We now transform the coefficient matrix of the homogeneous system above to the reduced row echelon form to determine whether the system has

- the trivial solution only (meaning that S is linearly independent), or
- the trivial solution as well as nontrivial ones (S is linearly dependent).

-2	1	2
1	0	-2
3	2	1

can be transformed by a sequence of elementary row operations to the matrix

1	0	0
0	1	0
0	0	1

The reduced row echelon form of the coefficient matrix of the homogeneous system is

1	0	0
0	1	0
0	0	1

which corresponds to the system

$$1 c_1 = 0
1 c_2 = 0
1 c_3 = 0$$

Since each column contains a leading entry (highlighted in yellow), then the system has only the trivial solution, so that the only solution is c_1 , c_2 , $c_3 = 0$.

Therefore the set $S = \{v_1, v_2, v_3\}$ is **linearly independent**.

Question #4

Determine, without solving, whether the following set of vectors is linearly independent or

dependent.

c ∫	[1]		3		4		[7]	
2 = {	2	,	4	,	6	,	3	Ì

Solution:

Using the same rule in previous question, with our vectors \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 , \mathbf{v}_4

-	1		3		4		7		0
c ₁	2	$+ c_2$	4	$+ c_3$	6	$+ c_4$	3	=	0

Rearranging the left hand side yields

$$\frac{1 c_1 + 3 c_2 + 4 c_3 + 7 c_4}{2 c_1 + 4 c_2 + 6 c_3 + 3 c_4} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

The matrix equation above is equivalent to the following homogeneous system of equations

$$1 c_1 + 3 c_2 + 4 c_3 + 7 c_4 = 0$$

 $2 c_1 + 4 c_2 + 6 c_3 + 3 c_4 = 0$

• We now transform the coefficient matrix of the homogeneous system above to the reduced row echelon form

1	3	4	7
2	4	6	3

can be transformed by a sequence of elementary row operations to the matrix

The reduced row echelon form of the coefficient matrix of the homogeneous system is

which corresponds to the system

 $1 c_1 + 1 c_3 + (-19/2) c_4 = 0$ $1 c_2 + 1 c_3 + (11/2) c_4 = 0$

The leading entries have been highlighted in yellow.

Since some columns do not contain leading entries, then the system has nontrivial solutions, so that some of the values c_1 , c_2 , c_3 , c_4 solving the system of equation may be nonzero.

Therefore the set $S = \{v_1, v_2, v_3, v_4\}$ is **linearly dependent**.

Question #5

Show that the columns of $A = \begin{bmatrix} 2 & 4 \\ 4 & -3 \end{bmatrix}$ are linearly independent.

Solution:

Vectors in \mathbb{R}^2 is **linearly independent** if the only solution of

$$\mathbf{c}_1 \mathbf{v}_1 + \mathbf{c}_2 \mathbf{v}_2 = \mathbf{0}$$

is $c_1, c_2 = 0$

$$\mathbf{c}_1 \begin{bmatrix} 2\\ 4 \end{bmatrix} + \mathbf{c}_2 \begin{bmatrix} 4\\ -3 \end{bmatrix} = \begin{bmatrix} 0\\ 0 \end{bmatrix}$$

Rearranging the left hand side yields

$2 c_1 + 4 c_2$	_	0
$4 c_1 - 3 c_2$	_	0

The matrix equation above is equivalent to the following homogeneous system of equations

```
2 c_1 + 4 c_2 = 0
4 c_1 - 3 c_2 = 0
```

We now transform the coefficient matrix of the homogeneous system above to the • reduced row echelon form

2	4
4	-3

can be transformed by a sequence of elementary row operations to the matrix

1	0
0	1

The reduced row echelon form of the coefficient matrix of the homogeneous is

which corresponds to the system

$$1 c_1 = 0$$

 $1 c_2 = 0$

Since each column contains a leading entry (highlighted in yellow), then the system has only the trivial solution, so that the only solution is c_1 , $c_2 = 0$.

Therefore columns of A are **linearly independent**.