Prove that $\overrightarrow{u} + \overrightarrow{v} = \overrightarrow{v} + \overrightarrow{u}$ for any \overrightarrow{u} and \overrightarrow{v} in \mathbb{R}^n .

Proof: Let $u, v \in \mathbb{R}^n$. $\implies \overrightarrow{u} = (x_1, x_2, \cdots, x_n), \overrightarrow{v} = (y_1, y_2, \cdots, y_n)$, where all x and y's are members from \mathbb{R} . Here we are to prove the commutative law in \mathbb{R}^n : $\overrightarrow{u} + \overrightarrow{v} = \overrightarrow{v} + \overrightarrow{u}$,

while we know that commutative law under addition "+"holds in \mathbb{R} i.e. $x + y = y + x - - (1) \quad \forall x, y \in \mathbb{R}$ Now the addition in \mathbb{R}^n is defined as; $\overrightarrow{u} + \overrightarrow{v} = (x_1, x_2, \cdots, x_n) + (y_1, y_2, \cdots, y_n) = (x_1 + y_1, x_2 + y_2, \cdots, x_n + y_n)$ $\implies \overrightarrow{u} + \overrightarrow{v} = (y_1 + x_1, y_2 + x_2, \cdots, y_n + x_n) \quad \because \text{ by using (1).}$

 $\implies \overrightarrow{u} + \overrightarrow{v} = (y_1 + x_1, y_2 + x_2, \cdots, y_n + x_n) = (y_1, y_2, \cdots, y_n) + (x_1, x_2, \cdots, x_n)$ $\implies \overrightarrow{u} + \overrightarrow{v} = \overrightarrow{v} + \overrightarrow{u}. \ \Box$