Since we know that the vectors say $\vec{v}_1, \vec{v}_2, \cdots, \vec{v}_n$ in \mathbb{R}^n are linearly independent \iff whenever for the scalars $\alpha_1, \alpha_2, \cdots, \alpha_n$, the equation:

 $\alpha_1 \overrightarrow{v}_1 + \alpha_2 \overrightarrow{v}_2 + \dots + \alpha_n \overrightarrow{v}_n = \overrightarrow{0}$ has the trivial solution (zero) and linearly dependent \iff that equation has non-trivial solution (least one non - zero).

Now we apply the above on the following questions:

Question 16:

If $\vec{v}_1, \ldots, \vec{v}_4$ are in \mathbb{R}^4 , and $\vec{v}_3 = 2\vec{v}_1 + \vec{v}_2$, then $\vec{v}_1, \cdots, \vec{v}_4$ is linearly dependent.

Solution:

Given that $\overrightarrow{v}_3 = 2\overrightarrow{v}_1 + \overrightarrow{v}_2$ $\Longrightarrow -2\overrightarrow{v}_1 - \overrightarrow{v}_2 + \overrightarrow{v}_3 = \overrightarrow{0}$ $\Longrightarrow (-2)\overrightarrow{v}_1 + (-1)\overrightarrow{v}_2 + (1)\overrightarrow{v}_3 + 0\overrightarrow{v}_4 = \overrightarrow{0}$ $\Longrightarrow \alpha_1 = -2\alpha_2 = -1\alpha_2 = 1$ and $\alpha_4 = 0$

 $\implies \alpha_1 = -2, \alpha_2 = -1, \alpha_3 = 1$ and $\alpha_4 = 0$ i.e. not all the scalars are zeros \implies the given vectors are Linearly Dependent.

Question 17:

If \vec{v}_1 and \vec{v}_2 are in \mathbb{R}^4 , and \vec{v}_1 is not a scalar multiple of \vec{v}_2 , then $\{\vec{v}_1, \vec{v}_2\}$ is linearly independent.

Solution:

If \overrightarrow{v}_1 is a scalar multiple of \overrightarrow{v}_2 , then \exists a scalar say $\alpha \neq 0 \in \mathbb{R}$ such that

 $\overrightarrow{v}_1 = \alpha \overrightarrow{v}_2 \Longrightarrow \overrightarrow{v}_1 - \alpha \overrightarrow{v}_2 = \overrightarrow{0} \Longrightarrow (1) \overrightarrow{v}_1 + \alpha \overrightarrow{v}_2 = \overrightarrow{0} \Longrightarrow \alpha_1 = 1, \alpha_2 = \alpha \neq 0$ i.e not all are zeros \Longrightarrow the \overrightarrow{v}_1 and \overrightarrow{v}_2 are linearly dependent.

But it is given that \overrightarrow{v}_1 is not a scalar multiple of $\overrightarrow{v}_2 \Longrightarrow$ the given vectors are linearly Independent.

Question 18:.

If $\vec{v}_1, \ldots, \vec{v}_4$ are in \mathbb{R}^4 , and $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ is linearly dependent, then $\{\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4\}$ is also linearly dependent.

Solution:

 $\{ \overrightarrow{v}_1, \overrightarrow{v}_2, \overrightarrow{v}_3 \} \text{in } \mathbb{R}^4 \text{ are linearly dependent} \\ \therefore \alpha_1 \overrightarrow{v}_1 + \alpha_2 \overrightarrow{v}_2 + \alpha_3 \overrightarrow{v}_3 = \overrightarrow{0} \implies \text{not all the scalars are zeros.} \\ \implies \alpha_1 \overrightarrow{v}_1 + \alpha_2 \overrightarrow{v}_2 + \alpha_3 \overrightarrow{v}_3 + 0 \overrightarrow{v}_4 = \overrightarrow{0} \\ \implies \alpha_1 \overrightarrow{v}_1 + \alpha_2 \overrightarrow{v}_2 + \alpha_3 \overrightarrow{v}_3 + 0 \overrightarrow{v}_4 = \overrightarrow{0} \\ \implies \alpha_1 \overrightarrow{v}_1, \overrightarrow{v}_2, \overrightarrow{v}_3, \overrightarrow{v}_4 \} \text{ is linearly dependent.}$