Practice Question Lecture \# 35 to 45

Question

Find the dominant Eigen pair (i.e. the Eigen value and Eigen vector) by using the Power Method for the following matrix.

$$
A=\left[\begin{array}{ll}
4 & 1 \\
1 & 3
\end{array}\right], \quad x_{0}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

Question

Perform next iteration for power method, where $A x_{o}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$, where $A=\left[\begin{array}{ll}3 & 1 \\ 2 & 7\end{array}\right]$

Questions

Perform next iteration for power method, where $A x_{1}=\left[\begin{array}{l}3 \\ 8\end{array}\right]$, where $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 6\end{array}\right]$

Question

Check whether the matrix $\left[\begin{array}{cc}\frac{1}{\sqrt{3}} & 0 \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}\end{array}\right]$ has orthonormal columns or not?

Question

Determine whether the vectors $\boldsymbol{y}=\left[\begin{array}{c}-2 \\ -3 \\ 4 \\ 1\end{array}\right], \mathbf{z}=\left[\begin{array}{c}7 \\ -2 \\ 1 \\ 4\end{array}\right]$ are orthogonal.

Question

Find the distance between $x=\left[\begin{array}{c}7 \\ -3\end{array}\right]$ and $y=\left[\begin{array}{l}-1 \\ -2\end{array}\right]$.

Question:

Let $u=\left[\begin{array}{l}3 \\ -4 \\ -2\end{array}\right], v=\left[\begin{array}{c}2 \\ -5 \\ 7\end{array}\right]$.Compute and compare $u . v,\|u\|^{2},\|v\|^{2}$ and $\|u+v\|^{2}$.

Question:

Let $u=\left[\begin{array}{l}-3 \\ 4\end{array}\right], v=\left[\begin{array}{l}2 \\ 3\end{array}\right], w=\left[\begin{array}{c}4 \\ -4 \\ -2\end{array}\right]$.
Find
(a) $\frac{v . u}{u . u}$
(b) $\|w\|$
(c) $\left(\frac{u \cdot v}{v . v}\right) v$

Question:

Express the vector v in terms of the orthogonal basis $B=\left\{u_{1}, u_{2}, u_{3}\right\}$, where
$v=\left[\begin{array}{c}-2 \\ 3 \\ 5 \\ -1\end{array}\right], u_{1}=\left[\begin{array}{l}2 \\ 1 \\ 3 \\ -1\end{array}\right], u_{2}=\left[\begin{array}{c}-3 \\ -1 \\ -1 \\ 0\end{array}\right], u_{3}=\left[\begin{array}{c}-3 \\ 2 \\ 0 \\ 1\end{array}\right]$

Question:

Determine whether the set $\mathrm{S}=\left\{\boldsymbol{U}_{1}, \boldsymbol{U}_{2}, \boldsymbol{U}_{3}\right\}$ is an orthogonal set?

$$
\text { Where } \boldsymbol{U}_{1}=\left[\begin{array}{l}
1 \\
-2 \\
1
\end{array}\right], \boldsymbol{U}_{2}=\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right], \boldsymbol{U}_{3}=\left[\begin{array}{l}
-5 \\
-2 \\
1
\end{array}\right]
$$

Question

Compute the orthogonal projection of $\left[\begin{array}{l}3 \\ 4\end{array}\right]$ onto the line through $\left[\begin{array}{l}2 \\ -5\end{array}\right]$ and the origin.

Question:

Let $y=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $u=\left[\begin{array}{l}4 \\ 3\end{array}\right]$. Compute the distance from y to the line through u and the origin.

Question:

Find the orthogonal projection of \mathbf{y} onto $\operatorname{Span}\left\{u_{1}, u_{2}\right\}$.
$y=\left[\begin{array}{l}-8 \\ -5 \\ 4\end{array}\right], u_{1}=\left[\begin{array}{l}1 \\ 2 \\ -3\end{array}\right], u_{2}=\left[\begin{array}{l}2 \\ -4 \\ 7\end{array}\right]$

Question:

Find a least square solution for the system $\boldsymbol{A x}=\boldsymbol{b}$
Where $A=\left[\begin{array}{ll}3 & 2 \\ 1 & 0 \\ 4 & 3\end{array}\right], b=\left[\begin{array}{l}1 \\ -2 \\ 3\end{array}\right]$

Question

Apply the Gram-Schmidt process to transform the vectors $u_{1}=(1,0,0), u_{2}=(0,1,0), u_{3}=(0,0,1)$ into an orthonormal basis.

Question

Let $\mathrm{W}=$ Span $\left\{\mathrm{x}_{1}, \mathrm{x}_{2}\right\}$, where $\mathrm{x}_{1}=\left[\begin{array}{r}6 \\ 0 \\ -2\end{array}\right], x_{2}=\left[\begin{array}{c}-4 \\ 3 \\ -2\end{array}\right]$. Construct an orthogonal basis $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}\right\}$ for W.

Question

Determine whether the vectors $u=(1,2,-4,3), v=(-2,1,-3,-4)$ are orthogonal with respect to Euclidean inner product.

Question

Let W be the subspace of R^{2} spanned by $\left[\begin{array}{l}4 \\ 6\end{array}\right]$. Find a unit vector that is a basis for W . Question

Let $C[0,2 \pi]$ have the inner product $\int_{0}^{2 \pi} f(t) g(t) d t$. Computer $\|\sin k t\|^{2}$ for $k>0$.

Question

Write the Fourier coefficients a_{k} and b_{k} to the function $f(\mathrm{y})=2 y$ on the interval $[0,2 \pi]$.

