Practice Question Lecture \# 35

Question:
Find the dominant Eigen pair (i.e. the Eigen value and Eigen vector) by using the Power Method for the following matrix.

$$
A=\left[\begin{array}{ll}
4 & 1 \\
1 & 3
\end{array}\right], \quad x_{0}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

Solution:
$A x_{o}=\left[\begin{array}{ll}4 & 1 \\ 1 & 3\end{array}\right]\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{l}4 \\ 1\end{array}\right]$
$u_{o}=4$
$x_{1}=\frac{1}{u_{o}} A x_{o}=\frac{1}{4}\left[\begin{array}{l}4 \\ 1\end{array}\right]=\left[\begin{array}{c}1 \\ 1 / 4\end{array}\right]$
$A x_{1}=\left[\begin{array}{ll}4 & 1 \\ 1 & 3\end{array}\right]\left[\begin{array}{c}1 \\ 1 / 4\end{array}\right]=\left[\begin{array}{c}17 / 4 \\ 7 / 4\end{array}\right]=\left[\begin{array}{l}4.25 \\ 1.75\end{array}\right]$
$u_{1}=4.25$
Repeat the process until you get the repeated value of u.

Question:
Perform next iteration for power method, where $A x_{o}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$, where $A=\left[\begin{array}{ll}3 & 1 \\ 2 & 7\end{array}\right]$
Solution:
$\mu_{o}=2$
$x_{1}=\frac{1}{\mu_{o}} A x_{o}$
$x_{1}=\frac{1}{2}\left[\begin{array}{l}1 \\ 2\end{array}\right]=\left[\begin{array}{l}1 / 2 \\ 1\end{array}\right]=\left[\begin{array}{l}.5 \\ 1\end{array}\right]$
$A x_{1}=\left[\begin{array}{ll}3 & 1 \\ 2 & 7\end{array}\right]\left[\begin{array}{l}0.5 \\ 1\end{array}\right]$
Questions:
Perform next iteration for power method, where $A x_{1}=\left[\begin{array}{l}3 \\ 8\end{array}\right]$, where $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 6\end{array}\right]$

Solution:

Same process as above.

Question

Check whether the matrix $\left[\begin{array}{cc}\frac{1}{\sqrt{3}} & 0 \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}\end{array}\right]$ has orthonormal columns or not?
Solution:

$$
u=\left[\begin{array}{cc}
\frac{1}{\sqrt{3}} & 0 \\
\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}
\end{array}\right]
$$

An $m \times n$ matrix U has orthonormal columns if and only if $U^{T} U=I$
$U^{T}=\left[\begin{array}{ccc}\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ 0 & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right]$
$U^{T} U=\left[\begin{array}{ccc}\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ 0 & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right]\left[\begin{array}{cc}\frac{1}{\sqrt{3}} & 0 \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}\end{array}\right]=\boldsymbol{I}$
The columns of U are orthonormal.

Question:

Determine whether the vectors $\boldsymbol{y}=\left[\begin{array}{c}-2 \\ -3 \\ 4 \\ 1\end{array}\right], \mathbf{z}=\left[\begin{array}{c}7 \\ -2 \\ 1 \\ 4\end{array}\right]$ are orthogonal.

Solution:

y. $\mathbf{z}=-14+6+4+4=0$
$\therefore \mathbf{y}$ and \mathbf{z} are orthogonal.

Question

Find the distance between $x=\left[\begin{array}{c}7 \\ -3\end{array}\right]$ and $y=\left[\begin{array}{l}-1 \\ -2\end{array}\right]$.

Solution:

$\operatorname{dis}(x, y)=\|x-y\|^{2}=|7-(-1)|^{2}+|-3-(-2)|^{2}=8^{2}+1=65$

Question:

Let $u=\left[\begin{array}{l}3 \\ -4 \\ -2\end{array}\right], v=\left[\begin{array}{c}2 \\ -5 \\ 7\end{array}\right]$. Compute and compare $u . v,\|u\|^{2},\|v\|^{2}$ and $\|u+v\|^{2}$.
Solution:
$u . v=3(2)+(-4)(-5)+(-2)(7)$
$\|u\|^{2}=u . u$
$\|v\|^{2}=v . v$
$\|u+v\|^{2}=(u+v) \cdot(u+v)$

Question:
Let $u=\left[\begin{array}{l}-3 \\ 4\end{array}\right], v=\left[\begin{array}{l}2 \\ 3\end{array}\right], w=\left[\begin{array}{c}4 \\ -4 \\ -2\end{array}\right]$. Find
(a) $\frac{v . u}{u . u}$
(b) $\|w\|$
(c) $\left(\frac{u . v}{v . v}\right) v$

Same process as in above question.
Question:

Express the vector v in terms of the orthogonal basis $B=\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}\right\}$, where
$v=\left[\begin{array}{c}-2 \\ 3 \\ 5 \\ -1\end{array}\right], u_{1}=\left[\begin{array}{l}2 \\ 1 \\ 3 \\ -1\end{array}\right], u_{2}=\left[\begin{array}{c}-3 \\ -1 \\ -1 \\ 0\end{array}\right], u_{3}=\left[\begin{array}{c}-3 \\ 2 \\ 0 \\ 1\end{array}\right]$

Solution:

Use the following formula:

$v=\frac{v \cdot u_{1}}{u_{1} \cdot u_{1}} \cdot u_{1}+\frac{v \cdot u_{2}}{u_{2} \cdot u_{2}} \cdot u_{2}+\frac{v \cdot u_{3}}{u_{3} \cdot u_{3}} \cdot u_{3}$

Question:

Determine whether the set $S=\left\{\boldsymbol{U}_{1}, \boldsymbol{U}_{2}, \boldsymbol{U}_{3}\right\}$ is an orthogonal set?

$$
\text { Where } \boldsymbol{U}_{1}=\left[\begin{array}{l}
1 \\
-2 \\
1
\end{array}\right], \boldsymbol{U}_{2}=\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right], \boldsymbol{U}_{3}=\left[\begin{array}{l}
-5 \\
-2 \\
1
\end{array}\right]
$$

Solution:
If u1.u2, u1.u3 and $u 2 . \mathrm{u} 3$ are equal to zero then the S is an orthogonal set.

Question:

Compute the orthogonal projection of $\left[\begin{array}{l}3 \\ 4\end{array}\right]$ onto the line through $\left[\begin{array}{l}2 \\ -5\end{array}\right]$ and the origin. Solution:
$\hat{y}=\frac{y \cdot u}{u . u} \cdot u$
Then compute
$\|\hat{y}-y\|$
Here $\mathrm{y}=\mathrm{y}=\left[\begin{array}{l}3 \\ 4\end{array}\right]$, and $\quad u=\left[\begin{array}{l}2 \\ -5\end{array}\right]$

Question:

Let $y=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $u=\left[\begin{array}{l}4 \\ 3\end{array}\right]$. Compute the distance from y to the line through u and the origin.

Solution:

Since we know that the distance from a vector \boldsymbol{y} to a line through the line from \boldsymbol{u} and origin is $\| y$ - projection of y on $u \|$ also we know that
projection of y on u
$\hat{y}=\frac{y \cdot u}{u . u} u$
Then compute
$\|\hat{y}-y\|$
Here $\mathrm{y}=\mathrm{y}=\left[\begin{array}{l}3 \\ 4\end{array}\right]$, and $\quad u=\left[\begin{array}{l}2 \\ -5\end{array}\right]$

Question:
Find the orthogonal projection of \mathbf{y} onto $\operatorname{Span}\left\{u_{1}, u_{2}\right\}$.
$y=\left[\begin{array}{l}-8 \\ -5 \\ 4\end{array}\right], u_{1}=\left[\begin{array}{l}1 \\ 2 \\ -3\end{array}\right], u_{2}=\left[\begin{array}{l}2 \\ -4 \\ 7\end{array}\right]$
Solution:
Same as above

Question:

Find a least square solution for the system $\boldsymbol{A x}=\boldsymbol{b}$
Where $A=\left[\begin{array}{ll}3 & 2 \\ 1 & 0 \\ 4 & 3\end{array}\right], b=\left[\begin{array}{l}1 \\ -2 \\ 3\end{array}\right]$

Solution:

First Compute $A^{T} A$ and $A^{T} b$
Then using the formula
$A^{T} A x=A^{T} b$
Compute the value of x .

Question

Apply the Gram-Schmidt process to transform the vectors $u_{1}=(1,0,0), u_{2}=(0,1,0), u_{3}=(0,0,1)$ into an orthonormal basis.

Solution:

Let $v_{1}=u_{1}$
Now
$v_{2}=u_{2}-\frac{u_{1} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1}$
$v_{2}=u_{3}-\left[\frac{u_{3} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1}+\frac{u_{3} \cdot v_{2}}{v_{2} \cdot v_{2}} v_{2}\right]$
Thus $\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}$ are orthonormal basis.

Question

Let $\mathrm{W}=$ Span $\left\{\mathrm{x}_{1}, \mathrm{x}_{2}\right\}$, where $x_{1}=\left[\begin{array}{r}6 \\ 0 \\ -2\end{array}\right], x_{2}=\left[\begin{array}{c}-4 \\ 3 \\ -2\end{array}\right]$. Construct an orthogonal basis $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}\right\}$ for
W.

Solution:
Same as above.

Question

Let W be the subspace of R^{2} spanned by $\left[\begin{array}{l}4 \\ 6\end{array}\right]$. Find a unit vector that is a basis for W .
Solution:
Let
$y=\left[\begin{array}{l}4 \\ 6\end{array}\right]$

$$
\|y\|^{2}=4^{2}+6^{2}=16+36=52
$$

Now compute $\|y\|=\sqrt{52}$
So
$z=\frac{1}{2 \sqrt{13}}\left[\begin{array}{l}4 \\ 6\end{array}\right]=\left[\begin{array}{l}2 / \sqrt{13} \\ 3 / \sqrt{13}\end{array}\right]$

