Question:

Let $\overrightarrow{u} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$, $\overrightarrow{v} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$. Show that $\begin{pmatrix} h \\ k \end{pmatrix}$ is in the $Span\{\overrightarrow{u}, \overrightarrow{v}\}$ for $1 \ h$ and k.

Solution:

 \therefore we know that a vector $\begin{pmatrix} h \\ k \end{pmatrix}$ is in the $Span\{\overrightarrow{u}, \overrightarrow{v}\} \iff$ vector equation:

 $\begin{pmatrix} h \\ k \end{pmatrix} = x\vec{u} + y\vec{v}$ has the solution, where x and y are unknows.

 $\implies \frac{2x+2y=h}{x+y=k}$ is the associated system of equations in two variables and

its corresponding augmented matrix is: $\left(\begin{array}{ccc} 2 & 2 & h \\ 1 & 1 & k \end{array} \right)$.

Now we apply elementary row operations to reduce it into Echelon forms as follows:

Hows;
$$\begin{pmatrix} 2 & 2 & h \\ 1 & 1 & k \end{pmatrix}$$
By $R_1 \longleftrightarrow R_2$ (interchanging 1st and 2nd rows)
$$\sim \begin{pmatrix} 1 & 1 & k \\ 2 & 2 & h \end{pmatrix}$$
By $R'_2 \to R_2 - 2R_1$

$$\sim \begin{pmatrix} 1 & 1 & k \\ 2 - 2(1) & 2 - 2(1) & h - 2(k) \end{pmatrix} = \begin{pmatrix} 1 & 1 & k \\ 0 & 0 & h - 2k \end{pmatrix}$$
Now the last row \Longrightarrow either $h - 2k = 0$ or $h - 2k \neq 0$

Case-1:

If h-2k=0, then last row implies $0y=h-2k=0 \Longrightarrow 0y=0$, which is true $\forall y \in \mathbb{R}$.

 \Longrightarrow the system has a solution whenever h-2k=0 and it is also true $\forall h,k\in\mathbb{R}$

$$\Longrightarrow \begin{pmatrix} h \\ k \end{pmatrix} \in Span\{\overrightarrow{u}, \overrightarrow{v}\} \text{ whenever } h = 2k.$$

Case-2:

If $h-2k \neq 0$, then last row implies $0y = h-2k \neq 0 \Longrightarrow 0y \neq 0$, which is impossible $\forall y \in \mathbb{R}$.

 $\implies \text{ the system has no solution whenever } h-2k \neq 0 \text{ and } \binom{h}{k} \notin Span\{\overrightarrow{u},\overrightarrow{v}\} \text{ whenever } h\neq 2k.$