Question:

 $T: \mathbb{R}^2 \to \mathbb{R}^2$ first rotates points counterclockwise through $\frac{\pi}{4}$ radians and then reflects the result in the x_2 -axis.

Solution:

the transformation that rotates each point in R_2 through an angle θ , with counterclockwise rotation for a positive angle is given by the matrix:A = $\cos\theta - \sin\theta$ $\sin \theta$ $\cos heta$

$$\therefore$$
 for the given angle $\theta = \frac{\pi}{4}$,

$$A = \begin{pmatrix} \cos\frac{\pi}{4} & -\sin\frac{\pi}{4} \\ \sin\frac{\pi}{4} & \cos\frac{\pi}{4} \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

: the standard basis vectors for \mathbb{R}^2 are $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

the standard basis vectors for \mathbb{K}^{2} are $\begin{pmatrix} 0 \end{pmatrix}$ and $\begin{pmatrix} 1 \end{pmatrix}$ transformation of rotation counterclockwise through $\frac{\pi}{4}$ radians is given by the followin columns:

$$A\begin{pmatrix} 1\\0 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 1\\0 \end{pmatrix} = \begin{pmatrix} \frac{1}{2}\sqrt{2}\\ \frac{1}{2}\sqrt{2} \end{pmatrix}$$

and
$$A\begin{pmatrix} 0\\1 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 0\\1 \end{pmatrix} = \begin{pmatrix} -\frac{1}{2}\sqrt{2}\\ \frac{1}{2}\sqrt{2} \end{pmatrix}$$

: the matrix transformation of rotation is: $\begin{pmatrix} A \begin{pmatrix} 1 \\ 0 \end{pmatrix} & A \begin{pmatrix} 0 \\ 1 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} \frac{1}{2}\sqrt{2} & -\frac{1}{2}\sqrt{2} \\ \frac{1}{2}\sqrt{2} & \frac{1}{2}\sqrt{2} \end{pmatrix}$ But the given transformation also reflect on x_2 -axis, where $x_1 = 0$ and this

But the given transformation also reflect on x_2 -axis, where $x_1 = 0$ and x_1 is given by the transformation: $T\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ x_2 \end{pmatrix}$ $\implies T\begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ and $T\begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ \implies the reflection matrix on x_2 -axis: $\begin{pmatrix} T\begin{pmatrix} 1 \\ 0 \end{pmatrix} & T\begin{pmatrix} 0 \\ 1 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$

 \therefore the required matrix transformation first rotates points counterclockwise through $\frac{\pi}{4}$ radians and then reflects the result in the x_2 -axis, is given by:

$$\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} A \begin{pmatrix} 1 \\ 0 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{2}\sqrt{2} \\ \frac{1}{2}\sqrt{2} \end{pmatrix} = \begin{pmatrix} 0 \\ \frac{1}{2}\sqrt{2} \end{pmatrix}$$
$$\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} A \begin{pmatrix} 0 \\ 1 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -\frac{1}{2}\sqrt{2} \\ \frac{1}{2}\sqrt{2} \end{pmatrix} = \begin{pmatrix} 0 \\ \frac{1}{2}\sqrt{2} \end{pmatrix}$$
$$\implies \text{required matrix:} \begin{pmatrix} 0 & 0 \\ \frac{1}{2}\sqrt{2} & \frac{1}{2}\sqrt{2} \end{pmatrix}$$

Alternate Solution:

: the transformation that rotates each point in R_2 through an angle θ , with counterclockwise rotation for a positive angle is given by the matrix:A = $\cos\theta - \sin\theta$ $\sin \theta$ $\cos heta$

$$\therefore \text{ for the given angle } \theta = \frac{\pi}{4},$$

$$A = \begin{pmatrix} \cos \frac{\pi}{4} & -\sin \frac{\pi}{4} \\ \sin \frac{\pi}{4} & \cos \frac{\pi}{4} \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$
And, the reflection matrix on x_2 -axis: $B = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$

$$\therefore \text{ the required matrix transformation first rotates points counterclockwise}$$
through $\frac{\pi}{4}$ radians and then reflects the result in the x_2 -axis, is given by: $BA \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = B \left\{ A \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\} = B \left\{ \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\} = B \left\{ \begin{pmatrix} \frac{1}{2}\sqrt{2} & -\frac{1}{2}\sqrt{2} \\ \frac{1}{2}\sqrt{2} & \frac{1}{2}\sqrt{2} \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ \frac{1}{2}\sqrt{2} & \frac{1}{2}\sqrt{2} \end{pmatrix}$