Question:

Let
$$\vec{v}_1 = \begin{pmatrix} 1\\0\\-2 \end{pmatrix}$$
, $\vec{v}_2 = \begin{pmatrix} -2\\1\\7 \end{pmatrix}$ and $\vec{y} = \begin{pmatrix} h\\-3\\-5 \end{pmatrix}$. For what value(s)

of h, is \vec{y} in the plane generated by \vec{v}_1 and \vec{v}_2 ?

Solution:

 \therefore we know if a vector \vec{y} is in the plane generated by \vec{v}_1 and \vec{v}_2 then $\implies \vec{y}$ can be written as a linear combination of \vec{v}_1 and \vec{v}_2 , then \implies vector equation: $\vec{y} = x \vec{v}_1 + y \vec{v}_2$ has the solution, where x and y are unknows.

$$\begin{array}{l} \therefore \overrightarrow{y} = x \ \overrightarrow{v}_1 + y \ \overrightarrow{v}_2 \\ \Rightarrow \begin{pmatrix} h \\ -3 \\ -5 \end{pmatrix} = x \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix} + y \begin{pmatrix} -2 \\ 1 \\ 7 \end{pmatrix} \\ \Rightarrow \begin{pmatrix} h \\ -3 \\ -5 \end{pmatrix} = \begin{pmatrix} x \\ 0 \\ -2x \end{pmatrix} + \begin{pmatrix} -2y \\ y \\ 7y \end{pmatrix} \\ \Rightarrow \begin{pmatrix} h \\ -3 \\ -5 \end{pmatrix} = \begin{pmatrix} x \\ 0 \\ -2x \end{pmatrix} + \begin{pmatrix} -2y \\ y \\ 7y \end{pmatrix} \\ \Rightarrow \begin{pmatrix} h \\ -3 \\ -5 \end{pmatrix} = \begin{pmatrix} x - 2y \\ y \\ 7y - 2x \end{pmatrix}, \text{ the corresponding system of quation: } \begin{array}{l} x - 2y = h \\ y = -3 \\ -2x + 7y = -5 \\ \hline \\ 7(-3) = -5 \Rightarrow x = -8 \end{array}$$

: 1st equation \implies $(-8) - 2(-3) = h \implies h = -2$ is the required value.