Question:

Do the columns of the matrix $A = \begin{pmatrix} 3 & 5 \\ 1 & 1 \\ 2 & 8 \end{pmatrix}$ span \mathbb{R}^3 ? Solution:

Denoting the column vectors of A as: $\vec{u} = \begin{pmatrix} 3\\1\\2 \end{pmatrix}$ and $\vec{v} = \begin{pmatrix} 5\\1\\8 \end{pmatrix}$. If column vectors of A span \mathbb{R}^3 , then \implies any arbitrary vector say $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ in \mathbb{R}^3 can be expressed as a linear combination of column vectors \vec{u} and \vec{v} of matrix A. \implies vector equation: $\alpha \vec{u} + \beta \vec{v} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ has the solution, where of course α and β are unknowns, but the role of x, y and z is also very critical.

Now vector equation:
$$\alpha \vec{u} + \beta \vec{v} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

 $\Rightarrow \alpha \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix} + \beta \begin{pmatrix} 5 \\ 1 \\ 8 \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$
 $\Rightarrow \begin{pmatrix} 3\alpha \\ \alpha \\ 2\alpha \end{pmatrix} + \begin{pmatrix} 5\beta \\ \beta \\ 8\beta \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$
 $\Rightarrow \begin{pmatrix} 3\alpha + 5\beta \\ \alpha + \beta \\ 2\alpha + 8\beta \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$
 $\Rightarrow \begin{pmatrix} 3\alpha + 5\beta \\ \alpha + \beta \\ 2\alpha + 8\beta \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$
 $3\alpha + 5\beta = x$
 $\Rightarrow \alpha + \beta = y$, i.e. the associated system of equations in TWO variables
 $2\alpha + 8\beta = z$

 α and β and its corresponding augmented matrix is: $\begin{pmatrix} 3 & 5 & x \\ 1 & 1 & y \\ 2 & 8 & z \end{pmatrix}$. Now we

reduce this into reduced Echelon form as follows;

$$\begin{pmatrix} 3 & 5 & x \\ 1 & 1 & y \\ 2 & 8 & z \end{pmatrix}$$

By $R_1 \longleftrightarrow R_2$
 $\sim \begin{pmatrix} 1 & 1 & y \\ 3 & 5 & x \\ 2 & 8 & z \end{pmatrix}$
By $R'_1 \longrightarrow R_2 - 3R_1, R'_2 \longrightarrow R_2 - 2R_1$

$$\sim \begin{pmatrix} 1 & 1 & y \\ 3 - 3(1) & 5 - 3(1) & x - 3(y) \\ 2 - 2(1) & 8 - 2(1) & z - 2(y) \end{pmatrix} = \begin{pmatrix} 1 & 1 & y \\ 0 & 2 & x - 3y \\ 0 & 6 & z - 2y \end{pmatrix}$$
By $R'_3 \longrightarrow R_3 - 3R_2$
$$\sim \begin{pmatrix} 1 & 1 & y \\ 0 & 2 & x - 3y \\ 0 & 6 - 3(2) & z - 2y - 3(x - 3y) \end{pmatrix} = \begin{pmatrix} 1 & 1 & y \\ 0 & 2 & x - 3y \\ 0 & 0 & -3x + 7y + z \end{pmatrix}$$
Now the last row \Longrightarrow two cases i.e. either $-3x + 7y + z \neq 0$ or $-3x + 7y + z = 0$

Case 1:

if $-3x + 7y + z \neq 0$ then last row $\implies 0\beta = -3x + 7y + z \neq 0 \implies 0\beta \neq 0$, which is impossible $\forall \beta \in \mathbb{R}$, as \nexists a real number which on multiplying with zero can give a non - zero real number.

 \implies solution does not exist whenever $-3x + 7y + z \neq 0$

∴ columns of matrix A can not span \mathbb{R}^3 .

Case 2:

if -3x + 7y + z = 0 then last row $\implies 0\beta = -3x + 7y + z = 0 \implies 0\beta = 0$, which is true $\forall \beta \in \mathbb{R}$ because every real number on multiplying with *zero* gives a *zero*.

 \implies solution does exist whenever -3x + 7y + z = 0, but it implies geometrically in this case that all vectors of the form $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ should lie in the plane through origin as -3x + 7y + z = 0 represents the plane which is 2-

dimensional (equivalent to \mathbb{R}^2), as shown in the following figure.

 \implies choice of taking the arbitrary vectors from \mathbb{R}^3 is *restricted* to those vectors lie only on the plane: -3x + 7y + z = 0

 \Longrightarrow columns of matrix A can span \mathbb{R}^2 only!

 \therefore columns of matrix A can not span \mathbb{R}^3 .

-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-

Alternative Solution:

Applying the theorem-2 from lecture-6 on this problem.

Theorem 2:

Let A be an $m \times n$ matrix. Then the following statements are logically equivalent.

- (a) For each \vec{b} in \mathbb{R}^m , the equation $A\vec{x} = \vec{b}$ has a solution.
- (b) The columns of A Span \mathbb{R}^m .
- (c) A has a pivot position in every row.

(b) and (c) are important to note which say "columns of A Span $\mathbb{R}^m \iff A$ has a pivot position in every row".

Now we reduce matrix
$$A = \begin{pmatrix} 3 & 5 \\ 1 & 1 \\ 2 & 8 \end{pmatrix}$$
 into Echelon form.
By $R_1 \longleftrightarrow R_2$
 $\sim \begin{pmatrix} 1 & 1 \\ 3 & 5 \\ 2 & 8 \end{pmatrix}$
By $R'_1 \longrightarrow R_2 - 3R_1, R'_2 \longrightarrow R_2 - 2R_1$
 $\sim \begin{pmatrix} 1 & 1 \\ 3 - 3(1) & 5 - 3(1) \\ 2 - 2(1) & 8 - 2(1) \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 2 \\ 0 & 6 \end{pmatrix}$
By $R'_3 \longrightarrow R_3 - 3R_2$
 $\sim \begin{pmatrix} 1 & 1 \\ 0 & 2 \\ 0 & 6 - 3(2) \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 2 \\ 0 & 0 \end{pmatrix}$ i.e the Echelon form, where it can be seen that 3rd row does not contain any Pivot.
 \Longrightarrow columns of A does not span \mathbb{R}^3 .