Annihilator means to apply or choose some differential operator in such a way that it vanishes (becomes zero).

For example a constant is vanished on differentiating i.e. $\frac{d}{dx}a = 0$. So $\frac{d}{dx}$ is annihilator of any constant. Similarly, in case of x, if we differentiate it twice then we get zero i.e. $\frac{d}{dx}x = 1$, differentiate again, we have:

$$\frac{d^2}{dx^2}x = \frac{d}{dx}\left(\frac{d}{dx}x\right) = \frac{d}{dx}1 = 0.$$

$$\therefore \frac{d^2}{dx^2} \text{ is annihilator of } x.$$

Now if we denote $\frac{d}{dx} \equiv D$, $\frac{d^2}{dx^2} \equiv D^2$etc. Then for other functions, you can "observe" the followings;

 $D^2 + 1$ is an annihilator of $\sin x$ and $\cos x$ i.e. $(D^2 + 1)\sin x = 0$ and $(D^2 + 1)\cos x = 0$

$$(D^{2} + 1)\sin x = D^{2}\sin x + 1\sin x = \frac{d^{2}}{dx^{2}}\sin x + 1\sin x = \frac{d}{dx}(\frac{d}{dx}\sin x) + \sin x = \frac{d}{dx}(\cos x) + \sin x = -\sin x + \sin x = 0$$

$$(D^{2} + 1)\cos x = D^{2}\cos x + 1\cos x = \frac{d^{2}}{dx^{2}}\cos x + 1\cos x = \frac{d}{dx}\left(\frac{d}{dx}\cos x\right) + \cos x = \frac{d}{dx}\left(-\sin x\right) + \cos x = -\cos x + \cos x = 0$$
Similarly for e^{ax} , you can "see" $D - a$ is a annihilator i.e. $(D - a)e^{ax} = 0$

$$(D - a)e^{ax} = De^{ax} - ae^{ax} = \frac{d}{dx}e^{ax} - ae^{ax} = ae^{ax} - ae^{ax} = 0$$
And finally for $x^{2} + 3x - 2$, D^{3} is annihilator i.e. $D^{3}\left(x^{2} + 3x - 2\right) = 0$

Similarly for
$$e^{ax}$$
, you can "see" $D-a$ is a annihilator i.e. $(D-a)e^{ax}=0$

$$(D-a)e^{ax} = De^{ax} - ae^{ax} = \frac{d}{dx}e^{ax} - ae^{ax} = ae^{ax} - ae^{ax} = 0$$

And finally for
$$x^2 + 3x - 2$$
, D^3 is annihilator i.e. $D^3(x^2 + 3x - 2) = 0$

And finally for
$$x^2 + 3x - 2$$
, D^3 is annihilator i.e. $D^3(x^2 + 3x - 2) = 0$

$$D^3(x^2 + 3x - 2) = \frac{d^3}{dx^3}(x^2 + 3x - 2) = \frac{d^2}{dx^2}(\frac{d}{dx}(x^2 + 3x - 2)) = \frac{d^2}{dx^2}(2x + 3) = \frac{d}{dx}(\frac{d}{dx}(2x + 3)) = \frac{d}{dx}(2) = 0$$