Practice Exercise For Lecture 8

Q1. If
$$e^{2ix} = \cos 2x + i \sin 2x$$
, then show that $\sin 2x = \frac{e^{2ix} - e^{-2ix}}{2i}$.

Q2. If
$$e^{2ix} = \cos 2x + i \sin 2x$$
, then show that $\cos 2x = \frac{e^{2ix} + e^{-2ix}}{2}$.

Q3. Show that
$$\left\{\frac{n\pi}{2}\right\}_{n\in\mathbb{Z}}$$
 is the solution set of equation $\cos z = 0$.

Q4. Prove that
$$1 + \tan^2 z = \sec^2 z$$
 for all $z \in \mathbb{C}$.