1-MCQ, Lecture 19, Marks-01 Which of the following would be an annihilator operator for $\pi x \cos(\sqrt{2}x)$? $D^2 + 2$ $(D^2+2)^2$ (correct) $\begin{array}{c} \stackrel{}{D}{}^{2}+2\pi \\ \left(D^{2}+2\pi\right)^{2} \end{array}$

2-MCQ, Lecture 20, Marks-01

For the differential equation $y'' - y = e^{2x}$, we get $y_1 = e^x$, $y_2 = e^{-x}$, $W(y_1, y_2) = -2$, $W_1 = e^{2x}$ and $W_2 = -e^x$. If $u'_1 = -\frac{e^{3x}}{2}$, then $u_1 = ---$. $-\frac{e^{3x}}{2}$

$$\frac{\frac{e^{3x}}{2}}{-\frac{e^{3x}}{6}}$$
 (correct)

3-MCQ. Lecture 21. Marks-01

The functions x, 2x and 3x are the solutions of a differential equation, then these are linearly - - - -.

independent dependent (correct)

4-MCQ, Lecture 22, Marks-01

Time period for a body performing Simple Harmonic motion, whose position at any point (x, t) is $x(t) = a \cos t + b \sin t$ is—---.

 π $\frac{\pi}{2}$ $\frac{\pi}{4}$ 2π (correct) 5-Descriptive, Lecture 19, Marks-02 Determine the annihilator operator of $px \sin(qx)$, where $p, q \in \mathbb{R}$. Solution: $\therefore D^2(px) = pD^2x = p.0 = 0$ and $(D^2 + q^2) \sin(qx) = D^2 (\sin(qx)) + q^2 \sin(qx) = -q^2 \sin(qx) + q^2 \sin(qx) =$

: Annihilator of $px \sin (qx) = (D^2 + q^2)^2$ i.e. $(D^2 + q^2)^2 (px \sin (qx)) = 0$

6-Descriptive, Lecture 20, Marks-02

For the differential equation: $a_2(x)y' + a_1(x)y + a_0(x) = f(x), a_2(x) \neq 0$, write the formulation for its general solution.

Solution:

0

 $a_{2}(x)y' + a_{1}(x)y + a_{0}(x) = f(x) \Longrightarrow y' + \frac{a_{1}(x)}{a_{2}(x)}y + \frac{a_{0}(x)}{a_{2}(x)} = \frac{f(x)}{a_{2}(x)}$ $\Longrightarrow y' + p(x)y + q(x) = g(x), \text{ where } \frac{a_{1}(x)}{a_{2}(x)} = p(x), \frac{a_{0}(x)}{a_{2}(x)} = q(x) \text{ and } \frac{f(x)}{a_{2}(x)} = \frac{f(x)}{a_{2}(x)}$ g(x).

Now its general solution will be given by;

$y = e^{-\int p(x)dx}$	$\int e^{\int p(x)dx} g(x)dx + $	$\underbrace{ce^{-\int p(x)dx}}$
	~	Complementary Solution
Particu	lar Solution	

7-Descriptive, Lecture 21, Marks-02

If we have a differential equation: $\frac{d^4y}{dx^4} + ky = x + e^{-x}$, then commemorate the idea of variation of parameters, write down the third column of W_3 .

Solution:

 $\therefore \text{ the given DE is of order 4} \\ \implies \text{ there will be 4 linearly independent solutions.} \\ \implies \text{Wronskian would be of order 4 × 4.} \\ \implies \text{3rd column:} \begin{pmatrix} 0 \\ 0 \\ 0 \\ x + e^{-x} \end{pmatrix}$

8-Descriptive, Lecture 22, Marks-02

If the position x at any time t, for a body performing simple Harmonic motion is; $x(t) = \frac{\cos t}{2} + \frac{\sqrt{3}\sin t}{2}$, then find its amplitude of the vibration.

Solution:

Comparing the given: $x(t) = \frac{\cos t}{2} + \frac{\sqrt{3}\sin t}{2} = \frac{1}{2}\cos t + \frac{\sqrt{3}}{2}\sin t$, with the general form of SHM:

$$x(t) = c_1 \cos t + c_2 \sin t \Longrightarrow c_1 = \frac{1}{2} \text{ and } c_2 = \frac{\sqrt{3}}{2}$$

$$\therefore \text{Amplitude} = \sqrt{c_1^2 + c_2^2} = \sqrt{\left(\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)} = \sqrt{\frac{1}{4} + \frac{3}{4}} = 1$$

9-Descriptive, Lecture 19, Marks-03

If the complementary solution of $y'' + \pi y = \cos \pi x$ is $y_c = a \cos \sqrt{\pi} x + b \sin \sqrt{\pi} x$, then find the general solution of the higher-order homogeneous differential equation obtained by multiplying the given differential equation with the annihilator operator $D^2 + \pi^2$.

Solution:

Operator of the given DE is: $(D^2 + \pi) y = \cos \pi x$ According to given condition; $(D^2 + \pi^2) (D^2 + \pi) y = (D^2 + \pi^2) \cos \pi x$ $\implies (D^2 + \pi^2) (D^2 + \pi) y = 0 \qquad \because \begin{cases} \text{Annihilator of } \cos \pi x \text{ is } D^2 + \pi^2 \\ \text{i.e. } (D^2 + \pi^2) \cos \pi x = 0 \end{cases}$ $\therefore \text{Associated auxiliary equation to the above Homogeneous DE is;}$ $(m^2 + \pi^2) (m^2 + \pi) = 0 \implies m = \pm i\sqrt{\pi}, \pm i\pi$ $\therefore \text{ the general sol: } y = k_1 \cos \sqrt{\pi}x + k_2 \sin \sqrt{\pi}x + k_3 \cos \pi x + k_4 \sin \pi x$ 10-Descriptive, Lecture 20, Marks-03

Find the auxiliary equation associated to the differential equation: $y'' + ay = \sec x$, for a > 0 and a < 0.

Solution:

For a > 0, if $y = e^{mx}$ be its solution, then associated homogeneous DE is; $m^2 e^{mx} + a e^{mx} = 0 \Longrightarrow e^{mx} (a + m^2) = 0 \Longrightarrow \boxed{m^2 + a = 0} \quad \because e^{mx} \neq 0$

For $a < 0 \exists b > 0$ in \mathbb{R} such that a = -b, and if $y = e^{mx}$ be its solution, then associated homogeneous DE is;

$$m^{2}e^{mx} - be^{mx} = 0 \Longrightarrow e^{mx} \left(-b + m^{2} \right) = 0 \Longrightarrow \overline{m^{2} - b} = 0 \quad \because e^{mx} \neq 0$$

11-Descriptive, Lecture 21, Marks-03

Determine W by applying the technique of the variation of parameters on the following differential equation:

$$\frac{d^3y}{dx^3} + \pi \frac{dy}{dx} = \tan 2x$$

Solution:

If $y = e^{mx}$ is the proposed solution of the associated homogeneous DE of the given, then the auxiliary eq: is

$$\begin{array}{l} m^3 + \pi m = 0 \Longrightarrow m \left(\pi + m^2\right) = 0 \Longrightarrow m = 0, 0 \pm i\sqrt{\pi} \\ \Longrightarrow y_c = ae^0 + e^0 \left(b\cos\sqrt{\pi}x + d\sin\sqrt{\pi}x\right) = a.1 + b\cos\sqrt{\pi}x + d\sin\sqrt{\pi}x \\ \Longrightarrow \text{fundamental set} = \{1, \cos\sqrt{\pi}x, \sin\sqrt{\pi}x\} \\ \Longrightarrow W \left(1, \cos\sqrt{\pi}x, \sin\sqrt{\pi}x\right) = \begin{vmatrix} 1 & \cos\sqrt{\pi}x & \sin\sqrt{\pi}x \\ 0 & -\sqrt{\pi}\sin\sqrt{\pi}x & \sqrt{\pi}\cos\sqrt{\pi}x \\ 0 & -\pi\cos\sqrt{\pi}x & -\pi\sin\sqrt{\pi}x \end{vmatrix} = \pi\sqrt{\pi}\sin^2\sqrt{\pi}x + \frac{1}{2} \left(1 + \frac{1}{2}\right) \left(1 +$$

 $\pi\sqrt{\pi}\cos^2\sqrt{\pi}x = \pi\sqrt{\pi}$

12-Descriptive, Lecture 22, Marks-03

Determine the equation of the simple harmonic motion for a mass weighing w lbs, which stretches a spring to a inches from an initial position.

Solution:

: Weight= F = W = wlbs $\implies mg = w \implies m = \frac{w}{g} = \frac{w}{32}$ distance from Initial position= s = a inches= $\frac{a}{12}$ ft .: By Hook's law, $F = ks \implies \frac{w}{32} = k\frac{a}{12} \implies k = \frac{3w}{8a}$

Now the eq: of SHM: $m\frac{d^2x}{dt^2} = -kx \Longrightarrow \frac{w}{32}\frac{d^2x}{dt^2} = -\frac{3w}{8a}x \Longrightarrow \frac{d^2x}{dt^2} + \frac{12}{a}x = 0$ is the required equation.

13-Descriptive, Lecture 19, Marks-05

If the complementary solution of $y'' + 3y' + 2y = e^x \sin(2x+3)$ is $y_c = ae^{-x} + be^{-2x}$, then determine the form of its particular solution by applying **only** the concept of annihilator operator approach.

Solution:

Operator form of the given DE is; $(D^2 + 3D + 2) y = e^x \sin(2x + 3)$ And the Annihilator of $e^{1x} \sin(2x + 3) = D^2 + 1^2 + 2^2 - 2(1)D \equiv D^2 - 2D + 5$ i.e. $(D^2 - 2D + 5) e^x \sin(2x + 3) = 0$ \therefore Pre-operating by $(D^2 - 2D + 5)$ on both sides of given D.E $\implies (D^2 - 2D + 5) (D^2 + 3D + 2) y = (D^2 - 2D + 5) e^x \sin(2x + 3)$ $\implies (D^2 - 2D + 5) (D^2 + 3D + 2) y = 0$ \implies associated auxiliary eq: of above Homogeneous eq: is; $\implies (m^2 - 2m + 5) (m^2 + 3m + 2) = 0$ $\implies m = -2, -1$ and $m^2 - 2m + 5 = 0 \implies m = 1 + 2i, 1 - 2i$

: the general sol: $y = Ae^{-x} + Be^{-2x} + e^x(D\cos 2x + E\sin 2x)$

14-Descriptive, Lecture 20, Marks-05

Find the wronskian for the complementary solution of the differential equation: $y'' + ay = \sec x$, for a > 0; using the variation of parameter.

Solution:

For a > 0, if $y = e^{mx}$ be its solution, then associated homogeneous DE: $y'' + ay = 0 \Longrightarrow m^2 e^{mx} + a e^{mx} = 0 \Longrightarrow e^{mx} (a + m^2) = 0$ $\Longrightarrow m^2 + a = 0 \because e^{mx} \neq 0$ $\Longrightarrow m = 0 \pm i\sqrt{a}$ \Longrightarrow the complementary solution: $y_c = A\cos(\sqrt{ax}) + B\sin(\sqrt{ax})$ \Longrightarrow Fundamental Set= $\{y_1, y_2\} = \{\cos(\sqrt{ax}), \sin(\sqrt{ax})\}$ \Longrightarrow Wronskian= $W(y_1, y_2) = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} = \begin{vmatrix} \cos(\sqrt{ax}) & \sin(\sqrt{ax}) \\ -\sqrt{a}\sin(\sqrt{ax}) & \sqrt{a}\cos(\sqrt{ax}) \end{vmatrix} = \sqrt{a}(\cos^2(\sqrt{ax}) + \sqrt{a}\sin^2(\sqrt{ax})) = \sqrt{a}(\cos^2(\sqrt{ax}) + \sqrt{a}\sin^2(\sqrt{ax})) = \sqrt{a}(\cos^2(\sqrt{ax}) + \sin^2(\sqrt{ax})) = \sqrt{a}(\cos^2(\sqrt{ax}) + \sqrt{a}\sin^2(\sqrt{ax})) = \sqrt{a}(\cos^2(\sqrt{ax}) + \sin^2(\sqrt{ax})) = \sqrt{a}(\cos^2(\sqrt{ax}) + \sin^2(\sqrt{ax}))$

15-Descriptive, Lecture 21, Marks-05

Solve the differential equation: $\frac{d^2y}{dx^2} + y = \tan^3 x$ by variation of parameters. Where:

 $y_c = ay_1 + by_2 = a\cos x + b\sin x, W(y_1, y_2) = 1, W_1 = -\sin x \tan^3 x$ and $W_2 = \cos x \tan^3 x.$

Solution:

: we have given the complementary solution and just to find the particular one, which is given by:

 $y_p = u_1(x)y_1(x) + u_2(x)y_2(x)$, where $u_1 = \int \frac{W}{W_1} dx$ and $u_2 = \int \frac{W_2}{W} dx$.

Now
$$u_1 = \int \frac{W_1}{W} dx = \int \frac{-\sin x \tan^3 x}{1} dx = -\int \frac{\sin^4 x}{\cos^3 x} dx$$

and $u_2 = \int \frac{W_2}{W} dx = \int \frac{\cos x \tan^3 x}{1} dx = \int \frac{\sin^3 x}{\cos^2 x} dx$

Here both the integrals are not of fundamental nature and will remain as such.

 $\therefore \text{ the general sol}: y = y_c + y_p = a\cos x + b\sin x + u_1(x)y_1(x) + u_2(x)y_2(x) = a\cos x + b\sin x + \cos x \left(-\int \frac{\sin^4 x}{\cos^3 x} dx\right) + \sin x \left(\int \frac{\sin^3 x}{\cos^2 x} dx\right)$ $y = a\cos x + b\sin x - \cos x \int \frac{\sin^4 x}{\cos^3 x} dx + \sin x \int \frac{\sin^3 x}{\cos^2 x} dx$

16-Descriptive, Lecture 22, Marks-05

Express the solution: $x(t) = a \cos \omega t - b \sin \omega t$ of Simple Harmonic Motion(SHM) in the form of $x(t) = A \cos(\omega t + \phi)$.

Solution:

Firstly we look for to find A and ϕ

 $\therefore x(t) = A\cos(\omega t - \phi)$ is the required form;

 $\therefore \{ \text{by using } \cos(\alpha - \beta) = \cos\alpha \cos\beta + \sin\alpha \sin\beta \}$

 $\implies x(t) = A\left(\cos t\omega \cos \phi + \sin t\omega \sin \phi\right) = (A\cos \phi)\cos t\omega + (A\sin \phi)\sin \omega t (A\sin \phi) = (A\cos \phi)\cos t\omega + A\sin \phi\sin \omega t$

Comparing this with given: $x(t) = a \cos \omega t - b \sin \omega t$

 $\implies a = A \cos \phi \text{ and } b = (-A \sin \phi)$ Squaring and Adding; $a^{2}+b^{2} = (A\cos\phi)^{2} + (A\sin\phi)^{2} = A^{2}\cos^{2}\phi + A^{2}\sin^{2}\phi = A^{2}\left(\cos^{2}\phi + \sin^{2}\phi\right) = A^{2}.1 = A^{2}.$ $A^{-} = A^{-}$ $\implies A^{2} = a^{2} + b^{2} \implies A = \sqrt{a^{2} + b^{2}}$ Again $a = A \cos \phi \implies \frac{a}{A} = \cos \phi$ and $\frac{b}{A} = \sin \phi$ $\implies \tan \phi = \frac{\sin \phi}{\cos \phi} = \frac{\frac{b}{A}}{\frac{a}{A}} \implies \phi = \tan^{-1} \left(\frac{b}{a}\right) = \tan^{-1} \left(\frac{b}{a}\right)$ Now from the given: $x(t) = a \cos \omega t - b \sin \omega t = A \left(\frac{a}{A} \cos \omega t - \frac{b}{A} \sin \omega t\right)$ (Note is other) this step) $\Rightarrow x(t) = A\left(\frac{a}{A}\cos\omega t - \frac{b}{A}\sin\omega t\right) = A\left(\cos\phi\cos\omega t - \sin\phi\sin\omega t\right) = A\left(\cos\omega t\cos\phi - \sin\omega t\sin\phi\right)$ $\because \left\{\cos\alpha\cos\beta - \sin\alpha\sin\beta = \cos\left(\alpha + \beta\right)$ $\therefore \frac{x(t) = A\cos\left(\omega t + \phi\right) = \sqrt{a^2 + b^2}\cos\left(\omega t + \tan^{-1}\left(\frac{b}{a}\right)\right)}{\left[\sin\theta\right]} \text{ i.e. the required form.}$