Differential Equations (MTH401)

VU

Lecture#l

Background

Linear y=mx+c

Quadratic ax2+bx+c=0

Cubic ax3+bx2+cx+d=0
Systems of Linear equations

ax+by+c=0
Ix+my+n=0

Solution ?
Equation

Differential Operator

dy 1
X X

Taking anti derivative on both sides
y=In x

From the past

B Algebra
Trigonometry
Calculus
Differentiation
Integration

Differentiation
» Algebraic Functions
» Trigonometric Functions
» Logarithmic Functions
» Exponential Functions
* Inverse Trigonometric Functions

B More Differentiation
» Successive Differentiation
» Higher Order
» Leibnitz Theorem
B Applications
* Maxima and Minima
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» Tangent and Normal
W Partial Derivatives

y=f(x)
f(x.y)=0

z=f(x.y)
Integration
B Reverse of Differentiation
B By parts
B By substitution
B By Partial Fractions
B Reduction Formula
Frequently required
B Standard Differentiation formulae
B Standard Integration Formulae
Differential Equations
B Something New
B Mostly old stuff
» Presented differently
* Analyzed differently
» Applied Differently

dy
—-5 =1
dx y
(y—x)dx+4xdy =0
d’y (dyf
+5/ = | -4y =¢*
dx? dx y
u_ v ~0
oy OX
ou ov
X—+Yy— =u
ox "oy
o’u du _du
ox: ot ot
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Lecture-2:
Fundamentals
% Definition of a differential equation.

% Classification of differential equations.
% Solution of a differential equation.
% Initial value problems associated to DE.

s EXxistence and uniqueness of solutions
Elements of the Theory
B Applicable to:
e Chemistry
e Physics
= Engineering
e Medicine
- Biology
= Anthropology
B Differential Equation — involves an unknown function with one or more of its
derivatives
B Ordinary D.E. — a function where the unknown is dependent upon only one
independent variable
Examples of DEs

dy
= 5 =1
dx y
(y—x)dx+4xdy =0
d’y dyj3
5|—=| -4y =¢"
e (dx y
u_ v -0
oy OXx
ou ov
X—+ Yy — =u
OX oy
ou du  _du
Av2 | w2 A =0
OX ot ot

Specific Examples of ODE’s
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du
&

ﬂ %sin(ﬂ) = F(t), the pendulum equation;

di?
% + 5(-5;" + ])d—y +7=0, the van der Pol equation;

159, 94 Q E),

= P(t)G(u), the growth equation;

m R to=

B2
u(t)

the LOR oscillator equation;

=2a(t)p+ —=p —v(t), a Riccatiequation.

B The order of an equation:
= The order of the highest derivative appearing in the equation

d? dy \’ )

dxz +5(d—§) -4y =€
4 2

aza—i/+a—L2j =0
ox"  oX

Ordinary Differential Equation

If an equation contains only ordinary derivatives of one or more dependent variables,
w.r.t a single variable, then it is said to be an Ordinary Differential Equation (ODE). For
example the differential equation

d? dy \’ )
dx¥+5(d—§) -4y =e

is an ordinary differential equation.

Partial Differential Equation
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Similarly an equation that involves partial derivatives of one or more dependent
variables w.r.t two or more independent variables is called a Partial Differential Equation
(PDE). For example the equation

o'u o
a.2 —4+—2 =0
ox"  OX

is a partial differential equation.

Results from ODE data
B The solution of a general differential equation:
- fltyy,...,y(n)=0
< is defined over some interval | having the following properties:
B y(t) and its first n derivatives exist for all t in | so that y(t) and its
first n - 1 derivates must be continuous in |
W y(t) satisfies the differential equation for all tin |

General Solution — all solutions to the differential equation can be represented in
this form for all constants

Particular Solution — contains no arbitrary constants

Initial Condition

Boundary Condition

Initial VValue Problem (IVP)

Boundary Value Problem (BVP)

IVP Examples

B The Logistic Equation
e p =ap-bp2
= with initial condition p(t0) = pO; for p0 = 10 the solution is:
e p(t)=10a/ (10b + (a — 10b)e-a(t-t0))
B The mass-spring system equation
e X7+ (@/m)x +(k/m)x =g+ (F(t)/m)
BVP Examples

= Differential equations
By’ + 9y =sin(t)
= with initial conditions y(0) =1, y’(2p) = -1
e y(t) = (1/8) sin(t) + cos(3t) + sin (3t)
Wy’ +p2y=0
= with initial conditions y(0) = 2, y(1) = -2
= y(t) = 2cos(pt) + (c)sin(pt)
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Properties of ODE’s
B Linear — if the nth-order differential equation can be written:
e an(t)y(n) + an-1(t)y(n-1) + ...+ aly’ + a0(t)y = h(t)

B Nonlinear — not linear
x3(y’7)3-x2y(y’")2+3xy’+5y=ex
Superposition
W Superposition — allows us to decompose a problem into smaller, simpler parts and
then combine them to find a solution to the original problem.

Explicit Solution
A solution of a differential equation

2 2

dx dxd AR
that can be written as y = f(x) is known as an explicit solution .
Example: The solution y = xex is an explicit solution of the differential equation
d_zy — Zﬂ + y =0
dx*  dx

Implicit Solution
A relation G(x,y) is known as an implicit solution of a differential equation, if it defines
one or more explicit solution on 1.

Example: The solution x2 + y2 - 4=0 is an implicit solution of the equation y’ = - x/ly
as it defines two explicit solutions y=+(4-x2)1/2
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Separable Equations

The differential equation of the form

dy
= f(x,
o~ 1Y)
is called separable if it can be written in the form

j—y= h(x)g(y)
X

To solve a separable equation, we perform the following steps:
1. We solve the equation g(y) =0 to find the constant solutions of the equation.

2. For non-constant solutions we write the equation in the form.

dy
—— =h(x)dx
a(y)
1
Then integrat ——dy = | h(x)dx
en integrate a(y) I

to obtain a solution of the form
G(y)=H(X)+C

3. We list the entire constant and the non-constant solutions to avoid repetition..
4. If you are given an IVP, use the initial condition to find the particular solution.

Note that:
(a) No need to use two constants of integration becauseC, —-C, =C..

(b) The constants of integration may be relabeled in a convenient way.
(c) Since a particular solution may coincide with a constant solution, step 3 is
important.

Example 1:
Find the particular solution of

dy _y*-1
dx X

Solution:
1. By solving the equation

y>—-1=0
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We obtain the constant solutions
y==1
2. Rewrite the equation as
dy  dx
y2-1 X
Resolving into partial fractions and integrating, we obtain

2)|ly-1 y+1 X

Integration of rational functions, we get

L= x4
2 |y+1|
3. The solutions to the given differential equation are
L=t n x4+
2 |y+1|
y = =1

4. Since the constant solutions do not satisfy the initial condition, we plug in the
condition

y =2 When x =1 in the solution found in step 2 to find the value of C .

1In[EJ:C
2 (3

The above implicit solution can be rewritten in an explicit form as:

3+ x?
3-x?
Example 2:
Solve the differential equation
d 1
—y = 1 + —2
dt y

Solution:

1. We find roots of the equation to find constant solutions

1
1+ — = 0
y
No constant solutions exist because the equation has no real roots.

2. For non-constant solutions, we separate the variables and integrate

dy
L) A
Jl+1/y2 I
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Sin L _y =1- L
e 1+1/y2 y2+1  yi+l
dy 1
Th —— - y—tan
e J1+1/y2 y )
So that y—tan'(y)=t+C

It is not easy to find the solution in an explicit form i.e. Y as a function of t.
3. Since 3 no constant solutions, all solutions are given by the implicit equation

found
in step 2.
Example 3:
Solve the initial value problem
d
d_il:l*tz +y* +t%y%, y(0)=1
Solution:
1. Since 1+t2 +y* +t%y° = (L+t)(A+ y?)
The equation is separable & has no constant solutions because 3 no real roots of

1+y* =0,

2. For non-constant solutions we separate the variables and integrate.

Y _ait)t
1+y

flfiﬂ — [@+12)dt

3

tan ' (y) :t+%+C
Which can be written as
t3
y= tan[t+§+Cj

3. Since3 no constant solutions, all solutions are given by the implicit or explicit
equation.

4. The initial condition y(0) =1 gives

Cc=tant@) ==
@ 2

The particular solution to the initial value problem is
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t°
tan(y) =t+—+=
(y) 372

; . . t*
or in the explicit form y =1tan t+§+Z
Example 4:

Solve
(1+x)dy —ydx =0

Solution:

Dividing with (1+ x)y, we can write the given equation as
dy__y
dx (1+x

1. The only constant solution is Y = 0

N—

2. For non-constant solution we separate the variables

dy dx
y 1+x
Integrating both sides, we have
dy ( dx
JT ) 1+x

In|y| = InfL+ x|+ c,
y = eIn|1+x|+c1 _ eIn|1+x|'ec1
or y :|1+x|eCl :=J_recl(1+x)
C
y=C(1+x), C=xe!

If we use In | C | instead of C; then the solution can be written as
In|y|=In|1+x]|+In|cC]|

or In|y=Injc{+ x)
So that y=c(l+x).
3. The solutions to the given equation are
y = c(l+x)
y =0

10
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Example 5

Solve
Xy *dx + (y2 + Z)e‘sxdy =0.

Solution:

The differential equation can be written as
4
() S
dx y©+2

— y =0. Therefore, the only constant solutionis Y =0

4

y

2

y+2
2. We separate the variables

2
xe>*dx +yy—de =0 or xe¥dx+ (yfz +2y™ )dy =0

1. Since

Integrating, with use integration by parts by parts on the first term, yields
1 3x 1 3x -1 2 -3
—xe¥—=—e¥ -y T ——yT =cC
3 9 y 3 y 1
3x 9 6
e*(3x-1)=—+—+c where 9, =c
y 'y

3. All the solutions are

Example 6:

Solve the initial value problems

ay _ 1y _ a1y _
(a) dx—(y 17, y(0)=1 (b) dx—(y 17, y(0)=1.01

and compare the solutions.

11
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Solutions:
1. Since (y —1)> =0 =y =1. Therefore, the only constant solutionis y = 0.
2. We separate the variables
dy -2
——=dx or(y-1l) “dy =dx
= (y-)"dy

Integrating both sides we have

J(y-1)"dy = [dx

_ay2+1
(Uil
-2+1
L X+C
or ——=
y—-1
3. All the solutions of the equation are
-1 e
y-1
y =1

4. We plug in the conditions to find particular solutions of both the problems

(a) y(0)=1= y =1when x=0. So we have

1 1
——:O+c:>c:—6:>c:—oo
The particular solution is

o yi1-0
y—1
So that the solutionis Y = 1, which is same as constant solution.
(b) y(0)=1.01= y=1.01 when x=0. So we have

— =0+c=c=-100
1.01-1
So that solution of the problem is
—L=X—100:> y=1+
y-1 100-x

5. Comparison: A radical change in the solutions of the differential equation has

Occurred corresponding to a very small change in the condition!!

Example 7:

Solve the initial value problems

5 d 2
@ Y_(y-17 4001  y©)-=1 ) o =(y-17 -001  y(©O)=1

dx
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Solution:

(a) First consider the problem

dy 2
—_— = 1 0.01, O _—1

We separate the variables to find the non-constant solutions

dy
(Voo +(y-1y

Integrate both sides

=dx

So that tan~ =X+C

tan‘l(y—_lj =+0.01(x +c¢)
0.01

Y1 an 0.01(x + C)]

+/0.01
or y =1++/0.01tan \/0.01(x+c)J
Applying y(0)=1=y=1 when x=0, we have

tan(0)=+/0.01(0+¢c)=0=c

Thus the solution of the problem is

y =1+~/0.01 tan(1/0.01 x)

(b) Now consider the problem

dy 2
—=(y-1) -0.0, 0)=1
il V) y(0)

We separate the variables to find the non-constant solutions

13
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1 |y 1- JEEW_
ZM ‘y l+\/W‘

Applying the condition y(0)=1=y =1 whenx =0

1 =Yoot o,
2,/0.01 \Joo |
y—-1-+0.01
In — 2,/0.01 x
‘y 1++/0.01
y-1- 0oL _e?o0
y-1+4001 1

Simplification:
a_c__a+b_ c+d

b d _a=b c-d

y—1-40.01+y-1+001 V00X

y—1-40.01-y+1-40.01 @240.01x _4
2y—-2 V00l g

2001 2V001_4
yo1  e2V00L

001 24001 _4
24/0.0
e +1
y-1= ‘VO-‘”[WJ

N o 62«/0.01+1
y = v e2«/0.01

-1

By using the property

Comparison:

The solutions of both the problems are

14
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(@ y=  1++001 tan(\0.01x)

)y =1- +/0.01 &
' 023001 _

Again a radical change has occurred corresponding to a very small in the differential
equation!

Exercise:

Solve the given differential equation by separation of variables.

1 ﬂ_(2y+3j2
" dx \4x+5

2. sec’® xdy +csc ydx =0
3. e’ sin2xdx+cosx(e?’ — y)dy =0

4 dy _ xy+3x-y-3
©odx  xy—2x+4y-8

dy _ xy+2y—-x-2
dx xy—-3y+x-3

1

6. y(4—x2)%dy:(4+ y2)2dx
7. (x+\/;)%: y+\/y

Solve the given differential equation subject to the indicated initial condition.

15
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8. (e +1)sinxdx = (1+cosx)dy, y(0)=0
9. (L+x* )y +x(L+4y?)dx=0,  y@)=0

1
10.  ydy= 4x(y2 + 1)5 dx y(0)=1

16
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VU
Lecture 4
Homogeneous Differential Equations
A differential equation of the form
dy
—=1fxy)
dx
Is said to be homogeneous if the function f (x,y) is homogeneous, which means
n
f (tX, ty) =t'f (X; Y) For some real number n, for any numbert.
Example 1
Determine whether the following functions are homogeneous
Xy
fFXy) ==
X“+y
g(x,y) = In(—3x2y/(x3 +4xy2))
Solution:
The functions f (X, y) is homogeneous because
t%x X
f(tx,ty) = —— Y —=— y >=f(xy)
t°(X“+y°) XxX°+y
Similarly, for the function g(X, Y) we see that
—3t°x%y —3x%y
g(tx,ty) =In| — —~ |=In| =——— [=9(X,y)
t°(x° +4xy°) X* + 4xy
Therefore, the second function is also homogeneous.
Hence the differential equations
dy
— = f (X,
i (x,y)
dy
—=9(xy)
dx
Are homogeneous differential equations
17
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Method of Solution:

To solve the homogeneous differential equation

dy
— = f (X,
i (X, Y)
We use the substitution
v=2
X

If f(x,y)ishomogeneous of degree zero, then we have
f(x,y)=f@v)=F(v)

Sincey’ = xv' + v, the differential equation becomes
xﬂ +v="~1(1v)
X

This is a separable equation. We solve and go back to old variable y through Y = XV,

‘Summary:
1. Identify the equation as homogeneous by checking f (tx,ty) =t" f (X, y);
2. Write out the substitutionv = Yy :
X

3. Through easy differentiation, find the new equation satisfied by the new functionv ;

éxd—v+v: f(1,v)§
. dx é

4. Solve the new equation (which is always separable) to find V ;
5. Go back to the old function y through the substitution Y = VX;
6. If we have an I\VVP, we need to use the initial condition to find the constant of
integration.
Caution:
o Since we have to solve a separable equation, we must be careful about the

constant solutions.
o If the substitution y = vx does not reduce the equation to separable form then the

equation is not homogeneous or something is wrong along the way.

18
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............................

d_y _ —2X+5y
dx 2X+Yy
Solution:
Step 1. Itis easy to check that the function
2X+5
f(xy) =25V
: 2X+Y

isa homogeneous function

—2x+5xv —2+5v§

XV 4V =

2X + XV 2+V
which gives _

%ﬂ_l(ﬂ_vjé

dx x\ 2+v 5

This isa separable At this stage please refer to the Caution'

...................

—4In|y-2x|+3In|y-x| =

19
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—4In Y=2X) 31 u‘:In|x|+c
: X

-4

V‘XZXI +In|y;
-4 3

-2 |+.n|(y;3x) %ZIW

(y-2x)* (y=x7|
x4 X8 |

x|’
| =Inx+Inc, c:lnclé

Inc,x

In

0-29" (y-x _

X X3

X720y %)’ =ex
-20"(y-x’ =,

C,X

Note that the implicit equation can be rewritten as

(y-%°=Cy(y-2x*

20
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Equations reducible to homogenous form

The differential equation

dy _ax+by+c,
dx a,x+b,y+c,
is not homogenous. However, it can be reduced to a homogenous form as detailed below

éCase 1: i—ﬂ
a, b,

equation in the variables X and Z. Solving the resulting separable equation and
replacing z witha, X + b,y , we obtain the solution of the given differential equation.

b

a
Case 2: —+#
a

2 2

Inthis case we substitute ..
X=X +h, y=Y +k:
Where h and K are constants to be determined. Then the equation becomes

dY  aX+hY+ah+bk+c, -
dX  a,X +b,Y +a,h+bk+c,

We choose h and ksuch that _
ah+bk+c =0)|
a,h+bk+c,=0]

This reduces the equation_”trqw
dY _aX+hbY:
dX  a,X +b,Y:

Which is homogenous differential equation in X andY , and can be solved accordingly.
After having solved the last equation we come back to the old variables X andy .

21
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Example 3
Solve the differential equation
dy  2x+3y-1:
dx  2x+3y+2:
Solution:
‘a :
Since — =1=—, we substitute Z = 2X + 3y, so that
aZ 2 :
dy _ 1(% _ zj
dx 3\dx
Thus the equation becomes
fdz _,)__z-1
3\ dx Z+2
| T
ie. — =
dx  z+2
This is a variable separable form, and can be written as
(7+2
( )dz =dx:
\—zZ+7 g
Integrating both sides we get
—7-9In(z-7)=x+A
Simplifying and replacing zwith 2x + 3y, we obtain
—In(2x+3y-7)’ =3x+3y+A
or (x+3y-7)" =™, c=e*
22
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Example 4
Solve the differential equation )
dy _(x+2y-4)
dx 2x+y-5:
Solution:
By substitution
x - X +h, y Y + k

The given differential equatlon reduces to _

dY (X +2Y)+(h+2k—4):

dX  (2X +Y)+(2h+k-5):

We choose h and k such that
h+2k-4= 0 2h+k 5=0:

Solving these equations we have h 2 k 1 Therefore, we have
dy X+ 2Y§
dX  2X +Y.

This is a homogenous equatlon We substltute Y =VX to obtain
de 1- V2 or [2+V}dv dX:

dX 2+V 1-V? X
Resolving into partial fractions and mtegratlng both S|des we obtain

ﬂZ(l?:V) 2(1+V } jdx

é—gln(l—v)+%ln(1+v)= In X +1In A

or

Simplifying and removing (In) from both sides, we get

(1—v) /(1+v) c:x-2 c A‘2

23
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g—gln(l—V)Jr%In(lJrV): In X +1n A

éln(l—V)f% £In(1+V )2 =In XA
In@-V) 72 (1+V )’ = In XA

(1-V) 72 (1+V )2 = XA
taking power "~ 2" onboth sides
(1-V)*(1+V) = X ?A?

Y
iputVv =—
PETTX

-1
2(1—1)3 (1+ij = X 2A?
X X

(x —YT[X +le=X2A2
X X

(XYY’
X +Y
‘say,c=A"

VRIS
guzc

X +Y

put X =x-2,Y=y-1
(x+y-1°/x+y-3=c

X -3+1 — X -2 A72

é(x—y—l)sl(x+ y_3)=C§

This is solution of the given differential equation, an implicit one.

Exercise
Solve the following Differential Equations

L (" +y")de-2xCydy =0

24
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2. ﬂ:1+x—+1§

dx x vy

(-
3. é(xze X 4 y2]dx = xydy:

4. éde+[ycosi— x]dy ~0:
y

...................................................

Solve the initial value problems
6.(3x" +9xy +5yix—(6x¢ + axyhy =0, y(2)=-6

J—
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Lecture 5

Exact Differential Equations
Let us first rewrite the given differential equation

dx_ F(x.y)

into the alternativ:e form :
§|v|(x Y)dx+ N(x, y)dy =0 where f(x,y)=- MY
N(x,y)

This equation is an exact differential equatlon if the following condition is satisfied
8M 8N :

‘Method of Solutlon
If the given equation is exact then the solution procedure consists of the followmg steps:

,,,,,,,,,,,,,,,,,,, OM _ ON
Step 1. Check that the equation is exact by verifying the condition - E T

Step 3. Integrate either the 1St equatlon w. r.to X or 2 w. r. to y. If we choose the 1%
equation then

The function #(y) is an arbitrary function of Y , integration w.r.to X; Y being

constant

26
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ﬂ =3x* @ =3x°
i.e. M _oN
"oy OX -

Hence the equation is exact. The LHS of the equation must be an exact differential i.e. 3

a function f (x,y)such that

ﬂ:3x2y+2:M
OX

of s
—=X"+y=N
oy

Integrating 1% of these equations w. r. t. x, have
) =Xy + 2 h(y),
where h(y) is the constant of integration. Differentiating the above equation w. r. t. y and

using 2nd, we obtain

Comparing Eh'(y) = y is independent of x.

or.

2 :
h(y) =2
v
Thus ;f(x,y):x3y+2x+?§

Hence the general solution of the given equation is given by

27
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ie. Xy+2x+-—=c

Note that we could start with the 2" equation

§ﬁ=x3+y:N§

: 0y

to reach on the above solution of the given equation!

Solve the initial value problem

{eysinnaosxcey* s i’ - 2yooshy 0.

‘M = 2ysin xcosx + y?sin x:

and N =sin’ x—2ycosx

M = 2sIN XCOS X + 2ysin x

8—N: 2Sin XCOS X + 2ysin x
OX

This implies i ——=-—

Thus given equation is exact.

Hence there exists a function f (x, y) such that

é?:Zysin XCOSX+ y2sinx=M '

éﬂ:sinzx—Zycosx: N

Integrating 1% of these w. r. t. X, we have

28
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Oy)=ysin® x—y? cosx+hey),
Differentiating this equation w. r. t. y substituting in % =N

%h'(y) =0 or h(y)=c,

Hence the general solution of the given equation is

e, ysin® x—y® cosx=C, where C=c, —c,

Applying the initial condition that when x =0,y = 3, we have
-9=c

since y2cosx—ysin®x=9

is the required solution.

SOlVe the DE é(eZy - ycosxy)dx+(2xe2y — XCOSX Y+ Zy)dy = 0

Solution:
The equation is neither separable nor homogenous

ghﬂ(x,y)z ycosxy }5

Since,

and

M oo s N
—— =2e” +xysin xy—cosxy:a—;
: X :

Hence the given equatlon is exact and a function f(x,y) exist for which

of 8f
&w—7aMN(W :
which means that
ﬂ =e? —ycosxy and a_ 2xe” —XCoS Xy + 2y
- OX oy

Let us start with the second equatlon I.e.

—— =2xe”’ —xcosxy + 2y

29

© Copyright Virtual University of Pakistan



Differential Equations (MTH401) vu
Integrating both sides w.r.to y, we obtain
f(x,y)= 2xfe2ydy— x | cos xydy + 2[ ydy
Note that while integrating w.r.to y, X is treated as constant. Therefore
f(x,y)=xe? —sinxy + y? + h(x).
hisan arbitrary function of x. From this equation we obtain Z—f and equate itto M
X
o _ e /(%) = e
v —ycosxy +h'(x)=e" —ycosxy
So that h(x)=0=h(x)=C
Hence a one-parameter family of solution is givenby
xe” —sinxy+y*+c=0
Example 4 _ _
Solve :2Xy dx+(x2 —1)dy:O§
Solution:
Clearly M(x,y)=2xy and N(xy)=x*-1
Therefore ﬂ =2X= 8—N
X X :
The equation is exact and 3 a function f(x,y) such that
ﬂ: 2xy and a_ X2 -1
2.9 N :
We integrate first of these equations to obtain.
f(x,y)=x"y+g(y)
Here g(y) is an arbitrary function y . We find % and equate it to N(x, y)
of ,
—=x"+g'(y)=x*-1
19]
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Hence a one-parameter family of solutions is given by

xy-y=c

Solve the initial value problem

é(cos Xsin X — xyz)dx + y(l— xz)dy =0, y(O) =

2

{M(X,y):msx.sm_xyzé
Since ? E
Ny = ylex)

oM oN -
= 2Xy =——
: oy OX

Therefore the equation is exact and 3 a function f(x,y) such that

and

OX

109)= o))

Differentiate w.r.t. * X * and equate the result to M (x, y)

? = —xy? +h'(x) = cos xsin x — xy2
:0X :

The last equation implies that. _
h'(x)=cosxsin x
Integrating w.r.to X, we obtain

h(X) = _I(COS X)(—Sin X)dx _ —%COSZ X

31

© Copyright Virtual University of Pakistan



Differential Equations (MTH401) vu

Thus a one parameter family solutions of the given differential equation is

Py?2 :
yT(l— xz)—%cos2 X = c1

or

éyz(l—xz)—cos2 X=C.

where 2c, has been replaced by C. The initial condition y = 2 when x =0 demand, that
4(1)—cos®(0)=cso that ¢ =3. Thus the solution of the initial value problem is

y?(1-x?)-cos? x =3
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Exercise
Determine whether the given equations is exact. If so, please solve.
1. (siny—ysin x)dx + (cosx+ xcos y)dy = 0-
2. [1+ Inx+ yjdx (L-1In x)dy
B 1
3. ;(yln y—e y)dx+(—+ In yjdy =0:
y
4, (2y—£+c053x] dy l2—4x3 +3ysin3x = 0
: X dx x
5. (1+i2— Zy 2jdxﬁ{yey > jdy 0
X x5 xT+y x> +y° :
Solve the given differential equations subject to indicated initial conditions.
6. %(ex+y)dx+(2+x+ yey)dy:O, y(O):lg
ag? o2
A It A R T 1
y dx 2y
dy
8. : > +COSX —2xy |—= = y(y +sinx), y(0) =1
1+ y’ dx
9. Find the value of k, so that the given differential equation is exact.
2(2xy3 —ysinxy + ky“)dx—(ZOx3 +Xxsin xy)dy =0
10. §(6xy3 +C0S y)dx - (kxzy2 —xsin y)dy -0
33
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Lecture - 6

Inteqrating Factor Technique

If the equation

M (x, y)dx + N(x,y)dy =0
is not exact, then we must have
8M oN

—
- X

Therefore, we look for a function u (X, y) such that the equation

_______________________ u(x, yYYM(x, y)dx +u(x, y)N(x, y)dy = 0

and it satisfies the equation due to the condition of exactness.

Mu+a—uM :ﬁu+8—uN

oy oy ox  OX

This is a partial differential equation and is very difficult to solve. Consequently, the
determination of the integrating factor is extremely difficult except for some special
cases:

Show that 1/(x" + y°) is an integrating factor for the equation (x? +y* ~x}x —ydy =0,

and then solve the equation.

Solution: Since M=x*+y?>-x, N=-y
Therefore M _ 2y, N _ 0
oy OX
soth oM . ON
o that AL
oy  oX

and the equation is not exact. However, if the equation is multiplied by 1/(x2+y2)then

the equation becomes

11— dx — dy =0:
2[ X2 + yZJ X2 + y2 y
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Now M=1-
X +y X“+y

Therefore M = 2xy = ON

oy (x2+y2)2 x

So that this new equation is exact. The equation can be solved. However, it is simpler to

observe that the given equation can also written

o xdx + ydy 1 .
:dx =0 or dx-——=d|In(x =0:
X2 +y?2 5 [ (x“+y )]
2, .2
or d{x_lnx 2+y }:0

Hence, by integration, we have
Xx—Inyx?+y® =k
Case 1:
When Jan integrating factor u (x), a function of X only. This happens if the expression

OM  ON -

oy ox

is a function of x only.
Then the integrating factor u(x, y) is given by

oM ON

de

u=exp Y

Case 2:
When 3 an integrating factor u(y), a function of y only. This happens if the expression

is a function of Y only. Then IF u(x,y) is given by
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N _om
u=exp % d
M
?Case 3
If the glven equation is homogene__q_q_s__qn_q _______________________
XM + yN = O
yo 1
e M
Case 4:

If the given equation is of the form _
yf (xy)dx + xg(xy)dy = 0

Then u -

Once the IF is found, we multiply the old equation by u to get a new one, which is exact.
Solve the exact equation and write the solution.:

§Advice: If possible, we should check whether or not the new equation is exact?é

M (x, y)dx+ N(x, y)dy = 0

prOVIded the equation is not already i |n this form and determine M and N .

If this expression is a function of X only, then
oM oN

éu(x) =exp [ayNaxdx
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Otherwise, evaluate
8N aM

oy
If this expression is a function of y only, then
N oM

u(y) = exp J%dy

1n the absence of these 2 possibilities, better use some other techniqueE However, we
could also try cases 3 and 4 |n step 4 and 5

yf (xy)dx + Xg(Xy)dy 0
and whether X|\/| yN =~ 0
____________ ! fyes then u = ﬁ

Illustration

Example 1

Solve the differential equation
dy  3xy+y*
dx X% + Xy

Solution:
1. The given differential equatlon can be written in form

(3xy+ y )dx+(x + Xy)dy = O

Therefore

37
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NGy =% o3y

2. Now ﬂ:3x+2y,ﬂ:2x+y.§
oy OX

M N

oy  OX

which is a function of xonly.
4.Therefore, an IF u (x) existsand isgivenby .
1 :
—dx
gu(x)zeJX =e" =x

5. Multiplying the given equation with the IF, we obtain

32y + xy?)dx+ (¢ + x2y)dy = 0

which is exact. (Please check!)

6. This step consists of solving this last exact differential equation.
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Solution of new exact equation::

1. Sinceéa—'vI =3x% +2xy = a—N . the equation is exact.
i oy ox

2. We find F (x, y) by solving the SYSteM
(oF

| —=3x’y+x
] ox ! y_
JoF _ s o,
H——=X"+X"Y.
(o y

3. We integrate the first equatlon to get
X2

I:(X y)=x’ Y+—y +<9(Y)

obtaln

5. Integrating the last equation to obtam@ C Therefore the function: F(X y) is

2

F(x y) =x° y+—y

We don't have to keep the constant C, see next steo

6. All the solutions are given by the implicit equation F (X, y)=Cie.
2.2
X
x3y + 2y =C

is another integrating factor for the same equation as the new equatlon

1
3xy + dx + x +xy)dy =0
2Xy(2Xx + y)( y+y ) 2Xy(2x + y)( y)dy

is exact. This means that we may not have uniqueness of the integrating factor.
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Solution:

EM = x* —2x+2y
- N =2xy :

The equation is not exact.

Here

M, -N, 4y-2y 1
E N 2y x

Therefore, I.F. is given by

I.F is x.

Multiplying the equation by x, we have
e ~2x7 + 207 Jix + 2x"ydy =0

This equation is exact. The required Solution is

24 3

3 8x +12x y —c
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Solve dX + (i—sin y]dy = o
y

Solution: Here

M _, N_1
o o ox oy
M N
Ly x
The equation is not exact.
Now
1
—-0
NX -M y y B 1
M 1 y

Therefore, the IF is %u(y) = expj'd—; _ y

Multiplying the equation by y, we have

tydx + (x — ysin y)dy = 0:

or ~ydx + xdy — ysin ydy = 0:

or “d(xy) — ysin ydy =0

Integrating, we have

Xy +yCcosy—siny =c:

Which is the required solution.
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Solve (x y- 2xy )d (x —3x y)dy O

Solution: Comparing with

“Mdx + Ndy = 0:

we see that

M:xzy—2xy2 and N:—(x3—3x2y)§

Since both M and N are homogeneous. Therefore, the given equation is homogeneous.

Now

XM +yN =x°y - 2x?y? -3y +3x%y? =x?y? %0

Hence, the factor u is given by

1 1 _
U =
x y XM +yN

Multiplying the given equatlon with the integrating factor u, we obtain.

Now _
M==-=and N:_—;(+E
y X y- y:
and therefore
oM 1 ©N
oy oy x

Therefore, the new equation |s exact and solution of this new equation is given by

X 2| x|43In]y |- C
y

Solve gy(xy+2x2y2)jx+ x(xy—xzyz)dy=o§
Solution:
The given equation is of the form

yf (xy)dx + xg(xy)dy = 0

Now comparing with
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:Mdx + Ndy = 0:
We see that _ ]
M = y(xy+2x2y2) and N-= x(xy—xzyz)é
Further
XM —yN = xzy2 +2x3y3 - x2y2 + x3y3
= 3x3y3 =z 0
Therefore, the integrating factor u is
1 1 :
‘u = : U= —
5 3x°y?® XM — yN

Now multiplying the given -equation by the integrating factor, we obtain

Y1 211 Ly
BLxy X 3\xy® y

Therefore, solutions of the given differential equation are given by

— L omx|-myeC
Xy

where 3C,=C
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Exercise
Solve by finding an I.F
Lo xb ¢ + *x) = xby - ybx:
2 dy+ y—smxdxzog
X
3. (y* +2y)dx+(xy* +2y* —axhy =0
4. (x2 + yz)dx + 2xydy = 0
5. (4x + 3y2)dx +2xydy =0
6. (3"y" + 2xyjix+ (2x°y* by = 0
7. —=—=e -1
-dx Ty
8. (3xy+y? Jdx+(x? +xy)dy =0
9. ydx+ (2xy —e 2 Jdy = 0
10. (x+2)sin ydx+ xcos ydy =0
44
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Lecture 7

First Order Linear Equations

The differential equation of the form

a(X)— + b(X)y C(X)

is a linear differential equation of first order The equatlon can be rewritten in the
following famous form.

&y = a0
X :

where p(X) and q(X) are continuous functions.

Method of solution:
The general solution of the first order linear differential equatlon is given by

ju(x)q(x)dx +C:
u
Where U(X) = exp(] p(x)dx)
The function U(X) is called the integrating factor. If it is an I\VP then use it to find the
constant C.

Summary:

1. Identify that the equation is 1* order linear equation. Rewrite it in the form

fj—+ P09y =a00)

if the equation is not already in this form.
2. Find the integrating factor

u(x)— jp(x)dx
ju(x)q(x)dx+c§
u(x) :

4. If you are given an IVP, use the initial condition to find the constant C.

3. Write down the general solutio_n

5. Plug in the calculated value to write the particular solution of the problem.
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Example 1:

Solve the initial value problem

Solution:
1.The equation is already in the standard form

&4 by =900
R

p(x) = tan x:

q(x) = coszxé

[ tan xdx =—Incos x = Insec x

Therefore, the integrating factor is given by
U(X) _ eftan X dx

= secx.

3. Further, because
[ secxcos® xdx = [ cos x dx = sin x
So that the general solution is givenby

_sinx+C
SecX

= (sin x + C)cos x

46

© Copyright Virtual University of Pakistan



Differential Equations (MTH401) VU

dy 2t 2
: i = : 0)=0.4"
Example 2: Solve the IVP FTEETE y 1+t y(0)

Solution:
1.The given equation is a 1* order linear and is already in the requisite form

Y by =00

ax
2t
p(t)=- T
with Et
q(t) =
1+12
2. Since %J( 2tjdt In|1+t? ]|
1+t?

I
§u(t)=eJ (O

3. Hence, the general solution is givenby

j u(t)q(t)dt + C
1+t 1 t2
Now J(l+t % __ ﬁdt:zﬂut @ty jdt

The first integral is clearly tan 't . For the 2" we will use mtegratlon by parts

Wltht as first function and 2t L+t )2 as 2" function.

2
Lzzdt:t(_ 12j+J 12dt:‘ t 5 +tan (1)
J @+t9) 1+t 1+t 1+t

;J%dt:man‘l(t)nt t2
J (@+19) 1+t

—tan " (t) = tan 7' (t) + t
1+

~+ Cj
4. The condition y(0) ~0.4 gives C=0.4 _
5. Therefore, solution to the initial value problem can be written as:

y=t+(@L+t2)tan(t) + 0.4(L+1t)

t2§

: t
The general solution is: 'Y = (L+1%) (tan 1)+ 1ot
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Example 3:

Find the solution to the problem

cos’tsint.y'=-cos’t.y+1, y(%jzoé

Solution:

1. The equation is 1% order Iinea[__a_n_q_jg_n_qt__in_.t__hg_.gtgr]_c_i_grd form
dy
—=+ p(X)y = q(x):

Therefore we rewrite the equért'ibrhﬁaé’ N
., cost 1 5
Y+ — y= T i
sint cos“tsint:
2. Hence, the integrating factor is given by
cost

u(t):eJS'nt :eln|smt| :sinté

3. Therefore, the general solution is given by

Jsin t % dt+C
i cos“tsint
y= - :
Since .................................................................... -
(. 1 1
ijsmtfdtzf —dt=tant
T cos“t sint . cos’t
:tan_t+C: 1 + C :sect+Ccsct§
_.Sint cost sint ¢

(1) The initial condition y(7z/4) =0 implies

\/§+C\/§ = 0
which gives C =-1.

(2) Therefore, the particular s__(_)__I__L_J__t__i_QQ__'_[_(_)____t_h_g_a___i_n_i__tjg_l__yalue problem is
gy:sect—csctg
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Example 4
dy
Solve 2y )L = y:
Vi (X+ y)dx y
Solution:
We have _
d_ ¥y
dx x+2y°:

This equation is not linear in y . Let us regard X as dependent variable and y as
independent variable. The equation may be written as

dx_x+2y®
-dy y

or %—lx:Zyz
dy 'y

Which is Iinear in X

éF_M{J(%}@—w%mﬂza

Multiplying with the IF = i, we get
y

Integrating, we have

x=yly?+c)

is the required solution,
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Example 5

Solve

(x—l)?’%+4(x—l)2 y = x+1

Solution:

The equation can be rewritten as

dy 4 x+1
dx x—ly_(x_l)?);
4
Here P(X)=——.
(x) o

Therefore, an integrating factor of the given equation is

e <o [ £ -t

Multiplying the given equation by the IF, we get

%(x—l)4 %+4(x—1)3y = x? —1

or %%[y(x—l)"’]: X2 —1

Integrating both sides, we obtain
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Exercise

Solve the following differential equations

1. ;ﬂJ{Zxij = e’zxé

“dx X
2. ﬂ+3y:3x2e’sxé
dx
dy
3. iX—=—+(1+xcotx)y = x:
dx ( )y

dy n+1
4, 1)—=—ny =e” 1
(x+ )dx ny =e*(x+1)

d
5. (1+ xz)d—i+4xy = (1+12)2

6. £+ rsecd =cosd
do

—2X
ﬂ+ _1-e
dx e¥ e

X

8. dx = (3ey - 2x)dy

Solve the initial value problems

9. %: 2y +x(e¥ —e?)  y(0)= 2

10. x(2+x)%+2(1+ x)y=1+3x*  y(-1)=1
X
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Lecture 8

A differential equation that can be written in the form

d
d—y+ pP(X)y =q(x)y"

is called Bernoulli equation.
Method of solution:

For N = 0,1the equation reduces to 1* order linear DE and can be solved accordingly.

n
For N # 0,1 we divide the equation with Y to write it in the form

L d N
y dy+p(x)y1 —q(x)
H X H

and then put

Therefore the equation becomes L

dv

SHa-m POy = (- na(x)
- OX :

If n>1, then we add the solution y = 0 to the solutions found the above technique.
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Summary:
1.Identify the equation

&

Lapy=a(y”
i X i

as Bernoulli equation.
Find n. If n # 0,1 divide by y"and substitute;

2. Through easy differentiation, find the new equation

A a-mpOov=-mak).
:0X :

3. This is a linear equation. Solve the linear equation to find V.

4. Go back to the old function y through the substitution y= V%l_n)

6. If n >1, then include y = 0 to in the solution.

7. If you have an IVP, use the initial condition to find the particular solution.

ay 3
Example 1: Solve the equation-—— =Y T Y

“dx
Solution:
1. The given differential can___k_)_g__y\_/__r_i_t_;g_r]__q_s______
“dy 3
Y=Yy
- dx
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2. Differentiating w.r.t. *x” we have
'y_g d_y 1 dv
dx dx

ﬂ L ov= —2§

So that the equation reduces to

3. This is a linear equation. To solve this we flnd the mtegratmg factor U (X)

The solution of the I|near equatlon is given by
Iu(x)q(x)dx +C '[ezx 2)dx + ¢
: u(x) e 5
(.2 :
Since ;je “(=2)dx =~

Therefore, the solution for V |s given by

4.Togo back toy we substitute
DE is

y =+(Ce ™ —1) 72 y

Example 2:

Solve ﬂ+ y= Xy

‘dx X

Solution: In the given equation we identify P(x) = i, q(x)=x and n=2
; X

Thus the substitution W=y " gives

dw 1
o :—X.§
dx x
The integrating factor fO_r___t__h_!_s__!_I_nﬁr_@__r___eq_u@n_qn__!s ____________
_(ox .
e )X —p In|x| =eln\x\ w1
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d ]
Hence W
dx

Integrating this latter form we gt
x W—__—x+c or W—_—X +CX

—x% +cx
For n > 0 the trivial solution y =0 is a solution of the given equation. In this example,
y =0 is a singular solution of the given equation.

Example 3:

solve: dy oy b W

“dx_ 1—x2y

1
Solution: Dividing (1) by Y2, the given equation becomes
-1 1 :

- dy X 5
— + 2 =X:

1 1
Put yZ=vor Ey 2 2

Then (2) reduces to

(3)

This is linear in V.
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Integrating, we have

V(l— X2 )_41 = jm

+C
4..34

or §V=C(1—X2)U4—1_3X2§
or y; =C(1—X2)U4_1_3X2§

is the required solution.
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Exercise

Solve the following differential equations

1, x%+y:yzlnx§
2 %+ y:xyeé
4 %%—y(xﬁ—l}

6. de_y+ y? :xy

dx

Solve the initial-value problems

o dy 4 1
3 oxy=3yt, y)=>
no o2y =3yt y)=2
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SUBSTITUTIONS

o Sometimes a differential equation can be transformed by means of a substitution
into a form that could then be solved by one of the standard methods i.e. Methods
used to solve separable, homogeneous, exact, linear, and Bernoulli’s differential
equation.

o An equation may look different from any of those that we have studied in the
previous lectures, but through a sensible change of variables perhaps an
apparently difficult problem may be readily solved.

o Although no firm rules can be given on the basis of which these substitution could
be selected, a working axiom might be: Try something! It sometimes pays to be
clever.

Example 1

The differential equation

y(L+2xy)dx + x(1—2xy)dy = 0°

is not separable, not homogeneous, not exact, not linear, and not Bernoulli.
However, if we stare at the equation long enough, we might be prompted to try the
substitution

u-
u=2xy or y=—:
2X:

v = xdu — udx -
Since Y—Té

The equation becomes, after we simplify

2udx+(1—u)xdu =0.

we obtain 2In\x\—u‘1 —In\u\ =C

58

© Copyright Virtual University of Pakistan



Differential Equations (MTH401) VU

X 1

;In =C+——:

|2y 2xy:

X E

= = Cle1/2xy7

2y ,

X — chyel/2xy§
where €°was replaced by C; . We can also replace 2¢,by C if desired
Note that
The differential equation in the example possesses the trivial solution Y = 0, but then
this function is not included in the one-parameter family of solution.
Example 2
Solve

2xyd—y+ 2y? =3x—6.

dx
Solution:
2 dy 2

The presence of the term Y& promptsustotry U =Y
Since

du dy :

R
Therefore, the equation becomes
Now éxd—u+2u:3x—6§

©odx
or d_u + Eu =3- E

dx X X:
This equation has the form of 1* order linear differential equation

d

4Py =Q(9)

dx
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with P =2 and Qx) =3-2
X X
Therefore, the integrating factor of the equation is given by
fzdx
- 2
§|.F= gl x  — eInx — XZ
Multiplying with the IF gives
i[xzu]= 3x? — 6x:
dx
Integrating both sides, we obtain
or KyP = -9 e
Example 3
Solve
d 3
LAV T2
dx y
Solution:
If we let -y
u-Y
S X:
Then the given differential equation can be simplified to
ue” Ydu = dx’
Integrating both sides, we have _
éj.ue_”du :Idx
Using the integration by parts on LHS, we have
—ue Y e V=xic
or _ _
u +1= (C1 — X)eu Where Clzc
We then re-substitute R i
u=Y
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and simplify to obtain _
y+x=x(c,-x)e¥'*
Example 4
Solve
2 2
d_y — 2x(ﬂj
: dX2 dx
Solution:
Ifwelet W .
r:
,,,,,,,,, =Y
Then _
du/dx=y"
Then, the equation reduces to-
“du
— = 2xu?
“dx :
Which is separable form. Separating the variables, we obtain
“du :
— = 2xdx
L —
Integrating both sides yields
_[u_ 24u = J2xdx§
or E—U_1=X2+C12§
The constant is written as ¢ for convenience.
Since ut=1y
dy 1
Therefore T T
- dx X~ + Cl
dx -
or y=-—"
: X"+ Cl :
dx
dy = —J
'[ x2 + 012
X
y+C, =——tan" —
C, C,
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Exercise

Solve the differential equations by using an appropriate substitution.

1. %ydx+(1+ yeX)dy:OE

2 2(2+e_"/y)dx+2(l—x/y)dyzoé

3. §2xcsc 2y gy =2x—In (tan y)

X

n éﬂﬂ:sin xe‘(”y)é

- dx

5 %yﬂ+2xlnx:xey§

dx

6. §x2%+2xy:x4y2+1§

7 %xeyﬂ—Zey =x2
.dx
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Lecture-09
2+ 2
Example 1: y':x Y
Xy
_ 2_|_ 2
Solution: dy: X y
X Xy
put y=wx then 9—y—:w+xgw—
d x d X
dw = X°+w?’x°* _ 1+w?’
W + X = - - %
d x X X W W
dw 1
W + X = + W
d x W
wdw = d_X
X

Integrating

2
=lnx+Inc

2

y
2X°
y>=2x°In|xc|

=In|xc]|
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dy _ <2J_ )

Example 2: ==
P dx

dy _ (ZF )
dx

Solution:

put y=wx

dw _ (2+/ XWX -XW)
dx

X

WHX
dw

WHX — =2/ W -W
dx

x——2\/_ 2w

dW _dx
2(Jw-w) X
J~ dw _ d_X
2(w-w)

fo o
2Jw(1-Jw) 7 x
put  Jw=t
We getjidt:jd—x
1t X
-In|1-t|=In|x|+In|c|
-In|1-t|=In|xc]|
(1-t)*=xc
(1-Jw)*=xc
(1-Jy/x) ™ =xc
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Example 3: (2y°x-3)dx+(2yx?+4)dy=0
Solution:(2y?x-3)dx+(2yx?+4)dy=0
Here M=(2y?*x-3) and N=(2yx?+4)
M :4xy: ﬂ
Ty fx
H=(2y2x-3) and ﬂz(Zyx2+4)
fix Ty
Integrate w.r.t. 'x'
f(x,y)=x?y?-3x+h(y)
Differentiate w.r.t.'y'
H=2x2y+h'(y)=2x2y+4=N
Ty
h'(y)=4
Integrate w.r.t.'y'
h(y)=4y+c
x?y?-3x+4y=C,
(xly)?
Example 4: dy_ ny? -
dx Y2 +y2etM’ 2y 2e0)
2 1,2 A (Xy)? 2 . (xly)?
Solution: d—X: yrye +2:( €
dy 2xye™
put x/y=w
Aftersubsitution
dw _ 1+e"
y__ 2
dy 2we"
d_y:2we2 dw
y 1+e"
Integrating
Inly|=In|1+e" |+Inc
Inly|=In|c(1+e"")|
y=c(1+e%"")
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dy, y _3°
dx xInx Inx

2
Solution: d—y+L—3L

dx  xInx  Inx
dy, 1 _3x?

dx xInx Inx

Example 5:

1 3x?
p(X)=—— and q(X)=—
xInx Inx

I.F:exp(jﬁdx):lnx

Multiply both side by Inx

Inxd—y+1y:3x2

dx X
d 2
— (ylnx)=3x
dx

Integrate
ylnx= ﬁ +C
3
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Example 6: (y?e* +2xy)dx-x*dy=0
Solution:Here M=y®e*+2xy N=-x°

Mzzyex+2)(, M:-ZX
Ty Tx
Clearly M, IN

Ty fix

The given equation is not exact
divide the equation by y* to make it exact

2
{ex + 2—X} dx+ {X—Z} dy=0
y y

Now IM - 2x_ 1N
Ty y* x
Equation is exact
2
£:|:ex+2_xi| ﬂ:|:_x_2:|
Tx y Ty y

Integrate w.r.t. X'
2

f(x,y)=e + 2—
y

X
e’+ —=c

y
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Example 7:

XCOSX :—y+y(xsinx+cosx):1
X

Solution: xcosx j—y+y(xsinx+cosx):1
X

d_y+y [ XSinX+cosx } 1

dx “|  XcosX XCOSX

d—y+y ‘tanx+1/x|= 1

dx °° XCOSX

Il.LF = exp(j (tanx+1/x)dx)=xsecx

XSECX dy +yxsecx [tanx+1/x]= XSEEX
dx XCOSX

xsecxj—y+y[xsecxtanx+secx]:seczx

X

dix[xysecx] =sec’x

Xysecx=tanx+c
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Example 8: xe” d_y+ezy:In_x
dx X
Solution: xezyd—y+e2y:|n—x
dx X
put e?=u
2e2y d_y:d_u
dx dx
X du Inx
— = —
2 dx X
d_u+gu:2m_z(
dx X X
Inx
Here p(x)=2/x And Q(X)=—-
X

I.F:exp(_[adx):x2
X

X ? 3—u+2xu:2Inx
X

i(xzu):ZInx
dx

Integrate
x*u=2[xInx-x]+c

x*e? =2[xInx-x]+c
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Example9:gx-+ylny:yeX
dx

Solution: d—y+ylny:yeX
dx

id_y+||’]y:eX

y dx

putlny=u

du y

—+u=e

dx

I.F.::ejdxzeX

d X 2X
— (e u)==e
dx( )

Integrate
2X
e’.u= +C
2X
e*lny= +C
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Example 10: 2xcsc2yd—y:2x-lntany

dx

Solution: 2xcsc2yg—y:2x-lntany
X

put Intany=u

d—y:sinycosyd—u

dx dx

2xsinycosy du _

2sinycosy dx

2X-U

I.F :exp(_[llxdx):x

xd—u+u:2x
dx

d

— (Xu)=2x
dx
XU=X2+C
u=x+cx™

Intany=x+cx™*
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Exanuﬂe11&%!+x+y+1:(x+yfe“
X

Solution:9¥+x+y+1:(x+y)2e3X

d X
Put x+y=u

du
—+u=u’e’

dx

9—u—+u:u2e3X(BernouIi's)
dx

1 du 1 5

I—— _:e

u® dx u
putl/u=w
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Example 12: S—y:(4x+y+1)2
X

Solution: d—y:(4x+y+1)2
dx

put4x+y+1=u

we get
d_u_4:u2
dx
d_u:u2 +4
dx

21 du=dx
us+4
Integrate
1

u
—tan?t —=x+c¢
2 2

tan™ %:2x+c1

u=2tan(2x+c,)
4x+y+1=2tan(2x+c,)
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Example13:(x+y)25l-:a2
d x
- . o dy _
Solution:(x+y)° —=a
dx
putx+y=u
du
2 2
u“(——-1)=
(dX )
y 2 du ul=3a?
d x
2
u
du=dx
u’+a’
Integrate
2 2 2
cu“+a‘-a
du=|dx
| =7 J
2
- a
l1-———)du=| dx
J ¢ u2+a2) j
a1 u
u-atan - —=x+c
a
+
(x+y)—atan'1X Y —x+c
a
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Example 14: 2yg—y+x2+y2 +Xx=0
X
Solution: Zyd—y+x2+y2+x:0
dx
put x*+y°=u
QE-—2x+u+x:0
dx
du
— +U=x
dx

|.F= Exp(j dx)=e*

du
exa——+uexzxeX
X

d X X
—(e*u)=xe
dX( )

Integrating

e*u=xe*-e* +¢c
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Example 15:y +1=e*"¥sjinx
Solution: y +1=e*¥sinx
put x+y=u

du .
——=e"sinx
dx

%du:sinxdx
e

e"du=sinxdx
Integrate

e" =-CoSX+cC
u=In|-cosx+c|
X+y=In|-cosx+c|
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Example 16: x*y?y'+x°y°=2x°-3

Solution: x*y?y+x°y*=2x°-3
putx’y®=u

dy _du

3x?y®+3x3y? L ="~

y y dx dx

dy _du
3x3y2 2 = 2H gy2y8
4 dx dx y

s 2 dy _xdu 5 s
y d x 3 dx y

id_u: 3-3

3 dx

g—u—:6x2-9/x

d x

Integrate

u=2x3-9Inx+c

x®y®=2x%-9lnx+c

77

© Copyright Virtual University of Pakistan



Differential Equations (MTH401)

VU

Example 17:cos(x+y)dy=dx
Solution:cos(x+y)dy=dx

put Xx+y=v or1+d—y:d—v,weget
dx dx
cosv[d—v-l]:l
dx
dx= —2Y_ qy=[1- 1dv
1+cosv 1+cosv

dx=[1- = sec? YL 1dv
2 2
Integrate
v
X+c=v-tan —
2

X+
X+c=v-tan Ty
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Lecture-10

Applications of First Order Differential Equations

of equations that describe the system adequately. This set of equations is called a Model
for the phenomenon. The basic steps in building such a model consist of the following
steps:

assumptions should describe the relationships among the quantities to be studied.

Step 2:: Completely describe the parameters and variables to be used in the model.

Step 3: Use the assumptions (from Step 1) to derive mathematical equations relating the
parameters and variables (from Step 2).

The mathematical models for physical phenomenon often lead to a differential equation
or a set of differential equations. The applications of the differential equations we will
discuss in next two lectures include:

Orthogonal Trajectories.
Population dynamics.
Radioactive decay.
Newton’s Law of cooling.
Carbon dating.

Chemical reactions.

O000D D

@
@
o

Orthogonal Trajectories§

o We know that that the solutions of a 1 order differential equation, e.g. separable
equations, may be given by an implicit equation

Flxy,c)=0

with 1 parameterC “,"'\-/'\-/'Hicﬁ-rébr'éééﬁfé a family of curves. Member curves
can be obtained by fixing the parameter C. Similarly an n™ order DE will
yields an n-parameter family of curves/solutions.
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F(xy,C,,C,,++,C,)=0

n

‘o The questlon arises that whether or not we can turn the problem around: Startlng
: with an n-parameter family of curves, can we find an associated n" order
differential equation free of parameters and representing the family. The answer
| in most cases is yes.
: 0 Letustry to see, with reference to a 1-parameter family of curves, how to proceed
. ifthe answer to the questionisyes.

1. Differentiate with respect to x, and get an equation-involving X, vy, (;_y and C.

2. Using the original equation, we may be able to eliminate the parameter C from
. the new equation. =
i 3. The next step is doing some algebra to rewrite this equation in an epr|C|t
i form -

u For illustration we consider an example:

Ilustration

Example

Find the differential equation satisfied by the family

X2 +y?=Cx

Solution:

1. We differentiate the equation with respect to x, to get

dy
2x+2 — =
Y ix

2. Since we have from the original equation that

x> +y°
X

C=

then we get
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dy x24—y2§
dx X

§2x+2y

3. The explicit form of the above differential equation is

dx 2Xy

This last equation is the desired DE free of parameters representing the given family.

Let us consider the example of the following two families of curves

y :mx
X2+y2 :C2

The first family describes all the straight lines passing through the origin while the
second family describes all the circles centered at the origin

If we draw the two families together on the same graph we get
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Clearly whenever one line intersects one circle, the tangent line to the circle (at the point
of intersection) and the line are perpendicular i.e. orthogonal to each other. We say that
the two families of curves are orthogonal at the point of intersection.

Orthogonal curves:

Any two curves C, and C, are said to be orthogonal if their tangent lines T, and T, at
their point of intersection are perpendicular. This means that slopes are negative
reciprocals of each other, except when T, and T, are parallel to the coordinate axes.

Orthogonal Trajectories (OT):
When all curves of a family 3, : G(x, Yy, ¢,;)=0 orthogonally intersect all curves OE

another family J,: H(x,y,c,)=0 then each curve of the families is said to be=
orthogonal trajectory of the other
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..........................

Example
As we can see from the previous figure that the family of stralght lines Y =mMX and the

famlly of circles X + y C are orthogonal trajectorles

Orthogonal trajectories occur naturally in many areas of physics, fluid dynamics, in the
study of electricity and magnetism etc. For example the lines of force are perpendicular
to the equipotential curves i.e. curves of constant potential.

‘Method of finding Orthogonal Trajectory:

Consider a family of curves 3. Assume that an associated DE may be found, which is
given by:

dy
dx
. dy
Slnce d gives slope of the tangent to a curve of the family 3 through (x,y).
Therefore, Ethe slope of the line orthogonal to this tangent is — % So that the
X,y
slope of the line that is tangent to the orthogonal curve through (x,y) is given by
- ﬁ In other words, the family of orthogonal curves are solutions to the
X,y
differential equation
dy _ 1
dx f(xy):
The steps can be summarlzed as follows:

Summary:

In order to find Orthogonal Trajectories of a family of curves 3 we perform the
followmg steps

dy
L f
de (X, y)

dy 1 -
dx (%)

Step 4. Solve the new equation. The solutions are exactly the family of orthogonal
curves.
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Step 5.: A specific curve from the orthogonal family: may be required, something like an:

Example 1

Find the orthogonal Trajectory to the family of circles
X2 " yz _ CZ

Solution:

The given equation represents a family of concentric circles centered at the origin.
Step 1. We differentiate w.r.t. X to find the DE satisfied by the circles.

. d
2y 1 2x=0
L S—
Step 2. We rewrite this eqy__g_tllg_h___l__r_t__t_h_o__gxpI|C|t form
dy _ X
dx y
Step 3. Next we write down the DE for the orthogonal famlly
dy 1y

dax —(xly) x

Step 4.This is a linear as weII as a separable DE. Usmg the technique of linear
equation, we find the integrating factor

u(x) ef .

which gives the solutlon

y.u(x)=m

or

5 m :
y=——=mx

u(x)

Which represent a family of straight lines through origin Hence the family of

straight lines -y = MX _and the family of circles X2+ y ngare Orthogonal

Trajectories.
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............................

.E.?S.é‘...r!]l?.!.?..?
Find the Orthogonal Trajectory to the famlly of C|rcles
x +y*=2C x;
Solution:
1. We d'fferent'at_?__ff_h_(?__9__'_Y_e__r_‘__?QH_@P'_QH__t__(?__f_'_ﬂq__'F_h_ePE_S_??‘_'F'_%f!ed by the circles.
2 2
X"+
y—X+X:C, = y
T S 2X...
2. The explicit dlfferentlal equatlon assomated to the famlly of circles is
dy y —x°
dx 2Xy
3. Hence the differential equatlon for the orthogonal family is
dy  2xy ;
dx  xP-y?

dy dv 2Xxy 2V
= X—+V 5nd > > = >
dx dx X“—ys 1-v©:
Therefore the homogeneous_differential equation in step 3 becomes
_av 2V
X— V= .
~dx 1-v2-

Algebraic manipulations reduce this equation to the separable form:

;9!_1 vve

gdx__x 1—v2 é

The constant solutlons are glven by

;v+v O:>v(1+v) O

The only constant solutionis V =10.

To find the non-constant solutlons we separate the variables
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2
Jl ngv:jld X
V+V X

Resolving into partial fractions the integrand on LHS, we obtain
1-v? 1-v® 1 2v

Integrate

év—+v3 - vas+v2) v 14—v2§

Hence we_have

(12
;Jl ng\,:HE_ sz}dv:|n|v|—|n[v2+1];
Jv+v Vo 1+v :

Hence the solution of the separable equation becomes

In|v|=In[v?>+1=In|x|+InC

where C # O__._____H_g_q_g_q__a_!_I___t_hg__§_(_)__I__L_Jtions are

We go back to y to getéy = OEand yzz—xz =C gwhich is equivalent to

[y =0
(X +yi=my

5. Which is x-axis and a family of circles centered on y -axis. A geometrical
view of both the families is shown in the next slide.
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Some natural questions related to population problems are the following:

o What will the population of a certain country after e.g. ten years?
o How are we protecting the resources from extinction?

The easiest population dynamics model is the exponential model. This model is based
on the assumption:

The rate of change of the population is proportional to the existing population:.
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If P(t) measures the population of a species at any time T then because of the above
mentioned assumption we can write

where the rate K is constant of proportionality. Clearly the above equation is linear as
well as separable. To solve this equation we multiply the equation with the integrating

kt

factor e ™ to obtain

E[P e kt}:oé
dt

Integrating both sides we obtain

Ppe K_c o P:Cekté

If Py is the initial population then P(0) =P, So that C = P, and obtain

ECIearIy, we must have k>0 for growth and k <0 forthe decayé
Ilustration

...........................

The population of a certain community is known to increase at a rate proportional to the
number of people present at any time. :The population has doubled in 5 years, how Iongé
would it take to triple?. If |t is known that the populatlon of the communlty is :10, 000

Solution:

Suppose that P, is initial population of the community and P(t) the population at any

time U then the population growth is governed by the differential equation

d—P_kPé
at

As we know solution of the dlfferentlal equatlon is given by
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Pt)=P, et
Since |:’(5)=2F’0 Therefore, from the last equation we have
2P, =P, ek ek =2
This means that :
BK=In2=069315 or k=2 013863
Therefore, the solution of :the equation becorﬁes _ _
P(t)= P, 0-138631
If tl is the time tgken for the population to triple then _
3p, — p, 013860 _, [0.13861, 5
tl = In3 =7.9265 ~ 8 years%
: 0.1386
Now using the information P(3)=10,000 we obtain from the solution that
_ o .(0.13863)(3) ~ 10,000 -
élo,OOO—POe :PO_—60_41589§
Therefore, the initial population of the community was
P, ~6598
Hence solution of the model is :
So that the population in 30 years is given by |
P(30) = 6598e(30)(0.13863) _ 659801589
or P(30)=(6598)(64.0011)
or P(30)~ 422279
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Lecture-11

Radioactive Decay:

In physics a radioactive substance disintegrates or transmutes into the atoms of another

then the rate of change of A(t)with respect to time T is given by
dA |
—=kA
where K is a constant of proportionality. Let the initial amount of the material be A,

differential equation is

A=Akt

The constant K can be determined using half-life of the radioactive material.

The half-life of a radioactive substance is the time it takes for one-half of the atoms in an
initial amount A, to disintegrate or transmute into atoms of another element. The half-
life measures stability of a radioactive substance. The longer the half-life of a substance,

A
A(T)=—:
M5
Therefore, using this condition and the solution of the model we obtain
A kt-
= A
oA
So that kT =—In2:

Therefore, if we know T , we can get K and vice-versa. The half-life of some important
radioactive materials is given in many textbooks of Physics and Chemistry. For example

the half-life of C —14 is 5568 + 30 years.

Example 1: 7 7 7 7
A radioactive isotope has a half-life of 16 days. We have 30 g at the end of 30 days.
How much radioisotope was initially present?

Solution: Let A(t) be the amount present at time t and A, the initial amount of the
isotope. Then we have to solve the initial value problem.
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YA A ABO)=30
: dt

We know that the solution of fhe IVP is given by
At) = Aoekté

It T the half-life then the constant is given K by

kT =—In2 or k:_ln_zz_ln_Zé
T 16

Now using the condition A(30)=30 we have

30= A%

So that the initial amount is given by

302
A, =30e"30K Z30e 16 -11004g

Example 2:

A breeder reactor converts the relatively stable uranium 238 into the isotope plutonium

is proportional to the amount remaining.
Solution:

Let A(t) denotes the amount remaining at any time t | then we need to find solution to
the initial value problem

— =kA, A0 = A0

which we know is given by

A = Akt
If 0.043% disintegration of the atoms of A, means that 99.957% of the substance
remains. Further 99.957% of A, equals (0.99957)A, . So that

A@5) = (0.99957) A,

So that

At = (090057,
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15k =1n(0.99957)

or k w_ 000002867
Hence A(t) Aoe 000002867t
If T denotes the half-life then A(T) =— Thus
A0: Ae~ 0.00002867 T or 1 —O 00002867 T

2
~0.00002867 T = |n(2 __in2

B In2
0.00002867

~ 24,180 yearsé

Newton's Law of Cooling
From experimental observations it is known that the temperature T (t) of an object
changes at a rate proportional to the difference between the temperature in the body and:
the temperature T, of the surrounding environment. This is what is known as Newton's
law of cooling.
If initial temperature of the coollng body is T then we obtaln the initial value problem
.d—T_k(T “T.), T(O)=T,

where k is constant of proportionality. The differential equation: in the ;problem is linear
as well as separable.
Separating the variables and integrating we obtain

d_T _ J' k dt

T -

This means that

§|n|T—Tm |=kt+c§

T() =T _+Ce"' where C,= eC

Now applying the initial condition T(O) =T, We see that C,=T,-T,. gThus the

solution of the initial value problem is given by
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T(t) :Tm + (TO _Tm)ekt

Hence, If temperatures at times tl and tg are known then we have

TR)-T,= (T,-T)eY  Tt,)-T, = T, ~T,)e%

So that we can write

T(t ) T ek(tl_tz)

T (t,)-T,
This equation provides the value of K if the interval of time ‘tl —t2 ”is known and vice-
versa.
Example 3:

Suppose that a dead _body was discovered at midnight in a room when its temperature

was 80 °F. The temperature of the room is kept constant at 60 F Two hours later the

temperature of the body dropped to 75° F _Fmd the time of death.
Solution:
Assume that the dead person was not sick, then

T(O) 98.6°F =T, and T, _60°F
Therefore, we have to solve the initial value problem

Z—I = k(T -60), T(0)=98. 6

We know that the solutlon of the initial value problem is

T(t) T e ( ~t )
T(,)-T,
The observed temperatures of the cooling object, i.e. the dead body, are
T(,)=80°F and T(t,)=75F

Substituting these values we obtain

So that

1 4
k=2In%-01438
S0 T3

Now suppose that t1 and t2 denote the times of death and discovery of the dead body
then
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T(t,)=T(0)=986°F and T(t,)=80°F
For the time of death, we need to determine the interval {, —t, =1, . Now
T)-T, kb -t) _ 986-60 ki,
T(@L,)-T, 80— 60
.1, 386

t :—ln—z4.573§
or k20

‘Hence the time of death is 7:42 PM.:

Carbon Dating

o The isotope C-14 is produced in the atmosphere by the action of %cosmicf

o The ratio of C-14 to ordinary carbon in the atmosphere appears to be constant.

o The proportionate amount of the isotope in all living organisms is same as that in
the atmosphere.

o When an organism dies, the absorption of C —14 by breathing or eating ceases.

o Thus comparison of the proportionate amount of C —14 present, say, in a fossil
with constant ratio found in the atmosphere provides a reasonable estimate of its
age.

o The method has been used to date wooden furniture in Egyptian tombs.

o Since the method is based on the knowledge of half-life of the radio active C —14
(5600 years approximately), the initial value problem discussed in the

radioactivity model governs this analysis.

Example:

the age of the fissile.
Solution:

Let A(t) be the amount present at any time t and A, the original amount of C-14.
Therefore, the process is governed by the initial value problem.

TR A= A0

We know that the solution of the problem is
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A(t) Aoekt

Since the half life of the carbon |sotope is 5600 years. Therefore,

éi:AoeSGOOK or 5600k_—ln2

So that 2
Kk =-0.00012378
Hence
A(t) Aoe (0 00012378)t

If t denotes the time when fossilized bone was found then EA(I) = %

Do p e (000022378) 4 00012378t = - In1000

1000
Therefore

In1000

= = 55,800 yearsé
0.00012378

96

© Copyright Virtual University of Pakistan



Differential Equations (MTH401) VU

Lecture-12

§App|ications of Non linear Equations§

P, being the initial population. From this solutlon we conclude that

(@) If k>0 the population grows and expand to infinity i.e. §||m Ft)g) = +°0
: o0 :

(b) If k <0 the population will shrink to approach 0, which means extinction.

Note that:

(1) The prediction in the first case (k >0) differs substantially from what is actually
observed, population growth is eventually limited by some factor!

(2) Detrimental effects on the environment such as pollution and excessive and
competitive demands for food and fuel etc. can have inhibitive effects on the population
growth.

Logistic equation:
Another model was proposed to remedy this flaw in the exponential model. This is called
the logistic model (also called Verhulst-Pearl model).

Suppose that a >0 is constant average rate of birth and that the death rate is proportional

to the population P(t) at any time T . Thus if %(Z—T is the rate of growth per individual

then

ld—P a—bP or d—P—P(a bP)
Pdt dt

where b is constant of proportlonallty The term bP2 b >O can be interpreted as

inhibition term. When b =0, the equation reduces to the one in exponential model.
Solution to the logistic equation is also very important in ecological, sociological and
even in managerial sciences.

Solution of the Logistic equation:
The logistic equation

dpP
—=P(a-bP):
T )

can be easily identified as a nonlinear equation that is separable. The constant solutions
of the equation are given by

P(a-bP)=0
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= P=0 and P:%é

For non-constant solutions we separate the variables

d—P = dt
P(a—bP)
Resolving into partial fractions we have
|La  bla |5 4
_________ P a-bP] =
1 1
Integrating —In|P|-=In|a-bP|=t+C:
‘a _ a .
In —at+aC-
- |a-bP ;
or L ~C,e® where C, =e3C
‘a—bP :
Easy algebraic manipulations give
: aC e aC,

P(t) = -
é 1+bC,e® bC, +e 8

we obtain C1 = _P° Substituting this value in the last equation and simplifying, we
obtain | 0:: :
Pl=
bR, +(a-bR)e
Clearly tl—l)moo P(t)= % = % limited growth
Note that :P = —: is a singular solution of the logistic equation.

Special Cases of Logistic Equation:
1. Epidemic Spread

Suppose that one person infected from a contagious disease is introduced in a fixed
population of npeople.
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The natural assumption is that the rate %of spread of disease is proportional to the

number X(t) of the infected people and number Y(t) of people not infected people.
Then

—= kx
t i |
Since X+ y:n+1

Therefore, we have the following initial value problem

% =kx(n+1-x), x(0)=1

The last equation iis a special case of the logistic equation: and has also been used for
the spread of information and the impact of advertising in centers of population.

2. A Modification of LE:
A modification of the nonlinear logistic differential equation is the following

dP
—=P(a-bInP).
dt ( )§

has been used in the studies of solid tumors;, in actuarial predrctrons and in the growth
of revenue from the sale of a commercial product in addition to growth or decline of

....................

students If it is assumed that the rate at which the virus spreads is iproportional not only

to the number X of mfected students but also to the number of students not mfected%

4days X(4) =50.

Solution

Assume that no one leaves the campus throughout the duration of the disease. We must
solve the initial-value problem

% — kx(1000-X), x(0) =1
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We identify
:2=1000k and b=k
Since the solution of logistic equation is

P() =

abk,
bP, +(a—bP,)e 2t

Therefore we have

%X(t) _ 1000k 1000

k +999ke 000Kt ™4 | goq,—1000Kt -

Now, using x(4)= 50, we determine K

: 1000
50=
~ 1+990e 4000k
-1, 19
i k =—=In—_ = 0.0009906."
We find " " 4000 " 999
1000

X(t)
____________________ 1+999¢ 09900t

Finally

(6) = 1002 9436 = 276 students% ,
14999~ %

gChemicaI reaCtionS:g ...........................................................................................................................................
In a first order chemical reaction, the molecules of a substance A decompose into smaller.

.......................................................................................................................................... H

first substance that has not undergone conversion. The disintegration of a radioactive
substance is an example of the first order reaction. If X is the remaining amount of the

substance A at any time tthen

L

k <0 because X is decreasing.

In a 2" order reaction two chemicals A and B react to form another chemical C at a
rate proportional to the product of the remaining concentrations of the two chemicals.
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If X denotes the amount of the chemical C that has formed at time t . Then the
instantaneous amounts of the first two chemicals A and B not converted to the
chemical C are o — X and S — X , respectively. Hence the rate of formation of

chemical C is given by

dX

H o kfa-x)(p-X)

where Kk is constant of proportionality.

..........................

Example
‘A compound C is formed when two chemicals A and B are comblned The resulting

reaction between the two chemicals is such that for each gram of A 4 grams of B are
used. It is observed that 30 grams of the compound C are formed in 10 minutes.
Determine the amount of C at any time if the rate of reaction is proportional to the
amounts of A and B remaining and if initially there are 50 grams of A and 32 grams

of B . How much of the compound Cis present at 15 minutes? Interpret the solution as
t—> o

Solution:

X (0)=0 and X(lO)—30§

Suppose that there are 2 grams of the compound C and we have used A grams of A

and b grams of B then
a+b=2 and b=4a
Solving the two equations we have

In general, if there were for X grams of C then we must have

X 4
a=— and b =—-X
S 3)
Therefore the am_o_u_n_ts___o_f___A___and___B____rema_lnmg atany time U are then
X 4

50—— and 32——X
5 5

respectively .
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Therefore, the rate at which chemlcal C is formed satisfies the dlfferentlal equation
dX 4\
WX als0-2 ) s2-2x |
dt 5 5 )
dX

?E—k(250 X)(40-X), k= 4/1/25

or

We now solve this differential equation.

By separation of variables and partial fraction, we can write

dX
(250 - X Y40-X)

= kdt

1/210 dX + 1/210

- dX kdt
250 - X 40—

éln‘—zso_ X ‘ — 210kt + c1
250 X 210Kt \phere ¢. = e
40-X °

When t =0, X =0, so it follows at this point that C, = 25/4 . Using X =30 at
t=10, we find

210k _il ﬁ_o 1258
1025

With this information we solve for X :

Itis clear thatas e~ 9-12°81 5 0 as t —> 00 . Therefore X —» 40 as t —> 00 . This
fact can also be verified from the following table that X — 40 as t — «.

t 110]15 20 25 30 35
X 130 |34.78 | 37.25 | 38.54 | 39.22 | 39.59
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This means that there are 40 grams of compound C formed, leaving

and

50 —%(40) =42 grams of chemical A

%32—%(40) =0 gramsof chemical B

Miscellaneous Applications

The velocity V of a falling mass M , subjected to air resistance proportional to
instantaneous velocity, is given by the differential equation

Here k >0 is constant of proportionality.

dv
m—=mg — kv
dx

The rate at which a drug disseminates into bloodstream is governed by the

differential equation

Q

%:A—Bx

Here A, B are positive constants and X(t) describes the concentration of drug ir

the bloodstream at any time t.
The rate of memorization of a subject is given by

dt
A

A _ (M = A)—k, A

dt

Here k, >0, k, >0 and A(t) is the amount of material memorized in time t,
M is the total amount to be memorized and M — A is the amount remaining to

be memorized.
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Lecture 13

Higher Order Linear Differential Equations

Preliminary theory
o A differential equation of the form
dn dnt d
an ()= +an_g () =+ +ag (X) 2+ 29 (¥)y = 9(¥)
dx" dx" dx

or  an (Y™ +a, )y + g () +ag ()Y = 9(%)
where ag (X), a;(X),...,a,(x), g(x) are functions of x and a,(x) =0, is
called a linear differential equation with variable coefficients.

o However, we shall first study the differential equations with constant coefficients
i.e. equations of the type

n n-1
dx" dx"1 d

X
where Qg,dq,...,d, are real constants. This equation is non-homogeneous
differential equation and
a If g(x) =0 then the differential equation becomes

n n-1
dx" dx" dx

which is known as the associated homogeneous differential equation.
Initial -Value Problem
For a linear nth-order differential equation, the problem:
. d"y "y dy
Solve: ap(x) +ap_1(x) +-+ap(X)—+ag(x)y =9(x)
dx" dx"1 dx
Subjectto: (X)) =VYo, Y (%)= Vor Y (X)) =Yg

Yor yol yeeey y{,” being arbitrary constants, is called an initial-value problem (IVP).

a

+agy =g(x)

a +agy =0

The specified values y(X,) =Y, ¥ (Xo) = Yor-.s Y " (X,) =Y, are called initial-

conditions.
For n =2 the initial-value problem reduces to
Y dy
Solve: ar (X)—=+ a1 (x)—+ag(X)y = g(x
2( )dX2 1( )dX 0(X)y =9(x)

Subjectto:  Y(Xy) = Yor - Y (X)) = Y4
Solution of IVP
A function satisfying the differential equation on | whose graph passes through (x,,Y,)

such that the slope of the curve at the point is the number y; is called solution of the
initial value problem.
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Theorem: Existence and Uniqueness of Solutions

Let a,(x),an_1(X),....,a1(x),ap(x) and g(x) be continuous on an interval | and
leta,(x)#0, Vxel. If x=x5el, then a solution y(x)of the initial-value problem

existon | and is unique.

Example 1

Consider the function y = 3e?X 47X —3x
This is a solution to the following initial value problem

y" —4y =12x, y(0) =4, y/(O) =1

d? _
dx
d2y
and d—2—4y =12e%* +4e7%X 1262 — 4672 +12x =12x
X
Further y(0)=3+1-0=4 and y'(0)=6-2-3=1
Hence y=3e2X 472X _3x

is a solution of the initial value problem.
We observe that

The equation is linear differential equation.
The coefficients being constant are continuous.
The function g(x) =12x being polynomial is continuous.

o The leading coefficient a,(x) =1 0 for all values of x.

000

Hence the function y = 3e%* +e72X —3x is the unique solution.

Example 2
Consider the initial-value problem

i

3y" +5y" —y' +7y =0,

ym=0, y'®=0 y'@®=0
Clearly the problem possesses the trivial solution y =0.
Since
o The equation is homogeneous linear differential equation.
o The coefficients of the equation are constants.
o Being constant the coefficient are continuous.
o The leading coefficienta, =3+ 0.

Hence y = 0 is the only solution of the initial value problem.
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Note: If a,, =07?

If a,(x) =0 in the differential equation

dn n-1 d
an (0= +ap 1 ()~ + - +ay (x) 2 +ag(x)y = g(¥)
d d

dx X X

for some X e | then

o Solution of initial-value problem may not be unique.
o Solution of initial-value problem may not even exist.

Example 4
Consider the function
y = cx? +Xx+3
and the initial-value problem
x2y” —2xy/ +2y=6
y(0) =3, y'(0)=1
Then y'=2cx+1 and  y"=2c
Therefore x%y" —2xy" +2y = x?(2¢) — 2x(2cx +1) + 2(cx* + x + 3)

= 20x2% —4cx? —2X+2cX% +2X+ 6

=6.
Also y(0)=3 = ¢(0)+0+3=3
and y/(0)=1 = 2¢(0)+1=1

So that for any choice of c, the function'y' satisfies the differential equation and the
initial conditions. Hence the solution of the initial value problem is not unique.

Note that
The equation is linear differential equation.

The coefficients being polynomials are continuous everywhere.
The function g(x) being constant is constant everywhere.

0 000

The leading coefficient a,(x) = x>?=0atx=0e (—o0,0).

Hence a, (x) =0 brought non-uniqueness in the solution
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Boundary-value problem (BVP)

For a 2" order linear differential equation, the problem

d2y

dx?
Subject to: y(a) =Y,, y(b)=vy;

is called a boundary-value problem. The specified values y(a) =y,, and y(b) =y, are

called boundary conditions.

Solve: a, (x) +a1(x)%+ao(x)y =g(x)

Solution of BVP

A solution of the boundary value problem is a function satisfying the differential equation
on some interval | , containing a and b, whose graph passes through two points (a, y,)

and (b, y,).

Example 5
Consider the function
y =3x% —6x+3
We can prove that this function is a solution of the boundary-value problem
2.,

xy" —2xy’ +2y =6,
y =0, y(2)=3

2
Since ﬂ:6x—6, u:6
dx dx?
2d%y dy 2 2 2
Therefore XS —=—2X—+2y =6x" —12X° +12X+6X° -12Xx+6=06
dx? dx
Also y0)=3-6+3=0, y(2)=12-12+3=3

Therefore, the function 'y’ satisfies both the differential equation and the boundary
conditions. Hence y is a solution of the boundary value problem.

Possible Boundary Conditions
For a 2" order linear non-homogeneous differential equation

d? d
az(x)Wy+al<x)d—§+ao<x)y=g(x)

all the possible pairs of boundary conditions are

y(@) = Y,, y(b) =y,
y'(a) = yq, y(b) =y,
y(a) = Yo, v/ (b) = y'1,
y'(@) =y, y' (b) = yi

where y,,y.,y, and y; denote the arbitrary constants.

107

© Copyright Virtual University of Pakistan



Differential Equations (MTH401) VU

In General
All the four pairs of conditions mentioned above are just special cases of the general
boundary conditions

ary(a)+ A1y’ (@) = 11
a2y(0) + B2y’ (b) = 72
where o, 05, By, Py € {01}
Note that
A boundary value problem may have

o Several solutions.
o A unique solution, or
o No solution at all.

Example 1
Consider the function

Y = C; COS4X + C, Sin4x
and the boundary value problem
y/ +16y=0, y(0)=0, y(z/2)=0
Then

y' = —4c, sin 4x + 4c, cos 4x
y" =-16(c, cos4x +c, sin 4x)
y// = 16y
y" +16y =0
Therefore, the function
y =C, C0S4X +C, Sin4Xx
satisfies the differential equation

y" +16y =0.

Now apply the boundary conditions
Applying y(0)=0
We obtain

0=cycos0+cC,sin0

=C = 0
So that

y =cC,sin4x.
But when we apply the 2" condition y(z/2) =0, we have

0=c,sin2z

Sincesin 2z =0, the condition is satisfied for any choice of c,, solution of the problem is
the one-parameter family of functions
y =C, Sin4x
Hence, there are an infinite number of solutions of the boundary value problem.
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Example 2

Solve the boundary value problem
y" +16y=0

T
y(0) =0, y(gj o

Solution:

As verified in the previous example that the function
Y =C; COS4X + C, Sin4x

satisfies the differential equation
y” +16y =0

We now apply the boundary conditions
y(0)=0=0=c; +0

and y(z/18)=0=0=0+c,
So that c,=0=c¢y
Hence

y=0

is the only solution of the boundary-value problem.

Example 3

Solve the differential equation
y” +16y =0
subject to the boundary conditions
y(0)=0, y(»/2)=1
Solution:

As verified in an earlier example that the function
Y =C; COS4X + C, Sin4x

satisfies the differential equation
y" +16y =0

We now apply the boundary conditions
y(0)=0=0=c; +0

Therefore ¢, =0

So that y =C, sin4x

However y(r12)=1=c,sin27z =1
or 1=¢,.0=1=0

This is a clear contradiction. Therefore, the boundary value problem has no solution.
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Definition: Linear Dependence

A set of functions

{1200, T (X),..., Fr (%)}

is said to be linearly dependent on an interval | if 3 constants C,C»,...,C, not all zero,
such that

Cfi(X)+cofro(X)+---.+c, f,(x)=0, Vxel

Definition: Linear Independence

A set of functions
{1100, F200,.., £, (0}
is said to be linearly independent on an interval I if
cfi(X)+cofyo(X)+---+c,f(x) =0, Vxel,

only when

Case of two functions:

If n=2 then the set of functions becomes
{F1.00, 00}

If we suppose that
cifi(x)+c,fr(x)=0

Also that the functions are linearly dependent on an interval | then either ¢; #0 or
Cyr # 0.

Let us assume that ¢, # 0, then

umz-%uux

Hence f,(X) is the constant multiple of f,(X) .
Conversely, if we suppose

fi(x)=c; f2(x)
Then D f(x)+c,f,(x)=0, ¥xel

So that the functions are linearly dependent becausec, = -1.
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Hence, we conclude that:

o Any two functions f;(x)and f,(x)are linearly dependent on an interval I if and
only if one is the constant multiple of the other.

o Any two functions are linearly independent when neither is a constant multiple of
the other on an interval I.

o Ingeneral aset of n functions {f;(x), f,(x),..., f,(x)} is linearly dependent if at
least one of them can be expressed as a linear combination of the remaining.

Example 1
The functions

f1(X) =sin 2x, VX € (—o0, o)

fo(X) =sinxcosx, VXe (-, o)

If we choose c, :% and c, = -1 then

. : 1.,. .
C; SiN 2X + C, SiN X COS X :E(Zsm X COS X) — sin xcos x =0

Hence, the two functions f;(x) and f,(x) are linearly dependent.
Example 3
Consider the functions
f,(x) =cos?x, fy(x)=sin®x, Vxe (-z/2,7/2),
f.(x) =sec’x, f4(x)=tan’x, Vxe (-z/2,7/2)
If we choose ¢; =¢, =1,¢c3 =-1,¢4 =1, then
¢y fr (%) +¢a fo(X) +C3fa(X) + ¢4 F4(X)
=, €02 X+ C, Sin? X+ Cs sec? X+ ¢4 tan? x
=cos? x+sin? x+—-1—tan? x + tan? x
=1-1+0=0
Therefore, the given functions are linearly dependent.
Note that

The function f3(x) can be written as a linear combination of other three functions

f,(x), f,(x) and f,(x) becausesec? x = cos? x +sin? x + tan? x.
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Example 3
Consider the functions
fi(X) =1+x, V xe (—o0,)

fo(X)=x%x, VXe (-o,0)

fa(x) = x%, VXe (~o0,00)

Then
Cyfi(X)+cofr(x)+c3f3(x)=0
means that
c(1+ x)+czx+c3x2 =0
or Cy + (Cy +Cy )X +CaX2 =0
Equating coefficients of x and x? constant terms we obtain
Cl = O = C3
Ci+Cr =0
Therefore C;=Cy=C3=0

Hence, the three functions f;(x), f,(x) and f;(x) are linearly independent.

Definition: Wronskian

Suppose that the function f,(x), f,(x),..., f,(X) possesses at least n—1 derivatives then
the determinant

fi fy i
7 CAR fl
f fort

is called Wronskian of the functions f,(x), f,(x),..., f,(x) and is denoted by
W (f1(x), f1(),-.., f1(x))-
Theorem: Criterion for Linearly Independent Functions

Suppose the functions f, (x), f,(x),..., f,(x) possess at least n-1 derivatives on an
interval | . If

W (f,(x), f,(x),..., f, (X)) =0
for at least one point in |, then functions f,(x), f,(x),..., f,(x) are linearly independent
on the interval | .
Note that
This is only a sufficient condition for linear independence of a set of functions.
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In other words

If f,(x), f,(x),..., f,(x) possesses at least n—1 derivatives on an interval and are
linearly dependent on 1, then

W (fL(X), Fo(X),.... f, (X)) =0, Vxel

However, the converse is not true. i.e. a Vanishing Wronskian does not guarantee linear
dependence of functions.

Example 1

The functions
f,(x)=sin? x
f,(x)=1-cos2x

are linearly dependent because
sin? x = %(1—005 2X)
We observe that for all x € (—oo, )

W (f,(x), fo(x)) = sin?x  1-c0s2x

2sinxcosx  2sin2x

= 2sin? xsin 2x — 2sin X cos X
+ 25in X C0OS X COS 2X

=sin 2x[2sin? x —1+cos 2X]
=sin 2x[23in2 X —1+cos? x —sin? X]
=sin 2x[sin2 X + C0S? x—=1]
=0
Example 2

Consider the functions

f,(x)=e™", f,(x)=e"2", m, =m,
The functions are linearly independent because
c fi(x)+c,fr(x)=0

ifandonlyif ¢, =0=c, as my=m,

113

© Copyright Virtual University of Pakistan



Differential Equations (MTH401) VU

Now forall xe R

m,x m,X
W(emlx’emzx)= € e

m,e m,x mzemzx
= (m, — my e
#0

Thus f, and f,are linearly independent of any interval on x-axis.

Example 3
If @ and g are real numbers, g = 0, then the functions
y, =e” cos Sxandy, =e” sin px
are linearly independent on any interval of the x-axis because

W(e“x cos fx,e™ sin ﬂx)

e® cos fAx e sin px
B — B sin A +ce® cos X o™ cos X+ ae™ sin X
= o™ (cos2 B +sin? ,Bx)= % £ 0.
Example 4
The functions
f(x)=e, f,(x)=xe*, and f,(x)= x%"

are linearly independent on any interval of the x-axis because for all X € R, we have

X X

e Xe x2e*
W(e*, xe*, x%* )=[e*  xe*+e’ x?e* + 2xe*
X xe*+2e* x%e*+4xe* +2e*

=2 20
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Exercise

1. Given that
y=ce*+ce””
is a two-parameter family of solutions of the differential equation
y'-y=0
on (— oo,oo), find a member of the family satisfying the boundary conditions
y(0)=0, y'()=
2. Given that
Yy =Cq +C, COSX + C3SiN X
is a three-parameter family of solutions of the differential equation

ylﬂ + y — O
on the interval (— 00, ) find a member of the family satisfying the initial
conditions y(z)=0, y'(z)=2,y"(z)=-1.

3. Given that
y =C;X+CyxInx
IS a two-parameter family of solutions of the differential equation
x2y"—xy'+y =00n (—oo,0). Find a member of the family satisfying the initial

conditions

y(1)=3, y'1)=-
Determine whether the functions in problems 4-7 are linearly independent or
dependent on (- oo, ).

=1, fs(x) cos? x
—X

fi(x)=e*, fy(x ) e X, f3(x)=sinhx
Show by computing the Wronskian that the given functions are linearly independent
on the indicated interval.
8. tanx, cotx;  (-o0,00)
4x; (

9. eXeXe —0,0)

10. x,xInx,x2Inx; (0,0)
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Lecture 14
Solutions of Higher Order Linear Equations

Preliminary Theory

o In order to solve an nth order non-homogeneous linear differential equation

d n d n-1 d
202 w2, 000 Y s a0 s 2,y = o)

we first solve the associated homogeneous differential equation

d" dmt d
2005 2, (00 v a0 va(x)y =0

o Therefore, we first concentrate upon the preliminary theory and the methods of
solving the homogeneous linear differential equation.

o We recall that a function y = f(x) that satisfies the associated homogeneous
equation

dny dnfly dy
a, (x) o +a,,(x) ! +~--+al(x)&+ao(x)y =0

is called solution of the differential equation.

Superposition Principle

Suppose that Y, Y,,..., Y, are solutions on an interval | of the homogeneous linear
differential equation

n n-1
a, (x)d—y + an_l(x)% ot al(x)% +a,(x)y=0

Xn—l
Then
Y =, Y; (%) + €Y, (X)+ -+ ¢y, (x),
C1,Cy,...,C, being arbitrary constants is also a solution of the differential equation.
Note that

o A constant multiple y =c,y,(x) of a solution y,(x) of the homogeneous linear
differential equation is also a solution of the equation.

o The homogeneous linear differential equations always possess the trivial solution
y=0.
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o The superposition principle is a property of linear differential equations and it

does not hold in case of non-linear differential equations.
Example 1

The functions
Y. =€y, =c?, and Y3 =e¥

all satisfy the homogeneous differential equation

3 2
0y _69Y, 11 % 6y-0
dx dx dx

on (—oo,). Thus y,,y, and y, are all solutions of the differential equation

Now suppose that

X 2x 3X
y=ce" +c,e” +c,e’.

Then
@ _ c,e* +2c,e%* +3c,e.
dx
d’y 2 3
X X X
o =cCe” +4c,e”" +9c,e™".
3
d_g/ = c,e* +8c,e™ +27c,e™.
dx
Therefore
3 2
d—g’— 69V .11V gy
dx dx X
= cl(ex —6e* +11e* — 6eX)+ c2(8e2X —24e%* 1 220%% - 6e2x)
+cgl27e3* —54e3* +33e%% — e
=c,(12-12)e* + ¢, (30— 30)e®* +c5(60 — 60)e>*
Thus

X 2x 3x
y=cCe" +C,e” +ce”.

is also a solution of the differential equation.
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Example 2
The function

2

y=X
is a solution of the homogeneous linear equation

x’y" —3xy' +4y =0

on (0,).
Now consider
y = cx?
Then y'=2cx and y"=2c
So that x?y" —3xy' +4y =2cx® —6¢0x +4cx® =0

Hence the function
y = cx?

is also a solution of the given differential equation.

The Wronskian

Suppose that yq, Yy, are 2 solutions, on an interval | , of the second order homogeneous
linear differential equation

d’y  _dy
a,—+a,—+a,y=0
2 52 | Max oY
Then either W(y;,y,)=0, Vxel
or W(y,,y,)#0, Vxel

To verify this we write the equation as

d?y Pdy
—+—+Qy=0
dx? = dx Qy

Yi Yo

Now Wiy Yo )=, 7]
buya)=l0,

=Y1Y5 = Y1

Differentiating w.r.to x, we have
w_ Y1Ys = Y1y
dx 172 172

Since y,andy, are solutions of the differential equation
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d?y Pdy
—+—+Qy=0
dx*  dx R

Therefore
yr +Py; +Qy; =0
Y2 +Py; +Qy, =0
Multiplying 1% equation by y,and 2" by y, the have
y1¥2 +Py1y, +Qy1y, =0
Y1¥2 +Py1ys +Qy1y, =0
Subtracting the two equations we have:

(yoys = Yo ¥+ P(Y,ys — yiy,) = 0

or aw +PW =0
dx
This is a linear 1% order differential equation in W , whose solution is
— [ Pdx

W =ce
Therefore
o Ifc#0 then W(y,,y,)#0, Vxel

o Ifc=0 then W(y,,y,)=0, Vxel
Hence Wronskian of y; and y, is either identically zero or is never zeroon 1.

In general

If y;,¥,,...,y,are n solutions, on an interval I, of the homogeneous nth order linear
differential equation with constants coefficients

n n-1

an 2Xr¥+an_1 zxn_¥+---+a1%+aoy:0
Then
Either W(Y,,¥,,...,Y,)=0, Vxel
or W(Y,,Y,r..0n Y, )20, ¥xel
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Linear Independence of Solutions:

Suppose that

YioYor-ea Y
are n solutions, on an interval | , of the homogeneous linear nth-order differential
equation

d" dnt d
a,(x) dxgl + an_l(x)dx—n_)l/ Foeeet al(x)d—i +a,(x)y=0

Then the set of solutions is linearly independent on | if and only if
W(yl,yz,..., yn);t 0
In other words

The solutions
Yi.¥2:oa0 Yn
are linearly dependent if and only if
W(ylyyz,...,yn):o, Vx el
Fundamental Set of Solutions
A set
Wi Yoo Yol

of n linearly independent solutions, on interval I, of the homogeneous linear nth-order
differential equation

dn dn—l
a,(x), oy 8y () g+ v a(x)

is said to be a fundamental set of solutions on the interval | .
Existence of a Fundamental Set
There always exists a fundamental set of solutions for a linear nth-order homogeneous
differential equation

d n y d nfly
) +a,,(x)

dy _
d? dx"t Tt al(x)& +a, (X)y =0

a, (x

on an interval I.
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General Solution-Homogeneous Equations
Suppose that

Wi Yoo Val

is a fundamental set of solutions, on an interval I, of the homogeneous linear nth-order
differential equation
n-1

d
+a,4(x) dx”‘i/ Foet al(x)d—i +a,(x)y=0

)9y

dx"
Then the general solution of the equation on the interval | is defined to be
Y = Cyy () + oy, (x) 4+, v, (%)

Here c,,c,,...,C, are arbitrary constants.

a, (x

Example 1
The functions

3x

y, =e3* and y, =e~ 3X

are solutions of the differential equation

y'=9y=0
3X —3X
Since W(e3x,e‘3x)= e3 e 2| =—6%0, Vxel
32X _3e7 X

Therefore y, and y, from a fundamental set of solutions on (—oo,oo). Hence general
solution of the differential equation on the (—o0,0) is

y =ce* +c,e

Example 2

Consider the function y = 4sinh 3x —5e™ 3X

Then y' =12cosh 3x + 153X y" = 36sinh 3x — 45¢~ 3X
= y" = 9(4sinh 3x—5e" 3Xj or y"=9y,

Therefore y"—9y =0

Hence y = 4sinh 3x — 56X

is a particular solution of differential equation.
y'-9y=0
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The general solution of the differential equation is

Choosing c,=2,C,=—7
We obtain y = 23X _7¢ 3X
y= 263X _ 273X _ge=3X
, 24(e3X _e—3x}_se_3x
2
y:4sinh3x—56_3x

Hence, the particular solution has been obtained from the general solution.

Example 3
Consider the differential equation
3 2
0y _69Y, 11 W 6y—0
dx dx dx
and suppose that y, = eX, Yy, = e2X and y, = e3X
2 3
Then %:exzd ledzl
dx dx dx
A3y, _d%y . dy X a.X X anX
Therefore 3 -6 5 +11—=-6y; =e” —6e” +11e”™ —6e
dx dx dx
ddy, _d%y .y X X
or -6 +11—==-6y; =12e” 12" =0

dx3 dx? dx
Thus the function Yy, is a solution of the differential equation. Similarly, we can verify
that the other two functions i.e. y, and y, also satisfy the differential equation.

Now forall xe R

eX e2x eBx

W(ex,ezx,e3x):ex 2e2x 3e3X :2e6x¢0 VXxel
e 4e2x 9e3x

x

Therefore y;,y, andy; form a fundamental solution of the differential equation
on (- oo,0). We conclude that

2xJr 3X

X
y=ce” +c,e C,e

122

© Copyright Virtual University of Pakistan



Differential Equations (MTH401) VU

is the general solution of the differential equation on the interval (~ oo, o0).

Non-Homogeneous Equations
A function y , that satisfies the non-homogeneous differential equation

d"y d" "y

and is free of parameters is called the particular solution of the differential equation

d
+...+a1(x)d—§+ao(x)y = g(X)

Example 1
Suppose that

Yo =
Then yp =0
So that

yh +9y, =0+9(3)

=27

Therefore

Yy =3
is a particular solution of the differential equation

yp +9y, =27
Example 2
Suppose that

y, = X3 —x
Then y, =3x* -1y, =6x

2.n ' _ 2 2 3
Therefore X<yl +2xy} =8y, = x(6x)+2x 3x“ —1]-8 x° —x
— 4x3 1 6x
Therefore
3
=X =X
Yp

is a particular solution of the differential equation

x%y" +2xy’ —8y = 4x> + 6x
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Complementary Function

The general solution
Yo =C1Y FC Yo+t C Y

of the homogeneous linear differential equation

d" damt d
2000 o, (0% v a0 42 0y =0

is known as the complementary function for the non-homogeneous linear differential
equation.

d" d"t d
a,(x) y+am&0d T a0 2+ ag(x)y = g(x)

anl

General Solution of Non-Homogeneous Equations

Suppose that
o The particular solution of the non-homogeneous equation
d"y d"ty dy
an (X)d7 + anfl(x)ﬁ +oeet al(X)& +ap(x)y = g(x)
is y,.

o The complementary function of the non-homogeneous differential equation

n n-1
()5 Y+ s (08 v (0 gy =0

Ye =CY; +Co¥y +--+CphY,.

o Then general solution of the non-homogeneous equation on the interval | is
given by
Y=Y +Yp
or
Y =& Ya(X)+ €y, () + -+ ¢y () + ¥, (%) = ye () + v, ()
Hence
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General Solution = Complementary solution + any particular solution.

Example
Suppose that
_11 1
p 12 2
! 1 " "
Then yp:—z, Yp=0=Yp
d? d? d
ysp -6 yzp +11 Yo -6y, = 0—0—E+E+3x = 3X
dx dx dx 2 2
Hence
P E N
p 12 2
is a particular solution of the non-homogeneous equation
3 2
9 69 W gy 3y

a3 dx? dx
Now consider

Vo =X +cpe?X + cge™
Then
d
Ye _ cieX +2c,e2% +3cqe
X
)
Yo _ cie +4c,e2X +9cge
dx?
3
d
Yo _ cieX +8c,e2X +27cqe3
dx®
Since,
d® d? d
);C -6 };C +11C -6y,
dx dx dx

= ce* +8c,e” +27c,e™ - 6(cleX +4c,e”* + 9c3e3X)
+11(cleX +2¢,e%° + 3c3e3x)— 6(cleX +C,e%% + c3e3x)
=12c,e* —12ce* +30c,e” —30c,e”* + 60c,e* - 60c.e™

=0
Thus vy, is general solution of associated homogeneous differential equation
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3 2
Y g9 1 6y _0
dx®  dx? dx
Hence general solution of the non-homogeneous equation is
_ X 2X 3x 11 1
y_yc+yp_c1e +C,e°" +cge o EX

Superposition Principle for Non-homogeneous Equations

Suppose that

ypl,yIOZ ,...,ypk
denote the particular solutions of the k differential equation

a, (x)y™ +a,, (x)y" + -+ 2, (x)y +a, (x)y = g; (x),
i=12,...k,onaninterval I . Then

Yp = ypl(x)+ yp2 (X)+"'+ ypk (X)

is a particular solution of

a (x)y(nj +a _1(x)y(

n—1)

Example
Consider the differential equation

y" =3y +4y = —16x* + 24x -8 + 262X | oxeX _ ¥

Suppose that

yP1:_4XZ' ypz :ezx’ ypazxex
Then yn =3y, +4y, =-8+24x-16x*
Therefore y = _4x2

is a particular solution of the non-homogenous differential equation
y" =3y’ +4y =-16x* +24x -8
Similarly, it can be verified that
y  —e?X andy  =xe
Py P3
are particular solutions of the equations:
y"—3y'+4y = 2e
and y"-3y'+4y = 2xe* —¢”
respectively.

X

2 X

+ota (X)y' +a,(x)y = gl(x)+gz(x)+--~+gk(x)
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Hence y. =y  +y_ +Yy = 4x2 12X | xeX
p P, P, P,
is a particular solution of the differential equation
y" =3y + 4y = —16X? + 24x — 8+ 262X 1 2xeX — X
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Exercise

Verify that the given functions form a fundamental set of solutions of the differential
equation on the indicated interval. Form the general solution.

1. y' -y -12y=0; e*,e*, (~,)

2. y'-2y'+5y=0; e*cos2x,e*sin2x, (~oo,)
3. X2y"+xy'+y=0; cos(Inx),sin(Inx), (0,0)
4. 4y"—4y'+y=0; e'* xe"?, (~o0,®)

5. x’y"-6xy'+12y =0; x% x* (0,:0)

6. y"—4y=0; cosh2x, sinh2x, (—oo,)

Verify that the given two-parameter family of functions is the general solution of the non-
homogeneous differential equation on the indicated interval.

7. y"+y=secx, Y=C;COSX+C,sinx+xsinx+(cosx)In(cosx), (-z/2,7/2).

8. y'—4y +4y=2e"X1+4x-12, y=ce?* +cxe? +x%e?X +x-2

9. y'—7y' +10y =24eX, y=ce®* +c,e°* +6eX, (—o0,0)
10. X2y" +5xy’ +y = X2 — X, y:clx_1/2+02x_1+%x2—%x, (0,0)
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Lecture 15
Construction of a Second Solution

General Case
Consider the differential equation

d? d
a; (0) g+ (0 S+ 2, (x)y =0

We divide by a,(X) to put the above equation in the form
y" +P(X)y' +Q(x)y =0
Where P(x) and Q(x) are continuous on some interval | .
Suppose that y,(x) # 0, ¥ x el is a solution of the differential equation
Then v, +Py/+Qy, =0
We define y=u(x)y, (x) then
y'=uy, +yu’, oy =uy 2y + YU

y" + Py’ +Qy =uly,” + Py, +Qy, ]+ y,u” + 2y, + Py, )u’ =0

Zero

This implies that we must have
y,u” + 2y, +Py)u’ =0
If we suppose w =u’, then
y, W +(2y, + Py, )w=0
The equation is separable. Separating variables we have from the last equation
.dWW+(2y—1/+ P)dx=0

Y
Integrating

Injw|+ 2In|y, | = —j Pdx +¢

In‘wylz‘ = —j Pdx+c
~(Pd
WY12 =Ce Jpa
cle_IPdde
Y12
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Cle—dex

Y12

or U/ =

Integrating again, we obtain

o | Pdx
u=cy 42dx+02

Y1
o~ Pdx
Hence y =u()y1(x) = c1y1(x) | ————dx+Cay1().
Y1

Choosing ¢; =1andcy =0, we obtain a second solution of the differential equation

o~ | Pdx
yo = Y1(X)J4dx

Y12
The Woolskin
o~ Pdx
i |, W
y
W (yl(x), y2(x))= — [ Pdx ! — [ Pdx
, e | €
y1 Y| oy
Y1 Yq
_ e IPIX L v

Therefore y,(x) and y,(x) are linear independent set of solutions. So that they form a
fundamental set of solutions of the differential equation

y' +P(X)Y +Q(x)y =0
Hence the general solution of the differential equation is

y(x)=c; 1 (X)+c,y,(x)
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Example 1
Given that

y, =X
is a solution of

x’y" —3xy’ +4y =0
Find general solution of the differential equation on the interval (0,).

Solution:
The equation can be written as

y——Y+ 7Y =0,

The 2" solution v, is given by

J.de
Yo = yl(X)J'ng

Y1
3jdx/x emx
or Y2 —XZJ—dx—x J—4dx
X X

y, = xzjidx =x%Inx

Hence the general solution of the differential equation on (0,) is given by

y=¢Y,+CY,

or y=c, x> +c,x*Inx
Example 2
Verify that
sin x
Y

is a solution of
x2y" +xy +(x* =14y =0

on(0, 7). Find a second solution of the equation.

131

© Copyright Virtual University of Pakistan



Differential Equations (MTH401)

VU

Solution:
The differential equation can be written as

1
4x°?

1
y”+;y’+(1— )y =0

The 2" solution is given by

e—Ide
Y2 = Y1J'de
1

dx
sinx | e’x
Therefore Y, = . dx
N sin X
X ( )2
VX

—sinx X

= J ——ax
\/Y Xsin® x
—sin X

= _[cscz xdx

Jx

Thus the second solution is
_ COSX

Y2 Jx

Hence, general solution of the differential equation is

ool

Order Reduction
Example 3

Given that

Y1:X3

is a solution of the differential equation
X2 y// _ 6y — O,
Find second solution of the equation

Solution
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We write the given equation as:

So that P(x) = -

Therefore

e_?
y, = X* | ——dXx
X
6
eX
y, = X° | ==dx
X

Therefore, using the formula

e—Ide
Y2 = le?dX
1

We encounter an integral that is difficult or impossible to evaluate.

Hence, we conclude sometimes use of the formula to find a second solution is not
suitable. We need to try something else.

Alternatively, we can try the reduction of order to find y, . For this purpose, we again
define

y(x)=u(x)y1(x) or y=u(x).x’
then

y' =3x2u+x3u’

y" = x3u” +6x%u’ + 6xu
Substituting the values of y, y"in the given differential equation

x2y" -6y =0

we have
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x2 (x3u" +6x2U’ + 6xu) — 6ux® =0
or x°u" +6x%u’ =0
6
or u"+—u'=0,
X

If we takew = u’ then

w +8w=0
X

This is separable as well as linear first order differential equation inw. For using the

latter, we find the integrating factor

Jl
6| —dx
ILF=g /X —gblnx_y6

Multiplying with the IF = x® , we obtain

xW +6x°w =0
or i(xew) =0

dx

Integrating w.r.t. > x’, we have

X"W= Cl
r_ G
or u’ = F
Integrating once again, gives
c
u= —5¢ +cC,
—C
Therefore y=ux®= Kzl +¢,%°
Choosing ¢, =0 andc, = -5, we obtain
1
Y, = 7
Thus the second solution is given by
1
Y, = 7

Hence, general solution of the given differential equation is
y=0CY1+C2Y,
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ie. y=clx3 +02(1/x2)

Where ¢, and ¢, are constants.
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Exercise

Find the 2" solution of each of Differential equations by reducing order or by
using the formula.

Loy'-y'=0; 'y, =1

2. y'+2y +y=0, y, =xe”
3. y'+9y=0;, vy, =sinx

4. y"-25y=0;, y, =¢e*

5. 6y"+y' —-y=0, vy, =e"
6. x’y" +2xy' -6y=0;, 'y, =x
7. 4x%y"+y=0; y, =x"2Inx
8. @-x¥)y"-2xy'=0; 'y, =1

9. x?y" -3xy’ +5y=0; vy, =x"cos(Inx)

10. @+ x)y" +xy' —y=0; y, =x
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Lecture 16
Homogeneous Linear Equations with Constant Coefficients

We know that the linear first order differential equation
dy
—+my=0
dx 4

m being a constant, has the exponential solution on (— oo, )

mx

y=ce
The question?

o The question is whether or not the exponential solutions of the higher-order
differential equations

a,5" +a, 1" D+ vy’ +ay +agy =0,
exist on(— oo, ).

o Infact all the solutions of this equation are exponential functions or constructed
out of exponential functions.

Recall
That the linear differential of order » is an equation of the form

d" d" d
() 4 @y g (1) S g () + ag (x)y = ()
dx dx dx

Method of Solution
Takingn = 2, the nth-order differential equation becomes

d’y = dy
a, 12 +a1£+a0y=0

This equation can be written as

2
ad—f+bﬂ+cy:0
dx dx

We now try a solution of the exponential form

y=e€
Then
y' =me™and y" = m2e™
Substituting in the differential equation, we have
e™ (am® +bm +¢) =0
Since e™ £0, Vxe(—o,0)

Therefore am® +bm+c¢=0
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This algebraic equation is known as the Auxiliary equation (AE).The solution of the
auxiliary equation determines the solutions of the differential equation.

Case 1: Distinct Real Roots
If the auxiliary equation has distinct real roots m, and m,then we have the following two
solutions of the differential equation.

= ¢""1* and Vo = "2

These solutions are linearly independent because

N Y2
Wy2)=|"7 )| = (mg —my Jelma )
N Y2
Since my # m,and elmrm)x 4 g
Therefore W(yy,y2)#0 Vx € (~o0,00)

Hence

o y,and y, form a fundamental set of solutions of the differential equation.
o The general solution of the differential equation on (— oo, ) is
y= clemlx + czemzx

Case 2. Repeated Roots

If the auxiliary equation has real and equal roots i.e

m=my,my With my =my

Then we obtain only one exponential solution

y = cpe™

To construct a second solution we rewrite the equation in the form
ylr+2y!+£yzo
a a
Comparing with y'+Py'+Qy=0

We make the identification

v
I
I

Thus a second solution is given by
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b
—Jde X
e mx | € ¢
Vo= | ——=—dx=e ——dx
2 2mx
N e
Since the auxiliary equation is a quadratic algebraic equation and has equal roots
Therefore, Disc.=b% —4ac =0
We know from the quadratic formula
= —b++b* —4ac
2a
we have 2m = _b
a
Therefore
eme
Yo = eme.—dx = xemx
eme
Hence the general solution is
y=cre™ +coxe™ =(cy +cox)e™
Case 3: Complex Roots
If the auxiliary equation has complex roots « i/ then, with
m =a+iff and m, =a —if3
Where o >0 and g >0 are real, the general solution of the differential equation is
y= cle(a+iﬂ)x +Cze(a—iﬁ)x
First we choose the following two pairs of values of ¢ and ¢,
1l =Cy = 1
1= 1,6’2 =-1
Then we have
yy = e(a-i—iﬂ)x " e(a—iﬂ)x
oy =e(a+zﬂ)x _e(a—zﬂ)x
We know by the Euler’s Formula that
¢'? =cos@+ising, OeR
Using this formula, we can simplify the solutions y;and yas
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y1 = e (e 1+ 7)Y = 267 cos fic

yp =e® (ei'Bx —e_’m) = 2ie™ sin fx
We can drop constant to write

V= e® cos fx, Yy = e® sin fx
The Wronskian

W(e“x cos fx , e** sin ,Bx): Be?™ 20 Vx

Therefore, e™ cos(pB x), e* sin(p x)
form a fundamental set of solutions of the differential equation on (—oo,).

Hence general solution of the differential equation is
¥ =c1e™ cos S+ cye™ sin fx

or y =e% (¢ oS fx + ¢, Sin L)
Example:
Solve
2y"-5y"'-3y=0
Solution:
The given differential equation is
2y"-5y"-3y=0
Put y=e
Then y' =me™, y"= m?e™
Substituting in the give differential equation, we have
(Zm2 —5m— 3)emx =0
Sincee™ =0 V x, the auxiliary equation is
2m? =5m—-3=0 as ™ 0
2m+1)(m-3)=0=>m= —%, 3
Therefore, the auxiliary equation has distinct real roots
m, =—% and m, =3
Hence the general solution of the differential equation is

y= cle(—1/2)x n c263x
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Example 2
Solve y"=10y"+25y =0
Solution:
We put y=e™
Then y =me™ ,y" = m2e™
Substituting in the given differential equation, we have
(m2 —~10m + 25)e™ =0
Sincee™ =0V x, the auxiliary equation is
m? —10m +25=0
(m-5)>=0=m=55
Thus the auxiliary equation has repeated real roots i.e
ml =5= mz
Hence general solution of the differential equation is
y =1 +cpxe™
or yv="_(c1+ czx)e5x
Example 3
Solve the initial value problem
y'—4y"+13y=0
»(0)=-1 y'(0)=2
Solution:
Given that the differential equation
y'—=4y"+13y=0
Put y=e™
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Then yr — memx’ yll — m2emx
Substituting in the given differential equation, we have:
(m? — 4m +13)e™ =0
Sincee™ # 0Vx, the auxiliary equation is
m? —4m+13=0
By quadratic formula, the solution of the auxiliary equation is
+.4/16 —
m _4£v16-52 126 2 _ 2+3i
Thus the auxiliary equation has complex roots
m1=2+3i, m2=2—3i
Hence general solution of the differential equation is
y = e%**(¢; c0s3x + ¢, 5in3x)
Example 4
Solve the differential equations
(a) Y +k%y=0
14 2
(b) y'—k“y=0
Solution
First consider the differential equation
y'+ k2y =0,
Put y=e"™
Then y' =me™ and y" = m2e™
Substituting in the given differential equation, we have:
(m2 +k2) e™ =0
Sincee™ # 0Vx , the auxiliary equation is
m? +k*=0
or m = tki,
Therefore, the auxiliary equation has complex roots
my =0+ki, my=0-ki
Hence general solution of the differential equation is
¥y =¢, CoSkx +c, Sinkx
Next consider the differential equation
dzy 2
——k“y=0
dx’* d
Substituting values y and y”, we have.
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Sincee™ = 0, the auxiliary equation is
m* —k*=0
= m==%k

Thus the auxiliary equation has distinct real roots
m =+k, my =—k
Hence the general solution is

y= clekx +cze_kx

Higher Order Equations
If we consider nthorder homogeneous linear differential equation
d n d n-1
a, Y +da,_1 _ij
dx " dx "
Then, the auxiliary equation is an nthdegree polynomial equation

d
+...+aldl+aoy:O
x

a,m" +a, qm" 4. +am+ag=0
Case 1: Real distinct roots
If the roots mq,m,,...,m, of the auxiliary equation are all real and distinct, then the
general solution of the equation is

y=cre™* +cpet +. . +c e

Case 2: Real & repeated roots
We suppose that m;, is a root of multiplicity » of the auxiliary equation, then it can be
shown that

m.,x m.x
e xe" X

aren linearly independent solutions of the differential equation. Hence general solution
of the differential equation is

n—lemlx

n—lemlx

y=c1e"" +coxe™* +.. . +cp,x

Case 3: Complex roots
Suppose that coefficients of the auxiliary equation are real.
o Wefix nat 6, all roots of the auxiliary are complex, namely

axify, o, xiff;, ay*ip;
= Then the general solution of the differential equation
v =e"" (¢, cos Bx+c,Sin f,x)+e“*"(c, Cos f,x+c, Sin S,x)

+¢e“" (5 COS fyx + ¢ SiN F,x)
o If n=6, two roots of the auxiliary equation are real and equal and the remaining
4 are complex, namely o iy, o tify
Then the general solution is
v =e%" (c1 c0os Brx + ¢y sin Brx) +e¥?* (c3 C0S Box + ¢4 SiN Box) + cge™* + cgxe™*
a If m =a+if isacomplex root of multiplicity % of the auxiliary equation. Then

its conjugate my =« —if3 is also a root of multiplicity £ . Thus from Case 2 , the
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differential equation has 2k solutions
e(a-i—iﬁ)x, xe(aﬂﬂ)x, x26(a+iﬁ)x1.“’xk—1e(a+iﬂ)x
e(a—iﬂ)x’ xe(cx—iﬁ)x1 XZe(a—iﬁ)x1m,xk—le(a—iﬁ)x

o By using the Euler’s formula, we conclude that the general solution of the
differential equation is a linear combination of the linearly independent solutions
e® cos B, xe™ cos B, x2e® cos fx, ..., x* Le® cos fx
e“ sin Ax, xe® sin px, x2e® sin ,Bx,...,xk_leax
o Thusif £ =3 then

y= eax[(cl +Ccopx+ CSxZ)COS,Bx + (dl +dox+ d3x2)sin ﬂx]

sin fx

Solving the Auxiliary Equation

Recall that the auxiliary equation of nthdegree differential equation is nth degree
polynomial equation

o Solving the auxiliary equation could be difficult
P (m)=0, n>2

o One way to solve this polynomial equation is to guess a root my. Thenm —my is a
factor of the polynomial P, (m) .

o Dividing with m —my synthetically or otherwise, we find the factorization
B, (m) = (m —my) O(m)

o We then try to find roots of the quotient i.e. roots of the polynomial equation

QO(m) =0

o Note that if m, = 2 s a rational real root of the equation
q

P (m)=0, n>2
then p is a factor of agand ¢ ofa,,.

o By using this fact we can construct a list of all possible rational roots of the
auxiliary equation and test each of them by synthetic division.

Example 1
Solve the differential equation
y"+3y"—4y=0
Solution:
Given the differential equation
y"+3y"—4y=0
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Put y=e"™

Then y/ :memx1y// :mZemx and y/// :mSemx

Substituting this in the given differential equation, we have
(m3 +3m? —4)e™ =0
Since e™ #0

Therefore m3 +3m? —4=0
So that the auxiliary equation is

m®+3m% —4=0
Solution of the AE

If we take m =1 then we see that

m3+3m? —4=1+3-4=0

Therefore m =1 satisfies the auxiliary equations so that m-1 is a factor of the polynomial
m3 + 3m2 —4

By synthetic division, we can write
m° +3m% —4= (m—l)(m2 +4m+4)

or m® +3m? —4 = (m—-1)(m+2)?

Therefore m3 + 3m2 -4=0
= (m-1(m+2)*=0

or m=1-2,-2
Hence solution of the differential equation is
y=cre + cze_zx + 03xe_2x
Example 2
Solve
3y" +5y" +10y' -4y =0
Solution:

Given the differential equation
3y" +5y" +10y' -4y =0

Put y=e"™

3 mx

2emx and y/// =m"e

Then y/ = memx,y// =m
Therefore the auxiliary equation is

3m3 +5m2 +10m—4=0
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Solution of the auxiliary equation:

a) a, =-4and all its factors are:

p: +1,+2,+4

b) a, =3andall its factors are:
q: +1, £3

c) List of possible rational roots of the auxiliary equation is
p. -1,1,-2,2’-4’4’__1'11__2'21__4’£
q 333 333

d) Testing each of these successively by synthetic division we find

1/3 5 10 -4
3 1 2 4

3 6 12 |0
Consequently a root of the auxiliary equation is

m=1/3
The coefficients of the quotient are
3 6 12

Thus we can write the auxiliary equation as:

(m —1/3)(3m2 +6m +12): 0

m-S20 or 3mZi6m+12=0

3
Therefore m=13 or m=-1%i/3

Hence solution of the given differential equation is

y= cle(1/3)x +e ¥ (02 c0s+/3x + ¢3sin \/§x)
Example 3
Solve the differential equation

4 2
4y 3;+2d—)2/+y:0
dx dx
Solution:

Given the differential equation
4 2
d—i} + 2d—)2} +y=0
dx dx

Put y=e"™
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Then y' =me™, y' = m2e™
Substituting in the differential equation, we obtain
(m4 +2m? +1) e™ =0
Sincee™ # 0, the auxiliary equation is
m* +2m? +1=0
(m?+1)% =0
= m=1ti, i
my=mz=i and mp =my =—i
Thus iis a root of the auxiliary equation of multiplicity 2 and so is—i.
Now a=0and =1
Hence the general solution of the differential equation is
V= 0% [(c) + ¢px)cOSx + (dy + dpx)sin x]
or ¥ =¢1C0SX +dq1SiN X+ cpxCOSX + dpxSinx
Exercise
Find the general solution of the given differential equations.
1. y"-8y=0
2. y"=3y'+2y=0
3. y'+4y' —y=0
4. 2y" -3y' +4y=0
5. 4y" +4y" +3' =0
6. »"+5y" =0
7. y"+3y" —4y' —12y=0
Solve the given differential equations subject to the indicated initial conditions.
8. y'+2y" -5y ~6y=0, y(0)=)'(0)=0,"(0)=1
d4y / i i
9 T =0, ¥(0)=2y(0)=3y"(0)=4y"(0)=5
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d4

10 ==y =0,,0 =/ ©0=»"©=0,"©-=1

dx
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Lecture 17

Method of Undetermined Coefficients-Superposition Approach

Recall

1. That a non-homogeneous linear differential equation of order n is an equation of the
form

dny dnfly dy
a +a +o+a—+3a,Y = g(x
n an n-1 dxn_l 1 dX Oy g( )
The coefficients a,,a,,...,a, can be functions of x . However, we will discuss

equations with constant coefficients.

2. That to obtain the general solution of a non-homogeneous linear differential equation
we must find:

o The complementary function Yo which is general solution of the associated

homogeneous differential equation.
o Any particular solution y 0 of the non-homogeneous differential equation.

3. That the general solution of the non-homogeneous linear differential equation is given
by

General solution = Complementary function + Particular Integral

Finding

Complementary function has been discussed in the previous lecture. In the next three
lectures we will discuss methods for finding a particular integral for the non-
homogeneous equation, namely

o The method of undetermined coefficients-superposition approach
o The method undetermined coefficients-annihilator operator approach.
o The method of variation of parameters.

The Method of Undetermined Coefficient

The method of undetermined coefficients developed here is limited to non-homogeneous
linear differential equations

o That have constant coefficients, and
o Where the function g(x) has a specific form.
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The form of g(x)

The input function g(x) can have one of the following forms:

o A constant function K.

o A polynomial function

o An exponential function €*

o The trigonometric functions sin(f x), cos(3 X)

o Finite sums and products of these functions.
Otherwise, we cannot apply the method of undetermined coefficients.

The method
Consist of performing the following steps.
Step 1 Determine the form of the input function g(x) .

Step 2 Assume the general form of ypaccording to the form of g(x)

Step 3 Substitute in the given non-homogeneous differential equation.
Step 4 Simplify and equate coefficients of like terms from both sides.
Step 5 Solve the resulting equations to find the unknown coefficients.
Step 6 Substitute the calculated values of coefficients in assumed y 0

Restrictionong ?
The input function g is restricted to have one of the above stated forms because of the
reason:

o The derivatives of sums and products of polynomials, exponentials etc are again
sums and products of similar kind of functions.

o The expression ayp”+byp’+cyp has to be identically equal to the input

function g(x) .
Therefore, to make an educated guess, y , is assured to have the same formasg .

Caution!

o In addition to the form of the input function g(x) , the educated guess for yIO must
take into consideration the functions that make up the complementary function Yo
o No function in the assumed yp must be a solution of the associated homogeneous

differential equation. This means that the assumed y, should not contain terms
that duplicate terms in Yo

Taking for granted that no function in the assumed y , is duplicated by a function in Yoo

some forms of g and the corresponding forms of y ; are given in the following table.
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Trial particular solutions

Number | The input function g(x) The assumed particular solution yID
1 Any constante.g. 1 A
2 5x+7 Ax+B
3 3x2 -2 Ax2 +Bx+c
4 3 —x+1 AXS +Bx2 +Cx+D
5 sin4x Acos4x + Bsin 4x
6 c0s4x Acos4x + Bsin 4x
7 e5X AedX
8 _ 9)adX 5x
(9x—2)e (Ax+B)e
9 x2e2X (Ax2 +Bx+ C)e5x
10 e3X sin 4x Ae3X cosax + B e3X sin 4x
11 5x2 sin 4x (A1x2+le+Cl)cos4x+(A2x2+Bzx+C2)sin4x
12 xe3X cos 4x (Ax + B)e3X cos4x + (Cx + D)e3X sin 4x

If g(x)equals a sum?
Suppose that

o The input function g(x)consists of a sum of mterms of the kind listed in the
above table i.e.

9(x) = g1 (x)+ g2 (x)+ -+ g (x).
0 The trial forms corresponding to gy(x), g2(x), ..., gm(X) beyp . ¥p, 1o Yp, -

Then the particular solution of the given non-homogeneous differential equation is
Yp=Yp, T¥p, Tt V¥p,

In other words, the form of y D is a linear combination of all the linearly independent

functions generated by repeated differentiation of the input function g(x) .
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Example 1
Solve y" +4y' -2y =2x* -3x+6
Solution:
Complementary function
To find Yoo Wwe first solve the associated homogeneous equation
y' +4y’ —2y=0
We put y=eM  y'—meMX y":mzemx
Then the associated homogeneous equation gives
(m? +4m-2)e™ =0
Therefore, the auxiliary equation is
m2+4m-2=0 as e %0, Vx
Using the quadratic formula, roots of the auxiliary equation are
m=-2+6
Thus we have real and distinct roots of the auxiliary equation
m, =-2-6 and m, =-2+6
Hence the complementary function is
y —ce” 2+ \/E)x N C2e(—2 + \/E)x
C
Next we find a particular solution of the non-homogeneous differential equation.
Particular Integral
Since the input function
g(x) = 2x%2 —3x+6
is a quadratic polynomial. Therefore, we assume that
yp = Ax* +Bx+C
/ I
Then y, =2Ax+B and y,~ =2A
Therefore  y," +4y,' -2y, =2A+8Ax+4B - 2Ax* —2Bx - 2C
Substituting in the given equation, we have
2A+8AX+4B —2Ax* —2Bx—-2C =2x* -3x+6
or —2Ax* + (8A—2B)x+ (2A+4B -2C) =2x* —3x+6
Equating the coefficients of the like powers of x, we have
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-2A=2, 8A-2B=-3, 2A+4B-2C=6
Solving this system of equations leads to the values
A=-1, B=-5/2, C=-9.

Thus a particular solution of the given equation is
5
2
y, =—X _EX -9.

Hence, the general solution of the given non-homogeneous differential equation is given
by

Y=Y, *t¥p
(-2+ \/E)x

2 —(2+\/E)x

5
or y=-X —EX—9+013 +Coe

Example 2

Solve the differential equation

y" —y' +y=2sin3x
Solution:

Complementary function
To find Yoo we solve the associated homogeneous differential equation

y' =y +y=0
Put y=eM v/ meMX, y":mzemx
Substitute in the given differential equation to obtain the auxiliary equation
i
m?-m+1=0 or m:1_|\/§

2
Hence, the auxiliary equation has complex roots. Hence the complementary function is

:e(1/2)x( J3 J3 J

y C, COS—— X +C, SIN—X
T2 270 2

c

Particular Integral
Since successive differentiation of
g(x) =sin3x
produce sin3x and cos3x
Therefore, we include both of these terms in the assumed particular solution, see table
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y 0 = Acos3x + Bsin3x.
Then y’Io =—-3Asin3x + 3B cos3x.
y’l'o =-9Acos3x —9Bsin 3x.

Therefore y," =y,  +Yy, = (-8A-3B)cos3x + (3A—8B)sin 3x.
Substituting in the given differential equation

(-8A—-3B)cos3x + (3A—-8B)sin3x =0cos3x + 2sin 3x.
From the resulting equations

-8A-3B=0,3A-8B=2
Solving these equations, we obtain

A=6/73,B=-16/73
A particular solution of the equation is

6 16 .
y =—C0S3X ——sin3x
p 73 73

Hence the general solution of the given non-homogeneous differential equation is

(1/2)x[ V3 V3 j

: 6 16 .
y=e €, COS—— X +C, SIN——X |+ == C0S3X — ——sin 3X
2 2 73

73
Example 3

Solve y" =2y’ =3y = 4x -5+ 6xe*
Solution:

Complementary function

To find Yoo We solve the associated homogeneous equation

y' -2y -3y=0

Put y=eM™ y=me™, y=
Substitute in the given differential equation to obtain the auxiliary equation
m?-2m-3=0
= mM+)(m-3)=0
m=-13
Therefore, the auxiliary equation has real distinct root

m; =-1m, =3

Thus the complementary function is
y - X 3X

=ce” T Hc,en.

mZemx

C
Particular integral

Since g(x) = (4x—5) + 6xe2X = g,(x) + g, (X)

Corresponding to g, (x) yID = Ax+B
1

Corresponding to g, (x) y, =(Cx+ D)e2X
2
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The superposition principle suggests that we assume a particular solution

Yp = Ypl + sz
i.e. ypzAx+B+(Cx+D)e2X
Then y’p = A+2(Cx+ D)ezx +Ce2X

y’é =4(Cx+ D) e2X 4 4Ce2X
Substituting in the given
yp —2y, ~3y, = 4Cxe®* +4De?* +4Ce?* — 2A—4Cxe?

—4De?* —2Ce?* —3Ax—3B -3Cxe?* —3De
Simplifying and grouping like terms

yp! —2y,’ ~3y, =-3Ax—2A-3B-3Cxe? +(2C ~3D)e?* = 4x - 5+ 6xe®¥.
Substituting in the non-homogeneous differential equation, we have
~3Ax-2A-3B-3Cxe?* + (2C —3D)e?* = 4x -5+ 6xe>X + 0e2
Now equating constant terms and coefficients of x, xe?*and e2X, we obtain
—-2A-3B=-5, -3A =4
-3C =6, 2C-3D=0

Solving these algebraic equations, we find
A=-4/3, B=23/9

C=-2 D =-4/3
Thus, a particular solution of the non-homogeneous equation is
Yp = —(4/3)x+(23/9) - 2 xe™ - (4/3)e*
The general solution of the equation is

y=Yc+Yp=0e" X 1 e —(4/3)x+(23/9) — 2 x e2X - (4/3)e %

Duplication between y, andy?
a If a function in the assumed y, is also present in y. then this function is a

solution of the associated homogeneous differential equation. In this case the
obvious assumption for the form of y , is not correct.

o In this case we suppose that the input function is made up of terms of nkinds i.e.
g(x) = 91(x) +g2(X) +---+gn(x)
and corresponding to this input function the assumed particular solution y  is

Yp =Yp, *¥p, t+¥p,
o Ifa Yp. contain terms that duplicate terms iny., then that Yp. must be multiplied
I 1
withx", n being the least positive integer that eliminates the duplication.
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Example 4
Find a particular solution of the following non-homogeneous differential equation

y —5y! + 4y = ge*
Solution:

To find y., we solve the associated homogeneous differential equation

y" —5y' +4y=0
We puty = e™X in the given equation, so that the auxiliary equation is
m2-5m+4=0 = m=14
Thus Ve = 08" + cpe?
Since g(x) =8e*
Therefore, y, = Ae*

Substituting in the given non-homogeneous differential equation, we obtain
AeX —5AeX +4Ae% =ge¥
So 0=8e"
Clearly we have made a wrong assumption fory ,, as we did not remove the duplication.

Since Ae* is present iny. Therefore, it is a solution of the associated homogeneous
differential equation
y" -5y’ +4y=0
To avoid this we find a particular solution of the form
yp = Axe”
We notice that there is no duplication between y. and this new assumption for y ,

Now yp/ = Axe* + Ae*, yp” = Axe* +2Ae*
Substituting in the given differential equation, we obtain
Axe* +2Ae* —5Axe” —~5Ae* + 4Axe* =8e*.

or —3Ae* =8e* = A=-8/3.
So that a particular solution of the given equation is given by
yp = _(8/3)6X

Hence, the general solution of the given equation is

y=ce*+ce”-(8/3) x e
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Example 5

Determine the form of the particular solution

(a) yIl —gy! + 25y =5x3eX _7¢7X
(b) y" +4y = xcosx.
Solution:

(@) Tofind yc we solve the associated homogeneous differential equation
y" -8y’ +25y =0

Put y = eMX

Then the auxiliary equation is

m2 —8m+25=0=>m=4+3i
Roots of the auxiliary equation are complex

Ve = X (cy cos3x +c2 sin 3x)
The input function is
g(x) = 5x3e X _7e X = (5x3 — 7)e_x
Therefore, we assume a particular solution of the form
2 L Cx+ D)e_x
Notice that there is no duplication between the terms in Yp and the terms in vy .

Yp =(Ax3+Bx

Therefore, while proceeding further we can easily calculate the value A, B,C andD.

(b) Consider the associated homogeneous differential equation
y' +4y=0

Since g(x) = xcos x

Therefore, we assume a particular solution of the form
Yy, = (AXx+ B)cos x + (Cx + D)sin x

Again observe that there is no duplication of terms between y. and y p
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Example 6
Determine the form of a particular solution of

y" —y' +y=3x*-5sin2x + 7xe>

Solution:
To find yc, we solve the associated homogeneous differential equation
y// _ y/ +y=0
Then the auxiliary equation is
m2 —m+1:0:>m:#
Therefore Yo = e/ 2)X(cl cosgx +Cc2sin % x}
Since g(x) =3x* =5sin 2x+ 7xe™ = g,(X) + g, (X) + g5 (X)
Corresponding to gl(x)=3x2: Yp, = Ax? +Bx+C
Corresponding to g, (x) =-5sin2x: yp, =Dcos2x+E sin 2x
Corresponding to g,(x) = 7xe* : Yp, = (Fx+G)e™

Hence, the assumption for the particular solution is
Yp =Yp t¥p, T ¥ps

or yp:Ax2+Bx+C+Dcost+Esin2x+(Fx+G)e6X

No term in this assumption duplicate any term in the complementary function

Yo =c1e2X +coe’X

Example 7

Find a particular solution of
y// —2y’ +y=g*

Solution:

Consider the associated homogeneous equation
y// _ 2y/ + y - O

Put y=e™

Then the auxiliary equation is
m? —2m+1= (m—l)2 =0
=m =11

Roots of the auxiliary equation are real and equal. Therefore,
Yo = 8% +coxe”
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Since g(x) =e*
Therefore, we assume that
y, = Ae*

This assumption fails because of duplication between y. andy . We multiply with x
Therefore, we now assume

yp = Axe”
However, the duplication is still there. Therefore, we again multiply with x and assume
Yp = Ax%eX
Since there is no duplication, this is acceptable form of the trial y
1.2 x
==Xx"e
Yp 5

Example 8
Solve the initial value problem

y” + Yy =4x+10sin x,
y(r) =0,y (z)=2

Solution

Consider the associated homogeneous differential equation
y'+y=0

Put y=e™

Then the auxiliary equation is
m?2+1=0=m=+i
The roots of the auxiliary equation are complex. Therefore, the complementary function
is
Yc = C1 COSX+ Cp Sin X
Since g(x) =4x+10sinx = g1 (x) + 92 (X)
Therefore, we assume that
Yp, = Ax+B, Yp, =Ccosx+ Dsinx
So that Yp =Ax+B+Ccosx+Dsinx
Clearly, there is duplication of the functions cosxandsin x . To remove this duplication
we multiply y Py with x. Therefore, we assume that
Yp = AX+B+Cxcosx+ Dxsinx.

y, =—2Csinx—Cxcos x+ 2D cos X — Dxsin x

So that yp//+yp = Ax+ B —2Csin x + 2Dx cos x

Substituting into the given non-homogeneous differential equation, we have
AX+ B —2Csinx+2Dxcosx = 4x +10sin x
Equating constant terms and coefficients of x,sin x, xcosx, we obtain
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B=0, A=4, -2C =10, 2D =0

So that A=4,B=0,C=-5 D=0

Thus Yy, =4X—5XCcos X

Hence the general solution of the differential equation is
y=Yc+Yp=CCOSX+CpSiNX+4X-5XCOSX

We now apply the initial conditions to find ¢, andc,.
y(r)=0=cycoszw+Cysinz+4r—-5rcosr =0

Since sinz =0,cos7 =-1

Therefore C, =97

Now y/ =-978in X+ Cy COSX + 4+ 5xsin X —5C0S X

Therefore y/(ﬂ) =2= -9zsinz+Cycosz+4+57zsinz—-5cosz =2
) cp=T.

Hence the solution of the initial value problem is
y =97 C0S X + 7sin X + 4X —5X COS X.

Example 9
Solve the differential equation

y" —6y’ +9y =6x2 +2-12%

Solution:
The associated homogeneous differential equation is

y” —6y/ +9y=0
Put y =e™
Then the auxiliary equation is
mZ —6m+9=0=>m=33
Thus the complementary function is
y. =ce¥ +c,xe*
Since g(x) = (x? +2) —12e3% = g1 (X) + g (X)
We assume that
Corresponding to g4 (X) = X2 +2: Yp, = Ax? + Bx+C

Corresponding to g, (x) = —12e3*: Yp, = De
Thus the assumed form of the particular solution is
Yp = Ax? + Bx +C + De3¥

3

The function e**in Yp, is duplicated between y. andyp. Multiplication with x does

not remove this duplication. However, if we multiply Yp, with x2, this duplication is

removed.
Thus the operative from of a particular solution is

Yp = Ax? + Bx + C + Dx%e3¥
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Then yp = 2AX+ B + 2Dxe> + 3Dx%e3

and yr =2A+2De*™ +6Dxe™ +9Dx’e™
Substituting into the given differential equation and collecting like term, we obtain
yp! 6y, +yp =9Ax? +(-12A+9B)x + 2A— 6B +9C + 2De* =6x? + 21263

Equating constant terms and coefficients of x, x? and e yields
2A-6B+9C=2, -12A+9B=0
9A =6, 2D =-12

Solving these equations, we have the values of the unknown coefficients
A=2/3,B=8/9,C=2/3 and D=-6

Thus yngx2+§x+g—6x2e3x

3 9
Hence the general solution

3% 2.2

y=Yc+Yp = ce +coyxe 3 Ze3x

8 2
+—X+——6Xx"e
9 3
Higher —Order Equation
The method of undetermined coefficients can also be used for higher order equations of
the form

dny dn—ly dy
+a,,——+..+a, —+a,y=0(Xx
n an n-1 dxn,l 1dX oy g()

with constant coefficients. The only requirement is that g(x) consists of the proper kinds
of functions as discussed earlier.

a

Example 10
Solve y" +y" =e*cosx
Solution:

To find the complementary function we solve the associated homogeneous differential
equation

y/// + y// =0
Put y=e™ y =me™, y" = m2e™
Then the auxiliary equation is
m3+m? =0
or m2(m+1):0:>m:0,0,—1

The auxiliary equation has equal and distinct real roots. Therefore, the complementary
function is

Yo =Cp +CoX+Cge
Since g(x) =e* cosx
Therefore, we assume that
y, = Ae* cosx + Be* sin x
Clearly, there is no duplication of terms between y; and y .
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Substituting the derivatives of 'y, in the given differential equation and grouping the like
terms, we have
y," +y," =(-2A+4B)e* cosx + (—4A—2B)e” sin x = e* COS X.
Equating the coefficients, of e* cosx and e* sin x, yields
-2A+4B=1-4A-2B=0

Solving these equations, we obtain
A=-1/10,B=1/5

So that a particular solution is
Yp =C1+CoXx+Cge " —(1/10)e™ cos x+ (1/5)e” sin x
Hence the general solution of the given differential equation is
Yp =C1 +CoX+Cge X —(1/10)e* cosx + (1/5)e” sin x

Example 12
Determine the form of a particular solution of the equation

yHH + ym -1— e—X

Solution:

Consider the associated homogeneous differential equation
yNN + yW — 0

The auxiliary equation is

m*+m®=0=m=0,00-1

Therefore, the complementary function is

Yo =Cp +CpX+CaX2 +Cqe ¥

Since g(x)=1-e"* =gy (x)+9g2(x)
Corresponding to g1 (x) =1: Yp,=A
Corresponding to g, (x) = —e~*: Yp, =Be™*

Therefore, the normal assumption for the particular solution is
yp =A+Be™*
Clearly there is duplication of
Q) The constant function between y. andy L
(i)  The exponential function e * between y, and Yp,-
To remove this duplication, we multiply yplwith x3 and Yp, with X. This duplication

can’t be removed by multiplying with xand x2 . Hence, the correct assumption for the
particular solution y y is

Yp = Ax3 + Bxe ¥
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Exercise
Solve the following differential equations using the undetermined coefficients.
1 I / 2
1. Zy +y +y=X"+2X
2. y" —8y’ + 20y =100x? - 26xe*
3.y +3y=_4a8x%e
4. 4y" -4y’ -3y =cos2x
5. y" +4y=(x*-3)sin2x
6. y' -5y’ =2x>—4x* —x+6
7. y" -2y’ +2y =e"(cosx —3sinx)
Solve the following initial value problems.
8. y'+4y' +4y=(3B+x)e™, y(0)=2y'(0)=5
d*x
9. e +w’x=F,cospt,  x(0)=0,x'(0)=0
10. y" +8y =2x-5+872*, y(0)=-5, y/(0)=3,y"(0)=-4
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Lecture 18

Undetermined Coefficient:
Annihilator Operator Approach

Recall

1.

3.

That a non-homogeneous linear differential equation of order » is an equation of the
form

a ta, 1 ——+-+tag—+agy=gx
n e n-1 dxn_l 1dx 0y =g(x)
The following differential equation is called the associated homogeneous equation
d" a"t d
a, y+an_1 y+---+al—y+a0y:O
dx" dx" 1 dx

The coefficients a,,a,,...,a, can be functions of x . However, we will discuss
equations with constant coefficients.

That to obtain the general solution of a non-homogeneous linear differential equation
we must find:
o The complementary function Yoo which is general solution of the associated

homogeneous differential equation.
o Any particular solution yp of the non-homogeneous differential equation.

That the general solution of the non-homogeneous linear differential equation is given
by

General Solution = Complementary Function + Particular Integral

o Finding the complementary function has been completely discussed in an earlier
lecture

o In the previous lecture, we studied a method for finding particular integral of the
non-homogeneous equations. This was the method of undetermined coefficients
developed from the viewpoint of superposition principle.

o In the present lecture, we will learn to find particular integral of the non-
homogeneous equations by the same method utilizing the concept of differential
annihilator operators.

163

© Copyright Virtual University of Pakistan



Differential Equations (MTH401) VU

Differential Operators

o In calculus, the differential coefficient d/dx is often denoted by the capital
letter D . So that
b _

dx
The symbol D is known as differential operator.

o This operator transforms a differentiable function into another function, e.g.
D(e*) = 4e*, D(Gx® —6x2) =15x? —12x, D(C0s2x) = —2sin 2x

o The differential operator D possesses the property of linearity. This means that if
f, g are two differentiable functions, then
D{af (x) + bg(x)} = aDf (x) + bDg (x)
Where a and b are constants. Because of this property, we say that D is a linear
differential operator.

o Higher order derivatives can be expressed in terms of the operator D in a natural
manner:

2
2y =i[ﬂj=D(Dy)=D2y
d?x dx\dx

Similarly

3 n
ay §:D3y,..., a’y =D"y
dx d"x
o The following polynomial expression of degree = involving the operator D
a,D" + an_an_l +--+a1D +ag
is also a linear differential operator.
For example, the following expressions are all linear differential operators

D+3, D?>+3D-4,5D3—6D% +4D
Differential Equation in Terms of D

Any linear differential equation can be expressed in terms of the notation D . Consider a
2" order equation with constant coefficients

ay” +by’ +cy = g(x)

2
Since Q=Dy,u=D2y
dx dx?

Therefore the equation can be written as
aD2y +bDy +cy = g(x)
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or (aD? +bD +¢c)y = g(x)

Now, we define another differential operator L as

L=aD?+bD+c
Then the equation can be compactly written as
L(y) = g(x)
The operator L is a second-order linear differential operator with constant coefficients.

Example 1
Consider the differential equation

v 4y +2y=5x-3
2

d d 2

2 _py,f L -p?y

dx dx )
Therefore, the equation can be written as
(D?> + D +2)y=5x-3
Now, we define the operator L as
L=D?>+D+2
Then the given differential can be compactly written as
L(y)=5x-3

Since

Factorization of a differential operator

o An nth-order linear differential operator
L=a,D" + an_an_l +-+aD+ag

with constant coefficients can be factorized, whenever the characteristics
polynomial equation

L=a,m" + an_lmn_l +--+aym+ag
can be factorized.

a The factors of a linear differential operator with constant coefficients commute.

Example 2

€)) Consider the following 2™ order linear differential operator

D® +5D+6
If we treat D as an algebraic quantity, then the operator can be factorized as

D? +5D +6= (D+2)(D+3)
(b) To illustrate the commutative property of the factors, we consider a twice-
differentiable function y = f(x). Then we can write

(D% +5D +6)y=(D+2)(D+3)y = (D+3)(D+2)y
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To verify this we let
w=(D+3)y=y"+3y
Then
(D+2)w =Dw+2w
or (D +2w =" +3y")+ @2y +6y)
or (D+2)w:y// +5y/+6y
or (D+2)(D+3)y:y//+5y/+6y
Similarly if we let
w=(D+2)y=( +2y)
Then (D+3)W:Dw+3w=(y//+2y/)+(3y/+6y)
or (D+3)w:y// +5y/+6y
or (D+3)(D+2)y:y//+5y/+6y
Therefore, we can write from the two expressions that
(D+3)(D+2)y=(D+2)(D+3)y
Hence (D+3)(D+2)y=(D+2)(D+3)y
Example 3
(a) The operator D? —1 can be factorized as
p?-1= (D+1)(D-1).
or p?’-1 = (D-1)(D+1)
(b) The operator D? + D +2 does not factor with real numbers.
Example 4
The differential equation
y'+4y'+4y=0
can be written as
(D?+4D+4)y=0
or (D+2)(D+2)y=0
or (D+2)y=0.
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Annihilator Operator

Suppose that
o L isalinear differential operator with constant coefficients.
o y = f{x) defines a sufficiently differentiable function.
a The function f'is such that L(y)=0
Then the differential operator L is said to be an annihilator operator of the function f.

Example 5
Since
Dx=0, D’°x=0, D*x* =0, D3 = o, ...
Therefore, the differential operators
D, D?, D3 D* ..

are annihilator operators of the following functions

k(a constant), x, X2, %8

In general, the differential operator D" annihilates each of the functions

1,x,x2,...,xn_1

Hence, we conclude that the polynomial function
co+epx+ e, gx" L

can be annihilated by finding an operator that annihilates the highest power of x.

Example 6
Find a differential operator that annihilates the polynomial function

y:l—5x2 +8x3.

Solution
Since D*x® =0,
Therefore D4y = D4(1— 5x? +8x3): 0.

Hence, D* is the differential operator that annihilates the function y.

Note that the functions that are annihilated by an nth-order linear differential operator L
are simply those functions that can be obtained from the general solution of the
homogeneous differential equation

L(y)=0.
Example 7
Consider the homogeneous linear differential equation of order »
(D-a)"y=0

The auxiliary equation of the differential equation is
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(m-a)" =0
= m=a,a,...,a (n times)

Therefore, the auxiliary equation has a real root o of multiplicity n . So that the
differential equation has the following linearly independent solutions:

ax ax _2 ax n-1 ax
e’ " ,xe” T, xte” T, x" e,

Therefore, the general solution of the differential equation is

y =ce® +c,xe® + c3xzeax et cnxn_leax

So that the differential operator
(D-a)"
annihilates each of the functions

X x 2 ax n-1 ax
e® " xe® X x%e**, ... x"e

Hence, as a consequence of the fact that the differentiation can be performed term by
term, the differential operator

(D-a)"
annihilates the function

Zeax n-1 ax

y=ce® +cxe™ +cyx +etc,xt e

Example 8

Find an annihilator operator for the functions
(a) flx)=e>

(b) 2(x) = 4e® —Bxe?
Solution

(@) Since

(D=5)e>* =5¢>* 5% =0,
Therefore, the annihilator operator of function f is given by
L=D-5
We notice that in this casea =5, n=1.

(b) Similarly
(D-2)? (4e2x — 6xe?" ): (D? — 4D + 4)(4e>) — (D? - 4D + 4)(6xe°¥)
or (D-2)? (4€2x — 6xe” ): 3202 —32¢%% 1 48xe®* — 48xe®" + 24¢% — 247"
or  (D-2P[4e¥ ~6xe?)=0
Therefore, the annihilator operator of the function g is given by
L=(D-2)?
We notice that in this case a =2 =n.
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Example 9
Consider the differential equation

(DZ—ZaD+(a2+,6’2) y=0

The auxiliary equation is
(m2 —2am+(a2 +,82) =0

= m2—2am+(a2+,32 ~0

Therefore, when «, £ are real numbers, we have from the quadratic formula

- Zai\/4a2;4(a2+ﬂ2):ailﬂ

Therefore, the auxiliary equation has the following two complex roots of multiplicity .
my =0{+iﬂ, mo :a—iﬂ

Thus, the general solution of the differential equation is a linear combination of the
following linearly independent solutions

e®* cos Bx, xe® cos Bx, x2e®* cos Bx, -, x"Le?* cos Bx
e**sin Bx, xe**sin Bx, x2e%* sin Bx, -+, x" L% gin Sx
Hence, the differential operator
(D2 —2aD+(a2 +ﬂ2»n
is the annihilator operator of the functions
e** cos Bx, xe®* cos Bx, x2e?* cos Bx, -, x"1e%% cos Sx
% sin Bx, xe?*sin Bx, x2e?*sin Bx, ---, X" Le? sin Bx
Example 10
If we take

a=-1 pf=2,n=1
Then the differential operator
(D2 —2aD+(a2 +,6’2»n

becomes D?4+2D+5.

Also, it can be verified that
(D2 +2D+ S)e_x cos2x =0
(D% +2D+5)e sin2x =0

Therefore, the linear differential operator
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D?+2D+5
annihilates the functions
y1(x)=e"" cos2x
yo(x)=e " sin2x
Now, consider the differential equation
(D +2D+5)y =0
The auxiliary equation is
m? +2m+5=0
=>m=-1+2i
Therefore, the functions
y1(x)=e"" cos2x
yo(x)=e " sin2x
are the two linearly independent solutions of the differential equation
(D2 +2D+5)y:0,
Therefore, the operator also annihilates a linear combination of y; and y,, e.g.
51 —9y9 =5e¢ " c0s2x—9¢ ¥ sin 2x.
Example 11
If we take
a=0 =L, n=2
Then the differential operator
(D2 —2aD+(a2 +,82»n
becomes
(D2 +1)2 =D*+2D% +1
Also, it can be verified that
D* +2D? +1)COSx 0
D* +2D% + 1)Slnx =
and
(D"’ +2D? +1)xCOSx 0
(D4 +2D? +1)xSInx =0
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Therefore, the linear differential operator
D*+2D% +1

annihilates the functions
COS x, sin x

XCOSx, xSinx

Example 12
Takinga =0, n =1, the operator

(D2 —2aD+(a2 +,82»n
becomes

D%+ [)’2

Since (D2 +,82)cosﬁx:—,82 cosﬂx+ﬁ2 cosfx=0
(D2 +ﬁ2)sinﬁx=—ﬂ2sinﬁx+ﬁ2sinﬁx:o

Therefore, the differential operator annihilates the functions

f(x)=cospx, g(x)=sinpfx

Note that
o If alinear differential operator with constant coefficients is such that

L(n)=0, L(y2)=0
i.e. the operator L annihilates the functions y; and y, . Then the operator L
annihilates their linear combination.

Lleyi(x)+ 22 (x)]= 0.
This result follows from the linearity property of the differential operator L .

o Suppose that Lyand Lo are linear operators with constant coefficients such that
L(n)=0, Ly(yz)=0

and L(y2)#0, Ly(y1)=0

then the product of these differential operators 1L, annihilates the linear sum
y1(x)+ ya(x)

So that L1L2 [yl(x) +yo (x)] =0

To demonstrate this fact we use the linearity property for writing
LiLy(yy+y2) = Laly(y1)+ LaLo(y2)

Since LiLy =Ly
therefore LiLy(y1+y2)=LoLy(y1)+ LaLa(y7)
or LiLy (1 +y2) = L[y (y)]+ L[ Lo (32)]

But we know that Ll()’l) =0, Ly (y2 ) =0
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Therefore LLy(yy + vy )= Ly[0]+ 14[0] = O

Example 13
Find a differential operator that annihilates the function
f(x)=7-x+6sin3x

Solution
Suppose that
y(x)=7-x, yy(x)=6sin3x
Then
D%y(x)  =D*7-x) =0
(D? +9)y,(x) = (D2 + 9)sin 3x=0
Therefore, DZ(D2 +9) annihilates the function f(x).
Example 14

Find a differential operator that annihilates the function
F(x)=e 3" + xe*

Solution
Suppose that

N =, yp(x)=xe*
Then
(D+3)y; = (D+3)e™> =0,
(D—1)2 Vo = (D—l)zxex =0.
Therefore, the product of two operators
(D+3)D-1)?
3x x

annihilates the given function f(x)=e ™" + xe

Note that
o The differential operator that annihilates a function is not unique. For example,

(D-5)e>* =0,
(D-5)(D+1)e> =0,

(D-5)D%>* =0
Therefore, there are 3 annihilator operators of the functions, namely
(D-5), (D-5)(D+1), (D-5)D?

o When we seek a differential annihilator for a function, we want the operator of
lowest possible order that does the job.
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Exercises

Write the given differential equation in the form L(y)= g(x), where L is a differential
operator with constant coefficients.

ﬂ+5y =9sinx
dx

4@+8y =x+3
dx

3 2
AV 447 5V _y,
dx3 de dx
d3y _d’y _dy .
—3—2—2+7——6y=1—SInx
dx dx dx

Factor the given differentiable operator, if possible.

5.

6.
7.
8

9D? -4

D? -5

D® +2D% -13D +10
D*-8D? +16

Verify that the given differential operator annihilates the indicated functions

9.

2D-1; y=4¢"?

10. D* + 64; y = 2c0s8x-5sin8x

Find a differential operator that annihilates the given function.

11. x+3xe®
12. 1+sinx
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Lecture 19
Undetermined Coefficients:
Annihilator Operator Approach

The method of undetermined coefficients that utilizes the concept of annihilator operator
approach is also limited to non-homogeneous linear differential equations

o That have constant coefficients, and

o Where the function g(x) has a specific form.

The form of g(x) :The input function g(x) has to have one of the following forms:

o A constant functionk .
o A polynomial function

o An exponential function eX
o The trigonometric functions sin(f x), cos(S X)

a Finite sums and products of these functions.
Otherwise, we cannot apply the method of undetermined coefficients.

The Method

Consider the following non-homogeneous linear differential equation with constant
coefficients of order n

dny dn—ly dy
+a +ota, ——+a,Y =g(x
n an n-1 an71 1 dX Oy g( )

If L denotes the following differential operator

a

L=a,D" +a, ;D" +..-+aD+ag
Then the non-homogeneous linear differential equation of order n can be written as

L(y) = 9(x)
The function g(x) should consist of finite sums and products of the proper kind of
functions as already explained.

The method of undetermined coefficients, annihilator operator approach, for finding a
particular integral of the non-homogeneous equation consists of the following steps:

Step 1 Write the given non-homogeneous linear differential equation in the form
L(y) = 9(x)
Step 2 Find the complementary solution Y; by finding the general solution of the

associated homogeneous differential equation:
L(y)=0
Step 3 Operate on both sides of the non-homogeneous equation with a differential
operator Ly that annihilates the function g(x).
Step 4 Find the general solution of the higher-order homogeneous differential equation
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LiL(y)=0
Step 5 Delete all those terms from the solution in step 4 that are duplicated in the
complementary solutiony;, found in step 2.
Step 6 Form a linear combination Y, of the terms that remain. This is the form of a
particular solution of the non-homogeneous differential equation

L(y) =9(x)
Step 7 Substitute Y, found in step 6 into the given non-homogeneous linear differential
equation
L(y) = 9(x)

Match coefficients of various functions on each side of the equality and solve the
resulting system of equations for the unknown coefficients iny,.

Step 8 With the particular integral found in step 7, form the general solution of the given
differential equation as:

Yy=Y.+Y,
Example 1
2

Solve d—2/+30|—y+2y:4x2.

dx dx
Solution:

2

Step 1 Since dy = Dy, a7y = D2y

dx dx?

Therefore, the given differential equation can be written as
(D2 +3D+2 )y:4x2
Step 2 To find the complementary function y., we consider the associated homogeneous
differential equation
(D2 +3D+2)y:0
The auxiliary equation is
m’+3m+2=(m+1)(m+2)=0
= m =-1-2
Therefore, the auxiliary equation has two distinct real roots.
m=-1,m,=-2,
Thus, the complementary function is given by

Yo =C1e X tcpe” 2X
Step 3 In this case the input function is

g(x) = 4x°
Further D3g(x) =4D3%%% =0
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Therefore, the differential operator D2 annihilates the function g . Operating on both
sides of the equation in step 1, we have

D3(D? +3D +2)y = 4D3x?
D3(D? +3D+2)y=0

This is the homogeneous equation of order 5. Next we solve this higher order equation.

Step 4 The auxiliary equation of the differential equation in step 3 is
m(m? +3m+2)=0
m3(m+1)(m+2)=0
m=0,0,0,-1,-2

Thus its general solution of the differential equation must be

Y =Cy +CpX +CaX2 +Cqe X + e 2

Step 5 The following terms constitute y.

cie X +cge X
Therefore, we remove these terms and the remaining terms are
Cp+CoX+ C3X2

Step 6 This means that the basic structure of the particular solution y , is

Yp :A+Bx+Cx2,

Where the constantsc, ,c, and c, have been replaced, with A, B, and C, respectively.

Step 7 Since Yp = A+ Bx+Cx?
y;, = B+2Cx,
y, =2C
Therefore Yy +3Y}y +2yp = 2C +3B + 6Cx + 2A+ 2Bx + 20x
of Y +3yh +2yp = (2C)x2 + (2B +6C)x + (2A+3B +2C)

Substituting into the given differential equation, we have
(2C)x? + (2B +6C)X + (2A+3B + 2C) = 4x% + 0x + 0
Equating the coefficients of x2,x and the constant terms, we have
2C = 4
2B + 6C =0

2A+3B+2C =0
Solving these equations, we obtain
A=7, B=-6 C=2
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Hence Yp =7 —6X+2x°
Step 8 The general solution of the given non-homogeneous differential equation is
Y=Yct+Yp

y=cre X +Ce X +7—6x+2x°

Example 2
2
Solve 9 3B _ge3¢, 4ginx
dx2 dx
Solution:
2
Step 1 Since ﬂ: Dy, %y = D2y

dx dX2
Therefore, the given differential equation can be written as
(D2 —SD)y =86 +4sinx

Step 2 We first consider the associated homogeneous differential equation to find y,
The auxiliary equation is
m(m-3)=0=m=0,3
Thus the auxiliary equation has real and distinct roots. So that we have
Ye=C1 + 0263)(
Step 3 In this case the input function is given by
g(x) =8e>* + 4sin x
Since (D-3)8e%*) =0, (D? +1)(4sinx) =0
Therefore, the operators D—3 and D? +1 annihilate 8e3X and 4sin x, respectively. So
the operator (D —3)(D2 +1) annihilates the input function g(x). This means that
(D-3)(D? +1)g(x) = (D -3)(D? +1)(8e>* +sinx) =0
We apply (D —3)(D? +1) to both sides of the differential equation in step 1 to obtain
(D-3)(D? +1)(D? -3D)y =0.
This is homogeneous differential equation of order 5.

Step 4 The auxiliary equation of the higher order equation found in step 3 is
(m=3)(m?* +1)(m* -3m) =0
m(m-3)°(m*+1) =0
=>m=0, 3, 3, +i

Thus, the general solution of the differential equation

y =1 +Cpe>¥ +caxe* + ¢4 COS X + Cs Sin X
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Step 5 First two terms in this solution are already present in y,

ey +Cpe™

Therefore, we eliminate these terms. The remaining terms are

caxe>X + ¢y COS X + Cs Sin X

Step 6 Therefore, the basic structure of the particular solution y , must be

Yp = Axe®* + Bcosx +Csinx
The constants c3 ¢4 and cs5 have been replaced with the constants A,B and C ,
respectively.

Step 7 Since Yp = Axe®* + Bcos x + Csin x

Therefore Y —3yp =3Ae> + (~B-3C) cos x+ (3B - C)sin
Substituting into the given differential equation, we have
3Ae3X + (-B-3C)cosx+ (3B —C)sin x =8¢ +4sin x.
Equating coefficients of 3%, cosx andsin x , we obtain
3A=8,-B-3C=0,3B-C=4

Solving these equations we obtain
A=8/3, B=6/5 C=-2/5

yp:—xe +—COSX——SIn X.
3 5 5

Step 8 The general solution of the differential equation is then

3x , 8,.3x, 6 2
= - = —=sinXx.
Y =0y +Co€™" + 7 Xe™" +ZCOSX—SINX
Example 3
d2y
Solve —2+8y:5x+2e_X .
dx
Solution:

Step 1 The given differential equation can be written as
(D? +8)y =5x + 26X

Step 2 The associated homogeneous differential equation is
(D% +8)y=0
Roots of the auxiliary equation are complex

m=+2y2i
Therefore, the complementary function is
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Yo =€ C0S24/2 X +Cp SiN24/2 X

Step 3 Since D?x=0, (D+1)e™* =0
Therefore the operators D? and D +1annihilate the functions 5x and2e™. We apply
D?(D +1) to the non-homogeneous differential equation
D*(D +1)(D* +8)y =0.
This is a homogeneous differential equation of order 5.

Step 4 The auxiliary equation of this differential equation is
m?(m+1)(m? +8) =0
=m=0,0,-1,+22i
Therefore, the general solution of this equation must be
Y = €1 COS 2/2X +Cy SiN 24/2X+C3 + Cq X +C58

Step 5 Since the following terms are already present in y.
C, CoS 22x + c,sin 2+/2x

Thus we remove these terms. The remaining ones are
C3 +CyX+C5e*

Step 6 The basic form of the particular solution of the equation is
X

Yp =A+Bx+Ce
The constants c3,c4and cghave been replaced with A, BandC .

Step 7 Since yp = A+Bx+Ce™™

Therefore yp +8yp =8A+8Bx+9Ce

Substituting in the given differential equation, we have
8A+8Bx+9Ce X =5x+2e X

Equating coefficients of x, e”*and the constant terms, we have
A=0,B=5/8, C=2/9

5 2 ¢

Thus =—X+—e
Yp=g" "y

Step 8 Hence, the general solution of the given differential equation is
Y=Yct+Yp

or y:c1c052x/§x+czsin2\/§x+gx+§e‘x.
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Example 4
2
Solve d—2y+y:xcosx—cosx
dx
Solution:

Step 1 The given differential equation can be written as
(D2 +1)y = XCO0S X — COS X

Step 2 Consider the associated differential equation
(D2 +1)y =0

The auxiliary equation is
m?+1=0 =>m=x+i

Therefore Y. =C, COSX+C, Sin X

Step 3 Since (D? +1)*(xcosx) =0
(D*+1)%cosx=0 ; - x=0

Therefore, the operator (D? +1)%annihilates the input function
XCOSX —COS X

Thus operating on both sides of the non-homogeneous equation with (D? +1)?, we have
(D® +1)*(D* +1)y =0

or (D*+1)°y=0

This is a homogeneous equation of order 6.

Step 4 The auxiliary equation of this higher order differential equation is
m?+)3 =0=>m=i,i,i,—i,—i,—i
Therefore, the auxiliary equation has complex rootsi, and — 1 both of multiplicity 3. We
conclude that
y = C, COS X + C,, SiN X + C,XCOS X + C,XSiN X + C,X* COS X + C,X” Sin X

Step 5 Since first two terms in the above solution are already present in y,

C, COSX +C, Sin X
Therefore, we remove these terms.

Step 6 The basic form of the particular solution is

Yp = AXcos X+ Bxsin X +Cx? cos X + Ex? sin x

Step 7 Since Yp = AXCOSX + BXsin X + Cx? cos X + Ex sin x

Therefore
Yp +Yp =4Excosx—4Cxsin x + (2B +2C) cos x + (—2A+ 2E)sin X
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Substituting in the given differential equation, we obtain

4EXxcos x —4Cxsin x + (2B + 2C) cos X + (—2A + 2E) sin X = XC0S X — COS X

Equating coefficients of xcos x, xsin x,cos x and sin x, we obtain
4E = 1 -4C =0
2B+2C=-1, —-2A+2E=0

Solving these equations we obtain
A=1/4, B=-1/2,C=0, E=1/4

2

1 1 . 1 .
Thus yp:Zxcosx—Exsmx+Zx sin x

Step 8 Hence the general solution of the differential equation is

2

: 1 1. . 1 .
Yy =C1 COSX+Cp SIn x+Zxcosx—Exsm X+ZX sinx.

Example 5
Determine the form of a particular solution for
2
a7y _ 2ﬂ+ y =10e™%* cos x
dX2 dx
Solution

Step 1 The given differential equation can be written as
(D% - 2D +1)y =10e?* cos x

Step 2 To find the complementary function, we consider
y'-2y'+y=0

The auxiliary equation is
m2-2m+1=0=(M-1)%=0=>m=11

The complementary function for the given equation is
Yo = Ce” +coxe”

Step 3 Since  (D? +4D +5)e X cosx =0

Applying the operator (D® +4D +5) to both sides of the equation, we have
(D? +4D +5)(D*-2D+1)y =0

This is homogeneous differential equation of order 4.

Step 4 The auxiliary equation is
(m2 +4m +5)(m2 -2m+1)=0
> m=-2+i,11
Therefore, general solution of the 4™ order homogeneous equation is

y =ceX +coxeX +ce 72X cos X+ 462X sin X
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Step 5 Since the terms c,e* +c,xe” are already present iny., therefore, we remove these

and the remaining terms are c3e_2X COS X + c4e_2X sin x

Step 6 Therefore, the form of the particular solution of the non-homogeneous equation is
Yp = Ae 2 cos x + Be "X sin x

Note that the steps 7 and 8 are not needed, as we don’t have to solve the given
differential equation.

Example 6
Determine the form of a particular solution for
3 2
Y 9% 4 Y 52 gy ax2e?% 4 365X,
dx®  dx? X
Solution:

Step 1 The given differential can be rewritten as
(D3 —4D? +4D)y = 5% —6x +4x2e %X +3e°

Step 2 To find the complementary function, we consider the equation
(;3 ~4D2 +4D)y=0

The auxiliary equation is
m3 —4m? +4m=0
m(m? —4m+4) =0

mm-2)°>=0=m=0,2,2

Thus the complementary function is

Ve =€y +Cpe2X +caxe?X

Step 3 Since g(x) =5x% —6x + 4x2e?* + 3¢
Further D*(5x* —=6x) =0

(D-2)°x%%* =0

(D-5)e™ =0

Therefore the following operator must annihilate the input function g(x) . Therefore,

applying the operator D*(D —2)*(D —5) to both sides of the non-homogeneous equation,
we have
D*(D-2)°*(D-5)(D*-D?*+4D)y=0
or D*(D-2)°(D-5)y=0
This is homogeneous differential equation of order 10.
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Step 4 The auxiliary equation for the 10™ order differential equation is
m*(m-2)°(m-5)=0
=m=0,0,0,0,2,22,2,2,5

Hence the general solution of the 10" order equation is

Y =Cp +CoX +CaX? +CyX° + 50X +cgxe? +crx%eX +cgx®e® +cgx*e® +cyge

5x
Step 5 Since the following terms constitute the complementary functiony., we remove

these ¢y +Cse?X +cgxe?

Thus the remaining terms are

2X 3.2X 4 2 5x

CoX +CaxX2 +CyX° +c7x2e?X + cgx3e? + cgxte?X +cpge

Hence, the form of the particular solution of the given equation is
Yp = Ax+Bx% +Cx3 + Ex%e?X + Fx3e? + Gx*e?X + He™
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Exercise
Solve the given differential equation by the undetermined coefficients.

2y"—T7y'+5y =-29

y"+3y'=4x-5

y"+2y'+2y =5

y"+4y =4cosx+3sinx—8

y' +2y' +y=x’e"*

y"+y=4c0sXx-—sin X

y'—y"+y —y=xe"—-e " +7

y"+y=8cos2x—4sinx, y(z/2)=-1, y'(12)=0
Cy"=2y"+y' =xe*+5, y(0)=2, y'(0)=2, y"(0)=-1
10. y¥ —y"=x+e*, y(0)=0, y'(0)=0, y"(0)=0, y"(0)=0

© 0N OOk~ wDN R
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Lecture 20

Variation of Parameters
Recall

o That a non-homogeneous linear differential equation with constant coefficients is
an equation of the form

d n y d n-1

+ap_ +--+a;—+3agy =9(x

N oL 1 g F20Y=9()

o The general solution of such an equation is given by

y dy

a

General Solution = Complementary Function + Particular Integral
o Finding the complementary function has already been completely discussed.

o In the last two lectures, we learnt how to find the particular integral of the non-
homogeneous equations by using the undetermined coefficients.

o That the general solution of a linear first order differential equation of the form
dy
—+P(x)y = f(x
o Py =1(x)
is given by y= e PUX. Iej Pdx ¢ (x)dx+ cle_I Pdx

Note that

o In this last equation, the 2™ term

Ye =C1€
is solution of the associated homogeneous equation:

dy
Y o P(x)y =0
v (x)y

— [ Pdx

o Similarly, the 1% term
v =e_IPdX-IeIPdX.f(X)dX

is a particular solution of the first order non-homogeneous linear  differential
equation.

o Therefore, the solution of the first order linear differential equation can be written
in the form

y=Yc+Yp
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In this lecture, we will use the variation of parameters to find the particular integral of the
non-homogeneous equation.

The Variation of Parameters

First order equation
The particular solution 'y, of the first order linear differential equation is given by

Yp = e[ POX .jej Pox ¢ (x)dx

This formula can also be derived by another method, known as the variation of
parameters. The basic procedure is same as discussed in the lecture on construction of a
second solution

Since yp = e_I P

is the solution of the homogeneous differential equation
dy
——+ P(x)y =0,
o H POy

and the equation is linear. Therefore, the general solution of the equation is
y= Clyl(x)

The variation of parameters consists of finding a function u, (x) such that
Yp =1 (x) y1(X)

is a particular solution of the non-homogeneous differential equation

%+P(x) y=f(x)

Notice that the parameter c¢; has been replaced by the variable u,. We substitute Yp in

the given equation to obtain

dx dx

Since vy, is a solution of the non-homogeneous differential equation. Therefore we must
have

[di P(x)yl} ey )

dy,
—+P(x)y,=0
dx ()%,
So that we obtain

du,

—==1f(x

Ny (x)

This is a variable separable equation. By separating the variables, we have

= gy
=g

Integrating the last expression w.r.to X , we obtain
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f(x
u,(x) = J'(—)dx = J'ejpdX - (x)dx
Y1
Therefore, the particular solution y , of the given first-order differential equation is .

y= ul(x)yl
or Yp :e_IPdX.IeIPdX.f(x)dx

o [ Lo

Consider the 2" order linear non-homogeneous differential equation
a, (x)y" +a,(x)y" +2a,(x)y = g(x)

By dividing with a, (x), we can write this equation in the standard form
y"+P(x)y +Q(x)y = f(x)

The functions P(x), Q(x) and f(x) are continuous on some interval I . For the
complementary function we consider the associated homogeneous differential equation

y"+P(x)y’+Q(x)y =0

Second Order Equation

Complementary function
Suppose that y, andy, are two linearly independent solutions of the homogeneous

equation. Then Y, andy, form a fundamental set of solutions of the homogeneous
equation on the interval I . Thus the complementary function is

Ve = &y1(x)+ 2y, (x)

Since y, and y, are solutions of the homogeneous equation. Therefore, we have
yi+P(x)y; +Q(x)y; =0
Y3 +P(x)yz +Q(x)y, =0

Particular Integral

For finding a particular solution yp, we replace the parameters c; and c, in the

complementary function with the unknown variables u;(x) and u,(x) . So that the
assumed particular integral is

Yp =t (%) 2 (%) + Uz (x) y2 (%)

Since we seek to determine two unknown functions u;andu,, we need two equations
involving these unknowns. One of these two equations results from substituting the
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assumed y , in the given differential equation. We impose the other equation to simplify
the first derivative and thereby the 2" derivative of Yp-

Yp =U1Y1 + ViU +UpY +U3Yp =Uryg +UpYp + Uiy +UzY,

To avoid 2" derivatives of U, andu, , we impose the condition
Ugyp +Uuzy, =0

Then Yp =U1y1 +UzY?
So that

yp = Uyl +Uyg +Upyp +UzY;
Therefore

Yp+PYyp+Qyp= Uyl +uiyr  + Upy; + Uz

+Pupy; + Puzy; + Quyy; + Quay,
Substituting in the given non-homogeneous differential equation yields
Upy1 +U1Y1 +UzY +UpYs + Py + Puzys +Quyy; +Quzy, = F(X)

or ULy, +Py; +Qyl+u,ly; + Py, +Qy, ]+ uy; +uyy, = f(x)

Now making use of the relations
y{+P (x)y; +Q(x)y, =0
y3 +P(x)y2 +Q(x)y, =0
we obtain
Uiy +upy) = f(x)
Hence u;and u, must be functions that satisfy the equations
Uiys +Uzy, =0
uyy; + upy; = f(x)
By using the Cramer’s rule, the solution of this set of equations is given by
Uy = % Uy = %
WhereW , W, and W, denote the following determinants

yi O
i f(x)

0 vy

iy
1 2, Wl:‘f(x) y’2

)

W = S W, =
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The determinant W can be identified as the Wronskian of the solutions y; and y, . Since
the solutions y, and y, are linearly independent on | . Therefore

W (y,(x),y,(x))#0, ¥ xel.

Now integrating the expressions for u; andu’, we obtain the values of u,andu,, hence
the particular solution of the non-homogeneous linear differential equation.

Summary of the Method
To solve the 2" order non-homogeneous linear differential equation

a,y"+a,y +ayy = g(x),

using the variation of parameters, we need to perform the following steps:

Step 1 We find the complementary function by solving the associated homogeneous
differential equation

ay"+ay' +agy=0
Step 2 If the complementary function of the equation is given by
Yo =CY1tCY2

then y; and vy, are two linearly independent solutions of the homogeneous differential
equation. Then compute the Wronskian of these solutions.

Yyi Y2
)

W =

Step 3 By dividing witha,, we transform the given non-homogeneous equation into the
standard form

y"+P(x)y’ +Q(x)y = f(x)
and we identify the function f(x).

Step 4 We now construct the determinants Wy andW, given by

0 vy yp 0
FO) s yi f(¥)
Step 5 Next we determine the derivatives of the unknown variables u, and u, through
the relations

1= ,W2

' Wl ' WZ
Uy =—, Uu,=—=

W W
Step 6 Integrate the derivativesu; and u; to find the unknown variables u;, andu,. So

that
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ulzJ\%dx, UZ:J\%dx

Step 7 Write a particular solution of the given non-homogeneous equation as
Yp = Uryr HU2Y¥2

Step 8 The general solution of the differential equation is then given by
Y=Y+ Yp =CQYr+Coya+ Uyr +UzYy2.

Constants of Integration

We don’t need to introduce the constants of integration, when computing the indefinite
integrals in step 6 to find the unknown functions of u, and u,. For, if we do introduce

these constants, then
Yo = (ul + a:l.)yl + (U2 + bl)yZ

So that the general solution of the given non-homogeneous differential equation is
Y=Y +Y, =CY, +C,Y, +(u +a)y, +(u, +b,)y,

or y=(cr+ag)yr+(C2+by) y2 +Upyr +Uzyo

If we replace ¢; +awith Ciand ¢, + by withC,, we obtain

y=C1y1 +Coys +Ury1 +UpY>

This does not provide anything new and is similar to the general solution found in step 8,
namely

y=0CY, +GY, +uy, tu,Y,

Example 1
Solve y'—4y' +4y=(x+1)e™.

Solution:

Step 1 To find the complementary function
y'—4y'+4y =0

’ mx " 2 . Mx

Put y=eM™ v/ =me™ y"=m2

Then the auxiliary equation is
m’ —4m+4=0
(m-2=0=m=2,2
Repeated real roots of the auxiliary equation

2X 2X
y.=Cce” + Cc,Xe
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Step 2 By the inspection of the complementary function y., we make the identification

y; =e?*and y, = xe?*
Therefore W(y,,y,)=W(e*,xe*)= e e’ =e¥ %0, Vx
vz ’ 2e%  2xe® +e* '
Step 3 The given differential equation is
y" =4y’ +4y = (x+1)e2¥
Since this equation is already in the standard form
y"+P(x)y' +Q(x)y = f(x)
Therefore, we identify the function f (x) as
f(x)=(x+1)e2X
Step 4 We now construct the determinants
0 xe*
Wl: 2x 2x 2X =—(X+1)Xe4x
(x+1)e™ 2xe*™ +e
2X
e 0
W. = =(x+1)e*
© 2™ (x+1)e* (x+1)

Step 5 We determine the derivatives of the functions u; and u, in this step

C W, (x+xe™

CTwTT e T
, W, (x+1)e®

Uy =—==-—/"——=X+1
w e

Step 6 Integrating the last two expressions, we obtain

3 X2

Uy = [(-x2 —x)dx =— > - X
L= ) T

X2
u, :_[(x+1) dx :7+ X.

Remember! We don’t have to add the constants of integration.
Step 7 Therefore, a particular solution of then given differential equation is

3 2 2
y = XX e2X 1 Xy (ke X
p 3 2 2
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3 2
or Yp ={%+%Je2x

Step 8 Hence, the general solution of the given differential equation is

_ _~p2x 2X X_3 X_2 2X
y—yC+yp_c1e +C,Xe +(6+2]e

Example 2
Solve 4y" +36Yy = csc 3X.
Solution:

Step 1 To find the complementary function we solve the associated homogeneous
differential equation

4y"+36y=0=y"+9y =0
The auxiliary equation is
m? +9=0=m= 3]
Roots of the auxiliary equation are complex. Therefore, the complementary function is
Ye = C1 €COS3X +Cp Sin 3x
Step 2 From the complementary function, we identify
y1 =C0S3X, Yo =Sin3X
as two linearly independent solutions of the associated homogeneous equation. Therefore

C0S3x sin 3x

W (cos3x,sin3x)=| 3sin3x  3c0s3X

Step 3 By dividing with 4 , we put the given equation in the following standard form
y"+9y = lcsc3x.
4
So that we identify the function f(x)as

1
f(x)==csc3
(x)=~csc3x

Step 4 We now construct the determinants W; and W5
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0 sin3x

W, =1 :——csc3x-sin3x=—E
—csc3x 3cos3x 4

C0S3X 0
W, = _1lcos3x

27 1_3sin3x %CSCBX " 4 sin3x

Step 5 Therefore, the derivatives ujand u> are given by

, W 1 , Wy 1 cos3x
W 12 W 12 sin3x

Step 6 Integrating the last two equations w.r.to X, we obtain

Ug __ Ly and Us :iln|sin3x|
12 36

Note that no constants of integration have been added.
Step 7 The particular solution of the non-homogeneous equation is

1 1, . .
=——XC0S3X+—(sin3x)In|sin 3x
Step 8 Hence, the general solution of the given differential equation is
. 1 1,. :
=Y.+ = Cq C0S3X + Cp SiN 3X — — X €0s 3X + — (sin 3x)In|sin 3x
Y=Ye+Yp=C 2 > 3 (S 3x)Injsin 3x

Example 3

Solve y —-y=

Solution:

Step 1 For the complementary function consider the associated homogeneous equation
y'-y=0

To solve this equation we put

y — emx yr -m eI'T]X y!l — m2emx

Then the auxiliary equation is:
m2-1=0=>m=+1

The roots of the auxiliary equation are real and distinct. Therefore, the complementary
function is
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ye =cieX +ce X

Step 2 From the complementary function we find

yp=eX, y,=e X

The functions y; and y, are two linearly independent solutions of the homogeneous
equation. The Wronskian of these solutions is

eX  e7*

eX —e7X

wle*, &)

Step 3 The given equation is already in the standard form

Here

Y +p(x)y+Q(x)y=f(x)

Step 4 We now form the determinants

F() ==
X
—X
wo=| 0 ¢ o e
1/x —e %
X
w,=| & 0 loexy
eX 1/x

Step 6 We integrate these two equations to find the unknown functions u; and u,.

ulzlje—dx, uzz—lje—dx
2) X 2) X
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The integrals defining u, and u, cannot be expressed in terms of the elementary functions
and it is customary to write such integral as:

Step 7 A particular solution of the non-homogeneous equations is
X
1 et 1 (T e
yp==e*| ——dt-ZeX| -t
2 ) t 2 « t

Step 8 Hence, the general solution of the given differential equation is
X -t

1 e 1 X el
y:yC+yp:c1eX+c2e_X+§eXJ Tdt——e_xj Tdt

Xo 2 Xo
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Lecture 21
Variation of Parameters Method for Higher-Order Equations

The method of the variation of parameters just examined for second-order differential
equations can be generalized for an nth-order equation of the type.

n n-1
d y+an_1d y+---+a1ﬂ
dx" dx" L dx
The application of the method to n™ order differential equations consists of performing
the following steps.

an

+apy = 9(x)

Step 1 To find the complementary function we solve the associated homogeneous
equation

d" dmt d
N
dx dx dx
Step 2 Suppose that the complementary function for the equation is
y=0CYy1+Ca¥2 +-+Cnh¥n

Then yq,y2,...,ygqare n linearly independent solutions of the homogeneous equation.
Therefore, we compute Wronskian of these solutions.

a

Y1 Y. o Yy
Y1 Yo oo Yn
W (Y1, Yo, Yareeer Yo ) =
yl(.n'—l) yz(.ni—l) y (.n'—1>

Step 4 We write the differential equation in the form
Y P ()Y e B(X) Y+ PO Y = F(X)

and compute the determinants W, ; k =1,2,...,n; by replacing the kth column of W by
0

0
the column

0
f(x)
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Step 5 Next we find the derivatives uj, us,...,up of the unknown functions uq,u,,...,up
through the relations

w
ufp =—%,  k=12,...,n
W

Note that these derivatives can be found by solving the nequations
i+ Yaup A+ -4 YpUp o =
yiuu  + YUz 4+ ypUp o =

| n-1)

"+ vy ey = ()

Step 6 Integrate the derivative functions computed in the step 5 to find the functions uy

Uk :JW—kdx, k=12,...,n
w
Step 7 We write a particular solution of the given non-homogeneous equation as
Yp =t (X) 2 (%) + Uy (X) ¥ (%) + -+, (X) ¥ ()
Step 8 Having found the complementary function y. and the particular integral y ,, we
write the general solution by substitution in the expression

Y=Yc+Yp

Note that
o The first n—1equations in step 5 are assumptions made to simplify the first

n—1derivatives of y,. The last equation in the system results from substituting
the particular integral y, and its derivatives into the given nth order linear
differential equation and then simplifying.

o Depending upon how the integrals of the derivatives uj of the unknown functions
are found, the answer for y, may be different for different attempts to find y
for the same equation.

o When asked to solve an initial value problem, we need to be sure to apply the

initial conditions to the general solution and not to the complementary function
alone, thinking that it is only y, that involves the arbitrary constants.
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Example 1

Solve the differential equation by variation of parameters.
&y,
3
dx

dy
dx

=CSCX

Solution
Step 1: The associated homogeneous equation is

d’y d
de + d—i =0
Aucxiliary equation
m*+m=0 :>m(m2 +1)=O
m=0, m==i
Therefore the complementary function is
Ye =C, +C,COSX+C;SinX
Step 2: Since

yC=c1+c2cosx+c35inx

Therefore y,=1 y,=cC0SX, Yy;=sinx

So that the Wronskian of the solutions y;, y, and y;

1 cosx sinx
W (Y, ¥, ¥3)=|0 —sinx cosx
0 —-cosx -sinx

By the elementary row operation R; + Rz, we have

1 0 0
=10 —sinx COS X
0 —COS X —sin x

= (sin2 X +C0S> x):l;t 0

Step 3: The given differential equation is already in the required standard form
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y"+0y"+ y'+0 y=cscx

Step 4: Next we find the determinants W;,W, and W, by respectively, replacing 1%, 2
0
and 3™ column of W by the column 0

CSCX
0 cosXx  sinx
W, =] 0 —sinx cosx
CSCX —COSX —Sinx

= CSCX (sin2x+cos2 x)=cscx

1 0 sin X
W,={0 O COSX
0 cscx -sinx

0 COS X

) =—COSXCSCX=-CotX
CSCX -—SInX

1 cosx 0
and W;=| 0 —-sinx 0 |=
0O —-cosx cscX

—sinx 0 )
=-sinXxcscx=-1

—COSX CSCX

Step 5: We compute the derivatives of the functionsu;, u, and uz as:

U; = —-=CSCX
u, =—2 =—Cotx
W
up=—=-1
W

Step 6: Integrate these derivatives to find u;,u, and u

W.
u, = j—ldx = jcsc xdx = Injcsc x — cot X
W

199

© Copyright Virtual University of Pakistan



Differential Equations (MTH401) VU

Uy = J%dx:j—cot xdx =J_(.:OSX dx =~In|sin x|
sin x

Us =J\%dx=j—1dx:—x

Step 7: A particular solution of the non-homogeneous equation is

Yp =In|cscx—cotx|—cosxIn|sinx|-xsin x

Step 8: The general solution of the given differential equation is:

Yy =C +C,COSX+C;sinx+In|cscx—cotx|—cosx In|sinx|—xsinx

Example 2

Solve the differential equation by variation of parameters.
y"+y' =tanx

Solution

Step 1: We find the complementary function by solving the associated homogeneous
equation

m

y"+y'=0

Corresponding auxiliary equation is
m*+m=0 :>m(m2 +1):0
m=0, m==x=i

Therefore the complementary function is

Yo =C1 +C2 COSX +C3Sin X
Step 2: Since

Yo =C1 +C2 COSX+C38in X
Therefore y; =1, Yy, =C0SX, Y3=SsIinXx
Now we compute the Wronskian of y;, y» and y3

1 cosx sin X
W (Y, Y,,¥3)=[0 —sinx cosx
0 —-cosx -sinx

By the elementary row operation R; + R3, we have
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1 0 0
=10 —sinx COS X
0 —COS X —sin x

= (sin2 X +C0s? x):l;t 0
Step 3: The given differential equation is already in the required standard form
y

Step 4: The determinants W;,W, andW, are found by replacing the 1%, 2" and 3"
column of W by the column

m

+0-y"+y' +0-y=tanx

0
0
tan x
Therefore
0 COSX sinx
W,=| 0 —sinx cosX
tanx —cosx -—sinx
= tanx (coszx+sin2x):tanx
1 0 sin X
W,={0 0  cosx| =1(0-cosxtanx)=—sinx
0 tanx -=sinx
1 COS X 0
and W3 =0  —sinx 0 |=1(-sinxtanx)-0=—sinxtanx
0 — COS X tan x

Step 5: We compute the derivatives of the functionsuq, u, and us.

W,

U =— =tanx
W
W. .

U, =—2=-sinx
W
W .

u; = —>=—sinxtanx
W

Step 6: We integrate these derivatives to find u;,u, and u,

201

© Copyright Virtual University of Pakistan



Differential Equations (MTH401) VU

ulzj%dx:.[tanx dx:—J—Sinde:—ln|cosx|

COS X
(W i
u, = —idx:j—mnxdx:cosx
W
W i
Us = -—idx==j—3|nxtanxdx
JW
. sinx .
= | -sinx dx = [-sin’ xsecdx
COS X

=J'(cos2 x—1)secxdx:j(cos2 xsecx—secx)dx
:J'(cosx—secx)dx=Icosxdx—jsecxdx
=sin x—In|secx+tan x|

Step 7: Thus, a particular solution of the non-homogeneous equation

y  =—In|cosx|+cosx cosx+(sinx—In|secx+tanx|) (sinx)

=—In|cos x|+ cos® x+sin®x—sinxIn|sec x+ tan x|

=—In|cosx|+1-sinxIn|secx+tanx|

Step 8: Hence, the general solution of the given differential equation is:

y =Cp +Cp COSX + C3 Sin X — In[cos x| +1—sin x Insec X + tan X|
or y =(cy +1)+cp cosx+cgsin x — Injcos x| —sin x Injsec X + tan X|
or y =d; +C,CoSX+¢ysinx—In|cosx|—-sinxIn|secx+tanx|

where d, represents ¢, +1.

Example 3
Solve the differential equation by variation of parameters.

ym_zylr_ y/_l_ 2y — e3X
Solution
Step 1: The associated homogeneous equation is
ym_2yﬂ_ yl+ 2y — 0
The auxiliary equation of the homogeneous differential equation is
m*-2m?-m+2=0
= (m-2) (m2 —1):0

=>m=12-1
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The roots of the auxiliary equation are real and distinct. Therefore y, is given by

Yo = 8% +cpe?X + cge

Step 2: From y. we find that three linearly independent solutions of the homogeneous

differential equation.

ylzex, Yo :eZX, Y3 :e—x

Thus the Wronskian of the solutions y;, Y, and y; is given by

X 2X —X

et e e 111
W=leX 202X _eX|=eX.eZX. e X1 2 _

X 4e2x e~ X 1 4 1

By applying the row operations Ro —Rq, Rg—Ry, we obtain

11 1
W=e2X|0 1 —2/=6e2X %0
03 0

Step 3: The given differential equation is already in the required standard form

ym_zylr_ y/_l_ 2y — eBX

Step 4: Next we find the determinants W;,W, andW; by, respectively, replacing the 1%,
2" and 3" column of W by the column

0
0
e3x
Thus
0 e2X X o )
e e
3x 2X X 22X g7
e 4e e
:e3x( eX—ZeX)— 304X
eX 0 ¥ )
_ e e
Wy = X 0 e X _(_1)3+2 e3X
X —X
_ e —€
ex eSx e X

_ _(_eo _eo)e3x _ 93X
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eX e2X ,
X X
e e
Wy =[eX 262X 0 |=e o
n e 2e
and X 4e2x e3x

_ e3X (2e3x _e3x) _ o6X

Step 5: Therefore, the derivatives of the unknown functionsuy, u, and ug are given by.

u:i:%:ﬂ:_lezx
W 62X 2

u’2 =V\Q=ﬂ=lex
W 6 eZX 3

ué :%: e6X :l iy
W  ge?* 6

Step 6: Integrate these derivatives to find u;,u, and u
up = jmdx = J—le“dx = _ij'eZde = —lezx
W 2 2 4

— Jvﬁdx - Jlexdx =leX
W 3 3

= %dx = fle‘lxdx _ L e
w 6 24

Step 7: A particular solution of the non-homogeneous equation is

Vo __1ax 1ax 1 3«
4 3 24

Step 8: The general solution of the given differential equation is:
2 13x, 1 3x

1
X_—g3X 23Xy — ¢

X X -
=Ce” +Ce"" +cge T ——
y=a 2 3 4 3 24
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Exercise
Solve the differential equations by variations of parameters.

1. y"+y=tanx

2. y"+y=secxtanx

3. y'+y= sec? x

4. y"—y=9x/e

5. y”—2y’+y:eX/(1+x2)

6. 4y -4y +y=e2y1-x?

7. y"+4y' =sec2x

8. 2ylﬂ_6y”: X2
Solve the initial value problems.

9. 2y"+y' —-y=x+1

" i _ 2 2X
10. y"—-4y'+4y _(12x —6x)e
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Lecture 22
Applications of Second Order Differential Equation

A single differential equation can serve as mathematical model for many different
phenomena in science and engineering.
Different forms of the 2" order linear differential  equation

d dy

d Z+bd—+cy f( )

appear in the analysis of problems in physics, chemistry and biology.

In the present and next lecture we shall focus on one application; the motion of a
mass attached to a spring.

2

d’y

We shall see, what the individual terms a y
X

bz—y, ¢y and f(x) means in
X

the context of vibrational system.
Except for the terminology and physical interpretation of the terms

d’y  dy
a—:-, b—, ¢y, f(x
dx2 d y f( )
the mathematics of a series circuit is identical to that of a vibrating spring-mass
system. Therefore we will discuss an LRC circuit in lecture.

Simple Harmonic Motion

When the Newton’s 2" law is combined with the Hook’s Law, we can derive a
differential equation governing the motion of a mass attached to spring—the simple
harmonic motion.

Hook’s Law

Suppose that

a
a
a

A mass is attached to a flexible spring suspended from a rigid support, then
The spring stretches by an amount “s
The spring exerts a restoring £ opposite to the direction of elongation or stretch.

The Hook’s law states that the force F'is proportional to the elongation s. i.e

F=ks

Where £ is constant of proportionality, and is called spring constant.
Note That

Qa

a

a

Different masses stretch a spring by different amount i.e s is different for
differentm .
The spring is characterized by the spring constant % .

For example if W =10Ibsand s = %fr
Then F=ks

or 10 = (ijk
2
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or k =20 Ibs/ft
If W =8 lbsthen 8=20(s)=s=2/5 ft

Newton’s Second Law

When a force F acts upon a body, the acceleration a is produced in the direction of the
force whose magnitude is proportional to the magnitude of force. i.e

F =ma

Where m is constant of proportionality and it represents mass of the body.
Weight

Q

a

The gravitational force exerted by the earth on a body of mass m is called weight
of the body, denoted by W

In the absence of air resistance, the only force acting on a freely falling body is its
weight. Thus from Newton’s 2" law of motion
W =mg

Where m is measured in slugs, kilograms or grams and g = 32ft/s?, 9.8m/s? or
980 cm/s’.

Differential Equation

a
a
a

When a body of mass m is attached to a spring
The spring stretches by an amount s and attains an equilibrium position.
At the equilibrium position, the weight is balanced by the restoring force s .
Thus, the condition of equilibrium is
mg=ks = mg—ks=0

If the mass is displaced by an amount x from its equilibrium position and then
released. The restoring force becomes k(s + x). So that the resultant of weight and
the restoring force acting on the body is given by

Resultant=— k(s + x)+ mg.
By Newton’s 2™ Law of motion, we can written

2
m% = —k(s + x)+ mg
t
2
or m%:—kx—ks+mg
t
Since mg —ks =0
2
Therefore m% =—kx
t

The negative indicates that the restoring force of the spring acts opposite to the
direction of motion.
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a The displacements measured below the equilibrium position are positive.

a By dividing withm , the last equation can be written as:

2
d ;C—l-kx:O
dt m
2
or —§+a)2x:0
dt

Where »* :ﬁ. This equation is known as the equation of simple harmonic
m

motion or as the free un-damped motion.
Initial Conditions
Associated with the differential equation

2
X
—2+ G)ZX =0
dt
are the obvious initial conditions

x(0)=a, x'(0)=p4

These initial conditions represent the initial displacement and the initial velocity. For
example

o If a>0, p<O0then the body starts from a point below the equilibrium position
with an imparted upward velocity.

0 If <0, B=0then the body starts from rest |a| units above the equilibrium
position.
Solution and Equation of Motion

Consider the equation of simple harmonic motion

2
X
—2+a)2x=0
dt

2
Put mx d“x 2 mx

Then the auxiliary equation is
m+0°=0 = m=tio
Thus the auxiliary equation has complex roots.
m, =i, m,=-i
Hence, the general solution of the equation of simple harmonic motion is

x(t)=c,coswt +c, sin wt
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Alternative form of Solution
It is often convenient to write the above solution in a alternative simpler form. Consider

x(t)=c,coswt +c, sin wt

and suppose that 4, ¢ e R such that

el = Asin g, €y = AC0S¢
C
Then A:ﬂClz +022 ) tal‘l¢=—1
C
2
So that
x(t)=Asinwt cosg+Bcos wt sing
or x(t)=4Asin(wt+¢ )

The number ¢ is called the phase angle;

Note that

This form of the solution of the equation of simple harmonic motion is very useful
because

o Amplitude of free vibrations becomes very obvious
o The times when the body crosses equilibrium position are given by
x=0=sin(wr+¢ )=0
or wt+@=nr

Where nis a non-negative integer.

The Nature of Simple Harmonic Motion
Amplitude

0 We know that the solution of the equation of simple harmonic motion can be
written as

x(t)=4Asin(wt+¢ )
a Clearly, the maximum distance that the suspended body can travel on either side
of the equilibrium position is A4 .
a This maximum distance called the amplitude of motion and is given by

Amplitude = 4 = \/clz + 6’22

In travelling from x = 4 to x = - 4 and then back to A4, the vibrating body completes one
vibration or one cycle.

A Vibration or a Cycle
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Period of Vibration

The simple harmonic motion of the suspended body is periodic and it repeats its position
after a specific time period 7. We know that the distance of the mass at any time ¢ is
given by

x=Asin(wt+¢)

Since Asin[m[ﬁ%}%}
= Adsin[(ot+¢ + 27 )]
= Asin[ (ot +4 )]

Therefore, the distances of the suspended body from the equilibrium position at the

. 27
timess and ¢ +—— are same
w

Further, velocity of the body at any time ¢ is given by

%=Aa)cos(a)t+¢ )

chos(w(z +%)+¢]

= Awcos|wt +¢ +2r]
= Awcos(wt+¢ )
Therefore the velocity of the body remains unaltered if ¢ is increased by 27 /@ . Hence

the time period of free vibrations described by the 2™ order differential equation
2

—§+ o’x=0
dt
is given by
o2
w
Frequency

The number of vibration /cycle completed in a unit of time is known as frequency of the
free vibrations, denoted by /. Since the cycles completed in time 7 is 1. Therefore, the

number of cycles completed in a unit of time is 1/T
Hence

1l w
f_T_27r
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Example 1
Solve and interpret the initial value problem
d—zf +16x=0
dt
x(0)=10, x'(0)=0.
Interpretation
Comparing the initial conditions
x(0)=10, x'(0)=0.
With
x(0)=a, x'(0)=p
We see that
a=10,8=0
Thus the problem is equivalent to
a Pulling the mass on a spring 10 units below the equilibrium position.
Q Holding it there until timez = 0 and then releasing the mass from rest.
Solution
Consider the differential equation
d—zf +16x=0
dt
Put x=e", d_zf = m2e™
dt
Then, the auxiliary equation is
m? +16=0
= m=0x4i
Therefore, the general solution is:
x(¢) = ¢, cos 4t +c, sin 4t
Now we apply the initial conditions.
x(0)=10=¢;.1+¢,.0=10
Thus ¢, =10
So that x(¢)=10cos 4t + ¢, sin 4¢
% = —40sin 4¢ + 4c, cos 4t
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Therefore x'(0)=0 = -40(0)+4c,.1=0

Thus ¢, =0

Hence, the solution of the initial value problem is
x(£)=10cos4¢

Note that

o Clearly, the solution shows that once the system is set into motion, it stays in
motion with mass bouncing back and forth with amplitude being10 units.

o Sincew=4. Therefore, the period of oscillation is

T = 2—7[ -z seconds
4 2

Example 2

A mass weighing 2lbs stretches a spring 6 inches. At ¢+ = 0 the mass is released from a

point 8 inches below the equilibrium position with an upward velocity of %ft/s.

Determine the function x (z) that describes the subsequent free motion.
Solution
For consistency of units with the engineering system, we make the following conversions

6 inches = 1 foot

8inches = %foot .

Further weight of the body is given to be

W = 21bs
But W = mg
Therefore m= ﬂ = 3
g 32
1
or m = —slugs.
16
) 1
Since Stretch = s = E foot

Therefore by Hook’s Law, we can write

2 :k(%J — k= 41bs/ft
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Hence the equation of simple harmonic motion

2
md—f =—hkx
dt
becomes
1d°x
16 dr?

2
or d—;+64x:0.
dt

Since the initial displacement is 8 inches :g fr and the initial velocity is_T4ft/s, the

initial conditions are:

The negative sign indicates that the initial velocity is given in the upward i.e negative
direction. Thus, we need to solve the initial value problem.

2
Solve % +64x =0

t
Subject to x(0)= E x'(0)= _4

3 3
H dzx 2
Putting x=e™ L2 p2em
dt?
We obtain the auxiliary equation
m® +64=0

or m = £8i

The general solution of the equation is
x(¢)= ¢, cos8t +c, sin8t
Now, we apply the initial conditions.

2 2
x(O):g =c¢.1+¢,.0 =3

Thus ¢ = 2
3

So that x(t)= 2 cos8t+ c, sin8t
3

213

© Copyright Virtual University of Pakistan



Differential Equations (MTH401) VU

Since
x'(t)= —%sin 8¢ + 8¢, 0S8t .
Therefore
x'(0)= 4 18, +8¢,.1= _4
3 3 3
Thus
C e _1
2 6 :

Hence, solution of the initial value problem is
x(t)= 2 cos8t - Lsingr.
3 6

Example 3

Write the solution of the initial value problem discussed in the previous example in the
form

x(t)=4Asin(wt+¢ ).

Solution

The initial value discussed in the previous example is:
2

Solve % +64x=0
t

Subject to x(0)= % x'(0)= _%

Solution of the problem is
x(t)= 2 cos8t— Lsings
3 6
Thus amplitude of motion is given by
2 2
A= 2 + o =@z0.69ﬁ
3 6 6

and the phase angle is defined by

sing = 2/3 _ 4 >0
J17/6 V17
-1/6 1
CoS¢ = =— <0
¢ V1716 V17
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Therefore
tang = -4
or tan ~*(- 4) = -1.326 radians
Since sing >0, cos¢ < 0, the phase angle ¢ must be in 2™ quadrant.

Thus
¢ = —1.326 =1.816 radians

Hence the required form of the solution is

g7

X(f) = TSin(8f + 1816)

Example 4
For the motion described by the initial value problem
2
Solve d_f +64x=0
dt
Subject to x(0)= % x'(0)= _%

Find the first value of time for which the mass passes through the equilibrium position
heading downward.

Solution
We know that the solution of initial value problem is

x(t)= 2 cos8t—Lsingr.
3 6

This solution can be written in the form

N

x(t)= Ts,in(8z +1.816)

The values of ¢ for which the mass passes through the equilibrium position i.e for which
x =0 are given by

wt+@d=nrx
Where n=1,2,..., therefore, we have

81 +1.816 =7, 8¢5 +1.816=27, 83+1.816=3r,...
or 1, =0166, ¢, =0558, r3=0951, ...
Hence, the mass passes through the equilibrium position

x=0

heading downward first time at ¢, = 0.558 seconds.
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Exercise
State in words a possible physical interpretation of the given initial-value problems.

1. %x" +3x=0, x(0)=-3, x'(0)=-2

2. %x" +4x=0, x(0)=0.7, x'(0)=0

Write the solution of the given initial-value problem in the form x(¢)= Asin(at + ¢)
3. x"+25x=0, x(0)=-2, x'(0)=10

4. %x"+8x=0, x(0)=1, x'(0)=-2
5 x"+2x=0, x(0)=-1 x'(0)=-
6. %x"+16x:0, x(0)=4, x'(0)=1

7. 0.1x"+10x=0,  x(0)=1 x'(0)=1

8. x"+x=0,  x(0)=—4, x'(0)=3

9. The period of free undamped oscillations of a mass on a spring is 7 /4 seconds. If
the spring constant is 16 Ib/ft, what is the numerical value of the weight?

10. A 4-1b weight is attached to a spring, whose spring constant is 16 Ib/ft. What is
period of simple harmonic motion?

11. A 24-Ib weight, attached to the spring, stretches it 4 inches. Find the equation of
the motion if the weight is released from rest from a point 3 inches above the
equilibrium position.

12. A 20-Ib weight stretches a spring 6 inches. The weight is released from rest 6
inches below the equilibrium position.

a) Find the position of the weight at t—l z 1 1 9—”seconds
12'8'6'4'32

b) What is the velocity of the weight when ¢ =37/16 seconds? In which
direction is the weight heading at this instant?

c) At what times does the weight pass through the equilibrium position?
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Lecture 23
Damped Motion

In the previous lecture, we discussed the free harmonic motion that assumes no retarding
forces acting on the moving mass. However

a No retarding forces acting on the moving body is not realistic, because
O There always exists at least a resisting force due to surrounding medium.

For example a mass can be suspended in a viscous medium. Hence, the damping forces
need to be included in a realistic analysis.

Damping Force
In the study of mechanics, the damping forces acting on a body are considered to be

proportional to a power of the instantaneous velocity?. In the hydro dynamical
t

problems, the damping force is proportional to (dx/dt)2 . So that in these problems

dx

2
Damping force = -ﬂ(;)

Where £ is a positive damping constant and negative sign indicates that the damping
force acts in a direction opposite to the direction of motion.

In the present discussion, we shall assume that the damping force is proportional to the

instantaneous velocity@. Thus for us

Damping force = —ﬁ[%)

The Differential Equation
Suppose That
0 A body of mass m is attached to a spring.
Q The spring stretches by an amount s to attain the equilibrium position.
Q The mass is further displaced by an amount x and then released.
0 No external forces are impressed on the system.
Therefore, there are three forces acting on the mass, namely:
a) Weight mg of the body

b) Restoring force — k(s + x)

c) Damping force ﬁ(%]
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Therefore, total force acting on the mass m is

mg — k(s +x)— ﬁ(%)

So that by Newton’s second law of motion, we have
d®x dx
m—-=mg —kls+x)-p| —
L =g k(s x)-p{ &)

Since in the equilibrium position

mg —ks =0
2
Therefore md—f =—hkx — /3(@]
dt dt

Dividing with m , we obtain the differential equation of free damped motion
2
ﬂ + ﬁ(ﬁj + kx — 0
dr> m\ dt m

For algebraic convenience, we suppose that

2/1:£, ? _k
m m

Then the equation becomes:

Solution of the Differential Equation
Consider the equation of the free damped motion

2
9X 22 4 =0
dt dt

2
tdx d°x 2 mt
=" = =me™, — =me"

Put
dt dt?

Then the auxiliary equation is:
m® +2m+w? =0

Solving by use of quadratic formula, we obtain

m=—-At\N1* -0’

Thus the roots of the auxiliary equation are

m,=-A+NA —w®, m,=-A-1" -0
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Depending upon the sign of the quantity 2> — »?, we can now distinguish three possible
cases of the roots of the auxiliary equation.

Case 1 Real and distinct roots

If 22 —w? > 0then B > k and the system is said to be over-damped. The solution of the
equation of free damped motion is
myt

x(t)=ce™ +c,e

2 2 2 2
or x(t)=e™ lcle“l e tJ

This equation represents smooth and non oscillatory motion.
Case 2 Real and equal roots

If A2 —w? =0, then S =k and the system is said to be critically damped, because any

slight decrease in the damping force would result in oscillatory motion. The general
solution of the differential equation of free damped force is

x(t)=ce™ +cyte™
or x(t) —e (cl + czt)
Case 3 Complex roots

If 22 —w? <0, then S <k and the system is said to be under-damped. We need to
rewrite the roots of the auxiliary equation as:

m, =-A+No® - 1i, m,=-1-\Jo® - 1%i

Thus, the general solution of the equation of free damped motion is
x(t)= e‘”[c1 cosv? — A2t +c, siny w® —izt}

This represents an oscillatory motion; but amplitude of vibration — 0as¢ — o because of

the coefficiente % .

Note that

Each of the three solutions contain the damping factor e , A >0, the displacements of
the mass become negligible for larger times.
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Alternative form of the Solution
When A% —w? < 0, the solution of the differential equation of free damped motion

2
d—f+2/1@+w2x:0
dt

is x(t)= e‘“[cl cosv@? — A%t +c, Siny w® —/lzt}

Suppose that 4 and ¢ are two real numbers such that

. C Cy
Sing =—-, COS¢p =—=
/ 4 ? 4

So that A:\/c12+022, tan¢=c—1

&)

The number ¢ is known as the phase angle. Then the solution of the equation becomes:

x(r)= Ae‘l’[sin Vw? = 2*tcos g+ cosvw? — A2 tsin ¢J
or x(t):Ae_’USin(\/a)2 —12t+¢)

Note that

-At

o The coefficient Ae ™ is called the damped amplitude of vibrations.

o The time interval between two successive maxima of x(t)is called quasi period,
and is given by the number
2r

[ 0?2 _ 32

o The following number is known as the quasi frequency.

[ w2 — )2
2r
o The graph of the solution

x(t)= e sin(\/ w? = )Pt+¢ )

crosses positive -axis, i.e the linex =0, at times that are given by

Vol —/12t+¢:n7r
Wheren =123,....

For example, if we have

x(r)= e Sin(2t - %)
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Then 2t——=nr
3
T T T
or 2 — = =0,2t) — = =1, s — = =21, ...
173 23 33
or LT, AT iz
1= =g BT

We notice that difference between two successive roots is

th —th_1 = z_ 1 quasi period

2 2

Since quasi period= 27” = . Therefore
th —th_q1 = z_ 1 quasi period

2 2

o Since |x(¢) < Ae when‘sin No® = A%t+¢ ‘31, the graph of the solution

x(t)= de™™ sin(\/ w? = 22t+¢ )
touches the graphs of the exponential functions

+ Ae_’u
at the values of ¢ for which

sin(\/a)z ~2Pt+¢ ): +1

This means those values of ¢ for which
Vo? = %t+¢=(2n +1)%

or t=(2n+1)(7[/2)_¢wheren=0,1,2,3,...

a)Z_iZ

Again, if we consider

Then 2t1*——=5, 2y, — L= gt T2

« 57« 1lzx « 1z
= t, = t

Or t, =—, =—, =—, ...
et 12t 12
Again, we notice that the difference between successive values is
* * T
ty —tpq=—
L

o The values of ¢ for which the graph of the solution

x(t)=Ae™ sin(\/ 0? = )Pt+¢ )

touches the exponential graph are not the values for which the function attains its
relative extremum.

Example 1
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Interpret and solve the initial value problem

2
d’x + 5ﬂ +4x=0
di?> dt

x(0)=1 x'(0)=1
Find extreme values of the solution and check whether the graph crosses the equilibrium
position.
Interpretation

Comparing the given differential equation

2
M+5ﬂ+4x:0
dr?> dt

with the general equation of the free damped motion

2
d—;‘+2z@+w2x:o
dt dt

we see that

so that 12 —w?>0

Therefore, the problem represents the over-damped motion of a mass on a spring.
Inspection of the boundary conditions

x(O) =1, x'(O) =1
reveals that the mass starts 1 unit below the equilibrium position with a downward
velocity of 1 ft/sec.
Solution

To solve the differential equation
d’x dx

—+5—+4x=0
di?> dt
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2
dx dx
We put x=e™, ?:memt, 2 mPe™
t

Then the auxiliary equation is

m? +5m+4=0
= (m+4)(m+1)=0
> m=-1 m=-4,

Therefore, the auxiliary equation has distinct real roots
m=-1, m=-4

Thus the solution of the differential equation is:

x(t) =ce + cze_4t

So that X(t)=—cie™ —4ce ™
Now, we apply the boundary conditions
x(0)=1= .1+ ¢,.1=1
x'(0)=1= —¢; —4c, =1
Thus
e +cy =1
—cp —4cy =1

Solving these two equations, we have.

Therefore, solution of the initial value problem is

x(t) = %e_t - ge_m

3

Extremum
Since x(t): Ee‘t L 4

3 3
Therefore dx 5 8 -4

dt 3 3
So that K()=0 = —2e 4 8 4 _g
3 3

or =818

5 3 5
or t =0.157
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. d’x 5
Since —=—¢
dr> 3

Therefore at r = 0.157, we have

32
3

d’x _5,-0157 _ 32 0628
dz2 3 3

=1.425-5.692 =-4.267 <0
So that the solution x(¢) has a maximum at ¢ = 0.157 and maximum value of x is:
x(0.157) =1.069

Hence the mass attains an extreme displacement of 1.069 ft below the equilibrium
position.
Check

Suppose that the graph of x(t) does cross thet — axis, that is, the mass passes through
the equilibrium position. Then a value of ¢ exists for which

x(t)zO
i.e Ee_t —ge_4t =0
3 3
-2
5
or t:1|n§:_o,305
3 5

This value of ¢ is physically irrelevant because time can never be negative. Hence, the
mass never passes through the equilibrium position.

Example 2

An 8-1b weight stretches a spring 2ft. Assuming that a damping force numerically equals
to two times the instantaneous velocity acts on the system. Determine the equation of
motion if the weight is released from the equilibrium position with an upward velocity of
3 ft / sec.

Solution
Since
Weight =81lbs, Stretch=ys=2ft
Therefore, by Hook’s law
8 = 2
=k=41b/ft
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Since Damping force = 2(%)

Therefore p=2

Also mass = Weight = m= 8 = 1 slugs
g 32 4

Thus, the differential equation of motion of the free damped motion is given by

d’x dx
iy SV B
" 'B[dz)

dr?
2
or lﬂ:—4x—2 ax
4 gs2 dt
2
or 47X g% 16x=0
di? dt

Since the mass is released from equilibrium position with an upward velocity 3ft/s.
Therefore the initial conditions are:

x(0)=0, x'(0)=-3

Thus we need to solve the initial value problem

2
Solve d°x g% 16x—-0
di?> dt
Subject to x(0)=0, x'(0)=-3
2
Put x=e™, ax =me™, d—; = m?e™
dt dt
Thus the auxiliary equation is
m? +8m+16=0
or (m+4)2=0:>m=—4,—4

So that roots of the auxiliary equation are real and equal.
my =—-4=m,

Hence the system is critically damped and the solution of the governing differential
equation is

x(t) = cle_‘” + czte_A"

Moreover, the system is critically damped.
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We now apply the boundary conditions.
x(0)=0=¢;.1+¢,.0=0

=0 = 0
Thus x(r)= cote™
= ax = 026_4[ - 4czte_4’
dt
So that x'(0)=-3=¢,.1-0=-3
= CZ = —3

Thus solution of the initial value problem is

x(r)= —3te™H
Extremum
Since x(¢)=—=3te™
dx —4¢ —4¢
Therefore —=-3e " +12¢te
dt
=3 ¥ (1-41)
Thus ﬂ =0=>t¢= E
dt 4

The corresponding extreme displacement is

x(EJ - —3[3}—1 —_0.276 ft
4 4

Thus the weight reaches a maximum height of 0.276 ft above the equilibrium position.
Example 3

A 16-Ib weight is attached to a 5- ft long spring. At equilibrium the spring measures
8.2ft .If the weight is pushed up and released from rest at a point 2 - ft above the
equilibrium position. Find the displacement x(t) if it is further known that the
surrounding medium offers a resistance numerically equal to the instantaneous velocity.

Solution
Length of un -stretched spring =5 ft

Length of spring at equilibrium =8.2 ft
Thus Elongation of spring =s = 3.2 ft

By Hook’s law, we have
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16 = k(3.2)= k =5Ib/ft
Weight 16 1
=>m= =

Further mass = — ==slugs
g 32 2
. . X
Since Damping force = ”
t
Therefore p=1
Thus the differential equation of the free damped motion is given by
2
X ﬂ@
dt? dt
1d°%x dx
or 2 2 gy
2 dr? dt
2
or CAE NP L ST,
de> dt

Since the spring is released from rest at a point 2 ft above the equilibrium position.
The initial conditions are:

x(0)=-2, x'(0)=0
Hence we need to solve the initial value problem

2
47X 2% 10x=0
de®> ot

x(0)=-2, x'(0)=0
To solve the differential equation, we put

dx d?x
mt “A memt, - — mZemt
dt dt

)

Then the auxiliary equation is
m? +2m+10=0
or m=-1%3i
So that the auxiliary equation has complex roots
m ==-1+3i, my,=-1-3i
The system is under-damped and the solution of the differential equation is:

x(¢)=e7"(c; cos3t + ¢, sin3r)
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Now we apply the boundary conditions
x(0)=-2=¢;.1+¢,.0=-2

=c=-2
Thus x(t)= e (~2c0s3t +cysin3t)
% = e ' (65in 3¢ +3cy c0s3t)—e ' (—2¢0s 3t + ¢ Sin 3t)
Therefore x'(0)=0=3c,+2=0
-2
>3

Hence, solution of the initial value problem is

x(t)= e_t(— 20083t —%sin 3tj

Example 4
Write the solution of the initial value problem
2
47X 2% 1105 =0
dt dt

x(0)=-2, x'(0)=0
in the alternative form
x(t)= e sin(3t + ¢)
Solution
We know from previous example that the solution of the initial value problem is

x(t)=e" (— 2083t — %sin 3tj

Suppose that 4 and ¢ are real numbers such that

, 2 —-2/3
sing=——, COS¢p=——
? 4 ? 4

Then A:,/4+§:§\/ﬁ

_—° -3
-2/3
Therefore tan~*(3) =1.249 radian

Since sing < 0, cosg < 0, the phase angle ¢ must be in 3" quadrant.
Therefore

Also tan ¢ =

¢ = +1.249 = 4.391 radians
Hence
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x(r) = %@e-’ sin(3¢ +4.391)

The values of t=t, where the graph of the solution crosses positive t -axisand the

values t=t7* where the graph of the solution touches the graphs of i[éj@e‘t are

given in the following table.

’ |l
fy t, X ty
1 |.631 1.154 0.665
2 |1.678 2.202 -0.233
3 | 2725 3.249 0.082
4 | 3.772 4.296 -0.029
Quasi Period
Since x(t)= %@e’ sin(3¢ + 4.391)
Therefore \/12 —w? =3
So that the quasi period is given by
27 27
= —_seconds
22 _ 2 3

Hence, difference between the successive ty and t; is %units.
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Exercise
Give a possible interpretation of the given initial value problems.

1.

%x" +2x"+x=0, x(O) =0, x'(O) =-15

gx" +x'+2x =0, x(0)=-2, x'(0)=1

A 4-Ib weight is attached to a spring whose constant is 2 Ib /ft. The medium offers
a resistance to the motion of the weight numerically equal to the instantaneous
velocity. If the weight is released from a point 1 ft above the equilibrium position
with a downward velocity of 8 ft / s, determine the time that the weight passes
through the equilibrium position. Find the time for which the weight attains its
extreme displacement from the equilibrium position. What is the position of the
weight at this instant?

A 4-ft spring measures 8 ft long after an 8-Ib weight is attached to it. The medium

through which the weight moves offers a resistance numerically equal to~/2 times
the instantaneous velocity. Find the equation of motion if the weight is released
from the equilibrium position with a downward velocity of 5 ft / s. Find the time
for which the weight attains its extreme displacement from the equilibrium
position. What is the position of the weight at this instant?
A 1-kg mass is attached to a spring whose constant is 16 N / m and the entire
system is then submerged in to a liquid that imparts a damping force numerically
equal to 10 times the instantaneous velocity. Determine the equations of motion if
a. The weight is released from rest 1m below the equilibrium position;
and
b. The weight is released 1m below the equilibrium position with and
upward velocity of 12 m/s.
A force of 2-Ib stretches a spring 1 ft. A 3.2-1b weight is attached to the spring
and the system is then immersed in a medium that imparts damping force
numerically equal to 0.4 times the instantaneous velocity.
a. Find the equation of motion if the weight is released from rest 1 ft above the
equilibrium position.
b. Express the equation of motion in the form x(1) :Ae*ﬂfsin(«/wz _ 22 t+¢)

c. Find the first times for which the weight passes through the equilibrium
position heading upward.
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7.

8.

9.

10.

After a 10-lb weight is attached to a 5-ft spring, the spring measures 7-ft long.

The 10-Ib weight is removed and replaced with an 8-1b weight and the entire

system is placed in a medium offering a resistance numerically equal to the

instantaneous velocity.

a. Find the equation of motion if the weight is released 1/2 ft below the
equilibrium position with a downward velocity of 1ft/s.

b. Express the equation of motion in the form x(1) =Ae"“5in(w/a)2 — 32 ;+¢)

c. Find the time for which the weight passes through the equilibrium position
heading downward.

A 10-Ib weight attached to a spring stretches it 2 ft. The weight is attached to a

dashpot-damping device that offers a resistance numerically equal to ,8(,8 > 0)

times the instantaneous velocity. Determine the values of the damping constant S

so that the subsequent motion is

a. Over-damped

b. Critically damped

c. Under-damped
A mass of 40 g. stretches a spring 10cm. A damping device imparts a resistance to
motion numerically equal to 560 (measured in dynes /(cm / s)) times the
instantaneous velocity. Find the equation of motion if the mass is released from
the equilibrium position with downward velocity of 2 cm/s.
The quasi period of an under-damped, vibrating 1-slugs mass of a spring isz /2
seconds. If the spring constant is 25 Ib / ft, find the damping constant 5.
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Lecture 24
Forced Motion

In this last lecture on the applications of second order linear differential equations, we
consider
o A vibrational system consisting of a body of mass m attached to a spring. The

motion of the body is being driven by an external force f(t) i.e. forced motion.

o Flow of current in an electrical circuit that consists of an inductor, resistor and a
capacitor connected in series, because of its similarity with the forced motion.
Forced motion with damping
Suppose that we now take into consideration an external force f(z). Then, the forces

acting on the system are:
a) Weight of the body = mg

b) The restoring force =— k(s + x)
c) The damping effect = — 3 (dx/ dt)
d) The external force = £(¢).

Hence x denotes the distance of the mass m from the equilibrium position. Thus the total
force acting on the mass m is given by

Force = mg — k(s +x)— ﬁ(%j + 1(2)

By the Newton’s 2" law of motion, we have

2
Force=ma:md—2x
dt
d2X dx
Therefore L —me—ks—ke— B — |+ f(¢
But mg —ks =0
2
So that d_f+ﬁ[ﬂ}_ﬁx:i)
dt m\dt) m m
d? d
or —;+2/1—x+a)2x:F(t)
dt dt
t
where F(t):M, zzzﬁ and o> =ﬁ_
m m m

Note that

O The last equation is a non-homogeneous differential equation governing the forced
motion with damping.

O To solve this equation, we use either the method of undetermined coefficients or
the variation of parameters.
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Example 1
Interpret and solve the initial value problem

2
1d'x +1.2%+2x — 5¢0s4¢

x(0)= % x'(0)=0

Interpretation

The problem represents a vibrational system consisting of
1 .
O Amass m= c slugs or kilograms
O The mass is attached to a spring having spring constant £k =21b/ftor N/m
O The mass is released from rest %ft or meter below the equilibrium position

Q The motion is damped with damping constant § =1.2.
a The motion is being driven by an external periodic force f(z)=50054tthat has

. T
eriod7 =—.
P 2
Solution
Given the differential equation
2
1d°x 1 2% oy —5c0s4s
S dt dt
2
or d f+6@+10x:25cos4t
dt dt
First consider the associated homogeneous differential equation.
d’x _d
467 +10x=0
dt
2
PUt x = emt’ @ — memt} d_zx — m26mt
dt dt

Then the auxiliary equation is:
m’ +6m+10=0
= m=-3%i
Thus the auxiliary equation has complex roots
m, =-3+i, m,=-3—1i
So that the complementary function of the equation is

X, :e_3t(clcost+c2 sint)
To find a particular integral of non-homogeneous differential equation we use the
undetermined coefficients, we assume that

x,(t)= Acos4t+ Bsin 4
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Then x),(t)=—4A4sin 4t + 4B cos 4t

x(t)=—-164cos4: —16Bsin 4

So that

x}', + 6x}, +10xp =-16A4cos 4t —16Bsin 4t — 24 Asin 4t

+24Bcos4tr+10A4cos 4t +10Bsin 4¢
=(~64+24B)cos 4t + (- 24 4—6B)sin 4t

Substituting in the given non-homogeneous differential equation, we obtain
(—6A4+24B)cos4t +(— 244 —6B)sin 4t = 25c0s 4t

Equating coefficients, we have

—-64+24B=25
—-244-6B=0
Solving these equations, we obtain
4o 2, 50
102 ol
Thus xp(t)=—£cos4t+@sin 4
102 ol

Hence the general solution of the differential equation is:

x(t)= e ¥ [y cost + ¢y sint]- 25 cosar+sinas
102 51

x(t)= -3¢ [cycost+cysint]+e 3 (— ¢y sing + ¢y cost) + Z—cl)sin At + %cos At

Now x(0) :% gives
1251
102 2
o L _1, 25 51425
t2 102 102
38
Or Cl = —
51
Also x'(0)=0 gives
-3¢, +c, +@ =0
51
200 114 86
or Cy=———+—=——
51 51 51

Hence the solution of the initial value problem is:
x(t)=e¥ 38 cost—Bsint | -2 cosar + sin ¢
51 51 102 51
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Transient and Steady-State Terms
Due to the presence of the factor e we notice that the complementary function

x()=e"¥ 38 cost—Bsins
51 51

possesses the property that
lim x.(£)=0
X—>00
Thus for large time, the displacements of the weight are closely approximated by the

particular solution

x,(1)= _ 2 cosar+Vsinas
102 ol

Since x_(t) > 0ast — oo, it is said to be transient term or transient solution. The
particular solution x, (¢)is called the steady-state solution
Hence, when F is a periodic function, such as
F(t)=Fysinyt or F(t)=F,cosyt
The general solution of the equation
d%x dx
42 =+0*x=F()
dt® dt
consists of
x(¢) = Transient solution + Steady State Solution

Example 2

Solve the initial value problem

2
d f+2@+2x=4c051+23int
dt dt

x(0)=0, x'(0)=3

Solution

First consider the associated homogeneous linear differential equation
d? d.

ZC +22 1 2x=0

dt dt

2
Put x=e", xX'=me™, x"=m"e™

Then the auxiliary equation is
m*+2m+2=0

2+ _
or m:z—# VAT8 _ g4y

Thus the complementary function is

x. =e '(cpcost+cysint)
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For the particular integral we assume that

Xp = Acost + Bsint
x’p =—Asint + Bcost

x;, =—A4cost— Bsint
So that
dzxp dxp ) ] .
+2—4+2x =—Acost—Bsint—2A4sint+2Bcost +2Acost+ 2Bsint
dr? dt P
d%x dx
or L +2—L+2x, =(A4+2B)cost +(-24+ B)sint
dt dt

Substituting in the given differential equation, we have
(4+2B)cost +(— 24+ B)sint = 4cost + 2sint
Equating coefficients, we obtain

A+2B=4
—-2A+B=2

Solving these two equations, we have:

A=0, B=2
Thus x, = 2sint
Hence general solution of the differential equation is

X=X,+x,
or x(t)=e"(c cost +c,sint)+ 2sint
Thus x'(t)=—e"(c,cost +c,sint)+e” (—¢;sint +c, cost)+2C0st

Now we apply the boundary conditions
x(0)=0=¢;.1+¢,.0+0=0
= =0
x'(0)=3= —¢;.1+¢,1+2=3
=c,=1
Thus solution of the initial value problem is
x=e 'sint+2sint
Since e'sint—>0 as t—0
Therefore
e”'sint = Transient Term, 2sint = Steady State

Hence x=e'sint + 2sint
H_J H_J
Transient Steady—state
We notice that the effect of the transient term becomes negligible for about
t>2r
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Motion without Damping

If the system is impressed upon by a periodic force and there is no damping force then

there is no transient term in the solution.

Example 3
Solve the initial value problem
d? :
d_;+w2x = F, sinyt
t

x(0)=0, x'(0)=0
Where F is a constant

Solution
For complementary function, consider the associated homogeneous differential equation
2
X
5 + a)zx = O
dt
Put x=e", x"=m?e™

Then the auxiliary equation is
m?+w?=0=m=+wi
Thus the complementary function is
x,(¢)=c, coswt +c, sinwt
To find a particular solution, we assume that
x,(t)=Acosyt+ Bsinyt

Then Xp (t): —Aysinyt + Bycosyt
X} (t) = —Ay2 COSyt — By2 sin yt
Therefore,
" 2. _ 2 2 o 2 2 o
Xyt x, =—Ay” COSyt — By~ sinyt + Aw” COSyt + Bw® sinyt

p
Substituting in the given differential equation, we have

A(co2 - yZ)COS vt + B(a)2 - yz)sin yt = F, sinp
Equating coefficients, we have
A(a)2 —7/2)= 0, B(a)z —7/2)= F,
Solving these two equations, we obtain

FO
A:O, B:ﬁ (7/-7560)

Therefore x ()= _ sin
PN 22 "

X'+ a)zxp = A(a)2 —yz)COS;/t + B(a)2 —yz)sin "
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Hence, the general solution of the differential equation is

2

. F, o).
x(t)= ¢, coswt + ¢, sin wt + e sin yt

Then x'(1) = —qwsinwt + c,w Cos wt +

Now we apply the boundary conditions
x(0)=0=¢;.1+¢,.0+0=0

:>Cl:0

F
x'(0)=0= .0+ cyw.1+ = "_7/y2 =0

=>c, = I,
? a)ia)2 —7/2 )
Thus solution of the initial value problem is
F,

o

x(t)= I (~ysinot+osinyt), (y+o)
a)(a) -y )

Note that the solution is not defined for y = @, However lim x(¢)can be obtained using
}/—)w

the L’Hopital’s rule
—ySin wt + wsin yt

T o)

(~ ysinot + wsin y)

_F, lim 0%

Yoo iw(wZ _7/2)
dy

) —Sin wt + wt COS ¢
=F, lim w i
y—o — 2wy

—Sin wt + wt cos wt
=F, :
—2w

F, . F
=—2 sinwt——2tcoswt

202 2w

Clearly |x(t)|—>oo as t — oo .Therefore there is no transient term when there is no
damping force in the presence of a periodic impressed force.
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Electric Circuits

Many different physical systems can be described by a second order linear differential
equation similar to the differential equation of the forced motion:
2
d“x dx
m—-—+f—+kx=flt

Py /()
One such analogous case is that of an LRC-Series circuit. Because of the similarity in
mathematics that governs these two systems, it might be possible to use our intuitive
understanding of one to help understand the other.

The LRC Series Circuits

The LRC series circuit consist of an inductor, resistor and capacitor connected in series
with a time varying source voltage E(z),

Resistor

A resistor is an electrical component that limits or regulates the flow of electrical current
in an electrical circuit.

The measure of the extent to which a resistor impedes or resists with the flow of current
through it is called resistance, denoted by R .

Clearly higher the resistance, lower the flow of current. Lower the resistance, higher the
flow of current. Therefore, we conclude that the flow of current is inversely proportional
to the resistance, i.e

I:V.£:>V:IR
R

Where V' is constant of proportionality and it represents the voltage. The above equation
is mathematical statement of the well known as Ohm’s Law.

Inductor

An inductor is a passive electronic component that stores energy in the form of magnetic
field. In its simplest form the conductor consists of a wire loop or coil wound on some
suitable material.

Whenever current through an inductor changes, i.e increases or decreases, a counter emf
is induced in it, which tends to oppose this change. This property of the coil due to which
it opposes any change of current through it is called the inductance.

Suppose that 7 denotes the current then the rate of change of current is given by

dr

dt
. - . dl
This produces a counter emf'voltage )" . Then V'is directly proportional to %

Vaﬂ = V :Lﬂ
dt dt

Where L is constant of proportionality, which represents inductance of the inductor. The
standard unit for measurement of inductance is Henry, denoted by H .
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Capacitor
A capacitor is a passive electronic component of an electronic circuit that has the ability
to store charge and opposes any change of voltage in the circuit. The ability of a capacitor
to store charge is called capacitance of the capacitor denoted by C. If 4 4 coulomb of a
charge to the capacitor and the potential difference of V" volts is established between 2
plates of the capacitor then

qoa C=>qg=CV

-9
or V=97

Where C'is called constant of proportionality, which represent capacitance. The standard
unit to measure capacitance is farad, denoted by F'.

Kirchhoff’s Voltage Law

The Kirchhoff’s 2" law states that the sum of the voltage drops around any closed loop
equals the sum of the voltage rises around that loop. In other words the algebraic sum of
voltages around the close loop is zero.

The Differential Equation

Now we consider the following circuit consisting of an inductor, a resistor and a
capacitor in series with a time varying voltage source E(t)

L

+

c

If V,,VandV, denote the voltage drop across the inductor, resistor and capacitor

respectively. Then
dl q
Vi=L—, Vg =RI, V,==
L dt R c C
Now by Kirchhoff’s law, the sum of V; ,V, andV,. must equal the source voltage E(t)i.e
Vi +Vg+V.=E(t)

or L£+RI+1=E(t)
dt C

Since the electric current/ represents the rate of flow of chargeﬂ. Therefore, we can
t

write
=%
dt
Substituting in the last equation, we have:

2
P L
dt2 dt C
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Note that

O We have seen this equation before! It is mathematically exactly the same as the
equation for a driven, damped harmonic oscillator.

a If E(t)zO,R # 0 the electric vibration of the circuit are said to be free damped
oscillation.

a If E(t)z 0, R = Othen the electric vibration can be called free un-damped oscillations.

Solution of the differential equation
The differential equation that governs the flow of charge in an LRC-Series circuit is

2
4 ﬁ+1=E(1)

dtz a C

This is a non-homogeneous linear differential equation of order-2. Therefore, the general
solution of this equation consists of a complementary function and particular integral.

For the complementary function we find general solution of the associated homogeneous
differential equation

2
Ld—2q+Rﬁ+1:0
dt dt

2
We put g=e", @:memt, M=m2emt
dt dr

Then the auxiliary equation of the associated homogeneous differential equation is:
Lm? + Rm + l =0
C

If R # Qthen, depending on the discriminant, the auxiliary equation may have
o Real and distinct roots
o Real and equal roots
o Complex roots

Case 1 Real and distinct roots
If

Disc = R2-*E 2
C

Then the auxiliary equation has real and distinct roots. In this case, the circuit is said to
be over damped.
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Case 2 Real and equal
If
Disc = R? _AL =0
C
Then the auxiliary equation has real and equal roots. In this case, the circuit is said to be

critically damped.

Case 3 Complex roots
If
Disc = R? —4£<0
C
Then the auxiliary equation has complex roots. In this case, the circuit is said to be under
damped.

Note that
o Since by the quadratic formula, we know that

_R+R?—4Llc

2L
In each of the above mentioned three cases, the general solution of the non-

m=

homogeneous governing equation contains the factor e_RtIZL . Therefore
q(t)>0ast —>
o In the under damped case when q(0)= q, the charge on the capacitor oscillates as it
decays. This means that the capacitor is charging and discharging ast — o
o In the under damped case, i.e. when £(0)=0,and R =0, the electrical vibration do

not approach zero ast — oo . This means that the response of the circuit is Simple
Harmonic.
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Lecture 25
Forced Motion — Examples

Example 1

Consider an LC series circuit in which .
E(t)=0

Determine the charge q(t)on the capacitor for > 0if its initial charge is ¢, and if

initially there is no current flowing in the circuit.
Solution

Since in an LC series circuit, there is no resistor. Therefore,
R _
dt
So that, the governing differential equation becomes

2
Ld—2q+1q=0
dt© ¢

The initial conditions for the circuit are
4(0)=q,, 1(0)=0

Since q =1(t)
dt
Therefore the initial conditions are equivalent to
9(0)=4,, 4¢'(0)=0
Thus, we have to solve the initial value problem.

2
LM+1q =0
dat?
q(0)=q,, ¢'(0)=0

To solve the governing differential equation, we put

_eml qu 2 mt
1=

So that the auxiliary equation is:
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-l

Therefore, the solution of the differential equation is :

1 (1
t)=c1C08| —t |+ cp Sin| —¢
)= (ﬁ j i (ﬁ ]
Now, we apply the boundary conditions

Q(O): 9o =>4, =¢1.1+¢,.0

= =49,
Thus q(t)=gq, cos L t|+cpsin !,
JLe JLe
Differentiating w.r to ¢ , we have:
dq q, .- ( 1 ] cy ( 1 J
—~=- sin t|+ cos t
di e \NLe ) Ve \JLe
Now ¢'(0)=0=0+-"2 1=0
JLe
302:0
Hence
1
q(t)= g, cosﬁt
Since I(t)—@

dt
Therefore, current in the circuit is given by

9o . 1
I(t)=- sin t
() W Lc (\/LC j
Example 2

Find the charge q(t)on the capacitor in an LRC series circuit when L=0.25 Henry, R=10
Ohms, C=0.001 farad, E(t)=0, ¢(0)=g,and 7(0)=0.
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Solution
We know that for an LRC circuit, the governing differential equation is
2
LM R, 9 _ g
dt? dt c
. 1 1
SinceL =0.25=—, R=10 ,C=0.001=——
4 1000
Therefore, the equation becomes:
2
1979 1099 4 10004 =0
4 dt dt
2
or 479, 4099 4 40004 = 0
dt? dt

The initial conditions are

4(0)=¢,, 1(0)=0
or 4(0)=¢,, ¢'(0)=0
To solve the differential equation, we put

2
d. d
:emt’ _q:memt’ _q:mZemt

dt dr?

Therefore, the auxiliary equation is
m? +40m + 4000 =0
_ —40++/1600 —16000

2
= m=-20£60i
Thus, the solution of the differential equation is

q(t)= e (c, cos60z + c, sin 60¢)

Now, we apply the initial conditions
q(O) =q, =>c.14¢,0=¢q,
= =49,

ZOt(

Therefore q(t)=e"" (g, cos 60z + ¢, sin 60¢)

Now  ¢'(t)=—20e"2% (g, cos60t + ¢, cos 60t )+ e 2% (= 60g,, sin 60 ¢ + 60 ¢ cOs 60¢)
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Thus ¢'(0)=0=-20g, — 20c, +60c,.1=0
9,
=>c,=-2
="

Hence the solution of the initial value problem is
1.
q(t)=q,e™ (cos 60¢ +sin 601‘)
As discussed in the previous lectures, a single sine function

g(t) =22~ ;@

Since R=0and lim ¢(¢)=0

t—o0

e 2% sin(60z +1.249)

Therefore the solution of the given differential equation is transient solution.

Note that

The electric vibrations in this case are free damped oscillations as there is no impressed

voltage E(t)on the circuit.
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Example 3

Find the steady state of solution ¢, (r)and the steady state current in an LRC series circuit

when the impressed voltage is
E(t)=E,sinyt
Solution
The steady state solution ¢, (¢)is a particular solution of the differential equation

d’q dg 1 .
—+R—+—qg=FE sInyt
g g 4T

We use the method of undetermined coefficients, for finding g, (¢). Therefore, we assume

q(t)=Asinyt+Bcosyt

Then q'(t)=Aycosyt—Bysinyt
q"(t)=—Ay?siny — By? cosy
Therefore
LZ_;]+R%+%Q =—ALy?*siny — BLy? cosy + ARy cos nt

. A . B
— BRySIny +—sIn # + —CO0S
ysiny C Va c b

= E_ ALy? —BRy}sin 7 +[§—3Ly2 + AR;/}COS;/t
Substituting in the given differential equation, we obtain
A ) . B , .
E_AL7 — BRy |sIny + E—BLy + ARy |cosyt = E_ sin

Equating coefficients of sin y randcosy ¢, we obtain

A
E—AL}/Z ~BRy =E,

B )
= _BLy’+ ARy =0
c 4
1 2
or - Lr* JA-BRy = E,

1
ARy +| =—Ly?|B=0
y[c yj
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To solve these equations, we have from second equation
—ARy

1 2

——L

C /4

Substituting in the first equation and simplifying, we obtain

E, (M—ClJ
A — 7/

—]/|:L2]/2 —26{4+1+R2}

C272

B=

Using this value of 4 and simplifying yields

E R
B = 2

2L 1
-y PPy? ="+ +R?
ir -2 e

If we use the notations

X =Ly—ithen X? =12 _eL, 1

Cy C C%?
Z=+X?+R? then Z2:L27/2—2—L+ 212
C Cy

+ R?

EX E R
Then A=——, B=—"
- 4

Therefore, the steady-state charge is given by

E X . E_R
q,(t)=- 27-sin yt —=2=-cos
Yz 7z

So that the steady-state current is given by

E, (R . X
Ip(t)=70[23|nyt—?cos;/tJ

Note that
a Thequantity X =Ly —Ciis called the reactance of the circuit.
v

a The quantity Z = VX2 +R? s called impedance of the circuit.
O Both the reactance and the impedance are measured in ohms.
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Exercise
1. A 16-Ib weight stretches a spring 8/3 ft. Initially the weight starts from rest 2-ft
below the equilibrium position and the subsequent motion takes place in a
medium that offers a damping force numerically equal to % the instantaneous
velocity. Find the equation of motion, if the weight is driven by an external force
equal to f(¢)=10cos3t.

2. A mass 1-slug, when attached to a spring, stretches it 2-ft and then comes to rest
in the equilibrium position. Starting at =0, an external force equal to
f(t)=8sin4s is applied to the system. Find the equation of motion if the

surrounding medium offers a damping force numerically equal to 8 times the
instantaneous velocity.

3. In problem 2 determine the equation of motion if the external force is
f(¢)=e"" sin 4z . Analyze the displacements forz — oo

4. When a mass of 2 kilograms is attached to a spring whose constant is 32 N/m, it
comes to rest in the equilibrium position. Starting at =0, a force equal to

£(r)=68¢72 cos4s is applied to the system. Find the equation of motion in the

absence of damping.
5. In problem 4 write the equation of motion in the form

x(t) = Asin(wt + ¢) + Be sin(4z+0).
What is the amplitude of vibrations after a very long time?
6. Find the charge on the capacitor and the current in an LC series circuit.

Where L =1Henry, C = %farad, E()=60volts .  Assuming  that
¢(0)=0andi(0)=0.

7. Determine whether an LRC series circuit, where L =3 Henrys, R =10 ohms,

C =0.1farad is over-damped, critically damped or under-damped.
8. Find the charge on the capacitor in an LRC series circuit whenZ =1/4 Henry,

R =200hms, C =1/300farad, E(¢) = 0 volts,¢(0) = 4 coulombsand i(0) = 0 amperes

Is the charge on the capacitor ever equal to zero?
Find the charge on the capacitor and the current in the given LRC series circuit. Find the
maximum charge on the capacitor.

9. L=5/3henrys, R=10ohms, C=1/30 farad, £ () =300 volts, ¢(0)=0 coulombs,
i(0)=0amperes

10. L =1 henry, R =1000hms, C =0.0004farad, £(¢) = 30 volts, ¢(0)= 0 coulombs,
i(0) = 2 amperes
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Lecture 26

Differential Equations with Variable Coefficients
So far we have been solving Linear Differential Equations with constant coefficients.

We will now discuss the Differential Equations with non-constant (variable) coefficients.

These equations normally arise in applications such as temperature or potential U in the
region bounded between two concentric spheres. Then under some circumstances we
have to solve the differential equation:

2
d u+2d—u=0

.
dr? dr

where the variable r>0 represents the radial distance measured outward from the center
of the spheres.

Differential equations with variable coefficients such as
X2y" 3y +(x2 —v?)y =0
a- xz)y”— 2xy'+n(n+1)y=0

and y"-2xy'+2ny=0

occur in applications ranging from potential problems, temperature distributions and
vibration phenomena to quantum mechanics.

The differential equations with variable coefficients cannot be solved so easily.
Cauchy- Euler Equation:

Any linear differential equation of the form

a x" ngl +a,,x"" dx”‘)ll +oe b aX %+ a,y =g(x)
where a,,a, ,,---,a, are constants, is said to be a Cauchy-Euler equation or equi-
dimensional equation. The degree of each monomial coefficient matches the order of
differentiation i.e x" is the coefficient of nth derivative of y, x"* of (n-1)th derivative of
y, etc.

n n-1

For convenience we consider a homogeneous second-order differential equation

2
ax2u+bxﬂ+cy:0, X#0

dx2 dx
The solution of higher-order equations follows analogously.
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Also, we can solve the non-homogeneous equation
2
ax2u+bxﬂ+cy =g(x), x=#0
dx2 dx
by variation of parameters after finding the complementary function y, (x).
We find the general solution on the interval (0,00) and the solution on (0,—) can be
obtained by substituting t = —x in the differential equation.

Method of Solution:

We try a solution of the form y = x™, where m is to be determined. The first and second

derivatives are, respectively,
2
Y _xnt ang 9V m(m-1)xM~2
dx dx2

Consequently the differential equation becomes

2
2 d Z +bxﬂ+cy =ax® -m(m-Dx"? +bx-mx"" +cx
dx dx

m

ax

=am(m-1)x" + bmx"™ +cx"
=xM(am(m-1)+bm+c)
Thus y = x™is a solution of the differential equation whenever m is a solution of the
auxiliary equation

(am(m-1)+bm+c)=0or am*+(b—-a)m+c=0

The solution of the differential equation depends on the roots of the AE.

Case-l: Distinct Real Roots

Let m, and m, denote the real roots of the auxiliary equation such that m, = m,. Then
y=x™ and y=x™ form a fundamental set of solutions.

Hence the general solution is
m m
y=0CX™ +C,X" .
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Example 1
2
Solve xzd—y—2xﬂ—4y =0
dx? dx
Solution:

Suppose that y = x™, then

2
Yyt , aty _ m(m-1)xm2
dx dx2
Now substituting in the differential equation, we get:
2
x? d 2/ —2xﬂ—4y =xZ-m(m-1)x"? —2x-mx™" —4x"
dx dx

=x"(m(m-1)-2m-4)

x™(m?-3m-4)=0 ifm>-3m-4=0
This implies m, =-1,m, = 4; roots are real and distinct.
So the solution is y=c, X' +c,x".

Case I1: Repeated Real Roots

If the roots of the auxiliary equation are repeated, that is, then we obtain only one
solution y = x™.

To construct a second solution Y, , we first write the Cauchy-Euler equation in the form

d’y bdy ¢
+——+—y=0
0 axdx  axt

Comparing with
d’y
dx?
We make the identification P(X) :L . Thus
ax

+P0) L +QMy =0

b
ejadx
dx
(x™)*

—(E)In X
a

Y, :Xmlj.

dx

j— Xml e
- X2m1
b

= xmljx_g.x_zmldx

Since roots of the AE am® + (b—a)m+c =0 are equal, therefore discriminant is zero
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or —2my = -3
a

—b b-a
y2=xmljxa.x a dx
dx
=x"|—=x™Inx

Y, '[X

The general solution is then
y=cX™+c,x™Inx

Example 2
2
Solve 4x2d—2/+8xﬂ+y=0.
dx dx
Solution:

Suppose that y = x™, then

2
d_ mx™* d Z =m(m-1)x"2.
dx dx
Substituting in the differential equation, we get:
2
4x? 3—Z+8x%+ y=x"(4m(m-1)+8m+1) = x"(4m* +4m+1) =0
X X

if 4m? +4m+1=0 or 2m+1)* =0.
Since m, = —% , the general solution is
1 1
y=CX 2+C,x 2Inx.
For higher order equations, if m,is a root of multiplicity k, then it can be shown that:
xM x™ |nx, xml(ln X)2,---,Xml(|n X)k_lare k linearly independent solutions.

Correspondingly, the general solution of the differential equation must then contain a
linear combination of these k solutions.

Case I11 Conjugate Complex Roots
If the roots of the auxiliary equation are the conjugate pair

m=a+if, m,=a—ip
where o and £ >0 are real, then the solution is

y= olx““ﬂ +02x“‘iﬁ.
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But, as in the case of equations with constant coefficients, when the roots of the auxiliary
equation are complex, we wish to write the solution in terms of real functions only. We
note the identity

Xl,B _ (eln X)Iﬂ _ e|ﬂln X
which, by Euler’s formula, is the same as

x5 = cos(BInx)+isin(BInx)
Similarly we have

x 1B = cos(SInx)—isin(SFInx)

Adding and subtr_acting I:_:lst two results yields, respectively,
x5 4 x7 1P = 2cos(BInX)
and  x\B_xTFB = 2isin(S1In x)

From the fact that y = ¢;x? % +c,x? 1 s the solution of ax?y”+bxy’+cy =0,
for any values of constants ¢, and c,, we see that

y=x¢ (x4 xB), (o =cp=1)
yp =x2 (X —x7P), (c;=1,c,=-1)

or y1 = 2x%(cos(SInx))
yo =2x%*(sin(£1n x)) are also solutions.

Since W (x“ cos(BInx),x* sin(BInx)) = fx*** #0; £ >0, on the interval (0,), we
conclude that

y, = x?cos(fInx)and y, = x“sin(S#Inx)
constitute a fundamental set of real solutions of the differential equation.

Hence the general solution is
y, = x“[c, cos(SInx) +c, sin(SInx)]

Example 3
Solve the initial value problem
2
x° d—Z+ W, 3y=0, y=Ly'Q)=-5
dx dx
Solution:
) _um dy  na dzy _ Ay M2
Let us suppose that: y=x",then ——=mx"" and S =m(m-1)x"".
dx dx
2 d 2y dy m m 2
X d—2+3xd—+3y =x"(M(Mm-1)+3m+3)=x"(M"+2m+3)=0
X X
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if m>+2m+3=0.

From the quadratic formula we find that m, =—1++/2i and m, = -1—+/2i. If we make

the identifications o =-1 and ﬂ=\/§, so the general solution of the differential
equation is
y, = X Y[c, cos(~/2 Inx) + ¢, sin(~/2 In X)].

By applying the conditions y(1) =1, y'(1) = -5, we find that
c,=1 andc,=-242.

Thus the solution to the initial value problem is

y, = X [cos(v/2 In ) — 24/2 sin(~/2 In X)]

Example 4
Solve the third-order Cauchy-Euler differential equation
3 2
xsd—Z+5x2d—¥+7xﬂ+8y =0,
dx dx dx
Solution

The first three derivative of y=x" are

2 3
y_ mx™*, d Z =m(m-1)x"?, %y _ m(m-1)(m- 2)xm_3,
dx dx dx®
so the given differential equation becomes
3 2
x® ((jj Z +5x° C:j 2/ + 7x%+8y =x’m(m-1)(m-2)x"" +5x*m(m -1)x"? + 7xmx™ " +8x",
X X X

=x"(m(m-1)(m-2)+5m(m—-1)+7m+38)
=x"(m® +2m? + 4m +8)
In this case we see that y = x" is a solution of the differential equation, provided m is a
root of the cubic equation
m® +2m* +4m+8=0
or (m+2)(m*+4)=0
The roots are: m, =-2,m, =2i,m, =-2i .

Hence the general solution is
y, =, X2 +c, cos(2Inx) +c, sin(21n x)

Example 5
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Solve the non-homogeneous equation
x2y" —3xy’ + 3y = 2x%eX

Solution

2
& _ mx"™*, d—zl =m(m-1)x"?
dx
Therefore we get the auxiliary equation,
mm-1)-3m+3=0 or (m-1)(m-3)=0 or m=1.3

Thus vy, =c,Xx+C,x°
Before using variation of parameters to find the particular solution y =u,y, +u,y,,

Y, ZBY
FO)ys y; (¥
and W is the Wronskian of y, and Yy, , were derived under the assumption that the
differential equation has been put into special form . y"+ P(X)y'+Q(x)y = f(x)

' 2

W W
recall that the formulas u; = Wl and uj, = WZ where W, =

Therefore we divide the given equation by x?, and form y” _3 y' +i2 y = 2x%e”
X~ X

we make the identification f(x) =2x?e* . Now with y, =x, y, = x*, and
3

X X 0 x® X X
W = J|=2x%, W =| | =—2x%e*, W, = » | =2x%"
1 3x 2x°e* 3x 1 2x°e
we find
2x°e* 2x%e*
u';=———=-x’e" and U,=——=¢"
2X 2X
u, =—x’e* +2xe* —2e* and u, =e*.
Hence Yo =UY tUY,

= (—x%e* + 2xe* —2e*)x + e*x® = 2x%e* — 2xe*

Finally we have y =y, +y, =C,Xx+C,X° +2x°e* —2xe*

Exercises

1. 4x2y”+ y=0
2. xy"-y'=0
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x2y”+5xy'+3y =0

w

4x2y”+4xy’— y=0
5. x2y”—7xy’+41y=0

B

3 2
6. x3d y—2x20| y+4xﬂ—4y:0

dx3 dx? dx
4d%y o 3d3y o o2d%y . dy
7. X i +6X 03 +9x d7+3x&+y:0

8. x2y”—5xy’+8y:0; y()=0,y'())=4
9. x2y”—2xy'+2y: x31n x
3
X3 i
dx

2
%’—3X2 d y+6xﬂ—6y:3+ln X3

10. o2 ax
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Lecture 27

Cauchy-Euler Equation:
Alternative Method of Solution

We reduce any Cauchy-Euler differential equation to a differential equation with constant
coefficients through the substitution

x=el or t=Inx

y _dy dt_1dy

Cdx dt dx x dt

d? d 1d 1 dd 1d

ay 429 2@ - %

dx> dx x dt’ x dx dt’ x? dt

or

d’y 1 d?y 1 dy

A x* dt? X dt

2 2
Therefore Xd_y:d_y, de_zlzd_zy_ﬂ
dx dt dx dt dt

or

Now introduce the notation

2
D :di,D2 :3—2, etc.
X X
2
and A:%,AZ:%, etc.

Therefore, we have
xD=A

x2D2 =A% -A=A(A-1)
Similarly
x3D3 = A(A-1)(A-2)
x*D% = A(A-1)(A—-2)(A—-3) soon so forth.

This substitution in a given Cauchy-Euler differential equation will reduce it into a
differential equation with constant coefficients.

At this stage we suppose Yy = e to obtain an auxiliary equation and write the solution

in terms of y and t. We then go back to x through X = (-:‘t :
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Example 1
2
Solve x* d—z— 2xd—y—4y =0
dx dx
Solution

The given differential equation can be written as
(x’D? -=2xD -4)y =0

With the substitution X =€t or t = In X, we obtain
xD=A, x*D?*=A(A-1)
Therefore the equation becomes:
[A(A-1)-2A-4]y=0
or (A> -=3A-4)y=0
d’y ,dy

~3 _4y=0

or
dt? dt

2
Y _pemt A%y _2emt
dt dt?
Thus (m2 —3m-4)e™ =0 or m?-3m-4=0, which is the auxiliary equation.
(m+)(m-4)=0 m=-14
The roots of the auxiliary equation are distinct and real, so the solution is

Now substitute: y =e™ then

y=cet+ce™

But Xx= et , therefore the answer will be
y= CZI.X_l + 02X4
Example 2

2
d ¥+8xﬂ+y:0
dx dx

Solve 4x2

Solution

The differential equation can be written as:
(4x’D? +8xD+1)y =0
2
Where D :i, D?=—
dx dx
Now with the substitution X =elor t=Inx, xD=A , x?D? = A(A-1) where A :%

The equation becomes:
(AA(A-1)+8A+1)y =0 or (4A*> +4A+1)y=0

2
d y+4ﬂ+y:0

4
dt? dt
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Now substitutin =e , =
(4m? +4m +1)eM =0
or 4m?> +4m+1=0 or (2m+1)* =0

orms= —%,—%; the roots are real but repeated.

Therefore the solution is
1

y=(+cytle 2

1

or y=(¢ +CyInx)x 2
1 1

ie y=cX 2+CX 2InX

Example 3

Solve the initial value problem

2
X2 dxg’ +3x%+3y ~0, y) =1y'() =5

Solution

The given differential can be written as:
(x’D* +3xD+3)y =0

Now with the substitution X =gl or t=InX we have:
xD=A, x*D?* = A(A-1)

Thus the equation becomes:
(A(A-1)+3A+3)y=0 or (A°+2A+3)y=0
P
dt>  dt

Put y = eMt then the A.E. equation is:
orm?>+2m+3=0

orm-=

—2+v4-12 “24_12:—1iiﬁ

So that solution is:

y =e7t(cy cosv2t +C,sin/2t)
or y=x"1(c cosv2Inx+cysin2Inx)

2
Mt then Y pemt 7y m2e™ we get
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Now y(1) =1 gives, 1=(c,cos0+c,sin0) =c, =1

y' = —x7? (¢ cos~/2 In X+Co sin+/21n X) + x_z(—«/iolsin\/fln x+«/§cz cos~/2 In X)

- y'(1) = -5 gives: -5 =—[c, + 0] +[/2¢,] or /2¢, =¢, -5=—4, c,

Hence solution of the IVP is:

y =X "cos(v2 Inx)— 242 sin(v2 In X)].

Example 4

3 2
Solve x° d Z+5x2 d Z+7xﬂ+8y:0
dx dx dx
Solution

The given differential equation can be written as:
(x’D® +5x°D* +7xD +8)y =0

Now with the substitution X = et or t=1InXx we have:
xD=A, xX’D? =A(A-1), xX*D* =A(A-D(A-2)

So the equation becomes:
(AA-D)(A-2)+5A(A-1)+7A+8)y=0

or (A* —3A* + 2A +5A* ~=5A+7A+8)y =0
or (A*+2A* +4A+8)y =0

3 2
or d_3y+2d 2y+4d—y+8y:0
dt dt dt

Put y= et , then the auxiliary equation is:

m®+2m®+4m+8=0
or (m*+4)(m+2)=0
m=-2, ort2i

So the solution is:
y =cie™?t +¢, cos 2t +cgsin 2t

or y:clx‘2+c2 cos(21n x) +czsin(2In x)

e SN

2
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Example 5
Solve the non-homogeneous differential equation
x2y" —3xy’+3y = 2x%eX
Solution
First consider the associated homogeneous differential equation.
x2y”—3xy’+3y =0
2
With the notation d = D,d—2 = D?, the differential equation becomes:
X X
(x2D2 —-3xD+3)y=0
With the substitution X =gl or t =Inx , We have:
xD=A, x*D?*=A(A-1)
So the homogeneous differential equation becomes:
[A(A-1)-3A+3]y=0
(A* —4A+3)y =0
2
or d_2y - 4ﬂ +3y=0
dt dt
Put y = eML then the AE is:
m?—4m+3=0or (m-3)(m-1)=0,0or m=13
< Yo =et +cped as x =gt
Yo =G X+CpX°
For Y pwe write the differential equation as:
3 3 2~X
n_N\gae N oy—
y' =S¥ 2 y=2x“e
Yp = u1x+u2x3, where u, and u, are functions given by
Wi Wo
W=, Up=%,
w2 w
with
3 3
X X 0 X
W = ) = 2x3 W = ) ) = —2x%¢* and
1 3x 2xce*  3x
X 0
2= 2 x =2X39X
1 2x“e
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S X 3aX
Sothat U'q= 2X 2 ——x%* and U’ 0= 2x g =g
2X 2X
e —j x2eXdx = —[x2eX — ZI xeXdx]
=—x%e* +2[xe* - [eXdx]

— _x2eX 4+ 2xeX — 2eX

and Uy = Iexdx =eX.
Therefore
Yp= X(—x2eX +2xe* — 2e%) + x3eX = 2x2%eX — 2xeX
Hence the general solution is:
Y=Yc+¥p
y = C X +Co X3 +2x%eX — 2xeX

Example 6
2
Solve XZM_XQ+ y=Inx
dx2 = dx
Solution

Consider the associated homogeneous differential equation.

2
2d%y _dy . _
X 02 dx+y 0

or (x2D2—xD+1)y:0

With the substitution X = et , we have:
xD=A, x2D?=A(A-1)

So the homogeneous differential equation becomes:

[A(A-1))-A+1]y=0
(A> =2A+1)y=0
dty _,dy
dt>  dt
Putting Y = emt , We get the auxiliary equation as:
m?-2m+1=0 or (m-1)>=0 or m=11

or +y=0
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Yo = et +cotet
or Yo =CX+CoxInx .
Now the non-homogeneous differential equation becomes:

2
d%y _,dy y =t
dt2 dt
By the method of undetermined coefficients we try a particular solution of the form
Yp = A+ Bt. This assumption leads to

— 2B+ A+ Bt =t sothat A=2 and B=1.

Using Y =Yc+Yp, we get
ye = et +cotel + 2+t

So the general solution of the original differential equation on the interval (0,) is
Yo = X+CoxInXx+2+Inx
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Exercises
Solve using X = et
2
X
2
2 x2%+x%+4y_0
X
2
2dy o dy o
3 —2-3x=>-2y=0
X ™ xd y
2
2d%Y oAy
4, 25X . +25xdx+y_0
2
2d%Y o Y -
5. 3X %, +6de+y 0
d4y d3y
6. X—-+6—2-=0
dx*  dx®
2
7 x2%+3x%:0,y(1):0,y'(0):4
X
2
8 x22—2+x%+y:0,y(1)=1,y'(l):2
X
2
9 x2%+10x%+8y_x2
X
2
2d9Y o @Y o0y 5
10. X 2 +9X g~ 20y 3
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Lecture 28
Power Series: An Introduction

O A standard technique for solving linear differential equations with variable
coefficients is to find a solution as an infinite series. Often this solution can be
found in the form of a power series.

a Therefore, in this lecture we discuss some of the more important facts about
power series.

0 However, for an in-depth review of the infinite series concept one should consult
a standard calculus text.

Power Series

A power series in( X —a) is an infinite series of the form
>, (x—a)" =cy+cy(x—a)+Cy(x—a)+--.
n=0

The coefficients ¢, ¢, C,,... and a are constants and X represents a variable. In this

discussion we will only be concerned with the cases where the coefficients, X and a are
real numbers. The number a is known as the centre of the power series.

Example 1
The infinite series

nz_; n2 X" =X 22+32

is a power series in X. This series is centered at zero.

Convergence and Divergence

o If we choose a specified value of the variable X then the power series becomes an
infinite series of constants. If, for the given X, the sum of terms of the power
series equals a finite real number, then the series is said to be convergent at X.

o A power series that is not convergent is said to be a divergent series. This means
that the sum of terms of a divergent power series is not equal to a finite real
number.
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Example 2

(a) Consider the power series
0 N 2 3
X X X
Y — =1+ X+—+—+-
n=0 N! 2! 3!
Since for X =1 the series become
00 N
X 1 1
> —=1+1+—+—+---=¢
n=0 N! 21 3l
Therefore, the power series converges X =1 to the number e
(b) Consider the power series

00)
Ynl(x+2)" =1+ (x+2)+21(x+2)% +31(x+ 2)°
n=0
The series divergesV X, except at X =—2. For instance, if we take X =1 then the series
becomes
00)

Y nl(x+2)" =1+3+18+---

n=0
Clearly the sum of all terms on right hand side is not a finite number. Therefore, the
series is divergent atx =1. Similarly, we can see its divergence at all other values of
X#—2

The Ratio Test

To determine for which values of X a power series is convergent, one can often use the
Ratio Test. The Ratio test states that if

o0 o0
n
D a, =Y ch(x—a)
n=0 n=0
is a power series and

Cn+1
Ch

L= lim
n—o0

an.
lim|—=
n—oo| d,

|x-a|=L

Then:
o The power series converges absolutely for those values of X for whichL <1.
o The power series diverges for those values of xfor whichL >1 or L = oo.
o The test is inconclusive for those values of X for whichL =1.
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Interval of Convergence

The set of all real values of X for which a power series

= n
D ¢, (x-a)
n=0
converges is known as the interval of convergence of the power series.

Radius of Convergence
Consider a power series

> cy(x—a)"
n=0
Then exactly one of the following three possibilities is true:

o The series converges only at its center X =a.
o The series converges for all values of X.
o There is a number R >0 such that the series converges absolutely VX satisfying

[x—a| <R and diverges for [x —a| > R. This means that the series converges for

X € (a—R,a+R) and diverges out side this interval.
The number R is called the radius of convergence of the power series. If first possibility
holds then R =0 and in case of 2" possibility we write R = ..
From the Ratio test we can clearly see that the radius of convergence is given by
R=lim|-n
N—o0

Chia
provided the limit exists.

Convergence at an Endpoint
If the radius of convergence of a power series is R > 0, then the interval of convergence
of the series is one of the following

(a-R,a+R), (a—R,a+R], [a-R,a+R), [a—R,a+R]

To determine which of these intervals is the interval of convergence, we must conduct
separate investigations for the numbers x=a—-Rand x=a+R.

Example 3
Consider the power series

n=1 n=1 VN

. an+1 Xn+1 \/ﬁ
Then lim|—=|=1lim —

n—oo| ap, n—o|+/N+1 X
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=1lim
N—o0

L= lim
Nn—oo

Ay,
or lim| /=
n—o a

n n
— X ——|IxHx|
n+1 n+1

Therefore, it follows from the Ratio Test that the power series converges absolutely for
those values of X which satisfy

x| <1
This means that the power series converges if X belongs to the interval
(_11 1)

The series diverges outside this interval i.e. when X >1or x <—1. The convergence of
the power series at the numbers 1 and —1 must be investigated separately by substituting
into the power series.

a) When we substitute X =1, we obtain

1 1
Z\/_(l) E+---+ﬁ+

Nll—‘ kl"‘
N

which is a divergent p -series, with p =

b) When we substitute X = —1, we obtain
1 1 (-1"

L R A

which converges, by alternating series test.

+ ...

Hence, the interval of convergence of the power series is [-1,1). This means that the
series is convergent for those vales of X which satisfy
-1<x<1

Example 4
Find the interval of convergence of the power series

Za —Z(X 3)

n
el 2
Solution

The power series is centered at 3 and the radius of convergence of the series is

n+1
R = lim 2_1*Y)
n—oo 2n.n

Hence, the series converges absolutely for those values of X which satisfy the inequality
|x-3|]<2=1<x<5

(a) At the left endpoint we substitute X =1 in the given power series to obtain the series
of constants:
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o0 o0 (_1)”
2 =2,
n=1 n=1 n

This series is convergent by the alternating series test.

(b) At the right endpoint we substitute X =5 in the given series and obtain the following

harmonic series of constants

i l
n=1 n
Since a harmonic series is always divergent, the above power series is divergent.

Hence, the series the interval of convergence of the given power series is a half open and
half closed interval[1,5).

Absolute Convergence

Within its interval of convergence a power series converges absolutely. In other words,
the series of absolute values

é\cn\ (x—a)"

converges for all values X in the interval of convergence.

A Power Series Represent Functions

o0
- n - - .. g
A power series Z (o (x— a) determines a function f whose domain is the interval of
n=0
convergence of the power series. Thus for all X in the interval of convergence, we write

f(X):éCn<X—a)n =Gy +Cy(x—a)+cy(x—a) +cy(x—a)’ +---

a0

If a function is f is defined in this way, we say that ) ¢, (x—a)n iS a power series
n=0

representation for f (X) . We also say that f is represented by the power series

Theorem

o0

Suppose that a power series Z Ch, (x —a)n has a radius of convergence R >0 and for
n=0

every X in the interval of convergence a function f is defined by

f(x)= icn(x—a)” =Gy +Cy(x—a)+cy(x—a) +cy(x—a)’ +---

n=0
Then
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o The function f is continuous, differentiable, and integrable on the
interval(a—R, a+R).
o Moreover, f and I dx can be found from term-by-term differentiation

and ntegratlon.
Therefore

f'(x)=c, +2c,(x-a)+3c,(x—a) +-=>nc,(x-a)""

jf(x) dx:C+c0(x—a)+cl(X_a) +c2(x_a)3+-~
(x- a)

—C+Zc -1

The series obtained by differentlatlon and integration have same radius of convergence.
However, the convergence at the end points X=a—R and Xx=a+ R of the interval
may change. This means that the interval of convergence may be different from the
interval of convergence of the original series.

Example 5
Find a function f that is represented by the power series

1- X+ X2 =3+ (D" X" +

Solution
The given power series is a geometric series whose common ratio isr = —X. Therefore, if

‘X‘ < 1 then the series converges and its sum is
a 1
1-r 1+Xx
Hence we can write

L ooxen? X+ (DX
1+X

: - . . . 1
This last expression is the power series representation for the function f (x) = Tox’
+ X

Series that are Identically Zero
If for all real numbers Xin the interval of convergence, a power series is identically zero
i.e.
- n
Y c,(x-a)' =0, R>0
Then all the coefficients in the power series are zero. Thus we can write
c, =0, vV n=012,...
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Analytic at a Point

A function f is said to be analytic at point a if the function can be represented by power
series in (X—a) with a positive radius of convergence. The notion of analyticity at a
point will be important in finding power series solution of a differential equation.

Example 6
Since the functionse”, cosx, and In (1+ x) can be represented by the power series
2 3
e =l Xttt
2! 3!
x2 x4
cosx=1-—+——--
2 24
2 3
X° X
IN@+x)=X——+——---
2 3

Therefore, these functions are analytic at the point x =0.
Arithmetic of Power Series

o Power series can be combined through the operations of addition, multiplication,
and division.

o The procedure for addition, multiplication and division of power series is similar
to the way in which polynomials are added, multiplied, and divided.

o Thus we add coefficients of like powers of X, use the distributive law and collect
like terms, and perform long division.

Example 7
If both of the following power series converge for |X| < R
f(x)=>Dcx", g(x)=> byx"
n=0 n=0
Then f(x)+g(x)= i(cn +h, )x"
n=0
and f(x)-g(x)=Colbg +(Coloy +Cyby ) X+ (Coby + oy +Cobg ) X2 ++--
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Lecture 29

Power Series: An Introduction
Example 8
Find the first four terms of a power series in X for the product e cosX.

Solution
From calculus the Maclaurin series for e*and cos X are, respectively,
x2 x3 X
e =leXF
2 6 24
x2 x4
cosx=1-—+——---.
2 24
Multiplying the two series and collecting the like terms yields
X x2 3 x4 x2 x4
e'cosXx=|1l+X+—+—+—+ || 1-——+——---.
2 6 24 2 24
=1+(1)x+ SN (V200 S 1V P (RSO S S IV
2 2 2 6 24 4 24
3 4
:1+x———X—
6

The interval of convergence of the power series for both the functions e* and cosx is
(—oo,oo). Consequently the interval of convergence of the power series for their product

e* cosx is also(— oo, ).

Example 9
Find the first four terms of a power series in X for the functionsecx.

Solution

We know that

2 4 6
, cosXx=1-—+———+
COS X 2 24 720

SeCX =
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Therefore using long division, we have
x2 5x* 61x5

1+ —+—+—+
W2 xh 8 2 24 720
1——+———+--->1
2 24 720 ) 6
X
2 24 720
LS S S
2 24 720
XXX
2 4 48
e
24 360
24 48
720
Hence, the power series for the function f(X) =secX is
x> 5x* 61x°
seCX=14+—+—+
2 24 720
The interval of convergence of this series is (— 7l2, 7z/2).
Note that
o The procedures illustrated in examples 2 and 3 are obviously tedious to do by
hand.

o Therefore, problems of this sort can be done using a computer algebra system
(CAS) such as Mathematica.

o When we type the command: Series[SeC[X], {x, 0, 8}] and enter, the
Mathematica immediately gives the result obtained in the above example.

o For finding power series solutions it is important that we become adept at
simplifying the sum of two or more power series, each series expressed in

summation (sigma) notation, to an expression with a singlezl This often
requires a shift of the summation indices.
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o Inorder to add any two power series, we must ensure that:

(a) That summation indices in both series start with the same number.
(b) That the powers of X in each of the power series be “in phase”.

Therefore, if one series starts with a multiple of, say, X to the first power, then the
other series must also start with the same power of the same power of X.

Example 10

Write the following sum of two series as one power series
o o
> 2nc,x"* + Y 6ne, x"
=1 n=0
Solution
To write the given sum power series as one series, we write it as follows:

o0 e 0] o0 o0
> 2nc,x" 1+ Y 6nex"t =2-16x + > 2ne x" 1+ Y Bne,x™
=1 n=0 n=2 n=0

The first series on right hand side starts with x! for n=2 and the second series also
starts with x* forn=0. Both the series on the right side start with x.

To get the same summation index we are inspired by the exponents of X which is
n—1in the first series andn +1 in the second series. Therefore, we let

k=n-1 k=n+1

in the first series and second series, respectively. So that the right side becomes:
2c,+ Y 2(k+1)c x* + > 6(k —1)c, X" .
k=1 k=1

Recall that the summation index is a “dummy” variable. The fact that K =n —1in one
case and K =n +1in the other should cause no confusion if you keep in mind that it is
the value of the summation index that is important. In both cases K takes on the same
successive values1,2,3,...for n=2,3,4,...(fork =n—-1)andn=0,12,...(fork =n +1)

We are now in a position to add the two series in the given sum term by term:

> 2nc X"+ Y 6ne, X"t =20, + Y [ 2(k +1) ¢y +6(k D)6y | X
) n=0 k=1

If you are not convinced, then write out a few terms on both series of the last equation.
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Lecture 29
Power Series Solution of a Differential Equation

We know that the explicit solution of the linear first-order differential equation

dy
—-2xy=0
dx Y
2
is y:eX
2 3 4
Also eX:1+x+X_+X_+X_+...
2 6 24

If we replace X by x? in the series representation of €*, we can write the solution of the
differential equation as

o0 X2n

y=2"

n=0 n!

This last series converges for all real values of X. In other words, knowing the solution
in advance, we were able to find an infinite series solution of the differential equation.

We now propose to obtain a power series solution of the differential equation directly;
the method of attack is similar to the technique of undetermined coefficients.

Example 11

Find a solution of the differential equation
d
a_ 2xy =0
dx

in the form of power series in X.
Solution
If we assume that a solution of the given equation exists in the form

o0 0
y=> cx"=co+ Y cpx"
n=0 n=1

The question is that: Can we determine coefficients C, for which the power series

converges to a function satisfying the differential equation? Now term-by-term
differentiation of the proposed series solution gives

dy - n-1
— = Nnc, X
dx nzzi n

Using the last result and the assumed solution, we have
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ay 2xy =Y nc,x"* = > 2¢ x"*
dx n=1 n=0

We would like to add the two series in this equation. To this end we write
dy 0 < n-1 < n+1
—Z—2xy=1-¢,x” + > nc,x"" = > 2¢,X
dX n=2 n=0

and then proceed as in the previous example by letting
k=n-1 k=n+1

in the first and second series, respectively. Therefore, last equation becomes

dy 2Xy = ¢ + Z(k +1) ck+1Xk —Z ZCk—lxk
dx k=1 k=1

After we add the series term wise, it follows that

dy 2Xy =C; + i[(k + 1)Ck+l - 20|<—1]X|<
dx k=1

Substituting in the given differential equation, we obtain

C1+Z|:(k+1)ck+1—20k_1:lxk :0
k=1

In order to have this true, it is necessary that all the coefficients must be zero. This means
that

C_LZO, (k+1)ck+1_2Ck—1:O’ k:1,2,3,...
This equation provides a recurrence relation that determines the coefficientC, . Since
k +1+ 0 for all the indicated values of K , we can write as

2C, 4
Iteration of this last formula then gives
2
2
k=2, ¢3=—¢;=0
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k=3, ¢, :%c2 :%c0 =%c0

k=4, c5:§c3:0

k=5 ¢ :gc4 :ﬁc0 :%c0
k =6, c7:§c5:0

k=7, cgzgc L 1

=—Ch =
8° 4.3° 4°
and so on. Thus from the original assumption (7), we find

e}
Y= CuX" =Co + X+ CoX? +Cgx> +Cyx* +C5X° 4+
n=0
1 1
=Cy +0+COX2 +0+§c0x4+0+§c0x6+0+---
] 2n

:CO|:1+X2+1X4+1X6+--}=CO X
21" "3l Z

Since the coefficient C, remains completely undetermined, we have in fact found the
general solution of the differential equation.
Note that

The differential equation in this example and the differential equation in the following
example can be easily solved by the other methods. The point of these two examples is to
prepare ourselves for finding the power series solution of the differential equations with
variable coefficients.

Example 12
Find solution of the differential equation

4y"+y=0

in the form of a powers series in X .

Solution
We assume that a solution of the given differential equation exists in the form of

o0 o0
y=> X" =co+ Y cX"
n=0 =1
Then term by term differentiation of the proposed series solution yields
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e} e}
y'=>ne,x"t=c+ Y nex"
n=1 n=2

0

y"=> n(n-1)c,x"?

n=2
Substituting the expression for y” and Y, we obtain

4y" +y = Z4n (n-1)c,x"" +Zcx
n=2

Notice that both series start with x° . If we, respectively, substitute

k=n-2, k=n, k=0,12,...
in the first series and second series on the right hand side of the last equation. Then we
after using, inturn, n=k +2 andn =Kk, we get

4y" +y = Z4(k+2)(k+1)ck+2xk +chxk

k=0 k=0
or 4y"+y = [4(k+2)(k+1)cp+0y | X"
k=0

Substituting in the given differential equation, we obtain
> [4(k+2)(k+1)c 5+ X =0
k=0

From this last identity we conclude that
4k +2)k +1)c,,, +¢, =0

_ — Cy
or 2= gl 2Nk +0)’

From iteration of this recurrence relation it follows that

k=012,...
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C. = _Co _ Co
2421 2221
C. = _Cl C1
432 223
_Cz Co
C, = =+
Y443  2°4
—C C
C,=—=+—1
° 454 25!
C. = _C4 _ Co
® 465 2°6!
_Cs _ Cl

C, = =—
Ta476 287!

and so forth. This iteration leaves both C,and C, arbitrary. From the original assumption
we have

Y =Cy +CX+C, X +C X%+, X + ¢ X° +CX° + ¢, X+

b w2 & 3, C 4, & s C s C g

~C T T T e T e TEnS
or
y:co{l— 21 X% + 41 x* - 61 x6+--1+o{x— 21 X3+ 41 X° — 61 x7+--}
22210 2441 2861 22310 24510 267

is a general solution. When the series are written in summation notation,

CZ%@ and y, (x)- 26 2k+; (Xj

the ratio test can be applied to show that both series converges for all X. You might also
recognize the Maclaurin series as y, (X ) =Co cos(x/2)and y,(x)= 2c, sin(x/2).
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Exercise
Find the interval of convergence of the given power series.
o Ak
1. 22— XK
a1 K
2 (x+7)"
2.
2
3. >k 12K xk
k=0
k=0 K

Find the first four terms of a power series in X for the given function.
5. esinx
6. e*In(1-x)

2
X x> x

7. | X——+———+-
3 5 7

Solve each differential equation in the manner of the previous chapters and then compare
the results with the solutions obtained by assuming a power series solution

y:ZCnxn
n=0
8. y’—x2y=0
9. y'+y=0
10. 2y"+y'=0
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Lecture 30
Solution about Ordinary Points

Analytic Function: A function f is said to be analytic at a point a if it can be represented
by a power series in (x-a) with a positive radius of convergence.

Suppose the linear second-order differential equation

a,(X)y"+a,(x)y'+a,(x)y =0 (1)
is put into the form
y"+P(X)y'+Q(x)y =0 )

by dividing by the leading coefficient a, (x) .

Ordinary and singular points: A point x, is said to be a ordinary point of a differential
equation (1) if both P(x) and Q(x) are analytic at x,. A point that is not an ordinary point
is said to be singular point of the equation.

Polynomial Coefficients:
If a,(x),a,(x) and a,(x) are polynomials with no common factors, then x = x, is

Q) an ordinary point if a,(x) = 0or
(i)  asingular pointif a,(x)=0.

Example

(@ The singular points of the equation (x2 -1)y"+2xy'+6y=0 are the solutions of
x? —1=0 or x ==+1. All other finite values of x are the ordinary points.

(b) The singular points need not be real numbers.
The equation (x2 +1)y"+2xy’'+6y =0 has the singular points at the solutions of
x> +1=0, namely, x = +i.

All other finite values, real or complex, are ordinary points.

Example
The Cauchy-Euler equationax®y” +bxy’+cy =0, where a, b and ¢ are constants, has

singular pointat x =0.
All other finite values of x, real or complex, are ordinary points.
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THEOREM (Existence of Power Series Solution)
If x=x, is an ordinary point of the differential equation y"+ P(x)y'+Q(x)y =0, we

can always find two linearly independent solutions in the form of power series centered at
X,

y :zcn(x_xo)n'
n=0

A series solution converges at least for |x—x0| <R, where R is the distance from x, to
the closest singular point (real or complex).

Example
Solve y"-2xy=0.
Solution

We see that x =0 is an ordinary point of the equation. Since there are no finite singular

points, there exist two solutions of the form y=>c x" convergent for |x/ <o .

n=0
Proceeding, we write
y'=> ncx"*
n=1
y"=> n(n-1)c x"?
n=2
y"'=2xy =Y n(n-1)c,x"? - > 2¢ x"*

=2-1¢,x" + Y n(n-1)c, x"* - > 2¢ x"*
n=3 n=0

both series start with X

Letting k =n—2 in the first series and k = n+1 in the second, we have

Y - 2xy =2c,+ 3 (k+2)(k + 1), oxK = > 20 _gx*
k=1 k=1

= 2¢, + Y[k + 2)(K +1)c,., — 26, ,]x* =0
k=1

2c,=0 and (k+2)(k+1)c,,, —2¢,, =0
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The last expression is same as

cmzL, k=123,
(k+2)(k +2)
L 2¢,
Iteration gives C;=—rt
3.2
2c,
C,=——
4.3
C5=Zﬁ:0 because C, =0
5.4
2¢, 2°
Ce = = Co
6-5 6-5-3-2
2c, 22
C, = = C,
7-6 7-6-4-3
2
CSZ&ZO
8-7
2c, 23
Cy = = Co
9.8 9-8-6-5-3-2
2¢c, 28
C10= = Cl
10-9 10-9-7-6-4-3
2C
Cy=———-=0 , and so on.
11-10

It is obvious that both c,and c, are arbitrary. Now

Y =Cy +CX+CyX2 +CX° +C X +CX® + X% + ¢, X7 + X% +CoX? + ¢ X! ey X+

y=Cg +olx+0+icox3+iclx4+0+—2cox
3:2 4.3 6-5-3-2
23 9 23 10
t986532°° T10.9.7.62432F TOF
3, 22 6 23 9

B 2
y—c0[1+3.2x

2 4 22 7 23 10
talx+ 3 7623 "10976.43F

2 7
+—7,6,4,301X +0

6532~ "9.86532
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Example
Solve (x2 +1)y"+xy'—y=0.

Solution _
Since the singular points are X==1, x=0 is the ordinary point, a power series will

converge at least for |x| <1. The assumption y = chx” leads to
n=0

Q0 o0 0.0]
(X2 +1) > n(n ~1)c,x"2 + XY ne,x" - > cpx"
n=2 =1 n=0

o0 o0 o0 (e8]
= > n(n-Dcpx"+ >’ n(n ~1)c,x"2 4 > nepx™ =3 cpx”
n=2 n=2 n=1 n=0

=20,X° —,X" +6C,X + ¢ X —C X+ »_n(n—1)c x"+ > n(n—1c x"?+> nc x" =D ¢ x"
n=2 n=4 n=2 n=2

k=n k=n-2 k=n k=n

= 2C2 —Cp + 6C3X+ Z [k(k —1)Ck +(k+2)(k +1)Ck+2 + ka —Ck]Xk =0
k=2

or 2Cy —Cqp +6C3X + Z [(k+D)(k-D)cy +(k+2)(k +l)ck+2]xk =0.
k=2

Thus 2c,—¢c, =0
c,=0
(k+1)(k —1)c, +(k +2)(k +1)cy , » =0

This implies
C, = 1c
2 2 0
c;, =0
k+2:_(k_1) K k=23,
(k+2)
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Iteration of the last formula gives

¢ -t t.__ 1
o4 2.4 222
2
csz—gc3—0
o .. 3.._.8 __13
6 246 ° 2237
4
c7:—705—0
c_. 5._ 385 _ 135
° 8° 24.68° 247
6
c9=—§c7_0
7 3-5-7 1.3.5.7
Cpp=———Cg =— Co =——z——C, and so on.
10 2-4.6-8-10 2°5!

Therefore

Y = Cg +Cy X +CoX? + x> + Gy x4 +c5x° +cgx8 + c7x” +cgx8 4

1 4,13 6 1355 1.3:5:7 10_

_ 1.2
B TR~ T 255 ]
The solutions are

_ 1.2 < ( nyn-11-3-5---(2n-3) 2n
yl(x)—c0[1+2x +n§2( 1) o x"], ¥ <1
Y2 (X) =¢1x.
Example

If we seek a solution y = chx" for the equation
n=0

y"—(@+x)y =0,
we obtain ¢, = C% and the three-term recurrence relation
o - GtCa
“r T (k+D(k+2)
To simplify the iteration we can first choose ¢, # 0,c, = 0; this yields one solution. The

=123,

other solution follows from next choosing ¢, =0,c, = 0. With the first assumption we
find
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CZ:ECO
_c1+c0_c_0:1C

2.3 3 6°
C, +C; Co 1

Cs = [ +1]:ic0andsoon.
4.5 4.5°2.3 270 30

Thus one solution is

1, 13 1 4 1.5
X)=Coll+= X"+ X"+ = X"+ =X +--1].
Y1(X) =Coll+5 X"+ & X"+ 27X 425 ]
Similarly if we choose ¢, =0, then
c,=0
C3=C1+C0 =i:£cl
2.3 23 6
(:4:C2+01=c_1=icl
3-4 34 12
C52c3+c2 S T ¢, and so on.
4.5 2.3-4.5 120

Hence another solution is

Yo (X) :ol[x+%x3+ix4+ix5

X X ol

Each series converges for all finite values of x.

Non-polynomial Coefficients

The next example illustrates how to find a power series solution about an ordinary point
of a differential equation when its coefficients are not polynomials. In this example we
see an application of multiplication of two power series that we discussed earlier.
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Example
Solve y"+(cosx)y =0
Solution:

The equation has no singular point.

2 X4 X6

. X _ . i .
Since cos x :1—5 X—?-F -+, itis seen thatx =0 is an ordinary point.

Thus the assumption y = chx” leads to

n=0

y”+(cosx)y:in(n—l)cnx”‘z—(l—X—+X——---)icnx”
n=2 2' 4' n=0
X2 X4 X6
_(2c2+6c3x+12c4x +2005X° +- )+(1__+T_ e )(co+clx+02x +-00)

=2Cy +Co +(6c3+Cp)x+(12¢4 +C) —%co)x2 +(20c5+03—%ol)x3+---

If the last line be identically zero, we must have

C
2C2+CO:02>02=——0

2

6c3+ol:0:>c3:—%
PN _%
12C4+C2 2C0—0:>C4—12

20c5 +C3 —%Gl =0=c5= 20 and so on. c,and c, are arbitrary.

Now
y=CO+O_|_X+C2X2+C3X3+C4X4+C5X5+"'

o y= co+olx——0 2_9y3, 044, 9,5

6 12 30
12, 1.4 3, 1.5 .
y=cp(l x +12x )+ 0 (X— x +30x )
_ _12 1o IR INCE
v, (X) =c¢,[1 2x +12x -] and y,(x)=c[x 6x +30x -]

Since the differential equation has no singular point, both series converge for all finite
values of x.
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Exercise

In each of the following problems find two linearly independent power series solutions
about the ordinary point x =0.

y"+ x2y=0
y'—xy'+2y=0
y"+2xy'+2y=0
(X+2)y"+xy'—y=0
(X2 +2)y"—6y=0

o M w NP
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Lecture 31
Solution about Singular Points

If x =x, issingular point, it is not always possible to find a solution of the form

o0
y= Z ¢, (x—xp)" for the equation a,(x)y" +a;(x)y" +ag(x)y =0
n=0

However, we may be able to find a solution of the form

o0
y= ¢, (x=x¢)""", where r is constant to be determined.
n=0

To define regular/irregular singular points, we put the given equation into the standard
form

V'+P(x)y' +0(x)y=0
Definition: Regular and Irregular Singular Points
A Singular pointx =x, of the given equation a,(x)y" +ay(x)y"+ag(x)y =0 is said to be

a regular singular point if both (x —x,)P(x) and (x—xo)zQ(x) are analytic at x,. A
singular point that is not regular is said to be an irregular singular point of the equation.

Polynomial Coefficients
If the coefficients in the given differential equation a,(x)y"+ay(x)y"+ay(x)y =0 are

polynomials with no common factors, above definition is equivalent to the following:

Let a,(x,)=0 Form P(x) and Q(x) by reducing 4 and ao_(x) to lowest
a,(x) a,(x)

terms, respectively.  If the factor (x —x,) appears at most to the first powers in
the denominator of P(x) and at most to the second power in the denominator of
Q(x),then x = x, is a regular singular point.

Example 1

x =12 are singular points of the equation

X2 -4 y"+(x=2)y'+y=0

Dividing the equation by (x* —4)> = (x —2)*(x +2), we find that
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1 1
=——— and Q(x) =
(x=2)(x+2) o) (x—=2)*(x+2)
1. x =2 isaregular singular point because power of x—2 inP(x) is 1 and in
O(x)is 2.

2. x =-—2 is an irregular singular point because power of x + 2 inP(x) is 2.

P(x)

The Ist condition is violated.

Example 2

Both x =0 and x = —1are singular points of the differential equation

14

xz(x+1) y +(x2 -1)y'+2y=0

Becausex*(x+1)> =0 orx=0,-1

Now write the equation in the form

"t ol 2 y=0
xz(erl)2 xz(erl)2
" -1 ' 2
or y'+— y+— 7 =0
x“(x+1) x“(x+1)
So P(r)=—>"1 and 0(x)= ——2

x> (x+1) nd O(x x> (x+1)°
Shows that x =0  is airregular singular point since (x —0) appears to the second
powers in the denominator of P(x).
Note, however, x = —1 is a regular singular point.

Example 3

a) x=1and x=-1 are singular points of the differential equation
(1-x2)y"+-2x)'+30y =0

Because 1-x?> =0 or x =+1.

Now write the equation in the form

- 2x e 30
(1—x2) 1-x?
y 2x , 30

Y= y+ y=0
(1-x )(1+x) (1-x)(1+x)

y y=0

or
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- e —
- . _ an X)=—""—"
(1=x)(1+x) (1=x )(1+x)

Clearly x = %1 are regular singular points.

P(x)

(b) x =0 is an irregular singular points of the differential equation
x3y"—2xy'+5y =0
or "—iy'Jriy:O giving Q(x)=i.
2 3 i
X X
(©) x =0 is a regular singular points of the differential equation

x V'=2x'+5y=0

: . 5 .
Because the equation can be written as y"—2y'+— y =0 giving P(x) = -2 and
x

0=

X

In part (c) of Example 3 we noticed that (x—0) and(x —0)”do not even appear in the
denominators of P(x) and Q(x) respectively. Remember, these factors can appear at
most in this fashion. For a singular point x = x,,, any nonnegative power of (x —x,) less

than one (namely, zero) and nonnegative power less than two (namely, zero and one) in
the denominators of P(x) and Q(x), respectively, imply x, is a regular singular point.

Please note that the singular points can also be complex numbers.
For example, x = + 3i are regular singular points of the equation
(x2 +9)y"+-3x)"+(1-x)y=0
Because the equation can be written as
" 3x , 1-x

- + =0.
x2+9 Y x*+9 Y
—3x 1—-x
Px)=—————— 0= : -
(x—=3i)(x+3i) (x—3i )(x+3i)
Method of Frobenius

To solve a differential equation a,(x)y" +a;(x)y"+ag(x)y = 0about a regular singular
point we employ the Frobenius’ Theorem.

Frobenius’ Theorem
If x=x, isaregular singular point of equation a,(x)y"+a;(x)y" +ay(x)y =0, then

there exists at least one series solution of the form
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e} o0
+
y=(x—xg) Z cy(x—x0)" =Z cp(x—x0)""
n=0 n=0
where the number r is a constant that must be determined. The series will converge at
least on some interval 0 < x—x, <R.

o0
Note that the solutions of the form Y= " ¢, (x—x¢)""" are not guaranteed.
n=0
Method of Frobenius

1. Identify regular singular point x,

0
2. Substitute V=" ¢,(x—xp)""" in the given differential equation,
n=0
3. Determine the unknown exponent  and the coefficients c, .

4. For simplicity assume thatx, =0.

Example 4

As x =0 is regular singular points of the differential equation
3xy"+y'—y=0.

We try a solution of the form Y= ¢, x""

n=0

Therefore y' = Z(n +7)e,x""
n=0

And y'= Z(n +r)(n+r—1c,x"".

n=0

0 o —
3xy" 4+ ¥ =y = 3 (At r-De " 1Y (ke e
n=0

n=0 n=0

o0 ©
=> (n+r)(3n+3r- 2)cnx"+r_1 - chx””.

=0 n=0
= ' Gr=2e,x + X 0+ r)Gn+3r-2)e, 5" =Y e ]
n=1 n=0
k=n-1 k=n

x [r(3r =2)cpx "+ Y [k +r+1)Bk+3r+1)c,., —c, ]xk} =0
k=0

which implies »(3r —2)c, =0
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(k+r+1)QGBk+3r+1)c,,, —c, =0, k=0,12,...
Since nothing is gained by taking ¢, = 0, we must then have
r(3r—2)=0  [called the indicial equation and its roots » = 2,0 are called
indicial roots or exponents of the singularity.]
and €,y = . k=0,12,..
(k+r+1D)Bk+3r+1)
Substitute r, = % and r, =0 in the above equation and these values will give two
different recurrence relations:
For r =2, Co =k f=0,1,2,.. (1)
3 Bk +5)(k+1)
For r, =0 ¢ =Sk k=0,1,2 )
? Uk + DGk +1) o
Iteration of (1) gives ¢, = %
CZ = i = —CO
82 2158
&) €0
C3 = =
11.3 3!5.8.11
& €0
C4 = =
144 4158.11.14
C
In general c, = 0 , n=12,...
n!5.8.11.14..3n+2)
Iteration of (2) gives
Co
c —
SRR
CZ = i = CO
24 214
c
oo %
3.7 3147
c3 0
C4 = =
4.10 4!11.4.7.10
In general c, = % , n=1,2,...
n'1.4.7..(3n-2)
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Thus we obtain two series solutions

[ o 1
N=¢ { En!5.8.11.14...(3n+2) ] ©
o 1
=C )CO 1+ xn ) 4
Y2 =6 S nll.47..(3n-2) ?

By the ratio test it can be demonstrated that both (3) and (4) converge for all finite values
of x. Also it should be clear from the form of (3) and (4) that neither series is a constant
multiple of the other and therefore, y,(x) and y,(x) are linearly independent on the x-
axis. Hence by the superposition principle

2 2
2w 1 el
=Cy(x)+C x)=C, | x3+ x 3
y=Cn @)+ Gy () 1{ ;n!5.8.11.14...(3n+2) }

+C, | 1+ ! x" |, |x|<oo
o n'1.4.7..3n-2)

is an other solution of the differential equation. On any interval not containing the
origin, this combination represents the general solution of the differential equation

Remark: The method of Frobenius may not always provide 2 solutions.

Example 5
The differential equation
xy"+3y"—y =0 has regular singular point at x =0
0
We try a solution of the form V= Z c X"t
n=0

0 o0
Therefore y'= z (n+ r)cnanrr_1 and "= Z (n+r)(n+r—1c,x""2.

n=0 n=0
so that
' +3y' —y=x" {r(r +2)cyx + Z[(k +r+1)k+r+3)c,.,, —c¢ ]xk} =0
k=0
so that the indicial equation and exponent are r(r+2)=0 and r,=0, r,=-2,
respectively.
Since (k+r+1)(k+r+3)c,,, —¢, =0, k=0,12,.. (1)
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it follows that when », =0,
Sk

Crl T TN LA’
(k+1)(k+3)

G-
1.3
)
24 24
=2 -2
3.5 315!
_ a2
“4T%6 46!
2¢,

c,=——, n=12,..
nl(n+2)!

Thus one series solution is

_ 0 S 2 n _ c 2 n
TGt [H,,Z:l: nn+2) ] _c(’,,zz(; M+

<.

Now when r, =-2, (1) becomes
=Dk +1De, —c, =0 ()
but note here that we do not divide by (k£ —1)(k + 1) immediately since this term is zero
for k£ =1. However, we use the recurrence relation (2) for the cases k =0and £k =1:
-1.1¢, —¢, =0 and 0.2¢, —c, =0
The latter equation implies that ¢, = 0 and so the former equation implies that ¢, =0.
Continuing, we find

. — k=2,3,..
(k=1)(k+1)
Cy
c, =—=
13
. G 2c,
Y24 214
¢, Z2c
C.=—=—2 ..
> 35 315!
2
In general c, = © , n=3,4,5,
(n—=2)!n!
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22
Thus —cx | X+ Y ———x"|. 3
e { S (n-2)!n! } ©)

However, close inspection of (3) reveals that y, is simply constant multiple of y,.

To see this, let £ =n—2 in (3). We conclude that the method of Frobenius gives only one
series solution of the given differential equation.

Cases of Indicial Roots

When using the method of Frobenius, we usually distinguish three cases corresponding to
the nature of the indicial roots. For the sake of discussion let us suppose that 7, and 7,
are the real solutions of the indicial equation and that, when appropriate, », denotes the
largest root.

Case I: Roots not Differing by an Integer

If r, and r, are distinct and do not differ by an integer, then their exist two linearly
independent solutions of the differential equation of the form

y=Y.¢,x"".cy#0,and y, =D bx"", by #0.

n=0 n=0
Example 6
Solve 2xy"+(1+x)y"+y=0.

Solution

If y:chx”“ , then

n=0

2xy"+(1+x)y' +y= 22 (n+7r)n+r—ec,x""" + Z(n +7r)e, x" 7 +
n=0 n=0

0

o0
Z (n+r)c,x"" + ZCnx””
n=0

n=0

= Z (n+7r)2n+2r—1c,x""" + z (n+r+Dc,x""

n=0 n=0

=x" [r(2r —Deyx™ +z (n+7r)2n+2r—ec,x"" + Z (n+r+1)c,x" ]
n=1 n=0

n=k+1 k=n
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=X’ {r(2r ~Degx ™+ D [k +r+ D)2k +2r + )., +(k+r+1)c, ]xk} =0

k=0

which implies r(2r—-1)=0
(k+r+1)2k+2r+1)c,,, +(k+r+1)c, =0, £=0,1,2,... (1)

1 .. . . .
For r, = 5 we can divide by £ + 3 in the above equation to obtain

_ "%
B2k +1)
_— %
21
G Cy
P22 22
—C, _ —G
c = —-=
23 2331
_1 n
In general c, _ (D76 , n=1,2,3,...
2" n!

Thus we have
1

> > (=" .
y, =c,x21 +Z (2,,])1' x" ], which converges for x> 0.
n=l1 .

1
As given, the series is not meaningful for x < 0 because of the presence of x?2.

Now for r, =0, (1) becomes

_ 7%
k41
—C
¢ 10
¢, =—1=%
3 1.3
e =_C _ —C
; 1.3.5
c _~G6G __ %
N 1.3.5.7
(=D"¢,

In general =1,2,3,...

c, = , N
1.3.5.7..(2n-1)
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Thus second solution is

_ N (=1’ ;
% _C°[1+21.3.5.7...(2n—1)x } <0

n=1

On the interval (0,0), the general solution is
y=Cy(x)+C,p,(x).
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Lecture 32
Solutions about Singular Points

Method of Frobenius-Cases Il and 111

When the roots of the indicial equation differ by a positive integer, we may or may not be
able to find two solutions of

a,(x)y" +a,(x)y"+a,(x)y =0 1)
having form
y =2 ,C(x=x)"" )
n=0

If not, then one solution corresponding to the smaller root contains a logarithmic term.
When the exponents are equal, a second solution always contains a logarithm. This latter
situation is similar to the solution of the Cauchy-Euler differencial equation when the
roots of the auxiliary equation are equal. We have the next two cases.

Case I1: Roots Differing by a Positive Integer

Ifr, —r, =N, where N is a positive integer, then there exist two linearly independent
solutions of the form

o0
n+r
y1:2cnx+1,00¢0 (3a)
n=0

o0
n+r
yo2 =Cyy(x)Inx+ > bpx +2,b0¢0 (3b)
n=0
Where C is a constant that could be zero.
Case I11: Equal Indicial Roots:

If 1 =I5, there always exist two linearly independent solutions of (1) of the form

e 0]
y, = >, Can+r1,C0¢0 (4a)
n=0
L N
yo =yi(¥)Inx+ > byx ri=1, (4b)
n=1
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Example 7:  Solve xy"+(x-6)y'-3y =0 1)

Solution: The assumption y = chx”” leads to
n=0

Xy"+(x—-6)y' -3y
=X (n+0)(N+r-1c, X" =6> (n+r)c, X"+ (n+r)c,x™ =3> ¢ x""
n=0 n=0 n=0

n=0

=X {r(r )X 4+ (n+r)(n+r=7)c X"+ (n+r —3)cnx”}
n=1 n=0

X' {r(r—7)cox‘l +i[(k + 1 +1)(k +1=6)C,,, + (k+r-3)c, ]Xk}z 0

Thus r(r-7)=0 sothatr, =7,r,=0,r, —r, =7,and

(k+r+1)(k+r-6)c.,+(k+r-3)c, =0, k=0,123,... (2)

For smaller root r, =0, (2)becomes
(k+1)(k—6)c,,, + (k—3)c, =0 3)

recurrence relation becomes
k-3
Cn = _gck
(k +1)(k —6)

Since k-6=0, when, k=6, we do not divide by this term until k>6.we find

1.(-6)c, +(-3)c, =0
2.(-5)c, +(-2)c,=0
3.(-4)c,+(-1).c, =0
4.(-3)c,+0c, =0
5.(-2)c;+1c, =0
6. (-1)c,+2.c, =0
7.0.c, +3.c, =0

This implies that
c, =C; =C, =0, But ¢, and c, can be chosen arbitrarily.

Hence C, = —% Co
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02:_1 Cl :i CO
5 10
03:—%%:—%00 (4)
and fork>7
Ck+1:ﬂck
(k+1)(k —6)
csz_—407
8.1
co_2. .45,
° 927" 21897
-6 -45.6

C,= C, = C
1037 3189.10 '

_(-)™4-5-6---(n-4) c
" (n-7)18-9-10---(n) "
If we choose c,=0andc, = 01t follows that we obtain the polynomial solution

n=8,9,10,-- (5)

1 1 1
y, = Col-=x+-—x* ——x°%],
' 2 10 120
Butwhen ¢, #=0andc, =0, It follows that a second, though infinite series solution

IS

2 (~1)"4.5.6.--(n—4) |,
=c,[x’ X
Vo =G+ 2, n-7)18.910 1 "

% —_— k . . e
— C7[X7+z( 1) 4-5 6 (k+3)xk+3],
i k!8-9:10 --- (k+7)
Finally the general solution of equation (1) on the interval (0,) is
Y =¢,y, () +C,Y, (%)
® —_— k . . oo
:Cl[l—lx-i—ixz—LX3]+C2[X7+Z( 1) 4.5.6 (k+3)xk+7]
2 10 120 ~ k'8:9:10---(k+7)
It is interesting to observe that in example 9 the larger root r,=7 were not used. Had we
done so, we would have obtained a series solution of the form*

y=3cx" @)
n=0

Where c, are given by equation (2) with r,=7

|X| < oo (6)
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—(k +4)
Gkt = 7 Tavin L Ok
(k+8)(k+1)
Iteration of this latter recurrence relation then would yield only one solution, namely the
solution given by (6) with c, playing the role ofc,)
When the roots of indicial equation differ by a positive integer, the second solution may
contain a logarithm.

On the other hand if we fail to find second series type solution, we can always use the
fact that

k=0,12..

e—I p(x)dx

Yo = . (9| oy (8)

is a solution of the equation y” + P(x)y’+ Q(x)y = 0,whenever vy, is a known solution.
Note: In case 2 it is always a good idea to work with smaller roots first.

Example8:
Find the general solution of xy"+3y’'—y =0

Solution The method of frobenius provide only one solution to this equation, namely,

< 2 1 1 1
=) — = X" =1+ x4+ — X —X 9
Y gn!(mz)! 37 24 360 ®)
From (8) we obtain a second solution
—Ip(x)dx
e dx
Vo = ()|~ =y, (x) [—— :
Y  (X) L+ =X+ — X+ — x4
3 24 360

3 36 30
—yl(x){——2+£+llnx——9x+ }
2x° 3x 4 270
=%y1(x)lnx+y1(x){—2—12+3—2x—%x+..} *)
.'.y:clyl(x)+c2Eyl(x)lnx+yl(x)(—2—12+3—zx—21—;)x+...ﬂ (**)
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Example 9:
Find the general solution of
xy"+3y'-y=0
Solution :
Y, =Y. Inx+> b x"? (10)
n=0
=3 )
= nl(n+2)!
differentiate (10) gives
Y, Yy Y, Inx+Z(n—2)bnx”’3
X -
m_ Y1 y yl " n—4
y, = o =2y Inx+Z(n 2)(n-3)b,x
n=0
so that
Xys +3y, —Yy, =In x[xyl" +3y, yl}LZyl 2L +Z(n 2)(n-3)b, x"
X
+32(n—2)bnx”’3—2bnx”’2
n=0
=2y, A +Z(n 2)nb, x"* Zb X"? (12)
where we have comblned thelst two summations and used the fact that
xy; +3y; -y, =0
Differentiate (11) we can write (12) as
3 3 X"+ 3 (= 2)nb X" =" b x™2
nzn'(n+2)' Z;in'(n+2)' Zi( e ZJ‘ "
=020y "+ by~ *+ 3 E S An+D sy S - 2)nb, x-S X"
= ni(n+ 2)' n-2 n-1
o & dMk+1) a1
—(b, +b)Xx?+> | ———+k(k+2)b,_, b, X" 13
( 0 bl) §|:kl(k+2)l ( ) k+2 k+1:| ( )
Setting (13) equal to zero then gives b, = —b,and
AKRHD k42, , ~b,, =0, For k=0, 1,2, ... (14)
k!(k +1)!
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When k=0 in equation (14) we have 2+0-2b, —b, = 0so that but
b, =2,b, =-2,but b, is arbitrary
Rewriting equation (14) as

by Ak+D)

bk+2 = k (15)
(k+2) kli(k+2)'k(k+2)
and evaluating for k=1,2,... gives
b, 4
3 9
Ly 1,
f 87 32 247 288
and so on. Thus we can finally write
Y, =Y, INx+byx? +bx™" +b, +byx+--
=yllnx—2x2+2x1+b2+(b§2—gjx+-- (16)

Where b, is arbitrary.

Equivalent Solution
At this point you may be wondering whether (*) and (16) are really equivalent. If we

choose ¢, =4 in equation (**), then

y, = y1|nx+[ 22 +£_£ +j
x® 3x 135
v, =y Inx+(1+%x+ix2+3—éox3+---j 2.8 3 17)
2 x?  3x 135
:yllnx—2x’2+2x’l+§—£x+
36 108

Which is precisely obtained what we obtained from (16). If b, is chosen as%

The next example illustrates the case when the indicial roots are equal.
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Example:10
Find the general solutionof xy"+y -4y =0 (28)

Solution :The assumption y=z c,x"" leads to
n=0

Xy"+y =4y => (n+)(n+r-1)c, X"+ (n+r)e, XM =4 ¢ XM
n=0 n=0 n=0

00 o0

zz (n+r)2Can+r—1 _ 42 Can+r
n=0 n

=0

= X' {rzcoxl +Y(n+n)e x" —4)" cnx”}
n=1

n=0

X' {rzcox1 +) (k+r+l)%c,,, — 4ck} X“=0
k=0

Therefore r*=0, and so the indicial roots are equal: r, =r, = 0. Moreover we have
(k+r+1)°c,,, —4c, =0,k=0,1,2,... (19)

Clearly the roots r, =0 will yield one solution corresponding to the coefficients defined

by the iteration of

Cou= % k=012,
(k+1)
The result is
o 4"
yl :COHZ::OWX ,|X|<OO (20)

—j%)dx

bo = 000 7o 0] P

2
x{l+4x+4x2 +196x3 +}
= yl(x)1§[1—8X+40X2 —%xs +"':|dX

- yl(x)j[§—8+40x—%x2 +..}dx
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—yl(X)[lnx 8X + 20x° —1‘;2 X3+ }

Thus on the interval (0, ) the general solution of (18) is
y=CY,(X)+c, [yl(x) InX+Yy,(X) (—SX +20X? —%xs + H

where 'y, (x) is defined by (20)
In casell we can also determine y, (x) of example9 directly from assumption (4b)

Exercises

In problem 1-10 determine the singular points of each differential equation. Classify each
the singular point as regular or irregular.

1 Xy +4x%y'+3y=0
2 xy"—(x+3)?%y=0

3 (X*-9)Yy' +(x+3)+2y=0
4

, 1 1
A
5  (X*+4x)y"—-2xy'+6y=0)
6 X(Xx=5)°y +4xy'+(x-2)y=0
7 (X+x=6)y +(x+3)y +(x-2)y=0
8 x(xX*+1*y"+y=0
9 X (x 25)(x 2)%y" +3x(x-2)y' +7(x+5)y =0
10 (x* = 2x* =3x)°y" + x(x+3)°y' + (x+1)y =0

In problem 11-22 show that the indicial roots do not differ by an integer. Use the method
of frobenius to obtain two linearly independent series solutions about the regular singular
point x, = 0 Form the general solution on (0, )

11.2xy"-y'+2y =0
12. 2xy" +5y"+xy =0

13. 4xy”+%y’+ y=0
14. 2x°y" —xy'+(x*+1)y =0

15. 3xy"+(2-x)y'+y=0
" 2 !
16, XY _(X_gjy +xy =0
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17. 2xy"+(3+2x)y'+y =0

18.

19.

20

21.
22,

In problem 23-34 show that the indicial roots differ by an integer. Use the method of

X°y" + xy’+(x2 —gjy =0

X’y + 9%’y +2y =0

C2X°Y" +3xy’ +(2x-1)y =0

2X°y" = x(x-1)y' -y =0
X(x-2)y"-y'-2y=0

frobenius to obtain two linearly independent series solutions about the regular singular
point x, = 0 Form the general solution on (0, )

23

Xy"+2y' —xy =0

24. X2y +xy' +(x2 —%]y =0

25.
26.

27.
28.
29.
30.
31.
32.
33.
34.

X(x=1)y"+3y' -2y =
W+§W—2y=0

X
xy"+(1-x)y'—y=0
xy"+y=0
Xy'+y'+y=0
xy'—y'+y=0
XY+ X(X=1)y' +y =
xy"+y —4xy =0
XY+ (x=1)y -2y =
xy"—y +x’y =0

0

0

0
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Lecture 33

Bessel’s Differential Equation
A second order linear differential equation of the form
d’y dy 2 2
X?—2 4+ x—=+(x*=v?)y=0
dx?  dx ( )y
is called Bessel’s differential equation.

Solution of this equation is usually denoted by Jv(x)and is known as Bessel’s function.

This equation occurs frequently in advanced studies in applied mathematics, physics and
engineering.

Series Solution of Bessel’s Differential Equation
Bessel’s differential equation is

xzy”+xy'+(X2—V2)Y=0 (1)

If we assume that

n=0
Then
y' = ZCn(n +r)xMrt
n=0
y' = Co(n+r)(n+r-1)x"r?
n=0
So that
2y b 2y = 3 e e ) er - 30, (0 )
n=0 n=0
+chxn+r+2 —VZZCan+r -0
n=0 n=0

Co(r2 —vz)xr +x" > Cp [(n+r)(n+r—1)+(n+r)—v2}xn +x" Y Cpx"2 =0 ... (2)
n=1 n=0

From (2) we see that the indicial equation is r2 —v2 =0, so the indicial roots are n=v,
r, =-v.When r, =V then (2) becomes
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xvilcnn(n +2v)X" + xvi;cnx”+2 =0

(1+ 2v)C1x+iCnn(n+2v)x” +§:C X" =0

n=2 n=0

k=n-2 k=n

<

<

(1+ 2v)clx+i[(k +2)(k+2+2v)C,,, +Ck]x"+2} =0
k=0

We can write
(1+2v)C, =0
(k+2)k +2+2v)Cy,p +Cy =0

Ciso = —Ci
27 (k+2)k +2+2v)
k=0212,...

(3)

The choice C, =0in (3) implies
C,=C,=C,=...=0
so for k =0,2,4,... we find, after letting k + 2=2n , n=1,2,3,... that
—-C
C — 2n-2 (4)
o 2°n(n+v)

Thus

G _ Co
22.2.(2+v) 2%.1.2.(1+v)(2+V)

C = —_ - — 5
° 22-3-(3+v) 26-1-2-3-(1+v)(2+v)(3+v) ®)

(-1)"¢C

Con = o2 _n!(1+v)(2+V)"'(n+V)

n=123,...
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It is standard practice to choose C, to be a specific value namely
1
0= T ve ~
2°T'(d+Vv)
where I'(1+v)the Gamma function. Also
I'l+a)=al ().

Using this property, we can reduce the indicated product in the denominator of (5) to one
term. For example

C(L+v+1)=(1+Vv)I(1+v)
F@+v+2)=(2+V)[(2+V)
=(2+v)(1+Vv)C1+v)
Hence we can write (5) as

(-
“on = 22NV I(1+V)(2+V)-(n+V)T(L+V)

(-1)"
, n=012,...
nIC(L+v+n)

22n+v

So the solution is
0 o0 _1)n X 2n+v
_ C X2n+v _ (—(_j
y E) 2n ng;)n!l"(1+v+n) 2

If v >0, the series converges at least on the interval [0 o).
Bessel’s Function of the First Kind

As for r, =v, we have

=3 LY (2]2 ©

no (DA +v+n)

Also for the second exponent r, = -V, we have

ST e (ffn_v ™
- (MT@-v+n)l 2

n=0

The function J,(x) and J_, (x) are called Bessel function of the first kind of order v and
—V respectively.
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Now some care must be taken in writing the general solution of (1). When v =0, itis
clear that (6) and (7) are the same. If v>0and r, —r, =V —(—V)= 2V is not a positive

integer, then J, (x) and J_, (x) are linearly independent solutions of (1) on (0, ) and
so the general solution of the interval would be

y= C1‘]v (X)+ CZ‘]—V (X)
If p —r, =2v is a positive integer, a second series solution of (1) may exists.

Example 1
Find the general solution of the equation

x2y"+xy'+(x2 —%jy:o on (0, =)

Solution
The Bessel differential equation is

xzy"+xy'+(x2 —vz)y:O (1)
x2y"+xy’+(x2_%jy:0 (2)
Comparing (1) and (2), we get v2 = % therefore v = J_r%
So general solution of (1) is y =Cydy2(x)+Cyd 42(x)

Example 2
Find the general solution of the equation

x2y”+xy’+(x2 —ljy =0

9
Solution
— » 1 1
We identify Ve = 3’ therefore v = i§
So general solution is y =CpJy3(X)+Cyd 4/5(x)
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Example 3
Derive the formula xJy (X) =Vdy (X) = Xdy41(X)
Solution
© )n (ijn—i-v
A -
° Z:: n'F(1+v+n)
i 2n+v)(x]2”+"
n—o N'C@+v+n)
0 _\N 2n+v 0 n 2n+v
:V.Z(;)@ Z (=)' (1}
nr(l+v+n){ 2 onr@+v+n){2
0 2n+v-1
+X ngb n-1 'F(1+v+n)( j
k=n-1
k 2k+v+1
- (=Y m
= J —_— —_— | —
vy (%) ngk!r(uwk) 2
=y (X)=Xy41(X)
So XJy (X)) =Vdy (X)=xJy41(X)
Example 4
Derive the recurrence relation 23/ (x)=J,4(x)=J,,4(x)
Solution:
© (_1)5 X n+2s
As J (X)=) ———| =
() sZ(;s!(n+s)!(2j
’ 0 (_1)5 (XJYHZS 1(1j
I (X)= 2s)| = =
(%) ‘g‘as'(nJrs)'(nJr °) 2 2
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Sl ) S

) g s(n+ i)(n +s—1) nntzss)(gjmz“(;j
+§S )}2ns+s' (Zj %)

GG

:%?‘sln 1+s) ( j_1+23+%g‘ ()(r)ls+s

n+2s-1
X
2)

sz p+1)-1

1 1 —
:E‘]n—l(x)+_2(

2a(s— 1 n+s (
Put s—1= p|n2”dterm:>s—
p+1 (

X
2

Jn_l(x)+1i -—Ll) (gjnmzp

Example 5

1
Derive the expression of J | (X) for n= iE
Solution:

s 5]

5=0 S°
As nl=T(n+1)

L=y Y (ﬁj’”zs

aol(s+DI(n+s+1\ 2
put n=1/2

i o (_1)3 (ijzﬂs
31/2(X)—Sgr(s+1)r(1/2+s+l) 2

B
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( )5 (ij-i-?_s
Z o [(s+DI(s+3/2)\ 2

Expanding R.H.S of above
1

hr2(3)= i (zjﬂ(l)
1/2 F(0+1)F(0+3/2) 2 F(1+1)F(1+3/2)
1

« ) X7+2(3)
+r(2+1)r(2+3/2)[§] r(3+1)r(3+3/2)(_j o
2 XE x2+2-2-2 x%

z\ 2) _—(Ej W(_j )
1 \/_ 4\/_ x? 4\/§ X
—\/; \/— 3 9502 15 2912 _}
_Vx[2 a4 a4 x }
_\/;_\/E 3.95/2 " 159972
e[ 2 a4 _}
r [V2V2 3.42.2%% 15.42.2°7
:\/E'\/;_l_ﬁ_l_i_..}
Jr | 6 120
Jr o x 3 5l
:\/E'&sinx
N
= Jyy2(X)= %sinx
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Similarly for n=-1/2, we proceed further as before,

o (_ 1)5 (Xjn+25
J,(x)= — where n!'=T(n+1)
Zsl(n+s)\2

© l)S X n+2s
)=2, < T(s +1)F(n+s+1) (_]

S:

o0 (_1)8 [Xj—z—i-ZS
Jara( Z (s +1)I(-1/2+s+1)\ 2

e e I
2T S (s )r(s+1/2)\ 2
Expanding the R.H.S of above we get

(-1 ( X j; N (-1 ( X j;+2(1)

112 roreal2)  Tareea)| 2

(1) (ij}z(z) )

" r2+nre+1/2)\ 2

1 2 1 x )2 1 x )2
RYAC) p—— ———(—j —(_j
rOre/2)\x r@re/2)l2) rere/2)l 2

3 7
f ( )z o1 (z)z .
(1)r(1/2) r(1/2) 3 ;r(llz)

N \

F(1/2)\/; 23/2 2.3 9712

\/E 2X3/2 2X7/2
\/;_ 2312 +§27/2 o
\/E 2X3/2 2X7/2
— _|__ — e
JxJ2 4 316 }
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_\/E_ J2 _X3/2+1X7/2_m
Jr|dxv2 2 38
\/E_ 1 x312  y712 }

= — +

Jrldx 2 24

\/E {\/; x3/2 X7/2_”1
X

T x| X 2 24
N2 ¢ Xt
CIm|T 2 a

Remarks:
Bessel functions of index half an odd integer are called Spherical Bessel functions. Like
other Bessel functions spherical Bessel functions are used in many physical problems.
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Exercise

Find the general solution of the given differential equation on (0,0).
1. x2y”+xy’+(x2—%jy:0
2. x2y"+xy’+(x2 —1)y=0
2.n ' 2 _
3. 4x°y"+4xy +(4x —25)y—0

4. 16x2y”+16xy’+(16x2 —1) y=0
Express the given Bessel function in terms of sin X and cos X, and power of X.
5. J3/2(X)
6. Js/2(x)
7. J772(%)
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Lecture 34
Legendre’s Differential Equation

A second order linear differential equation of the form
(1— X )y” —2xy"+n(n+1)y=0

is called Legendre’s differential equation and any of its solution is called Legendre’s
function. If n is positive integer then the solution of Legendre’s differential equation is

called a Legendere’s polynomial of degree n and is denoted by P, (x)

We assume a solution of the form  y= ZCka
(1—x2) y'=2xy'+n(n+1)y =

(1-3®) 3 ik (k-2)x* 223 o +n(n+1) 3 Cx*
k=2 k=1 k=0

= ickk(k —1)x*2 - ickk(k ~1)x* - 2f:c:kkxk +n(n +1)ickxk
k=2 k=2

k=1 k=0

=[n(n+1)C, + 2C, |x° + [n(n +1)C, — 2C, + 6C, Jx + ickk(k —1)x*?
k=4

j=k—2

o]

— > Ck(k —1)x* - zickkxk +n(n +1)ickxk

k=2 k:2 , k:2
i=k i=k i=k

:[n(n+1)CO +2C2]+[(n—l)(n+2)C1+6C3]x

Z[ i+2)(j+1 Cj+2+(n—j)(n+j+1)cj}xj =0

= n(n+1)C, +2C, =0
(n-1)(n+2)C +6C3 =0
(i+2)(i+1)Cp,, +(n=j)(n+j+1)C, =0, j=2,3,4,..

or C, :—wCo
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C3=—(n_1)3(!n+2)cl
_ (n=j)(n+j+1)
“I2 T ) (e

i=23... (1)

From lIteration formula (1)
(n—2)n+ 3)C (n—2)n)n+1)n+ 3)C

- 43 4 0
c, :_(n—3)(n+4)c3 _(n=3)n-1)n+ 2)(n+4)C1
5-4 5!
c, :_Wg _ (n-4)(n-2) n(n+1)(n+3)(n+5)c0
5-6 6!
__(n—5)(n+6)c _ (n=5)n-3)n-1)n +2)(n+4)(n+6)c
A 7 !

and so on. Thus at least ‘X‘ <1, we obtain two linearly independent power series
solutions.

100~ 1Mty 0= 2hin 23,

! 4l
~(n=4)n-2)n(n+1)n+3)n +5)X6 . }
6!
~ (n-1)n+2) 3 (N=3)n-n+2)n+4) 5
yZ(X)_C1|:X_ 3 X"+ 5] X
_(n=5)n-3)n-1)n+2)n+4)n+ 6)x7 . }
7

Note that if N is even integer, the first series terminates, where Y, (X) is an infinite series.
For example if N =4, then

_ 4-5 5, 2:4-5:7 4| _ , 35,
yl(x)—Co[ - XX }—Co[l—le + X

Similarly, when nis an odd integer, the series for Yy, (X)terminates with x".i.e when

Nis a non-negative integer, we obtain an nth-degree polynomial solution of Legendre’s
equation. Since we know that a constant multiple of a solution of Legendre’s equation is
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also a solution, it is traditional to choose specific values for C,and C, depending on
whether N is even or odd positive integer, respectively.

Forn =0, we choose C, =1 and for n=2,4,6,...

e S0

Whereas for n =1, we choose C, =1and for n=3,5,7,...

_( (/2 1.3-...n
=) 2-4-...(n-1)

For example, when N =4, we have
1-3 35
x)=(—1)"? 1-10x2 += 4}
Y1() ( ) 5. 4[ 3

330, 35,
8 8 8

Y, (%)= % (35x* —30x2 +3)

Legendre’s Polynomials are specific n™ degree polynomials and are denoted by P, (x)
From the series for y; (x)and Y, (x)and from the above choices of C,and C,, we find
that the first several Legendre’s polynomials are

P (x)=1

P,(x)=x

Po()= 536" -1)
Py(x)= 5 6x* ~3x)

P,( %(35x ~30x? +3)

Py (x) = %(GSXS —70x3 +15x)

Note that Py(x), P,(x), P,(x), Py(x),...are, in turn particular solution of the differential
equations
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Rodrigues Formula for Legendre’s Polynomials
The Legendre Polynomials are also generated by Rodrigues formula
1 d n 2 n
P, (x)=—= n(x —1)
2" nldx

Generating Function For Legendre’s Polynomials

The Legendre’s polynomials are the coefficient of z" in the expansion of

1

p=(1-2xz+2°) 2

in ascending powers of z.

: - {1-z(2x- z)}_;

Now ¢:(l—2xz+zz)
Therefore by Binomial Series

1(-3 1(-3)(S
¢—1+%z(2xz)+%2]{z(2xz)}2+ 2( 2 j( 2 J{z(2xz)}3+~--

3!

=1+%z(2x—z)+§zz(4x2+22—4xz)+%z3(8x3—23—12x22+6x22)+---

=1+ zx—lz2 +§x222 +§z4 —Exz?’—ﬁx‘q’z3—iz6 —Exzz4 +Ex25+---
2 2 8 2 16 4

=1+xz +%(3x2 —1)22 +%(5x3 —3x)z3 +%(35x4 _30x2 +3)z4 4 e 1)

Also

SR, (X)2" = Py (X)+ P (X)2+ By (X) 22 + By (X) 2 -

n=0

Equating Coefficients of (1) and (2)
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X
1
E(SXZ —1)

()= %(5X3 —3x)

P,(X) =%(35x4 ~30x° +3)

Which are Legendre’s Polynomials
Recurrence Relation

Recurrence relations that relate Legendre’s polynomials of different degrees are also very
important in some aspects of their application. We shall derive one such relation using

the formula

(1-2xt +t2)_; =3P, (%)t
n=0

Differentiating both sides of (1) with respect to t gives

(1- 2xt+t) ZnP X)t"* ZnP X)t"*

so that after multiplying by 1— 2Xt +t*, we have

(x—t)(1-2xt+t*) : =(1-2xt+t* )ZnP X)t"

n=0 1
SR, (X)t = Y P ()t = S0P, (x)t7 + 2% 0P
n=0 n=0 n=1 1
—inPn(x)t””—O

n

0 0 2
X+ Xt + > xP, (x)t —t—ZP X)t" - 2(3)(2_1

n=2 n=

= NP, ()t +2x%t + ZXZ R, (X)t" = > nP,(x)t"* =0

n=3 n=2 n=1

1)
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Observing the appropriate cancellations, simplifying and changing the summation indices

Z[ k+1) R, (X)+(2k +1)xP, (x (x)]t* =

Equating the total coefficient of t*“to zero gives the three-term recurrence relation

(k+1)P,(X)—(2k +1)xR (x)+ kP, (x)=0,  k=2,34,...

Legendre’s Polynomials are orthogonal

Proof:

Legendre’s Differential Equation is (1— G ) y'—2xy'+n(n+1)y=0

Let Py (x) and Py, (X) are two solutions of Legendre’s differential equation then
(132 )i ()= 2xPy (%) +n(n+1) Py (x) =0, and
(1% ) P (x) = 2xP () +m(m+1) Pry (x) =0

which we can write

[(1—x2)Pﬁ(x)]+n(n+1)Pn(x)=0 (1)

!

[(1—x2)%(x)} +m(m+1) Py (x)=0 )
Multiplying (1) by Py, (x)and (2) by P, (x) and subtracting, we get

Pm(x){(l—xz)Pr',}'—Pn(x){(l—xz)%(x)}'
+{n(n+1)-m(m+1)} Py (x)P,(x)=0

©)

Now

Add and subtract (1—x2)P'mP'n to formulizetheabove

P00 A-32)P's | ~Po0{ - 2P'y |
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=(1-%% ) R (%) Pa () + P (X)[(l—XZ)Pﬁ (X)]
(122 ) B () B (1) B (0] (12 ) i ()|
:(1—x2)[Pn(x)Pr'](X)— Prh(X)Pn(X)],

Which shows that (3) can be written as

(132 ) (P ()R (X) =P () P (%)} |

+[n(n+1)-m(m+1) | Py (x Pn() 0
(1252 )P (X) P (%)= P ()P} ) +(n=m) (1 m+2) B (x) Py (x) =0
(n-m)(m++2) B () By ()= (12 ) (B () B (x) B () B ()} |

(n—m)(m+n+l)?Pm(x)Pn(x)dx='?((1—x2){P,{1 (x)Py (x)—Pm(x)Pr;(x)})’dx
b
(n=m)(m 0 +2) [ B (x) Py ()= (13 ) B (X) B () P ()75 ()]

a

a

As 1—x2 = 0for x=+1 s0
1
(n—-m)(n+m+1) J' Pn ()P, (x)dx=0 for x=+1
-1
Since m & n are non-negative

1
= J' Pn(X)Py(x)dx=0 for m=n

-1
which shows that Legendre’s Polynomials are orthogonal w.r.to the weight function
w( x)=1over the interval [-1 1]
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Normality condition for Legendre’ Polynomials
Consider the generating function

1 o0
(1—2xt+t2)_2= 3 Py ()T (1)
m=0
Also
1 Q0
(1—2xt+t2)_2 =Y Ry ()t @)
n=0

Multiplying (1) and (2)

(1—2xt+t2)_1= ST B (x) B (X)t™

m=0n=0
Integrating from -1 to 1
1

1 o0 o0 1
J' dx= Y > j Py (X) Py (x)t™ " dx

(1—2xt+t2) m=0n=0_1

-1

= i i }Pm(X)Pn(X)tm+”dX=—%[ln(1—2t+t2)—In(1+2t+t2)}

=—%[In(l—t)2 —In(l+t2ﬂ
:—%{In(lﬂ)2 —In(l—tz)}
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Equating coefficient of t2n on both sides

1 2 2
:_jl[Pn(x)] dx=2n+1
1 2
:>_j1Pn(x)Pn(x)dx=2n+1
1
= [ B (%) (x) 2 dx =1
-1
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which shows that Legender polynomials are normal with respect to the weight function

w(x)= 2n2+1over the interval —1< x <1.

Remark:

Orthognality condition for B, (X) can also be written as

}1 P (X) P (x)dx=(2n2+1j5m,n

0 ., 1fm=#n

where o =
mn {1 ,otherwise

Exercise
1. Show that the Legendre’s equation has an alternative form

%[(1—x2)%}+n(n+l)y=0

2. Show that the equation
2
sin0u+cos¢9ﬂ+n(n+l)(sin0)y:O can be
do? do

transformed into Legendre’s equation by means of the substitution x =cosé

3. Use the explicit Legendre’s polynomials B (x), P> (x), P> (x), and Py(x)

1
to evaluate I Pn2dx for n=0,1,2,3. Generalize the results.
-1
4. Use the explicit Legendre polynomials B (x), Py (x), P> (x), and P3(x)
1
to evaluate I Pn (X) Py (x)dxfor n=m. Generalize the results.
-1
5. The Legendre’s polynomials are also generated by Rodrigues’ formula
n n
Py (x)= . d—(x2 —1)
2"ntdx"

verify the results for n=0,1, 2, 3.
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Lecture 35
Systems of Linear Differential Equations

o Recall that the mathematical model for the motion of a mass attached to a spring
or for the response of a series electrical circuit is a differential equation.

2
d_y+bd_y
dx?  dx
o However, we can attach two or more springs together to hold two masses my

and my . Similarly a network of parallel circuits can be formed.

a +cy = f(x)

&

B AW

&

o To model these latter situations, we would need two or more coupled or
simultaneous equations to describe the motion of the masses or the response of
the network.

o Therefore, in this lecture we will discuss the theory and solution of the systems of
simultaneous linear differential equations with constant coefficients.

Note that

An nthorder linear differential equation with constant coefficients a,, &, ..., a,is
an equation of the form
dny dn—ly dy
a—+a ,—+--+a—+a,y=0g(X
n an n-1 dxn_l aidx Oy g( )
. d ., d? . d" . . .
If we write D=—,D° =——,---,D" =——then this equation can be written as follows
X dx? dx"

(anD”+an_lD(”‘1)+---+a1D+a0)y= g(t)

Simultaneous Differential Equations

The simultaneous ordinary differential equations involve two or more equations that
contain derivatives of two or more unknown functions of a single independent variable.
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Example 1
If x,yand zare functions of the variable t, then
d?x
4 e =-5X+Yy
d’y
2 =3X—
dt? Y

and
X'—3x+y'+2'=5
X+y —-6z"=t-1
are systems of simultaneous differential equations.

Solution of a System

A solution of a system of differential equations is a set of differentiable functions
x=f(t), y=g(t) x=h(t),...

those satisfy each equation of the system on some interval | .

Systematic Elimination: Operator Method

o This method of solution of a system of linear homogeneous or linear non-
homogeneous differential equations is based on the process of systematic
elimination of the dependent variables.

o This elimination provides us a single differential equation in one of the dependent
variables that has not been eliminated.

o This equation would be a linear homogeneous or a linear non-homogeneous
differential equation and can be solved by employing one of the methods
discussed earlier to obtain one of the dependent variables.

Notice that the analogue of multiplying an algebraic equation by a constant is operating
on a differential equation with some combination of derivatives.

The Method

Step 1 First write the differential equations of the system in a form that involves the
differential operator D .

Step 2 We retain first of the dependent variables and eliminate the rest from the
differential equations of the system.

Step 3 The result of this elimination is to be a single linear differential equation with
constant coefficients in the retained variable. We solve this equation to obtain the value
of this variable.

Step 4 Next, we retain second of the dependent variables and eliminate all others
variables

Step 5 The result of the elimination performed in step 4 is to be again a single linear
differential equation with constant coefficients in the retained 2" variable. We again
solve this equation and obtain the value of the second dependent variable. This process of
elimination is continued untill all the variables are taken care of.

331

© Copyright Virtual University of Pakistan



Differential Equations (MTH401) VU

Step 6 The computed values of the dependent variables don’t satisfy the given system for
every choice of all the arbitrary constants. By substituting the values of the dependent
variables computed in step 5 into an equation of the original system, we can reduce the
number of constant from the solution set.

Step 7 We use the work done in step number 6 to write the solution set of the given
system of linear differential equations.

Example 1
Solve the system of differential equations

ﬂ=2x, d—X=3y
dt dt

Solution:

Step 1 The given system of linear differential equations can be written in the differential
operator form as

Dy = 2x, Dx =3y

or 2x—Dy =0, Dx-3y=0

Step 2 Next we eliminate one of the two variables, say x, from the two differential
equations. Operating on the first equation by D while multiplying the second by 2 and
then subtracting eliminates x from the system. It follows that

~-D’y+6y=0 or D’y—-6y=0.
Step 3 Clearly, the result is a single linear differential equation with constant coefficients
in the retained variable y . The roots of the auxiliary equation are real and distinct

m, =+/6 and m, = /6,

Therefore, y(t)= ce®tice 'l

Step 4 We now eliminate the variable y that was retained in the previous step.

Multiplying the first equation by —3, while operating on the second by D and then
adding gives the differential equation for x,

2
D“x-6x=0.
Step 5 Again, the result is a single linear differential equation with constant coefficients
in the retained variable x. We now solve this equation and obtain the value of the second

dependent variable. The roots of the auxiliary equation arem = +4/6 . It follows that
x(t) —ce®lic

Hence the values of the dependent variables x(t), y(t) are.

o6t

4

£t+ce-£t

4

x(t)=ce

y(t):cleJgt +c2e‘£t
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Step 6 Substituting the values of x(t) and y(t) from step 5 into first equation of the
given system, we have

(\/Ecl = 2c3)e‘/gt + (— Jéc, — chl)e_‘@t =0.
Since this expression is to be zero for all values oft, we must have
\/€C1—203 =0, —\/€C2—204 =0

J6 J6
or C3:7C1, (':42—7(:2
Notice that if we substitute the computed values of x(t) and y(t) into the second

equation of the system, we shall find that the same relationship holds between the
constants.

Step 7 Hence, by using the above values of ¢, andc,, we write the solution of the given
system as

3 € /0
y(t) = Ot 4 g,

Example 2

Solve the following system of differential equations
Dx+(D+2)y =0
(D-3) x-2y=0

Solution:

Step 1 The differential equations of the given system are already in the operator form.
Step 2 We eliminate the variable x from the two equations of the system. Thus operating
on the first equation by D —3and on the second by D and then subtracting eliminates x
from the system. The resulting differential equation for the retained variable vy is

[(D-3)D+2)+2D]y=0

(D2 +D-6)y =0
Step 3 The auxiliary equation of the differential equation for y obtained in the last step
is

m2+m-6=0=(m-2)m+3)=0
Since the roots of the auxiliary equation are

m1=2, mo =-3
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Therefore, the solution for the dependent variable vy is

2t 3t

y(t)=cre”" +cpe”

Step 4 Multiplying the first equation by 2 while operating on the second by (D + 2) and
then adding yields the differential equation for x
(D?+D-6)x=0,
Step 5 The auxiliary equation for this equation for X is
m?+m-6=0= (m—-2)(m+3)
The roots of this auxiliary equation are
m =2, mp=-3
Thus, the solution for the retained variable X is

t 3t

x(t)=cge? +cye”

Writing two solutions together, we have

X(t)=cqe?t +c e~

y(t)=cre?t +ce™
Step 6 To reduce the number of constants, we substitute the last two equations into the
first equation of the given system to obtain

(4c, +2c5)e? +(—cy —3cy )™ =0
Since this relation is to hold for all values of the independent variablet. Therefore, we
must have

4cqy +2¢3 =0, —Cy —3c4 =0.
1
or C3 = —201, Cq = —502
Step 7 Hence, a solution of the given system of differential equations is
x(t) = —2c,et —%cze_?’t
y(t)=cre?t + e
Example 3
Solve the system
2
o 4X + d 2y =t
dt dt
& + X + v =0
dt dt

Solution:
Step 1 First we write the differential equations of the system in the differential operator
form:
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(D-4)x+ D%y =t?
(D+1)x+Dy=0
Step 2 Then we eliminate one of the dependent variables, say x. Operating on the first

equation with the operator D +1, on the second equation with the operator D — 4 and then
subtracting, we obtain

[([D+1)D? - (D-4)D]y = (D +1)t?
or (0% +4p)y =t2 42t

Step 3 The auxiliary equation of the differential equation found in the previous step is

m3+4m=0=m(m2 +4)
Therefore, roots of the auxiliary equation are

m]_:O, m2=2i, m3:—2i
So that the complementary function for the retained variable y is
Yo =C1 +CpCOS2t +C38in 2t.
To determine the particular solution ywe use undetermined coefficients. Therefore, we
assume
_ A+3 2
yp = At” +Bt® +Ct.
So that y, =3At* + 2Bt +C,
yp = 6At + 2B, yp=6A

Thus yp +4y} =12At% +8Bt+6A+4C

Substituting in the differential equation found in step, we obtain
12At* +8Bt+6A+4C =t* + 2t

Equating coefficients of t2, t and constant terms yields
12A=1 8B=2, 6A+4C =0,
Solving these equations give
A=1/12, B=1/4, C=-1/8.
Hence, the solution for the variable y is given by
Y=Yct+Yp
1., 1

. 1.3
or =Cq +CpCOS2t +CqSIN2t +—1t° +—t° ——t.
Y=t 3 12 4 8

Step 4 Next we eliminate the variable y from the given system. For this purpose we

multiply first equation with 1 while operate on the second equation with the operator D
and then subtracting, we obtain

[(D-4)-D(D+Dx= t>
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or (D2+ 4) x =—t?

Step 5 The auxiliary equation of the differential equation for X is

m2+4=0=m=+2i
The roots of the auxiliary equation are complex. Therefore, the complementary function
for x

Xc = C4 COS 2t + C5 Sin 2t
The method of undetermined coefficients can be applied to obtain a particular solution.
We assume that

xp:At2+Bt+C.

Then x'p =2At + B, x'l’o =2A

Therefore Xfy +4xp = 2A+4At% + 4Bt +4C
Substituting in the differential equation for X, we obtain
AAt? + 4Bt +2A+4C = —t2

Equating the coefficients of t2, t and constant terms, we have
4A=-1, 4B=0, 2A+4C=0
Solving these equations we obtain
A=-1/4,B=0,C=1/8

Thus Xp :—lt2 +1
4 8

. 1, 1

So that x:xc+xp=c4c052t+c55|n2t—zt +§

Hence, we have

. 1, 1
X=Xsr+Xy=CyqC082t+CcSIN2t ——t° +—
c p 4 5 4 8

. 13 1, 1

=Cq +CyCOS2t +CqSIN2t +—1t° +—t° ——t.
Y=t 3 12 4 8

Step 6 Now C4and Cgcan be expressed in terms of ¢, and c3 by substituting these
values of xand y into the second equation of the given system and we find, after
combining the terms,

(C5 —2c4 —2¢5 )sin 2t +(2c5 +C4 + 2¢5)cos2t =0

So that c,—2c,—-2¢c,=0, 2c5+cyg+2c3=0
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Solving the last two equations for ¢4 and cg in terms of C,and C3 gives
1 1
Cyq = —g(4C2 + 2C3), Cg = E(ZCZ —4C3).

Step 7 Finally, a solution of the given system is found to be

x(t)= —l(4c2 +2¢3)cos 2t +£(2c2 —4cg)sin 2t BETOREN
5 5 4 8
. 13 1, 1
t)=C;+CyCOS2t +C3SIN2t +—t° +—1° ——t.
ylt)=ci+co 3 12 4 3

Exercise

Solve, if possible, the given system of differential equations by either systematic
elimination.

dx y

1. —=Xx+7y, =X-2
kb y

20 X4y kMo
dt

3. (D+1x+(D-1)y=2, 3x+(D+2)y=-1
2

4. ﬂ+ﬂ:—5x, %+ﬂ:—x+4y
dt?2 dt dt dt

5. D?x-Dy=t, (D+3)x+(D+3)y=2
dx dy d’x dx

6. —+ e, ——+—+x+y=0
dt dt t

7. (D—1)x+(D2+1)y=1, (D2—1)X+(D+1)y=2
8. Dx=vy, Dy =z, Dz =x

dx dy dz
—=—X+2, —=-y+1I, —=-X+Y
dt dt dt

10. Dx-2Dy =t?, (D+1)x-2(D+1)y=1
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Lecture 36
Systems of Linear Differential Equations

Solution of Using Determinants

If Ly,L,, L3 and L4 denote linear differential operators with constant coefficients, then a
system of linear differential equations in two variables x and y can be written as

Lix+ Loy = gq(t)
Lgx+Lgy =9a(t)

To eliminate y , we operate on the first equation with L, and on the second equation with
L, and then subtracting, we obtain

(LiLg - Lylg)x = L40 — L5

Similarly, operating on the first equation with Lzand second equation with L;and then
subtracting, we obtain
(Lils —LoLg)y = L1gs — Lggy

: L L
Since Lily - Lol =
L3 L4
L
Therefore L4071 —Lygo = % 2
92 L4
L o
and L192 — L3091 =‘
L3 02

Hence, the given system of differential equations can be decoupled into nth order
differential equations. These equations use determinants similar to those used in Cramer’s
rule:

L L
Ly Ly

01 Lo Ly d1
g2 Ly L3 92

The uncoupled differential equations can be solved in the usual manner.

L L
1 2 X
Ly Ly

= and =
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Note that

o The determinant on left hand side in each of these equations can be expanded in
the usual algebraic sense. This means that the symbol D occurring in L;is to be

treated as an algebraic quantity. The result of this expansion is a differential
operator of ordern, which is operated on x andy .

o However, some care should be exercised in the expansion of the determinant on
the right hand side. We must expand these determinants in the sense of the
internal differential operators actually operating on the functions g; and g, .

Therefore, the symbol D occurring in L; is to be treated as an algebraic quantity.

The Method

The steps involved in application of the method of detailed above can be summarized as
follows:

Step 1 First we have to write the differential equations of the given system in the
differential operator form

Lix+ Ly =g,(t)
Lex+Lay =gs(t)
Step 2 We find the determinants
Ly Lo
Ly Ly

01 Lo| |La 01
d, La| |L3 9,

Step 3 If the first determinant is non-zero, then it represents an n™ order differential
operator and we decoupled the given system by writing the differential equations

L L, yo | L,
Ls Ly 92 Ly
L L y= L O
L Ly L3 92

Step 4 Find the complementary functions for the two equations. Remember that the
auxiliary equation and hence the complementary function of each of these differential
equations is the same.

Step 5 Find the particular integrals Xp and Yp using method of undetermined
coefficients or the method of variation of parameters.
Step 6 Finally, we write the general solutions for both the dependent variables X and y

X=X +Xp, Y=Yc +Yp.
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Step 7 Reduce the number of constants by substituting in one of the differential

equations of the given system
Note that

If the determinant found in step 2 is zero, then the system may have a solution containing
any number of independent constants or the system may have no solution at all. Similar

remarks hold for systems larger than system indicated in the previous discussion.

Example 1
Solve the following homogeneous system of differential equations

2 X gy IV

d dt
%—x+ﬂ=5et
dt dt

Solution:

Step 1 First we write the differential equations of the system in terms of the differential

operator D
(2D-5)x+Dy =¢'
(D -1)x + Dy = 5e'
Step 2 We form the determinant
‘ZD—S D‘ el D| [2D-5 &
D-1 D|' |5t p| |p-1 5et

Step 3 Since the 1 determinant is non-zero

2b=5 D—(2D 5)D - (D -1)D
D-1 D|
2D-5 D 2
or =D"-4D#0
D-1 D
Therefore, we write the decoupled equations
2D-5 D el D
X =

D-1 D|  [st p

2D-5 D 2D-5 et
b-1 D D-1 5e'
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After expanding we find that

(D2 —4D)x: Det —D(5 et) = —4e!

(02 —4D) y = (2D —5)(5et) — (D —1)et = —15¢!

Step 4 We find the complementary function for the two equations. The auxiliary
equation for both of the differential equations is:

m2—4m=0:m:0,4
The auxiliary equation has real and distinct roots

XC =C + C2€4t

yC =C3+ c4e4t

Step 5 We now use the method of undetermined coefficients to find the particular
integrals X,and Y.

Since g1 (t)=—4¢', gp(t)=-15¢
We assume that
Then D xp = Ael,  D%xp = Ae'
And D yszet, DzylozBet
Substituting in the differential equations, we have

Ael —4Aet =46t

Be! —4Be! =—15¢!

or —3Aet =—4e!, —3Be! =—15¢!
Equating coefficients of e' and constant terms, we obtain
A= ﬂ B=5
3
_ 4t et
So that xp—ge : yp—5e

Step 6 Hence, the general solution of the two decoupled equations

_ _ 4 4t
X = X¢ + X =0 +C2€ +§e

y=Yc+Y¥p =03 +c4e4t + 56t
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Step 7 Substituting these solutions for xand y into the second equation of the given
system, we obtain

—c1 +(3c; +4c4)e4t =0

or ¢t =0, c 3c
1=V Cg=—-——C).
4

Hence, the general solution of the given system of differential equations is
4
x(t)= cyet +§et

y(t):c\o,—%cze‘lt +5¢

If we re-notate the constants C, and C3 as C¢; and Cy, respectively. Then the
solution of the system can be written as:

x(t)=cle4t+%et

y(t)= —%cle‘lt +Cp + 56t
Example 2
Solve

X'=3x-y-1

y' =X+ y+4et
Solution:

Step 1 First we write the differential equations of the system in terms of the
differential operator D

(D-3)x+y=-1
—x+(D-1)y = 4¢
Step 2 We form the determinant

D-3 1] |-1 1] p-3 1
-1 D-1 4 D-1 | -1 4e
Step 3 Since the 1* determinant is non-zero
D-3 1

—D?_-4D+4%#0
-1 D-—
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Therefore, we write the decoupled equations

D-3 1
X =

D-3 1] [|p-3 -1
1 p-1’”

After expanding we find that
(D-2)*x=1-4¢

(D-2)y=-1-8¢".

Step 4 We find the complementary function for the two equations. The auxiliary
equation for both of the differential equations is:

(Mm-2=0=>m=2.2
The auxiliary equation has real and equal roots

Xe = C:|_e2t + C2t€2t

Yo = 0382t + C4t€2t

Step 5 We now use the method of undetermined coefficients to find the particular
integrals X,and Y.

Since gr(t)=1-4¢e', gy(t)=-1-8¢
We assume that
t t

Xp:A+Be, yp:C+Ee
Then Dx,=Be', D?x, = Be'
And Dy, =Ee', D% =Ee
Substituting in the differential equations

(D-2)°x, = D?x, —4Dx,, +4x, =1-4e'

(D-2fy, =D?y, 4Dy, +4y, = -1-8e'
Therefore, we have
Be! —4Bel +4A+4Be! =1—4¢!

Ee! —4Ee! +4C +4Eel = —1-8¢t

or Bel +4A=1-4¢' Eel+4Cc=—-1-8¢
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Equating coefficients of e' and constant terms, we obtain

B= -4, A=l
4
C:—l, E=-8
4
So that xp:%—4et, yp:—%—Set

Step 6 Hence, the general solution of the two decoupled equations

1
X=X +X, =ce? +c,te? + = — e
c p 4

Y=Ye+¥p= cqe?t +cyte?t —%—Set

Step 7 Substituting these solutions for xand y into the second equation of the given
system, we obtain

(c3—Cy+C4)e® +(cy —Cote® =0

or C4 :CZ’ C3:C1—C4 :C1—C2.

Hence, a solution of the given system of differential equations is

1
x(t)=ce® +c te® + T 4e

y(t)=(c; —c, e +c te? —%—Set

Example 3
Given the system
Dx+ Dz =2
2x+ D2y =g
—2Dx-2y+(D+1)z=0
Find the differential equation for the dependent variables x, yandz.

Solution:

Stepl The differential equations of the system are already written in the differential
operator form.

Step 2 We form the determinant
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D 0 D t2 0 D D t2 D D 0 t?
2 D2 o [etD? 0, |2 e 0}, |2 D%
2D -2 D+1 |0 -2 D+1 |-2D 0 D+1 |-2D -2 0

Step 3 Since the first determinant is non-zero.

D 0 D

2 D?> 0 =DD2 OJJ D 2 D?
oD 2 Dad 12D —2D -2
D 0 D
or 2 D2 0 |=D[3D%+D?-4)20
—2D -2 D+1
Therefore, we can write the decoupled equations
D 0 D t> 0 D
2 D? 0 |-x=|e! D? 0
—2D -2 D+1 0 -2 D+
D 0 D D t2 D
2 D2 0 |-y=| 2 e 0
-2D -2 D+1 -2D 0 D+
D 0 D D 0 t?
2 D? 0|-z=| 2 D?¢
—-2D -2 D+ —2D -2 0

The determinant on the left hand side in these equations has already been expanded. Now
we expand the determinants on the right hand side by the cofactors of an appropriate row.

2
t 0 D

2 t 2
ol D2 0 :D 0!|t2+De D
0 -2 D+ -2 D+ 0 -2

= D2 (D +1)t? + D(-2e!) = (D% + D?)t? — 2¢!
=2—2¢
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D t?2 D t > o t
2 ¢ 0 |=D|® OJ_‘ZDD J¥+D 2 e
— + _
9D 0 D 0 D+ 2D 0
= D[(D +1e']-[(D +1)(2t?)] + D[2De']
—2et —at—2t2 + 2! = 4e! —2t% _4t.
2
D 0 t
2t 2
2 D2 et|=pP” €|, 2 D72
9D 2 0 ~2 0| |-2D -2

= D(2e") + (-4 +2D3)t? = 2et —4t? + 0
= 2e! — 42

Hence the differential equations for the dependent variables x, y and z can be written as
D[D3 + D? - 4y)x=2- 2!
or D@D3+D2—4ﬁy=4&—2¥—4t

D[3D3 + D? ~ 4y)z = 26t - 42

Again we remind that the D symbol on the left-hand side is to be treated as an algebraic
quantity, but this is not the case on the right-hand side.
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Exercise
Solve, if possible, the given system of differential equations by use of determinants.
dx dy
1. —=2x-y, —=X-2
dt T y
2. %:—yﬂ, ﬂ:x—t
dt dt
3 (D2+5)x—2y=o, -2x+(D2+2)y:0
2 2
4, d—2X=4y+et, d—2y=4x—et
dt dt
2
5. ﬂ+ﬂ:—5x, %+ﬂ:—x+4y
di2  dt dt dt
6. Dx+D2y=¢%, (D+1D)x+(D-1)y =4ed
7. (Dz—l)x—y:O, (D-1)x+Dy=0
8. (2D%-D-1)x—(2D+1)y=1, (D-1)x+Dy=-1

10. 2Dx+(D-1)y =t, Dx+ Dy

2
%-l-ﬂ:et, —M+%+x+y=0
dt dt dt2  dt

—t2
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Lecture 37
Systems of Linear First-Order Equation

In Previous Lecture

In the preceding lectures we dealt with linear systems of the form

R1(D)x +Pio (D)X +-++ Py (D)X, =Dy (t)
P2.1(D)x1+P22.(D)x2 +~--+.P2n(D)x.n =by (t)

Pui(D)X +Ph2 (D) Xg +-++ Pn (D) X = by (1)
where the Pij were polynomials in the differential operator D.

The nth Order System

1. The study of systems of first-order differential equations

dx
dtlzgl(t'xl’xz’“"xn)
dX,

d72 t, %, Xo,...,
- 92( X1, Xo Xn)
dx
d_tnzgn(t’xl’xz’“"xn)

is also particularly important in advanced mathematics. This system of n first-order
equations is called and nth-order system.

2. Every nth-order differential equation
y(n) =F(t,y,Y,..., y(n_l)

as well as most systems of differential equations, can be reduced to the nth-order system.
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Linear Normal Form

A particularly, but important, case of the nth-order system is of those systems having the
linear normal or canonical form:

dx

d_'[1 - all(t)xl +a;, (t)xz +-ta, (t)Xn + fl(t)
dx

d_'[2 - aZl(t)Xl +tay (t)X2 Tt aZn(t)Xn + T (t)
dx

dtn = anl(t)xl + anZ(t)XZ +eeet a‘nn (t)xn + fn(t)

where the coefficients a; and the f; are the continuous functions on a common interval | .
When f; (t):O,izl, 2,...,Nn,the system is said to be homogeneous; otherwise it is
called non-homogeneous.

Reduction of Equation to a System

Suppose a linear nth-order differential equation is first written as

d_ny:_a_oy_ﬁy’_..._My(n_l)+ f(t)

dt" a, a, a,
If we then introduce the variables

y=X, Y =X, y”:x3,...,y(”_1) =X

n
it follows that

4

V=X = ¥ =X =YY =y =, =
Hence the given nth-order differential equation can be expressed as an nth-order system:

X\ =X
X2 :X3
X3 =X
14
Xn—l—xn
a a _
Xy =Xy = Xy == x4 f (1)
1 2 n
an an n

Inspection of this system reveals that it is in the form of an nth-order system.
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Example 1

Reduce the third-order equation

2y" =—y—4y'+6y" +sint
or 2y" —6y"+4y'+y =sint
to the normal form.
Solution: Write the differential equation as

1 1 .
"= y-2y' +3y"+=sint
y 2y y y 5
Now introduce the variables

Y=X,Y =%,y =X,.

Then
X =Y =%
X =Y"=%
Xé — ym
Hence, we can write the given differential equation in the linear normal form
X| = Xp
Xp = X3
1 1 .
X3 =——=X% —2Xy +3X3 +=sint
2 2
Example 2

Rewrite the given second order differential equation as a system in the normal form

2
2d—;’+ 2Y 5y
dx dx
Solution:
We write the given the differential equation as
2
a?y_ i 5,
dx2 dx 2
Now introduce the variables
y=X, Y =X
Then
y' = xi =X
y” — X!2
So that the given differential equation can be written in the form of a system
X=X

, 5
X9 = —2X2 +EX1

This is the linear normal or canonical form.
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Example 3
Write the following differential equation as an equivalent system in the Canonical form.
d 3
—2/ +y=¢'
dt
Solution:
First write the given differential equation as
d’y t
4—=-y+e
dt
dividing by 4 on both sides
d? 1 1
or _3y =——y+=¢
dt 4 4

Now introduce the variables
Y=X, Y =%, Y'=X

Then
y' =X =%
Y =% =%
ym — Xé
Hence, the given differential equation can be written as an equivalent system.
X[ = X
Xp = X3
' t

Clearly, this system is in the linear normal or the Canonical form.

Example 4

Rewrite the differential equation in the linear normal form
t2y"+ty'+ (t2 -4)y=0

Solution:

First we write the equation in the form
tZyﬂ — _ty!_(tZ _4)y

2_
or y”=—}y'—(t—24)y, t=0
t t
or y/!__lyr_t2_4
t t2

Then introduce the variables
y=X, Y =X
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Then
y'=X =X
y” — Xé
Hence, the given equation is equivalent to the following system.
X =X
X, =—<x -4 X
2 t 2 t2 1

The system is in the required linear normal or the cnonical form.
Systems Reduced to Normal Form

Using Procedure similar to that used for a single equation, we can reduce most systems of
the linear form

R1(D)x + PRy (D)X +++ Py (D) %y =by (1)
P2'1(D)X1+P22‘(D)X2 +----|-.P2n(D)X‘n =b, (1)

Pii(D)X +Pho (D) Xg +-++ Py (D) X = by (1)
to the canonical form. To accomplish this we need to solve the system for the highest
order derivative of each dependent variable.

Note:
It is not always possible to solve the given system for the highest-order derivative of each
dependent variable.

Example 5
Reduce the following system to the normal form.

(DZ—D+5)X+2D2y:et

—2X + (D2+2)y =3t?

Solution:

First write the given system in the differential operator form

D2x+2D?%y =e' —5x+ Dx

Dzy:Bt2 +2X-2y
Then eliminate D?y by multiplying the second equation by 2 and subtracting from first

equation to have
D?*x =e' —6t> —9x + 4y + Dx.
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Also Dzy:3t2+2x—2y
We are now in a position to introduce the new variables. Therefore, we suppose that

Dx=u, Dy=v
Thus, the expressions for D?x and D?y, respectively, become

Du=e¢' -6t —9x+4y+u
Dv =3t* + 2x - 2y.

Thus the original system can be written as
Dx=u
Dy =v
Du=-9x+4y+u+e' -6t
Dv = 2x -2y +3t°

Clearly, this system is in the canonical form.

Example 6

If possible, re-write the given system in the canonical form
X'+4x -y’ =Tt
X'+ y'—2y =3t
Solution:

First we write the differential equations of the system in the differential operator form
Dx+4x—-Dy =Tt
Dx +Dy -2y =3t
To eliminate Dy we add the two equations of the system, to obtain
2Dx =10t -4x+2y
or Dx=-2x+y+5t
Next to solve for the Dy, we eliminate DX . For this purpose we simply subtract the first
equation from second equation of the system, to have
—-4x+ 2Dy -2y = -4t
2Dy =4x+2y -4t
or Dy =2x+y-2t
Hence the original system is equivalent to the following system
Dx=-2x+y+5t
Dy =2x+y-2t
Clearly the system is in the normal form.
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Example 7

If possible, re-write the given system in the linear normal form

3 2

Ex g%, dy
dt® dt>2  dt
2

Y 10249, 3 WY
dt? dt ~ dt

Solution:
First write the given system in the differential operator form

D3x = 4x —3D%x + 4Dy

D2y =10t? —4Dx+ 3Dy
No need to eliminate anything as the equations are already expressing the highest-order
derivatives of X and Yy in terms of the remaining functions and derivatives. Therefore, we

are now in a position to introduce new variables. Suppose that
Dx=u, Dy=v

D2x=Du=w
D2y =Dy, D3x = Dw

Then the expressions for D3x and for D2y can be written as
Dw=4x+4v-3w

Dv =10t% —4u +3v
Hence, the given system of differential equations is equivalent to the following system
Dx=u

Dy=v
Du=w
Dv =10t% —4u + 3v

Dw=4x+4v-3w
This new system is clearly in the linear normal form.

Degenerate Systems
The systems of differential equations of the form

R1(D)x + P2 (D)X +-+++ Py (D)x

P (D)X + Py (D)Xg +-+-+ Py (D) X =by (1)
those cannot be reduced to a linear system in normal form is said to be a degenerate
system.
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Example 8
If possible, re-write the following system in a linear normal form
(D+1x+(D+1)y=0
2Dx+(2D+1)y =0

Solution:
The given system is already written in the differential operator form. The system can be
written in the form

Dx+x + Dy+y=0
2Dx +2Dy +y=0
We eliminate DX to solve for the highest derivative Dy by multiplying the first

equation with 2 and then subtracting second equation from the first one. Thus we have
2Dx+2x + 2Dy+2y=0

+2Dx + 2Dy+ y=0
2X + y=0

Therefore, it is impossible to solve the system for the highest derivative of each
dependent variable; the system cannot be reduced to the canonical form. Hence the
system is a degenerate.

Example 9

If possible, re-write the following system of differential equations in the canonical form
X"+y'=1
Xn + yr — _1

Solution:

We write the system in the operator form

D2x+Dy= 1

D2x+Dy=-1
To solve for a highest order derivative of y in terms of the remaining functions and
derivatives, we subtract the second equation from the first and we obtain

D2x + Dy=1
+D?x+ Dy =-1
0=2

This is absurd. Thus the given system cannot be reduced to a canonical form. Hence the
system is a degenerate system.
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Example 10
If possible, re-write the given system

(2D +1)x - 2Dy = 4

Dx - Dy= el
Solution:
The given system is already in the operator form and can be written as
2Dx+x—-2Dy= 4
Dx - Dy= el
To solve for the highest derivative Dy , we eliminate the highest derivative DX .

Therefore, multiply the second equation with 2 and then subtract from the first equation
to have
2Dx+x—-2Dy = 4

+2Dx  F2Dy =+2¢'

X = 4-2¢"
Therefore, it is impossible to solve the system for the highest derivatives of each variable.
Thus the system cannot be reduced to the linear normal form. Hence, the system is a
degenerate system.

Applications

The systems having the linear normal form arise naturally in some physical applications.
The following example provides an application of a homogeneous linear normal system
in two dependent variables.

Example 11

Tank A contains 50 gallons of water in which 25 pounds of salt are dissolved. A second
tank B contains 50 gallons of pure water. Liquid is pumped in and out of the tank at rates
shown in Figure. Derive the differential equations that describe the number of pounds

x,(t)and x, (t)of salt at any time in tanks Aand B, respectively.

Pure water 3 gal / min Mixture 1 gal / min
—>

ﬁ
Mixture 3 gal / min

Mixture 4 gal / min
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Solution:
Tank A
Input through pipea = (3 gal/min)-(0 Ib/gal)=0
Input through pipeb = (1 gal/min)-| 2 Ib/gal |==2 Ib/min
50 50
Thus, total input for the tank A = O+ﬁ:ﬁ
50 50
: : X1 4% :
Output through pipe ¢ = (4 gal/min)- %Ib/gal =Elb/m|n
Hence, the net rate of change of x,(t) in Ib/minis given by
dx, .
—= =input - output
at p p
N d X 4%
dt 50 50
dx, -2 X,
or —Llo_—x+2
d 25 50
Tank B
Input through pipe cis 4 gal/min :%Ib/min
X .
Output through pipe bis 1 gal/min :5—élb/ min
. 3X .
Similarly output through pipe d is 3 gal/min =5—02Ib/m|n
X, 3X, 4x,
Total output for thetank b =%+ —2=—=2
50 50 50
Hence, the net rate of change of x,(t)in Ib/min
dx, .
—= =input-output
at p p
or dx, _ 4y 4%
dt 50 50
or dx, 2% 2x
dt 25 25
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Thus we obtain the first order system

dx, -2 X,

_ = X1 + =
dt 25 50
dx, 2% 2X,
dt 25 25

We observe that the foregoing system is accompanied the initial conditions
x,(0)= 25, x,(0)=0.

Exercise
Rewrite the given differential equation as a system in linear normal form.
d?y _dy .
1. ——-3—+4y=sin3t
dt>  dt
2. y"-3y"+6y —10y=t%+1
4 2
3. u—2u+4ﬂ+y:t
dt*  dt?  dx
4 3
4 2d—3'+d—§'—8y=10
dt dt

Rewrite, if possible, the given system in the linear normal form.
5. (D—1)x—Dy=t2, X+ Dy=5t-2
6. x"—2y"=sint, x"+y"=cost
7. myxy = —Kyxg + Ko (X — %), MyXp =— Ko (X — %)
8. D’x+ Dy =4t, ~D’x+(D+1)y =6t* +10
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Lecture 38
Introduction to Matrices

Matrix

A rectangular array of numbers or functions subject to certain rules and conditions is
called a matrix. Matrices are denoted by capital letters A, B,...,Y,Z . The numbers or
functions are called elements or entries of the matrix. The elements of a matrix are
denoted by small lettersa,b,...,y,z.

Rows and Columns

The horizontal and vertical lines in a matrix are, respectively, called the rows and
columns of the matrix.

Order of a Matrix

If a matrix has m rows and n columns then we say that the size or order of the matrix
ismxn. If A isamatrix having m rows and ncolumns then the matrix can be written as

all a12 e aln

a21 a22 e a2n
A=

An1 QAn2 .-+ Agpn

Square Matrix
A matrix having nrows and n columns is said to be a nxn square matrix or a square
matrix of order n. The element, or entry, in the ith row and jth column of a mxn

matrix A is written asajj. Therefore a 1 x 1 matrix is simply a constant or a function.

Equality of matrix
Any two matrices A and B are said to be equal if and only if they have the same orders
and the corresponding elements of the two matrices are equal. Thus if A= [aij]mXn and

A=B<:>aij :bij’ Vi,j

Column Matrix
A column matrix X is any matrix having n rows and only one column. Thus the column
matrix X can be written as

X = 1b31 [=[bj1]nx

bnl
A column matrix is also called a column vector or simply a vector.
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Multiple of matrices

A multiple of a matrix A is defined to be

[ kall ka12 oo ka]_n ]
ka21 ka22 oo ka2n
kKA=| . [ =[kaijImxn
| kapy kamo e kamn |

Where k is a constant or it is a function. Notice that the product kA is same as the
product Ak . Therefore, we can write

kA = Ak
Example 1
2 -3 10 -15
(a) 5. 4 ~1|={20 -5
1/5 6 1 30
1 et
(b) el.|-2|=]-2¢
4 4et

Since we know that kA = Ak . Therefore, we can write
2] |2e 3 2
o3t _ _ o3t
5| [5e~3t 5

Addition of Matrices

Any two matrices can be added only when they have same orders and the resulting matrix
is obtained by adding the corresponding entries. Therefore, if A=[ajj] and B =[bj;] are

two mxn matrices then their sum is defined to be the matrix A+ B defined by

A+B=[aij +bij]
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Example 2

Consider the following two matrices of order 3x3

2 -1 3 4 7 -8
A=| 0 4 6|, B=|9 3 5
-6 10 -5 1 -1 2

Since the given matrices have same orders. Therefore, these matrices can be added and
their sum is given by

2+4 -1+7 3+(-8) 6 6 -5
A+B=| 0+9 4+3 6+5 [=| 9 7 11
-6+1 10+(-2) -5+2 -5 9 -3

Example 3

Write the following single column matrix as the sum of three column vectors

3t% —2¢
t? + 7t
5t
Solution
3t? — 2¢! 3t? 0 _2¢t 3 0 )
247t |=| 2 |+ 7t{+] O |=|1[t?+]7|t+] O |e
5t 0 5t 0 0 5 0

Difference of Matrices

The difference of two matrices A and B of same order mx n is defined to be the matrix
A-B=A+(-B)
The matrix — B is obtained by multiplying the matrix B with—1. So that

-B=(-1)B
Multiplication of Matrices

Any two matrices A and B are conformable for the product AB, if the number of
columns in the first matrix A is equal to the number of rows in the second matrixB .
Thus if the order of the matrix A is mxn then to make the product AB possible order
of the matrix B must benx p. Then the order of the product matrix AB is mx p. Thus

Amxn 'anp :mep
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If the matrices A and B are given by

Then

AB =

Example 4

lag; a;p - ag big bp o byp
ap; ayp -+ A bpy by -+ by
, B=
_aﬁﬂ amy - amn_ _bnl bn2 ... bnp_
[ag; ayp - gy || b b o by
apy apy -+ Ay || P21 bop -+ byp
[@m1 8m2 - amn__bnl bpp - b”p_

agibyy +agobog +---+agpbpy -agibyp +a1obpp + -0+ a1nbpp

ap1byy +apobpy + -+ appbpy --az1bp + @by + o+ azpbpp

amib1 +amobog + -+ amnbpy - @mibrp +amabop + o+ @mpbpp

n
=1 > aikhy
k=1 nxp

If possible, find the products AB and BA, when

(a)

(b)

Solution

mlod el

—4 -3
A=|1 0|, B=
2 0
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(a) The matrices A and B are square matrices of order 2. Therefore, both of the products
AB and BA are possible.

4 7\(9 -2 4.9+7-6 4-(-2)+7-8 78 48
AB: = =
3 5/ 6 8 3:9+5-6 3-(-2)+5-8 57 34

9 -2\4 7 9:4+(-2)-3 9-7+(-2)-5 30 53
Similarly BA= = =

6 8 \3 5 6-4+8-3 6-7+8-5 48 82
(b) The product AB is possible as the number of columns in the matrix A and the

number of rows in B is 2. However, the product BA is not possible because the number of
rows in the matrix B and the number of rows in Ais not same.

5.(-4)+8-2  5-(-3)+8-0) (-4 -15
AB=|1-(-4)+0-2  1.(-3)+0.0 |=|-4 -3

2-(-4)+7-2 2-(-3)+7-0 6 -6
Note that

In general, matrix multiplication is not commutative. This means that AB = BA . For
example, we observe in part (a) of the previous example

78 48 30 53
AB = , BA=
57 34 48 82

Clearly AB = BA.. Similarly in part (b) of the example, we have

—4 -15
AB=|-4 -3
6 -6

However, the product BA is not possible.
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Example 5

2 -1 3)-3) (2-(-3)+(-1)-6+3-4) (0
(a) 0 4 5|6 |=| 0(3)+4-6+5-6 |=|44
1 -79)\4) (1(-3)+(-76+9-4) (-9

-4 2\ x —4x+2y
[)-Cacer
3 8y 3X+8y

Multiplicative Identity

For a given positive integern, the nxn matrix

100 -0
010-.--0
=10 01.--0
0060 -1

is called the multiplicative identity matrix. If A is a matrix of ordernxn, then it can be
verified that

I-A=A-1=A
Also, it is readily verified that if X isany nx1column matrix, then I - X = X

Zero Matrix

A matrix consisting of all zero entries is called a zero matrix or null matrix and is denoted
by O. For example

00

oA ol o

00

and so on. If Aand O are mx n matrices, then
A+O=0+A=A
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Associative Law

The matrix multiplication is associative. This means that if A, B and Caremx p ,
pxrand rxn matrices, then

A(BC) = (AB)C
The resultisa mxn matrix.

Distributive Law

If B and C are matrices of order rxn and A is a matrix of order mxr, then the
distributive law states that
A(B+C)=AB+ AC

Furthermore, if the product (A+ B)C is defined, then
(A+B)C=AC+BC

Determinant of a Matrix
Associated with every square matrix A of constants, there is a number called the

determinant of the matrix, which is denoted by det(A) or |A|

Example 6

Find the determinant of the following matrix
3 62

A= 2 51

-12 4
Solution

The determinant of the matrix A is given by
3 62

det(A)=[2 5 1

-12 4
We expand the det(A) by cofactors of the first row, we obtain
3 6 2
5 1 |2 1 2 5
det(A)=(2 5 1/=3 -6 +2
2 4 -1 4 |-1 2
-12 4
or det(A) =3(20-2)-6(8+1) +2(4+5) =18
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Transpose Of a Matrix

The transpose of a mxn matrix A is obtained by interchanging rows and columns of the

matrix and is denoted by A" In other words, rows of A become the columns of A" . If

411 a2 . . . o Qqp
apy axp . . . - &
A3 32 8n
8my dm2 - - - - dmn
Then
811 a1 - 8m
d2 ap» v am
Alf _
8n dn v Amn

Since order of the matrix A is mxn, the order of the transpose matrix A is nxm.

Example 7

(a) The transpose of matrix

3 6 2
A{Z 51
-12 4
32 -1
is A”[s 5 2
21 4
(b) If X denotes the matrix
5
X =0
3
Then X" =[5 0 3
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Multiplicative Inverse of a Matrix

Suppose that A is a square matrix of order nxn. If there exists an nxn matrix B such
that

AB =BA=1
Then B is said to be the multiplicative inverse of the matrix A and is denoted by

B=A"l,
Non-Singular Matrices

A square matrix A of order nxnis said to be a non-singular matrix if
det(A)=0
Otherwise the square matrix A is said to be singular. Thus for a singular A we must
have
det(A)=0
Theorem

If A is a square matrix of order nxn then the matrix has a multiplicative inverse A7Lif
and only if the matrix A is non-singular.

Theorem
Let A be a non singular matrix of order nxn and let C; denote the cofactor (signed

minor) of the corresponding entry a;jin the matrix A i.e.
Cij = (D" I M
M is the determinant of the (n—1)x (n—1) matrix obtained by deleting the ith row and

jth column from A. Then inverse of the matrix A is given by

-1 1 t
=——(Cyj)"
det(A)
Further Explanation
1. For further reference we take n=2so that A is a 2x2 non-singular matrix given by

a1 a2
A=
a1 ap

Therefore Cy1 =ayy, Cip =—ay1, Coy =—ayp andCyy =ay7. So that

tr
Al 1 a2 ~axn| 1 a2 —ap
det(A) (-2, ayg det(A){-ay ay
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2. For a 3x 3 non-singular matrix
&1 &2 Y3
A=| 31 3y a3
d31 @32 @33
dpz azs dp1 a3 a, a
Ci1= Cr2 =~ O
d3zo> asg d31 ass a3 Ay
and so on. Therefore, inverse of the matrix A is given by
Cii Co amy
ato—tlc, cpyC
detAl 12 b2 V32
Ci3 Ca3 Cgs
Example 8
Find, if possible, the multiplicative inverse for the matrix
1 4
A= .
2 10
Solution:
The matrix A is non-singular because
1 4
det(A) = =10-8=2
2 10
Therefore, A Lexists and is given by
aicl 10 -4 _ 5 -2
2\-2 1 -11/2
Check
1 1 45 -2 5-4 -2+2 10
AA " = = = =1
2 10\-11/2 10-10 —-4+5 01
1 5 -2)1 4 5-4 20-20 10
AA_ = = = =|
-11/2)2 10 -1+1 -4+5 01
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Example 9
Find, if possible, the multiplicative inverse of the following matrix

2 2
A=
33
Solution:

The matrix is singular because

2 2
det(A)=| |=2.3-2.3=0
33

Therefore, the multiplicative inverse A~Lof the matrix does not exist.

Example 10
Find the multiplicative inverse for the following matrix
2 2 0
A=l -2 1 1
3 0 1
Solution:
2 20
Since det(A)=|-2 1 1{=2(1-0)-2(-2-3)+0(0-3)=12=0
3 01

Therefore, the given matrix is non singular. So that, the multiplicative inverse A~Lof the
matrix A exists. The cofactors corresponding to the entries in each row are

1 -2 -2 1
Ciu=| |=1 Cip =~ =5 Cy3= =-3
0 3 3 0

20 20 2 2
Cau=- |=-2, Cp-= =2, Coz=— |=6
01 31 30
20 2 0 2 2
Ca1 = =2, Cao =- =-2, Cg3= =6
11 -21 -21
1 -2 2 1/12 -1/6 1/6
Hence A‘lzé 5 2 -2|=|5/12 1/6 -1/6
-3 6 6 -1/4 1/2 1/2

Please verify that A- Al=A1 A=
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Derivative of a Matrix of functions
Suppose that

At =[a-- t ]
®=ajo]
is a matrix whose entries are functions those are differentiable on a common interval,

then derivative of the matrix A(t) is a matrix whose entries are derivatives of the
corresponding entries of the matrix A(t) . Thus

dA _| %y
dt dt
mxn

The derivative of a matrix is also denoted by A'(t).
Integral of a Matrix of Functions
Suppose that A(t):(aij (t))rnxn IS a matrix whose entries are functions those are

continuous on a common interval containing t, then integral of the matrix A(t) is a
matrix whose entries are integrals of the corresponding entries of the matrix A(t). Thus

t
t
j A(s)ds = U a; (s)dsj
ty
tO mxn
Example 11
Find the derivative and the integral of the following matrix
sin 2t
X({t)=| e*
8t-1
Solution:

The derivative and integral of the given matrix are, respectively, given by

d .
at (sin 2t) 2cos 2t
, d, at 3t
X't)=| —(e = 3e
(t) ddt( )
—(8t-1 8
dt( )
t
J'sinths
0 —1/2cos2t+1/2

t t
[X(s)ds=| [ eds |=|1/3e% -1/3
0 0

¢ a2 —t
J'8t—1ds
0
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Augmented Matrix

Consider an algebraic system of nlinear equations in nunknowns
di1X1 +agoXo +---+ Xy = bl
Ap1X) +apXo + -+ ayp Xy =by

Suppose that A denotes the coefficient matrix in the above algebraic system, then

Q1 A2 - Qg

dp1 apy -+ App
A=

|8m1 @m2 *° 3mn |

It is well known that Cramer’s rule can be used to solve the system, whenever det(A) =0 .
However, it is also well known that a Herculean effort is required to solve the system
ifn>3. Thus for larger systems the Gaussian and Gauss-Jordon elimination methods are
preferred and in these methods we apply elementary row operations on augmented matrix.
The augmented matrix of the system of linear equations is the following nx(n+1)

matrix

a1 app b

apyp axp -+ Ay by
A, =

| an1 Qn2 ot @pn by |

If B denotes the column matrix of the by, Vi=12,...,n then the augmented matrix of
the above mentioned system of linear algebraic equations can be written as(A| B).

Elementary Row Operations
The elementary row operations consist of the following three operations

o Multiply a row by a non-zero constant.

o Interchange any row with another row.

o Add a non-zero constant multiple of one row to another row.
These row operations on the augmented matrix of a system are equivalent to, multiplying
an equation by a non-zero constant, interchanging position of any two equations of the
system and adding a constant multiple of an equation to another equation.
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The Gaussian and Gauss-Jordon Methods

In the Gaussian Elimination method we carry out a succession of elementary row
operations on the augmented matrix of the system of linear equations to be solved until it
is transformed into row-echelon form, a matrix that has the following structure:

o The first non-zero entry in a non-zero row is 1.

o In consecutive nonzero rows the first entry 1 in the lower row appears to the right
of the first 1 in the higher row.

o Rows consisting of all 0’s are at the bottom of the matrix.

In the Gauss-Jordan method the row operations are continued until the augmented matrix
is transformed into the reduced row-echelon form. A reduced row-echelon matrix has the
structure similar to row-echelon, but with an additional property.

o The first non-zero entry in a non-zero row is 1.

o In consecutive nonzero rows the first entry 1 in the lower row appears to the right
of the first 1 in the higher row.

o Rows consisting of all 0’s are at the bottom of the matrix.

o A column containing a first entry 1 has 0’s everywhere else.

Example 1

(a) The following two matrices are in row-echelon form.

150 |2

001 -62 |2
010 |-1],

000 O 1 |4
000 (O

Please verify that the three conditions of the structure of the echelon form are satisfied.

(b) The following two matrices are in reduced row-echelon form.

100 |7
001 -60 |-6
010_1,{ }
000 0O 1 |4
000 |O

Please notice that all remaining entries in the columns containing a leading entry 1 are 0.

Notation
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To keep track of the row operations on an augmented matrix, we utilized the following
notation:

Symbol Meaning
R:: Interchange the rows i and j.
1
R Multiply the ith row by a nonzero constantc.
|

CR; + R Multiply the ith row by c and then add to the jth row.

Example 2

Solve the following system of linear algebraic equations by the (a) Gaussian elimination
and (b) Gauss-Jordan elimination

X + 2% —X3=-1
OX +7Xy —4x3= 9
Solution

(@) The augmented matrix of the system is

2 6 1|7
1 2 -1-1
5 7 -49

By interchanging first and second row i.e. by R, , we obtain

1 2 -1-1
2 6 1|7
S 7 -49

Multiplying first row with —2 and —5 and then adding to 2" and 3™ row i.e. by
—-R; + R, and-5R; + R5, We obtain

1 2 -1
0 2 3|9
0 -3 1|14

Multiply the second row with1/2, i.e. the operation % R,, yields
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1 2 -1]-1
0 1 3/29/2
0 -3 1|14

Next add three times the second row to the third row, the operation 3R, +R; gives

1 2 -1|-1
0 1 3/2(9/2
0 0 11/255/2

Finally, multiply the third row with2/11. This means the operation 1—21R1

1 2 -1/-1
0 1 3/29/2
00 1|5

The last matrix is in row-echelon form and represents the system
X1 +Xp —X3 =1
Xo + g X3=9/2

X3 = 5
Now by the backward substitution we obtain the solution set of the given system of linear
algebraic equations

Xl :10, X2 :—3, X3 :5
(b) W start with the last matrix in part (a). Since the first in the second and third rows are
1's we must, in turn, making the remaining entries in the second and third columns Os:

1 2 -1/-1
0 1 3/29/2
0 0 1|5
Adding —2 times the 2nd row to first row, this means the operation-2R, + R;, we have
1 0 -4|-10
0 1 3/29/2
00 1|5

Finally by 4 times the third row to first and —1/2 times the third row to second row, i.e.

. -1 .
the operations 4R; + R, and7 Rs +R,, Yields
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10 0|-10
010|-3
001 5

The last matrix is now in reduce row-echelon form .Because of what the matrix means in
terms of equations, it evident that the solution of the system
Xl :10, X2 :—3, X3 :5

Example 3

Use the Gauss-Jordan elimination to solve the following system of linear algebraic
equations.

X+3y—-2z=-7
4x+y+32=5
2X—-5y+7z=19
Solution:
The augmented matrix is
1 3 -2-7
4 1 3|5
2 -5 7119

—4R; +R, and - 2R, + R, Yields

1 3 -2-7
0 -11 11|33
0 -11 11|33
lle and llR?, produces
11 11
1 3 -2-7
01 -1-3
01 -1-3
3R, + Ry and —R, + Ry gives
10 1|2
01 -1-3
00 0/0

In this case the last matrix in reduced row-echelon form implies that the original system
of three equations in three unknowns.
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X+2=2, y—-z=-3
We can assign an arbitrarily value toz . If we letz =t, t € R, then we see that the system
has infinitely many solutions:

X=2-t, y=-3+t, z=t
Geometrically, these equations are the parametric equations for the line of intersection of

the planes
X+0y+0z=2, Ox+y-z=-3

Exercise
Write the given sum as a single column matrix
2 -1 3t
Lostt |+(t-1)-t|-2 4
-1 3 -5t
1 -3 4 t —t 2
2. |2 5 -1||2t-1(+| 1 |-| 8
0 -4 -2 —t 4 -6
Determine whether the given matrix is singular or non-singular. If singular, find AL,
3 2 1
3. A= 4 1 O
-2 5 -1
4 1 -1
4. A=l 6 2 -3
-2 -1 2
X
Find d—
dt
1.
5. x - Esln 2t —4cos2t

—3sin 2t + 5cos 2t

6. If A(t)=[ )

e cosrt

J then find (a) f[A(t)dt, (b) 't[A(s)ds.
2t 3t2-1 0 0

7. Find the integral_z[B(t)dt if B(t)—(6t 2)
' 1 1/t 4t

Solve the given system of equations by either Gaussian elimination or by the Gauss-
Jordon elimination.
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8.

10.

5x—-2y+4z=10
X +y+z =9
4x-3y+3z=1
X + Xo - X3 - X=-1
X + X + X3 + X4=3
X - Xp + X3 - %X =3
4% + Xp-2X%3+X,= 0
X+ Xy —X3+3X4 =1

Xo —X3 —4X, =0
X +2Xy) —2%3—X4 =6
A% +7X, — IX3 =9
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Lecture 39
The Eigenvalue problem

Eigenvalues and Eigenvectors

Let 4 be a nx n matrix. A number /4 is said to be an eigenvalue of A if there exists a

nonzero solution vector K of the system of linear differential equations:
AK =K

The solution vector K is said to be an eigenvector corresponding to the eigenvalue A .
Using properties of matrix algebra, we can write the above equation in the following
alternative form

(4-AIK =0
where [ is the identity matrix.
ky
ks
If we let K= ks
k

Then the above system is same as the following system of linear algebraic equations
(Clll—/l)kl +Cl]_2k2 ++alnk :O

n

aZlkl +(6122 _l)kz +---+a2nkn :0

anlkn +an2k2 +---+(ann —ﬂ,)kn :O

Clearly, an obvious solution of this system is the trivial solution
ky=k,=...=k,=0
However, we are seeking only a non-trivial solution of the system.

The Non-trivial solution
The non-trivial solution of the system exists only when

det(4— Al)=0

This equation is called the characteristic equation of the matrix 4. Thus the Eigenvalues
of the matrix A are given by the roots of the characteristic equation. To find an
eigenvector corresponding to an eigenvalue A we simply solve the system of linear
algebraic equations

det(A-AI)K =0
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This system of equations can be solved by applying the Gauss-Jordan elimination to the
augmented matrix

(4-21 |0).
Example 4

Verify that the following column vector is an eigenvector

1
K=|-1
1
is an eigenvector of the following 3x 3 matrix
0 -1 -3
A= 2 3 3
-2 1 1

Solution:
By carrying out the multiplication AK , we see that

0 -1 -3)(1 -2
AK=| 2 3 3| -1]=(-2)] 2 |=(-2)K
2 1 1)1 1

Hence the number A =-2 is an eigenvalue of the given matrix 4.

Example 5

Find the eigenvalues and eigenvectors of

1 2 1
A=6 -1 0
-1 -2 -1
Solution:
Eigenvalues

The characteristic equation of the matrix A4 is

1-2 2 1
det(4-Al)=| 6 -1-12 0 |=0
-1 -2 -1-2

Expanding the determinant by the cofactors of the second row, we obtain
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— 222 +122=0

This is so much easy given below the explanation of the above kindly see it and let me

know if you have any more query

L: STAND FOR LEMDA

(1-L)((-1-L) (-1-L) -0)-2(6(-1-L)-0) +1(6(-2) +1(-1-L) =0
(1-L)(1+L~2+2L)-2(-6-6L) +1(-12 -1-L) =0
(1-L)(1+L"2+2L)+12+12L+1(-13-L) =0
1+1L"2+21L-L-L"3-2L"2+12+121-13-L=0
-LA3-LMN2+12L=0

AA+4)1-3)=0
Hence the eigenvalues of the matrix are
j./l :0, ).,2 :_4, 13 :3-

Eigenvectors

For A, =0 we have

1 2 110
(4-0]0)=| 6 -1 0|0
_1 —2 —1j0
By —6R1+R2, R1+R3
1 2 110
0 -13 -6|0
0 O 010
1
By ——R
y 1372
1 2 1 |0
1 6/13|0
0 0 0 |0
By 2R, + R;
1 0 1/13|0
1 6/13|0
0 0 0 |0
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Thus we have the following equations in k;, k,andks;. The number k5can be chosen

arbitrarily
Jy = —(1/13)ky, ky =—(6/13) k3

Choosingk; =—13, we get k; =1 and k, = 6. Hence, the eigenvector corresponding 4, =0

IS

1
K ,=| 6
-13
For A, =—4, we have
5 2 1/0
(4+4 |0)=| 6 3 00
-1 -2 3/0
By (-1)R3, Rs;
1 2 -3/0
6 3 010
52 110
By —6R; + Ry, —5R; + R,
1 2 -30
0 -9 180
0 -8 160
By —%Rz’ —%R3
1 2 -3]0
01 -2|0
01 -210
By —2R, + R|, — Ry +R;
10 1(0
01 -2/0
00 0f0

Hence we obtain the following two equations involving k;, k,and k3.
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Choosing k3 =1, we have k; =—1, k, =2 . Hence we have an eigenvector
corresponding to the eigenvalue A, = —4

K,=|2

Finally, for 4; = 3, we have

-2 2 1/0
(4-3110)=| 6 -4 00
-1 -2 -4{0

By using the Gauss Jordon elimination as used for other values, we obtain (verify!)

1 0 110
0 1 3/2(0
0 0 0|0

So that we obtain the equations

kl = —k3, kz = (—3/ 2)k3
The choice k3 =—2 leadstoky =2, k&, =3. Hence, we have the following eigenvector

Note that
The component k; could be chosen as any nonzero number. Therefore, a nonzero

constant multiple of an eigenvector is also an eigenvector.

Example 6
Find the eigenvalues and eigenvectors of

53]

Solution:
From the characteristic equation of the given matrix is
3-4 4
det(4-Al)= =0
-1 7-2
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or B=A)(7-A)+4=0=(2-5) =0
Therefore, the characteristic equation has repeated real roots. Thus the matrix has an
eigenvalue of multiplicity two.

=24, =3
In the case of a 2x2 matrix there is no need to use Gauss-Jordan elimination. To find the
eigenvector(s) corresponding to A, = 5we resort to the system of linear equations
(A —-57 ) K=0
or in its equivalent form
-2k + 4k, =0
ky + 2k, =0
It is apparent from this system that
ky =2k,.
Thus if we choose k£, =1, we find the single eigenvector

o

Example 7
Find the eigenvalues and eigenvectors of
9 11
A=|1 9 1
11 9

Solution

The characteristic equation of the given matrix is

9-14 1 1
det(4-Al)=| 1 9-2 1 |=0
1 1 9-2
or (1-11)(21-8)*=0=>1=11, 8, 8
Thus the eigenvalues of the matrix are A =1L 4 =43=8
For 4, =11, we have
-2 1 1]0
(4-11710)=] 1 -2 110
1 1 -2|0

The Gauss-Jordan elimination gives

383

© Copyright Virtual University of Pakistan



Differential Equations (MTH401) VU

1 0 -1, 0
01 -110
0 0 00
Hence, ky = kg, k, = kg. If k3 =1, then
1
K =1
1
Now for 4, =8 we have
1 1 1/0
(A—8]|0): 1 1 1/0
11 10
Again the Gauss-Jordon elimination gives
1 1 1|0
0 0 0|0
0 0 0|0
Therefore, ky +k, +k3=0

We are free to select two of the variables arbitrarily. Choosing, on the one hand,
k, =1,k; =0and, on the other,k, =0, k; =1, we obtain two linearly independent
eigenvectors corresponding to a single eigenvalue
-1 -1
K,=|1 |,K;=|0
0 1
Note that

Thus we note that when a mnxmn matrix A possesses n  distinct
eigenvalues 4, 45, ..., 4,, a set of n linearly independent eigenvectors Ky, K>, ..., K

n
can be found.

However, when the characteristic equation has repeated roots, it may not be possible to
find n linearly independent eigenvectors of the matrix.

Exercise

Find the eigenvalues and eigenvectors of the given matrix.
-1 2
1.
-7 8
2 1
2.
2 1
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2 |78 _j
16 0
5 -1 0
4, |0 -5 9
5 -1 0
3 00
5. |0 2 0
4 0 1
0 4 0
6. |-1 -4 O
0 0 -2
Show that the given matrix has complex eigenvalues.
7 -1 2]
-5 1
2 -1 0
8. |5 2 4
0o 1 2
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Lecture 40
Matrices and Systems of Linear First-Order Equations

Matrix form of a system

Consider the following system of linear first-order differential equations

dx

d_tl =ay g (t)Xg +ag, (1) Xy +---+ay, ()X, + f(t)
dX,

S22 (0% + 22 (0% + -+ + 80 Oy + ()
dx,

_'[ = anl(t)xl + anz(t)xz +eeet ann(t)xn + fn (t)

Suppose that X, A(t) and F(t), respectively, denote the following matrices

X (1) ap(t) ag,(t) - ag,(t) fi(t)
X — Xz:(t) A = a21:(t) azzz(t) aZn:(t) CE(t) = fz:(t)
Xn (t) Any (t) An2 (t) “** Qpp (t) fn (t)

Then the system of differential equations can be written as

X (t) a (1) ap(t) - () ) X fy (t)
d %) || () apM) - an®) || %M | | (1)
dt ' : : : : :
Xn (t) an1 (t) an2 (t) A (t) Xn (t) 1:n (t)
or simply
dX

= ADX +F()

If the system of differential equations is homogenous, then F(t) =0 and we can write
dX
— = A(t) X
m (t)
Both the non-homogeneous and the homogeneous systems can also be written as

X'=AX+F, X'=AX
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Example 1
Write the following non-homogeneous system of differential equations in the matrix form
o _ —2X+5y+e' -2t
dt
v =4x -3y +10t
dt
Solution:

If we suppose that

()

Then, the given non-homogeneous differential equations can be written as
dx (-2 5 el -2t
—= X+
dt 4 -3 10t
or X' = X+ e + t
4 -3 0 10

Solution Vector
Consider a homogeneous system of differential equations

X
d— = AX
dt
A solution vector on an interval | of the homogeneous system is any column matrix
X (t)
X, (t
| 2O
Xn (1)

The entries of the solution vector have to be differentiable functions satisfying each
equation of the system on the interval |.

Example 2

Verify that

-2t 6t
1) _ e 3 3e
X1 = e 2t = , Xo= th =
-1 t 5

—e_2 5e6t

are solution of the following system of the homogeneous differential equations

/ (1 3j
X' = X
5 3

on the interval (—o0,0)
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Solution:
Since
it (a2
X1 = = Xl =
_e—2t Ze—Zt
Further
1 3 e—2t e—2t _3e—2t
AXq z[ j =
5 3)| -2t |gg2t g2t
e2t)
or AX1= =Xq
2e—2t
Similarly
3 ¢t ;18 eft
X9 = = X2 =
5 bt 30 bt
(1 3] 3e8) [ 3ebt 150t
and AXop = =
5 3)|5ebt ) [15¢eBt415 0t
18e6t /
or AX9 = =X,
30e5t

Thus, the vectors X1 and X2 satisfy the homogeneous linear system

/ 1 3
X! = X
5 3
Hence, the given vectors are solutions of the given homogeneous system of differential
equations.

Note that

Much of the theory of the systems of n linear first-order differential equations is similar
to that of the linear nth -order differential equations.
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Initial -VValue Problem

Let ty denote any point in some interval denoted by | and

x1(to) 7
X (to) = Xz?o)’ Xq = 7?
Xn (to) 7n

7i;1=12,...,n are given constants. Then the problem of solving the system of

differential equations

%§:A®X+Fa)

Subject to the initial conditions
X(tg) = Xg
is called an initial value problem on the interval | .

Theorem: Existence of a unique Solution

Suppose that the entries of the matrices A(t) and F(t) in the system of differential

equations

%§:A®X+Fa)

being considered in the above mentioned initial value problem, are continuous functions

on a common interval | that contains the point tg. Then there exist a unique solution of
the initial-value problem on the interval | .

Superposition Principle

Suppose that X1, Xo,..., X, be a set of solution vectors of the homogenous system

dX
——=A(t)X
Fraiakal)

on an interval | . Then the principle of superposition states that linear combination

X =¢1 X1 +CpXo +---+C Xi
Cj;i=12,...,k being arbitrary constants, is also a solution of the system on the same
interval | .

Note that

An immediate consequence of the principle of superposition is that a constant multiple of
any solution vector of a homogenous system of first order differential equation is also a
solution of the system.
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Example 3

Consider the following homogeneous system of differential equations

1 0 1
x'=|'1 1 0 |X
2 0 -1

Also consider a solution vector X1 of the system that is given by

cost
X1 = —lcost+lsint
2 2

—cost—sint

For any constant ¢; the vector X = ¢y X1 is also a solution of the homogeneous system.
To verify this we differentiae the vector X with respect to t

—sint
dX dX 1 1 .
— =0 ——=01| —cost+=sint
dt dt 2 2
—cost+sint
Also
1 0 1 cost
1 1 .
AX=c| 1 1 O —Ecost+§smt
-2 0 -1 —cost-sint

—sint
AX =q %cost+%sint

—cost+sint

Thus, we have verified that:

9X _ ax
dt

Hence the vector ¢q X1 is also a solution vector of the homogeneous system of differential
equations.
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Example 4

Consider the following system considered in the previous example 4

1 0 1
x'=|'1 1 0 |X
2 0 -1

We know from the previous example that the vector X1 is a solution of the system

cost

X1= —icost+£sint
2 2

—cost—sint
0
If X, =| €
0
0
Then X', =] ¢
0

1 0 19 (9
and AXp,=| 1 1 0 ||e|=|é
-2 0 -1)| 0 0
Therefore
_y!
AXp =X,
Hence the vector X, is a solution vector of the homogeneous system. We can verify that
the following vector is also a solution of the homogeneous system.

X =C1X1+C2X2

cost 0

1 1 .
or X =0 —Ecost+55|nt +Co el
—cost—sint 0
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Linear Dependence of Solution Vectors

Let X1, X9, X3,..., X be a set of solution vectors, on an interval |, of the homogenous

system of differential equations

d_X:Ax
dt

We say that the set is linearly dependent on | if there exist constants ¢1,C5,C3...,Ck hot
all zero such that

X(t)=C1X1(t)+CzX2(t)+---+Cka(t):O, Vitel
Note that

o Any two solution vectors X7 and X» are linearly dependent if and only if one

of the two vectors is a constant multiple of the other.

o For k> 2 if the set of k solution vectors is linearly dependent then we can
express at least one of the solution vectors as a linear combination of the
remaining vectors.

Linear Independence of Solution Vectors
Suppose that X1, Xo,..., X| is a set of solution vectors, on an interval I, of the

homogenous system of differential equations

d_X:Ax
dt

Then the set of solution vectors is said to be linearly independent if it is not linearly
dependent on the interval | . This means that

X)) = X1 (t) +CcoXo(t)+--- 4+ XK (t) =0
only when each ¢; =0.

Example 5
Consider the following two column vectors
X 3et X et
1= , 2~
6! et
t —t
3e —e
Since _Xm = , _dX2 =
dt Al dt _ et
(2 3) 3et ) [ee—3et| (3| dx;
and = = i 3
1 =2)] gt 3e! — 26 el dt
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Similarly

et e t—2e7t — et dt
Hence both the vectors Xq and X are solutions of the homogeneous system
, (2 -3
X' = X
1 -2
Now suppose that ¢y, Co are any two arbitrary real constants such that
Clxl +Co X2 =0

el

This means that
3c1et + cze_t =0

2 -3 e_t 2e_t—3e_t B —e_t _dx2
1 -2

clet + cze_t =0

The only solution of these equations for the arbitrary constants ¢; and cy is
Cp=Cy =0
Hence, the solution vectors X, and X, are linearly independent on (—oo, ).

Example 6

Again consider the same homogeneous system as considered in the previous example

, (2 -3
X' = X
1 -2
We have already seen that the vectors X1, X i.e.

3et e_t

are solutions of the homogeneous system. We can verify that the following vector X3

U+ cosht
X3 =
cosht
is also a solution of the homogeneous system However, the set of solutions that consists

of X1, Xo and X, is linearly dependent because X3 is a linear combination of the

other two vectors

1 1
X3 zle +EX2
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Exercise
Write the given system in matrix form.
dx
1. —=X-y+z+t-1
dt
d
Yo oxty-z-3t?
dt
dz
=X+ Yy+z+tE—t+2
dt
2. %=—3x+4y+e_tsin2t
dt
d—X=5x+9y+4e"t0052t
dt
3. %=—3x+4y—9z
dt
dy
_:6)(_
dt y
E:10x+4y+32
dt
4. %=—3x+4y+e_tsin2t
dt
%:5x+9y+4e_t cos2t
Write the given system without of use of matrices
7 5 -9 0 8
5. X/=|4 1 1 |x+|2]et-|0le?®
0 -2 3 1 3
Sl T e
dtly 1 1)y 8 2t+1
X 1 -1 2)\(x 1 3
7.ay: 3 41 y+2e_t——1t
z -2 5 6)\z 2 1
Verify that the vector X is the solution of the given system
X
8. d—:—2x+5y
dt
dx 5cost
—=-2X+4y, X= | et
dt 3cost—sint
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1 4
9. x’=(2 1jx,xz( Jeﬂ[ jtet
-1 0 3 -4
’ 1 2 1 1
10.d—>t(= 6 -1 0 |X; X=| 6
-1 -2 -1 -13
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Lecture 41
Matrices and Systems of
Linear 1°-Order Equations (Continued)

Theorem: A necessary and sufficient condition that the set of solutions, on an interval 1.,
consisting of the vectors

X11 X12 Xln
X X X
Xn1 Xn2 Xnn

of the homogenous system X! = AX tobe linearly independent is that the Wronskian of
these solutions is non-zero for everyt € | . Thus

X1 X2 -~ Xn
X X D

W (Xq, Xg,.0, Xp) =| 21 722 N0, Vtel
an Xn2 cee Xnn

Note that

o It can be shown that if X, X,,..., X, are solution vectors of the system, then

either
W (X1, X9,...,Xp)#0, Vtel

or W (X1, X2,...,Xp) =0, Vtel
Thus if we can show that W = 0 for sometg € |, then W 20, Vte | and hence
the solutions are linearly independent on |

o Unlike our previous definition of the Wronskian, the determinant does not involve
any differentiation.

Example 1

As verified earlier that the vectors

1) o2t 3) 6t
X1 = e =, Xo= e
= e

are solutions of the following homogeneous system.
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/ 1 3
X' = X
5 3
Clearly, X, and X, are linearly independent on (—oo, ) as neither of the vectors is a

constant multiple of the other. We now compute Wronskian of the solution vectors X,
and X .

e—2t 386t

W (X1, X9) = =86 20, Vte(~ow,x)

o2t bt

Fundamental set of solution

Suppose that { X1, X»,..., X} is a set of n solution vectors, on an interval | , of a

homogenous system x! = AX . The set is said to be a fundamental set of solutions of the
system on the interval | if the solution vectors X1, Xo,..., Xare linearly independent.

Theorem: Existence of a Fundamental Set

There exist a fundamental set of solution for the homogenous system X' =AX on an
interval |

General solution
Suppose that X1, Xo,..., X}, is a fundamental set of solution of the homogenous system

X' =AX on an interval I . Then any linear combination of the solution vectors
X1, X9,..., X}y of the form

X =¢ X1 +CpXo +---+Cy X

Cj;1=1,2,...,n being arbitrary constants is said to be the general solution of the system
on the interval | .

Note that
For appropriate choices of the arbitrary constants ¢q,Co,...,Cn any solution, on the
interval I, of the homogeneous system X' = AX can be obtained from the general
solution.

Example 2
As discussed in the Example 1, the following vectors are linearly independent solutions

1) ot 3) 6t
X1 = e =, Xo= e
SR

of the following homogeneous system of differential equations on (—oo, )
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x’—13x
|5 3

Hence X1 and Xo form a fundamental set of solution of the system on the
interval (—o,) . Hence, the general solution of the system on (—oo,) is

1 3
X = X1 +CrXo =cl( Je_Zt +C (SJG&

Example 3

Consider the vectors X1, X5 and X3 these vectors are given by

cost 0 sint
X1 = —icost+lsint , Xo=|1]e", Xg= —lsint—lcost
2 2 2 2

—cost—sint 0 —sint+cost

It has been verified in the last lecture that the vectors Xqand Xo are solutions of the
homogeneous system

1 0 1
x'=|'1 1 0 |X
2 0 -1

It can be easily verified that the vector X3 is also a solution of the system. We now
compute the Wronskian of the solution vectors X1, Xo and X3
cost 0 sint
1 1. 1. 1
W (X,, X,, X;) =|-=cost+=sint e —=sint—=cost
2 2 2 2
—cost —sint 0 —sint + cost
Expand from 2" column

or W (X1, X0, Xa) = et cost sint
LA2 AT cost—sint —sint+cost
or W(Xq, Xo, X3) =6l %0, VteR

Thus, we conclude that X1, Xo and X3 form a fundamental set of solution on (—oo, ).
Hence, the general solution of the system on (—o0, o) is

X = C]_Xl +Co X2 + 03X3
or
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cost 0 sint
X =c —lcost+lsint +co| 1 let +¢ —lsint—lcost
1 2 2 . 3772 2
—cost—sint —sint+cost

Non-homogeneous Systems

As stated earlier in this lecture that a system of differential equations such as

dX
= AOX )

is non-homogeneous if F (t) # 0, Vt. The general solution of such a system consists of a
complementary function and a particular integral.

Particular Integral
A particular solution, on an interval | , of a non-homogeneous system is any vector X P

free of arbitrary parameters, whose entries are functions that satisfy each equation of the
system.

Example 4
Show that the vector
3t-4
X p =
—-5t+6

is a particular solution of the following non-homogeneous system on the interval (- o0,0)

1 3 12t-11
X'= X +
5 3 -3
Solution:

Differentiating the given vector with respect tot , we obtain

s

Further

1 3 12t-11 1 3)\ 3t-4 12t-11

Xp+ = +

5 3 -3 5 3/ -5t+6 -3

1 3 12t-11 (3t—4)+3(—5t+6) 12t-11
or Xp + = +

5 3 -3 5(3t—4) + 3(-5t + 6) -3

1 3 12t-11 -12t+14 12t-11

5 3 -3 -2 -3
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1 3 12t-11 3 '
or Xp+ = =Xp
5 3 -3 -5
Thus the given vector Xp satisfies the non-homogeneous system of differential

equations. Hence, the given vector X P is a particular solution of the non-homogeneous
system.

Theorem

Let Xq, X9,..., Xk be a set of solution vectors of the homogenous system X = AX on
an interval | and let XIO be any solution vector of the non-homogenous system

X' = AX +F(t) on the same interval | . Then3 constants ¢;,C,,...,C, such that
Xp =C]_X1+02X2 +...+Ckxk + Xp
is also a solution of the non-homogenous system on the interval.

Complementary function

Let Xq, X9,..., X,; be solution vectors of the homogenous system X' =AX on an
interval | , then the general solution

X=X +CoXo+...+Cy X,

of the homogeneous system is called the complementary function of the non-
homogeneous system X = AX + F(t) on the same interval | .

General solution-Non homogenous systems

Let X D be a particular integral and X the complementary function, on an interval I , of
the non-homogenous system

X! = A)X +F(t).
The general solution of the non-homogenous system on the interval | is defined to be

X=X.+X D
Example 5

In Example 4 it was verified that
3t-4
X p =
—5t+6
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is a particular solution, on (—o0, ®) , of the non-homogenous system

, (13 12t-11
X' = X+
53 -3
As we have seen earlier, the general solution of the associated homogeneous system i.e.
the complementary function of the given non-homogeneous system is

1) —at 3) 6t
Xe =C e “+c e
c— 4 ( _ J 2 ( 5
Hence the general solution, on(—o0, o), of the non-homogeneous system is

1 3 3t-4
X=q e_2t+c:2 edt 4
-1 5 —5t+6

Fundamental Matrix

Suppose that the a fundamental set of n solution vectors of a homogeneous
system X/ = AX ,onan interval | , consists of the vectors

X11 X12 XIn

X = X21 Xy = X22 X = X2n
- : ] - : yreey n_ .
Xn1 Xn2 Xnn

Then a fundamental matrix of the system on the interval 1 is given by

X1 X2 --- Xn

X201 X292 ... X9p
¢(t) = . . .

an Xn2 cee Xnn

Example 6

As verified earlier, the following vectors
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-2t

1) _ e
-1 -2t

6t
3 3e
X2 = e6t =
S 5ebt
form a fundamental set of solutions of the system on (—co, )

x’—lsx
|5 3

So that the general solution of the system is

1 3
X = Cl(—lj e~ +Co (SJG&

Hence, a fundamental matrix of the system on the interval is
-2t 3e6t

() = o2t bt

Note that
o The general solution of the system can be written as

e=2l 36t (Clj
X =

Or X =¢(t)C, C:(Cl Co )tl’

o Since X =¢(t)C is a solution of the system X' = A(t)X . Therefore
¢'(t)C = A(t)p(1)C

Or [4'() - At)p()]C =0
Since the last equation is to hold for every t in the interval | for every possible column
matrix of constants C , we must have

¢'(t) - Al)g(t) =0
Or ¢'(t) = A4 (1)

Note that
o The fundamental matrix #(t) of a homogenous system X' = A(t)X is non-
singular because the determinant det(g(t)) coincides with the Wronskian of the

solution vectors of the system and linear independence of the solution vectors
guarantees thatdet(g(t)) = 0.
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o Let 4(t) be a fundamental matrix of the homogenous system X' = A(t)X on an
interval I . Then, in view of the above mentioned observation, the inverse of the
matrix ¢ (t) exists for every value of t in the interval | .
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Exercise
The given vectors are the solutions of a system X' = AX . Determine whether the vectors

form a fundamental set on (oo, ).

1 2 8
1. X]_: ljet,X2=(6]et+( Sjtet

1 1 2
2. X1=| 6 [ Xp=|-2]e™ Xg=| 3 | ¥
13 -1 )

2 1 1) 1) 1)
3. X'= X - e Xp= e + te
3 4 7 1 -1

Verify that vector X o is a particular solution of the given systems

4. %:x+4y+2t—7, ﬂ=3x+2y—4t—18
dt dt

Xp:(ile@
o )

1 23 -1 sin 3t
6. X'=|-4 2 0|X+| 4 [sin3t; Xp| O
-6 10 3 cos 3t
7. X1 = ﬂe_zt, Xzz[l_Je_Gt
1 1 1 3 2
8. X1= -2 |+t]| 2 |, X2= -2 |, X3= -6 [+t]| 4
4 2 4 12 4

9. Prove that the general solution of the homogeneous system

0 60
X'=[1 0 1|X
1 10
on the interval (—o,0) is
-3 2
X=c| -1 e_t+02 1 e_2t+03 1le
-5 1 1

(op}

3t

404

© Copyright Virtual University of Pakistan



Differential Equations (MTH401) VU

405

© Copyright Virtual University of Pakistan



Differential Equations (MTH401)

VU

Lecture 42
Homogeneous Linear Systems

Most of the theory developed for a single linear differential equation can be extended to a
system of such differential equations. The extension is not entirely obvious. However,
using the notation and some ideas of matrix algebra discussed in a previous lecture most
effectively carry it out. Therefore, in the present and in the next lecture we will learn to
solve the homogeneous linear systems of linear differential equations with real constant

coefficients.

Example 1
Consider the homogeneous system of differential equations
ax _ X+ 3y
dt
ay =5x+3y
dt

In matrix form the system can be written as

o) s 3l

If we suppose that

3

Then the system can again be re-written as

1 3
X'= X
55

Now suppose that X4 and X, denote the vectors

y e—2t y 3e6t
1= ) 2=
_ e—2t 586t
Then
[ —2e7) 0 [18ef
Xl = , X2 =
2e_2t 30 e6t
1 3 e—2t e—2t _38—2t
Now AXq= j -
5 3)| _ e—2t 5e—2t _3e—2t
AX ~2e7 X4
or 1= =X\
Ze—2t
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Similarly
1 3 3e6t 3e6t +15e6t
AXy = -
5 3| 5ebt | | 15e6t 115e6t
18 bt
or AXo = = X5
30 bt

Hence, X; and X, are solutions of the homogeneous system of differential
equations X' = AX . Further
e—2t 3e6t 4t
W (X1, Xp) = ) 6 =87 #0, VteR
—e%t bt
Thus, the solutions vectors X1 and X» are linearly independent. Hence, these vectors
form a fundamental set of solutions on(—o0,0). Therefore, the general solution of the

system on (—oo,) IS

X = C]_X]_ + 02X2

1) -2t 3) 6t
X =cC e " +cC e
o Each of the solution vectors Xq and X are of the form

k
X:( 1je/u
ko

Where kjand k» are constants.

o The question arises whether we can always find a solution of the homogeneous
system X'= AX, A is nxn matrix of constants, of the form

Note that

kg
Kk
X = 2 e = KeMt

Kn
for the homogenous linear 1% order system.
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Eigenvalues and Eigenvectors

Suppose that
kg
k
X =| 2 |e* =Ket
Kn
is a solution of the system
X _ ax
dt
where A isan nxn matrix of constants then
d_X =K A e’q“t
dt

Substituting this last equation in the homogeneous system X' = AX , we have
Kie™t = AKeMt = AK =K

or (A-11)K=0
This represents a system of linear algebraic equations. The linear 1% order homogenous
system of differential equations

dX

—=AX
dt

has a non-trivial solution X if there exist a non-trivial solution K of the system of
algebraic equations

det(A-A1)=0
This equation is called characteristic equation of the matrix A and represents an nth
degree polynomial in A4 .

Case 1 Distinct real eigenvalues

Suppose that the coefficient matrix A in the homogeneous system of differential
equations
dxX
dt
has n distinct eigenvalues A1, 49, 13,..., 4, and K¢, Ko,..., K, be the corresponding
eigenvectors. Then the general solution of the system on (—o0,) is given by

AX

X = clkleﬂ1t + c2k2e’12t + c?,kgeﬂ%t S +Cp kne/1nt
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Example 2

Solve the following homogeneous system of differential equations

dx

— =2X+3
dt y
dy

— =2X+
dt y

Solution

The given system can be written in the matrix form as
dx

dt | (2 3)(«x
dy [ (2 10y
dt

Therefore, the coefficient matrix

(3}

Now we find the eigenvalues and eigenvectors of the coefficient A. The characteristics

equation is

1-4
det(A-A1)=4%2-31—4
Therefore, the characteristic equation is
det(A-A1)=0=1%2-31-4
or A+)(1-4)=0=>1=-1 4

2-4 3
det(A—/II):‘ ‘

Therefore, roots of the characteristic equation are real and distinct and so are the

eigenvalues.

For A =-1, we have

(241 3 \(Kk
(A_M)K_[ 2 1+1J(k2j

3kq +3k
or (A= ADK =| > T2
2k1+2k2
3ky +3ky =0
Hence (A-ADHK=0= 1 2
2k1+2k2:0

These two equations are no different and represent the equation

k1+k2 =0:>k1=—k2
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Thus we can choose value of the constant ko arbitrarily. If we choose ko =—1 then
k1 =1. Hence the corresponding eigenvector is

at

For A = 4 we have

(2-4 3K
w1 2

—2k1+3k2
or (A-ADHK =
2kq —3k»
—2k1+3k2 =0
Hence (A-A1)K=0=
2k; —3ko =0

Again the above two equations are not different and represent the equation
3k
2k1—3k2 =0= kl 272

Again, the constant ko can be chosen arbitrarily. Let us choose ko =2 thenk; =3.
Thus the corresponding eigenvector is

)

Therefore, we obtain two linearly independent solution vectors of the given homogeneous

system.
1) -t 3) 4t
X1 = e, Xo= e

Hence the general solution of the system is the following
X = Clxl +Co X2

or X =c1£_11je_t +c2£2je4t
or ( x(t)) B [ et + 302e4t }
ye)) —cpe ! +2c,e™
This means that the solution of the system is
X(t) = cle_t + 302e4t

y(t) = —cle_t + 202e4t
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Example 3

Solve the homogeneous system

dx
—=—4X+Yy+1Z
dt Y
dy
—=X+5y-z
dt y
a_ -3z

dt

Solution:

The given system can be written as

dx/dt -4 1 1)\(x
dy/dt|=| 1 5 -1}y
dz/dt 0 1 -3){z

Therefore the coefficient matrix of the system of differential equations is

-4 1 1
A= 1 5 -1
0 1 -3
-4-4 1 1
Therefore A-Al = 1 5-4 -1

0 1 -3-1
Thus the characteristic equation is
-4-4 1 1
det(A-Al)=| 1 5-4 -1 |=0
0 1 -3-1
Expanding the determinant using cofactors of third row, we obtain

—(A+3)(1+4)(A1-5)=0
A=-3, —4,5
Thus the characteristic equation has real and distinct roots and so are the eigenvalues of
the coefficient matrix A. To find the eigenvectors corresponding to these computed
eigenvalues, we need to solve the following system of linear algebraic equations for
ki,ko andkg when 1 =-3, —4, 5, successively.

-4-4 1 1 k1 0

det(A-ANHK=0= 1 5-4 -1 ko [=| 0

0 1  -3-1){K3 0
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For solving this system we use Gauss-Jordon elimination technique, which consists of
reducing the augmented matrix to the reduced echelon form by applying the elementary
row operations. The augmented matrix of the system of linear algebraic equations is

-4-4 1 1 0
1 5-4 -1 0
0 1 -3-4 0
For A = -3, the augmented matrix becomes:

-11 10
1 8 -1 0
0 1 00

Appling the row operation Rjo, Ro + Ry, Rog, R3—=9Ry , R —8Ry in succession
reduces the augmented matrix in the reduced echelon form.

10 -10
01 0 O
00 0 O
So that we have the following equivalent system
1 0 -1)k, 0
01 0Jk,|=|0
0 0 0 )k 0
or kl = k3, k2 =0

Therefore, the constant k3 can be chosen arbitrarily. If we choosekz =1, thenk; =1, So
that the corresponding eigenvector is
1

K].: O
1
For A, =—4, the augmented matrix becomes
01 1 O
(A+41)|0 =1 9 -1 0
01 1 O

We apply elementary row operations to transform the matrix to the following reduced
echelon form:

1 0 -10 O

01 1 O

00 0 O
Thus kl =10k3, k2 = —k3
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Again k3 can be chosen arbitrarily, therefore choosing k3 =1 we get k; =10, ky =-1
Hence, the second eigenvector is

Finally, when 13 =5 the augmented matrix becomes

91 1 0
(A-501)10) = |1 0 -1 0
0 1 -80

The application of the elementary row operation transforms the augmented matrix to the
reduced echelon form

1 0 -1 0

01 -8 0

00 0 O
Thus kl = k3, k2 = 8k3

If we choosek3 =1, then k; =1 and ko =8. Thus the eigenvector corresponding to

/13:5is

1
Ky =|8
1
Thus we obtain three linearly independent solution vectors

1 10 1
X1=| 0673, Xy =| -1]e™™, X5=|8 e
1 1 1

Hence, the general solution of the given homogeneous system is

1 10 1
X=¢c0 e_3t+c2 -1 e_4t+03 8 |e
1 1 1
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Case2  Complex eigenvalues

Suppose that the coefficient matrix A in the homogeneous system of differential
equations

d_X:Ax
dt

has complex eigenvalues. This means that roots of the characteristic equation
det(A-A1)=0
are imaginary.

Theorem: Solutions corresponding to complex eigenvalues
Suppose that K is an eigenvector corresponding to the complex eigenvalue

M=a+if, o, feR
of the coefficient matrix A with real entries, then the vectors X1 and X, given by

Xl = Klellt, X2 = R1e/11t
are solution of the homogeneous system.

IX _ ax
dt

Example 4

Consider the following homogeneous system of differential equations

dx
_:6)(_
dt y
dy

— =0Xx+4
dt y

The system can be written as

dx/dt 6 —-1)\(x
or =
dy/dt o 4 )\y
Therefore the coefficient matrix of the system is
6 -1
A=
So that the characteristic equation is
6-4 -1
det(A-Al) =
5 4-2
or (6-A)(4—1)+5=0= 1% -104+29
Now using the quadratic formula we have
M=5+2i, AHp=5-2i

‘:0
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For, 41 =5+ 2i, we must solve the system of linear algebraic equations

(1-2i)k; —ky =0

1—2i)kg —ky =0
5k1—(1+2i)k2=o}:>( Dk —ko

or k2 = (1—2i)k1
Therefore, it follows that after we choose k; =1 then ko =1-2i. So that one
eigenvector is given by

5y a)

Similarly for 1o = 5—2i we must solve the system of linear algebraic equations

(1+ 2i)k1 - k2 =0

1+ 2iYky —kp =0
5k1—(1—2i)k2:o}:>( 2k ko

or k2 = (1+ 2I)k1
Therefore, it follows that after we choose k; =1 then ko =1+2i. So that second
eigenvector is given by

o [ 1
27 1420

Consequently, two solution of the homogeneous system are

Xl:( 1 _je(5+2i)t’ X, = ( 1 _je(s—zm
1-2i 1+2i

By the superposition principle another solution of the system is

« =c1( 1 )e(5+2i)t +02[ je(S—Zi)t

1-2i 1+2i

Note that

The entries in Ko corresponding to A , are the conjugates of the entries in Kq
corresponding to A 1. Further, A» is conjugate of 41 . Therefore, we can write this as

Ay = /_11, Ky = R1
Theorem Real solutions corresponding to a complex eigenvalue
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Suppose that

o A, =a+if isacomplex eigenvalue of the matrix A in the system

d_X:Ax
dt

o Kjisan eigenvector corresponding to the eigen value 4,
1 — i —
o B =§(K1 +K1) =Re(Kyp), By ZE(_Kl +K1) =1m(Kq)
Then two linearly independent solutions of the system on (—o0, ) are given by

X1 = (By cos Bt — By sin pt)e®!
X, = (By cos Bt + By sin At)e*

Example 5

Solve the system

(2 8
X' = X
~1 -2

The coefficient matrix of the system is

2 8
A p—
SR
2-1 8
A-Al =
-1 -2-1
Thus, the characteristic equation is

deKA—iD=O:‘

Therefore

2-1 8
1 -2-2
—2-2)(2+4)+8=0=4%+4

Thus the Eigenvalues are of the coefficient matrix are 44 = 2iand Ay = A =-2i.

For A we see that the system of linear algebraic equations (A—A1)K =0
(2 - 2i)k1 +8k2 =0
-k —(2+2i)ky, =0
Solving these equations, we obtain
k1 =—(2+2i)ko
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Choosingk, =—1 gives ky = (2+ 2i)k, . Thus the corresponding eigenvector is

[2+2i} [ 2 j (2}
K]_: = +1
-1 -1 0
2 2
So that Bl:Re(Kl):(—lj,Bz:Im(Kl):(Oj

Since = 0, the general solution of the given system of differential equations is

e e

(20052t—25in2t} [20052t+25in2tj
+C2

=C
1 —Ccos 2t —sin 2t

Example 6
Solve the following system of differential equations

/ 1 2
X' = X
-1/2 1
Solution:

The coefficient matrix of the given system is

1 2
A=
(—1/2 1]

1-2 2
Thus A-Al =
-1/2 1-1
So that the characteristic equation is
1-12 2
det(A-A1)=0=
-1/2 1-4
or A% -2+2=0

Therefore, by the quadratic formula we obtain
A=(2+4-8)/2
Thus the eigenvalues of the coefficient matrix are
M =1+i, dp =21 =1-i
Now an eigenvector associated with the eigenvalue A is

N ORG
e aflt

So that we have the following two linearly independent solutions of the system
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o o o

Hence, the general solution of the system is

e

2cost) ¢ 2sint) ¢
or X=q _ e +Co e
—sint cost
Exercise
Find the general solution of the given system
1 %—x+2y
dt
dy
— =4x+3
dt g
2 %:£x+9y
dt 2
Q:£x+2y
dt 2
S
3. X'= X
-3 1
4- %:
dt
ﬂzSX
dt
101
5. X'=|0 1 0|X
101
dx
6. —=6x-9
dt y
dy
— =5Xx+2
dt y
dx
7. —=X+
dt y
dy
— = 292X —
dt y
8 %:4x+5y
dt
dy
—=-2X+6
dt y
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4 -5
9. X'= X
5 —4

1 -8
10. X'= X
1 -3
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Lecture 43

Real and Repeated Eigenvalues

In the previous lecture we tried to learn how to solve a system of linear differential
equations having a coefficient matrix that has real distinct and complex eigenvalues. In
this lecture, we consider the systems

X'=A4X
in which some of the n eigenvalue A4,,4,,4;,...,4, of the nxn coefficient matrix
A are repeated.

Eigenvalue of multiplicity m

Suppose that m is a positive integer and (41— )™ is a factor of the characteristic
equation

det(4 — A1) =0

Further, suppose that (/‘t -n)" *+Lis not a factor of the characteristic equation. Then the
number A, is said to be an eigenvalue of the coefficient matrix of multiplicity 7 .

Method of solution:
Consider the following system of # linear differential equations in » unknowns

X'=A4X
Suppose that the coefficient matrix has an eigenvalue of multiplicity of m . There are two
possibilities of the existence of the eigenvectors corresponding to this repeated
eigenvalue:

o For the nxn coefficient matrix 4, it may be possible to find m linearly
independent eigenvectors K1,K2,..., K, corresponding to the eigenvalue A, of
multiplicity m < n. In this case the general solution of the system contains the
linear combination

At

At Mt

c1K1e”1 +coKoe +cepKye
o If there is only one eigenvector corresponding to the eigenvalue A, of
multiplicity m , then m linearly independent solutions of the form
X, =K, e

_ At At
X,=K,e" +K,e

tm—l tm—2
( 1)|€ﬂit+Km2m€ﬂit+"'+l(mmeﬂit
m—1): m— .

where the column vectors Kj can always be found.

Xm = Kml

420

© Copyright Virtual University of Pakistan



Differential Equations (MTH401) VU

Eigenvalue of Multiplicity Two

We begin by considering the systems of differential equations X' = AX in which the
coefficient matrix 4 has an eigenvalue A, of multiplicity two. Then there are two

possibilities;

o Whether we can find two linearly independent eigenvectors corresponding to
eigenvalue A, or

o We cannot find two linearly independent eigenvectors corresponding to
eigenvalue A

The case of the possibility of us being able to find two linearly independent eigenvectors
K1,K 7 corresponding to the eigenvalue A, is clear. In this case the general solution of

the system contains the linear combination
cKte™ +c,K,e™
Therefore, we suppose that there is only one eigenvector K1 associated with this

eigenvalue and hence only one solution vector X1. Then, a second solution can be found
of the following form:

X9 = KreM! 4 petil
In this expression for a second solution, K and P are column vectors

k1 n
k

k=|"?| p=|?
kn Pn

We substitute the expression for Xo into the system X' = AX and simplify to obtain

(AK-AK) t e* +(AP-A4P-K) " =0
Since this last equation is to hold for all values of ¢, we must have:

(A-MI)K =0, (4-1I)P=K
First equation does not tell anything new and simply states that K must be an eigenvector
of the coefficient matrix 4 associated with the eigenvalue 4,. Therefore, by solving this

equation we find one solution

X, =Ke™
To find the second solution X ,, we only need to solve, for the vector PP, the additional
system
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(4-1I)P=K

First we solve a homogeneous system of differential equations having coefficient matrix
for which we can find two distinct eigenvectors corresponding to a double eigenvalue and
then in the second example we consider the case when cannot find two eigenvectors.

Example 1

Find general solution of the following system of linear differential equations

3 -18
X' = X
2 -9
Solution:

The coefficient matrix of the system is

3 -18
A:
2 -9

3-1 -18

Thus det(4 - Al) =
2 -9-1
Therefore, the characteristic equation of the coefficient matrix 4 is
3-14 -18
det(4—AI)=0=
2 -9-1

or -B3-4)0O+14)+36=0
or (1+3)2=0=1=-3-3

Therefore, the coefficient matrix 4 of the given system has an eigenvalue of multiplicity
two. This means that

A=Ay =3

(3—1 -18 j(klj (oj
Now (A-AK=0= =
2 9-A)\k,) (0

For A = -3, this system of linear algebraic equations becomes

6 —18Y k) (0) (6k;—18k, =0
= |=
2 -6 \ky) \0) |2k —6ky=0

However
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6k —18ky =0
= k]_ — 3k2 =0
2ky — 6k =0
Thus ky =3ko

This means that the value of the constant ko can be chosen arbitrarily. If we choose
ko =1, we find the following single eigenvector for the eigenvalue 4 =-3.

ol

The corresponding one solution of the system of differential equations is given by

3) _
i

But since we are interested in forming the general solution of the system, we need to
pursue the question of finding a second solution. We identify the column vectors K

and P as:
3
<=3} 7~(7s)
1 P2

Then (A+31)P=K = [z —_ 13[ gj ) @

Therefore, we need to solve the following system of linear algebraic equations to find P
6p1 -18py =3

2p1—6py =1

or p,=—(1-2p,)/6

}:2191—6192 =1

Therefore, the number p; can be chosen arbitrarily. So we have an infinite number of
choices for p and p,. However, if we choose p, =1, we find p, =1/6. Similarly, if

we choose the value of p =1/2 then Py, = 0. Hence the column vector P is given by

.

Consequently, the second solution is given by

3 1
XZ:( ]te_3t+ 2 e3¢
! 0

Hence the general solution of the given system of linear differential equations is then

423

© Copyright Virtual University of Pakistan



Differential Equations (MTH401) VU

X:C1X1+6’2X2
1
3) _ 3 —-| -
X=c|, |e 3t+02 e |23
1 1 0

Solve the homogeneous system

Example 2

1 -2 2
X'=-2 1 -2\X
2 -2 1

Solution:
The coefficient matrix of the system is:

1 -2 2
A=-2 1 -2
2 -2 1

To write the characteristic we find the expansion of the determinant:

1-2 -2 2
det(d-Al)=|-2 1-1 -2
2 -2 1-2

The value of the determinant is
det(A-AI)=5+91+34° - 2°

Therefore, the characteristic equation is
5+94+34%-1%=0

or ~(1+10°(2-5)=0

or A=-1 -1, 5

Therefore, the eigenvalues of the coefficient matrix A4 are

A=4=-1 4,=5

Clearly —1 is a double root of the coefficient matrix A .
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1-4 -2 2 k 0
Now (A-ANK=0=| -2 1-4 -2 ||k, |=|0
2 -2 1-2 )\ Kk, 0

For A, = —1, this system of the algebraic equations become

2 -2 2K 0
-2 2 2|k |=|0
2 -2 2 )\ k 0
The augmented matrix of the system is
2 -2 210
(4+10)=| -2 2 -2|0
2 -2 210

By applying the Gauss-Jordon method, the augmented matrix reduces to the reduced
echelon form

1 -1 1|0
0 0 0]0
0 0 0]0
Thus by —ky +hy =0= k; = k, — k,

By choosing k, =1 and k3 =0 in k; =k, —k;, we obtain k; =1 and so one
eigenvector is

1
0
But the choice k, =1, k; =1 implies k&, = 0. Hence, a second eigenvector is given by
0
K,=|1
1

Since neither eigenvector is a constant multiple of the other, we have found,
corresponding to the same eigenvalue, two linearly independent solutions

1 2

1 0
X =1l X =|1le"
0 1
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Last for 4; =5 we obtain the system of algebraic equations

—4 -2 2\(k) (O
2 -4 2|k |=|0
2 -2 -4)\k) O

The augmented matrix of the algebraic system is

-4 -2 2|0
(4-5110)=| -2 -4 -2/0
2 -2 -4]0

By the elementary row operation we can transform the augmented matrix to the reduced
echelon form

1 0 -1/0

01 1|0

0O 0 010
or ky =ky, k, =—k,

Picking k5 =1, we obtain k£, =1, k, = —1. Thus a third eigenvector is the following

K;=|-1
1
Hence, we conclude that the general solution of the system is
1 0 1
1le"+c,|1 e +¢| -1 e
0 1 1

X =c

1

Eigenvalues of Multiplicity Three

When a matrix 4 has only one eigenvector associated with an eigenvalue }10f
multiplicity three of the coefficient matrix 4, we can find a second solution X, and a
third solution X, of the following forms

X, =Kt + Pe™

2
X, =K % " + Pre™ + Qe
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The K, P and Q are vectors given by

ky P1 4,
k

K= ,2 ., P= 1_92 and Q= qu
k, P, q,

By substituting X, into the system X' = 4X, we find the column vectors K, P and Q
must satisfy the equations

(4- 1)K =0

(4-21I)P=K

(4-21)0=P
The solutions of first and second equations can be utilized in the formulation of the
solution X and X, .

Example
Find the general solution of the following homogeneous system
4 1 0
X'=|0 4 1|X
0 0 4
Solution
The coefficient matrix of the system is
4 1 0
A=|0 4 1
0 0 4
4—4 1
Then det(4—-il)=| 0 4-2 1
0 0 4—1
Therefore, the characteristic equation is
4— 1 0
det(A—/U):O: 0 4—1 1
0 0 4-J

Expanding the determinant in the last equation w.r.zo the 3™ row to obtain

(-1)*3(4 —1){4_ SO

0 4-41
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or (4-4) [(4-2)(4-1)-0]=0

or (4-1) =0=>1=4, 4, 4

Thus, A =4 is an eigenvalue of the coefficient matrix 4 of multiplicity three. For A =

we solve the following system of algebraic equations

(4-A)K =0
4—) 1 0 k, 0
or 0 4— ) 1 k, =0
0 0 4— A\ k, 0
0 1 0)k 0
or 0 0 1(k,|=(0
0 0 Ok, 0

Ok +1k; + 0k =0
or Ok, + Ok, + 1k, =0 :>k2
Ok, + Ok, + 0k, =0| °

4,

Therefore, the value of £, is arbitrary. If we choose kl =1, then the eigen vector K is

1
K=|0
0
Hence the first solution vector
1
X, —KeM =| 0|
0
Now for the second solution we solve the system
(A-AP=K
0 1 0)\p 1
or 0 0 1|p,|=|0
0 0 O\ p, 0
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Op, +1p, +0p, =1 p, =1
Op,+0p, +1p, =0, = P> =1
Op, +0p, +0p,=0| P3=0

Hence, the vector P is given by

P=|1
0
Therefore, a second solution is

X, = Kte* + Pe™

1 1
X,=|0|te" +|1 e
0 0
1 1
X,=110t+|1 e
L 0 0 _

Finally for the third solution we solve
(A-AQ=P

0 1 0\q, 1
or 0 0 1|gq,|=|1
0 0 O)g, 0
0g, +1g, +0g, =1 g, =1
or 0g,+0g,+1g,=0;,=¢g, =1
0g,+0g, +0g, =0 q; =1

Hence, the vector Q is given by

0=|1
1

Therefore, third solution vector is
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2

t
Xy = KEe;“ + Pte +Qe/u

1 , 1 1
X3= 0 %e4t+ 1 [te¥ +] 1 [e*
0 0 1
1 1 1
t? 4¢
X3: 0 E+ 1(t+|1]|e
0 0 1

The general solution of the given system is
X=X +c, X, +c X

3
1 1 1 1 1 1
X=c|0e"+c,||0|t+]1 ||e*+||0 Lyl fee||]e®
0 0 0 0 0 1
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Exercise
Find the general solution of the give systems
dx
1. —=-6x+5
dr Y
dy
—=-5x+4
dr Y
dx
2. —=—-x+3
dr Y
dy
—=-3x+5
dr Y
dx
3. —=3x-y-z
dr 4
dy
—=x+y-z
a7
& r—ytz
a7
5 -4 0
4, X'=|1 0 2|X
0 2 5
1 0 O
5. X'=|0 3 1|X
0 -1 1
1 0 O
6. X'=12 2 -1\X
01 0
431
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Lecture 44

Non-Homogeneous System
Definition
Consider the system of linear first order differential equations

dx
d—t1=311(t) X +855(t) Xp+--+agy(t) xq+ fi(t)

dx
d—,f:azl(t) X +apy (1) Xp--+apn(t) X+ fo(t)

F:anl(t) X1+an2(t) X2+"'+ann(t) Xn+fn(t)

where a; are coefficients and f; are continuous on common interval I . The system is

said to be non-homogeneous when f; (t)=0,Vi =1,2,...,n. Otherwise it is called a
homogeneous system.

Matrix Notation
In the matrix notation we can write the above system of differential can be written as

) () an(t). a,(t)) %) ()

d|%|_ a, () ay,(t).. a,(t)| x, . f,(t)

dt| : : : : :

X, a,(t) a,(t).. a,(t))\x, f.(t)
orX'=AX + F(t)

Method of Solution

To find general solution of the non-homogeneous system of linear differential equations,
we need to find:

o The complementary function X, which is general solution of the corresponding
homogeneous system X' = AX .

0 Any particular solution X ;of the non-homogeneous system X "= AX + F(t)
by the method of undetermined coefficients and the variation of parameters.

The general solution X of the system is then given by sum of the complementary
function and the particular solution.
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X =X¢ + X,

Method of Undetermined Coefficients

The form of F(t)

As mentioned earlier in the analogous case of a single nth order non-homogeneous linear
differential equations. The entries in the matrix F (t) can have one of the following forms:

Constant functions.
Polynomial functions
Exponential functions
sin(f x), cos(p x)

Finite sums and products of these functions.

0O 000D

Otherwise, we cannot apply the method of undetermined coefficients to find a particular
solution of the non-homogeneous system.

Duplication of Terms

The assumption for the particular solution X, has to be based on the prior knowledge of

the complementary function X, to avoid duplication of terms between X, and X D

Example 1

Solve the system on the interval (oo, )

Solution
To find X, , we solve the following homogeneous system

-1 2
X' = X
o)
We find the determinant
-1-1 2
det (A-Al) =
-1 1-2
det (A-A4l) =(-1-1) (1-2)+2
det (A-Al) =2%+2-2-1+2=2%+1
The characteristic equation is

det (A-21)=0=42+1
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or 2= 1= 1=+i

So that the coefficient matrix of the system has complex eigenvalues 4, =iand A, =—I
with ¢ =0and g = +1.

To find the eigenvector corresponding to 4;, we must solve the system of linear algebraic

equations
-1-i 2 \k B 0
-1 1-i\k,) |0

—(1+|) kl + 2k2=0
kg +(1-1) kp =0

or

Clearly, the second equation of the system is (l+ i)times the first equation. So that both
of the equations can be reduced to the following single equation

Ky :(1_i)k2

Thus, the value of k,can be chosen arbitrarily. Choosing k, =1, we get k; =1—1.
Hence, the eigenvector corresponding to /4; is

1-i 1) (-1
K, = =| |[+]
)
Now we form the matrices B, and B,

B, =Re(k;) =Gj B, =Im (kl){_lJ

0
Then, we obtain the following two linearly independent solutions from:

X1 = (By cos ft— B, sin At )e!

X, = (B, cos Bt + By sin At)e?t

(1 -1
Therefore Xy = (Jcost —[ 0 Jsint}eot
i -1 1
X, =| cost +| " sint |e*
i 0) 1
cost sint cost+sint
cost 0 cost
—cost sint —cost+sint
X2 = + B = .
0 sint sint
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Thus the complementary function is given by

X=X+ X,

or X cost+sint c —cost+sint
= +
c=a cost 2 sint

Now since F(t) is a constant vector, we assume a constant particular solution vector

)

Substituting this vector into the original system leads to
-1 2 -8
X = s
-1 1)(p 3
_ (0
Since xp = 0
— 2 -
Thus 0 = 8 + 20y + 8
0 —a1+ b_]_ 3

or 0 B —a1+2b_|_—8
0) | —a+ b+3

This leads to the following pair of linear algebraic equations
-a +2b -8=0
—q + bl +3=0

Subtracting, we have
b -11=0=b =11

Substituting this value of by into the second equation of the above system of algebraic

equations yields
a, =11+3=14

Thus our particular solution is

><_14
Pl11

Hence, the general solution of the non-homogeneous system is
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cost +sint —cost +sint 14
X=¢ +C, ) +
cost sint 11

o In the above example the entries of the matrix F(t) were constants and the
complementary function X did not involve any constant vector. Thus there was
no duplication of terms between Xcand X .

Note that

o However, if F(t) were a constant vector and the coefficient matrix had an
eigenvalue A =0. Then X_contains a constant vector. In such a situation the
assumption for the particular solution X P would be

ool k(o)

instead of

Example 2
Solve the system

%:6x+y+6t
dt
ﬂ:4x+3y—10t+4
dt
Solution
In the matrix notation
6 1 6 0
X'= X + t+
4 3 -10 4
6 1
or X'= X +F(t)
4 3

Where F(t)= (_iojt + Gj

We first solve the homogeneous system
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6 1
X'= X
4 3
Now, we use characteristic equation to find the eigen values
6-—A1 1
3-1
= (6-1)(3-4)-4=0

det(A - Al)= =0

= A -91+14=0
So A=2and A, =7

The eigen vector corresponding to eigen value A = 4, = 2, is obtained from

k
(A—A1)K, =0, Where K, = (kl j
2

or (A-21)K, =0,

B R AR KPR e
paedE

4k, +k, =0
4k, +k, =0

or
}:> 4k, +k, =0

we choose K, =larbitrarily then k, =—4

Hence the related corresponding eigen vector is

Now an eigen vector associated with A =A4, =7 is determined from the following
system

k
(A - 4,1)K, =0, where K, :(klj
2
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-1 1Yk 0
or =
-k, +k, =0
or b = -k +k,=0
1
Therefore K, =( j
1
Consequently the complementary function is
1 1
X, =¢ e? +c,| "
=l vy
6 0
Since F(t)= t+
-10 4
Now we find a particular solution of the system having the same form.
a a
b, ) by
where a,,a,,b,andb, are constants to be determined.
in the matrix terms we must have
) 6 1 6 0
Xp= X+ t+
4 3 -10 4
a 6 1)(a a,\|] (6 0
2= S S I t+
a,) (6 ljat+a N 6t +0
b,) (4 3)bt+b ) |-10t+4
a, 6a,t + 6a, + bt + b, 6t+0
= +
b, 4a,t +4a, +3b,t +3b, -10t + 4
a) (6at + bt+6t+ 63 + b
b, | \4a,t+30,t —10t + 4a, +3b, + 4
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or

[®% + b, + 6)t + (63, +b, —a,) ]:(T

(4a, +3b, —10)t + (4a, +3b, —b, +4)) |0
from this last identity we conclude that

6a, + b, + 6=0 And 6a, + b, —a,=0
4a, +3b, —10=0 4a, +3b, —b, +4=0
Solving the first two equations simultaneously yields
a,=—2and b, =6

Substituting these values into the last two equations and solving for @, and b, gives

.
T
10
"7

It follows therefore that a particular solution vector is

_2\ (-4I7
X,= t+
6 10/7
and so the general solution of the system on (— oo, o0)is

X =X, +X,
1 1 -2 —4/7
=c e? +c,| e+ t+
-4 1 6 10/7

Determine the form of the particular solution vector X p for

9§=5x+3y—2€‘+1
dt

Example 3

gx=—x+y+e‘t—5t-+7
dt
Solution

First, we write the system in the matrix form
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S IR

5 3
or X':( jX+F(t)
11

dx/dt X -2 0 1
e {219 (oY
dy/dt y 1 -5 7

Now we solve the homogeneous system X' = [ jX to determine the eigen values,

we use the characteristic equation
det(A - Al)=0

or 3 ‘:(5—/1)(1—/1)+3=0

-1 1-4
= 1 -61+8=0
=>A1=2,4
So the eigen valuesare 4, =2and A4, =4

For A = A, =2, an eigen vector corresponding to this eigen value is obtained from

(A-21)K, =0

(i)
A RN
I S

3k, +3k, =0
-k, -k, =0

}:>—k1—k2:0

We choose k, =—1thenk; =1
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1
Therefore K, :( ]

Similarly for A =4, =4

5 3Ll

k, +3k, =0
=k, +3k, =0
-k, -3k, =0
Choosingk, = -1, we get k; =3
Therefore K, :( 31]

Hence the complementary solution is

el
(5

We assume a particular solution of the form

If we replace e in F(t)on e?' (A =2an eigen value), then the correct form of the

particular solution is
a a a a
Xo=| e +| e+ P+,
b, b, b, b,

Variation of Parameters

Variation of parameters is more powerful technique than the method of undetermined
coefficients.

We now develop a systematic produce for finding a solution of the non-homogeneous
linear vector differential equation

Now since

dX
Assuming that we know the corresponding homogeneous vector differential equation
dX
—=AX 2
dt

441

© Copyright Virtual University of Pakistan



Differential Equations (MTH401) VU

Let ¢(t)be a fundamental matrix of the homogeneous system (2), then we can express
the general solution of (2) in the form

X, =¢(t)C
where Cis an arbitrary n-rowed constant vector. We replace the constant vector C by a
column matrix of functions

U, (t)
so that X5 =¢(t)U(t) (3)

is particular solution of the non-homogeneous system (1).
The derivative of (3) by the product rule is

Xy =4(t) U'{t)+¢'(U(t) (4)
Now we substitute equation (3) and (4) in the equation (1) then we have
(1) U'(t)+¢'()U (1) = Ag(t)U(t) + F(t) (5)

Since ¢'(t)= Ag(t)

On substituting this value of ¢'(t)into (5),

We have
AU (1) + Ag(t)U (1) = Ag(t)U (t) + F(t)

Thus, equation (5) become s

or #(t) U'(t)=F(t) )

Multiplying ¢_1(t)on both sides of equation (6), we get

p (D)) U't)=¢" () F)
or ’( )= ‘1( ) (t)
or I t

Hence by equation (3)
= $(t)[ ¢ 7( (7)

is particular solution of the non- homogeneous system (1)

To calculate the indefinite integral of the column matrix ¢_1(t) F(t)in (7), we integrate
each entry. Thus the general solution of the system (1) is

X =X, +X,
) X =g(t)C+¢(t)[47(t) F(t)dt ®)

Example
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Find the general solution of the non-homogeneous system

(—3 1] (3t]
X'= X+
2 -4 e

on the interval (— 00, oo)

Solution
We first solve the corresponding homogeneous system

3 1
X' = X

The characteristic equation of the coefficient matrix is

mﬂA—zn=_3_l : ‘:
2 —4-2
or (-3-A)(-4-1)-2=0

=P +41+31+12-2=0
= A*+74+10=0
= +54+21+10=0
= UA+5)+2(1+5)=0
= (1+5)1+2)=0
=>4 =2, A, =-5

So the eigen values are 4, =—2and 4, =-5

Now we find the eigen vectors corresponding to A, and 4, respectively,

Therefore
(A=A, )
(A-21,) o

: - _4+21(EJ=£8J
a0

-k, +k, =0
S

We choose k, =1arbitrarily then k, =1
Hence the eigen vector is

or
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|

Now an eigen vector associated with A, =4 =—51is determined from the following

system
(A=2,1,)K, =0
-3+5 1 ki)
or
~4+5)k,)
1\ k, 0
f— =
2 1)Kk, 0
2k
L[ +K, _ 0
2k, +k, 0
2k, +k, =0
= =k, =-2k;
2k, +k, =0
We choose arbitrarily k, =1then k, = -2
1
Therefore K, :( 2)

The solution vectors of the homogeneous system are

1 1
X,=| " le™®And X, = e™
1 -2
X,and X, can be written as
The complementary solution

e 2t e bt
¢(t)_ (GZt _ ZestJ

and the inverse of this fundamental matrix is
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2020 12
O E
1851: ;1e5t

3 3

Now we find X o by

X, =¢(t)[¢7(t) F(t)dt

o2t o5t 202t 1g2t it
X p | ot ; ; dt
et et || 1edt Lgst | g
3 3

1 1"
e_2t e_5t 2t62t +§et e_2’[ e_5t Izteztdt +I§e dt
Xp = o2 _ gt o 1 o4 dt = o2 _opBt| 1
te” — e te'dt — j— e’dt
3 . 3
2t 2t
RN /P Y (P NE P
e e 2 2
Xp= (GZt 275t | oSt o5t 1
t— — | —dt —— e*
5 5 3.4
2t 2t
2t 5t 2te— -2 let
e e 2 2 3
Xo=| -5t 5 5
R N
5 25 12
gt t 11
X = 2 3 5 25 12
b=
1 1, 2t 2 1 .
{f——+-6" ——+—+—
2 3 5 25 6
6, 27 1
—t-—+=¢e
_|5 50 4
13, 21 1
—t——+—
5 50 2
Hence the general solution of the non-homogeneous system on the interval (— 00, oo) IS
X=X.+X 0
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=¢(1)C+g(t)[¢7 (1) F(t)a

8, 27 L

or 1 1
¢ e—2t+c2 o5t 5 50 4
1 -2 3 21 1
—t—+—¢e

5 50 2
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Exercise

Use the method of undetermined coefficients to solve the given system on (— 0, oo)

dx

1. t:5x+9y+2
OI—y:—x+11y+6
dt
2. %:x+3y—2t2
dt
—y:3x+y+t+5
dt
3. %:x—4y+4t+9e6t
dt
Y axsy-tre®
dt
4 1/3 -3)
4. X'= X + e
9 6 10

, (-1 5 sint
5. X'= X +
-1 1 — 2cost
Use variation of parameters to solve the given system

%:3x—3y+4
dt

dy
Y o ox_2y-1
dt y

2 - sin2t) .,
7. X'= X + e
4 2 2cost
0o 2 2
8. X'= X+
-1 3 e
3 2 1
9. X'= X +
-2 - 1
0 - sect
10. X'= X +
1 0 0

6.
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