
Practice Question Lecture # 35 

Question: 

Find the dominant Eigen pair (i.e. the Eigen value and Eigen vector) by using the Power Method 
for the following matrix.                                           
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Question: 

Perform next iteration for power method, where
1
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Questions:  

Perform next iteration for power method, where 1

3
8

Ax  
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, where A=

1        2
3        6

 
 
 

 

 
Solution: 



Same process as above. 

 
Question 

Check whether the matrix

1 0
3
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 − 
 
 
  

has orthonormal columns or not? 

Solution: 
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An m×n matrix U has orthonormal columns if and only if UTU = I 
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The columns of U are orthonormal. 
 
 
 



Question: 

Determine whether the vectors 

2 7
3 2

,
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1 4
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y z  are orthogonal. 

 
Solution: 

y. z = -14+6+4+4 = 0 
∴ y and z are orthogonal. 
 
 

Question  

Find the distance between
7 1
3 2

x and y
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= =   − −   
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Solution: 
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Question: 

Let 
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Same process as in above question. 
 

 
Question: 
 
 
Express the vector v in terms of the orthogonal basis B = {u1, u2, u3}, where 
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Solution: 

Use the following formula: 
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Question: 

Determine whether the set S= { 1 2 3
, ,u u u } is an orthogonal set? 

Where 1 2 3
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1 2 1
u u u

−     
     = − = = −     
          

                               

 
Solution: 
 
If u1.u2, u1.u3 and u2.u3 are equal to zero then the S is an orthogonal set.  
 

Question: 

Compute the orthogonal projection of 
3
4

 
 
 

 onto the line through 
2
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 − 

 and the origin. 

Solution: 
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Question: 

Let
1 4
1 3

y and u   
= =   

   
. Compute the distance from y to the line through u and the origin. 



 
Solution: 
Since we know that the distance from a vector y to a line through the line from u 
and origin is y projection of y on u− also we know that 
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Then compute 
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Here y=
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Question: 
Find the orthogonal projection of y onto 1 2{ , }Span u u . 

1 2

8 1 2
5 , 2 , 4

4 3 7
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Solution: 
Same as above 
 
 
Question: 
Find a least square solution for the system Ax = b  

Where 
1
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3

A b
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   = 1        0  = −   
   4        3   

 

 
Solution: 
 
First Compute T TA A and A b     
Then using the formula  
 

T TA Ax A b=   
 
Compute the value of x.  
 
 
 



Question 
Apply the Gram-Schmidt process to transform the vectors ( ) ( )1 2 3(1, , ), 0,1,0 , 0,0,1u u u=  0  0  = =  
into an orthonormal basis. 
Solution: 
 
 
Let 1 1v u=   
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Thus v1, v2, v3 are orthonormal basis. 
 
Question 

Let W = Span {x1, x2}, where 1 2

6 4
0 , 3
2 2

x x
−   

   = =   
   − −   

. Construct an orthogonal basis {v1, v2} for 

W. 
Solution: 

Same as above.  

 
Question 

Let W be the subspace of 2R spanned by
4
6

 
 
 

. Find a unit vector that is a basis for W. 

Solution: 
Let  
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