Question

Let
$$\vec{v}_1 = \begin{pmatrix} 1\\0\\0\\-1 \end{pmatrix}$$
, $\vec{v}_2 = \begin{pmatrix} 0\\1\\0\\-1 \end{pmatrix}$, $\vec{v}_3 = \begin{pmatrix} 1\\0\\-1\\0 \end{pmatrix}$. Does $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ span

 $\mathbb{R}^4?$

Solution:

If
$$\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$$
span \mathbb{R}^4 , then for any arbitrary vector say $\begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix}$ in \mathbb{R}^4 , the

vector equation: $\vec{\alpha v_1} + \vec{\beta v_2} + \vec{\gamma v_3} = \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix}$ has the solution, where α, β and

 γ are unknowns but the roles of x, y, z and t is also critical and noteworthy.

Now from vector equation:

$$\begin{aligned} \alpha \vec{v}_{1} + \beta \vec{v}_{2} + \gamma \vec{v}_{3} &= \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \\ \Rightarrow \alpha \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} + \beta \begin{pmatrix} 0 \\ 1 \\ 0 \\ -1 \end{pmatrix} + \gamma \begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \\ \Rightarrow \begin{pmatrix} \alpha \\ 0 \\ 0 \\ -\alpha \end{pmatrix} + \begin{pmatrix} 0 \\ \beta \\ 0 \\ -\beta \end{pmatrix} + \begin{pmatrix} \gamma \\ 0 \\ -\gamma \\ 0 \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \\ \Rightarrow \begin{pmatrix} \alpha + \gamma \\ \beta \\ -\gamma \\ -\alpha - \beta \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \\ \Rightarrow \begin{pmatrix} \alpha + \gamma \\ \beta \\ -\gamma \\ -\alpha - \beta \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \\ \Rightarrow \begin{pmatrix} \alpha + \gamma \\ \beta \\ -\gamma \\ -\alpha - \beta + 0\gamma = y \\ 0\alpha + \beta - \gamma = z \\ -\alpha - \beta + 0\gamma = t \end{aligned} \text{ i.e. the associated system of linear equations in }$$

THREE variable α,β and $\gamma. And its corresponding augmented matrix:$

$$\left. \begin{array}{cccc} 1 & 0 & 1 & x \\ 0 & 1 & 0 & y \\ 0 & 1 & -1 & z \\ -1 & -1 & 0 & t \end{array} \right)$$

Now its reduced Echelon form is as follows;

$$\left(\begin{array}{rrrrr} 1 & 0 & 1 & x \\ 0 & 1 & 0 & y \\ 0 & 1 & -1 & z \\ -1 & -1 & 0 & t \end{array}\right)$$

$$\begin{split} & \text{By } R_4' \longrightarrow R_4 + R_1 \\ & \begin{pmatrix} 1 & 0 & 1 & x \\ 0 & 1 & 0 & y \\ 0 & 1 & -1 & z \\ -1+1 & -1+0 & 0+1 & t+x \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 & x \\ 0 & 1 & 0 & y \\ 0 & 1 & -1 & z \\ 0 & -1 & 1 & t+x \end{pmatrix} \\ & \text{By } R_3' \longrightarrow R_3 - R_2, R_4' \longrightarrow R_4 + R_2 \\ & \sim \begin{pmatrix} 1 & 0 & 1 & x \\ 0 & 1 & 0 & y \\ 0 & 1-1 & -1-0 & z-y \\ 0 & -1+1 & 1+0 & t+x+y \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 & x \\ 0 & 1 & 0 & y \\ 0 & 0 & -1 & z-y \\ 0 & 0 & 1 & t+x+y \end{pmatrix} \\ & \text{By } R_4' \longrightarrow R_4 + R_3 \\ & \sim \begin{pmatrix} 1 & 0 & 1 & x \\ 0 & 1 & 0 & y \\ 0 & 0 & -1 & z-y \\ 0 & 0 & 1+1 & t+x+y+z-y \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 & x \\ 0 & 1 & 0 & y \\ 0 & 0 & -1 & z-y \\ 0 & 0 & 0 & t+x+z \end{pmatrix} \\ & \text{Now the last row \Longrightarrow two cases i.e. either } t+x+0y+z \neq 0 \text{ or } t+x+0y+z=0 \end{split}$$

Case 1:

if $t+x+0y+z \neq 0$ then last row $\implies 0\gamma = t+x+0y+z \neq 0 \implies 0\gamma \neq 0$, which is impossible $\forall \gamma \in \mathbb{R}$, as \nexists a real number which on multiplying with zero can give a non - zero real number.

 \implies solution does not exist whenever $t + x + 0y + z \neq 0$

 \therefore the given vectors do not span \mathbb{R}^4 .

Case 2:

if t + x + 0y + z = 0 then last row $\implies 0\gamma = t + x + 0y + z = 0 \implies 0\gamma = 0$, which is true $\forall \gamma \in \mathbb{R}$ because every real number on multiplying with *zero* gives a *zero*.

 \implies solution does exist whenever t + x + 0y + z = 0, but it implies geometrically in this case that all vectors of the form $\begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix}$ should lie in the

hyper-plane through origin as t + x + 0y + z = 0 represents the hyper-plane in \mathbb{R}^4 which is 3-dimensional (equivalent to \mathbb{R}^3).

 \implies choice of taking the arbitrary vectors from \mathbb{R}^4 is *restricted* to those vectors lie only on one of its hyper-plane: t + x + 0y + z = 0

 \implies the given columns vectors can span \mathbb{R}^3 only!

∴ columns of matrix A can not span \mathbb{R}^4 .

By applying theorem-2 from lecture-6 on this problem. Theorem 2: Let A be an $m \times n \mathrm{matrix}.$ Then the following statements are logically equivalent.

(a) For each \overrightarrow{b} in \mathbb{R}^m , the equation $A\overrightarrow{x} = \overrightarrow{b}$ has a solution.

- (b) The columns of A Span \mathbb{R}^m .
- (c) A has a pivot position in every row.

(b) and (c) are important to note which say "columns of A Span $\mathbb{R}^m \iff A$ has a pivot position in every row".

Here
$$A = \begin{pmatrix} \vec{v}_1 & \vec{v}_2 & \vec{v}_3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \\ -1 & -1 & 0 \end{pmatrix}$$
. Now we reduce this into

Echelon form as follows; By $R'_4 \longrightarrow R_4 + R_1$

By
$$R_4 \longrightarrow R_4 + R_1$$

 $\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & -1 \\ -1+1 & -1+0 & 0+1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{pmatrix}$
By $R'_3 \longrightarrow R_3 - R_2, R'_4 \longrightarrow R_4 + R_2$

$$\sim \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1-1 & -1-0 \\ 0 & -1+1 & 1+0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$

By $R'_4 \longrightarrow R_4 + R_3$
$$\sim \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 1+1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$
 i.e. the reduced Echelon form,

where it can be seen that 4th row does not contain Pivot.

 \Longrightarrow columns of A does not span \mathbb{R}^4 .

 \therefore given vectors also does not span \mathbb{R}^4 .