If the coordinate of a vector x with respect to basis $\{b1, b2\}$ are given as

$$\mathbf{x} = 2b_1 + 3b_2$$

and $\{b_1, b_2\}$ are further expressed in terms of basis $\{c_1, c_2\}$ i.e. $b_1 = -3c_1 + 5c_2$ and $b_2 = 3c_1 - 4c_2$, then the change in coordinates of x from $\{b_1, b_2\}$ to $\{c_1, c_2\}$ are as follows;

$$\mathbf{x} = 2b1 + 3b2 = 2(-3c1 + 5c2) + 3(3c1 - 4c2)$$

$$\mathbf{x} = 2(-3c_1 + 5c_2) + 3(3c_1 - 4c_2) = 3c_1 - 2c_2$$

$$\mathbf{x} = 201 + 302 = 2(-3c_1 + 5c_2) + 3(3c_1 - 4c_2)$$

 $\mathbf{x} = 2(-3c_1 + 5c_2) + 3(3c_1 - 4c_2) = 3c_1 - 2c_2$
∴ coordinate of \mathbf{x} with respect to $\{c_1, c_2\} = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$