Practice Questions of Lecture 29 to 34_Solution

Q.1: Find the nature of the origin on curve $x^3 + y^3 - 3axy = 0$.

Solution:

Here the lowest degree term in the equation is 3axy. We will equate 3axy to zero to find the equation of the tangent at the origin. i.e $3axy = 0 \Rightarrow x = 0$ and y = 0.

Hence the origin is either a node or an isolated point. When x is small, the equation of curve becomes

$$y^3 - 3a x y = 0$$
 (neglecting x^3),
 $\Rightarrow y^3 = 3a x y$,
 $\Rightarrow y^2 = 3a x$,

which represents two real branches $y = \sqrt{3ax}$ and $y = -\sqrt{3ax}$. Hence the origin is a node.

Q.2: Find the trace of the surface $x^2 - y^2 + 3z^2 + 2xy + xz = 0$ with xy -plane, yz -plane and zx -plane.

Solution:

For trace of the surface with xy – plane, put z = 0. We get,

$$x^2 - y^2 + 2xy = 0.$$

For trace of the surface with yz – plane, put x = 0. We get,

$$-y^2 + 3z^2 = 0.$$

For trace of the surface with zx – plane, put y = 0. We get,

$$x^2 + 3z^2 + xz = 0$$
.

Q.3: Check the symmetry of the surface $x^2 + z^2 - 4xy + xz = 0$.

Solution:

x-axis:

$$f(x,-y,-z) = x^{2} + (-z)^{2} - 4x(-y) + x(-z),$$

= $x^{2} + z^{2} + 4xy - xz \neq f(x, y, z),$

 \therefore Surface is not symmetric about x – axis.

v-axis:

$$f(-x, y, -z) = (-x)^{2} + (-z)^{2} - 4(-x)(y) + (-x)(-z),$$

= $x^{2} + z^{2} + 4xy + xz \neq f(x, y, z),$

 \therefore Surface is not symmetric about y-axis.

z-axis:

$$f(-x,-y,z) = (-x)^2 + z^2 - 4(-x)(-y) + (-x)(z),$$

= $x^2 + z^2 - 4xy - xz \neq f(x, y, z),$

 \therefore Surface is not symmetric about z – axis.

Q.4: Find all intercepts of the surface $x^2 + 2y^2 - 3z^2 + 2xy + x - 2y + 4z = 0$.

Solution:

For x-intercept, put y = 0 and z = 0, we get:

$$x^2 + x = 0,$$

$$\Rightarrow x(x+1) = 0 \Rightarrow x = 0, \ x = -1.$$

For y-intercept, put x = 0, z = 0, we get:

$$2y^2 - 2y = 0$$
,

$$\Rightarrow$$
 2 $y(y-1) = 0 \Rightarrow y = 0, y = -1.$

For z-intercept, put x = 0 and y = 0, we get:

$$-3z^2 + 4z = 0,$$

$$\Rightarrow z(-3z+4)=0$$
,

$$\Rightarrow$$
 z = 0, z = $\frac{4}{3}$.

Q.5: Find the equation of sphere with center (2, -1, 5) and diameter = 4.

Solution:

Radius = 2.

So equation of sphere is:

$$(x-2)^2 + (y+1)^2 + (z-5)^2 = (2)^2$$
,

$$\Rightarrow x^2 - 4x + 4 + y^2 + 2y + 1 + z^2 - 10z + 25 = 4$$

$$\Rightarrow x^2 + y^2 + z^2 - 4x + 2y - 10z + 26 = 0.$$

Q.6: Find the equation of sphere with center (2, 1, 3) and tangent to the plane 2x + y + z = 2.

Solution:

As the distance between center and plane is equal to the radius of sphere so

$$r = \left| \frac{2(2) + 1(1) + 1(3) - 2}{2^2 + 1^2 + 1^2} \right| = \frac{6}{6} = 1.$$

Hence equation of sphere is:

$$(x-2)^2 + (y-1)^2 + (z-3)^2 = 1^2$$
,

$$\Rightarrow x^2 + y^2 + z^2 - 4x - 2y - 6z + 13 = 0.$$