Practice Question Lecture # 35 to 45

Question

Find the dominant Eigen pair (i.e. the Eigen value and Eigen vector) by using the Power Method for the following matrix.

$$\mathbf{A} = \begin{bmatrix} 4 & 1 \\ 1 & 3 \end{bmatrix} \quad , \quad \mathbf{x}_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Question

Perform next iteration for power method, where $Ax_o = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, where $A = \begin{bmatrix} 3 & 1 \\ 2 & 7 \end{bmatrix}$

Questions

Perform next iteration for power method, where $Ax_1 = \begin{bmatrix} 3 \\ 8 \end{bmatrix}$, where $A = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}$

Question

Check whether the matrix
$$\begin{bmatrix} \frac{1}{\sqrt{3}} & 0\\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$
 has orthonormal columns or not?

Question

Determine whether the vectors
$$\mathbf{y} = \begin{bmatrix} -2 \\ -3 \\ 4 \\ 1 \end{bmatrix}, \mathbf{z} = \begin{bmatrix} 7 \\ -2 \\ 1 \\ 4 \end{bmatrix}$$
 are orthogonal.

Question

Find the distance between $x = \begin{bmatrix} 7 \\ -3 \end{bmatrix}$ and $y = \begin{bmatrix} -1 \\ -2 \end{bmatrix}$.

Question:

Let
$$u = \begin{bmatrix} 3 \\ -4 \\ -2 \end{bmatrix}$$
, $v = \begin{bmatrix} 2 \\ -5 \\ 7 \end{bmatrix}$. Compute and compare $u.v, ||u||^2, ||v||^2$ and $||u+v||^2$.

Question:

Let
$$u = \begin{bmatrix} -3 \\ 4 \end{bmatrix}, v = \begin{bmatrix} 2 \\ 3 \end{bmatrix}, w = \begin{bmatrix} 4 \\ -4 \\ -2 \end{bmatrix}.$$

Find

(a)
$$\frac{v.u}{u.u}$$

(b) $\|w\|$

(c)
$$(\frac{u.v}{v.v})v$$

Question:

Express the vector v in terms of the orthogonal basis $B = \{u_1, u_2, u_3\}$, where

<i>v</i> =	-2	, <i>u</i> ₁ =	2	, <i>u</i> ₂ =	-3	, <i>u</i> ₃ =	-3	
	3		1		-1		2	
	5		3		-1		0	
	1_		1_		0		1	

Question:

Determine whether the set $S = \{ \mathcal{U}_1, \mathcal{U}_2, \mathcal{U}_3 \}$ is an orthogonal set?

Where
$$\boldsymbol{u}_1 = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$$
, $\boldsymbol{u}_2 = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$, $\boldsymbol{u}_3 = \begin{bmatrix} -5 \\ -2 \\ 1 \end{bmatrix}$

Question

Compute the orthogonal projection of $\begin{bmatrix} 3 \\ 4 \end{bmatrix}$ onto the line through $\begin{bmatrix} 2 \\ -5 \end{bmatrix}$ and the origin.

Question:

Let $y = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $u = \begin{bmatrix} 4 \\ 3 \end{bmatrix}$. Compute the distance from y to the line through u and the origin.

Question:

Find the orthogonal projection of **y** onto $Span\{u_1, u_2\}$.

 $y = \begin{bmatrix} -8 \\ -5 \\ 4 \end{bmatrix}, u_1 = \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}, u_2 = \begin{bmatrix} 2 \\ -4 \\ 7 \end{bmatrix}$

Question:

Find a least square solution for the system Ax = b

Where $A = \begin{bmatrix} 3 & 2 \\ 1 & 0 \\ 4 & 3 \end{bmatrix}, b = \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix}$

Question

Apply the Gram-Schmidt process to transform the vectors $u_1 = (1, 0, 0), u_2 = (0, 1, 0), u_3 = (0, 0, 1)$ into an orthonormal basis.

Question

Let W = Span {x₁, x₂}, where
$$x_1 = \begin{bmatrix} 6 \\ 0 \\ -2 \end{bmatrix}$$
, $x_2 = \begin{bmatrix} -4 \\ 3 \\ -2 \end{bmatrix}$. Construct an orthogonal basis {v₁, v₂} for

W.

Question

Determine whether the vectors u = (1, 2, -4, 3), v = (-2, 1, -3, -4) are orthogonal with respect to Euclidean inner product.

Question

Let W be the subspace of R^2 spanned by $\begin{bmatrix} 4 \\ 6 \end{bmatrix}$. Find a unit vector that is a basis for W. **Question**

Let $C[0, 2\pi]$ have the inner product $\int_{0}^{2\pi} f(t)g(t)dt$. Computer $\|\sin kt\|^2$ for k > 0.

Question

Write the Fourier coefficients a_k and b_k to the function f(y) = 2y on the interval $[0, 2\pi]$.