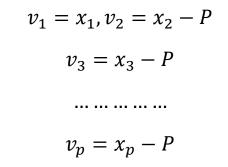
Orthogonal Basis

Theorem:

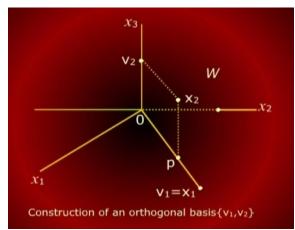
Given a basis $\{x_1, x_2, ..., x_p\}$ for a subspace W of \mathbb{R}^n . Then



Then $\{v_1, v_2, \dots, v_p\}$ is an orthogonal basis for W. In addition

$$Span\{v_1, v_2, \dots, v_k\} = Span\{x_1, x_2, \dots, x_k\} for \ 1 \le k \le p$$

Example #1



This is the graphical representation of

example # 1 on page # 485. In this example we have two vectors x_1 and x_2 . *W* is the vector space and *P* is the projection of x_2 on x_1 . Next the component of x_2 orthogonal to x_1 is

$$x_2 = x_1 - P$$

Which is in W because it formed by x_1 and multiples of x_1x_2 .