(MCQ, Lecture 16, Marks-01)
1)

If the roots of an auxiliary equation associated with the homogeneous differential equation are $\pm 2,1 \pm 2 i$, then its general solution is - .
$y=A e^{2 x}+B e^{-2 x}+e^{2 i x}(C \cos x+D \sin x)$
$y=A e^{2 x}+B e^{-2 x}+e^{i x}(C \cos 2 x+D \sin 2 x)$
$y=A e^{2 x}+B e^{-2 x}+e^{x}(C \cos 2 x+D \sin 2 x)($ correct $)$
$y=A e^{2 x}+B e^{-2 x}+e^{2 i x}(C \cos x-D \sin x)$
(MCQ, Lecture 17, Marks-01)
2)

If $a \cos x+b \sin x$ is the solution for $y^{\prime \prime}+y=0$, then which of the following would be general form of the particular solution for $y^{\prime \prime}+y=4 \cos x-\sin x$?

$$
\begin{aligned}
& y_{p}=c \cos x+d \cos x \\
& y_{p}=c x \cos x+d x \cos x \\
& y_{p}=e^{x}(c \cos x+d \cos x) \\
& y_{p}=e^{x}(c x \cos x+d x \cos x)
\end{aligned}
$$

(MCQ, Lecture 18, Marks-01)
3)

If the annihilator of $e^{\pi x}$ and $\left(x^{2}+2 x+3\right)$ are $(D-\pi)$ and D^{3} respectively, then the annihilator of their linear combination is -

$$
\begin{aligned}
& (D-\pi)+D^{3} \\
& (D-\pi)-D^{3} \\
& D^{3}(D-\pi)(\text { correct }) \\
& \frac{(D-\pi)}{D^{3}}
\end{aligned}
$$

(Descriptive, Lecture 16, Marks-02)
4)

If $y=e^{m x}$ is a solution of the differential equation: $\frac{d^{2} y}{d x^{2}}+a y=0, a \in \mathbb{R}$, then construct its associated auxiliary equation.

Solution:

$\because y=e^{m x} \Longrightarrow \frac{d y}{d x}=\frac{d}{d x} e^{m x}=m e^{m x} \Longrightarrow \frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(m e^{m x}\right)=m^{2} e^{m x}$
$\therefore \frac{d^{2} y}{d x^{2}}+a y=0 \Longrightarrow m^{2} e^{m x}+a e^{m x}=0$
$e^{m x}\left(a+m^{2}\right)=0 \Longrightarrow m^{2}+a=0 \quad \because e^{m x} \neq 0$
i.e. the required auxiliary equation.
(Descriptive, Lecture 17, Marks-02)
5)

If $y=e^{-\frac{x}{2}}\left(a \cos \left(\frac{\sqrt{3}}{2} x\right)+b \sin \left(\frac{\sqrt{3}}{2} x\right)\right)$ is a complementary solution of the differential equation: $y^{\prime \prime}+y=x \sin x$, then what will be the general form of its particular solution?

Solution:

Since $\sin \left(\frac{\sqrt{3}}{2} x\right)$ and $x \sin x$ are linearly independent, so the general form of its particular solution of the given D.E would be of the form:
$y_{p}=x(c \cos x+d \sin x)$.
(Descriptive, Lecture 18, Marks-02)
6)

If $(D-\pi)^{2} \pi x e^{\pi x}=0,\left(D^{2}+\pi^{2}\right) \cos \pi x=0$ and $D(\pi x)=0$, then what will be the annihilator of their linear combination?

Solution:

Linear combination of the given functions: $c_{1} \pi x e^{\pi x}+c_{2} \cos \pi x+c_{3} \pi x$
\Longrightarrow its annihilator would be the product of annihilators of individual functions as:
$\left((D-\pi)^{2}\left(D^{2}+\pi^{2}\right) D\right)\left(c_{1} \pi x e^{\pi x}+c_{2} \cos \pi x+c_{3} \pi x\right)=0$
$\therefore D\left(D^{2}+\pi^{2}\right)(D-\pi)^{2}$ is the required annihilator.
(Descriptive, Lecture 16, Marks-03)
7)

If $m^{3}+a m=0$ is an associated auxiliary equation of the differential equation: $\frac{d^{3} y}{d x^{3}}+$ $a \frac{d y}{d x}=0, a \in \mathbb{R}$, then find its general solution.

Solution:

\because given that $m^{3}+a m=0 \Longrightarrow m\left(a+m^{2}\right)=0 \Longrightarrow m=0 \vee m^{2}+a=0$
$\Longrightarrow m=0 \vee m^{2}+a=0 \Longrightarrow m=0 \pm i \sqrt{a}$
\therefore the required general solution: $y=a e^{0 x}+e^{0 x}(b \cos (\sqrt{a} x)+c \sin (\sqrt{a} x))=$ $a+b \cos (\sqrt{a} x)+c \sin (\sqrt{a} x)$
(Descriptive, Lecture 17, Marks-03)
8)

What would be the general form of a particular solution of the differential equation: $y^{\prime \prime}+y=4 \cos x-\sin x$?

Solution:
Associated homogenous D.E corresponding to given is: $y^{\prime \prime}+y=0$.
If $y=e^{m x}$ be its solution, then the auxiliary equation is: $m^{2}+1=0 \Longrightarrow$ $m=0 \pm i$
\therefore the its general solution: $y_{c}=a \cos x+b \sin x$
\because the input function contains $\sin x$ and $\cos x$ while complementary solution also contain this, which will no more be independent.
\Longrightarrow proposed general form of the particular solution is:
$y_{p}=c x \cos x+d x \sin x$
(Descriptive, Lecture 18, Marks-03)
9)

Determine the annihilator operator of general solution of the differential equation: $y^{\prime \prime}+\pi y=0$.

Solution:

Given that $y^{\prime \prime}+\pi y=0 \Longrightarrow \frac{d^{2} y}{d x^{2}}+\pi y=0 \Longrightarrow \frac{d^{2}}{d x^{2}} y+\pi y=0$
$\Longrightarrow D^{2} y+\pi y=0 \quad \because D^{2} \equiv \frac{d^{2}}{d x^{2}}$
$\Longrightarrow\left(D^{2}+\pi\right) y=0$
$\Longrightarrow\left(D^{2}+\pi\right)$ is the required annihilator the solution $y=f(x)$ of the given differential equation.
(Descriptive, Lecture 16, Marks-05)
10)

If $m^{2}+1=0$ is an auxiliary equation corresponding to the differential equation: $\frac{d^{2} y}{d x^{2}}+y=0$, then find its particular solution satisfying the initial conditions: $y(0)=1$ and $\left.\frac{d y}{d x}\right|_{x=\pi}=-1$.

Note: $\left.\frac{d y}{d x}\right|_{x=\pi}=-1$ means first derivative of y at $x=\pi$ is equal to -1 .

Solution:

$\because m^{2}+1=0$ is given. $\Longrightarrow m=0 \pm i$.
\therefore the general solution is: $y=e^{0 x}(a \cos x+b \sin x)=a \cos x+b \sin x$ - (1)
$\Longrightarrow \frac{d y}{d x}=-a \sin x+b \cos x-(2)$
For given $y(0)=1,(1) \Longrightarrow 1=a \cos 0+b \sin 0 \Longrightarrow a=1$
and for $\left.\frac{d y}{d x}\right|_{x=\pi}=-1,(2) \Longrightarrow-1=-a \sin (\pi)+b \cos (\pi) \Longrightarrow b=1$
\therefore the required particular solution is: $y_{p}=\cos x+\sin x$
(Descriptive, Lecture 17, Marks-05)
11)

If the complementary solution of following non-homogenous differential equation is $a e^{x}+b e^{2 x}$, then determine its particular solution by using Undetermined Coefficients method.
$y^{\prime \prime}-3 y^{\prime}+2 y=4 e^{x}$.

Solution:

Here input function: $4 e^{x}$ and particular solution also contains e^{x}.
\therefore by linear independence, the proposed general form of the particular solution is: $y_{p}=c x e^{x}$
$\Longrightarrow y_{p}^{\prime}=c e^{x}+c x e^{x}=c e^{x}(x+1) \Longrightarrow y_{p}^{\prime \prime}=c e^{x}(x+2)$
Now the given: $y^{\prime \prime}-3 y^{\prime}+2 y=4 e^{x}$
$\Longrightarrow c e^{x}(x+2)-3 c e^{x}(x+1)+2 c x e^{x}=4 e^{x}$
$\Longrightarrow 2 c e^{x}+c x e^{x}-3 c e^{x}-3 c x e^{x}+2 c x e^{x}=4 e^{x}$
$\Longrightarrow-c e^{x}=4 e^{x} \Longrightarrow c=-4$
\therefore the required particular solution: $y_{p}=-4 x e^{x}$
(Descriptive, Lecture 18, Marks-05)
12)

If $L \equiv D^{2}-5 D-6$ is a linear differential operator such that $L y=0$,for $y=f(x)$. Then:
i) Construct a differential equation corresponding to L.
ii) Determine the general solution of differential equation in case of (i).
iii) Determine the annihilator operator of the general solution in case of (ii)

Solution:

i) Given that $L y=0 \Longrightarrow\left(D^{2}-5 D-6\right) y=0 \Longrightarrow D^{2} y-5 D y-6 y=0$
$\because \frac{d}{d x} \equiv D$ is a differential linear operator $\Longrightarrow \frac{d^{2}}{d x^{2}} \equiv D$
$\therefore \frac{d^{2}}{d x^{2}} y-5 \frac{d}{d x} y-6 y=0 \Longrightarrow \frac{d^{2} y}{d x^{2}}-5 \frac{d y}{d x}-6 y=0$ is the required differential equation.
ii)Say $y=e^{m x}$ be its solution $\Longrightarrow \frac{d y}{d x}=m e^{m x}$ and $\frac{d^{2} y}{d x^{2}}=m^{2} e^{m x}$
\therefore D.E $\Longrightarrow m^{2} e^{m x}-m e^{m x}-6 e^{m x}=0 \Longrightarrow e^{m x}(m+2)(m-3)=0$
$\Longrightarrow(m+2)(m-3)=0 \quad \because e^{m x} \neq 0$
$\Longrightarrow m=-2,3$
\therefore the general solution: $y=a e^{-2 x}+b e^{3 x}$
iii) \because Given that $L y=0 \Longrightarrow L \equiv D^{2}-5 D-6$ is the required annihilator operator for the general solution.

