Question:

Assume that T is a linear transformation. Find the standard matrix of $T: \mathbb{R}^3 \to \mathbb{R}^3$ projects each point (x_1, x_2, x_3) vertically onto the x_1x_2 -plane (where $x_3 = 0$).

Solution:

The standard basis vectors in \mathbb{R}^3 are: $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ and given

that $T: \mathbb{R}^3 \to \mathbb{R}^3$ projects each point (x_1, x_2, x_3) vertically onto the x_1x_2 -plane (where $x_3 = 0$)

$$\Longrightarrow T \left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array} \right) = \left(\begin{array}{c} x_1 \\ x_2 \\ 0 \end{array} \right) \Longrightarrow$$
 for the standard basis vectors, we have:

$$T\begin{pmatrix} 1\\0\\0 \end{pmatrix} = \begin{pmatrix} 1\\0\\0 \end{pmatrix}, T\begin{pmatrix} 0\\1\\0 \end{pmatrix} = \begin{pmatrix} 0\\1\\0 \end{pmatrix} \text{ and } T\begin{pmatrix} 0\\0\\1 \end{pmatrix} = \begin{pmatrix} 0\\0\\0 \end{pmatrix}.$$