Choose h and k such that the system: $\begin{array}{c} x-3y=1\\ 2x+hy=k \end{array}$ has (a) no solution, (b) a unique solution, and (c) many solutions. Give separate answer for each part.

Solution:

For the given system: $\begin{array}{l} x-3y=1\\ 2x+hy=k \end{array}$, the corresponding augmented

matrix:
$$\begin{pmatrix} 1 & -3 & 1 \\ 2 & h & k \end{pmatrix}$$

Now we apply on the elementary row operations to get its Echelon form.
$$\begin{pmatrix}
1 & -3 & 1 \\
2 & h & k
\end{pmatrix}$$
By $R'_2 \longrightarrow R_2 - 2R_1$

$$\sim \begin{pmatrix}
1 & -3 & 1 \\
2 - 2 & h - 2(-3) & k - 2(1)
\end{pmatrix} = \begin{pmatrix}
1 & -3 & 1 \\
0 & h + 6 & k - 2
\end{pmatrix}$$
By $R'_2 \to (\frac{1}{h+6})R_2$

$$\sim \begin{pmatrix}
1 & -3 & 1 \\
0 & (\frac{1}{h+6})(h+6) & (\frac{1}{h+6})(k-2)
\end{pmatrix} = \begin{pmatrix}
1 & -3 & 1 \\
0 & 1 & \frac{1}{h+6}(k-2)
\end{pmatrix}$$
∴ second row $\Longrightarrow y = \frac{k-2}{h+6} - - - - - (1)$
now we have the three cases:

Case-1(No solution)

In (1), if the denominator h + 6 = 0, then y goes to infinity and hence x will also be! Hence the solution will not exist whenever h + 6 = 0or h = -6

Case-2(Unique solution)

In (1), if the Numerator = k - 2 = 0, then $\Longrightarrow y = 0$ and hence 1st row of reduced augmented matrix $\implies 1x - 3(0) = 1$ or x = 1. Hence there is a unique solution: $\{(1,0)\}$ in this case whenever k-2=0 or k=2

Case-3(Infinite many solutions)

 $(1) \Longrightarrow y = \frac{k-2}{h+6}$ and now if both $h+6 \neq 0$ and $k-2 \neq 0$, then for infinite many values of k(except k=2) and h(except h=-6), there would be infinite many values of y and hence of x.

: the system will have infinite many solutions whenever both $h \neq 6$ and $k \neq 2$.