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Differential Equations (MTH401)

VU

1 Introduction
Background
Linear y=mx+c
Quadratic ax2+bx+c=0
Cubic ax3+bx2+cx+d=0
Systems of Linear equations
ax+by+c=0
Ix+my+n=0
Solution ?
Equation
Differential Operator
dy_1
dx x

Taking anti derivative on both sides
y=In x
From the past

Algebra
Trigonometry
Calculus
Differentiation
Integration
Differentiation
» Algebraic Functions
» Trigonometric Functions
* Logarithmic Functions
» Exponential Functions
* Inverse Trigonometric Functions
B More Differentiation
» Successive Differentiation
» Higher Order
* Leibnitz Theorem
B Applications
* Maxima and Minima
» Tangent and Normal
B Partial Derivatives

y=f(x)
f(x,y)=0
z=f(xy)
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Differential Equations (MTH401)

VU

Integration

Reverse of Differentiation
By parts

By substitution

By Partial Fractions
Reduction Formula

Frequently required

B Standard Differentiation formulae
B Standard Integration Formulae

Differential Equations

B Something New

Mostly old stuff
» Presented differently
* Analyzed differently
* Applied Differently

© Copyright Virtual University of Pakistan



Differential Equations (MTH401)

2 Fundamentals
% Definition of a differential equation.
% Classification of differential equations.
% Solution of a differential equation.
% Initial value problems associated to DE.
% Existence and uniqueness of solutions
2.1 Elements of the Theory
B Applicable to:
e Chemistry
« Physics
= Engineering
e Medicine
= Biology
= Anthropology
B Differential Equation — involves an unknown function with one or more of its
derivatives
B Ordinary D.E. — a function where the unknown is dependent upon only one
independent variable

Examples of D.Eqs

dy
—-5 =1
dx y
(y—x)dx+4xdy =0
d’y dyf
—+5|—=| -4y =¢
dx? [dx y
N -0
oy OX
ou ov
X—+Yy— =u
ox oy
2 2
a_l;_a_l:+20_u =0
ox° ot ot
2.2 Specific Examples of ODE’s
(;—l: =F(t).G(u) , the growth equation
0 g . .
e +T3|n0 = F(t), the pendulum equation
2
(iltz +e(y? +1)%+ y =0, the van der Pol equation,

© Copyright Virtual University of Pakistan



Differential Equations (MTH401) VU

d Q —+R— dQ Q = E(t), the LCR oscillator equation
dt dt C
2
?th) 2a(t)p+ b (())  —y(t), a Riccati equation

2.3 The order of an equation
= The order of the highest derivative appearing in the equation

2
d’y (dyj L4y =g
dx? dx
a’l—- aAy ou =0
ox* ax

2.4 Ordinary Differential Equation

If an equation contains only ordinary derivatives of one or more dependent variables,
w.r.t a single variable, then it is said to be an Ordinary Differential Equation (ODE). For
example the differential equation

d’y  .(dy
dx? +5(dx) 4y =¢

is an ordinary differential equation.
2.5 Partial Differential Equation

Similarly an equation that involves partial derivatives of one or more dependent
variables w.r.t two or more independent variables is called a Partial Differential Equation
(PDE). For example the equation

a’ ﬂ i =0
oxt ox?

is a partial differential equation.

2.6 Results from ODE data
B The solution of a general differential equation:f(t, y, y’, ..., y(n)) = 0 is defined
over some interval | having the following properties:
B y(t) and its first n derivatives exist for all t in | so that y(t) and its firstn - 1
derivates must be continuous in |
y(t) satisfies the differential equation for all tin |
General Solution — all solutions to the differential equation can be represented in
this form for all constants
Particular Solution — contains no arbitrary constants
Initial Condition
Boundary Condition
Initial VValue Problem (IVP)

© Copyright Virtual University of Pakistan 4



Differential Equations (MTH401) VU

B Boundary Value Problem(BVP)
B |VP Examples
B The Logistic Equation
e p’ =ap-hp2
= with initial condition p(t0) = p0; for p0 = 10 the solution is:
e p(t)=10a/(10b + (a — 10b)e-a(t-t0))
B The mass-spring system equation
e X7+ (@/m)x +(k/m)x =g+ (F(t)/m)
2.7 BVP Examples
= Differential equations
By’ + 9y =sin(t)
= with initial conditions y(0) = 1, y’(2p) = -1
e y(t) = (1/8) sin(t) + cos(3t) + sin (3t)
By +p2y=0
= with initial conditions y(0) = 2, y(1) = -2
= Y(t) = 2cos(pt) + (c)sin(pt)
2.8 Properties of ODE’s
B Linear — if the nth-order differential equation can be written:
e an(t)y(n) + an-1(t)y(n-1) + ... +aly’ + a0(t)y = h(t)
B Nonlinear — not linear

X3(y’"7)3-x2y(y’’)2+3xy’ +5y=ex

2.9 Superposition
B Superposition — allows us to decompose a problem into smaller, simpler parts and
then combine them to find a solution to the original problem.

2.10 Explicit Solution
A solution of a differential equation

2 2
F[X’y,ﬂ d y’...’d y]:o

dx dx? dx?
that can be written as y = f(x) is known as an explicit solution .
Example: The solution y = xex is an explicit solution of the differential equation

d’y _dy
72—
dx dx

+y=0

2.11 Implicit Solution

A relation G(x,y) is known as an implicit solution of a differential equation, if it defines
one or more explicit solution on 1.

Example: The solution x2 + y2 - 4=0 is an implicit solution of the equation y’ = - x/y
as it defines two explicit solutions y=+(4-x2)1/2
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3 Separable Equations

The differential equation of the form

dy
= — f(x,
™ (X, )

is called separable if it can be written in the form
dy
——=h(x)g(y)
dx

3.1 Solution steps of Separable Equations
To solve a separable equation, we perform the following steps:

1. We solve the equation g(y) =0 to find the constant solutions of the equation.

2. For non-constant solutions we write the equation in the form.

dy
= h(x)dx
g(y)
Then integrate Jidy = I h(x)dx
g(y)

to obtain a solution of the form

G(y)=H(Xx)+C

3. We list the entire constant and the non-constant solutions to avoid repetition..

4. If you are given an IVP, use the initial condition to find the particular solution.

Note that:

(a) No need to use two constants of integration becauseC, —-C, =C.

(b) The constants of integration may be relabeled in a convenient way.
(c) Since a particular solution may coincide with a constant solution, step 3 is
important.

Example 1:

d 21
Find the particular solution of d_i: y L y() =2

Solution:

1. By solving the equation: Y? —1= 0 We obtain the constant solutions: Y = *1

dy _ dx
y> -1 X

2. Rewrite the equation as

Resolving into partial fractions and integrating, we obtain

SIERE A e
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Integration of rational functions, we get

L= g0 xj+c
2 |y+1|

3. The solutions to the given differential equation are
L= ke
2 |y+1|
y = *1

4. Since the constant solutions do not satisfy the initial condition, we plug in the
condition

y =2 When x =1 in the solution found in step 2 to find the value of C .

1In(ljzc
2 3

The above implicit solution can be rewritten in an explicit form as:

3+ x?
3-x?
Example 2:
dy 1
Solve the differential equation —~ =1+—
dt y
Solution:

1. We find roots of the equation to find constant solutions; 1+ 7 =0

No constant solutions exist because the equation has no real roots.
2. For non-constant solutions, we separate the variables and integrate

1+1/y

Sin L = yZ =1- L
nee 1417y y2+1 © yE+l
dy a
Th ———=vy—tan
W J1+1/y2 y )
So that y—tan'(y)=t+C

It is not easy to find the solution in an explicit form i.e. Y as a function of t.

3. Since 3 no constant solutions, all solutions are given by the implicit equation
found instep 2.
Example 3:

d
Solve the initial value problem d_>t/ =1+t +y? +t?y?, y(0)=1

© Copyright Virtual University of Pakistan 7
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Solution:
1. Since 1+t2 +y2 +t2y? = (L+t*)(L+ y?)
The equation is separable & has no constant solutions because 3 no real roots of

1+y? =0,

2. For non-constant solutions we separate the variables and integrate.

W@ttt
l+y

dy )
=[(1+t°)dt

3

tan " (y) :t+%+C

t3
y = tan(t+§+C]

3. Since 3 no constant solutions, all solutions are given by the implicit or explicit
equation.

Which can be written as

4. The initial condition y(0) =1 gives
_ T
C - tan 1(1) - Z
The particular solution to the initial value problem is
t°

tan(y) =t+—+=
(¥) 372

. - t*
or in the explicit form y =tan t+§+Z

Example 4:
Solve (1+ x)dy — ydx =0
Solution:

Dividing with (L+ x)y, we can write the given equation as

dy y
dx  (1+x)

1. The only constant solutionis Y =0
2. For non-constant solution we separate the variables

© Copyright Virtual University of Pakistan 8
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dy _ dx

y T 1+x

Integrating both sides, we have
Jﬂ _( dx
y 1+x

In|y| = InfL+ x| +c,

y = eln|1+x|+c:l _ eIn|1+x| oG

or y :|1+x|ecl :=iecl(1+x)

c
y=C(l+x), C=zxe"

If we use In | C | instead of C, then the solution can be written as

Injy|=In|1+x]|+In|cC]|

or In|y = Injc(1+ x)
So that y=c(l+x).
3. The solutions to the given equation are
y = c(l+x)
y =0
Example 5

Solve xy*dx + (y2 + 2)e’3xdy =0.

4
Solution: The differential equation can be written as j—y = (— xe3x) (Zy—zj
X y©+

4

y

y? 42
2. We separate the variables
2

xe¥dx + 2 +2dy=0 or xe3XdX+(y72+2y74)dy:O

4

1. Since = y =0. Therefore, the only constant solution is Y = 0.

Integrating, with use integration by parts by parts on the first term, yields
1 3X 1 3X -1 2 -3
—xe¥—=e’ -y T ——yT =cC
3 9 y 3 y 1
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e3x(3x—1)=g+£3+c where 9c, =¢
y 'y

e3x(3x—1)=g+%+c
3. All the solutions are: y 'y

y = 0

Example 6: Solve the initial value problems

dy_ 1\ _ d_y_ _1)? —
(a) &—(y 17, y(0)=1 () dx—(y 1, y(0)=1.01

and compare the solutions.
Solutions:
1. Since (y —1)> =0 = y =1. Therefore, the only constant solution is y = 0.

2. We separate the variables

Y _dx or (y-1)?dy = dx

(y-1°

Integrating both sides we have

fly-1)ay = fox

_1)-2+1
=027
-2+1
L X+C
or -——=
y—1
3. All the solutions of the equation are
1
————=X+¢C
y-1
y =1

4. We plug in the conditions to find particular solutions of both the problems

(@) y(0)=1= y =1when x = 0. So we have

1 1
——:0+c:>c:—6:>0=—oo

The particular solution is

© Copyright Virtual University of Pakistan
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—L:—ooj y-1=0
y-1

So that the solutionis Y = 1, which is same as constant solution.

(b) y(0)=1.01= y=1.01 when x=0. So we have

— =0+c=c=-100
1.01-1
So that solution of the problem is
—L =Xx-100=>y=1+
y— 100 —x

5. Comparison: A radical change in the solutions of the differential equation has
Occurred corresponding to a very small change in the condition!!

Example 7:

Solve the initial value problems

dy _ ﬂ_ a2 _
@ =(y-17+0.01, y0)=1 (b OIX_(y 1) -0.01, y(0)=1.

Solution:

(a) First consider the problem

dy
1 0.01, 0)=1
” =(y-1)° + y(0)

We separate the variables to find the non-constant solutions

dy =dx

(Vo.orf +(y-1y

Integrate both sides

So that tan =X+C
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4/0.01

yo%oll - tan[v0.01(x + ¢)|

or y =1++/0.01 tan[+/0.01(x + c)|
Applying y(0)=1= y=1 when x=0,we have

tan(0)=+/0.01(0+¢c)=0=c

Thus the solution of the problem is

tan _{y_—l) =+/0.01(x +c)

y =1+4/0.01 tan(«/0.0l x)
(b) Now consider the problem

dx
We separate the variables to find the non-constant solutions

dy =dx
<v—1>2—<m>2

[(y 1‘; ( )_jdx

1 ly-1-voor|
2,/0.01 \y 1+4001|

Applying the condition y(0)=1= y =1 when x =0

! |_ 1§=c:>c:0

0
In
2,/0.01 | 0.01

0.01
In = 2,/0.01x
‘y 1++0.01
y—-1-40.01 e/
y-1+4001 1

Y (y-1P 001  y()=1.
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Simplification:
. a ¢ a+b c+d
By using the propert —=———=
Y USING HhE PTOPEry b d a-b c-d
y-1-4001+y-1+4001 V00X g
y—1-40.01-y+1-+/0.01 2v0.01X _4
2y-2 e2V0O0l 4q
—2+/0.01 eZVO-Ol -1
y—1 - e2«/0.01 1
—4/0.01 e2«/0.01 1
24/0.01
— e +1
y=1=- 0'01(82«/0.01 _J
24/0.01
~— e +1
Comparison:
The solutions of both the problems are
(@ y=  1++0.01 tan(\/0.01x)
2./0.01
e +1
Again a radical change has occurred corresponding to a very small in the differential
equation!
3.2 Exercise
Solve the given differential equation by separation of variables.
dy (Zy + 3)2
dx \4x+5
© Copyright Virtual University of Pakistan 13
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2. sec® xdy +csc ydx =0
3. e’sin2xdx+cosx(e? — y)dy =0

dy _ xy+3x-y-3
dx xy—-2x+4y-8

dy _ xy+2y—x-2
dx xy—-3y+x-3

1

6. y(4—x2)%dy:(4+ y? Jo dx
7. (x+\/;)%: y+\/y

Solve the given differential equation subject to the indicated initial condition.

I
o

8. (e +1)sin xdx = (1+cosx)dy, y(0)
9. (L+x* )y +x(L+4y?)x=0,  y@)=0

1
10.  ydy=4x(y? +1)2dx, y(0)=1
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4 Homogeneous Differential Equations

A differential equation of the form

dy
o f(x,
- = Fy)

Is said to be homogeneous if the function f(x,y) is homogeneous, which means

f (tx,ty) =t'f (X, y) For some real number n, for any numbert .

Determine whether the following functions are homogeneous

X
f(xy)= v +yy2

g(x,y) = In(— 33Xy /(x® + 4xy2))

The functions f (X, y) is homogeneous because
t?xy Xy
2,2 2y 2 7= F(xy)
t°(X“+y°) X" +y
Similarly, for the function g(X, y) we see that
—3t°x%y —3x%y
g(tx,ty) =In| — ~|=IN| ——= [=9(X,y)
t°(x° +4xy°) X” + 4xy
Therefore, the second function is also homogeneous.
Hence the differential equations

f(tx,ty) =

dy

2 = f(x,
SX (X,y)
—y:

™ g(x,y)

Are homogeneous differential equations

© Copyright Virtual University of Pakistan
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Method of Solution

dy
To solve the homogeneous differential equation —— = f (X, ¥) .We use the substitution

dx
V= %.If f (x, y) is homogeneous of degree zero, then we have
fx,y)=T@v)=F(v)
Since y’ = xv' + v, the differential equation becomes x% +v="f(v)

This is a separable equation. We solve and go back to old variable y through Y = XV,

Summary:

1. Identify the equation as homogeneous by checking f (tx,ty) =t" f (X, y);

.
X’

2. Write out the substitutionv =

3. Through easy differentiation, find the new equation satisfied by the new functionv ;

xﬂ+v: f(L,v)
dx

4. Solve the new equation (which is always separable) to find V ;
5. Go back to the old function y through the substitution Y = VX;

6. If we have an IVP, we need to use the initial condition to find the constant of
integration.

Caution:

o Since we have to solve a separable equation, we must be careful about the

constant solutions.
a If the substitution y =vx does not reduce the equation to separable form then the

equation is not homogeneous or something is wrong along the way.

dy —2x+5y
Example 2| Solve the differential equation — = —(———
quation .= —
Solution:
—2X+ 95y

It is easy to check that the function | T (X, y) = Tﬂ/ is a homogeneous
function.

. . . _ _y
Step 2.| To solve the differential equation we substitute |V = ;
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—2X+9XV _ —2+5v

Step 3. |Differentiating w.r.t X , we obtain |XV' +V = =
2X + XV 2+V

which gives

dv 1(—2+5v
== v

&_; 2+V

This is a separable. At this stage please refer to the Caution!
Solving by separation of variables all solutions are implicitly given by

—4In(v=2))+3In|v-1]=In(x|)+C
Going back to the function y through the substitution y = vx, we get

—4In|y-2x|+3In|y-x| = C

y_—2)(+3In

—41n :In|x|+c

y=x
X
-4 3
Y~ 2] +|n|y—x| =Inx+Inc, c=Inc,
X | X |
4 3
(y—ix) |+In|(y_3X) |:Inclx
X X |
(=20 (y=x°|
X—4 X3 |
(y=2x)7" (y-x°_
x* 3
x(y—2x)"(y-x)* = ¢,x
(y-2x)*(y-x)*=c,

In

Inc,x

C,X

Note that the implicit equation can be rewritten as

(y-x)° =C,(y—2x)*

4.2 Equations reducible to homogenous form

dy a,X+by+c,
dx a,x+b,y+c,

The differential equation

is not homogenous. However, it can be reduced to a homogenous form as detailed below
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4.2.1 Casel
al bl
a2 b2

We use the substitution [z = &, X + b, y | which reduces the equation to a separable

equation in the variables X and Z. Solving the resulting separable equation and
replacing z witha,x + b,y , we obtain the solution of the given differential equation.

4.2.2 Case 2
b

1

b

a

-1

a

2 2

In this case we substitute [X = X + h, y=Y +Kk

Where h and K are constants to be determined. Then the equation becomes

dy aX+bY+ah+bk+c,
dX a,X+b,Y +a,h+b,k+c,

We choose hand K such that
ah+bk+c =0
a,h+bk+c,=0

This reduces the equation to

dy _aX+bY
dX a,X +b,Y

Which is homogenous differential equation in X andY , and can be solved accordingly.
After having solved the last equation we come back to the old variables X andy .

Example 3

Solve the differential equation d—y = _M
dx  2x+3y+2

Solution:

Since & =1= b, , We substitute Z = 2X + 3Y, so that dy = l(% — 2)
a, b, dx 3\dx
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1(dz z-1 _
Thus the equation becomes|—| — — 2 |=——]i.e. az _TIF l
3\ dx Z+2 dx 742
. : _ Z+2
This is a variable separable form, and can be written as 7 dz =dx
-7+

Integrating both sides we getl—z—9In(z-7)=x+ A

Simplifying and replacing Zwith 2X + 3y, we obtain —In(2x +3y —7)° =3x+3y + A

or|(2x+3y-7)° =ce®™¥),  c=¢"

IExaméle 4 |Solve the differential equation ﬂ = ()(Ly_él)
| dx 2x+y-5

Solution: By substitution| X = X + h, y =Y + k|, the given differential equation

dY (X +2Y)+(h+2k-4)
dX (2X +Y)+(2h+k-5)

reduces to

We choose h and k suchthatlh+2k —-4=0, 2h+k-5=0

Solving these equations we havelh =2, k =1|. Therefore,
aY X +2v
dX 2X+Y

we have

This is a homogenous equation. We substitute Y =VX to obtain

_ 2
Xd_V:1 v or [ZJFVZ}dV:d—X
dX 2+V 1-V X

Resolving into partial fractions and integrating both sides we obtain

—vfé

J[z@S @ivﬂm/=f%§0f—%ma—v)+%ma+v):mX44nA

Simplifying and removing (In) from both sides, we get

@-Vv)/@+Vv)=CX 2,

C=A7?
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—%In(l—v)+%ln(1+v): InX +In A

IN@A-V) 72 +In(1+V )2 = In XA
In(-V) 72 (1+V )2 =In XA
1-V) 72 (1+V )2 = XA

taking power "—2"onboth sides
@-V) (1+V) " = X2A?

Y
utv =—
P X

-1
-y (1+ i) = X 2A?
X X

(x —YT(X +Yj_l= 2 A2
X X
(X _Y)3 X73+1 — X72A72
X+Y
say,c= A"
3
(XYY _,
X+Y
put X =x-2,Y=y-1
(x+y-1)°/x+y-3=c

Now substituting [V =—, X =x -2, Y =y —1]and simplifying, we obtain

Al
X
(x—y-1)°/(x+y—3)=C|This is solution of the given differential equation, an
implicit one.

4.3 Exercise
Solve the following Differential Equations

1.|(x* +y*)dx—2x%ydy =0

2. ﬂ:1+x—+1

dx x vy

-y
3. (xze X 4 yzjdx = xydy
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. ydx+(ycosi— dey =0
y

: (x3 +yi X+ yz)dx—xywlx2 +y?dy=0

Solve the initial value problems

6.

(3x2 +9xy+5y2)dx—(6x2 +4xy)dy=0, y(2) = -6

. (X+M)%:y, y(ljzl

2

. (x+ yey’x)dx—xey’xdy:O, y(1) =0

ﬂ—lzcoshl, y@@) =0
X
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5 Exact Differential Equations

Let us first rewrite the given differential equation d_i = f(x,y)

into the alternative form

M (X, y)dx+ N(x,y)dy =0 where f(x,y)= _Mxy)

N (X, y)
This equation is an exact differential equation if the following condition is satisfied
oM  oN
oy  OX

This condition of exactness insures the existence of a function F(x,y) such that

oF oF
&=M(X,y),E—N(X,Y)

5.1 Method of Solution
If the given equation is exact then the solution procedure consists of the following steps:

. . . |oM _oN
Check that the equation is exact by verifying the condition oy Y
: oF oF
Write down the system - M(x, ), " N(X, Y)
y

[Step 3] Integrate either the 1% equation w. r. to X or 2" w. r. to y. If we choose the 1
equation then | F (X, Y) = _[ M (X, y)dX +&(Y) | The function 6(y) s an arbitrary

function of Y, integration w.r.to X; Y being constant.

Use second equation in step 2 and the equation in step 3 to find 6'(y) .
oF
oy

() =N y) =2 M0,

Integrate to[find &(y)|and write down the function m
All the solutions are given by the implicit equation

F(x,y)=C
If you are given an IVP, plug in the initial condition to find the constant C.

%QM (X, y)dx)+ 0'(y)=N(x,y)
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X should disappear from €'(y) . Otherwise something is wrong!

Example 1 Solve

Solution]: Here

LM _aN
oy X

differential i.e. 3 a function f (X, y)such that

Integrating 1% of these equations w. r. t. x, have

(3x2y+2)dx+(x3 + y)dy =0

M=3x’y+2 and N=x’+y = E

M _ g N _
OX

3x?

. Hence the equation is exact. The LHS of the equation must be an exact

of

=3x’y+2=M Jand
X

i:x3+y=N
oy

f(x,y)=x%y+2x+h(y),

where h(y)is the constant of integration. Differentiating the above equation w. r. t. y and

using 2nd, we obtain

af 3 ' 3
—=X"+h'(y)=x"+y=N
oy

Comparing |h'(y) =y

2

y

is independent of x or integrating, we have

2

h(y) =2

Thus | f(x,y) = x>y + 2x +7 .Hence the general solution of the given equation is given

2

y

i:x3+y=N
oy

Example 2 |Solve the initial value problem

to reach on the above solution of the given equation!

(Zysin XCOS X + y?sin x)dx + (sin2 X — 2y COS x)dy =0. y(0)=3.

Here

M = 2ysinxcos X+ y?sin x

and

N =sin® x — 2y cos x

oM
oy

—— =2sIn XCcos X + 2ysin X,

OX

8_N = 2SIN XCOS X + 2y Sin X,

byl f (x,y) = cli.e. [x*y +2x +7 = c|Note that we could start with the 2" equation
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M _oN
oy oX

This implies Thus given equation is exact.Hence there exists a function

f (x, y) such that §=2ysin Xcosx+ y?sinx =M fand ﬂ:sin2 Xx—2ycosx =N
X

Integrating 1% of these w. r. t. x, we have | f (x, y) = ysin?® x — y? cos x + h(y),

Differentiating this equation w. r. t. y substituting in % =N

sin® x—2ycosx+h’(y) =sin® x—2ycosx|And [h'(y) =0 or h(y)=c,

Hence the general solution of the given equation is| f (x,y) =c,

i.e]ysin®x—y?cosx =C, where C =c, —c,| Now applying the initial condition that

when x =0,y =3, we have y?cosx— ysin®x =9 is the required solution.

Example 3: [Solve the DE (e2y —ycos xy)dx+(2xe2y — XCOSX Y+ 2y)dy =0

Solution:The equation is neither separable nor homogenous.

M(X’ y):ezy—ycosxy daM — 2e2Y 4 xvsin X COS X —aN
N(x, y)=2xe? —xcosxy +2y /[ _ i -

As
OX

Hence the given equation is exact and a function f (x,y) exist for which

of
M(x,y)= T and N(x,y)= I which means that |2~ = e?Y - yCcosxy and
OX oy OX
of 2y . o
5 = 2Xxe”’ —XCcos Xy + 2y [ Let us start with the second equation i.e.
5 = 2xe”’ — XCOS XY + 2Y | Integrating both sides w.r.to y , we obtain

f (X, y) = ZXIeZydy — xJ cos xydy + 2 ydy . Note that while integrating w.r.to y, x
is treated as constant. Therefore f(x, y) =xe? —sinxy+y® + h(x)

1

h isan arbitrary function of x. From this equation we obtain (;i and equate it to M
X
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OX

a _ e? —ycosxy +h'(x)=e® — ycosxy|so that h'(x) —0=h(x)=C

2 - 2
Hence one-parameter family of solution is given by| X€ Y —sinxy+y“+c=0

Example 4 [Solve| 2Xy dX + (x2 —1)dy =0

[Solution: [Clearly  [M(x,y)=2xy and N(x,y)= x* -1 => M gy N
oy 5
X

of of
The equation is exact and 3 a function f(x, y) such that pv 2xy and o x? -1

We integrate first of these equations to obtain.| f (X, y) =X’y + g(y)

Here g(y) is an arbitrary function y . We find g_f and equate it to N(x, y)
y

of '
a_y:X2 +0'(y)=x"-1> [g'(y)=-1= g(y) = -y

Constant of integration need not to be included as the solution is given by f (X, Y) =

Hence a one-parameter family of solutions is given by X’ y—-y=¢C

Solve the initial value problem

(cosxsin x—xyz)dx+ y(l—xz)dy =0, y(O) =2

Solution:| As

N(x,y) = y(l—xz) - a—y=—2xy_&

{M(x, y)=CcosX.SinX—XYy> oM _oN

Therefore the equation is exact and 3 a function f(x,y) such that

OX

2
w.rt. ©Y " keeping ‘ X "constant, we obtain | f (X, y) = y7(1— X2)+ h(X)

Differentiate w.r.t. * X and equate the result to M (x, y)

of . of
— =cosX.sinx—xy? and v y(L— x*)| Now integrating 2™ of these equations
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Z—i = —xy? +h'(x) = cos xsin x - xy?|= [n'(x) = cos xsin x

Integrating w.r.to X, we obtain |h(x)= —: (cos x)(—sin x)dx = _ECOSZ X

Thus a one parameter family solutions of the given differential equation is

2
1
y7(1_ xz)—Ecosz X = ¢, |= yz(l— XZ)— cos® X = C fwhere 2c, has been

replaced by C. The initial condition y =2 when x =0 demand, that 4(1)—cos®(0)=cso

that ¢ = 3. Thus the solution of the initial value problem is| Y’ (l— X’ )— cos® x =3

5.2 Exercise
Determine whether the given equations is exact. If so, please solve.

1. |(siny —ysin x)dx + (cos x + xcos y)dy = 0

2. (l+ In x+%jdx = (1-Inx)dy

3. (yln y—e‘xy)dx+(l+ln deyzo
y

4, (Zy —1+0053xjﬂ+%—4x3 +3ysin3x=0
X dx X

1 1 y X
5. [|=+=- dx+| ye’ + dy=0
(x x? x2+y2] [y x2+y2) 4

o

Solve the given differential equations subject to indicated initial conditions.

7. (eX +y)dx+(2+x+ yey)dy:O, y(0) =1

2 2
g |2 Xjﬂ+ X _o,  yw=1

yS o Jdx 2yt

! 5 +cosx—2nyd—y: y(y +sinx), y(0)=1
1+y dx
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10. Find the value of k, so that the given differential equation is exact.
(2xy3 —ysinxy + ky“)dx—(ZOx3 +Xsin xy)dy =0
11. (6xy3 + C0S y)dx - (kxzy2 —Xsin y}jy =0
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6 Integrating Factor Technique
If the equation |M (X, y)dx + N (X, y)dy = O}is not exact, then we must have

oM 6N

8y 6x
u(x, Y)M (x, y)dx +u(x, Y)N(x, y)dy = O|becomes exact. [The function u (x, y)|
(if it exists) is called the integrating factor |(IF) and it satisfies the equation due to the
condition of exactness.

GM auM aN 8uN

oy 6x OX

This is a partial differential equation and is very difficult to solve. Consequently, the
determination of the integrating factor is extremely difficult except for some special
cases:

Example [Show that [1/(x? + y2)|is an integrating factor for the equation

.Therefore, we look for a function u (x, y)| such that the equation

(x2 +y2- x}jx — ydy = 0,|and then solve the equation.

oN
Solution: Since M = x? +y? —x, =—y-—_2y, 6—_0-—75—
X

and the equation is not exact. However, if the equation is multiplied by [1/(x* + y?) then

the equation becomes(l— 5 X 2jdx— > y ~dy =0
X +y X +y

and N =-— y :aM: 2xy :aN

NowM =1- —
X2 +y? x24y2 oy (x2+y2)2 ox

So that this new equation is exact. The equation can be solved. However, it is simpler to

observe that the given equation can also written

2 2
dx XYY _ o g dx—%d[ln(x2+y2)]:00rd{x—ﬂxzi)}:o

x+y

Hence, by integration, we have [x —In4/x* + y* =k

6.1 Casel

When 3 an integrating factor u (x), a function of X only. This happens if the expression
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oM  oN

oy OX
N

is a function of x only. Then the integrating factor u(x, y) is given by

oM  oN

de

U =exp v

6.2 Case 2
When 3 an integrating factor u(y), a function of y only. This happens if the expression

oN oM

oX oy
T is a function of Yy only. Then IF u(x,y) isgivenb
N _oM
u=exp Mdy
6.3 Case 3
1

i ion i XM + yN =0 Uu=s———
If the given equation is homogeneous and y Then XM + yN
6.4 Case4
If the given equation is of the form | Yf (Xy)dx + xg(xy)dy =0
and XM — YN # Ofthen |y — 1

XM — yN

Once the IF is found, we multiply the old equation by u to get a new one, which is exact.
Solve the exact equation and write the solution |

Advice: If possible, we should check whether or not the new equation is exact?

Summary:

Write the given equation in the form

M (X, y)dx+ N(x, y)dy =0
provided the equation is not already in this form and determine M and N .

Check for exactness of the equation by finding whether or not

© Copyright Virtual University of Pakistan 29



Differential Equations (MTH401) VU

oM oN
oy  OX
Step 3| (a) If the equation is not exact, then evaluate
oM _aN
oy OX
N
| If this expression is a function of X only, then
M _oN
u(x) =exp de
N
Otherwise, evaluate
N _oM
oX oy
M
If this expression is a function of y only, then
N oM
ox oy
= ——d
u(y) =exp v y

J

[In the absence of these 2 possibilities, better use some other technique.| However, we
could also try cases 3 and 4 in step 4 and 5
Test whether the equation is homogeneous and

XM +yN =0
If th u= #
yes then XM + yN

Test whether the equation is of the form

yf (xy)dx + xg(xy)dy =0
and whether XM —yN =0
If yes then u= 1
XM — yN

Multiply old equation by u. if possible, check whether or not the new equation is
exact?

Solve the new equation using steps described in the previous section.
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dy  3xy+y’

2
Example 1 Solve the differential equation dx X"+ Xy

Solution:
1. The given differential equation can be written in form

(3xy + y2)dx + (x* + xy)dy =0

Therefore

M (X, y) = 3xy + y*

N(X,y) = X + Xy

2. Now ﬂ:3x+2y,ﬂ:2x+y.
oy OX

oM  ON
_ ¢ _
oy  OX

3.[To find an IF we evaluate

which is a function of xonly.
4.Therefore, an IF u (x) exists and is given by

1
—dx
u(x) = ejx =e"® = x

5. Multiplying the given equation with the IF, we obtain

(3x%y + xy?)dx + (x° + x*y)dy =0

which is exact. (Please check!)

6. This step consists of solving this last exact differential equation.
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Solution of new exact equation:

1. Since % = 3x% +2xy = N | the equation is exact.

OX

2. We find F (X, y) by solving the system

ﬁ:3x2y+xy2
OX
ﬁ:x3+x2y.

3. We integrate the first equation to get

2

X
F(x,y)=x3y+7y2+0(y)

4. We differentiate and use the second equation of the system in step 2 to
obtain

F oy +x7y+0'(y) = x>+ x%y
oy

= 6’ =0| No dependence on x.

5. Integrating the last equation to obtain 0=C| Therefore, the function F(X, Y) S

2

F(x,y)=x3y+x7y2

We don't have to keep the constant C, see next step.

6. All the solutions are given by the implicit equation| F (X, y) = C

2,,2
x‘o’y+X2y =C

L.

Note that it can be verified that the function

1
uxy)= 2xy(2X + V)

is another integrating factor for the same equation as the new equation

2 1 2
3Xy + dx + X“+xy)dy=0
2Xy(2X + y)( y+y%) 2Xy(2x + y)( y)dy
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is exact. This means that we may not have uniqueness of the integrating factor.
Solve |(x? —2x+2y? Jdx + 2xydy = 0

_ 2 2
Solution: M =x"-2x+2y :>@:4y,@:2y:>:.@¢ﬁ
N = 2xy oy OX oy  Ox

My_Nx :4y—2y:1
N 2Xy X

The equation is not exact .Here

Therefore, I.F. is given by |u = eprldxj = U=X
X

Multiplying the equation by I.F = x, we have

(x3 —2X% + 2xy? )dx +2x%ydy = 0|.This equation is exact. The required Solution is

4 3
XT_%JF x’y? =c,[=(3x* -8x° +12x’y* =¢

Example 3[Solve |dx +(i—sin yjdy -0
y

Solution: Here

M=1 N=—-siny
M _ N_1
o 1 ox oy
M N

oy OX

The equation is not exact.

Now
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Therefore, the IF is u(y) = epr‘d—; =y

Multiplying the equation by y, we have

or

or

ydx + (X —ysiny)dy =0

ydx + xdy — ysin ydy =0

d(xy)—ysinydy =0

Integrating, we have

Xy +ycosy—siny=c

[Which is the required solution|

Example 4

Solve

(xzy - 2xy2)dx - (x3 —3x2y)iy =0

Solution: Comparing with

we see that

Mdx + Ndy =0

|\/|:x2y—2xy2 and N:—(X3—3XZY)

Since both M and N are homogeneous. Therefore, the given equation is homogeneous.

Now

XM + yN = x‘°’y—2x2y2 —x‘°’y+3x2y2 = x2y2 # 0

Hence, the factor u is given by

1 1
U= U=
X“y XM + yN

Multiplying the given equation with the integrating factor u, we obtain.
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y X ye y

Now

and therefore

Therefore, the new equation is exact and solution of this new equation is given by

X _2In|x|+3In|y|=C
y

Solve (xy+2x yz)dx+x(xy X yz)dy 0

Solution:

The given equation is of the form

yf (xy)dx + xg(xy)dy = 0

Now comparing with

Mdx + Ndy = 0

We see that

M =Y(xy+2x2y2) and |\|=x(xy—X2y2)

Further

XM —yN = x2y2 + 2x3y3 —x2y2 + x3y3

= 3x3y3 =z 0

Therefore, the integrating factor u is
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1 1
Uu=_—>-=, U =—
3X°y XM — yN
Now multiplying the given equation by the integrating factor, we obtain
ENE V[T
3(xy x 3 xy® vy
Therefore, solutions of the given differential equation are given by
1
——+2In|x|-In|y|=C
Xy
where 3C,=C
6.5 Exercise
Solve by finding an I.F
1. [xdy—ydx = (x2 + yz)dx
2. |ay+ XM X gy -0
X
3. (y4 + 2y)dx + (xy3 +2y* - 4x)dy =0
4, (x2 + yz)dx +2xydy =0
5. (4x +3y? )dx +2xydy =0
6. (3x2y4 + 2xy)dx + (2x3y3)dy =0
7. Y _ e +y-1
dx
8. (3xy + yz)dx + (x2 + xy)dy =0
9. [ydx+ (2xy —e )dy =0
10. |(x + 2)sin ydx + x cos ydy = 0
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7 First Order Linear Equations
The differential equation of the form:

a(x)%m(x)y ~ ¢(x)

is a linear differential equation of first order. The equation can be rewritten in the
following famous form.

dy
dx

where P(X) and g(X) are continuous functions.

+p(x)y =q(x)

7.1 Method of solution
The general solution of the first order linear differential equation is given by

~ Ju(x)g(x)dx+C
- u(x)
Where U(x) = exp(] p(x)dx)

The function U(X) is called the integrating factor. If it is an I\VP then use it to find the
constant C.

Summary:

1. Identify that the equation is 1% order linear equation. Rewrite it in the form

dy
dx

if the equation is not already in this form.

+ p(x)y = q(x)

2. Find the integrating factor

U(X) _ e_[ p(x)dx

3. Write down the general solution

j u(x)q(x)dx + C
u(x)

4. If you are given an IVP, use the initial condition to find the constant C.

y:

5. Plug in the calculated value to write the particular solution of the problem.

© Copyright Virtual University of Pakistan 37



Differential Equations (MTH401)

VU

Example 1:
Solve the initial value problem

y'+tan(x)y =cos’(x),  y(0)=2

Solution:
1.The equation is already in the standard form
dy
—+p(x)y =0a(x)
dx
with
p(x) = tan x
q(X) = cos’x
2. Since

[ tan x dx = —Incos x = Insec x

Therefore, the integrating factor is given by

u(x) = g/tan Xdx _ Sec X

3. Further, because

Isecxcosz xdx=jcosxdx =sin x

So that the general solution is given by

_sinx+C

= (sin x +C)cos X
Sec X

4. We use the initial condition Y(0) = 2 to find the value of the constant C
y(0)=C =2

5. Therefore the solution of the initial value problem is

y = (sin x +2)cos x
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dy 2t 2
Example 2: Solve the IVP dt 1at y= e y(0)=04
Solution:
1.The given equation is a 1% order linear and is already in the requisite form
dy
——+p(X)y=a(x)
dx
2t
p(t) = e
with 5
q(t) =
1+t°
2t
2. Si - dt =—In|1+t°
ince J( 1+t2j | |
Therefore, the integrating factor is given by
J—thdt
ut)=e’ #° =1+t
3. Hence, the general solution is given by
j u(t)g(t)dt + C
Juwat- | 2
u(t) L+t )
(2 1+t% —t? 1 t?
Now ﬁdt:2 ﬁdt:2 2 22dt
J (1+t9) @+t 1+t°  (A+t°)
The first integral is clearly tan 1. For the 2™ we will use integration by parts
. . . 2t nd :
with T as first function and (1+t2)2 as 2™ function.
2t° 1 J 1
————dt=t| - + = +tan ' (t
J(1+t2)2 ( 1+t2] 1+t° 2 ®
JLdt =2tan " (t) + t —tan'(t) = tan ' (t) + t
(1+t%)? 1412 1412
- t
The general solution is: |y = (1+17) (tan )+ T + Cj
4. The condition y(0) =0.4 gives C=0.4
5. Therefore, solution to the initial value problem can be written as:
y=t+@1+t*)tan'(t) + 0.4(1+t?)
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Example 3:

Find the solution to the problem

cos’tsint.y =—cos’t.y+1, y(%jzo

Solution:
1. The equation is 1% order linear and is not in the standard form
dy
—=+ p(x)y =a(x)
dx
Therefore we rewrite the equation as

, cost 1
+——Yy= >
sint cos“tsint
2. Hence, the integrating factor is given by
cost

u(t):eJS'nt :eln [sint| _sint

3. Therefore, the general solution is given by

jsintzl_dt+C
cos-tsint

sint

y:

Since

: 1 1
Jsmtfdt:f —dt=tant
cos“t sint cos”t

Therefore

tant+C 1 C
= = +

- = ——=sect+Ccsct
sint cost sint

(1) The initial condition y(7z /4) =0 implies
J2+Cy2=0
which gives C =-1.

(2) Therefore, the particular solution to the initial value problem is
y=sect—-csct

Example 4 Solve (x+2y3)dy y

&:
Solution: We have ﬂ = Y 3
dx Xx+2y
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This equation is not linear in y . Let us regard X as dependent variable and y as

independent variable. The equation may be written as

Or

1

2 Zx=2
dy y

y2

y

dx _ X +2y°
dy

, which is linear in .

e[

1
y

Multiplying with the IF = 1 we get
y

Integrating, we have

Example 5 Solve

Solution: The equation can be rewritten as

i%_iXZZy

ydy y?

=
d

)|

X
y

-2

Xyt
y

= x:y(y2+c)

(x—1)3d—y+4(x—1)2y =x+1

dx

Herel P(x)

4

>

-1

dy, 4

Xx+1

dx x-1

y:

(x-1°

Therefore, an integrating factor of the given equation is

IF = epr

o

x(iXJ = exp[ln(x —1)4]= (x-1)*

Multiplying the given equation by the IF,we get

=

%[y(x—l)‘l]: x2 -1

which is the required solution.

7.2 Exercise
Solve the following differential equations

1. ﬂ+
dx

(

2x+1
X

-2X

Jy=e

is the required solution.

dx

(x—1)4ﬂ+4(x—1)3y = x% -1

. Integrating both sides, we obtain

s X
1)y =2
y(x —1) X+C
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2. d—y+3y:3x2e‘3X
dx

3. xﬂ+(1+xcotx)y=x
dx

4, (x+1)%— ny =e*(x+1)""

d 1
5. (1+ xz)d—i+4xy = (1+ x2)2

6. £+ rsecd = coséd
do

_ a—2X
1. d_y+ _1-e
+€

dx e

X —-X

8. |dx = (3ey - 2x)dy

Solve the initial value problems

9. %:2y+x(e3x—ezx), y(0)=2

10. x(2+x)%+2(1+ x)y=1+3x?,  y(-1)=1

© Copyright Virtual University of Pakistan



Differential Equations (MTH401) VU

8 Bernoulli Equations
A differential equation that can be written in the form

d n
d—y+ p(x)y = a(x)y
X

is called Bernoulli equation.
8.1 Method of solution
For N = 0,1the equation reduces to 1% order linear DE and can be solved accordingly.

n
For N # 0,1 we divide the equation with Y to write it in the form

. d .
dy+ p(X)y" = q(x)
X

y

and then put

1-n

v=Y
Differentiating w.r.t. *x’, we obtain

V=A-nyy’

Therefore the equation becomes

% +@-n)p(x)v=>1-n)qg(x)
X

This is a linear equation satisfied by V. Once it is solved, you will obtain the function
1

y — V(l_n)
If n>1, then we add the solution y =0 to the solutions found the above technique.
Summary

1.Identify the equation

dy

v p(X)y =q(x)y"
X

as Bernoulli equation.

Find n. If n % 0,1 divide by y"and substitute;

© Copyright Virtual University of Pakistan

43



Differential Equations (MTH401)

VU

2. Through easy differentiation, find the new equation

%Jr L-n) p(x)v = (L-n)q(x)
X

3. This is a linear equation. Solve the linear equation to find V.

4. Go back to the old function y through the substitution | Y = V%H) :

6. If n>1, then include y = 0 to in the solution.

7. If you have an IVP, use the initial condition to find the particular solution.

dy 3
Example 1: Solve the equation x =y+Yy

Solution:
1. The given differential can be written as

dy o3
dx y=y

which is a Bernoulli equation with
p(x)=-1,9(x) =1, n=3.

Dividing with y*we get

Therefore we substitute

-2

v=y’=y

2. Differentiating w.r.t. ‘X’ we have

Ldy 1

_1fav
dx 2\ dx

So that the equation reduces to
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Ll +2v=-2
dx
3. This is a linear equation. To solve this we find the integrating factor U (X)
2dx
u(x) = ol 7% _ g2

The solution of the linear equation is given by

Iu(x)q(x)dx +C Iezx(— 2)dx + ¢
V= =

u(x) e
Since J‘ezx (-2)dx = —e**
Therefore, the solution for V is given by

= —e:;c —Ce -1

4. To go back toy we substitute [y, — y—2 . Therefore the general solution of the given
DE is

1
y = J_r(Ce‘ZX —1)_E
5. Since |n > 1|, we include the | Y = O] in the solutions. Hence, all solutions are
y=0 y = +(Ce > —1) 2
Example 2:
dy 1
Solve —y+—y: Xy’
dx X

Solution: In the given equation we identify , q(x)=x and n=2|

—
—~
P
N—"
[l
X |~

Thus the substitution W=y ™ gives

dw 1
— —Zw=-X
dx x

The integrating factor for this linear equation is
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_(dx .
o X _ e—ln\x\ _ eln\x\ _ X_l
drfl _
Hence — X lW]:—l.
dx

Integrating this latter form, we get

X TW=—X+C or w=-X°+Cx.

— 1
Since (W=y U we obtain y =—|or
w
1
y=—"75%__
— X~ +CX

For n > 0 the trivial solution y =0 is a solution of the given equation. In this example,
y =0 is a singular solution of the given equation.

Example 3
Solve: dy LXY s 1)
dx "1-x2 Y
1
Solution: Dividing (1) by Y2, the given equation becomes
-1 1
Y2ty 0)
1 1
> 1 --dy dv
Put 2=vor. -y 2—=>="—
y 2 y dx dx
Then (2) reduces to
ﬂ + X V= X 3)
dx  2-x2) 2

This is linear in V.

I.LF= exp_fﬂli(ﬁ)dx_ = exp[_jln(l— XZ):I :( — xz)f

-1
. 2\

Multiplying (3) by (1— X )4 ,| we get
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hoe)e &, X

_ X
Y LAY L

o %{(Hz)fv};{_zx(l_Xz)i}

Integrating, we have

3
I L L
4 3/4
or V:C(l—xz)llll—l_gx2
or y; =C(1— X2)1/4 3 1—3)(2

is the required solution.

8.2 Exercise

Solve the following differential equations

1. xd—y+y:y2Inx
dx

2 %+ y =xy®

3 %—y:exy2

4 %:y(xyg’—l)

5, x%—(1+ X)y = xy?
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2 4
dx

+yt=xy

Solve the initial-value problems

7. xz%—ny:3y4, y(l):%
8. [y g—iJr y¥? =1, y(0)=4
9 xy(1+ xyz)% =1, y(1)=0
10, 2%:%—)/—)‘2, y(1)=1

8.3 Substitutions

o Sometimes a differential equation can be transformed by means of a substitution
into a form that could then be solved by one of the standard methods i.e. Methods
used to solve separable, homogeneous, exact, linear, and Bernoulli’s differential

equation.

o An equation may look different from any of those that we have studied in the
previous lectures, but through a sensible change of variables perhaps an

apparently difficult problem may be readily solved.

o Although no firm rules can be given on the basis of which these substitution could
be selected, a working axiom might be: Try something! It sometimes pays to be

clever.
Example 1

The differential equation

y(L+2xy)dx + x(1 - 2xy)dy = 0

is not separable, not homogeneous, not exact, not linear, and not Bernoulli.
However, if we stare at the equation long enough, we might be prompted to try the

substitution

Since

u
u=2xy or y=—
2X

_ Xdu —udx

d
y 2x°2
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The equation becomes, after we simplify | 2U 2dx + (1— U)Xdu =0.

we obtain |2 |n|X| —ut - In|u| =C

1
=C+—
2Xy

X

2y

In

X
A Cle1/2xy ’

2y

1/2xy

X=2c,ye
desired

, Where €°was replaced by C; . We can also replace 2¢c, by Co if

Note: The differential equation in the example possesses the trivial solution Y = 0, but
then this function is not included in the one-parameter family of solution.

Example 2
Solve

2xyd—y+ 2y® =3x—6.
dx

Solution:
2y Y _ 2

The presence of the term Y& promptsustotry U =Y

du dy
Since|——=2y—

dx y dx

: du
Therefore, the equation becomes: X& +2U=3Xx-6
or du + gu =3- 6
dx X X

This equation has the form of 1* order linear differential equation

Wy =
dx

with P(x) :é and Q(x) :3—2

Therefore, the integrating factor of the equation is given by
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2
LF = efxdx :elnxz . X2

Multiplying with the IF gives di[xzu]: 3x* —6x
X

Integrating both sides, we obtain

x2u=x>-3x%+c |or x2y? =x3-3x% +c.
Example 3
Solve
d X3
WY _ y = _ey/ X
dx y
Solution:
If we let
uY
X

Then the given differential equation can be simplified to

ue” Ydu = dx

Integrating both sides, we have

J'ue_udu :_[dx

Using the integration by parts on LHS, we have

—ue Y_e"Uoxic

or

u+l=(c, - X)eu Where C;=-C

We then re-substitute

u=

Y
X
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and simplify to obtain

y+x=x(c, —x)ey /¥
Example 4
Solve
2 2
u — ZX(ﬂj
dx? dx
Solution:
If we let
u=y’
Then
du/dx=y"
Then, the equation reduces to
du
— =2xu?
dx
Which is separable form. Separating the variables, we obtain
du
— = 2xdx
u

Integrating both sides yields

ju_zdu :I2xdx

or - U_l = X2 + C12
The constant is written as c¢? for convenience.
. -1 '
Since u-=1/y
dy 1
Therefore T T
dx  x°+cf
dx
or W=7,z
X% +¢f
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dx
dy = —J
Jo=-] 2.
4 X
y+cC, =——tan" —
1 C,
8.4 Exercise
Solve the differential equations by using an appropriate substitution.
L ydx + (L+ ye*)dy =0
2. _
(2 +e X/y)dx +2@1-x/y)dy=0
3.
2xcsc 2y y =2x—In(tany)
dx
4. d
Y 1=sinxe (V)
dx
5. d
y—y+ 2xInx = xeY
dx
6. d
X2 —y+ 2Xy = 4y2 +1
dx
1.
xeY Y _2e¥ — x2
dx
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9 Solved Problems

2 2
Example 1: y'zx Y
Xy
2 2
Solution: dy: X *Y
dx Xy
put y = wx then ﬂ=w+xd—w
dx dx
dw XZ + W?ZX? 1+ w?
W+ X ——— = . —— Y
dx XXW .Y}
dw 1
W4+ X—=—+ W
dx wW
WdWZ%
X

Integrating
2

\\Y;
=Inx+Inc

2

2

Y _ _In|xc|

2X

y® =2x°1In| xc |
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Example 2: d_y (2‘/— Y)

Solution: d_y (2\/— )

dx
put y = wx

dw (2\/_x XW)

W+ X—=r—"— 72
dx X

w+xd—W:2\/W-w
x——2\/_ 2w

dw _dx
2(w-w) X
J~ dw :%
2(Jw-w) ? x

e
2w(-vw) ¢ x
put  Jw=t

We get j—dt _ [

-In|1-t|=In|x|+In|c]
-In|1-t|=In|xc]|
(1-t)*=xc

@-w)*t =xc
(1-\Jy/x)*=xc
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Example 3: (2y?’x—3)dx + (2yx* +4)dy =0
Solution:(2y?x -3)dx + (2yx? +4)dy =0

Here M = (2y?x-3) and N = (2yx® + 4)

oM ON
= A4AXy = ——
oy OX
of > of 2
< (2y“x-3) and E = (2yx° +4)
Integrate w.r.t.
f(x,y) =x?y?-3x+h(y)
Differentiate w.r.t.'y"'
AR
Ty
h'(y) =4
Integrate w.r.t. 'y
h(y)=4y+c
x?y?-3x+4y=C,

X

=2x°y+h'(y) =2x’y+4=N

d 2xye™¥’
Example 4: o — /yz ——
dx  y?+y%e® 4+ 2x%e™Y

2 2 A (x1y)? 2, (x1y)?
Solution: %: y +Ye€ +22X ©
putx/y=w

After subsitution

dw _ 1+ "

dy 2we"
d_y= 2we _dw
y 1+e"
Integrating

In|yl=In|1+e" |+Inc
In|yl=In|cl+e™)]

y =c(1+et)
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2
Example 5: Q+L = 3
dx xInx Inx
2
Solution: OI—y+L:3i
dx xInx Inx
2
dy, 1 ,_3x
dx xlInx In x
3x?
p(x) = and q(x)=—
xIn x In x
|.F :exp(j 1 dx) =Inx
xIn x
Multiply both side by In x
In xﬂ+l y =3x°
dx x
d 2
—(yInx)=3x
dx
Integrate
ylnx —3—X3+c
3
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Example 6: (y“e* +2xy)dx-x°dy =0
Solution:Here M = y?e* +2xy N =-x°

@:Zyex +2X, %:_ZX
oy OX
Clearly oM + N

oy OX

The given equation is not exact.
divide the equation by y* to make it exact

2
[ex +3}dx+{—x—2}dy =0
y y

oM _ 2x _ON
oy y® ox
Equation is exact

of | . 2x of | x?
— = e+ - = -
OX y oy Ya

Integrate w.r.t. X'
2

f(x,y):ex +X_
y

Now

2
X
e*+—=c
y
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Example 7:
dy :
XCOSX——+ y(Xsin x+cosx) =1
dx
. dy :
Solution: x cos xd—+ y(Xsin Xx+cos x) =1
X
dy _xsinx+cosx} 1
__|_y —_
dx | XCOS X X COS X
ﬂ+y'tanx+1/x]:#
dx - X COS X
l.F = exp(j(tanx+1/x)dx)=xsecx
xsec:xﬂjuyxsecx[tanx+1/x]=m
dx X COS X
xsecx%+y[xsecxtanx+secx]=sec2x
X

%[xy sec x| =sec’ x

XyseCXx=tan Xx+cC
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Example 8: xe*’ ﬂ+ e?’
dx
Solution: xe?’ ﬂ+e2y =
dx
put e*’ =u
2ezv OY _du
dx dx

X du In x
———4tu=—=—

2 dx X

du 2 In X
—+—U=2—;

dx X X

Here p(x)=2/x And
2 2
|.F :exp(_[—dx) = X
X

ng—u+2xu:2lnx
X

a
dx
Integrate

(x°u) = 2In x

x“u=2[xInx-x]+c

x“e” =2[xInx-x]+c

In x

X
In x

X

Q(x) =

In x
X2
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Example 9:%+ ylny = ye”
X

Solution: ﬂ+ yiny = ye”

dx

iﬂ+lny=ex
y dx
putlny =u

du

— 4+u=¢e"
dx

I.|:.=eI OIX=ex
d X 2X
—(e’u) =e
GIX( )

Integrate
er
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dy

— =2x-Intan
dx y

Example 10: 2xcsc2y

Solution:2x cchy% =2X-Intany
X

putintany =u

ﬂ:sin Yy COS yd—u
dx dx
2xsinycosy du
2sinycosy dx

du

=2X-U

X— =2X-U

dx
§E+£u:2
dx X

l.F = exp(jl/ Xdx) = X

xﬁg+u=2x
dx

d

—(Xu) = 2x
dx( )
XU=X>+¢C

u=x+cx*:

Intan y = x+cx™
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Example 11:d—+ X+Yy+1l=(x+y)’e*
X

Solution: ﬂ+ X+Yy+1l=(x+y)e*
X

Putx+y=u

au Ly —uze™
dx
du 2 _3x .
— +u =u-e” (Bernouli's)
dx
1 du 1 3x
— —=e
u“ dx u
putl/u=w
dw 3x
-—— W=
dx
d_W_ =_e3X
dx
I.F :exp(j-dx) =e
X dW -X 2X
et —-we =-e
dx
d -X 2X
—(e”*w) = -e
dx( )
Integrate
N _e2x
e 'w = +C
2
l _e3X N
— = + ce
u
1 _eSX N
= + ce
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Example 12: % = (4x+y+1)°
X

Solution: % = (4x+y+1)°
X

put 4x+y+1=u

du = dx

u’+4
Integrate

ltan‘lﬂ: X+ C
2 2

u
tan'1§ = 2X+C,

u=2tan(2x+c,)
4x+y+1=2tan(2x+c,)
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Example 13: (X + y)° ay _ a
dx
Solution : (x + y)? dy _ a’
dx
put X+ y=u
du
2 —_1 — 2
(dx )
uzd_u_u2:a2
dx
u2
du = dx
u” +a’
Integrate
2 2 42 )
4 72 72 gu=(dx
J  u®+a J
2
A-—2—)du = [dx
. u’ +a J
u-atan*Y —x+c
a
(x+y)-atant 2 Y _ x4 ¢

a
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Example 14 : 2y%+x2 +y*+x=0
X
Solution : 2y%+x2 +y°+x=0
X

put x* + y* =u

u—2x+u+x:0
dx

du
—4+UuU=X
dx

I.F :Exp(jdx) = "

X

Xdu X
e Tue=xe
X

d X X
—(e”u) = xe
dx( )

Integrating
e'u=xe*-e"+c
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Example 15:y'+1=e*"Y) sin x
Solution : y'+1=e™"" sin x
putx+y=u

du

— =eYsinXx
dx

%du = sin xdx
e

e"du = sin xdx
Integrate

e' =-cosX+cC
u=In|-cosx+c|
X+y=In|-cosx+c|

© Copyright Virtual University of Pakistan

66



Differential Equations (MTH401)

VU

Example 16: x*y?’y'+ x*y® =2x*-3

Solution : x*y?y'+ x’y® =2x°-3
put x°y® =u

dy du

3x?y? +3x3y? 2L =——

y y dx dx

dy du

3X3 2 :__3)(2 3
4 dx dx Y
a2 dy _xdu g q
y dx 3 dx y

id—u:2x3—3

3 dx

d—u=6x2—9/x

dx

Integrate

u=2x>-9Inx+c
x3y® =2x%-9Inx+cC
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Example 17:Solve cos(x + y)dy = dx
Solution:cos(x + y)dy = dx

putx+y=v or 1+ﬂ=ﬂ,weget

dx dx
dv
cosv[—-1]=1
dx

dx=—V gqyop-—21  dv
1+ cosv 1+ cosv

dx = [1—13ec2 X]dv
2 2
Integrate
Y
X+C=V-tan—
2

Ty

X
X+C=V-tan
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10 Applications of First Order Differential Equations

In order to |translate a physical phenomenon in terms of mathematics|, we strive for a
set of equations that describe the system adequately]. [This set of equations is called a]

ModeII for the phenomenon. The basic steps in building such a model consist of the
following steps:

We clearly [state the assumptions on which the model will be based|. These
assumptions should describe the relationships among the quantities to be studied.

IStep 2:|[Completely describe the parameters and variables to be used in the modell.

Step 3:| Use the assumptions (from Step 1) to |derive mathematical equations relating the|
parameters and variables (from Step 2).

The mathematical models for physical phenomenon often lead to a differential equation
or a set of differential equations. The applications of the differential equations we will
discuss in next two lectures include:

Orthogonal Trajectories.
Population dynamics.
Radioactive decay.
Newton’s Law of cooling.
Carbon dating.

Chemical reactions.

00000 D

(9%}
—
o

10.1 Orthogonal Trajectories
o We know that that the solutions of a 1* order differential equation, e.g. separable
equations, may be given by an implicit equation

F(x,y,C)=0

with 1 parameter C , which represents a family of curves. Member curves
can be obtained by fixing the parameter C. Similarly an n™ order DE will
yields an n-parameter family of curves/solutions.

F(x,y,C1.Cy,,Cy)=0

o The question arises that whether or not we can turn the problem around: Starting
with an n-parameter family of curves, can we find an associated n™ order
differential equation free of parameters and representing the family. The answer
in most cases is yes.

o Let ustry to see, with reference to a 1-parameter family of curves, how to proceed
if the answer to the question is yes.
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1. Differentiate with respect to x, and get an equation-involving x, y, j—y and C.
X
2. Using the original equation, we may be able to eliminate the parameter C from

the new equation.
3. The next step is doing some algebra to rewrite this equation in an explicit

form

dy
22— f(x,
- (x,y)

X +y*=CX

Example Find the differential equation satisfied by the family

Solution:

1. We differentiate the equation with respect to x, to get

2x+2y9X:C
dx

2. Since we have from the original equation that

2 2
c-X*Yy
X
then we get
2 2
2x+2ydy:X Y
dx X

3. The explicit form of the above differential equation is

dy_y -x
dx 2Xy

This last equation is the desired DE free of parameters representing the given family.

Example. [Let us consider the example of the following two families of curves
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y = mXx
X2+y2:C2

The first family describes all the straight lines passing through the origin while the
second family describes all the circles centered at the origin. If we draw the two families
together on the same graph we get

T
N

%

%
%

N
X

N

SR
WA
S

Clearly whenever one line intersects one circle, the tangent line to the circle (at the point
of intersection) and the line are perpendicular i.e. orthogonal to each other. We say that
the two families of curves are orthogonal at the point of intersection.

%
-

10.2 Orthogonal curves
Any two curves C, and C, are said to be orthogonal if their tangent lines T, and T, at
their point of intersection are perpendicular. This means that slopes are negative
reciprocals of each other, except when T, and T, are parallel to the coordinate axes.

10.3 Orthogonal Trajectories (OT)

When all curves of a family 3, : G(x,y, c,)=0 orthogonally intersect all curves off

another family 3J,: H(x,y,c,)=0 then each curve of the families is said to be
orthogonal trajectory of the other |
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Example|
As we can see from the previous figure that the family of straight lines Y = mMX and the

2 2 2
family of circles X~ +Y = C* are orthogonal trajectories.

Orthogonal trajectories occur naturally in many areas of [physics, fluid dynamics, in the|
Istudy of electricity and magnetism| etc. For example the lines of force are perpendicular
to the equipotential curves i.e. curves of constant potential.

[10.3.1 Method of finding Orthogonal Trajectory|

Consider a family of curves 3. Assume that an associated DE may be found, which is
given by:

dy
—=f(xy)
dx
dy
Since & gives slope of the tangent] to a curve of the family 3 through (x,y).
Therefore, [the slope of the line orthogonal to this tangent is — ﬁ So that the
X,y
slope of the line that is tangent to the orthogonal curve through (x,y)is given by
—ﬁ. In other words, the family |of orthogonal curves are solutions to thel
X,y
differential equation|
dy 1
dx f(x,y)
The steps can be summarized as follows:

Summary:

In order to find Orthogonal Trajectories of a family of curves 3 we perform the
following steps:

Consider a family of curves < and [find the associated differential equation],
Rewrite this differential equation [in the explicit form|

dy
=~ f(x,
™ (x,y)

Step 3.| Write down the differential equation associated to the orthogonal family
dy 1
dx f(x,y)

IStep 4] ISolve the new equation| The solutions are exactly the family of orthogonal
curves.
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Step 5. A [specific curve from the orthogonal family] may be required|, something like an|

ive]

Example 1

Find the orthogonal Trajectory to the family of circles
x2 1 yz _C?

Solution:

The given equation represents a family of concentric circles centered at the origin.
Step 1. We differentiate w.r.t. * X to find the DE satisfied by the circles.

d
oy L ox=0
dx
Step 2. We rewrite this equation in the explicit form
dy X
dx y
Step 3. Next we write down the DE for the orthogonal family
dy _ 1y
dx —(x/y) x

Step 4.This is a linear as well as a separable DE. Using the technique of linear
equation, we find the integrating factor

1
u(x):ede :1
X

which gives the solution
y.u(x)=m

or

m
y =——=mXx

u(x)

Which represent a family of straight lines through origin. Hence the family of

o . . 2 2
straight lines and the family of circles | X + Y = C *[are Orthogonal

Trajectories.

[Step 5. A geometrical view of these Orthogonal Trajectories is
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Example 2

Find the Orthogonal Trajectory to the family of circles

x* +y>=2Cx

[Solution

1. We differentiate the given equation to find the DE satisfied by the circles.

yd—y+x=C,

dx

C =

X* +y°
2X

2. The explicit differential equation associated to the family of circles is

dx

ﬂ_ y2 _X2
2Xy

3. Hence the differential equation for the orthogonal family is
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dy  2xy
dx x*—y?
4. This DE is a homogeneous, to solve this equation we substitute
or equivalently |Y =VX|.  Then we have
dy dv 2Xy 2v
Oy Xae tVad 32T
dx dx X“—y° 1-v

v=y/X

Therefore the homogeneous differential equation in step 3 becomes

Algebraic manipulations reduce this equation to the separable form:

dv 2V
X— =

dx 1-v?
dv 1 ]v+v

&_ X [1-v?

The constant solutions are given by

vivi=0 = v(1+v2):0

The only constant solutionis V=0.

To find the non-constant solutions we separate the variables

Integrate

2
1 V3dv=1dx
V + V X
2
Jl V3dv=J£dx
V+V X

Resolving into partial fractions the integrand on LHS, we obtain

1—v?

1—v?

1 2V

vive v(1+v2) vV 14v2

Hence we have

V-I-V3

Jl—v2

dv

[
Vo14v2

}dv:ln|v|—ln[v2+1]

Hence the solution of the separable equation becomes

In|v|=In[v*+1]=In|x|+InC

which is equivalent to
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v =CX

vZ+1
where C # 0. Hence all the solutions are

v =0

v
= CX
ve+1

We go backto y toget|y =0|and yzfyxz = C | which is equivalent to

y = 0

X +y> = my

5. Which is x-axis and a family of circles centered on y -axis. A geometrical
view of both the families is shown in the next slide.
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10.4 Population Dynamics
bSome natural questions related to population problems are the following:

o What will the [population of a certain country after e.g. ten years?|
o How are we protecting the resources from extinction?

The easiest [population dynamics model is the exponential model|. This model is based
on the assumption:

[The rate of change of the population is proportional to the existing population|.

If P(t) measures the population of a species at any time 1 then because of the above
mentioned assumption we can write
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dP

=T kP
dt

where the rate K is constant of proportionality. Clearly the above equation is linear as
well as separable. To solve this equation we multiply the equation with the integrating

kt

factor e~ ™ to obtain

E[P e~ kt}:o
dt

Integrating both sides we obtain

pe K _C o p=cCekt

If Py is the initial population then P(0) = P, | So that C = P, and obtain

P(t)=P, ekt

Clearly, we must have k>0 for growth and k <O for the decay.

The population of a certain community is known to increase at a rate proportional to the
number of people present at any time. [The population has doubled in 5 years, how long
would it take to triple?]. If it is known that the population of the community is 10,000
|after 3 yearsl. What was the initial population? What will be the [population in 30 years?|
Solution:

Suppose that Py is initial population of the community and P(t) the population at any

time T then the population growth is governed by the differential equation

P e
dt

As we know solution of the differential equation is given by
P(t) = P, ekt

Since |P(5) = 2P, | Therefore, from the last equation we have
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2P, =P, e5k :>e5k =2
This means that
0.69315
5k =In2=0.69315| or |k= =0.13863
Therefore, the solution of the equation becomes
p(t) = P, ¢0-13863
If tl is the time taken for the population to triple then
3p — p (01386, _ 01386 _g
t, = In3 = 7.9265 ~ 8 years
0.1386
Now using the information | P(3) =10,000|, we obtain from the solution that
0.13863)(3) 10,000
10,000= P, & Py = e
0.000=F,e ~ 0T 041589
Therefore, the initial population of the community was
P, ~ 6598
Hence solution of the model is
P(t) = 6598 ¢ V13863t
So that the population in 30 years is given by
P(30) = 65086 (30)(0-13863) _ gggoeises
or P(30)=(6598)(64.0011)
or P(30)~ 422279
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11 |Radioactive| Decay

In physics a radioactive substance disintegrates or transmutes into the atoms of
another element. [Many radioactive materials| disintegrate at a [rate proportional to thel
lamount present. Therefore, if A(t) is the amount of a radioactive substance present at

time T, then the rate of change of A(t) with respect to time T is given by
dA
kKA
dt
where K is a constant of proportionality. Let the initial amount of the material be A,

then |A(0) = A,| As discussed in the population growth model the solution of the
differential equation is

At) = A ekt

The constant K can be determined using half-life of the radioactive material.

The half-life of a radioactive substance is the time it takes for one-half of the atoms in an
initial amount A, to disintegrate or transmute into atoms of another element. The half-
life measures stability of a radioactive substance. The longer the half-life of a substance,

the more stable itis. If T denotes the half-life then

Ay
A(T)=—
(M) 5
Therefore, using this condition and the solution of the model we obtain
Ay kt
—_— = e
> =
So that kT =—In2

Therefore, if we know T , we can get K and vice-versa. The half-life of some important
radioactive materials is given in many textbooks of Physics and Chemistry. For example

lthe half-life of C —14 is 5568 + 30 years)

Example 1:
A radioactive isotope has a |half-life of 16 days.|We have [30 g at the end of 30 days].
[How much radioisotope was initially present?|

Solution: Let A(t) be the amount present at time t and A, the initial amount of the

isotope. Then we have to solve the initial value problem.
dA
E = kA, A(30) = 30
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We know that the solution of the IVP is given by

2 In2

At) = A et
If T the half-life then the constant is given k by
In
KT =—In2 or k:_T:_—

16

Now using the condition A(30) =30 , we have

30 = 30K

So that the initial amount is given by

30In2

A =30e 30K _30e 16 _110.04g

Example 2

A breeder reactor converts the relatively [stable uranium 238 into the isotope plutonium|

After [15 years it is determined that 0.043% of the initial amoun] A, of the

plutonium has disintegrated|. Find the half-life of this isotope| if the rate of disintegration

is proportional to the amount remaining.
Solution:

Let A(t) denotes the amount remaining at any time t , then we need to find solution to

the initial value problem

dA

dt

_:kA1 A(O):AO

which we know is given by

At) = Aoekt

If |0.043% disintegration of the atoms of Ay

means that [99.957% of the substance]

[remains. [Further 99.957% of Aq equals (0.99957)A,. So that

A(15) = (0.99957) A,

So that
At = (0.99957) A,
15k =n(0.99957)
or k= % =-0.00002867
Hence A(t) = A e~ 0-00002867 t
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Ay

If T denotes the half-life then |A(T) = BY Thus

'62‘0 _ pe—0.00002867 T

2
~0.00002867 T = In(lj =-In2

B In2
~ 0.00002867

11.1 Newton's Law of Cooling
From experimental observations it is known that the temperature T (t) of an object

changes at a rate proportional to the difference between the temperature in the body and

the temperature Ty, of the surrounding environment]. This is what is known as Newton's

law of cooling.

If initial temperature of the cooling body is T, then we obtain the initial value problem

dT

e k(T-T,), T0)=T,

where k is constant of proportionality. The [differential equation| in the [problem is linear]

las well as separable |
Separating the variables and integrating we obtain

dT
——=[kat
T-T,

This means that

IN[T-T_ |=kt+C
T _Tm :ekt+C

T(t)=T, +C.e"" where C,=¢°
Now applying the initial condition T(O) :To’ we see that C, =T, =T, . [Thus the

solution of the initial value problem is given by

T(t)=T, + (T, -T,)e"

Hence, If temperatures at times tl and t2 are known then we have

T)-T, = (T,-T,)e  T(t,)-T, = (T,-T, )6
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So that we can write

Tt)-T, _ K -1)
T(tz) _Tm j

This equation provides the value of K if the interval of time ‘t1 —t2 ” is known and vice-

VErsa.

Example 3: Suppose that a [dead body was discovered at midnight in a room when its|
temperature was 80 °F|. The temperature of the room is kept constant at 60 °F . Two

hours later the temperature of the body dropped to 75 °F ||Find the time of death |
Solution:

Assume that the dead person was not sick, then
T(0)=986°F=T,and T, =60°F
Therefore, we have to solve the initial value problem

Z—I =k(T -60), T(0)=98.6

We know that the solution of the initial value problem is
T(t)=T, + (T, ~T,)e"
T(tl) —Tm _ ek(tl _tz)
T (tz) _Tm

The observed temperatures of the cooling object, i.e. the dead body, are
T(t,)=80°F and T(t,)=75"F

Substituting these values we obtain

So that

80_6O:e2k as t. —t. =2 hours
75-60 1 2
1. 4
k==In—=0.1438
So 53

Now suppose that t1 and t2 denote the times of death and discovery of the dead body
then

T(t,)=T(0)=98.6°F and T(t,)=80°F

For the time of death, we need to determine the interval t, —t, =1, . Now
_ k(G —t.) N

T(,)-T, _e 1" %2 N 98.6-60 ekt

d

T(t,)-T, 80— 60
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or

t, =21n>35 L4573
kK 20

[Hence the time of death is 7:42 PM

11.2 Carbon Dating

a

The isotope C-14] is produced in the atmosphere by the action of
radiation on nitrogen |

[The ratio of C-14 to ordinary carbon in the atmosphere appears to be constant].

The proportionate amount of the isotope in all living organisms is same as that in
the atmosphere.

When an organism dies, the absorption of C —14 by breathing or eating ceases.
Thus comparison of the proportionate amount of C —14 present, say, in a fossil
with constant ratio found in the atmosphere provides a reasonable estimate of its
age.

The method has been used to date wooden furniture in Egyptian tombs.

Since the method is based on the knowledge of half-life of the radio active C —14

(5600 years approximately), the initial value problem discussed in the
radioactivity model governs this analysis.

Example

A [fossilized bone is found to contain 1/1000|of the original jamount of C-14)

Determine [the age of the fissile |
Solution:

Let A(t) be the amount present at any time t and A, the original amount of C-14.

Therefore, the process is governed by the initial value problem.

dA
E = kA1 A(O) = AO

We know that the solution of the problem is

A = Ae

Since the half life of the carbon isotope is 5600 years. Therefore,

So that

A(5600) = %

% = Ae2%00K o1 5600k = —In2

k =-0.00012378
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Hence
A(t) = Aoe_ (0.00012378)t
If T denotes the time when fossilized bone was found then A(t) = %
A p e (000012378)t _ 400193781 = —In1000
1000
Therefore
In1000
= = 55,800 years
0.00012378
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12 Applications of Non-linear Equations

As we know that the solution of the exponential model for the population growth is
P(t) = P, ekt
P, being the initial population. From this solution we conclude that

(@) If k>0 the population grows and expand to infinity i.e. lim ﬁg) = +0
o0

(b) If k <0 the population will shrink to approach 0, which means extinction.

Note that:
(1) The prediction in the first case (k >0) differs substantially from what is actually

observed, population growth is eventually limited by some factor!

(2) Detrimental effects on the environment such as pollution and excessive and
competitive demands for food and fuel etc. can have inhibitive effects on the population
growth.

12.1 Logistic equation

Another model was proposed to remedy this flaw in the exponential model. This is called
the logistic model (also called Verhulst-Pearl model).

Suppose that a>0 is constant average rate of birth and that the death rate is
proportional to the population P(t) at any time t . Thus if %(ZI_T is the rate of growth

per individual then

1dP_
P dt

a—bP or ?TF;: P(a—DbP)

where b is constant of proportionality. The term |- bP2, b > 0| can be interpreted as

inhibition term. When b =0, the equation reduces to the one in exponential model.
Solution to the logistic equation is also very important in ecological, sociological and
even in managerial sciences.

12.1.1 Solution of the Logistic equation
The logistic equation

dP
—=P(a-bP
praiiin )

can be easily identified as a nonlinear equation that is separable. The constant solutions
of the equation are given by

P(a—bP)=0
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= P=0 and P:%

For non-constant solutions we separate the variables

_ P
P(a—bP)
Resolving into partial fractions we have
Va, bla lip_ g
P a-bP
1 1
Integrating —In|P|-=Inla-bP|=t+C
a a
In =at+aC
a—bP
or P _ce® where C, =eC
a—bP
Easy algebraic manipulations give
aClea‘t aC,
P(t) = at ~ —at
1+bC.e bC, +e
Here C, is an arbitrary constant. If we are given the initial condition P(0) =P, |P, ¢%
we obtain |C, = PE)P . Substituting this value in the last equation and simplifying, we
a—Dnr,
obtain
aP
Pt = -
bP, + (a—bP,)e
. aP, a
Clearly tl—l)moo P(t) = ﬁ =l limited growth
Note that [P =% is a singular solution of the logistic equation.

12.1.2 Special Cases of Logistic Equation
12.1.2.1 1. Epidemic Spread

Suppose that one person infected from a contagious disease is introduced in a fixed
population of npeople.
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N dx . . .
The natural assumption is that the rate EOf spread of disease is proportional to the

number X(t) of the infected people and number Y(t) of people not infected people.
Then

dx

— =kx

dt 4
Since X+y=n+1

Therefore, we have the following initial value problem

3—: =kx(n+1-x), x(0)=1

The last equation [is a special case of the logistic equation| and has also been used for
the spread of information and the impact of advertising in centers of population.

12.1.3 A Modification of LE
A modification of the nonlinear logistic differential equation is the following

dP
—=P(a-bInP
prailin )

has been used in the studies of [solid tumors}, in [actuarial predictions], and in the [growth
of revenue from the sale of a commercial product in addition to [growth or decline of

'population.l

Suppose a student carrying a flu virus returns to an isolated college campus of |1000
studentgl. If it is assumed that the rate at which the virus spreads is [proportional not only

to the number X of infected students| but also to the number of [students not infected,|
determine the number of infected students ]after 6 day§| if it is further observed that after

4 days X(4) =50.

Solution

Assume that no one leaves the campus throughout the duration of the disease. We must
solve the initial-value problem

% =kx(1000-x), x(0)=1
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We identify

[a=1000k and b=Kk|

Since the solution of logistic equation is

aP,

P(t) =
bP, + (a—bP,)e &

Therefore we have

X(t) =

1000k ) 1000
k -+ 999ke L000Kt 1 . 9gge—1000KE |

Now, using [x(4)= 50, we determine K

1000
50 =
1+ 999¢ ~4000K
-1 19
' k = ——In—— =0.0009906.
We find 4000 999
Thus
1000
X(t) =
1+ 9996—0.9906t
Finally
X(6) = 1000 =276 students| |

1+ 999¢ ~2-9436

12.2 Chemical reactions

In a first order chemical reaction, [the molecules of a substance A decompose into smaller

This decomposition takes place at a rate proportional to the amount of the
first substance that has not undergone conversion. The disintegration of a radioactive
substance is an example of the first order reaction. If X is the remaining amount of the

substance A at any time t then

dt

k <0 because X is decreasing.
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In a 2" order reaction two chemicals A and B react to form another chemical C at a
rate proportional to the product of the remaining concentrations of the two chemicals.

If X denotes the amount of the chemical C that has formed at time t. Then the
instantaneous amounts of the first two chemicals A and B not converted to the
chemical C are - X and B — X, respectively. Hence the rate of formation of

chemical C is given by

S~k (a-x)(8-X)

where k is constant of proportionality.

Example:|

A compound C is formed when two chemicals A and B are combined|. The resulting

reaction between the two chemicals is such that for each gram of A 4 grams of B are
used. It is observed that 30 grams of the compound C are formed in 10 minutes.
Determine the amount of C at any time if the rate of reaction is proportional to the
amounts of A and B remaining and if initially there are 50 grams of A and 32 grams

of B . How much of the compound Cis present at 15 minutes? Interpret the solution as
>

Solution:

If X (t) denote the number of grams of chemical I§l present at any time t . Then
X(0)=0 and X (10) =30

Suppose that there are 2 grams of the compound |C| and we have used a grams of A

and D grams of B then

a+b=2 and b=4a

Solving the two equations we have

In general, if there were for X grams of C then we must have

X 4
a=2 b ==X
5 and 5
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Therefore the amounts of A and B remaining at any time T are then

50—£and 32—EX
5 5

respectively .

Therefore, the rate at which chemical C is formed satisfies the differential equation

ax _ 1(50—1J(32—£Xj
dt 5 5
dX

o = K(@50-X)(40-X), k=42/25

or

We now solve this differential equation.

By separation of variables and partial fraction, we can write

dX

50— xYa0-x) "

1/210 X 1/210

- + dX = kdt
250 - X 40- X

250 - X|
n =
40-X |

210kt + ¢,

250- X
E—

20- X 2e210kt Where ¢, = e*

When t =0, X =0, so it follows at this point that C, = 25/4 . Using X =30 at
t =10, we find

210k = £ 1n 88 _g.1258
10 25

With this information we solve for X :
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It is clear that as e

1o~ 0.1258t
o5 _ 4o~ 01258t

X (t) =1000

—0.1258t _, 0 a5 t — o0 Therefore X —» 40 as t —> o0 . This

fact can also be verified from the following table that X — 40 ast — .

t 1015 20 25 30 35

X |30 |34.78 | 37.25 | 38.54 | 39.22 | 39.59

This means that there are 40 grams of compound C formed, leaving

and

50 —%(40) =42 grams of chemical A

32 —%(40) =0 gramsof chemical B

12.3 Miscellaneous Applications

Q

The velocity V of a falling mass M , subjected to air resistance proportional to
instantaneous velocity, is given by the differential equation

dv
m—=mg — kv
dx
Here k >0 is constant of proportionality.

The rate at which a drug disseminates into bloodstream is governed by the
differential equation

%:A—Bx
dt

Here A, B are positive constants and X(t) describes the concentration of drug ir

the bloodstream at any time L.
The rate of memorization of a subject is given by
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IA k(M= A) -k, A

dt
Here k, >0, k, >0 and A(t) is the amount of material memorized in time t,
M is the total amount to be memorized and M — A is the amount remaining to

be memorized.
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13 Higher Order Linear Differential Equations

13.1 Preliminary theory
o A differential equation of the form
n n-1

an (< ran 200 () a0 00y = 009

x" dx

o ap (Y™ +an_ 1y 42 0y +ag () = 9(x)
where ag (X),a4(X),...,a,(X), g(x)are functions of x and a,(x) =0, is
called a linear differential equation with variable coefficients.

o However, we shall first study the differential equations with constant coefficients
i.e. equations of the type

dny dn—ly dy

an +an_l +"'+a1_
dx" dx" 1 dx

+agy =9(x)

where Qdg,dq,...,adnare real constants. This equation is non-homogeneous
differential equation and

o If g(x) =0 then the differential equation becomes

dn gn-t d
y+an_1—_¥+---+a1—y
dx" dx" dx

which is known as the associated homogeneous differential equation.
13.2 Initial -Value Problem

For a linear nth-order differential equation, the problem:

an +agy =0

n n-1
Solve: an(x)d y+an_1(x) y+---+a1(X)ﬂ+ao(X)y:9(X)
dx" dx" 1 dx

Subjectto:  Y(X)=VYo, Y (%)= VYooY (X)) = Yo

/ - . . . e ey
Yor Yo s-es yg ! being arbitrary constants, is called an initial-value problem (IVP).

The specified values y(X,)=Y,, y/(X0)=yé,.-.,y”_l(xo)zyon_lare called initial-
conditions.
For n =2 the initial-value problem reduces to

2

Solve: az(x)d—y+a1(x)d—y+ao(x)y =g(x)
dx? dx
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Subject to: V(X)) =Yg -err Y (X)) =Y0
13.2.1 Solution of IVP

A function satisfying the differential equation on | whose graph passes through (X,,Y,)

such that the slope of the curve at the point is the number y/ is called solution of the
initial value problem.

13.3 Theorem ( Existence and Uniqueness of Solutions)

Let a,(x),an_1(X),....a1(x),ag(x)and g(x) be continuous on an interval | and let
a,(x)=0, Vxel.If x=xqgel, then a solution y(x) of the initial-value problem exist
on | and is unique.

Example 1
Consider the function y = 3% + 72 —3x
This is a solution to the following initial value problem

y' -4y =12x, y(0)=4y'(0)=1

d? _
dx
d?y 2 2 2 2
and d—2—4y:12e X4 4e7 ~12e7 —4e™ 7 +12x =12x
X
Further y(0)=3+1-0=4 and y'(0)=6-2-3=1
Hence y=3e2* +e72X _3x

is a solution of the initial value problem. We observe that

o The equation is linear differential equation.

o The coefficients being constant are continuous.

o The function g(x) =12x being polynomial is continuous.
a

The leading coefficient a,(x) =10 for all values of x.Hence the function

y =3e2* +e72% —3x is the unique solution.
Example 2

Consider the initial-value problem

3y" +5y" —y' +7y=0,

yO =0, y®=0 y'@=0

Clearly the problem possesses the trivial solution y =0.

© Copyright Virtual University of Pakistan 95



Differential Equations (MTH401) VU

Since

o The equation is homogeneous linear differential equation.
o The coefficients of the equation are constants.

o Being constant the coefficient are continuous.
a

The leading coefficienta, =3=0.
Hence y =0 is the only solution of the initial value problem.
Note: If a,, =07
If a,(x)=0 in the differential equation

n n-1

d d
a0 a () a0y = 909

an (x)

for some x e | then

o Solution of initial-value problem may not be unique.
o Solution of initial-value problem may not even exist.
Example 4

Consider the function

y:cx2+x+3

and the initial-value problem
x2y” — 2xy’ +2y=6
y(0) =3, y'(0) =1
Then y'=2cx+1 and y"=2c
Therefore x2y" —2xy’ +2y = x?(2¢) — 2x(2cx +1) + 2(cx® + x + 3)

— 20x% — 40x% — 22X+ 20X% +2X + 6

= 6.
Also y(0)=3 = ¢c(0)+0+3=3
and y/ (0)=1 = 2¢(0)+1=1

So that for any choice of c, the function'y' satisfies the differential equation and the
initial conditions. Hence the solution of the initial value problem is not unique.

Note that

o The equation is linear differential equation.
o The coefficients being polynomials are continuous everywhere.
o The function g(x) being constant is constant everywhere.
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o The leading coefficient a,(x) = x>=0at x=0e (—o0,00).
Hence a,(x) =0 brought non-uniqueness in the solution

13.4 Boundary-value problem (BVP)

For a 2" order linear differential equation, the problem

dzy

X2
Subjectto:  y(@)=y,, yb)=y;

Solve: a, (X) + al(x)% +ap(X)y =g(x)

is called a boundary-value problem. The specified values y(a)=y,, and y(b) =y, are
called boundary conditions.

13.4.1 Solution of BVP

A solution of the boundary value problem is a function satisfying the differential equation
on some interval | , containing a and b, whose graph passes through two points (a, y,)

and (b,y,).

Example 5

Consider the function
y = 3x%2 —6x+3

We can prove that this function is a solution of the boundary-value problem
x2y" —2xy’ +2y =6,
yh =0 y(@2)=3

2
Since ﬂ:GX—G, d—y=6
dx dx?
2 d%y dy 2 2 2
Therefore XS —=—2X—+2y =6x° —12x° +12Xx+6X° -12x+6=6
dx? dx
Also y1)=3-6+3=0, y(2)=12-12+3=3

Therefore, the function'y'satisfies both the differential equation and the boundary
conditions. Hence vy is a solution of the boundary value problem.
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13.4.2 Possible Boundary Conditions

For a 2" order linear non-homogeneous differential equation
d’y dy
az(X)W‘F al(X)&+ ay(x)y = 9g(x)

all the possible pairs of boundary conditions are

y(@) = Yo, y(b) =y,
y' (@) = Yo, y(b) =y,
y(a) = ¥, v (b) =y,
y' () =y, y (b) = y{

where y,,y.,y, and y; denote the arbitrary constants.

In General:

All the four pairs of conditions mentioned above are just special cases of the general

boundary conditions
ay(a) + ﬂly’/(a) =N
azy(0) + By (b) =7
where 1,07, ﬂl’ ﬁz S {0,1}
Note that

A boundary value problem may have

o Several solutions.
o A unique solution, or
o No solution at all.

Example 1
Consider the function

Y = C; COS4X + C, Sin 4x
and the boundary value problem
y" +16y=0, y(0)=0, y(z/2)=0

Then

y' =—4c, sin 4x + 4c, cos 4x

y” =-16(c, cos4x +c, sin 4x)

y// =16y

y" +16y =0
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Therefore, the function

y = C, C0S4X +C, Sin 4x
satisfies the differential equation

y" +16y =0.
Now apply the boundary conditions
Applying y(0)=0
We obtain

0=cycos0+c,sin0
:>C1=0

So that
y =C,Sin4x.
But when we apply the 2" condition y(rz/2) =0, we have
0=c,sin2r

Sincesin 2z =0, the condition is satisfied for any choice of c,, solution of the problem is
the one-parameter family of functions

y =C, sin4x
Hence, there are an infinite number of solutions of the boundary value problem.
Example 2

Solve the boundary value problem y" +16y =0, y(0) =0, y(%j =0,

Solution:

As verified in the previous example that the function
Y = Cy COS4X + C, Sin 4x

satisfies the differential equation
y” +16y =0

We now apply the boundary conditions
y(0)=0=0=c¢;+0

and y(z/8)=0=0=0+c,
So that cg,=0=c¢y
Hence

y=0
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is the only solution of the boundary-value problem.
Example 3

Solve the differential equation y” +16Yy = Osubject to the boundary conditions
y(©) =0, y(x/2)=1
Solution:As verified in an earlier example that the function y = c; cos4x +c, sin 4x
satisfies the differential equation y” +16y =0 .
We now apply the boundary conditions
y(0)=0=0=c¢; +0

Therefore ¢, =0

So that y =C, sin4x
However y(z12)=1=c,sin27 =1
or 1=¢,0=1=0

This is a clear contradiction. Therefore, the boundary value problem has no solution.

13.5 Linear Dependence
A set of functions

1100, F2(X),...., f,(%)}

is said to be linearly dependent on an interval I if 3 constants C;,C»,...,C,, not all zero,
such that

c fi(X)+cofo(X)+---.+c, f,(xX)=0, Vxel
13.6 Linear Independence
A set of functions {fl(x), fo(X),..., fn(x)} is said to be linearly independent on an
interval I if i) +crfro(X)+---+c,f,(X)=0, Vxel,only when
c,=C,=--=¢C, =0.
13.6.1 Case of two functions
If n=2 then the set of functions becomes { f; (x), f, ()}
If we suppose thatc, f;(x) +c¢, f,(x) =0

Also that the functions are linearly dependent on an interval | then either ¢, =0 or
c, #0.
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c : .
Let us assume that ¢, =0, then f (x) = ——2 f,(x) .Hence f,(x) is the constant multiple
c

1
of f,(x) .Conversely, if we suppose f;(x)=c, fy(X)

Then (-1) f,(x)+c,f,(x)=0, Vxel
So that the functions are linearly dependent becausec, = 1.

Hence, we conclude that:

o Any two functions f;(x)and f,(x)are linearly dependent on an interval I if and
only if one is the constant multiple of the other.

a Any two functions are linearly independent when neither is a constant multiple of
the other on an interval I.

a Ingeneral a set of n functions {fl(x), fo(x),..., fn(x)} is linearly dependent if at
least one of them can be expressed as a linear combination of the remaining.

Example 1
The functions

f1(X) = sin 2x, VX € (—o0, o)

fo(X) =sinxcosx, VXe (-, o)

If we choose c, :% and ¢, = -1 then

: . 1,.,. .
Cy SIN 2X + C, SIN X COS X :E(Zsm XCOS X) — sin xcos X =0

Hence, the two functions f;(x) and f,(x) are linearly dependent.
Example 2
Consider the functions
f,(x) = cos’x, fy(x)=sin?x, Vxe (-7/2,7/2),
f,(x) =sec’x, fq(x)=tan’x, Vxe (-z/2,7/2)
If we choose ¢; =¢, =1,¢3 =-1,¢4 =1, then
¢y f1 () + ¢z F2(X) +C3 f3(X) + ¢4 f4(X)
=0 cos? X+Cy sin? X+Cq sec? X+Cy tan? x
=cos? x+sin? x+-1—tan? x + tan? x
=1-1+0=0
Therefore, the given functions are linearly dependent.
Note that
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The function f3(x) can be written as a linear combination of other three functions
f,(x), f,(x) and f,(x) becausesec? x = cos? x +sin® x + tan” x.
Example 3
Consider the functions
fi(X) =1+x, V xe (-0, )
fo(X)=%, VXe (—o0,0)

f3(x) = X%, Vxe (—00,0)

Then

cfi(X)+cofy(x)+c3f3(x)=0
means that

c1(1+x)+c2x+c3x2 =0
or Cy + (Cy +Cy )X +C3x2 =0

Equating coefficients of x and x? constant terms we obtain

Cl = O = C3
Cl + C2 = 0
Therefore C;=C=C3=0

Hence, the three functions f;(x), f,(x) and f5(x) are linearly independent.

13.7 Wronskian

Suppose that the function f,(x), f,(X),..., f,(x) possesses at least n—1 derivatives then
the determinant

f, fy e f,
it f!
T SLe RO fn

is called Wronskian of the functions f, (x), f,(x),..., f,(x)and is denoted by
W(fL(x), f1(),..., f1(X))-
13.8 Theorem (Criterion for Linearly Independent Functions)

Suppose the functions f,(x), f,(x),..., f,(x) possess at least n-1 derivatives on an
interval I . If
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W(f(x), f,(x),..., f,(x))=0
for at least one point in |, then functions f (x), f,(x),..., f,(x) are linearly independent
on the interval 1 .
Note that this is only a sufficient condition for linear independence of a set of functions.
In other words:
If f.(x), f,(x),..., f,(x) possesses at least n—1 derivatives on an interval and are

linearly dependenton I, then W (f(x), fo(x),..., f,(X))=0, Vxel

However, the converse is not true. i.e. a Vanishing Wronskian does not guarantee linear
dependence of functions.

Example 1

The functions
f(x)=sin? x
f,(x)=1-cos2x

are linearly dependent because
sin? x = %(1— COs 2Xx)

We observe that for all x € (—o0,0)

sin? x 1-cos2x

W (f,(x), f2(x))=

2sinxcosx  2sin2x

= 2sin? xsin 2x — 2sin X cos X
+ 25iN X COS X COS 2X
=sin 2x[25in2 X —1+c0s 2x]
=sin 2x[25in2 X —1+cos? x —sin? X]
=sin 2x[sin2 X + €0s2 X -1]
=0
Example 2
Consider the functions

fl(X):em]'X, fz(X):emzx, ml ¢m2
The functions are linearly independent because
Cl fl(X) + C2 f2 (X) = 0

if and only if cg=0=c, a m=m,
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Now forall xe R
W(emlx emZX)z em1X emzx
mlemlx mzemzx
= (my —my e+
#0
Thus f, and f,are linearly independent of any interval on x-axis.
Example 3
If «and g are real numbers, g =0, then the functions
y, =e™cos Sxand y, =e”™sin fx
are linearly independent on any interval of the x-axis because
W(e“x cos X, e™ sin ,Bx)
B e cos fSx e sin fXx
— B sin fx +ae® cos X Be™ cos X+ ae™ sin px
= ﬁezo‘x(cos2 fx +sin? ,Bx)= [’ =0,
Example 4
The functions
f(x)=e", f,(x)=xe*, and f,(x)= x’e*
are linearly independent on any interval of the x-axis because for all x € R, we have
e* xe* x’e*
W(e*, xe*, x%e*)=le*  xe* +e” x2e* + 2xe”
e xe* +2e* x%e* +4xe* +2¢
=2 #0
13.9 Exercise
1. Given that
y=ce* +ce”*
is a two-parameter family of solutions of the differential equation
yn _ y — O
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on (— o0, oo), find a member of the family satisfying the boundary conditions

y(0)=0, y'(1)=

2. Given that

4
5.
6
7

Yy =Cy 4+ C, COS X + C3SiN X
is a three-parameter family of solutions of the differential equation
y"+y'=0
on the interval (—oo,oo), find a member of the family satisfying the initial
conditions y(z)=0, y'(7)=2,y"(z)=-1.
Given that
y =CiX+CyxInx
is a two-parameter family of solutions of the differential equation

x2y"—xy'+y=00n (—o0,00). Find a member of the family satisfying the initial
conditions

y(1)=3, y')=-
Determine whether the functions in problems 4-7 are linearly independent or
dependent on (- oo, ).

f,(x)=x, fz(x)=x2, f():4x—3x2

f(x)=0, fa(x)=x, f3(x)=e
f,(x)=cos2x, f,(x ) 1, f,(x)=cos’ x
fi(x)=e*, fy(x)=e7*, fa(x)=sinhx

Show by computing the Wronskian that the given functions are linearly independent
on the indicated interval.

8.
9.

tanx, cotx;  (-o0,00)

eX eX e¥; (—o0,)

10. x,xInx, x2Inx: (0,0)
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14 Solutions of Higher Order Linear Equations

14.1 Preliminary Theory
o In order to solve an nth order non-homogeneous linear differential equation

d n d n-1 d
2,008 Y 2,09 Y20 2,y = o)

we first solve the associated homogeneous differential equation

d" d"t d
209 o, (0 Y v e (0D s a0y =0

o Therefore, we first concentrate upon the preliminary theory and the methods of
solving the homogeneous linear differential equation.
o We recall that a function y = f(x) that satisfies the associated homogeneous

equation

n n-1
.00 Y o, (0 T a0+, (x)y =0

is called solution of the differential equation.

14.2 Superposition Principle

Suppose that Y, Y,,..., Y, are solutions on an interval | of the homogeneous linear
differential equation

d n d n-1 d
2,00% Y+ 2,05 L rera (0

+a (X)y =0

Then
Y=Y, (})+ ¢y, (x)+-- 4.y, (x),
C1,Cy,...,C, being arbitrary constants is also a solution of the differential equation.

Note that

o A constant multiple y =c,y,(x) of a solution y,(x) of the homogeneous linear
differential equation is also a solution of the equation.

o The homogeneous linear differential equations always possess the trivial solution
y=0.

o The superposition principle is a property of linear differential equations and it
does not hold in case of non-linear differential equations.

Example 1 The functions y, =e*,y, =c*, and y, =e* all satisfy the homogeneous
differential equation
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3 2
9 69Y, 11 % gy-0
dx dx dx

on (—oo,oo). Thus y,,y, and y; are all solutions of the differential equation
Now suppose that

y =c,e* +c,e” +c,e’,
Then

d
Y e+ 20,62 1306

X

o

2

y X 2X 3x
o =ce” +4c,e”" +9c,e™".

o [

o

3
QY X 180,62 + 27c,e™.
dx®

Therefore
3 2
a7y 4% W gy

dx® dx? X

= cl(ex —6e* +11e* - 6eX)+ Cy (8e2x —24e%% 4 2202% _ 6e2x)
+cgl27e3* —54e3% + 33eX — ge3X

= 81(12 ~12)e* +¢,(30-30)e2X + ¢3(60 - 60)e>

Thus
y=ce*+c,e” +c,e’.
is also a solution of the differential equation.
Example 2 The function y = x? is a solution of the homogeneous linear equation
x2y" —3xy’+4y =0 on (0,c0).
Now considery =cx’> = y'=2cx and y”"=2c
So that x°y” —3xy’ + 4y = 2cx? —6¢x? + 4cx? =0
Hence the function y = cx? is also a solution of the given differential equation.

The Wronskian

Suppose that y;, Yy, are 2 solutions, on an interval | , of the second order homogeneous
linear differential equation
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d?y _ dy

a,—+a,—+a,y=0
2 52 M oY
Then either W(y,y,)=0, Vxel
or W(y,,y,)#0, Vxel
To verify this we write the equation as
d’y Pdy
+——+Qy=0
dx®>  dx Qy
Yyi 'y P
Now W(y;,y;)= 1, ? =Y1Y2 — Y12
1 2
Differentiating w.r.to x,, we have
dﬂ _ y y” _ yﬂy
dX 1)2 172

Since y,andy, are solutions of the differential equation

d’y Pdy
+——+Qy=0
dx®>  dx Qy

Therefore
yr +Py1 +Qy; =0
Yz +Py; +Qy, =0
Multiplying 1% equation by y,and 2™ by y, the have
Y1y, +Py1y, +Qyyy, =0

Y1Ya +Py1y2 +Qy1y, =0
Subtracting the two equations we have:

(voYs = Yoy + P(y.Ys - Viy,) =0

or w +PW =0
dx
This is a linear 1% order differential equation in W , whose solution is
W= ce™ [ Pdx

Therefore
o Ifc=0 then W(y,y,)#0, Vxel

o Ifc=0 then W(y,y,)=0, Vxel
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Hence Wronskian of y, and vy, is either identically zero or is never zeroon | .

In general

If y,,¥,,...,y,are n solutions, on an interval |, of the homogeneous nth order linear
differential equation with constants coefficients

an Z:g +an 2:;{ +-~+a1%+aoy:0
Then
Either W(Y,,Y,,....¥,)=0, ¥xel
or W(Y,,Y,5,....Y,)#0, ¥Vxel
14.3 Linear Independence of Solutions
Suppose that

Yi: Yoo Yn

are n solutions, on an interval |, of the homogeneous linear nth-order differential
equation

d" dm? d
a, (X) dX”y + anl(X)dX—n?{ Tt al(x)d_i +a, (X)y =0

Then the set of solutions is linearly independent on | if and only if
W(Y, Yy.e0 ¥y )% 0

In other words

The solutions

Y ¥2r-ea Yn

are linearly dependent if and only if

W(yllyz,...,yn):o, vx el

14.4 Fundamental Set of Solutions
A set

Vi Vareen Yot

of n linearly independent solutions, on interval |, of the homogeneous linear nth-order
differential equation

d n d n-1 d
a, (X)_y +a,, (X) dx njl Tt (X)d_i +a, (X)y =0
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is said to be a fundamental set of solutions on the interval 1 .
14.4.1 Existence of a Fundamental Set

There always exists a fundamental set of solutions for a linear nth-order homogeneous
differential equation

on an interval |.

14.5 General Solution-Homogeneous Equations
Suppose that

Wi Yoo Va

is a fundamental set of solutions, on an interval I, of the homogeneous linear nth-order
differential equation

d" dnt d
a,(x) dxgl + a4 (x) dx”i/ ot al(x)d—i+ a,(x)y =0

Then the general solution of the equation on the interval | is defined to be
y= ClYl(X)+C2y2(X)+"'+Cn yn(x)
Here c,,c,,...,c, are arbitrary constants.

3 3x

Example 1 The functions y, =e°X and y, =e~

are solutions of the differential equation y"—9y =0

e3x e—3x

=—6%0, Vxel
3e3X _3e—3x

Since W(e3x,e_3x) -

Therefore y, andy, from a fundamental set of solutions on(—o0,c). Hence general
solution of the differential equation on the (- oo, ) is

y =ce** +ce
Example 2
Consider the function y = 4sinh 3x — 5~ 3X
Then y' =12cosh3x +15e~ X, y" = 36sinh 3x — 45¢~ 3X
= y' = 9(4sinh 3x—5e 3Xj or y" =9y,

Therefore y"—9y =0
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Hence y = 4sinh 3x — 5e

is a particular solution of differential equation.
y'-9y=0

The general solution of the differential equation is

y= cle3x + cze_3x
Choosing c,=2,C,=—7
We obtain y = 2e3X _7¢ 3X
y = 2e3x e~ 3X _5e—3x
3X _ ,—3X
y:z{i}%—sx
2
y=4sinh3x—5e_3x

Hence, the particular solution has been obtained from the general solution.

Example 3

3

2
Consider the differential equation d—Z -6 d Z +1lﬂ -6y=0
dx dx dx

and suppose that y, = eX, y, = e2x and y, = e3x
2 3
Then %:ex:d {1:dz1
dx dx dx
ddy, _d?%y dy X anX X X
Therefore SE-6——t+11—L-6y; —e” —6e” +1le” —6e
dx dx dx
3 2
or d 33’1—60' ;1+11dy1—6y1:12ex _12¢X =0
dx dx dx

Thus the function vy, is a solution of the differential equation. Similarly, we can verify
that the other two functions i.e. y, and y, also satisfy the differential equation.

Now for all xe R
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eX e2x e3X

W(ex,ezx,e3xj:ex 262X 303X 2 268X L0 vxel
eX  4e2X g

Thereforey,,y, and y;form a fundamental solution of the differential equation on

X 2X 3X
(—o0,0). We conclude that Y =C,6” +C,e~" +C,e

is the general solution of the differential equation on the interval (—oo,0).

14.6 Non-Homogeneous Equations

A function y,, that satisfies the non-homogeneous differential equation

n n-1
2,0 va, (09
dx" dx"~

and is free of parameters is called the particular solution of the differential equation

d
bt al(x)d—iJr ao(x)y = g(X)

Example 1 Suppose that y, =3 =y} =0
yr +9y, =0+9(3)
=27
Therefore y, =3 is a particular solution of the differential equation y? +9y, =27

So that

3

Example 2 Suppose that y , =X~ —x = Y| = 3x* -1, y; = 6x

3

Therefore xzy’l’o +2xyp —8yp = x2(6x)+ 2x(3x2 —1) —8(x3 - x) = 4x° +6X

Therefore yp = x3 — X is a particular solution of the differential equation

x2y" +2xy’ —8y = 4x® + 6x
14.7 Complementary Function

The general solution Yo =C1Y, TCyYy +oHC Y

n’n

of the homogeneous linear differential equation

d n y d n—1y
a, (X)dT +a,, (X) an71

is known as the complementary function for the non-homogeneous linear differential
equation.

d
+~-+a1(x)d—2(/+ao(x)y:0
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d" dnt d
a, (X) dx?'/ + an—l(X)Fni/ +eeet al(x)d_i +3, (x)y = g(x)

14.8 General Solution of Non-Homogeneous Equations
Suppose that
o The particular solution of the non-homogeneous equation

d n d n-1 d
a, (X)ﬁ + an—l(X)Fni, toet gy (X)d_i +ap(x)y = g(x)
s y,.
o The complementary function of the non-homogeneous differential equation
(0% 1o, (08 Y sty ()P gy =0
an X d7+an71 X W‘F""Fal X &+a0 X y—
IS

Ye =C Y1 +CYo +-+CpYy.
o Then general solution of the non-homogeneous equation on the interval | is
given by
Y=Yc+Yp
or
Y = CaY1 (%) + €Y, (X)+ -+ €y (})+ ¥, (¥) = yo () + v, (%)
Hence General Solution = Complementary solution + any particular solution.

11 1
Example Suppose that =———-=X
p pp yp 2 2

m

! 1 14
Then Y :_E’ Yp=0=yp

. d® d? d
. e y3" -6 yzp +11 Yo -6y, :O—O—E+E+3x:3x
dx dx dx 2 2
11 1 . . . .
Hence y 0= _E_EX is a particular solution of the non-homogeneous equation
d’y .d%y . dy

_dx3 —6—dx2 +11&—6y =3X

Now consider y,, = cieX +c 2 +cgeX

Then
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d
Ye _ cie” +2c,e2X +3cgeX
5
d
);C = cye* + 4ce?X +9cqeX
d3x
d
éc =cje® +8c,e2% +27c5e™
dx
Since,
d® d? d
e 6 >;C +11C ~6Yy,
dx® dx dx

=ce* +8c,e™ +27ce™ - 6(cleX +4c,e™ + 903e3X)
+11(cleX +2c,e” + 303e3x)— 6(cleX +C,e%° + 03e3x)
=12¢c,e* —12ce”* +30c,e™ —30c,e* + 60c.e™ - 60c,e™
=0
Thus y, is general solution of associated homogeneous differential equation
3 2
LRSI
Hence general solution of the non-homogeneous equation is

=c,.eX +c2e2X +cse3X ECSE
Y 12 2

14.9 Superposition Principle for Non-homogeneous Equations
Suppose that yIol , ypz ylok denote the particular solutions of the k differential

y=y +y

equation a,(x)y™ +a, ,(x)y" ™ +---+a,(x)y +a,(x)y = 9; (x),
i=12,...k,onaninterval | . Then y , = Yp, (x)+ Yp, (X)+-+ Yp, (X)

is a particular solution of

a by vy a6y gy =g, 0 0,00+ -+ g, (1)

Example
Consider the differential equation

2X

y' =3y +4y = —16x? + 24x — 8+ 26X + 2xeX —¢*

Suppose that

yp1:—4X2, yp, =€, Yp, = Xe
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Then yn =3y, +4y, =-8+24x-16x?

Therefore y =-4x

is a particular solution of the non-homogenous differential equation
y" =3y’ +4y =-16x" + 24x -8
Similarly, it can be verified that
y  =e?X andy  =xe
Py P3
are particular solutions of the equations:

X

y”—3y’ '+ 4y = 2e**
and y"-3y'+4y = 2xe* —e*
respectively.

+y = 4x2 12X | xeX

Hence y 0
3

o=Yp Y

P P

1 2
is a particular solution of the differential equation

2X X

y' =3y +4y = —16x> + 24x -8+ 26X + 2xeX —e

14.10 Exercise

Verify that the given functions form a fundamental set of solutions of the differential
equation on the indicated interval. Form the general solution.

11. yn_y/_lzyzo; e—3x,e4x’ (—O0,00)
12. y"-2y'+5y=0; e*cos2x,e*sin2x, (~oo,)

13. X2y"+xy'+y=0; cos(Inx),sin(Inx), (0,c)

,0)

15. x2y"—6xy'+12y =0; x°, x* (0,0)

8

14. 4y"—4y'+y=0; e*'? xe*?, (-
(

16. y"—4y=0; cosh2x, sinh2x, (-o0,o)
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Verify that the given two-parameter family of functions is the general solution of the non-
homogeneous differential equation on the indicated interval.

17. y"+y=secx, Y =C;COSX+Cysinx+ xsinx+(cosx)In(cosx), (-z/2,7/2).

2 2.2

18. y'—4y'+4y=2e2* +4x-12, y=ce?* +coxe? +x%?X +x-2

19. y" =7y +10y =24, y=ce®* +c,e°* +6eX, (—o0,0)

20. X2y +5xy +y=x2—x, y=cx % +coxt +%X2 —%x, (0,0)
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15 Construction of a Second Solution
15.1 General Case

Consider the differential equation
d’y dy
az(X)W+ a1(x)&+ a,(x)y=0

We divide by a,(x) to put the above equation in the form
y" +P(X)y' +Q(x)y =0
Where P(x) and Q(x) are continuous on some interval | .
Suppose that y,(X) =0, V x 1 is a solution of the differential equation
Then v, +Py/+Qy, =0
We define y=u(x)y, (x) then

y'=uy, +yu’, Yy =uy’+2yul +yu”

y// + Py/ + Qy = u[y1” + Pyll +Qy1]+ ylu// + (2y1/ + Pyl)u/ =0

Zero

This implies that we must have
y,u” + 2y, +Py)u’ =0
If we suppose w =u’, then
yW + 2y, +Py)w=0
The equation is separable. Separating variables we have from the last equation
.dWW+(2y—1/+ P)dx=0

Y1

Integrating

Injw|+2In|y, | = —j Pdx +c
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Cle—dex

Y12

or U/ =

Integrating again, we obtain

e—dex
u=cy 42dx+02

Y1
o~ J Pdx
Hence y =u()y1(x) = c1y1(x) | ————dx+Cay1().
Y1

Choosing ¢, =1andcy =0, we obtain a second solution of the differential equation

o~ J Pdx
y2 = y1(X) | ———dx
Y1
The Woolskin
o~/ Pdx
i 0% 7
( ) ;!
W (y; (%) y, (x))= ~[Pdx — [ Pdx

e e

" R I

Y1 Y1
_ e JPAX _ g wx

Therefore y,(x) and vy, (x) are linear independent set of solutions. So that they form a
fundamental set of solutions of the differential equation

y" +P(X)y +Q(x)y=0

Hence the general solution of the differential equation is

y(x)=c; y; (X)+c,Y,(x)
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Example 1
Given that

Yy, =X
is a solution of

x?y" =3xy’ +4y=0

Find general solution of the differential equation on the interval (0, ).

Solution:
The equation can be written as

Y1
3Idx/x Inx3
2] € 2] €
or Y, =X Jde:x J—4dx
X X

Y, = xzfidx = x2Inx
X

Hence the general solution of the differential equation on (O,oo) is given by

y=¢Y, +CY,

or y=c, x> +c,x*Inx
Example 2
Verify that
sin x
e

is a solution of
x2y" +xy' +(x* =14y =0

on(0, 7). Find a second solution of the equation.
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Solution:
The differential equation can be written as

1 1
y'+ =y - 5)y =0
X 4x

The 2" solution is given by

e—Ide
Yo =Yy | ——5—dx

Y1

[
_sinx| e“"*

Therefore Yy, = X (sinx)zdx
Jx

—sin XJ' X d
= \/7 - 2 X
X J Xsin®x
—sin x
= J'csc2 xdx
Jx
—sin x COoS X
= (—cotx)=——
Jx Jx
Thus the second solution is
y, = COS X
2 = T
X

Hence, general solution of the differential equation is

yc (sin XJ+C (cosxj
Ux ) PUUx
15.2 Order Reduction

Example 3
Given that
Y, =X’
is a solution of the differential equation
x?y" -6y =0,

Find second solution of the equation

Solution
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We write the given equation as:

So that P(x) = _5
X

Therefore

e X
y, = X° | ——dX
X
6
eX
y, = x° | ==dx
X

Therefore, using the formula

e—Ide
Y2 = yledx
1

We encounter an integral that is difficult or impossible to evaluate.

Hence, we conclude sometimes use of the formula to find a second solution is not
suitable. We need to try something else.

Alternatively, we can try the reduction of order to find y, . For this purpose, we again
define

y(x)=u(x)y1(x) or y=u(x).x’
then

y'=3x%u+x3u’

y" = x3u” + 6x2u’ + 6xu
Substituting the values of y, y"in the given differential equation

x2y" -6y =0

we have
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x2(x3u" +6x2u’ + 6xu) —6ux>® =0

or x2u" +6x%U' =0
6

or u"+—u'=0,
X

If we takew = u’ then

w +8w=0
X

This is separable as well as linear first order differential equation inw. For using the

latter, we find the integrating factor

Jl
6| —dx
IF=e ) X =gblnx_y6

Multiplying with the IF = x® | we obtain

xOwW' + 6x°w =0

or i(xsw) =0
dx

Integrating w.r.t. > x’, we have

X"W= Cl
I _ Cl
or u' = F
Integrating once again, gives
Cl
U= _ﬁ + C2
—-C
Therefore y=ux’= 5721 +C,x°
Choosing ¢, =0 andc, = -5, we obtain
1
Y, = X_2
Thus the second solution is given by
1
Y, = Yz

Hence, general solution of the given differential equation is

Yy=CYy1+C¥o
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ie. y:c1x3+c2(1/x2)
Where ¢, and ¢, are constants.

15.3 Exercise

Find the 2" solution of each of Differential equations by reducing order or by
using the formula.

L y'-y'=0, y,=1

2. y'+2y'+y=0, y,=xe”
3. y'+9y=0;, vy, =sinx
4. y'-25y=0;, y,=¢>
5. 6y"+y' —-y=0, vy, =e"?
6. x’y" +2xy' -6y=0; vy, =x
7. 4x°y"+y=0; vy, =x"?Inx
8. @-x)y"-2xy'=0, vy, =1

9. x?y" —3xy’ +5y=0; vy, =x°cos(Inx)

10. @+ x)y" +xy' —y=0; y, =x
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16 Homogeneous Linear Equations with Constant Coefficients

We know that the linear first order differential equation j_y +my=0
X

m being a constant, has the exponential solution on (—oo,oo) as y=ce M.

The question?

o The question is whether or not the exponential solutions of the higher-order
differential equations

any™ +a, 1y s ray gy +agy =0,
exist on (oo, ).

o In fact all the solutions of this equation are exponential functions or constructed
out of exponential functions.

Recall that the linear differential of order n is an equation of the form

dny n—ly dy
an(X)—=+an_1(x +o+a(X)==+ag(X)y = g(x
00—+ an-1 (97 1005 +20()y = 9(X)
16.1 Method of Solution
. : : : d’y _ dy
Takingn = 2, the nth-order differential equation becomes a, —+a, ™ +a,y=0
X X
2
This equation can be written as a(; Z + b% +cy=0
X X

We now try a solution of the exponential formy =e™ = y’=me™and y” = m2e™

Substituting in the differential equation, we have e™ (am2 +bm+c)=0

Sincee™ #0, Vx e (—o0,), therefoream® +bm+c =0

This algebraic equation is known as the Auxiliary equation (AE).The solution of the
auxiliary equation determines the solutions of the differential equation.

16.1.1 Case 1 (Distinct Real Roots)

If the auxiliary equation has distinct real roots m, and m,then we have the following two

. . . . Mmq X Mo X
solutions of the differential equation. y; =e 1" andy, =e 2

These solutions are linearly independent because

Y1/ YZ/ —(m, - ml)e(ml+m2)x

W(y1,Y2) =
Y1 Y2

Since my # m,and el™*™X 0 therefore W(y,,y,)#0 Vx e (—o0,00)
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Hence

o y,andy, form a fundamental set of solutions of the differential equation.
o The general solution of the differential equation on (—co,) is
y =cieMX ¢ eM2X
16.1.2 Case 2 (Repeated Roots)

If the auxiliary equation has real and equal rootsi.e. m=my,my,  with m; =m,

Then we obtain only one exponential solution y = clemx

To construct a second solution we rewrite the equation in the form y” + b y'+ ¢ y=0
a a
Comparing with y"+ Py’+Qy =0

We make the identification P = 9
a

b
e—I Pdx e—gx
Thus a second solution is given by y, =y | ~————dx = e™ —dx
Y1 e

Since the auxiliary equation is a quadratic algebraic equation and has equal roots

Therefore, Disc.=b® —4ac =0
—b++/b?-4ac

We know from the quadratic formula m = >
a

b e2mx
we have 2m = —— .Therefore y, = emXJ.—dx = xe™
a e2mx

Hence the general solution is y = c;e™ +coxe™ = (¢ + cox)e™
16.1.3 Case 3 (Complex Roots)

If the auxiliary equation has complex roots « +if then, with m; =a +1if and
m, =a —if, where o >0 and g >0 are real, the general solution of the differential

equation is y = c;e(@+1A)X 4 ¢, e(@-1A)X
First we choose the following two pairs of values of ¢; andc,, ¢; =¢cy =1

yy = el@HiB)X | gla=ip)x

Yy = o(@tiB)X _ g(a-ip)x .We know by the Euler’s Formula

¢, =1,co =—1,then we have

that e'? = cos@ +ising, O eR.
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Using this formula, we can simplify the solutions y; and y, as
yp =e* (efﬂX + e_i_ﬂx) = 2e™ cos X
yp = (e — ey = 2ie® sin px
We can drop constant to write. y; = e cos A, Yy = e sin A
The Wronskian: W(e‘”‘ cos fx, e* sin ﬁx): Be®™ 20 VX

Therefore, e® cos(f x), e sin(f x) form a fundamental set of solutions of the
differential equation on (- oo,0).Hence general solution of the differential equation is

y = c;e¥ cos X +C,e™ sin X = y =e™(c, cos BX +C, sin )

Example: Solve 2y"-5y" -3y =0

Solution: The given differential equation is 2y" —5y' -3y =0

Puty =e™ =y’ =me™, y"=m?e™ Substituting in the give differential equation,

we have (Zm2 —5m - 3)emx =0. Sincee™ =0 V x, the auxiliary equation is

2m? —-5m-3=0 as e™ %0 :>(2m+1)(m—3):0:>m:—%, 3

- . - 1
Therefore, the auxiliary equation has distinct real rootsm, = 5 and m, =3

Hence the general solution of the differential equation is y = cle(_llz)x + 02e3X

Example 2 Solve y"-10y’'+25y =0
Solution: We puty =e™ = y' =me™, y” = m%e™
Substituting in the given differential equation, we have (m? —10m + 25)e™ =0

Sincee™ = 0V x, the auxiliary equation is m? —10m +25=0

(m —5)2 =0 = m=5,5.Thus the auxiliary equation has repeated real roots i.e
m; =5 =m, . Hence general solution of the differential equation is

y=cie® +cxe® = y = (cg +cox)e

y'—4y'+13y =0

y(0)=-1, y'(0)=2

Solution: Given that the differential equation y"—4y'+13y =0

Example 3 Solve the initial value problem:

" 2,,mx

Put y=e™ = y'=me™, y"=m*<e
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Substituting in the given differential equation, we have: (m2 —4m+13)e™ =0

Sincee™ = 0vx , the auxiliary equation is m? —4m+13=0

4+4/16-52

By quadratic formula, the solution of the auxiliary equation is m = — 5 = 2+ 3i

Thus the auxiliary equation has complex roots m; =2+3i, m, =2-3i
Hence general solution of the differential equation is y = e*(c, cos3x + ¢, sin 3x)
Example 4 Solve the differential equations (a) y" + k2y =0,(M)y" - kzy =0

Solution First consider the differential equation y” + k? y=0,

X

and y" = m%e

Put y=e™ =y =me™ mx

Substituting in the given differential equation, we have: (m2 + k2) e™ =0
Sincee™ = 0Vx, the auxiliary equation is m? + k? =0 = m = +ki,
Therefore, the auxiliary equation has complex roots m; =0+ki, m, =0—Ki
Hence general solution of the differential equation is y = c, coskx + ¢, sin kx

2

Next consider the differential equation (; 2’ ~k’y=0
X

Substituting values y and y”, we have. (m2 - kz)emX =0
Sincee™ =« 0, the auxiliary equation ism? —k? =0 = m = +k
Thus the auxiliary equation has distinct real roots my = +k, my, = -k

k kx

Hence the general solution is y = ¢je"* +coe”

16.2 Higher Order Equations

If we consider nthorder homogeneous linear differential equation

dn dn—l
n Y +an—1—y
dx" dx" 1

Then, the auxiliary equation is an nthdegree polynomial equation

a +...+alg—y+aoy=0
X

aym" +a,_ m" 4. +am+ag=0
16.2.1 Case 1 (Real distinct roots)
If the roots my, m,,...,m,of the auxiliary equation are all real and distinct, then the

general solution of the equation is y = c;e™* +c,e™* + ... +c e
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16.2.2 Case 2 (Real & repeated roots)
We suppose that m, is a root of multiplicity n of the auxiliary equation, then it can be
shown that

eMX xe™X  x"-lgMX

aren linearly independent solutions of the differential equation. Hence general solution
of the differential equation is

y =ceM* +eoxe™X 4+ 4 cyx"leMX

16.2.3 Case 3 (Complex roots)
Suppose that coefficients of the auxiliary equation are real.

o We fix nat 6, all roots of the auxiliary are complex, namely
o, Tif, o, Lif,, a,tip,
= Then the general solution of the differential equation
y =e™*(c, cos B, x+c,sin B,x)+e“*(c, cos f,X +¢, Sin S,X)
+€"%(C5 €OS B, X + C; Sin f,X)
o If n=6, two roots of the auxiliary equation are real and equal and the remaining
4 are complex, namely oy xify, ap iy
Then the general solution is
y =e%%(cq cos B1X + Cy sin BX) + e%2% (C5 €O By X + C4 SiN BoX) + Cse ™ + cgxe™X
o If mp =a+ip isacomplex root of multiplicity k of the auxiliary equation. Then
its conjugate my, = —if is also a root of multiplicityk . Thus from Case 2 , the
differential equation has 2k solutions
e(a+iﬂ)x’ Xe(a+iﬂ)x’ XZe(a+iﬁ)x'm,Xk—le(a+iﬂ)x
e(a—iﬂ)x1 Xe(a—iﬁ)x, X2e(a—iﬁ)x,m1Xk—le(a—iﬁ)x

o By using the Euler’s formula, we conclude that the general solution of the
differential equation is a linear combination of the linearly independent solutions

e® cos /X, xe® cos A, x2e® cos A,...,x“ Le® cos fx

e® sin A, xe® sin x, x2e® sin px,..., xK1e® sin px
Thus if k =3 then

y= e“x[(cl +CoX+ c3x2)cos,b’x + (dl +dox+ ngZ)Sin ,Bx]
16.3 Solving the Auxiliary Equation

Recall that the auxiliary equation of nthdegree differential equation is nthdegree
polynomial equation

O

o Solving the auxiliary equation could be difficult
P(m)=0 n>2
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o One way to solve this polynomial equation is to guess a root my. Thenm—-m; is a
factor of the polynomial P, (m) .

o Dividing with m —my synthetically or otherwise, we find the factorization
Pn(m) = (m—my) Q(m)
o We then try to find roots of the quotient i.e. roots of the polynomial equation

Q(m)=0

o Notethatif m, = P is a rational real root of the equation
q

P.(m)=0, n>2
then p is a factor of agand q ofa,,.

o By using this fact we can construct a list of all possible rational roots of the
auxiliary equation and test each of them by synthetic division.

Example 1 Solve the differential equation y” +3y" -4y =0

Solution:Given the differential equation y” +3y”" -4y =0.Puty =e™

— y/ _ memx’y// _ mZemx and y/// _ mSme

Substituting this in the given differential equation, we have
(m3 +3m? —4)e™ =0
Since e™ 20 = m3 +3m? -4=0
So that the auxiliary equation is m3 +3m2 -4=0
Solution of the AE
If we take m =1 then we see that m® +3m2 —4=1+3-4=0
Therefore m =1 satisfies the auxiliary equations so that m-1 is a factor of the polynomial

m3 +3m? —4. By synthetic division, we can writ m® +3m? —4 = (m —1)(m2 +4m +4)

So, m® +3m? —4= (m—l)(m+2)2:o:> (m—l)(m+2)2 =0=>m=1-2-2

Hence solution of the differential equation is y = c;e* + cze_zx + c3xe_2X

Example 2

Solve 3y"” +5y” +10y' -4y =0

Solution: Given the differential equation 3y” +5y” +10y’ —4y =0
2emx 3emx

Put y=e™ = y/ =me™,y/ =m and y" =m
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Therefore the auxiliary equation is 3m® +5m? +10m -4 =0
Solution of the auxiliary equation:

a) a, =-4and all its factors are:

p: +1,+2,+4

b) a, =3and all its factors are:
q: +1, +3

c) List of possible rational roots of the auxiliary equation is
P. 1,1,-2,2,-4,4 21 722-44
q 333 333

d) Testing each of these successively by synthetic division we find
13 5 10 -4
3 1 2 4

3 6 12 |0

Consequently a root of the auxiliary equation is m =1/3

The coefficients of the quotientare 3 6 12

Thus we can write the auxiliary equation as: (m—1/3) (Sm2 +6m +12): 0

m-2=0 or 3m? +6m+12=0=>m=1/3 or m=-1+i3

Hence solution of the given DE is: y = c;e®/3* + e~ X(02 C0S+/3X + Cg sin \/§x)

d4 y .d 2y
Example 3 Solve the differential equation — 2—2 +y=0
dx dx

4
d—Z+2g+y:0.
dx dx

Solution: Given the differential equation

" 2.mx

Puty=e™ = y'=me™, y"=m“e

Substituting in the differential equation, we obtain (m"’ +2m? +1) e™ =0
Sincee™ %0, the auxiliary equation is m* +2m? +1=0= (m? +1)*> =0
>m=xi, ti=m=mg=i and my=my =—Ii

Thus iis aroot of the auxiliary equation of multiplicity 2 and so is—i.
Now « =0 and g =1.Hence the general solution of the differential equation is

y =e%%[(cy +coX)cos X + (dy +d5xX)sin x] = y = ¢; COSX + dy Sin X+ CyXCOS X + d X Sin X
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Exercise
Find the general solution of the given differential equations.
1. y"-8y=0
2. y" -3y +2y=0
3. y'+4y' —y=0
4. 2y" -3y +4y=0
5. 4y" +4y" +y' =0
6. y"+5y" =0

7. y" +3y" —4y' —12y=0
Solve the given differential equations subject to the indicated initial conditions.
8. y"+2y" -5y’ -6y=0, y(0)=y'(0)=0,y"(0)=1
d*y

9. ~r=0.y0)=2 y'(0)=3,y"(0)=4,y"(0)=5
d4y
0.4~ Y= 0, y(0) =y’ (0) =y (0)=0,y" (0) =1
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17 Method of Undetermined Coefficients(Superposition Approach)

Recall

1. That a non-homogeneous linear differential equation of order n is an equation of the
form

n n-1
oy d y+---+a1ﬂ+aoy=g(x)

a N
"dx" " dx™? dx

The coefficients a,,a,,...,a,can be functions ofx. However, we will discuss
equations with constant coefficients.

2. That to obtain the general solution of a non-homogeneous linear differential equation
we must find:

o The complementary function Yo which is general solution of the associated

homogeneous differential equation.
o Any particular solution y 0 of the non-homogeneous differential equation.

3. That the general solution of the non-homogeneous linear differential equation is given
by
General solution = Complementary function + Particular Integral
Finding
Complementary function has been discussed in the previous lecture. In the next three

lectures we will discuss methods for finding a particular integral for the non-
homogeneous equation, namely

o The method of undetermined coefficients-superposition approach
o The method undetermined coefficients-annihilator operator approach.
o The method of variation of parameters.

The Method of Undetermined Coefficient

The method of undetermined coefficients developed here is limited to non-homogeneous
linear differential equations

o That have constant coefficients, and
o Where the function g(x) has a specific form.

17.1 The form of Input function g(x)

The input function g(x) can have one of the following forms:

A constant function k.

A polynomial function

An exponential function &

The trigonometric functions sin(f x), cos(f x)
Finite sums and products of these functions.

0O 00 0D
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Otherwise, we cannot apply the method of undetermined coefficients.

17.2 Solution Steps
Consist of performing the following steps.

Step 1
Step 2

Step 3
Step 4
Step 5
Step 6

Determine the form of the input function g(x) .

Assume the general form of ypaccording to the form of g(x)

Substitute in the given non-homogeneous differential equation.
Simplify and equate coefficients of like terms from both sides.
Solve the resulting equations to find the unknown coefficients.

Substitute the calculated values of coefficients in assumed y 0

17.2.1 Restriction on Input function g

The input function g is restricted to have one of the above stated forms because of the

reason:

o The derivatives of sums and products of polynomials, exponentials etc are again
sums and products of similar kind of functions.

o The expression aylo”+byp’+cyp has to be identically equal to the input

function g(x).

Therefore, to make an educated guess, y , is assured to have the same formas g .

Caution!

o In addition to the form of the input function g(x), the educated guess for y 0 must

take into consideration the functions that make up the complementary function Yo

o No function in the assumed yp must be a solution of the associated homogeneous

differential equation. This means that the assumed y , should not contain terms

that duplicate terms in Yo

Taking for granted that no function in the assumed y , is duplicated by a function in Yoo

some forms of g and the corresponding forms of y ; are given in the following table.
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17.3 Trial particular solutions

Number | The input function g(x) The assumed particular solution Y,
1 Any constante.g. 1 A

2 S5X+7 Ax+B

3 3x% -2 AxZ +Bx+¢

4 3 —x+1 Ax3 +Bx2 +Cx+ D

5 sin4x Acos 4x + Bsin 4x

6 cos4x Acos 4x + Bsin 4x

7 e5X AedX

8 (9x — 2)e°X (Ax + B)e>X

9 y 25X (Ax? 1+ Bx+C)e°X

10 e3X sin 4x Ae3X cosax + B e3X sin 4x

11 5x2 sin 4x (AXZ+le+C1)cos4x+(A2x2+Bzx+C2)sin4x
12 xe3X cos 4x (Ax + B)e3X cos4x + (Cx + D)eX sin4x

17.4 Input function g(x)as a sum
Suppose that

o The input function g(x)consists of a sum of m terms of the kind listed in the
above table i.e.

9(x) = g1(x)+ g2 (x)+ -+ g (x).
o The trial forms corresponding to gy(x), g2(x), ..., gm(X) beyp . Yp, - Yp, -
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Then the particular solution of the given non-homogeneous differential equation is

Yp=Yp, T ¥p, Tt Yp,

In other words, the form of y ,is a linear combination of all the linearly independent

functions generated by repeated differentiation of the input function g(x) .
Example 1 Solve y" + 4y’ —2y =2x* —-3x+6

Solution:

Complementary function: To find Yoo we first solve the associated homogeneous

equation y” +4y’ -2y =0
We put y = eMX. y' = meMX y" = mZemx

Then the associated homogeneous equation gives
(m? +4m—2)e™ =0
Therefore, the auxiliary equation is m?> +4m—-2=0 as e™ %0, Vx

Using the quadratic formula, roots of the auxiliary equation are m=-2+ J6

Thus we have real and distinct roots of the auxiliary equation
m =-2-6 and m,=-2+6 .

e—(2+J6)x (-2 +/6)x

Hence the complementary function is Yo =G +C,e
Next we find a particular solution of the non-homogeneous differential equation.
Particular Integral Since the input function g(x) = 2x% —3x+6

is a quadratic polynomial. Therefore, we assume that y, = Ax* +Bx+C

=y, =2Ax+B and y," =2A

=y," +4y,' —2y =2A+8Ax+4B-2Ax* - 2Bx-2C

Substituting in the given equation, we have

2A+8AX+4B —2Ax* —2Bx—-2C =2x* —3x+6

Or —2Ax* +(8A—2B)x+(2A+4B -2C) = 2x* —=3x+6

Equating the coefficients of the like powers of x, we have

-2A=2, B8A-2B=-3,2A+4B-2C=6

Solving this system of equations leads to the values

A=-1 B=-5/2, C=-9.Thusa particular solution of the given equation is
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5 . i
y, = —x? _EX —9.Hence, the general solution of the given non-homogeneous

differential equation is given by y = Yo+ ¥p

—(2+4/6)x (-2 ++/6)x

5
=>Yy=-X —Ex—9+c1e +Coe

Example 2 Solve the differential equation y” —y’ +y = 2sin 3x

Solution: Complementary function: To find Yoo We solve the associated homogeneous

2_mx

X X' y”:m e

differential equation y” —y’ +y =0 Put y = eM m

.Substitute in the given differential equation to obtain the auxiliary equation

1+i4/3
2

= y'=me

m?—-m+1=0=m=

Hence, the auxiliary equation has complex roots. Hence the complementary function is

y —ol/2)x clcos£x+czsin£x
c 2 2

Particular Integral Since successive differentiation of g(X) =sin3x produce

sin3x and cos3x.Therefore, we include both of these terms in the assumed particular
solution, see table

yIO = Acos3x+ Bsin3x. = y'IO = —3Asin 3x + 3B cos 3x. y’b =-9Acos3x —9Bsin 3x.

-y, =y, +y, = (-8A-3B)cos3x + (3A-8B)sin 3x.
Substituting in the given differential equation:
(-8A—-3B)cos3x + (3A—8B)sin3x = 0cos3x + 2sin 3x.
From the resulting equations —8A—-3B =0, 3A-8B =2
Solving these equations, we obtain A=6/73,B=-16/73

A particular solution of the equation is y 0= icos 3X —%sin 3X

73
Hence the general solution of the given non-homogeneous differential equation is
y= e/ 2)x C cos£x+c2 sinﬁx + 2 cos3x— Psinax
2 2 73 73

Example 3 Solve y” -2y’ -3y =4x -5+ 6xe**

Solution: Complementary function
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Tofindy_, we solve the associated homogeneous equation y" -2y’ —3y=0

2_mx

mX1 y”:m e

Puty =e™ = y' = me

Substitute in the given differential equation to obtain the auxiliary equation
2
m°-2m-3=0

L manm-3—0 "

Therefore, the auxiliary equation has real distinct root m; = -1, m, =3

Thus the complementary function is Yo = ce X4 c2e3x :

Particular integral
Since  g(x) = (4x—5) + 6xe2X = g,(x) + g, (X)

Corresponding to g, (x) :yp = Ax+B
1

Corresponding o g, (x), y =~ =(Cx+ D)e2X
2

The superposition principle suggests that we assume a particular solution

Yp :ypl +le2 =Y, :Ax+B+(Cx+D)e2X:> y'IO :A+2(CX+D)e2X+C

= y'é =4(Cx+ D) e2X + 4Ce2x .Substituting in the given:

oy 2y, ~3y, = 4Cxe®* +4De? +4Ce?* —2A-4Cxe>

| —4De?* —2Ce?* —3Ax — 3B —3Cxe?* —3De?¥

Simplifying and grouping like terms

yp! —2y, ~3y, =-3Ax—2A-3B -3Cxe? +(2C - 3D)e?* = 4x - 5+ 6xe’¥.

Substituting in the non-homogeneous differential equation, we have
—3Ax—2A-3B -3Cxe?* + (2C —3D)e?* = 4x -5+ 6xe?* + 062

Now equating constant terms and coefficients of x , xe?*and e2*, we obtain

—-2A-3B=-5,-3A =4, -3C =6,2C-3D=0

A=-4/3, B=23/9

Solving these algebraic equations, we find
C=-2, D =-4/3

Thus, a particular solution of the non-homogeneous equation is
Yp = —(4/3)x+(23/9) - 2 xe™ — (4/3)e*

e2x
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~.general solution: y =y, +y, =cje” X pce —(4/3)x+(23/9) — 2 x €2 - (4/3)e%*

17.5 Duplication between y, andy,

a If a function in the assumed y, is also present in y. then this function is a

solution of the associated homogeneous differential equation. In this case the
obvious assumption for the form of y , is not correct.

o In this case we suppose that the input function is made up of terms of nkinds i.e.
9(x) = 91(X) + g2 (X) +---+gn(x)
and corresponding to this input function the assumed particular solution ypis

Yp =Yp, *¥Yp, T+ ¥p,

o Ifa Yp. contain terms that duplicate terms in y., then that Yp. must be multiplied

with x", n being the least positive integer that eliminates the duplication.
Example 4 Find a particular solution of the following non-homogeneous differential
equation y” —5y/ + 4y =8e* '
Solution: To find y, we solve the associated homogeneous differential equation
y" =5y’ +4y=0

X

We puty =™ in the given equation, so that the auxiliary equation is

M2 —5m+4=0= m=14= Y =ce* +cre™

g =8 =y, = Ae*

Substituting in the given non-homogeneous differential equation, we obtain

AeX —5Ae* +4Ae* =8eX = 0 =8e*

Clearly we have made a wrong assumption for y ,, as we did not remove the duplication.

Since Ae* is present iny. Therefore, it is a solution of the associated homogeneous

differential equation y” -5y’ +4y =0
To avoid this we find a particular solution of the form y, = Axe*

We notice that there is no duplication between y. and this new assumption for y

Now yp/ = Axe* + Ae*, yp” = Axe* + 2Ae* .Substituting in the given differential

equation, we obtain Axe* +2Ae* —5Axe* —5Ae* + 4Axe* =8e*.
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or—3Ae* =8e* = A =-8/3.So that a particular solution of the given equation is given
by Yy, = —(8/3)e* Hence, the general solution of the given equation is

y=ce"+ce” —(8/3) x e

Example5  Determine the form of the particular solution

@) y// —8y/ + 25y = 5x3e X _7¢ X
(b) y" +4y = xcosx.
Solution:

(@ Tofind yc we solve the associated homogeneous differential equation
y" -8y’ +25y =0
Puty = eMX — the auxiliary equation is m2 —8M+25=0=>m=4+3i

Roots of the auxiliary equation are complex
. _ a4 :
. Yo =€ 7 (g cos3x +C2 sin 3x)

The input function is g(x) = 5x3e X _7e X = (5x3 —7)e_X

2

Therefore, we assume a particular solution of the form vy p= (Ax3 +Bx4 +Cx+D)e X

Notice that there is no duplication between the terms in y P and the terms inye.
Therefore, while proceeding further we can easily calculate the value A, B,C andD.

(b) Consider the associated homogeneous differential equation y” + 4y =0

Since g(x) = xcos x .Therefore, we assume a particular solution of the form

Yy, = (Ax+ B)cos x + (Cx + D)sin x .Again observe that there is no duplication of terms
between y¢ and yp

Example 6

Determine the form of a particular solution of y” —y’ + y =3x* —5sin 2x + 7xe*
Solution: To find y¢, we solve the associated homogeneous differential equation

y!! —y! 4y —0.Puty=e™ then the auxiliary equation is

b
m2 -m+l=0=m= 1_;@ = Ye =e(1/2)x(c1cos§x+02 sin?x}

* g(x) =3x" =5sin 2x+7xe™ = g,(X) + g, (X) + g,(X)
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Corresponding to g4 (x) =3x?; Yp, = Ax? + Bx+C
Corresponding to g, (x) =-5sin 2x: Yp, = Dcos 2X + E sin 2x
Corresponding to g,(x) = 7xe®* : Yp, = (Fx+G)e™

Hence, the assumption for the particular solution is y, = Yo, *Yp, T Yps

= Yp= AX? + Bx+C + D cos 2x + E sin 2x + (Fx + G )e®

No term in this assumption duplicate any term in the complementary function

Yo = c1e2X + c2e7x

Example 7
Find a particular solution of y” -2y’ +y=¢"
Solution: Consider the associated homogeneous equation y” —2y’ +y =0

m? —2m+1=(m-1)% =0
=m =11

Put y =e™ .Then the auxiliary equation is :

Roots of the auxiliary equation are real and equal. Therefore, y. = c;e* +coxe*

Since g(x) = e*.Therefore, we assume that y, = Ae*

This assumption fails because of duplication between y. and y . We multiply with x

Therefore, we now assume y, = Axe™ .However, the duplication is still there. Therefore,

we again multiply with x and assume y, = Ax2eX

Since there is no duplication, this is acceptable form of the trial y =%x2ex

1 :
+y =4x+10sin x,
Example 8 Solve the initial value problem: y Ty )
y(r) =0,y (7) =2
Solution Consider the associated homogeneous differential equation
y" +y=0.Put y=e™ Then the auxiliary equation is m? +1=0=>m = +1i

The roots of the auxiliary equation are complex. Therefore, the complementary function
ISy =C1 COSX +CpSin X

Since g(x) =4x+10sinx = g1(X)+ g2 (x)

Therefore, we assume that y, =Ax+B, 'y, =Ccosx+Dsinx
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So that yp = Ax+B+Ccosx+ Dsin X

Clearly, there is duplication of the functions cos xandsin x . To remove this duplication
we multiply Yp, with x . Therefore, we assume that

Yp = Ax+B+Cxcosx+ Dxsinx.

Yy, =—2Csin x—Cxcos x + 2D cos x — Dxsin x

So that yp”+yp = AXx+ B —2Csin x + 2Dx cos x

Substituting into the given non-homogeneous differential equation, we have
Ax + B —2Csin x+2Dx cos x = 4x +10sin x

Equating constant terms and coefficients of x,sin X, xcosx, we obtain
B=0, A=4, -2C =10, 2D =0

So that A=4B=0,C=-5 D=0

Thus Yy, =4X—5XCcos X

Hence the general solution of the differential equation is
y=Yc+Yp =CLCOSX+CpsiNX+4X-5XCOSX

We now apply the initial conditions to find c; andc,.

y(r)=0=cycosz+Cysinz+4r—-5rcosz =0

Since sinz =0,cos7 =-1

Therefore €L =97

Now y/ =-97sin X+ Cy COS X + 4+ 5xsin X —5c0s X

Therefore y’(;z) =2=-9zsinz+Cycosz+4+5zsinz—-5cosz =2
Co=T.

Hence the solution of the initial value problem is

y =97 C0S X+ 7sin X + 4X —5X COS X.
Example 9 Solve the differential equation y” — 6y/ +9y = 6x2 +2—12e%

Solution: The associated homogeneous differential equation is y” - 6y/ +9y =0.Put
y =e™ Then the auxiliary equation is m? —6m+9=0=>m =3, 3

Thus the complementary function is y, = c,e® +c,xe*
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Since  g(x) = (x% +2)—12e> = g, () + g (x)
We assume that

Corresponding to g4 (X) = X2 +2; Yp, = Ax? + Bx+C

Corresponding to g, (x) = —12e3*: Yo, = De3
Thus the assumed form of the particular solution is
Yp = Ax? + Bx +C + De>¥

3

The function e>*in Yp, is duplicated between y. andy. Multiplication withx does

not remove this duplication. However, if we multiply Yp, with x2, this duplication is
removed.
Thus the operative from of a particular solution is

Yp = Ax? + Bx + C + Dx%e3
Then Y = 2Ax+ B +2Dxe** +3Dx’e%
and yr =2A+2De* +6Dxe™ +9Dx’e™

Substituting into the given differential equation and collecting like term, we obtain
yp" ~6y," +y, =9Ax? + (-12A+9B)x+2A~ 6B + 9C + 2De>* =6x? +2-12e%
Equating constant terms and coefficients of X, x2 and e yields
2A-6B+9C=2, -12A+9B=0
9A =6, 2D =-12
Solving these equations, we have the values of the unknown coefficients
A=2/3B=8/9,C=2/3 and D=-6

Thus yp:§x2+gx+§—6x2e3x

3 x 2,2
3

Hence the general solution Y =Y¢ +Yp =C€ At sze?’

+§x+g—6x2e3x.
9 3

Higher —Order Equation

The method of undetermined coefficients can also be used for higher order equations of
the form

n n-1
d Y 1a d y+...+al%+a0y=g(x)
X

& dx" "t dx"™t
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with constant coefficients. The only requirement is that g(x) consists of the proper kinds
of functions as discussed earlier.

Example 10 Solve y” +y" =e* cosx

Solution:

To find the complementary function we solve the associated homogeneous differential
equation y"” +y” =0

Put y = emx’ y, _ memx’ yn _ m2€mx

3

Then the auxiliary equation is m~ + m? =0= m2(m +1)=0=>m=0,0,-1

The auxiliary equation has equal and distinct real roots. Therefore, the complementary
function is

Yo =Cp +CpX+Cge
Since g(x) =e*cosx
Therefore, we assume that
y, = Ae”* cosx + Be” sin x
Clearly, there is no duplication of terms between y; andy .

Substituting the derivatives of y, in the given differential equation and grouping the like
terms, we have

y," +y," =(-2A+4B)e* cosx + (—4A—2B)e” sin x = e COS .

Equating the coefficients, of e* cosx and e* sin x, yields
-2A+4B=1-4A-2B=0
Solving these equations, we obtain
A=-1/10,B=1/5
So that a particular solution is
Yp =C1+CoX+Cge " —(1/10)e” cos x+ (1/5)e” sin x
Hence the general solution of the given differential equation is

Yp =C1 +CoX+Cge” X —(1/10)e” cosx + (1/5)e” sin

Example 12 Determine the form of a particular solution of the DE y""" + y" =1—e~*

Solution Consider the associated homogeneous differential equation y"""" +y” =0
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The auxiliary equation is m*+m®=0=m=0,0,0,-1

Therefore, the complementary function is y. =¢; +Cox+ c3x2 +cqe”

Since g(x) =1-e ™ = g3 (X) + g2 (¥)

Corresponding to g; (x) =1: Yp,=A

X

Correspondingto g, (x) =—e": X

Yp, = Be
Therefore, the normal assumption for the particular solution is

yp=A+Be™™

Clearly there is duplication of

() The constant function between y. andy X

(i) The exponential function e * between y, and Yp,:

To remove this duplication, we multiply yplwith x3 and Yp, with x . This duplication

can’t be removed by multiplying with xand x2. Hence, the correct assumption for the

particular solution y yis y, = Ax3 + Bxe ™

17.6 Exercise
Solve the following differential equations using the undetermined coefficients.

1. %y”+y’+y:x2+2x

y/" —8y’ + 20y =100x? — 26xe*
y" +3y = —a8x%e3*

4y" —4y' -3y =cos2x

y" +4y = (x? —3)sin 2x

y" —5y' =2x® —4x? —x+6

7. y" -2y’ +2y =e"(cosx —3sinx)

© 0~ w DN

Solve the following initial value problems.

8y ray ray=(@r0e, y(0)=2y'(0)=5
d?x
t2

9. +o’x=F,cospt,  x(0)=0,x'(0)=0

10. y" +8y =2x-5+872, y(0)=-5, y/(0)=3,y"(0)=-4
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18 Undetermined Coefficient (Annihilator Operator
Approach)

Recall

1. That a non-homogeneous linear differential equation of order n is an equation of the
form

d n y d n—ly dy
a +8n——+--+a;—+agy=0(X
N AL 14 F20Y=9()
The following differential equation is called the associated homogeneous equation
n n-1
an d’y +an_1 "y +---+a1ﬂ+a0y:0
dx" dx" 1 dx

The coefficients a,,a,,...,a,can be functions ofx. However, we will discuss
equations with constant coefficients.

2. That to obtain the general solution of a non-homogeneous linear differential equation
we must find:

o The complementary function Yo which is general solution of the associated

homogeneous differential equation.
o Any particular solution y 0 of the non-homogeneous differential equation.

3. That the general solution of the non-homogeneous linear differential equation is given
by
General Solution = Complementary Function + Particular Integral

o Finding the complementary function has been completely discussed in an earlier
lecture

o In the previous lecture, we studied a method for finding particular integral of the
non-homogeneous equations. This was the method of undetermined coefficients
developed from the viewpoint of superposition principle.

o In the present lecture, we will learn to find particular integral of the non-
homogeneous equations by the same method utilizing the concept of differential
annihilator operators.

18.1 Differential Operators

o In calculus, the differential coefficient d /dx is often denoted by the capital letter

D. So that

dy _
dx

The symbol D is known as differential operator.
o This operator transforms a differentiable function into another function, e.g.

Dy
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D(e**) = 4e**, D(5x° —6x?) =15x2% —12x, D(cos2x) = —2sin 2x

o The differential operator D possesses the property of linearity. This means that if
f, g are two differentiable functions, then

D{af (x) + bg(x)} = aDf (x) + bDg (x)

Where a and b are constants. Because of this property, we say that D is a linear
differential operator.

o Higher order derivatives can be expressed in terms of the operator D in a natural

manner:
d?y d (dy )
—=—/|—=|=D(Dy)=D
d?x d (dXJ (By) Y

Similarly
3 n
d—g_Dsy, .,d—:D”y
dx d"x

o The following polynomial expression of degree n involving the operator D
a,D"+a, (D" t+...+aD+ag
is also a linear differential operator.
For example, the following expressions are all linear differential operators
D+3, D2+3D-4, 5D%—6D? +4D
18.2 Differential Equation in Terms of D

Any linear differential equation can be expressed in terms of the notation D . Consider a
2" order equation with constant coefficients

ay” +by’ +cy=g(x)

2
Since ay = Dy,d—y
dx d)(2

Therefore the equation can be written as
aD2y+bDy+cy =g(x)

or (aD® +bD +¢)y = g(X)

Now, we define another differential operator L as

L=aD?+bD+c
Then the equation can be compactly written as

L(y) =9(x)
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The operator L is a second-order linear differential operator with constant coefficients.

Example 1 Consider the differential equation y” +y’ +2y =5x-3

2
Since ﬂsz'd y=D2y

dx dX2
Therefore, the equation can be written as
(D? +D+2)y =5x-3
Now, we define the operator L as
L=D%2+D+2
Then the given differential can be compactly written as
L(y)=5x-3
Factorization of a differential operator

o An nth-order linear differential operator

L=a,D"+a, ;D" 1+ +aD+ag

with constant coefficients can be factorized, whenever the characteristics
polynomial equation

L=a,m"+a, ym" 1+ +a;m+ag

can be factorized.
o The factors of a linear differential operator with constant coefficients commute.

Example 2
@) Consider the following 2™ order linear differential operator

D?+5D+6
If we treat D as an algebraic quantity, then the operator can be factorized as

D? +5D +6 = (D +2)(D +3)

(b) To illustrate the commutative property of the factors, we consider a twice-
differentiable function y = f (x). Then we can write

(D% +5D +6)y =(D+2)(D+3)y =(D+3)(D+2)y
To verify thiswe let w=(D+3)y=y'+3y
Then (D+2)w =Dw+2w = (D+2)w =(y" +3y)+ @y’ +6y)

= (D+2)w= y// +5y/+6y = (D+2)(D+3)y= y” +5y/+6y
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Similarly if we let

w=(D+2)y=(y +2y)

Then (D+3)w= Dw+3w:(y// +2y/)+(3y/ +6Y)
or (D+3)w= y” +5y/+6y
or (D+3)(D+2)y= y” +5y/+6y

Therefore, we can write from the two expressions that
(D+3)(D+2)y=(D+2)(D+3)y

Hence (D+3)(D+2)y=(D+2)(D+3)y
Example 3
(@) The operator D? —1 can be factorized as
p?2-1= (D+1)(D-1).
or D2-1 = (D-1)(D+1)
(b) The operator D2 + D +2 does not factor with real numbers.
Example 4 The differential equation y”"+4y'+4y =0
can be written as (D? +4D +4)y =0 = (D+2)(D+2)y =0 = (D+2)y=0.

18.3 Annihilator Operator
Suppose that

o L isalinear differential operator with constant coefficients.
oy = f(x) defines a sufficiently differentiable function.
o The function f is such that L(y)=0

Then the differential operator L is said to be an annihilator operator of the function f.
Example 5

Since Dx=0, D?x=0, D3x*=0, D*x3 =0, ...

Therefore, the differential operators D, D2, D3, D4, ...

are annihilator operators of the following functio k(a constant), X, x2, X3, ..

In general, the differential operator D" annihilates each of the functions

1x,x2,... x"1
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Hence, we conclude that the polynomial function cq +cix+---+ cn_lx”_l

can be annihilated by finding an operator that annihilates the highest power of x.
Example 6 Find a differential operator that annihilates the polynomial function
y =1-5x% +8x°.

Solution Since D*x® =0, = D%y = D4(1—5x2 +8x3): 0.

Hence, D* is the differential operator that annihilates the function y.

Note that the functions that are annihilated by an nth-order linear differential operator L
are simply those functions that can be obtained from the general solution of the
homogeneous differential equation

L(y) =0.
Example 7 Consider the homogeneous linear differential equation of order n
(D -a)"y = 0.The auxiliary equation of the differential equation is (m-«)" =0
= m=a,a,...,a (n times)

Therefore, the auxiliary equation has a real root « of multiplicityn. So that the
differential equation has the following linearly independent solutions:

a X a X X2eax

e X xe®* oxlgax

Therefore, the general solution of the differential equation is

ax ax N n-1_oax
y=Ce™ +Cy,Xe"™" +C3X"e"" +---+CpX e

So that the differential operator (D — )"

aX,XZeaX’.“ n—leax

annihilates each of the functions e“ X, xe , X

Hence, as a consequence of the fact that the differentiation can be performed term by
term, the differential operator (D —a)"

2 n-1_ax

annihilates the function y = c,e®™ +c,xe®™ +cyxe® +---+c,x" e

Example 8

Find an annihilator operator for the functions:(a) f (x) = e>, (b) g(x) = 4e?* — 6xe>
Solution

(a) Since (D—5)e™ =56 —5e°% =0,

Therefore, the annihilator operator of function f isgivenbyL=D-5
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We notice that in this casea =5, n=1.

(b) Similarly

(D- 2)2(4e2X —6xe2X)= (D? — 4D + 4)(4e%*) — (D? - 4D + 4)(6xe>¥)
or  (D-2)(4e?* —6xe? )= 3262 3262 + 48xe? - 48xe? + 2467 — 246%"
or (D—2)2(4e2X —6xe2x):0

Therefore, the annihilator operator of the function gis givenbyL = (D - 2)2

We notice that in thiscase ¢ =2 =n.

: : : : 2 2 2N
Example 9 Consider the differential equation (D —2aD + (a + [ )) y=0

n
The auxiliary equation is (m2 —20m + (a2 +ﬁ2)) —0=>m? —2am+(a2 +ﬂ2): 0

Therefore, when «, g are real numbers, we have from the quadratic formula

2 2 2
20+ -
= o \/405 4(05 + [ )
2
Therefore, the auxiliary equation has the following two complex roots of multiplicity n.

=atif

m1:a+iﬂ, mo :a—i,B

Thus, the general solution of the differential equation is a linear combination of the
following linearly independent solutions

e?X cos Bx, Xe®X cos BX, x2e®* cos X, -, X" e cos Bx
e?Xsin Bx, xe®*sin Bx, x%e%*sin Bx, ---, X" e sin Bx
Hence, the differential operator
(D2 — 20D +(a2 +/32)) 4
is the annihilator operator of the functions
e?X cos Bx, xe®* cos BX, x2e%¥ cos Bx, ---, X" e?X cos Bx
e?Xsin Bx, xe®*sin Bx, x2e%*sin Bx, ---, X" e sin Bx
Example 10 Ifwe take a=-1, =2, n=1

Then the differential operator (D2 —2aD + (a2 + ,82)) N hecomes D? +2D +5.

Also, it can be verified that (D2 +2D+ 5)e_X cos2x =0.

© Copyright Virtual University of Pakistan 150



Differential Equations (MTH401)

VU

Therefore, the linear differential operator D?+2D+5

- _ y1(x)=e cos 2x
annihilates the functions
yo(x)=e"*sin2x
Now, consider the differential equation
(0% +2D+5)y =0

m2+2m+5=0
=>m=-1+2i

The auxiliary equation is

—X
X)=e " cos2X
Therefore, the functions yl( )

yo(x)=e"sin2x

are the two linearly independent solutions of the differential equation

(D2+2D+5)y=0,

Therefore, the operator also annihilates a linear combination of y; and y,, e.g.

5y; —9y, =5e" % cos 2x —9e ¥ sin 2x.
Example 11 Ifwetake ¢ =0, f =1, n=2
Then the differential operator (D2 —2aD + (a2 + ,82)) n
Becomes (D2 +1)2 =D*+2D% +1
Also, it can be verified that
(D4+2D2+ﬂamx=o
(D% +2D2 +1)sinx =0
and
(D4 +2D? +1)xcosx =0
b4+2D?H}gnx=o
Therefore, the linear differential operator
D*+2D? +1
annihilates the functions

COS X, sin X
XCOS X, XSinX
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Example 12 Takinga =0, n =1, the operator (D2 —2aD + (a2 + ,82)) N becomes
D? + g2
Since (D2+/)’2)COSﬁx=—,BZCOS,8X+,82 cosfx=0
(D2 +ﬁ2)sinﬁx:—ﬂzsinﬂx+ﬂ23inﬂx:0
Therefore, the differential operator annihilates the functions
f(x)=cosfx, g(x)=sinpgx

Note that
o If alinear differential operator with constant coefficients is such that

L(y1)=0, L(y,)=0

i.e. the operator L annihilates the functions yjand y,. Then the operator L
annihilates their linear combination.

L[e1ya (x)+ c2y2(x)]=0.
This result follows from the linearity property of the differential operator L .

o Suppose that Lyand L, are linear operators with constant coefficients such that
Li(y1)=0, La(yz)=0

and Li(y2)#0, La(yp)=0

then the product of these differential operators L;L, annihilates the linear sum
y1(%)+y2(x)

So that LiLa[y1(x)+y2(x)]=0

To demonstrate this fact we use the linearity property for writing

LiLo(ys +Y2)=LiLo(yr )+ LiLa(y?)

Since L1L2 = |_2 L]_
therefore LiLo(y1+Y2)=LoLy(ys)+ LiLa(yz)
or LiLo(y1 +Y2)= Lol (Y1 + Lo (¥2)]

Butwe know that ~ Ly(y;)=0, Ly(y,)=0
Therefore LiLy(yy + Yo )=Ly[0]+ L4[0]=0
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Example 13 Find a differential operator that annihilates the function
f(X)=7—x+6sin3x

Solution Suppose that y;(X) =7—X, Y5 (x) =6sin3x

D2y, (x) =D?(7-x) =0
(D? +9)y,(X) = (02 +9)sin3x =0

Therefore, D2(D2 +9) annihilates the function f(x).
Example 14 Find a differential operator that annihilates the function
f (x) =e~3X 4 xe*

3X

Solution Suppose that y;(X)=€7%%, y,(x)=xe*

(D+3)y; = (D+3)e™> =0,
=
(D-1)?y, = (D-1xe* =0.

Therefore, the product of two operators (D + 3D —1)2

annihilates the given function f(x) =e™>X + xe*

Note that
o The differential operator that annihilates a function is not unique. For example,
(D-5)e°* =0,

(D-5)(D+1)e>* =0,

(D-5)D%e>* =0
Therefore, there are 3 annihilator operators of the functions, namely
(D-5), (D-5)(D+1), (D-5)D?

o When we seek a differential annihilator for a function, we want the operator of
lowest possible order that does the job.

18.4 Exercise

Write the given differential equation in the form L(y)= g(x),where Lis a differential
operator with constant coefficients.

1. d—y+5y:95inx
dx

2. 4ﬂ+8y=x+3
dx
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3 2
3. 9 4% g4y
dx3  dx? X
3 2
4. d_;/_zd_2y+73_y_6y =1-sinx
dx dx X

Factor the given differentiable operator, if possible.

9D?% -4

D?-5

D3 +2D? -13D +10
D% -8D? +16

© N o U

Verify that the given differential operator annihilates the indicated functions

9. 2D-1; y=4e¥?
10. D* + 64; y = 2¢c0s8x-5sin8x

Find a differential operator that annihilates the given function.

11. x+ 3xe’*
12. 1+sinx
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19 Undetermined Coefficients(Annihilator Operator
Approach)

The method of undetermined coefficients that utilizes the concept of annihilator operator
approach is also limited to non-homogeneous linear differential equations

o That have constant coefficients, and
o Where the function g(x) has a specific form.

The form of g(x) :The input function g(x) has to have one of the following forms:

A constant functionk .
A polynomial function

An exponential function eX
The trigonometric functions sin(f x), cos(f x)
a Finite sums and products of these functions.

0Oo0 OO

Otherwise, we cannot apply the method of undetermined coefficients.
19.1 Solution Method

Consider the following non-homogeneous linear differential equation with constant
coefficients of order n

d"y d"ty dy
+a +eota,—+a,y =g(x
n an n-1 dxn_l 1 dX Oy g( )

If L denotes the following differential operator

a

L=a,D"+a, ;D" 1+ +aD+ag
Then the non-homogeneous linear differential equation of order n can be written as
L(y) = 9(x)

The function g(x)should consist of finite sums and products of the proper kind of
functions as already explained.

The method of undetermined coefficients, annihilator operator approach, for finding a
particular integral of the non-homogeneous equation consists of the following steps:

Step 1 Write the given non-homogeneous linear differential equation in the form
L(y) = g(x)
Step 2 Find the complementary solution Y, by finding the general solution of the
associated homogeneous differential equation:
L(y)=0

Step 3 Operate on both sides of the non-homogeneous equation with a differential
operator L, that annihilates the function g(x).
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Step 4 Find the general solution of the higher-order homogeneous differential equation
LiL(y) =0
Step 5 Delete all those terms from the solution in step 4 that are duplicated in the
complementary solutiony,, found in step 2.

Step 6 Form a linear combination Y, of the terms that remain. This is the form of a
particular solution of the non-homogeneous differential equation

L(y)=9(x)
Step 7 Substitute Y, found in step 6 into the given non-homogeneous linear differential
equation
L(y) = 9(x)

Match coefficients of various functions on each side of the equality and solve the
resulting system of equations for the unknown coefficients iny, .

Step 8 With the particular integral found in step 7, form the general solution of the given
differential equationas: Y = Y. + Y,
2
Example 1 Solve d—¥+ 3d—y+ 2y = 4x>.
dx dx

Solution:

& _py 9 b2,

Step 1 Since
P dx dx?

Therefore, the given differential equation can be written as
(D2+3D+2 Jy=ax2
Step 2 To find the complementary function y., we consider the associated homogeneous
differential equation
(D2 +3D+2)y:0
The auxiliary equation is
m?+3m+2=(m+21)(m+2)=0
= m =-1-2
Therefore, the auxiliary equation has two distinct real roots.
m=-1,m,=-2,

Thus, the complementary function is given by y. =cje”™ X +cpe” 2%
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Step 3 In this case the input function is

g(x) = 4x°
Further D3g(x) =4D3%%% =0
Therefore, the differential operator D3annihilates the function g . Operating on both
sides of the equation in step 1, we have

D3(D? +3D +2)y = 4D3x?

D3(D? +3D+2)y=0
This is the homogeneous equation of order 5. Next we solve this higher order equation.
Step 4 The auxiliary equation of the differential equation in step 3 is

mé(m? +3m+2)=0
m3m+L)(m+2)=0
m=0,0,0,—-1,—2

Thus its general solution of the differential equation must be

Y =0Cy +CpX +Cax2 + g8 X + 52X
Step 5 The following terms constitute y.

cse ™ +cge X
Therefore, we remove these terms and the remaining terms are
2
Cp +CoX+C3X

Step 6 This means that the basic structure of the particular solution y , is

yp = A+ Bx+Cx2,

Where the constantsc,,c, and c, have been replaced, with A, B, and C, respectively.

Step 7 Since Yp =A+ BX + Cx?
y, = B+2Cx,
y; =2C
Therefore Yp +3yp +2yp =2C +3B+6Cx+2A+2Bx + 2Cx?
or Yp +3Yp +2yp = (2C)x2 +(2B+6C)x+(2A+3B+2C)
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Substituting into the given differential equation, we have

(2C)x? + (2B +6C)X + (2A+ 3B + 2C) = 4x% + 0x + 0

Equating the coefficients of x2,x and the constant terms, we have

2C = 4
2B + 6C =0
2A+3B+2C =0

Solving these equations, we obtain
A=7, B=-6, C=2

Hence Yp =7 6%+ 2x°

Step 8 The general solution of the given non-homogeneous differential equation is
Y=Yc+Yp

y=cre X +cre X +7-6x+2x°

2
%Y 3O _ geox

Example 2 Solve —— +4sin X
dx2  dx
Solution:
- dy d’y 2
Step 1 Since — =Dy, —-=D"y
dx dx2

Therefore, the given differential equation can be written as

(D2 —3D)y =8¢ + 4sin x

Step 2 We first consider the associated homogeneous differential equation to find y,
The auxiliary equation is
mm-3)=0=m=0,3
Thus the auxiliary equation has real and distinct roots. So that we have
Ye=C1+ c2e3x
Step 3 In this case the input function is given by

g(x) =8e3* + 4sin x

Since (D-3)8e%*) =0, (D? +1)(4sinx) =0
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Therefore, the operators D—3 and D? +1 annihilate 8e3X and4sin x, respectively. So
the operator (D —3)(D2 +1) annihilates the input function g(x). This means that
(D-3)(D? +1)g(x) = (D —3)(D? +1)(8e>* +sinx) =0
We apply (D —3)(D? +1) to both sides of the differential equation in step 1 to obtain
(D-3)(D? +1)(D? -3D)y =0.
This is homogeneous differential equation of order 5.
Step 4 The auxiliary equation of the higher order equation found in step 3 is
(m=3)(m? +1)(m* -3m) =0
m(m-3)°(m*+1) =0
=m=0, 3, 3, £i

Thus, the general solution of the differential equation

3

y =cq +¢e3% +caxe®

X 4+ ¢4 COS X + C5 Sin X
Step 5 First two terms in this solution are already present in y.
¢y +cre
Therefore, we eliminate these terms. The remaining terms are
caxe + ¢4 cos X + Cs sin X
Step 6 Therefore, the basic structure of the particular solution y, must be

Yp = Axe®* + Bcos x + Csin

The constants c3 csand cshave been replaced with the constants A,BandC,
respectively.

Step 7 Since Yp = Axe® + Bcosx + Csin
Therefore yp—3Yp = 3Ae3X 4+ (-B-3C)cosx+(3B—C)sinx
Substituting into the given differential equation, we have

3Ae® +(-B-3C)cosx+ (3B —C)sin x =83 +4sinx.
Equating coefficients of e3X, cosx andsin x , we obtain

3A=8, -B-3C=0,3B-C=4

Solving these equations we obtain
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A=8/3, B=6/5 C=-2/5
8 3 6 7
yp:—xe +—COSX——SINnX.
3 5 5

Step 8 The general solution of the differential equation is then

3x ,8,.3x, 6 2.
= (0515 —Xe —COSX—=SInX.
Y =0+ Coe™ +2Xe™ +£COSX—£SiNX
Example 3
2
Solve d—¥+8y:5x+2e_x .
dx
Solution

Step 1 The given differential equation can be written as

(D? +8)y =5x +2e X

Step 2 The associated homogeneous differential equation is
(D2 +8)y=0

Roots of the auxiliary equation are complex

m:J_rZ\/Ei

Therefore, the complementary function is
Yo = C1 €0S2+/2 X +Cy SiN24/2 X
Step 3 Since D?x=0, (D+L)e X =0
Therefore the operators D2 and D +1lannihilate the functions 5x and2e™. We apply
D?(D +1) to the non-homogeneous differential equation
D?(D +1)(D? +8)y =0.

This is a homogeneous differential equation of order 5.

Step 4 The auxiliary equation of this differential equation is
m2(m +1)(m2 +8)=0
—=m=0,0,-1,+22i

Therefore, the general solution of this equation must be

Y = €1 COS 24/2X+Cy SiN 22X +C3 +C4 X +C5e %
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Step 5 Since the following terms are already present in y.
C, €05 2+/2x +C, 5in 24/2x
Thus we remove these terms. The remaining ones are

C3 +CgX+Cge

Step 6 The basic form of the particular solution of the equation is

X

yp =A+Bx+Ce

The constants c3,c4and cghave been replaced with A, BandC .

X

Step 7 Since Yp =A+Bx+Ce”

Therefore yp +8yp =8A+8Bx+9Ce ™™

Substituting in the given differential equation, we have
8A+8Bx+9Ce X =5x+2e~*

Equating coefficients of x, e *and the constant terms, we have
A=0,B=5/8, C=2/9

Thus Yp :§x+§e_x

Step 8 Hence, the general solution of the given differential equation is

Y=Yc*V¥p
. S, 2 _x
or y:c1c052ﬁx+c23|n2J§x+§x+§e .
d2y
Example 4 Solve —— Y = XCOSX—COSX
dx

Solution:

Step 1 The given differential equation can be written as

(D2 +1)y = XCO0S X — COS X

Step 2 Consider the associated differential equation
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(D2 +1)y=0
The auxiliary equation is

m?+1=0 =>m=x+i

Therefore Y. =C, COSX+C, Sin X
Step 3 Since (D? +1)*(xcosx) =0
(D*+1)%cosx=0 ; - x=0

Therefore, the operator (D? +1)?annihilates the input function
X COS X — COS X

Thus operating on both sides of the non-homogeneous equation with (D? +1)*, we have
(D*+1)*(D*+1)y=0

or (D*+1)°y=0

This is a homogeneous equation of order 6.

Step 4 The auxiliary equation of this higher order differential equation is
m?+)3 =0=m=i,i,i,—i,—i,—i

Therefore, the auxiliary equation has complex rootsi, and — I both of multiplicity 3. We
conclude that

Y = C, COS X + C, SiN X + C;X COS X + C,XSiN X + C,X* COS X + C4 X Sin X
Step 5 Since first two terms in the above solution are already present in y,

C, COS X +C, Sin X

Therefore, we remove these terms.
Step 6 The basic form of the particular solution is

Yp = AXcos X+ Bxsin X + Cx2 cos X + Ex sin x

Step 7 Since Yp = AXCOSX + BXsin X + Cx? cos X + Ex? sin x
Therefore

Yo +Yp =4Excosx—4Cxsin x+ (2B +2C)cosx + (—2A+ 2E)sin x

Substituting in the given differential equation, we obtain
4EXcos X —4Cxsin x + (2B + 2C) cos x + (—2A + 2E) sin X = X €0S X — COS X

Equating coefficients of xcosx, xsin x,cosx and sin X, we obtain
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4E = 1 -4C =0

2B+2C=-1 -2A+2E=0
Solving these equations we obtain

A=1/4, B=-1/2,C=0, E=1/4

2

1 1 . 1 .
Thus Yp = XCOSX——XSinX+—Xxsinx
2 4

4
Step 8 Hence the general solution of the differential equation is

1 1 . 1,
y:C1COSX+02 SlnX+ZXCOSX—EXSInX+ZX

Example 5 Determine the form of a particular solution for

d?y _,dy
dx2 dX

Solution

+y =10e"? cos

Step 1 The given differential equation can be written as
(D% —2D +1)y =10e %X cos X

Step 2 To find the complementary function, we consider
y'=2y'+y=0

The auxiliary equation is
m? -2m+1=0= (m—l)2 =0=>m=11

The complementary function for the given equation is

ye =c1e” +coxe*

Step 3 Since (D2 +4D +5)e X cosx =0

Applying the operator (D*+4D +5) to both sides of the equation, we have

(D* +4D +5)(D*-2D+1)y =0
This is homogeneous differential equation of order 4.
Step 4 The auxiliary equation is
(M2 +4m+5)(m? —2m+1) =0
= m=-2+i,11
Therefore, general solution of the 4™ order homogeneous equation is

y =ce% +coxeX +cge X cos X+ 462X sin X

sin X.
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Step 5 Since the terms c,e” +c,xe* are already present in y, therefore, we remove these

and the remaining terms are c3e_2X COS X + c4e_2X sin x

Step 6 Therefore, the form of the particular solution of the non-homogeneous equation is
Yp = Ae~?* cos x + Be X sin x

Note that the steps 7 and 8 are not needed, as we don’t have to solve the given
differential equation.

Example 6 Determine the form of a particular solution for
%—4%+43—i =5x° —6x + 4x2e?X + 3%,
Solution:
Step 1 The given differential can be rewritten as
(D% -4D2 +4D )y = 5x2 —6x+ 4x2e2* + 35
Step 2 To find the complementary function, we consider the equation
(D3 —4D? +4D)y =0
The auxiliary equation is
m3 —4m? +4m=0
m(m® —4m+4)=0
mm-2)2=0=>m=0,2,2
Thus the complementary function is
2X

Yo =C1 +Cpe2X +c3xe
Step 3 Since g(x) = 5x% — 6 + 4x2e?X + 36>
Further D*(5x* —6x)=0

(D-2)°x%* =0

(D-5)e> =0

Therefore the following operator must annihilate the input function g(x) . Therefore,

applying the operator D*(D —2)*(D —5) to both sides of the non-homogeneous
equation, we have

D*(D-2)*(D-5)(D* - D’ +4D)y =0
or D*(D-2)°(D-5)y=0
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This is homogeneous differential equation of order 10.
Step 4 The auxiliary equation for the 10 order differential equation is

m*(m-2)°(m-5)=0
=m=0,0,0,0,22,22,25
Hence the general solution of the 10" order equation is

2

Y =Gy +CpX +CgX2 +CyX° +C5e?X + coxe?

2.2 3,2 4.2

X1 cox“e™ +cgx’e +coxe 5X

ENVTY:
Step 5 Since the following terms constitute the complementary function y., we remove

these ¢y +cse?X +cgxe?X

Thus the remaining terms are

2X 3.2X

02X+C3X2 +C4X3+C7X2€‘ +CgX"€ +C9X492

X + C]_Oesx

Hence, the form of the particular solution of the given equation is

2e2x 392X+GX492X+H€‘5X

+ FX \

Yp =AX+ Bx2 +Cx3 + EX

19.2 Exercise

Solve the given differential equation by the undetermined coefficients.
2y"—-T7y'+5y =-29

y"+3y'=4x-5

y"+2y' +2y =5e>

y"+4y =4cosx+3sinx—8

=

y'+2y' +y=x’e"*

y"+y=4cosx—sinx

y'—y'+y —y=xe"—-e " +7

y"+y=8cos2x—4sinx, y(z/2)=-1, y'(12)=0
Cy"=2y"+y' =xe* +5, y(0)=2, y'(0)=2, y"(0)=-1
10. y¥ —y"=x+e", y(0)=0, y'(0)=0, y"(0)=0, y"(0)=0

© o N ook wd
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20 Variation of Parameters

Recall

o That a non-homogeneous linear differential equation with constant coefficients is
an equation of the form

n n-1
d y+an_1d y+---+a1dy
dxn—l d

X
o The general solution of such an equation is given by

+agy =9(x)

General Solution = Complementary Function + Particular Integral

o Finding the complementary function has already been completely discussed.

o In the last two lectures, we learnt how to find the particular integral of the non-
homogeneous equations by using the undetermined coefficients.

o That the general solution of a linear first order differential equation of the form

&Py = £(x)

is given by y= eI PUX. .feI Pdx ¢ (x)dx+c1e_I Pdx

Note that
o Inthis last equation, the 2" term

Yo = Cle—dex

is solution of the associated homogeneous equation:
dy
—+P(x)y=0
o HPy
a Similarly, the 1% term

is a particular solution of the first order non-homogeneous linear differential
equation.

o Therefore, the solution of the first order linear differential equation can be written
in the form

y=Yc+Yp

In this lecture, we will use the variation of parameters to find the particular integral of the
non-homogeneous equation.

The Variation of Parameters
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20.1 First order equation

The particular solution 'y, of the first order linear differential equation is given by

Yp = e de.jej de.f(x)dx

This formula can also be derived by another method, known as the variation of
parameters. The basic procedure is same as discussed in the lecture on construction of a
second solution

Since Y1 = e_I P

is the solution of the homogeneous differential equation
dy
—+P(x)y =0,
o POy

and the equation is linear. Therefore, the general solution of the equation is
y= Clyl(x)

The variation of parameters consists of finding a function u,(x) such that
Yp =t (X) y2(X)

is a particular solution of the non-homogeneous differential equation

Vip(y=f(x)

Notice that the parameter c; has been replaced by the variable u,. We substitute Yp in

the given equation to obtain

d du
v B+ (0 [+ 10 G = 10

Since y, is a solution of the non-homogeneous differential equation. Therefore we must
have

dx
So that we obtain
du,
—==f(x
Y1 dx ( )
This is a variable separable equation. By separating the variables, we have
f(x
dulzﬁdx
i (x)
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Integrating the last expression w.r.to X , we obtain

u, (x) :Jde :jeIpdx - (x)dx

1

Therefore, the particular solution y , of the given first-order differential equation is .

y:ul(x)yl
or Yp =e_IPdX.J.edeX.f(x)dx
f(x)
- | 2y
. Jyl(X) '

20.2 Second Order Equation

Consider the 2" order linear non-homogeneous differential equation
a,(x)y" +a,(x)y" +a,(x)y = g(x)

By dividing with a, (x), we can write this equation in the standard form
y"+P(x)y +Q(x)y = f(x)

The functions P(x), Q(x) and f(x) are continuous on some interval I . For the
complementary function we consider the associated homogeneous differential equation

y"+P(x)y’+Q(x)y =0
Complementary function

Suppose that y, andy, are two linearly independent solutions of the homogeneous

equation. Then Y, andy, form a fundamental set of solutions of the homogeneous
equation on the interval I . Thus the complementary function is

Ve = &y1(x)+ 2y (x)

Since y, and y, are solutions of the homogeneous equation. Therefore, we have
yi+P(x)y1 +Q(x)y, =0
Y3 +P(x)y2 +Q(x)y2 =0

Particular Integral

For finding a particular solutiony , we replace the parameters cjand c,in the

p)
complementary function with the unknown variables u;(x) andu,(x). So that the
assumed particular integral is
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Yp =y (%) y2 (%) +U; (x) ¥z (%)

Since we seek to determine two unknown functions u;andu,, we need two equations
involving these unknowns. One of these two equations results from substituting the
assumed 'y, in the given differential equation. We impose the other equation to simplify

the first derivative and thereby the 2" derivative of Yp-
Yp =U1Y1 + ViU +UpY +U3Yp =Uryg +UpYp + U1y +UzYo
To avoid 2" derivatives of U, andu, , we impose the condition
Uiy, +Uzy, =0
Then Yy = Uyy; +UpY}
So that
Yp =U1y1] +U1y1 +UzY3 +U3Y)
Therefore
Yp+Pyp+Qyp= Uyl +uiyr  + Uy; + Uz,
+Pupy; + Pupy; + Quyyp + Quayy

Substituting in the given non-homogeneous differential equation yields
Upy1 +Ury1 +UpY2 +UzYs + Pupys + Pupys +Quy Yy +Quy Yy, = f(X)

or ULy, +Py; +Qyil+u,[y; + Py, +Qy, 1+uy; +uyy; = f(X)

Now making use of the relations
y; +P (x)y; +Q(x)y, =0
Y3 +P(x)y2 +Q(x)y, =0
we obtain
ugy; +uzy) = f(x)
Hence u;and u, must be functions that satisfy the equations
Ujy; +uzyz =0
uyr  + upy; = f(x)

By using the Cramer’s rule, the solution of this set of equations is given by
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' Wl ’ WZ
Ul =, U2 - —

w w
WhereW , W, and W, denote the following determinants

Yi. ¥

Yi Yo

W = ,

= , W: ,
F(x) va| 2 i (%)

The determinant W can be identified as the Wronskian of the solutions y, and y, . Since
the solutions y, and y, are linearly independent on | . Therefore

W (y,(x),y,(x)#0, ¥ xel.

Now integrating the expressions for u; andu;, we obtain the values of u,andu,, hence
the particular solution of the non-homogeneous linear differential equation.

20.3 Summary of the Method
To solve the 2" order non-homogeneous linear differential equation

_‘0 Y2 i 0

a,y"+ay +ayy = g(x)

using the variation of parameters, we need to perform the following steps:

Step 1 We find the complementary function by solving the associated homogeneous
differential equation

apy"+ay’ +agy =0
Step 2 If the complementary function of the equation is given by
Yo =CYy1tCoY2

then y, and vy, are two linearly independent solutions of the homogeneous differential
equation. Then compute the Wronskian of these solutions.

Yyi. Yo
yi Y2

W =

Step 3 By dividing witha,, we transform the given non-homogeneous equation into the
standard form

y"+P(x)y’+Q(x)y = f(x)
and we identify the function f(x).

Step 4 We now construct the determinants W; and W, given by

Y1 0
y1 (%)

:‘ 0 Y,
SR IR

» Wo
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Step 5 Next we determine the derivatives of the unknown variables u; and u, through
the relations

ur_ ul_WZ
1_W1 2_W

Step 6 Integrate the derivativesu, and u; to find the unknown variables u, andu,. So

that
ul:J%dx, UZ:J%dx
W W

Step 7 Write a particular solution of the given non-homogeneous equation as
Yp =U1Yys +Uzy>

Step 8 The general solution of the differential equation is then given by
Y=YetYp =Gy +C2y2+ Uy +U2Y2.

20.3.1 Constants of Integration

We don’t need to introduce the constants of integration, when computing the indefinite
integrals in step 6 to find the unknown functions of u, and u,. For, if we do introduce

these constants, then
Yo = (ul + a1)y1 + (uz + b1)y2

So that the general solution of the given non-homogeneous differential equation is
Y=Y +Y, =CY, +C,Y, +(u +a )y, +(u, +b,)y,

or y=(cr+ay)yp+(c2+by)ya +uys +Uzys

If we replace ¢; +a with Cyand ¢, + by withC,, we obtain

y=C1y1 +Coys +Ugy; +UpYy>

This does not provide anything new and is similar to the general solution found in step 8,
namely

y=0GYy, +GY, +uYy, +u,y,

Example 1
Solve y' =4y +4y =(x+1)e™

Solution:

Step 1 To find the complementary function
y'—4y'+4y =0
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Put y=eM™ y' =me™ y"=m?%

mx
Then the auxiliary equation is
m? —4m+4=0
(m-2)=0=>m=2,2

Repeated real roots of the auxiliary equation

2X 2X
y.=ce” + c,xe

Step 2 By the inspection of the complementary function y., we make the identification

y; =e?X and y, = xe?¥
Therefore W(y,,y,)=W(e> xe>)= e” xe™ =e* %0, VX
v ’ 2e¥  2xe® +e* '
Step 3 The given differential equation is
y" -4y’ +4y = (x+1)e¥
Since this equation is already in the standard form
y"+P(x)y' +Q(x)y = f (x)
Therefore, we identify the function f (x) as
f(x)=(x +1)e2X
Step 4 We now construct the determinants
0 xe*
Wl: 2x 2x 2X :_(X+1)X64x
(x+1)e*™ 2xe* +e
2x
e 0
W. = =(x+1)e"
©o2e” (x+1)e” (x+1)

Step 5 We determine the derivatives of the functions u; and u, in this step

, W, (x+1)xe™

J— —_— ——— 2_
MW e T
W, (x+1)e*
u;:—zz—( 42 =x+1
w e

Step 6 Integrating the last two expressions, we obtain
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3 X2

u, = '[(—xz — x)dx :—%—7
X2
u, :_[(x+1) dx =?+ X.
Remember! We don’t have to add the constants of integration.
Step 7 Therefore, a particular solution of then given differential equation is

3 2 2
y = XX 2 1 Xy (ke X
Y 3 2 2

3 2
OI’ yp - %4‘%]92)(

Step 8 Hence, the general solution of the given differential equation is

3 2
XX
— e +c,xe?X 4 (E + 7j62x

=y +
Y=Yo+Y,
Example 2
Solve 4y" + 36y = csc3x.
Solution:

Step 1 To find the complementary function we solve the associated homogeneous
differential equation

4y"+36y=0=y"+9y=0
The auxiliary equation is
m2 +9=0= m =+3i
Roots of the auxiliary equation are complex. Therefore, the complementary function is
Yo = C1 C0S3X +Cp sin3x
Step 2 From the complementary function, we identify
y1 =C0S3X, Yo =Sin3x
as two linearly independent solutions of the associated homogeneous equation. Therefore

c0s 3Xx sin 3x

W (cos 3x,sin3x) = —3sin3x  3c0s3x

Step 3 By dividing with 4, we put the given equation in the following standard form

© Copyright Virtual University of Pakistan 173



Differential Equations (MTH401) VU

y"+9y = 1csc?,x.
4
So that we identify the function f (x)as

1
f(x)==csc3
(x) P

Step 4 We now construct the determinants W; and W5

0 sin3x
1

W, =1 =——Csc3x-Sin3x=——
-chc3x 3C0S3X 4

c0s3X 0
3 _1cos3x

~ |-3sin3x -%csc3x__4sin3x

2

Step 5 Therefore, the derivatives u;and u; are given by

us —M—_i u- —&—icossx
"W 120 T W 12sin3x

Step 6 Integrating the last two equations w.r.to X, we obtain

Ug __ Ly and Us :iln|sin3x|
12 36

Note that no constants of integration have been added.
Step 7 The particular solution of the non-homogeneous equation is

1 1, . )
=——XC0S3X+—(sin3x)In|sin3x
Step 8 Hence, the general solution of the given differential equation is
. 1 1.,. .
= + = €1 COS3X + Cy SiN 3X —— xc0s3X + —(sin 3x)In|sin 3x
Y=Ye+Yp=C1 2 > 3 Sin3x)Injsin 3x

Example 3

14

Solve y'—y=

Solution:
Step 1 For the complementary function consider the associated homogeneous equation

© Copyright Virtual University of Pakistan 174



Differential Equations (MTH401) VU

y'-y=0
To solve this equation we put

" 2. mx

y=e™ y'=me™, y"=m?2

Then the auxiliary equation is:

m2—1:0:>m:i1

The roots of the auxiliary equation are real and distinct. Therefore, the complementary
function is

ye =cieX +ce %

Step 2 From the complementary function we find

y:L:eX1 y2:e—X

The functions y; and y, are two linearly independent solutions of the homogeneous
equation. The Wronskian of these solutions is

eX 7%

X —X

W(ex, e_X)z
eX —e

Step 3 The given equation is already in the standard form
y'+p(x)y +Q(x)y=f(x)
Here f(x) = 1

X

Step 4 We now form the determinants

—X
wi =0 & e
1/x —e X
X
w,=| & 0 —exan
e® 1/x

Step 5 Therefore, the derivatives of the unknown functions u;and u,are given by

, Wy e *@/x) e¥
MTW T2 T2
- X
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, W, eX1/x) e
%W T ax
- X

Step 6 We integrate these two equations to find the unknown functions u; and us.

u, :%J'e—dx, u, :—%J'e—dx
X X

The integrals defining u, and u, cannot be expressed in terms of the elementary functions
and it is customary to write such integral as:

Xt X .t
ulz1 e—dt, u, = EJ € at
2 t 2

Xo

Step 7 A particular solution of the non-homogeneous equations is

X
1, et 1 (Fe
yp=§eJ o dt—ze J Tdt
Xo

XO

Step 8 Hence, the general solution of the given differential equation is

1 e 1 X gt
y=yc+yp=c1ex+c2e_x+§exj Tdt—ze_xj Tdt
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21 Variation of Parameters Method for Higher-Order
Equations

The method of the variation of parameters just examined for second-order differential
equations can be generalized for an nth-order equation of the type.

n n-1
d Y ran ‘ y+"'+alﬂ+aoy= g9(x)

dx" dx" 1 dx

The application of the method to n™ order differential equations consists of performing
the following steps.

ap

Step 1 To find the complementary function we solve the associated homogeneous
equation

d n d n-1
FRALS
Step 2 Suppose that the complementary function for the equation is

y=C1y1 +Coya2 +--+CnV¥n

a

d
+---+a1d—§+a0y:0

Then yq,Y¥2,...,yqare n linearly independent solutions of the homogeneous equation.
Therefore, we compute Wronskian of these solutions.

y; Yo oo Vi
A Yo oY,
W (Y0, Yo, Vareenr Yy ) =
y, "y, A

Step 4 We write the differential equation in the form

YRy RO R 00 Y= (X)

and compute the determinants W, ; k =1,2,...,n; by replacing the kth column of W by
0

0
the column
0
f(x)

Step 5 Next we find the derivatives ug, u5,...,upof the unknown functions uq,u,,...,up
through the relations
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W
uf =—%,  k=12,...,n
W
Note that these derivatives can be found by solving the nequations
yiup 4+ YUy 4+ ypUp =

yiup 4 yhuh 4 et ypup o =
D0y, 0y oy (7 £ (x)

Step 6 Integrate the derivative functions computed in the step 5 to find the functions uy
W
Uy :J—kdx, k=12,...,n
W

Step 7 We write a particular solution of the given non-homogeneous equation as
Yo = U (X) Y1 (%) +Uy (X) Yo (%) 4=+ Uy (X) ¥ (X)

Step 8 Having found the complementary function y. and the particular integral y ,, we

write the general solution by substitution in the expression: y = yc + Yy

Note that

o The first n—1equations in step 5 are assumptions made to simplify the first n—1
derivatives of y,. The last equation in the system results from substituting the
particular integral y, and its derivatives into the given nth order linear

differential equation and then simplifying.
o Depending upon how the integrals of the derivatives uj of the unknown functions

are found, the answer for y, may be different for different attempts to find y

for the same equation.
o When asked to solve an initial value problem, we need to be sure to apply the
initial conditions to the general solution and not to the complementary function

alone, thinking that it is only y, that involves the arbitrary constants.

3

Example 1 Solve the differential equation by variation of parameters. d_%/+%: CSC X
dx X
o . .. d% dy
Solution: Stepl The associated homogeneous equation is d—3+d— =0
X X

Auxiliary equation mé+m=0= m(m2 +1): 0= m=0, m=+i

Therefore the complementary function is Yo =G+ G COSXHC sinx
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Step 2: Since Yo =C +C,COSX+C3SiNX =y, =1, y,=C0SX, Y;=Sinx
So that the Wronskian of the solutions y;, y, and y;

1 cosx sinx
W (Y, Y, ¥3)=|0 —sinx cosx
0 —cosx -sinx

By the elementary row operation R; + R3, we have

1 0 0
=10 —sinx COS X
0 —COS X —sinx

= (sin2 X + C0S> x):l;t 0
Step 3: The given differential equation is already in the required standard form
y"+0y"+ y'+0 y=cscx

Step 4: Next we find the determinants W;,W, and W, by respectively, replacing 1%, 2"
0

and 3" column of W by the column 0
CSCX
0 COSX  sinXx
W;= 0 —sinx cosx
CSCX —COSX —SinXx

= CSCX (s,in2x+(:os2 x):cscx

1 0 sin x
W,={0 O COS X
0 cscx -=sinX

0 COS X
CSCX —Sinx

=—C0SXCSCX=—-Ccotx

1 cosx 0
and W;=| 0 -sinx 0 |=
0 —cosx cscX

—sinx 0
—COSX CSCX

=-sinxcscx=-1
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Step 5: We compute the derivatives of the functionsuq, u, andusz as:

U; = ——=CSCX
U, = —2 =—Cotx
W
up=—=-1
w

Step 6: Integrate these derivatives to find u;,u, and us

U, = J\%dx = jcsc xdx = Incsc x — cot X

W — ]
Uy = —2dx:j—cotxdx= ?Osxdx=—ln|smx|
W sin X

W
Ug = j—3dx = j—ldx = —X
W
Step 7: A particular solution of the non-homogeneous equation is

y,, =In|cscx—cotx|—-cosxIn|sinx|—xsinx

p
Step 8: The general solution of the given differential equation is:

y =€, +C,COSX+Csinx+In|cscx—cotx|-cosx In|sinx|—xsinx
Example 2
Solve the differential equation by variation of parameters.
y

"

+y' =tanx
Solution

Step 1: We find the complementary function by solving the associated homogeneous
equation

y!!!+y!:O

Corresponding auxiliary equation is
m3+m:03m(m2 +l):0
m=0, m==i

Therefore the complementary function is
Yo =Cp +C2 COSX+C38in X

Step 2: Since
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Yo =Cp +C2 COSX+C38in X
Therefore y; =1 Yy, =C0SX, Y3=sinX
Now we compute the Wronskian of y;, y, and y3

1 cosx sinX
W (Y.Y,,¥;)=|0 —sinx cosx
0 —-cosx -sinx

By the elementary row operation R; + R3, we have

1 0 0
=10 —sinx COS X
0 —COS X —sinx

= (sin2 X + c0s> x):l;t 0
Step 3: The given differential equation is already in the required standard form
y

Step 4: The determinants W,,W, andW,are found by replacing the 1%, 2" and 3"
column of W by the column

"

+0-y"+y'+0-y=tanx

0
0
tan x
Therefore
0 COSX Ssinx
W,=| 0 —sinx cosx
tanx —cosSx -—sinX
— tan X (coszx+sin2x):tanx
1 0 sin x
W,=[0 0  cosx| =10-cosxtanx)=—sinx
0 tanx -sinx
1 COS X 0
and W3=[0  -sinx 0 |=1(-sinxtanx)-0 = —sin xtan x
0 —COS X tan X

Step 5: We compute the derivatives of the functionsuy, u, and us.
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= —sin xtan x

Step 6: We integrate these derivatives to find u;,u, and us

ulzjﬂdx=jtanx dx:—J—Sinde=—In|cosx|
W

COS X
r‘W .
u, = —idx=j—mnxdx=cosx
W
W _
Ug = -—idx=I—5|nxtanxdx
JW
(. sinX )
= | =sinx dx:j—swﬁxsecdx
) COS X

:j(cos2 x—1)secxdx:j(cos2 XSeCX—Sec x)dx
:J'(cosx—secx)dx=Icosxdx—.|‘secxdx

=sin x—In|secx+tan x|

Step 7: Thus, a particular solution of the non-homogeneous equation

Yp =—In|cosx|+cosx cosx+(sinx—In|secx+tanx|) (sinx)

= —In|cosx|+cos® x+sin®x—sinxIn|sec x +tan x|

=—In|cosx|+1-sinxIn|secx+tanx|

Step 8: Hence, the general solution of the given differential equation is:

y =Cp +Cp COS X + C3 5in X — In|cos X| +1—sin x Injsec X + tan X|
or y =(cy +1)+ ¢y cosx + ¢z sinx — In|cos x| - sin x Injsec x + tan X
or y =d; +C,C0sX+Cysinx—In|cosx|-sinxIn|secx+tan x|

where d, represents ¢, +1.

Example 3
Solve the differential equation by variation of parameters.
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y"-2y" -y +2y =€
Solution
Step 1: The associated homogeneous equation is
y"=2y"-y'+2y=0
The auxiliary equation of the homogeneous differential equation is
m®—2m*—m+2=0
= (m—2) (m2—1)=0
=m=12-1
The roots of the auxiliary equation are real and distinct. Therefore y, is given by

2 X

Yo = e +coe X +cge”

Step 2: From y. we find that three linearly independent solutions of the homogeneous
differential equation.

2X X

yp=e%, yo=eX, yz3=¢"

Thus the Wronskian of the solutions y;, Yy, and y is given by

X 2X —X

e e e 111
W =leX 202X _eX|=eX.e2X. g X1 2 _

X 4er o= X 1 4 1

By applying the row operations Ro —Ry, Rg3—Ry, we obtain

11 1
W=e2Xl0 1 —2/=6e2X %0
03 0

Step 3: The given differential equation is already in the required standard form

ym_zyﬂ_ yr+ Zy — e3X

Step 4: Next we find the determinants W,,W, and W, by, respectively, replacing the 1%,
2" and 3" column of W by the column
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0
0
e3x
0 e2X X - )
_ e e
3 5 2p2X  _a=X
g% getX g7
:e3x(_ex_28x)_ 304X
eX 0 e* ) )
_ e e
X X
_ € —e
eX e3x e X
:_(_eO _eO)eSX _ 9e3X
eX e2x 0 ) .
e e
Wy =[eX 2e2X 0 |=e ,
X X
and e 2e
eX 4e2x eBx

_ 3% (2e3x _e3x) _ bX

Step 5: Therefore, the derivatives of the unknown functionsuy, u, and ug are given by.

yooW -3 1 g
1" w 6e2X 2
u! Wy  2e 1e
2:— e

W 6€2X 3

Step 6: Integrate these derivatives to find u;,u, and u,

W
up = j—ldx = f_leZde = —ijezxdx _ Lo
W 2 2 4

Uy = dex = Jlexdx _Lex
W 3 3
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U = J—dx J Loaxgy - 1 g4x
24
Step 7: A particular solution of the non-homogeneous equation is
Y __13x 13x 1 ax
4 3 24
Step 8: The general solution of the given differential equation is:
X 2x —x 1 3x 13x 1 3x
=cle” +Coe“" +cge T ——e7 " +=e"" +—e
YEAE TEE e Tt
21.1 Exercise
Solve the differential equations by variations of parameters.
1. y"+y=tanx
2. y"+y=secxtanx
3. y'+y= sec? x
4.y —y=09x/e3
5. y"-2y' +y=e” /(1+ xz)
6. 4y"—4y' +y=e"241-x?
7. y"+4y" =sec2x
8. 2y”!_6y"= X2
Solve the initial value problems.
9. 2y"+y' —y=x+1
10. y" -4y +4y = (12x2 -~ 6x}32X
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22 Applications of Second Order Differential Equation

o A single differential equation can serve as mathematical model for many different
phenomena in science and engineering.
o Different forms of the 2" order linear differential  equation
aﬂ+bﬂ+cy = f(x)
dx*  dx
appear in the analysis of problems in physics, chemistry and biology.
o In the present and next lecture we shall focus on one application; the motion of a
mass attached to a spring.
d’y  dy

o We shall see, what the individual terms ad—, bd—
X

2 , ¢y andf (x) means in

the context of vibrational system.
o Except for the terminology and physical interpretation of the terms
d’y  dy
a2 bdx’ cy, f(x)
the mathematics of a series circuit is identical to that of a vibrating spring-mass
system. Therefore we will discuss an LRC circuit in lecture.
22.1 Simple Harmonic Motion

When the Newton’s 2" law is combined with the Hook’s Law, we can derive a
differential equation governing the motion of a mass attached to spring—the simple
harmonic motion.

22.1.1 Hook’s Law
Suppose that

O A mass is attached to a flexible spring suspended from a rigid support, then
a The spring stretches by an amount *s’.
Q The spring exerts a restoring F opposite to the direction of elongation or stretch.

The Hook’s law states that the force F is proportional to the elongation s. i.e
F =ks

Where k is constant of proportionality, and is called spring constant.

Note That

a Different masses stretch a spring by different amount i.e s is different for
differentm.
Q The spring is characterized by the spring constant k .

a Forexample if W =10 Ibsand s = %ft
Then F =ks

or 10 = (Ejk
2
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or k =20 lbs/ft
If W =8 Ibsthen 8=20(s)=s=2/5ft

22.1.2 Newton’s Second Law

When a force F acts upon a body, the acceleration a is produced in the direction of the
force whose magnitude is proportional to the magnitude of force. i.e

F=ma
Where m is constant of proportionality and it represents mass of the body.

22.1.3 Weight

a The gravitational force exerted by the earth on a body of mass m is called weight
of the body, denoted by W

a Inthe absence of air resistance, the only force acting on a freely falling body is its
weight. Thus from Newton’s 2" law of motion
W =mg

Where m is measured in slugs, kilograms or grams and g = 32ft/s?, 9.8m/s? or

980 cm/s?.
22.1.4 Differential Equation

0 When a body of mass m is attached to a spring
The spring stretches by an amount s and attains an equilibrium position.
At the equilibrium position, the weight is balanced by the restoring force ks .
Thus, the condition of equilibrium is
mg=ks = mg—-ks=0
a If the mass is displaced by an amount x from its equilibrium position and then
released. The restoring force becomes k(s + x). So that the resultant of weight and
the restoring force acting on the body is given by
Resultant=—k(s + x)+ mg.
By Newton’s 2" Law of motion, we can written

d?x
m—- = —k(s + x)+mg
dt?
2
or m%:—kx—ks+mg
t
Since mg —ks=0
2
Therefore % = —kx

O The negative indicates that the restoring force of the spring acts opposite to the
direction of motion.
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a The displacements measured below the equilibrium position are positive.

a By dividing withm, the last equation can be written as:

2
d 2X+£x:0
at® m
2
or —;(+a)2x=0
dt

Where »° =£. This equation is known as the equation of simple harmonic
m

motion or as the free un-damped motion.
22.1.5 Initial Conditions
Associated with the differential equation

2
X
7 + COZX =0
dt
are the obvious initial conditions

x(0)=a, x(0)=p

These initial conditions represent the initial displacement and the initial velocity. For
example

o If a>0, p<0then the body starts from a point below the equilibrium position
with an imparted upward velocity.

0 If a<0, g=0then the body starts from rest |a|units above the equilibrium

position.
22.1.6 Solution and Equation of Motion

Consider the equation of simple harmonic motion

Put X=e ", —=m-e

Then the auxiliary equation is
m+0’=0 = m=tiw
Thus the auxiliary equation has complex roots.
m, =i, m, =-oi
Hence, the general solution of the equation of simple harmonic motion is

x(t) =c, cosmt +c, sinwt
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22.1.7 Alternative form of Solution

It is often convenient to write the above solution in a alternative simpler form. Consider
x(t) =c, cosmt +c, sin wt

and suppose that A, ¢ e R such that
¢ = Asin ¢, Cy = Acos¢

c
Then A=qc,” +¢,% , tang=-L
c

2
So that

x(t) = Asinwt cosg+Bcos ot sing
or x(t)= Asin(wt+¢ )
The number ¢ is called the phase angle;

Note that:

This form of the solution of the equation of simple harmonic motion is very useful
because

o Amplitude of free vibrations becomes very obvious
o The times when the body crosses equilibrium position are given by
x=0=sin(wt+¢ )=0
or wot+¢=nx
Where nis a non-negative integer.
The Nature of Simple Harmonic Motion
22.1.8 Amplitude

0 We know that the solution of the equation of simple harmonic motion can be
written as

x(t)=Asin(ot+¢ )
a Clearly, the maximum distance that the suspended body can travel on either side
of the equilibrium position is A.
O This maximum distance called the amplitude of motion and is given by
Amplitude = A = w/cl2 + cz2
22.1.9 A Vibration or a Cycle

In travelling from x = A to x = - A and then back to A, the vibrating body completes one
vibration or one cycle.
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22.1.10Period of Vibration

The simple harmonic motion of the suspended body is periodic and it repeats its position
after a specific time periodT . We know that the distance of the mass at any time t is
given by

x = Asin(wt+¢)
Since Asin{a)(wz—”jwﬁ}

= Asin [(a)t + @+ 272')]
= Asin[(ot+¢ )]

Therefore, the distances of the suspended body from the equilibrium position at the times

2r
t and t + — are same
(4]

Further, velocity of the body at any time t is given by

%: Awcos(wt+¢ )

Aa)cos(w(t+2—”j+¢J
w
= Awcos[wt+¢ +27]
= Awcos(wt+¢ )
Therefore the velocity of the body remains unaltered if t is increased by 27 /@ . Hence

the time period of free vibrations described by the 2" order differential equation
2

—;(+a)2X =0
dt
IS given by
s
w

22.1.11Frequency

The number of vibration /cycle completed in a unit of time is known as frequency of the
free vibrations, denoted by f . Since the cycles completed in time T is 1. Therefore, the

number of cycles completed in a unit of time is 1/T
Hence

——
T 2x
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Example 1
Solve and interpret the initial value problem

ZTZZX +16x=0

x(0)=10, x'(0)=0.
Interpretation
Comparing the initial conditions

x(0)=10, x'(0)=0.
With

x(0)=a, x(0)=p
We see that

0=10,5=0
Thus the problem is equivalent to

a Pulling the mass on a spring 10 units below the equilibrium position.
a Holding it there until timet = 0 and then releasing the mass from rest.

Solution
Consider the differential equation

(jszzx +16x=0
Put x=e™, d—2X=m2emt

dt*

Then, the auxiliary equation is

m®+16=0

= m=0=x4i
Therefore, the general solution is:
x(t) = ¢, cos4t + ¢, sin 4t

Now we apply the initial conditions.

x(0)=10 = ¢;.1+¢,.0=10
Thus ¢, =10
So that x(t)=10cos4t +c, sin 4t
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% = —40sin 4t + 4c, cos 4t
Therefore x'(0)=0 = —40(0)+4c,.1=0
Thus c,=0

Hence, the solution of the initial value problem is
x(t)=10cos 4t
Note that

o Clearly, the solution shows that once the system is set into motion, it stays in
motion with mass bouncing back and forth with amplitude being10 units .

o Sincew=4. Therefore, the period of oscillation is

T =2_”=£ seconds
4 2

Example 2
A mass weighing 2lbs stretches a spring 6 inches. At t = 0 the mass is released from a

point 8 inches below the equilibrium position with an upward velocity of %ft/s.

Determine the function x (t) that describes the subsequent free motion.
Solution
For consistency of units with the engineering system, we make the following conversions

6inches = %foot

8inches = %foot .

Further weight of the body is given to be

W =21bs
But W =mg
Therefore m= ﬂ = i
g 32
1
or m = —slugs.
16
. 1
Since Stretch=s = Efoot

Therefore by Hook’s Law, we can write

© Copyright Virtual University of Pakistan 192



Differential Equations (MTH401) VU

2= k[%j — k = 41bs/ft

Hence the equation of simple harmonic motion

2
md—ZX = —kx
dt
becomes
1d%x_
16 dt?
2
or d—;( +64x=0.
dt

Since the initial displacement is 8 inches :é ft and the initial velocity is_?4ft/s, the

initial conditions are:

The negative sign indicates that the initial velocity is given in the upward i.e negative
direction. Thus, we need to solve the initial value problem.

2
Solve % +64x=0
Subject to x(0)= E x'(0)= _4
3 3
2
Putting x=e™, d_zx: m2e™
dt
We obtain the auxiliary equation
m? +64=0
or m = 18i

The general solution of the equation is
x(t) = c, cos8t + ¢, sin 8t

Now, we apply the initial conditions.

x(0)=§ =¢;.14¢,.0 =§
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3
2 .
So that x(t):§<3038t+czsm 8t
Since

x'(t) = —%sin 8t + 8¢, cos8t .

Therefore
x'(0) = 418, +8c,.1= _4
3 3 3
Thus
¢y =1
6

Hence, solution of the initial value problem is
x(t) = 2 cos8t—Lsingt.
3 6

Example 3

Write the solution of the initial value problem discussed in the previous example in the
form

x(t)=Asin(ot+¢ ).
Solution
The initial value discussed in the previous example is:

2
Solve d—2X +64x=0
dt
Subject to x(0)= % x'(0)= _g

Solution of the problem is
x(t) = 2 cos8t— Lsinst
3 6

Thus amplitude of motion is given by

2 2
3 6 6
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and the phase angle is defined by

sing = 2/3 _ 4 >0
Ny
-1/6 1
0S¢ = =— <0
N TRy
Therefore
tang = -4
or tan (-~ 4) = —1.326 radians

Since sing >0, cos¢ < 0,the phase angle ¢ must be in 2nd quadrant.
Thus
¢ =m—1.326 =1.816 radians

Hence the required form of the solution is

x(t) 17

=Tsin(8t+1.816)

Example 4
For the motion described by the initial value problem

2
Solve d—;(+ 64x=0
dt
Subject to x(0)= E x'(0) = _4

Find the first value of time for which the mass passes through the equilibrium position
heading downward.

Solution
We know that the solution of initial value problem is

x(t) = 2 cos8t—Lsingt.
3 6

This solution can be written in the form

V17

x(t) = Tsin(8t +1.816)

The values of t for which the mass passes through the equilibrium position i.e for which
x =0 are given by

Wt+¢=nrx
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Where n=1,2,..., therefore, we have

8t; +1.816 =7, 8ty +1.816=27, 8t3+1.816=3r,...0r

t; =0166, t, =0558, t3=0951, ...

Hence, the mass passes through the equilibrium position x =0 heading downward first
time at t, = 0.558 seconds.

22.2 Exercise
State in words a possible physical interpretation of the given initial-value problems.

1. %x”+3x=0, x(0)=-3, x'(0)=-2

2. %x”+4x=0, x(0)=0.7, x'(0)=0

Write the solution of the given initial-value problem in the form x(t)= Asin(at + ¢)

3. x"+25x=0,  x(0)=-2, x'(0)=10
4. %x"+8x:0, x(0)=1, x'(0)=-2
5 x"+2x=0, x(0)=-1, x'(O):—Z\/E
6. %x"+16x:0, x(0)=4, x'(0)=16

7. 0.1x"+10x=0,  x(0)=1, x(0)=1

8. x"+x=0, x(0)=-4, x(0)=3

9. The period of free undamped oscillations of a mass on a spring is 7 /4 seconds. If
the spring constant is 16 Ib/ft, what is the numerical value of the weight?

10. A 4-Ib weight is attached to a spring, whose spring constant is 16 Ib/ft. What is
period of simple harmonic motion?

11. A 24-1b weight, attached to the spring, stretches it 4 inches. Find the equation of
the motion if the weight is released from rest from a point 3 inches above the
equilibrium position.

12. A 20-Ib weight stretches a spring 6 inches. The weight is released from rest 6
inches below the equilibrium position.

a) Find the position of the weight at t = ﬁ,z,z,z,g—ﬁseconds.
128 6 4 32
b) What is the velocity of the weight when t =37 /16seconds? In which
direction is the weight heading at this instant?

c) At what times does the weight pass through the equilibrium position?
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23 Damped Motion

In the previous lecture, we discussed the free harmonic motion that assumes no retarding
forces acting on the moving mass. However

a No retarding forces acting on the moving body is not realistic, because
O There always exists at least a resisting force due to surrounding medium.

For example a mass can be suspended in a viscous medium. Hence, the damping forces
need to be included in a realistic analysis.

23.1 Damping Force
In the study of mechanics, the damping forces acting on a body are considered to be

. ) . dx .
proportional to a power of the instantaneous veIoutyE. In the hydro dynamical

problems, the damping force is proportional to (dx/dt)2 . So that in these problems

2
Damping force = ,B(%j

Where p is a positive damping constant and negative sign indicates that the damping
force acts in a direction opposite to the direction of motion.

In the present discussion, we shall assume that the damping force is proportional to the

instantaneous velocity%. Thus for us

Damping force = ﬁ[%}

23.2 The Differential Equation
Suppose That
a A body of mass m is attached to a spring.
Q The spring stretches by an amount s to attain the equilibrium position.
Q The mass is further displaced by an amount x and then released.
O No external forces are impressed on the system.
Therefore, there are three forces acting on the mass, namely:
a) Weight mg of the body

b) Restoring force —k(s + x)

c) Damping force ﬂ(%}

Therefore, total force acting on the mass m is
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mg — k(s + x)— /3(%}

So that by Newton’s second law of motion, we have

Since in the equilibrium position
mg—ks=0

2
Therefore md—2X =—kx — ﬂ(%j
dt dt

Dividing withm , we obtain the differential equation of free damped motion
2
ﬂ + ﬁ(%j + h X = O
dt? mldt) m

For algebraic convenience, we suppose that

2/1=£, ? =£
m m

Then the equation becomes:

23.2.1 Solution of the Differential Equation
Consider the equation of the free damped motion

2
Ix 2% wrx=0
dt

Put x=eM %zmemt d—ZX:mzemt
" dt " dt?

Then the auxiliary equation is:
m? +2im+w* =0
Solving by use of quadratic formula, we obtain

m=-l+JA* -0’

Thus the roots of the auxiliary equation are
m =-A+vJA°—w®, m,=-1-+1* -0’

Depending upon the sign of the quantity 2> — »?, we can now distinguish three possible
cases of the roots of the auxiliary equation.

© Copyright Virtual University of Pakistan 198



Differential Equations (MTH401) VU

Case 1 Real and distinct roots

If 22 —w? > 0then S >k and the system is said to be over-damped. The solution of the
equation of free damped motion is

x(t)=c,e™ +c,e™

2 2 2 2
or x(t)=e™ [cle Pt eVt
This equation represents smooth and non oscillatory motion.

Case 2 Real and equal roots

If 22 —w? =0, then S =k and the system is said to be critically damped, because any

slight decrease in the damping force would result in oscillatory motion. The general
solution of the differential equation of free damped force is

x(t)=c,e™" +c,te™
or x(t)=e " (c, +c,t)
Case 3 Complex roots

If A —w? <0, then <k and the system is said to be under-damped. We need to
rewrite the roots of the auxiliary equation as:

m, =-A+Vo? - Ai, m,=-i-+o’ -2

Thus, the general solution of the equation of free damped motion is
X(t)= e‘i{c1 cosvw? - 22t +c¢,sinvVo? - izt}

This represents an oscillatory motion; but amplitude of vibration —» 0ast — « because of
the coefficiente ™ .

Note that

Each of the three solutions contain the damping factor e , A >0, the displacements of
the mass become negligible for larger times.
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23.2.2 Alternative form of the Solution

When A% —w? < 0, the solution of the differential equation of free damped motion

2
X 229 20
dt? dt

is X(t)= e‘i{c1 cosvm? — 1%t +¢,siny o’ —/lzt}

Suppose that A and ¢ are two real numbers such that

: C C,
sing=—=, cos¢=—=
/ A / A

c
So that A=qc”+c,%, tang=-1
c

2

The number ¢ is known as the phase angle. Then the solution of the equation becomes:

x(t)= Ae™* [Sin Vo? - 1*tcos¢ +cosvw’ — A°tsin ¢}
or x(t)= Ae™" sin(\/a)2 ~1’t+¢ )

Note that

-t

o The coefficient Ae ™ is called the damped amplitude of vibrations.

o The time interval between two successive maxima of x(t)is called quasi period,
and is given by the number
2

N

o The following number is known as the quasi frequency.

Vo? - 12
2r
o The graph of the solution

x(t)= Ae™ sin(\/a)2 ~1’t+¢ )

crosses positive t-axis, i.e the line x = 0, at times that are given by

Vol —i*t+g=nzx
Wheren=12,3,....

For example, if we have

x(t)=e 0% sin[Zt —%)
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Then 2t——=nrx
3
T T T
or 2t L =02t - = 2 == 2m, .
173 23 373
T A 1
or to =2 t, =L, =
176" 2 63 &

We notice that difference between two successive roots is

z 1 . .
t, —t,_q =— = —quasi period
k=177 2q p
. . 27
Since quasi period = - = 7. Therefore

ty —ty_1 = % =% quasi period

o Since [x(t) < Ae™* when ‘sin No? - 1*t+¢ ‘sl, the graph of the solution

x(t)= Ae™" sin(\/a)2 ~ 2Pt ¢ )
touches the graphs of the exponential functions

+ Ae M
at the values of t for which

sin(\/co2 —1%t+¢ ): +1

This means those values of t for which
Vo —2%t+¢=(2n +1)%
(2n+1)(z/2)-¢

or t= wheren=0,1,2,3,...

Again, if we consider

Then M - =T My =T Ay D=

« b5 « 1lz « 1Tx
t =", t, ==, t, =——
12 12 12
Again, we notice that the difference between successive values is
T

b =7

o The values of t for which the graph of the solution

x(t)= Ae™" sin(\/a)2 ~1’t+¢ )

touches the exponential graph are not the values for which the function attains its
relative extremum.

Or
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Example 1
Interpret and solve the initial value problem

2
97X 59X ax=0
dt?2 dt
x(0)=1 x'(0)=1
Find extreme values of the solution and check whether the graph crosses the equilibrium
position.
Interpretation

Comparing the given differential equation

2
M+5%+4x:0
dt2  dt

with the general equation of the free damped motion

we see that

so that A2 —w? >0
Therefore, the problem represents the over-damped motion of a mass on a spring.
Inspection of the boundary conditions
x(0)=1, x'(0)=1
reveals that the mass starts 1 unit below the equilibrium position with a downward
velocity of 1 ft/sec.
Solution
To solve the differential equation

2
97;+595+4x=0
dt
mt  OX mt d?x 2,.mt
We put X=e"~, —=me , —=m-e
dt dt?

Then the auxiliary equation is

m? +5m+4 =0
= (m+4)(m+1)=0
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= m=-1, m=-4,
Therefore, the auxiliary equation has distinct real roots
m=-1, m=-4
Thus the solution of the differential equation is:
x(t)=ce™ +c,e™
So that x'(t)=—cie™t —4c,e™
Now, we apply the boundary conditions
x(0)=1=c¢;.1+cy.1=1
x'(0)=1= —¢; —4c, =1
Thus
Cl + C2 = 1
- Cl - 4C2 = 1
Solving these two equations, we have.
6 =2 o -_2
1=3 @ 3
Therefore, solution of the initial value problem is
S ¢ 2 a4
x(t)=—e" —=e
t)=3e" -3
Extremum
Since x(t) = Dot _Zg-u
3 3
Therefore W Set, 8ea
dt 3 3
So that x({t)=0 = R t+%e -0
or 88
5
or t =0.157
2
Since 47X _5.+ 32
dt2 3 3
Therefore at t = 0.157, we have
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dt? 3 3
=1.425-5.692 = —4.267 <0
So that the solution x(t) has a maximum at t = 0.157 and maximum value of X is:

x(0.157) =1.069

2
dcx 5 _ 32 _
_ 20157 _ 92 ,-0628

Hence the mass attains an extreme displacement of 1.069 ftbelow the equilibrium
position.

Check

Suppose that the graph of X(t) does cross thet — axis, that is, the mass passes through
the equilibrium position. Then a value of t exists for which

x(t)=0
ie St _2q-at _g
3 3
R
or t= 1Ing =-0.305
3 5

This value of t is physically irrelevant because time can never be negative. Hence, the
mass never passes through the equilibrium position.

Example 2

An 8-1b weight stretches a spring 2ft. Assuming that a damping force numerically equals
to two times the instantaneous velocity acts on the system. Determine the equation of
motion if the weight is released from the equilibrium position with an upward velocity of
3 ft/ sec.

Solution
Since
Weight =81lbs, Stretch=s=2ft

Therefore, by Hook’s law

8 = 2k
=k=41Ib/ft
Since Damping force = 2(%)
Therefore p=2
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Also mass = Weight = m= 8 = 1 slugs
32 4

g

Thus, the differential equation of motion of the free damped motion is given by

2
md—; =—kx — ﬁ(%j

dt dt
or 1 d X —4x—2(%j
4 dt? dt
or 4% g% e o
dt? dt

Since the mass is released from equilibrium position with an upward velocity3ft/s.
Therefore the initial conditions are:

x(0)=0, x'(0)=-3
Thus we need to solve the initial value problem

dx dx

Solve +8—+16x=0
di2 dt
Subject to x(0)=0, x(0)=-3
2
Put x=eM %:mem‘, d—;(zmzemt
dt dt
Thus the auxiliary equation is
m? +8m+16=0
or (M+4P =0=>m=-4, —4

So that roots of the auxiliary equation are real and equal.
m =-4=m,

Hence the system is critically damped and the solution of the governing differential
equation is

x(t)=ce™ +cte™
Moreover, the system is critically damped.
We now apply the boundary conditions.
x(0)=0=>¢;.1+¢,.0=0

:>Cl=0
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Thus x(t)=cte™
= o _ e —dcte™
dt
So that x'(0)=-3=c¢,.1-0=-3
= C2 - —3

Thus solution of the initial value problem is

x(t)= —3te™
Extremum
Since x(t) = —3te ™
Therefore % — 3 1 12te M
dt
=-3e7"(1-4)
Thus X _ g1
dt 4

The corresponding extreme displacement is

x(lj - —3(1je—1 —_0.276ft
4 4

Thus the weight reaches a maximum height of 0.276 ft above the equilibrium position.
Example 3

A 16-lb weight is attached to a 5-ftlong spring. At equilibrium the spring measures
8.2ft .If the weight is pushed up and released from rest at a point 2-ftabove the
equilibrium position. Find the displacement x(t) if it is further known that the
surrounding medium offers a resistance numerically equal to the instantaneous velocity.

Solution
Length of un - stretched spring =5 ft

Length of spring at equilibrium = 8.2 ft
Thus Elongation of spring=s=3.2ft
By Hook’s law, we have
16 =k(3.2)=k =5Ib/ft

Weight 16 1
= m=—=—slugs
g 32 2

Further mass =
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. dx
Since Damping force = a
Therefore p=1
Thus the differential equation of the free damped motion is given by
d2x dx
— = _kx-B8=
dt? P
1.d2x dx
or - - _Bx-—-—
2 dt? dt
2
or 9 2% L 10x =0
dt>  dt

Since the spring is released from rest at a point 2 ft above the equilibrium position.
The initial conditions are:

x(0)=-2, x(0)=0
Hence we need to solve the initial value problem

2
94X 2% 10 =0
dt? dt

x(0)=-2, x'(0)=0
To solve the differential equation, we put

mt %:memt, d2X =m28mt.
dt dt?

Then the auxiliary equation is
m?+2m+10=0
or m=-1+3i
So that the auxiliary equation has complex roots
m =-1+3i, m, =-1-3i
The system is under-damped and the solution of the differential equation is:
x(t)= e (c; cos3t + ¢, sin3t)
Now we apply the boundary conditions
x(0)=-2=>¢;.1+¢,.0=-2

:>C1:—2
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Thus x(t)=e (- 2cos3t +c, sin3t)
% — e !(6sin3t+3c, cos3t)—e ' (- 2cos3t +c, sin3t)
Therefore x(0)=0=3c,+2=0
o2
3

Hence, solution of the initial value problem is
_t 2 .
x(t)=e ~2c0s3t - sin3t

Example 4
Write the solution of the initial value problem

2
d ;(+2%+10x:0
dt dt

x(0)=-2, x'(0)=0

in the alternative form
x(t)= Ae ' sin(3t + ¢)
Solution
We know from previous example that the solution of the initial value problem is

x(t)=e™ (— 2c0s 3t — %sin 3tj

Suppose that Aand ¢ are real numbers such that

i 2 -2/3
sing=——, cosg=——
¢ A / A
Then A= ard -2 0
9 3
Also tang=———=3
-21/3

Therefore tan~*(3) =1.249 radian

Since sin¢g <0, cosg < 0, the phase angle ¢ must be in 3" quadrant.

Therefore
¢ = +1.249 = 4.391radians
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Hence
x(t) = %Jﬁe‘ sin(3t + 4.391)
The values of t:ty where the graph of the solution crosses positive t-axisand the

values t:ty* where the graph of the solution touches the graphs of i(gj\/ﬁe—t are

given in the following table.

7Y t; X(t;)

1 |.631 1.154 0.665

2 11678 2.202 -0.233

3 2725 3.249 0.082

4 |3.772 4.296 -0.029

23.2.3 Quasi Period
Since x(t)= g\/ﬁet sin(3t +4.391) = VA* —w® =3

27
\MZ —w?

Hence, difference between the successive ty and t; is %units.

So that the quasi period is given by = 2—”seconds

23.3 Exercise
Give a possible interpretation of the given initial value problems.

1. %x"+2x’+x:0, x(0)=0, x'(0)=-15

2. ;—gx”+x’+2x=0, x(0)=-2, x'(0)=1

3. A 4-lb weight is attached to a spring whose constant is 2 Ib /ft. The medium offers
a resistance to the motion of the weight numerically equal to the instantaneous
velocity. If the weight is released from a point 1 ft above the equilibrium position
with a downward velocity of 8 ft / s, determine the time that the weight passes
through the equilibrium position. Find the time for which the weight attains its
extreme displacement from the equilibrium position. What is the position of the
weight at this instant?

4. A 4-ft spring measures 8 ft long after an 8-1b weight is attached to it. The medium

through which the weight moves offers a resistance numerically equal to+/2 times
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10.

the instantaneous velocity. Find the equation of motion if the weight is released
from the equilibrium position with a downward velocity of 5 ft / s. Find the time
for which the weight attains its extreme displacement from the equilibrium
position. What is the position of the weight at this instant?
A 1-kg mass is attached to a spring whose constant is 16 N / m and the entire
system is then submerged in to a liquid that imparts a damping force numerically
equal to 10 times the instantaneous velocity. Determine the equations of motion if
a. The weight is released from rest 1m below the equilibrium position;
and
b. The weight is released 1m below the equilibrium position with and
upward velocity of 12 m/s.
A force of 2-lb stretches a spring 1 ft. A 3.2-1b weight is attached to the spring
and the system is then immersed in a medium that imparts damping force
numerically equal to 0.4 times the instantaneous velocity.
a. Find the equation of motion if the weight is released from rest 1 ft above the
equilibrium position.
b. Express the equation of motion in the form x(t)= Aefﬂsin(«/wz Py t+¢)

c. Find the first times for which the weight passes through the equilibrium
position heading upward.

After a 10-1b weight is attached to a 5-ft spring, the spring measures 7-ft long.

The 10-Ib weight is removed and replaced with an 8-1b weight and the entire

system is placed in a medium offering a resistance numerically equal to the

instantaneous velocity.

a. Find the equation of motion if the weight is released 1/2ft below the
equilibrium position with a downward velocity of 1ft/s.

b. Express the equation of motion in the form x(t)= Ae%sin(«/w2 Py t+¢)

c. Find the time for which the weight passes through the equilibrium position

heading downward.
A 10-Ib weight attached to a spring stretches it 2 ft. The weight is attached to a
dashpot-damping device that offers a resistance numerically equal to ﬂ(,B > O)
times the instantaneous velocity. Determine the values of the damping constant 3
so that the subsequent motion is

a. Over-damped

b. Critically damped

c. Under-damped
A mass of 40 g. stretches a spring 10cm. A damping device imparts a resistance to
motion numerically equal to 560 (measured in dynes /(cm / s)) times the
instantaneous velocity. Find the equation of motion if the mass is released from
the equilibrium position with downward velocity of 2 cm / s.
The quasi period of an under-damped, vibrating 1-slugs mass of a spring isz /2
seconds. If the spring constant is 25 Ib / ft, find the damping constant 5.
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24 Forced Motion

In this last lecture on the applications of second order linear differential equations, we
consider

o A vibrational system consisting of a body of mass m attached to a spring. The

motion of the body is being driven by an external force f(t) i.e. forced motion.

o Flow of current in an electrical circuit that consists of an inductor, resistor and a
capacitor connected in series, because of its similarity with the forced motion.

24.1 Forced motion with damping

Suppose that we now take into consideration an external force f(t). Then, the forces
acting on the system are:

a) Weight of the body = mg

b) The restoring force =—k(s + x)
c) The damping effect = —£(dx/dt)
d) The external force = f (t).

Hence x denotes the distance of the mass m from the equilibrium position. Thus the total
force acting on the mass m is given by

Force = mg — k(s + x)— ﬂ(%j + f(t)

By the Newton’s 2" law of motion, we have

d2x
Force:ma=m—2
dt
d?x dx
Therefore m—-=mg-ks—kx— 8] — |+ f(t
dt? 0 ﬂ(dtj ®
But mg—ks=0
2
So that d—§+£(%j+£x=lt)
dt m\_dt m m
2
or M+2}b%+a)2x:F(t)
dt? dt
f(t
where F(t):ﬁ, Zﬂzﬁ and wzzh.
m m m

Note that
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Q The last equation is a non-homogeneous differential equation governing the forced
motion with damping.

a To solve this equation, we use either the method of undetermined coefficients or
the variation of parameters.
Example 1

Interpret and solve the initial value problem

2
1dx 129, ax=5cosat
5 dt dt

x(0)=

, x(0)=0

N |-

Interpretation
The problem represents a vibrational system consisting of
O Amass m =% slugs or kilograms

O The mass is attached to a spring having spring constant k =21b/ftor N/m

Q The mass is released from rest lft or meter below the equilibrium position

a The motion is damped with damping constant 8 =1.2.
a The motion is being driven by an external periodic force f(t):5cos4t that has

. T
eriodT ==—.
P 2

Solution
Given the differential equation

2
LaX 2% oy = 5eosat
5 dt dt
2
or d 2X+6%+10x:250054t
dt dt
First consider the associated homogeneous differential equation.
2
X X
d—z + 6d— +10x =0
dt dt
2
Put x=e™, %zmemt, d ZX:mzemt
dt dt

Then the auxiliary equation is:

m?+6m+10=0

© Copyright Virtual University of Pakistan 212



Differential Equations (MTH401) VU

= m=-3+i
Thus the auxiliary equation has complex roots

m, =-3+1, m,=-3-1i
So that the complementary function of the equation is

—3t(

Xc =€ “{cpcost+cy sint)

c

To find a particular integral of non-homogeneous differential equation we use the
undetermined coefficients, we assume that

Xp(t)= Acos4t + Bsin 4t
Then X (t) = —4Asin 4t + 4B cos 4t
X (t) = —16 Acos 4t —16Bsin 4t

So that

x’b + 6x’IO +10xIO =—-16Acos4t —16Bsin 4t — 24 Asin 4t

+24Bcos4t +10Acos4t +10Bsin 4t
= (~6A+24B)cos 4t + (— 24 A—6B)sin 4t

Substituting in the given non-homogeneous differential equation, we obtain
(—6A+24B)cos 4t + (- 24A—6B)sin 4t = 25cos 4t

Equating coefficients, we have

—6A+24B =25
—-24A-6B=0
Solving these equations, we obtain
Ao B g 50
102 51
Thus Xp(t)= 2 cosat+Vsinat
102 51

Hence the general solution of the differential equation is:
x(t)=e3[c, cost + ¢, sin t]—écosm +2inat
102 51

x'(t)=—3e~t[c; cost +cpsint]+e 3 (— ¢y sint + ¢, cost) + %sin 4t + %cos 4t
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Now x(O):% gives
25 1

cl-—==

102 2

1 25 51425

or C,=—+——=
2 102 102
38
or C,=—
51
Also x'(0)=0 gives
-3¢, +¢C, + 200 =0
51
200 114 86
or C2 = = —
51 51 51
Hence the solution of the initial value problem is:
x(t)=e 38 cost = Bsint | =22 cosat + Dsinat
51 51 102 51

24.2 Transient and Steady-State Terms
Due to the presence of the factor e > we notice that the complementary function
X (t)= e_3t(§cost —%sintj
possesses the property that
lim x.(t)=0

X—>0
Thus for large time, the displacements of the weight are closely approximated by the
particular solution

xp(t)= ~ 2 cosat+Vsinat
102 51

Sincex (t)—> Oast — oo, it is said to be transient term or transient solution. The
particular solution x (t)is called the steady-state solution

Hence, when F is a periodic function, such as
F(t)=F,sinyt or F(t)=F,cosyt

The general solution of the equation
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2
X o ¥ p2xe F(t)
dt* dt
consists of
x(t) = Transient solution + Steady State Solution
Example 2

Solve the initial value problem

2
d 2X+2%+2x:4cost+25int
dt dt

Solution
First consider the associated homogeneous linear differential equation

2
d 2X+2%+2x:0
dt dt
Put x=e™ x'=me™, x"=m?e™

Then the auxiliary equation is

m2+2m+2=0

_24./4—
or m:%:_]_ii

Thus the complementary function is

Xc =€ t(cy cost +cy sint)

For the particular integral we assume that

Xp = Acost + Bsint
x’IO =—Asint + Bcost
x’b =—Acost — Bsint

So that
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dx

d?x
Py 2d—tp+ 2x, = —Acost — Bsint — 2Asint + 2Bcost + 2Acost + 2Bsint

dt?
d2x

dt?

d
p+2-§?+2xp=(A+2Byma+(—2A+B)ynt

or

Substituting in the given differential equation, we have
(A+2B)cost + (- 2A+ B)sint = 4cost + 2sint

Equating coefficients, we obtain

A+2B=4
-2A+B=2
Solving these two equations, we have:
A=0, B=2
Thus Xp =2sint

Hence general solution of the differential equation is

X=X, +X

p
or x(t)=e"(c  cost +c, sint)+ 2sint
Thus x'(t)=—e"(c, cost+c,sint)+e " (- ¢ sint +c, cost)+ 2cost

Now we apply the boundary conditions
x(0)=0=¢;.1+¢c,.0+0=0
=¢ =0
x'(0)=3= -c,.1+¢c,.1+2=3
=C, =1
Thus solution of the initial value problem is
x=e'sint+2sint
Since e'sint—>0 as t—0
Therefore

e 'sint =Transient Term, 2sint = Steady State
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Hence x=e'sint + 2sint
%f_/ %r_/
Transient Steady—state

We notice that the effect of the transient term becomes negligible for about
t>2r

24.3 Motion without Damping

If the system is impressed upon by a periodic force and there is no damping force then
there is no transient term in the solution.

Example 3
Solve the initial value problem

3T22X+co2x =F,sinyt
x(0)=0, x'(0)=0
Where F, is a constant
Solution

For complementary function, consider the associated homogeneous differential equation
d—2X +w?x=0
dt?
Put x=e™ x"=m?e™
Then the auxiliary equation is
m? +w? =0 = m = +oi
Thus the complementary function is
X, (t)= ¢, coswt + ¢, sin wt
To find a particular solution, we assume that
Xp(t)= Acosyt + Bsinyt

!

Then X (t) = —Aysinyz + Bycos yt

xp(t)= —Ay? cosyt — By? sin yt

Therefore,

2

" 2 2 . 2 2 G
Xp + @ Xp =—Ay” cosyt —By” sinyt + Aw” cosys + Bw*” sin yt
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Xp + a)zxp = A(a)2 —7/2)cos;/t + B(coz —72)Sin n
Substituting in the given differential equation, we have
A(a)2 - yZ)COS Vt + B(co2 - yz)sin yt = F,sinpt
Equating coefficients, we have
A(a)2 —;/2)= 0, B(a)2 —7/2)= Fo

Solving these two equations, we obtain

F :
Therefore Xp (t)= (ﬁjsm A

Hence, the general solution of the differential equation is

2

(t)_ - FO -
X(t)=c, coswt + ¢, sinwt + - sin yt

For
ﬁ Ccos yt

w =y

Then X'(t) = —Ciwsin wt + c,w CoS it +

Now we apply the boundary conditions
x(0)=0=>¢;.1+¢,.0+0=0

X’(O) =0= C_I_.0+C2a).1+ wlzo_yyz =0

—~cC. = _7/':0
? a)ia)z—yzi

Thus solution of the initial value problem is

X(t): EO 2(—7Sina)t+a)sinyt), (;/7&(0)
o\o -y

Note that the solution is not defined for » = , However lim x(t)can be obtained using
Ve

the L’Hopital’s rule
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—ySin wt + wsin yt

x(t)=lim F, —
)0 a)(cu —y )
d . .
—(~ysinat +wsint)
. dy
=F, Iim o g
Yo 7(0(@2 _7/2)
dy
. —Sin wt + wt COS yt
= F, lim o LT OIE)
y—o — 2wy
(—sinwt+wtcosmj
=F,
2
2w
Fo . F
=—2 sinwt ——2tcoswt
20° 2w

Clearly|x(t)|—>oo as t — oo.Therefore there is no transient term when there is no
damping force in the presence of a periodic impressed force.

24.4 Electric Circuits

Many different physical systems can be described by a second order linear differential
equation similar to the differential equation of the forced motion:
d2x dx
m——+ f—+kx=flt
2P t)

One such analogous case is that of an LRC-Series circuit. Because of the similarity in
mathematics that governs these two systems, it might be possible to use our intuitive
understanding of one to help understand the other.

24.5 The LRC Series Circuits

The LRC series circuit consist of an inductor, resistor and capacitor connected in series
with a time varying source voltage E(t),

24.5.1 Resistor

A resistor is an electrical component that limits or regulates the flow of electrical current
in an electrical circuit.

The measure of the extent to which a resistor impedes or resists with the flow of current
through it is called resistance, denoted by R .

Clearly higher the resistance, lower the flow of current. Lower the resistance, higher the
flow of current. Therefore, we conclude that the flow of current is inversely proportional
to the resistance, i.e
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1

| =V.—
R=V=IR

WhereV is constant of proportionality and it represents the voltage. The above equation
is mathematical statement of the well known as Ohm’s Law.

24.5.2 Inductor

An inductor is a passive electronic component that stores energy in the form of magnetic
field. In its simplest form the conductor consists of a wire loop or coil wound on some
suitable material.

Whenever current through an inductor changes, i.e increases or decreases, a counter emf
is induced in it, which tends to oppose this change. This property of the coil due to which
it opposes any change of current through it is called the inductance.

. I .
Suppose that | denotes the current then the rate of change of current is given by_%Thls

dl

produces a counter emf voItageV . Then Vis directly proportional to dt

Vad—l V = Ld—I
da = dt

Where L is constant of proportionality, which represents inductance of the inductor. The
standard unit for measurement of inductance is Henry, denoted by H .

24.5.3 Capacitor

A capacitor is a passive electronic component of an electronic circuit that has the ability
to store charge and opposes any change of voltage in the circuit. The ability of a capacitor
to store charge is called capacitance of the capacitor denoted byC . 1f 79 coulomb of a
charge to the capacitor and the potential difference of V volts is established between 2
plates of the capacitor then

ga C=q=CV
-q
or V_é

Where C is called constant of proportionality, which represent capacitance. The standard
unit to measure capacitance is farad, denoted by F .

24.6 Kirchhoff’s Voltage Law

The Kirchhoff’s 2" law states that the sum of the voltage drops around any closed loop
equals the sum of the voltage rises around that loop. In other words the algebraic sum of
voltages around the close loop is zero.
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24.6.1 The Differential Equation

Now we consider the following circuit consisting of an inductor, a resistor and a
capacitor in series with a time varying voltage source E(t).

L

+

c

| |
| |
If V| ,Vg andV, denote the voltage drop across the inductor, resistor and capacitor

respectively. Then

dl q
Vi =L—, Vg =RI, Vo =—
L g’ 'R cT ¢

Now by Kirchhoff’s law, the sum of V ,V andV, must equal the source voltage E(t)i.e

V, +Vg +V, = E(t)

or L9 R S g()
dt C
Since the electric current | represents the rate of flow of charged—q. Therefore, we can
write
,_da
dt
Substituting in the last equation, we have:
2
L9799, R49, 9 g
dt? d C

Note that:

O We have seen this equation before! It is mathematically exactly the same as the
equation for a driven, damped harmonic oscillator.

o If E(t)=0,R=0 the electric vibration of the circuit are said to be free damped
oscillation.

o If E(t)=0,R=0then the electric vibration can be called free un-damped
oscillations.
24.6.2 Solution of the differential equation

The differential equation that governs the flow of charge in an LRC-Series circuit is
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2
1979, R99, 9 g
dt? dt C

This is a non-homogeneous linear differential equation of order-2. Therefore, the general
solution of this equation consists of a complementary function and particular integral.

For the complementary function we find general solution of the associated homogeneous
differential equation

2
1970, gda 9_,
dt? d C

2
We put q=e™, :—?zmemt, a7q_ 2 mt

Then the auxiliary equation of the associated homogeneous differential equation is:
Lm? + Rm+ 1 =0
C

If R = 0then, depending on the discriminant, the auxiliary equation may have
o Real and distinct roots
o Real and equal roots

o Complex roots
Case 1 Real and distinct roots
If Disc = R? —£>O
C

Then the auxiliary equation has real and distinct roots. In this case, the circuit is said to
be over damped.

Case 2 Real and equal
AL
c

If Disc = R% — 0

Then the auxiliary equation has real and equal roots. In this case, the circuit is said to be
critically damped.
Case 3 Complex roots
Disc=R2 4= <0
If c

Then the auxiliary equation has complex roots. In this case, the circuit is said to be under
damped.

Note that
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o Since by the quadratic formula, we know that

_ —R+yR%Z-4L/c

- 2L
In each of the above mentioned three cases, the general solution of the non-

. . . —Rt/2L
homogeneous governing equation contains the factor € . Therefore

q(t) > 0ast >

o In the under damped case when q(0)= g, the charge on the capacitor oscillates as it
decays. This means that the capacitor is charging and discharging ast — oo
o In the under damped case, i.e. when E(0)=0,and R =0, the electrical vibration do

not approach zero ast — co. This means that the response of the circuit is Simple
Harmonic.
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25 Forced Motion (Examples)

Example 1 Consider an LC series circuit in which E(t)=0

Determine the charge q(t)on the capacitor for t > Qif its initial charge is ¢, and if

initially there is no current flowing in the circuit.

Solution
Since in an LC series circuit, there is no resistor. Therefore,
r99_g
dt

So that, the governing differential equation becomes

2
dt?2 ¢
The initial conditions for the circuit are

9(0)=d,, 1(0)=0

. dq
Since — =1t
el
Therefore the initial conditions are equivalent to
a(0)=g,, ¢'(0)=0
Thus, we have to solve the initial value problem.

2
Ld—q+lq =0
dt2 ¢
q(0)=d,, 9'(0)=0

To solve the governing differential equation, we put

2
q :emt’ d g _ mzemt
dt
So that the auxiliary equation is:
Lm? + 1 =0
c
= mi--1
Lc
= m = J_{L]i
s/Lc

Therefore, the solution of the differential equation is :
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q(t)=¢; cos(LtJ +Cy sin(itJ
Jie JLe
Now, we apply the boundary conditions
q(o): Jo = Qo =C;.1+¢C,.0

= C =0,
1 . 1
Thus q(t)= o COS(Etj +Cp sm(ﬁtJ
Differentiating w.r to t, we have:
dq do . ( 1 ] c,
— =— sin t cos
dt  Jic \JLe ) Jic
c
Now q(0)=0=0+—2-.1=0
Jie
Hence
1
alt)=do cosﬁt
Since I(t):d—q

dt
Therefore, current in the circuit is given by

1(t)=— \/qo_sm(\/l_]

Example 2

Find the charge q(t)on the capacitor in an LRC series circuit when L=0.25 Henry, R=10

Ohms, C=0.001 farad, E(t)=0, q(0)=g,and 1(0)=0

Solution

We know that for an LRC circuit, the governing differential equation is

d’g _dq g
SO R I
dt? dt+c ()

SinceL =0.25 =1, R=10 ,C =0.001=L
4 1000

Therefore, the equation becomes:
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ld—q+1o 99, 1000q =0
4dt2 T dt
2
or OI—q+4o 99, 4000q =0
dt2 | dt

The initial conditions are
q(0)=q,, 1(0)=0
or q(0)=a,, 9'(0)=0

To solve the differential equation, we put

-
Therefore, the auxiliary equation is

m? +40m + 4000 = 0

—40++/1600 —16000
2

= m=-20%60i
Thus, the solution of the differential equation is

q(t)=e"?"(c, cos60t + ¢, sin 60t)

=>m=

Now, we apply the initial conditions
a(0)=q, = c;.1+¢,.0=0,

= C =0,
Therefore q(t) = e 2% (g, cos60t + ¢, sin 60t)

Now  q'(t)=—20e72%(q, cos60t + ¢, cos60t )+ e 2% (- 60q, sin 60t + 60 ¢, cos 60t)

Thus q'(0) =0= —20q, —20c, +60c,.1=0
SPSLS

Hence the solution of the initial value problem is
q(t)=9,e™" (cos 60t + ;sm GOtJ

As discussed in the previous lectures, a single sine function
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0,10

q(t)= Te‘zm sin(60t +1.249)

Since R=0and lim g(t)=0

t—>o
Therefore the solution of the given differential equation is transient solution.
Note that

The electric vibrations in this case are free damped oscillations as there is no impressed
voltage E(t)on the circuit.

Example 3
Find the steady state of solution q, (t)and the steady state current in an LRC series circuit
when the impressed voltage is E(t)=E, sin yt

Solution

The steady state solution q (t)is a particular solution of the differential equation
d’g _dgq 1 .
—+R—+—q=E,sinyt
g d co e

We use the method of undetermined coefficients, for finding q (t). Therefore, we assume
q(t)=Asinyt+Bcosyt

Then q'(t)= Aycosyt—Bysinyt

q"(t)=—Ay?sinyt — By cosst
Therefore
dg 1

2
d’g +R—+=g=—-ALy?sinst —BLy?cos + ARy cos

L
dt? dt C

] A . B
— BRysin £t +—sin #t + —Co0sS
ysinpg c n c n

= {g— ALy? — BRy}Sin}/t 4{%_ BLy® + AR}/}COS;&
Substituting in the given differential equation, we obtain
A 2 - B 2 -
e ALy“ —BRy [sinjt + e BLy® + ARy |cosyt = E_sinpt
Equating coefficients of siny tandcosy t, we obtain

A 2
—-ALy?-BRy=E
c Aty y=E,
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g—BLyZ +ARy =0

or (%—Lysz—BRy=Eo

1 2
ARy +| =-Ly?|B=0
Y (c 7)

ARy

To solve these equations, we have from second equation B = 1_—

el [P
C 4

Substituting in the first equation and simplifying, we obtain

Using this value of A and simplifying yields B = ER

If we use the notations

X = L]/—Cithen X2 = LZ}/Z —2(:—L+$
e Y

Z =+ X?+R? then ZZ=L27/2—&+ !
C CZ 2

/4

Then A=—2 B=—2

Therefore, the steady-state charge is given by q,, (t) =— EOZ( sinpt —
|74

So that the steady-state current is given by | , (t) = %(gsin 7t — écos ytj

Note that

a Thequantity X =Ly —Ciis called the reactance of the circuit.
Y

a The quantity Z =+ X 2 +R? is called impedance of the circuit.

0 Both the reactance and the impedance are measured in ohms.

2L 1
_ L2 2_7+
7{ 7o e

E.R
Z°
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Exercise

11. A 16-Ib weight stretches a spring 8/3 ft. Initially the weight starts from rest 2-ft
below the equilibrium position and the subsequent motion takes place in a
medium that offers a damping force numerically equal to % the instantaneous
velocity. Find the equation of motion, if the weight is driven by an external force
equal to f(t)=10cos3t.

12. A mass 1-slug, when attached to a spring, stretches it 2-ft and then comes to rest
in the equilibrium position. Starting at t=0, an external force equal to
f(t)=8sin4tis applied to the system. Find the equation of motion if the

surrounding medium offers a damping force numerically equal to 8 times the
instantaneous velocity.

13.In problem 2 determine the equation of motion if the external force is
f(t)=e " sin 4t . Analyze the displacements fort — oo.

14. When a mass of 2 kilograms is attached to a spring whose constant is 32 N/m, it
comes to rest in the equilibrium position. Starting at t=0, a force equal to

f(t): 68e %' cos4t is applied to the system. Find the equation of motion in the

absence of damping.
15. In problem 4 write the equation of motion in the form

x(t)= Asin(wr + ¢)+ Be 2 sin(4t +6).
What is the amplitude of vibrations after a very long time?
16. Find the charge on the capacitor and the current in an LC series circuit. Where

L =1Henry, C = %farad, E(t) = 60 volts . Assuming that g(0)=0andi(0)=0.

17. Determine whether an LRC series circuit, where L =3 Henrys, R =10 ohms,

C =0.1farad is over-damped, critically damped or under-damped.
18. Find the charge on the capacitor in an LRC series circuit when L =1/4 Henry,

R = 20 ohms, C =1/300 farad, E(t)= 0 volts, g(0) = 4 coulombs and i(0) = 0 amperes
Is the charge on the capacitor ever equal to zero?
Find the charge on the capacitor and the current in the given LRC series circuit. Find the
maximum charge on the capacitor.
19. L=5/3 henrys, R =10 ohms, C =1/30 farad, E(t) =300 volts, q(0)=0 coulombs,
i(0)= 0 amperes
20. L =1 henry, R =100 ohms, C =0.0004 farad, E(t)= 30 volts, g(0)= 0 coulombs,
i(0)= 2 amperes
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26 Differential Equations with Variable Coefficients
So far we have been solving Linear Differential Equations with constant coefficients.

We will now discuss the Differential Equations with non-constant (variable)

coefficients. These equations normally arise in applications such as temperature or

potential U in the region bounded between two concentric spheres. Then under some
d?u . du

> +2—=0
dr dr

where the variable r>0 represents the radial distance measured outward from the center
of the spheres.

circumstances we have to solve the differential equation r

Differential equations with variable coefficients such as

x2y”+ xy’+(x2 —v2)y =0

@a- x2)y”—2xy’+ nin+1)y=0
and  y"-2xy'+2ny=0

occur in applications ranging from potential problems, temperature distributions and vibration phenomena
to quantum mechanics.

The differential equations with variable coefficients cannot be solved so easily.
26.1 Cauchy- Euler Equation

Any linear differential equation of the form

n d " y n-1 nily d y
a X +a X +er+a, X ——+a,Yy=0(X
n dX n n-1 dxn_l 1 dX 0 y g ( )

where a,,a,,,---,a,are constants, is said to be a Cauchy-Euler equation or equi-

dimensional equation. The degree of each monomial coefficient matches the order of
differentiation i.e x"is the coefficient of nth derivative of y, x"* of (n-1)th derivative of
y, etc.

For convenience we consider a homogeneous second-order differential equation

2
ax2u+bxﬂ+cy:0, Xx#0

dx2 dx

The solution of higher-order equations follows analogously.
Also, we can solve the non-homogeneous equation
2

ax? d_y+ bxd—y

dx? dx

by variation of parameters after finding the complementary function y,(x).

+cy=g(x), x#0
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We find the general solution on the interval (0,00) and the solution on (0,—0) can be
obtained by substituting t = —x in the differential equation.

26.1.1 Method of Solution
We try a solution of the form y = x™, where m is to be determined. The first and second
derivatives are, respectively,

2
Y xmt ang 9 2 m(m —-1)x™2

dx dx2

Consequently the differential equation becomes

2
ax’ %+ bxj—y+ cy = ax? -m(m—-1)x"2 +bx-mx™* +cx"
X X

=am(m-2x" +bmx™ +cx"
= x"(am(m-1)+bm+c)
Thus y = x™is a solution of the differential equation whenever m is a solution of the
auxiliary equation
(am(m-1)+bm+c)=0 or am®* +(b—-a)m+c=0
The solution of the differential equation depends on the roots of the AE.
26.1.2 Case-I (Distinct Real Roots)

Let m, and m, denote the real roots of the auxiliary equation such that m, # m,. Then
y=x™ and y=x" form a fundamental set of solutions.

Hence the general solution is
y=CcX™+C,x™.

2

Example 1 Solve X2 ay_ 2xd—y—4y =0
dx? dx
. dy dzy m-2
Solution: Suppose that y = x™, then =~ =mx™" , —2-=m(m-1)x
dx dx2

Now substituting in the differential equation, we get:

ZdZy dy 2 m-2 m-1 m m
X W_ZX&_LW:X m(m-=D)x"° =2x-mx"" —4x" =x"(m(m-1)—2m-4)

= x™(m?-3m-4)=0 if m>-3m-4=0

This implies m; =—-1,m, = 4; roots are real and distinct.
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So the solution is y=c,x ' +c,x".

26.1.3 Case Il (Repeated Real Roots)

If the roots of the auxiliary equation are repeated, that is, then we obtain only one
solution y = x™.

To construct a second solution vy, , we first write the Cauchy-Euler equation in the form

d’y bdy ¢
_— - — =0
dx? axdx ax® Y

2

Comparing with d—2/+ P(x)ﬂ +Q(x)y=0
dx dx

We make the identification P(x) =£ . Thus
ax

Since roots of the AE am® + (b—a)m+c =0 are equal, therefore discriminant is zero

(b—a) _(b-a)
- or —2ml_+—a

lem =

—b b-a
y2=xml'[xa.x a dx
dx

y, =x™|—=x™Inx
X

The general solution is then

m m.
y=c X" +C,xInx

dy
Y ax Y

2
Example 2 Solve  4x? M+8x
dx dx

+y=0.

PSR _m dy i dy _ g m-2
Solution: Suppose that y = x™, thend— = mXx 4 m(m—-21)x""".
X X

Substituting in the differential equation, we get:
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dZ

ax* q ¥+8ng+Y=Xm(4m(m—1)+8m+l)=xm(4m2+4m+1):0
X

dx
if 4m® +4m+1=0 or (2m+1)° =0. Since m, = —%, the general solution is

1 1
—cx 2 2
y=CX 2+C,X 2Inx.

For higher order equations, if m,is a root of multiplicity k, then it can be shown that:
xM x™M |nx, x™M (In x)2,---,xml(|n X)k_lare k linearly independent solutions.

Correspondingly, the general solution of the differential equation must then contain a
linear combination of these k solutions.

26.1.4 Case I11 (Conjugate Complex Roots)

If the roots of the auxiliary equation are the conjugate pair m, = +if, m, =a—if

where & and >0 are real, then the solution is y = ¢ x? 18 ¢, x% 15,

But, as in the case of equations with constant coefficients, when the roots of the auxiliary
equation are complex, we wish to write the solution in terms of real functions only. We
note the identity

Xiﬂ _ (elnx)iﬂ :eiﬂlnx’
which, by Euler’s formula, is the same as
18 =cos(BInx)+isin(BInx)
Similarly we have
x 1B = cos(SInx)—isin(fFInx)
Adding and subtracting last two results yields, respectively,
18 4 x B = 2cos(f1Inx)
and X' —x718 =2isin(BInx)

From the fact that y = c;x¢ 17 4 ¢, x% 1P is the solution of ax?y”+bxy’+cy =0,
for any values of constants c, and c,, we see that

y1=x2 (X2 1 x7B), (o =c, =1)
Yo =x¢ (X8 —x78), (q=Lc,=-1)

ory; =2x%(cos(£1Inx)) , y, =2x*(sin(SIn x)) are also solutions.
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Since W (x“ cos(BInx),x* sin(B1Inx)) = fx*** = 0; >0, on the interval (0,), we
conclude that y, = x“ cos(fInx)and y, = x“ sin(£ In x) constitute a fundamental set of
real solutions of the differential equation. Hence the general solution is

y, = x“[c, cos(SInx)+c, sin(FInx)]

2

Example 3 Solve the initial value problem x> %+ 3x%+3y =0, yO=1y'®d=-5
X X

2

Solution: Let us suppose that: y =x", then % =mx™" and C:j Z =m(m-1x"?.

X X
2 d 2y dy m m 2
X d7+3x&+3y =x"(MM-2)+3m+3)=x"(M"+2m+3) =0

if m>+2m+3=0.

From the quadratic formula we find that m, = —1++/2i and m, = —1—+/2i. If we make
the identifications ¢ =—-1 and B =+/2, so the general solution of the differential
equation is y, = x *[c, cos(~/2 Inx) + ¢, sin(~/2 In x)].

By applying the conditions y(1) =1,y'(1) = -5, we find that ¢, =1 and c, = —242.

Thus the solution to the initial value problemis y, = x‘l[cos(\/fln X) — Zﬁsin(ﬁln X)]
Example 4 Solve the third-order Cauchy-Euler differential equation

3 2
3M+5x2d—3+7xﬂ+8y:0,

X
dx?® dx dx

Solution

The first three derivative of y =x" are

2 3
gy =mx™*, d 2/ =m(m-1)x"7?, %y = m(m—l)(m—2)xm‘3,
dx X dx3

so the given differential equation becomes

3 2
XSZTZ+5X2 %+7x%+8y =x’m(m—-1)(m—2)x""° +5x’m(m -1)x"* + 7xmx"™" +8x",

=x"(m(m-)(m-2)+5m(m-1)+7m+8)
=x"(m* +2m?® + 4m +8)

In this case we see that y = x" is a solution of the differential equation, provided m is a
root of the cubic equation

m® +2m? +4m+8=0
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or (m+2)(m*+4)=0

Theroots are: m; =-2,m, =2i,m, =-2i .

Hence the general solution is

y, =, X2 +c, cos(2Inx) +c, sin(2In x)
Example 5 Solve the non-homogeneous equation X2 y"—3xy'+3y = 2x%eX

2
Solution Put y=x" = @ _ mx™ ™, d—Z =m(m-1)x"?
dx dx

Therefore we get the auxiliary equation,
m(m-1)-3m+3=0 or (m-1)(m-3)=0 or m=13
Thus y, =c,x+C,x°
Before using variation of parameters to find the particular solution y  =u,y, +u,y,,

Y, y, 0
FO) v, y; f(x)
, and W is the Wronskian of y, and vy, , were derived under the assumption that the
differential equation has been put into special form . y"+ P(x)y'+Q(x)y = f (X)

W W
recall that the formulas u; = —+ and uj, =—%, where W, = , W,
W W

!

Therefore we divide the given equation by x*, and form y” _3 y +i2 y = 2x%e*
X X

we make the identification f(x) =2x?e* . Now with y, = x, y, = x*, and

x X 0 x3 X X

= =2x%, W, = =-2x%*, W, = = 2x%*
1 3x2 2x%e*  3x2 1 2x%e*
we find
2x°e* 2x3e*
u',=———=-x"" and u,=———=¢e"
2X 2X
u, =—x’e* +2xe* —2e* and u, =e".
Hence Yo =UY; +U,Y,

X

= (—x%e* +2xe* - 2e*)x+e*x® = 2x%e* — 2xe
Finally we have y =y, + Yy, =c,Xx+C,X° +2x’e* — 2xe*

26.2 Exercises
1. 4x%y"+y=0
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2 xy"—y'=0

3 xzy"+5xy’+3y:0
4, 4x2 y"+4xy'—y=0
5 x2y”—7xy’+41y=0

3 2
6. x3d y—2x2d y+4xd—y—4y=0

dx3 dx? dx
4d%y o 3ddy o o2d%y . dy
7. X i +6X e +9x d7+3x&+y=0

8. x2y”—5xy'+8y =0y =0,y =4
9. x2y”—2xy'+2y =x3Inx

3 2
3d%y _o.2d°y dy o, _ 3
10. X e 3X W, +6xdx 6y =3+Inx

© Copyright Virtual University of Pakistan 236



Differential Equations (MTH401) VU

27 Cauchy-Euler Equation (Alternative Method of Solution)
We reduce any Cauchy-Euler differential equation to a differential equation with constant coefficients
through the substitution

t

X=e" or t=Inx

dy dy dt 1 dy

'dx dt dx x dt

dy _d 1dyy_1.ddy, 1 dy
dx? dx x dt’ x dx dt’ x? dt
dy 1 d d 1 d

or _y __(_y)___z_y

dx?> x dt dt'dx x> dt

or =7 e ur

dy dy .d% d’ dy

Therefore X—==—", X" —F>=—7
dx dt dx dt dt
Now introduce the notation
2
D= di D? = ::—2 etc.
X
2

and A:%,AZ:S?, etc.

Therefore, we have
xD=A

x2D2=A2 —A=A(A-1)
Similarly
x3D3 = A(A-1)(A-2)
xD% = A(A-1)(A—-2)(A—3) so on so forth.

This substitution in a given Cauchy-Euler differential equation will reduce it into a
differential equation with constant coefficients.
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At this stage we suppose Yy = et {0 obtain an auxiliary equation and write the solution

in terms of y and t. We then go back to x through X = et :
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2
Example 1 Solve x> d—gl— 2xﬂ—4y =0
dx dx

Solution The given differential equation can be written as

(x’D*-2xD-4)y =0
With the substitution x =€t or t = Inx, we obtain
xD=A, x*D?* =A(A-1)
Therefore the equation becomes:
[A(A-1)-2A-4]y=0
or (N> -3A-4)y=0

2

or
dt? dt

2
M then dy _ meMt. a7y _ 2emt

Now substitute: y=e
y dt dt?

Thus (m2 —3m-4)e™ =0 or m2-3m-4=0, which is the auxiliary equation.
(m+)(m-4)=0 m=-14

The roots of the auxiliary equation are distinct and real, so the solution is

y=ce t+ce™

But X= et , therefore the answer will be

y =0 X T4cpx?

2
d ¥+8xﬂ+y:0
dx dx

Solution The differential equation can be written as:
(4x’D? +8xD+1)y =0

Example 2 Solve 4x°

2
Where D :i,D2 :d—2
dx dx

Now with the substitution X =elor t=Inx, xD=A , x?D? = A(A—-1) where A= %

The equation becomes:
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(4A(A-1) +8A+1Dy=0 or (4A° +4A+1)y =0

2
29V Y

+y=0
dt? dt y

2
mt d<y m2emt

- dy
Now substituting y =e™ then —>=me™ = Y=

(4m2 +4m+1)eM =0

or 4m? +4m+1=0 or 2m+1)*=0
1 1
orm= _E’_E; the roots are real but repeated.

Therefore the solution is
1

y=(c+Ccot)e 2
1

or y=(c +CpINX)x 2
_1 1
i-e y=gX 2+CoX 2Inx

d?y

, We get

Example 3 Solve the initial value problem x> e + 3% (;y +3y=0, yQO =1y’ =-5
X

Solution
The given differential can be written as:

(x’D* +3xD+3)y=0
Now with the substitution X =€t or t=1InX we have:
xD=A, x*D?* =A(A-1)
Thus the equation becomes:

(A(A=1)+3A+3)y=0 or (A>+2A+3)y=0

Put y —eM then the A.E. equation is:

orm>+2m+3=0

_924+./4—
#z_liiﬁ

orm=
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So that solution is:

y =e7t(c cos/2t +c, sin/2t)
or y=Xx"1(c;cosv2Inx+c,sin2 Inx)

Now y(1) =1 gives, 1=(c,cos0+c,sin0) =c, =1

y' = —x72 (q cos~/2In X+Coy sin J21n X) + X2 (—\/Ecl siny/2In x+\/502 cos~/2In X)
- y'(1) =5 gives: —5=—[c, +0]+[+2c,] or v/2¢c, =¢, -5=—4, c, = _T: =22

Hence solution of the IVP is:

y =X "cos(v2 In x)— 242 sin(v2 In X)].

3 2
Example 4 Solve X3 d—¥+ 5x° d—¥+ 7xﬂ+8y =0
dx dx dx
Solution The given differential equation can be written as:
(x*D® +5x°D* +7xD +8)y =0

Now with the substitution X =€t or t=1InX we have:

xD=A, x*D? =A(A-1), X*D* =A(A-1)(A-2)

So the equation becomes:
(AA-D)(A-2)+5A(A-1)+7A+8)y=0

or (A* —3A% +2A +5A* -5A+7A+8)y =0

or (A*+2A° +4A+8)y =0
dy

3 2
d y+2d y+4——+8y:0

or
dt® dt? dt

Put y= et , then the auxiliary equation is:
m® +2m® +4m+8=0
or (mM*+4)(m+2)=0
m=-2, ort2i
So the solution is:

y=cie %+, cos 2t +C35in 2t
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or y:clx_2+c2 cos(2In x) +czsin(2In x)
Example 5 Solve the non-homogeneous differential equation
Xx2y" —3xy’ +3y = 2x4eX
Solution
First consider the associated homogeneous differential equation.

x2y"—3xy’+3y =0

2

With the notation d = D,d—2 = D?, the differential equation becomes:
X X

(x2D?-3xD+3)y =0

With the substitution X =€t or t =In X, we have:
xD=A, x*D?*=A(A-1)

So the homogeneous differential equation becomes:
[A(A-1)-3A+3]y=0

(A> —4A+3)y =0

2
97y 4 W ,3y0

or
dt? dt

Put y:emt then the AE is:
m?—4m+3=0or (m-3)(m-1)=0,0or m=13

3t

~ Yo =Cet+cpet, as x=¢t

Yo =0 X+ CZX3
For 'Y p we write the differential equation as:

" 3 ' 3 _ 2,X
y—yy+x—2y_2xe

Yp = u1x+u2x3, where u, and u, are functions given by

Wy Wy

—  Uh=—£,
W' 2T W

U =

with
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3 3
X X 0 X
W = , =2x3 Wy = ) |=—2x°¢* and
1 3x 2xceX  3x
X 0
W, = 5 | =2x%%
1 2xe*
SnX 3aX
Sothat U'q= 2X 2 ——x%eX and U’ 9= 2X 2 =eX
2X 2X
U = —j x2eXdx = [x2%eX — 2j xe*Xdx]
=—x%eX +2[xe* - [e*dx]
= —x%eX 4+ 2xeX — 2e%
and Uy = [eXdx=e*
Therefore y, = x(—x2eX + 2xeX — 2e%) + x3eX = 2x2eX — 2xeX

Hence the general solutionis: Y = Y¢ +Yp =y = Cy X +Co X3 + 2x%eX —2xeX

2d%y Ay

Example 6 Solve X —X=—=+Vy=InX
p 5 dx y

dx
Solution Consider the associated homogeneous differential equation.
2
2(; y_ gy+y Oor (x2D2 xD+1)y=0
X2

With the substitution X =el, we have: XD=A, x?D? = A(A-1)

So the homogeneous differential equation becomes: [A(A-1)—A+1]y =0

d?y _dy
= (A -2A+1)y=0 = —2-—24+y=0
( )Y o2 i

Putting Yy = et , We get the auxiliary equation as:m? —2m+1=0 = (m-1)*=0 =
m=11 = .. yo =gl +cote! = yo =gx+coxinx .
Now the non-homogeneous differential equation becomes:

d?y ,dy

dt2 dt+y t
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By the method of undetermined coefficients we try a particular solution of the form
Yp = A+ Bt. This assumption leads to
—2B+ A+ Bt =t sothat A=2 and B=1
Using Y =Yc +Yp, we get
ye =cet +cotel + 2+t
So the general solution of the original differential equation on the interval (0,) is
Yo = X+CoxInx+2+InX
27.1 Exercises
Solve using X = et
2
1 x 4y,
dx? d
2
12, X2 d y+xd—y+4y:0
dx? ~ dx
2
13. xzu XQ—Zy 0
dx dx
2
14. 25X d—%/+25xdy+y 0
dx dx
2
15. 3X2M+6X Oly+ y=0
dx?  dx
3
6 x4 L d Y=0
dx dx3
2
17. xzu+3x dy _ =0,y@®=0,y'(0)=4
dx2  dx
2
2d%y dy . _ 1) =
18. X—Z2+x=2+y=0,y(D=Ly'D=2
o2 Pty yh=1Ly'@
2
19.  x2 MJrloxﬂ+8y = x?
dx2 dx
2
20, 29 oW _op-5
dx? dx X3
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28 Power Series (An Introduction)

a A standard technique for solving linear differential equations with variable
coefficients is to find a solution as an infinite series. Often this solution can be
found in the form of a power series.

a Therefore, in this lecture we discuss some of the more important facts about
power series.

a However, for an in-depth review of the infinite series concept one should consult
a standard calculus text.

28.1 Power Series
A power series in( X —a) is an infinite series of the form
e, (x—a)" =cy+c(x—a)+Cy(x—a)’ +--.
n=0

The coefficients Cc,, C;, C,,... and a are constants and X represents a variable. In this

discussion we will only be concerned with the cases where the coefficients, X and a are
real numbers. The number a is known as the centre of the power series. \

0 (_1)n+1 X2 X3
Example 1 The infinite series Z—Zx” =X—
n=1 n 2 3

is a power series in X. This series is centered at zero.

28.2 Convergence and Divergence

o If we choose a specified value of the variable X then the power series becomes an
infinite series of constants. If, for the given X, the sum of terms of the power
series equals a finite real number, then the series is said to be convergent at X.

o A power series that is not convergent is said to be a divergent series. This means
that the sum of terms of a divergent power series is not equal to a finite real

number.
Example 2
0 N 2 .3
ider the power series 2. =1+x+ +X +
a) Consider —= T T
@ P S TREY
o0 Xn
Since for x =1 the series become 2. — =1+1+—+—+---=¢
n=0 N! 21 3l

Therefore, the power series converges X =1 to the number e

(b) Consider the power series
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§ NI(x+2)" =1+ (x+2) +21(x+2)® +31(x+2)% +---
n=0

The series divergesV X, except at X = —2. For instance, if we take X =1 then the series

o0

becomes 2. n!(x+2)n =1+3+18+---
n=0

Clearly the sum of all terms on right hand side is not a finite number. Therefore, the
series is divergent atx =1. Similarly, we can see its divergence at all other values of
X#—2

28.2.1 The Ratio Test

To determine for which values of X a power series is convergent, one can often use the

o0 0
Ratio Test. The Ratio test states that if > a, = »_ ¢, (x—a)" is a power series and

n=0 n=0
. la . lc
lim [ = Jim |- x-a|= L
n—w| a, n—w| C,

Then:
o The power series converges absolutely for those values of x for whichL <1.
o The power series diverges for those values of Xxfor whichL >1 or L = 0.

o The test is inconclusive for those values of X for whichL =1.
28.2.2 Interval of Convergence

The set of all real values of X for which a power series

>, (x-a)

n=0
converges is known as the interval of convergence of the power series.
28.2.3 Radius of Convergence

o0
Consider a power series >_c,(x—a)"
n=0

Then exactly one of the following three possibilities is true:

o The series converges only at its center X =a.
o The series converges for all values of X.
o There is a number R > 0 such that the series converges absolutely VX satisfying

‘X— a‘ < R and diverges for ‘X— a‘ > R. This means that the series converges for
X € (a—R,a+R) and diverges out side this interval.

© Copyright Virtual University of Pakistan 246



Differential Equations (MTH401) VU

The number R is called the radius of convergence of the power series. If first possibility
holds then R =0 and in case of 2™ possibility we write R = oo .

From the Ratio test we can clearly see that the radius of convergence is given by

R=1lim
Nn—oo

Chia
provided the limit exists.
28.2.4 Convergence at an Endpoint

If the radius of convergence of a power series is R > 0, then the interval of convergence
of the series is one of the following

(a-R,a+R), (a—R,a+R], [a-R,a+R), [a—R,a+R]

To determine which of these intervals is the interval of convergence, we must conduct
separate investigations for the numbers x=a—Rand x=a+R.

e} e}
Example 3 Consider the power series Z a, = Z— X"
n=1

n+l
. la | x Jn
Then lim [ZL] = |im

n—o| a, n—wo|rn+1 x"
n

or Iim|—/—=|=1lim

| X |= x|
n—oo an n—w|\N+1

/L
n+1

Therefore, it follows from the Ratio Test that the power series converges absolutely for
those values of X which satisfy |X| <1

This means that the power series converges if X belongs to the interval (—1,1)

The series diverges outside this interval i.e. when X >1or X <—1. The convergence of
the power series at the numbers 1 and —1 must be investigated separately by substituting
into the power series.

a) When we substitute X =1, we obtain

1 1
Z\/_(l) ﬁ+---+ﬁ+

which is a divergent p -series, with p =

NI—‘
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b) When we substitute X = —1, we obtain
1 1 (-1"
D" = — 1
ZI B I RN~

which converges, by alternating series test.

+ ...

Hence, the interval of convergence of the power series is [-1,1). This means that the
series is convergent for those vales of X which satisfy

-1<x<1
Example 4 Find the interval of convergence of the power series

0 0 ( X — 3)”
Z an = Z 2n
n=1 n=1 n
Solution The power series is centered at 3 and the radius of convergence of the series is
. 2™ (n+1
R=lim 2_(1*1)
n>wo 2.

=2

Hence, the series converges absolutely for those values of X which satisfy the inequality

|x-3|<2=1<x<5

(a) At the left endpoint we substitute X =1 in the given power series to obtain the series
(-1)"
of constants: Z a, = Z—
n
n=1
This series is convergent by the alternating series test.
(b) At the right endpoint we substitute X =5 in the given series and obtain the following

1
harmonic series of constants Z =
n

1

Since a harmonic series is always divergent, the above power series is divergent.

Hence, the series the interval of convergence of the given power series is a half open and
half closed interval[1,5).

28.3 Absolute Convergence
Within its interval of convergence a power series converges absolutely. In other words,

(x-a)"

n=0

converges for all values X in the interval of convergence.
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28.4 Power Series Representation of Functions

. n . . .. .
A power series Z Ch (x - a) determines a function f whose domain is the interval of
n=0
convergence of the power series. Thus for all X in the interval of convergence, we write

0

f(x)= nZ_;)cn(x—a)” =y +¢(x—a)+cy(x—a)* +cy(x—a)’ +

If a function is f is defined in this way, we say that Z Ch (x—a)n IS a power series
n=0
representation for f (X) . We also say that f is represented by the power series

28.4.1 Theorem

Suppose that a power series Z Ch (x - a)n has a radius of convergence R >0 and for
n=0
every X in the interval of convergence a function f is defined by

0

f(x)= nzz(:)cn(x—a)” =Co+Cy(x—a)+cy(x—a) +cy(x—a)’ +

Then

o The function f is continuous, differentiable, and integrable on the interval
(a—R,a+R)
a Moreover, f and J. dx can be found from term-by-term differentiation

and ntegratlon.
Therefore

n

f'(x):cl+202(x—a)+3c3(x—a)2+---:inc (x-a)""
n=1

(x-af (x-af
jf(x)dx=C+cO(x—a)+q 5 +C, Tt
Xa)n+1

=C
+ZC n+1

The series obtained by differentiation and integration have same radius of convergence.
However, the convergence at the end points x=a—R and Xx=a+R of the interval
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may change. This means that the interval of convergence may be different from the
interval of convergence of the original series.

Example 5 Find a function f that is represented by the power series

I-X4X2 =3+ (=D X" 4.

Solution The given power series is a geometric series whose common ratio isr =—X.
Therefore, if |X| < 1 then the series converges and its sum is

a 1
S —_ — L —
1-r 1+x
Hence we can write
1
=X+ X=X e ()X
1+x

. o : : : 1
This last expression is the power series representation for the function f (x) = Tox’
+ X

28.4.2 Series that are Identically Zero

If for all real numbers Xin the interval of convergence, a power series is identically zero
e

OO n

ch(x—a) =0, R>0

n=0
Then all the coefficients in the power series are zero. Thus we can write
c, =0, v n=012,...

28.5 Analytic at a Point

A function f is said to be analytic at point a if the function can be represented by power

series in (X—a) with a positive radius of convergence. The notion of analyticity at a
point will be important in finding power series solution of a differential equation.

Example 6 Since the functionse®, cosx, and In(1+x) can be represented by the
power series
2 3

e =14 x4t X g
21 3!

2 X4

X
CoOSX=1-"—t——--
2 24

2 X3

X
IN@+x)=X—-—+—-—---
(1+x) > "3
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Therefore, these functions are analytic at the point x =0.

28.6 Arithmetic of Power Series
o Power series can be combined through the operations of addition, multiplication,
and division.
o The procedure for addition, multiplication and division of power series is similar
to the way in which polynomials are added, multiplied, and divided.
o Thus we add coefficients of like powers of X, use the distributive law and collect
like terms, and perform long division.

Example 7 If both of the following power series converge for |X| < R

f(x)=>Dcx", g(x)=> bx"
n=0 n=0
Then £(x)+ g(x)= 3" (¢, +by X"
n=0
and f (X)g (X):Cobo +(Cob_|_ +C_|_bo)x+(C0b2 +C_|_b_|_+C2b0)X2 + ..

Example 8 Find the first four terms of a power series in X for the product e* cos X .

Solution: From calculus the Maclaurin series for e*and cosx are, respectively,

) 2 3 4
e" =l+X+—+—+—+
2 24
2 4
cosX=1-—+——--
24

Multiplying the two series and collecting the like terms yields

X x> X x x> x4
e"cosx=|1+X+—+—+—+-- || 1-—+——---.

2 6 24 2 24
=1+(1)x+ SNESUE I (V-0 (O SE 19< J0W (FE SO SO S VS
2 2 2 6 24 4 24
3 4
:1+X———X—+
3 6

The interval of convergence of the power series for both the functions €* and cosx is
(—oo,oo). Consequently the interval of convergence of the power series for their product

e* cosx is also (—oo,0).

Example 9 Find the first four terms of a power series in X for the function secx.
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2 X4 X6

, cosx=1-——+——-—+...
CoS X 2 24 720

Therefore using long division, we have

Solution We know that sec x =

x> 5x* 61x°
+

I+ —+—+—+
W2 xh 8 2 24 720
-t L
2 24 720 ) 6
Xt x
2 24 720
x2 x4 x°
—_— + —_— e
2 24 720
LS S S
2 4 48
e
24 360
24 48
720
Hence, the power series for the function f(X) =secX is
x> 5x* 61x°
seCX=14+—+—+ +
2 24 720
The interval of convergence of this series is (— zl2, 77/2).
Note that
o The procedures illustrated in examples 2 and 3 are obviously tedious to do by
hand.

o Therefore, problems of this sort can be done using a computer algebra system
(CAS) such as Mathematica.

o When we type the command: Series[SeC[x], {x, 0, 8}] and enter, the
Mathematica immediately gives the result obtained in the above example.

o For finding power series solutions it is important that we become adept at
simplifying the sum of two or more power series, each series expressed in

summation (sigma) notation, to an expression with a singIeZ.This often
requires a shift of the summation indices.
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o Inorder to add any two power series, we must ensure that:

(a) That summation indices in both series start with the same number.

(b) That the powers of X in each of the power series be “in phase”.
Therefore, if one series starts with a multiple of, say, X to the first power, then the
other series must also start with the same power of the same power of X.

Example 10 Write the following sum of two series as one power series

§:2ncnx”‘1 + iGncnx”+1
=1

n=0
Solution To write the given sum power series as one series, we write it as follows:

e e} o0 o0 0
> 2ncx" 1+ 6ne,x" =21cx% + > 2ne, x" 1 + > bnc, x"
=1 n=0 n=2 n=0

The first series on right hand side starts with x! for n=2 and the second series also

starts with x* forn =0. Both the series on the right side start with x*.

To get the same summation index we are inspired by the exponents of X which is n—1
in the first series and N +1 in the second series. Therefore, we let

k=n-1 k=n+1

in the first series and second series, respectively. So that the right side becomes:
2¢,+ Y 2(k+1)c X+ 6(k —1)c, ,X* .
k=1 k=1

Recall that the summation index is a “dummy” variable. The fact that K =n —1in one
case and K =n +1in the other should cause no confusion if you keep in mind that it is
the value of the summation index that is important. In both cases K takes on the same
successive values1,2,3,...for n=2,3/4,...(fork=n—-1)andn=0.12,...(fork =n+1)

We are now in a position to add the two series in the given sum term by term:

> 2nc,x" T+ > 6ne X" =20+ > [ 2(k+1) 0y, +6(k —1)cy ;| X"
=1 n=0 k=1

If you are not convinced, then write out a few terms on both series of the last equation.
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29 Power Series Solution of a Differential Equation

We know that the explicit solution of the linear first-order differential equation

dy
—-2xy=0
dx y
2
is y:ex
2 3 4
Also eX:1+x+X_+X_+X_+...
2 6 24

If we replace X by x? in the series representation of €, we can write the solution of the
differential equation as

0 X2n

y: [

n=0 n!

This last series converges for all real values of X. In other words, knowing the solution
in advance, we were able to find an infinite series solution of the differential equation.

We now propose to obtain a power series solution of the differential equation directly;
the method of attack is similar to the technique of undetermined coefficients.

Example 11
. _ dy _ .
Find a solution of the DE: o 2Xy =0 in the form of power series in X.
X
Solution If we assume that a solution of the given equation exists in the form
y= chx” = Co +chxn
n=0 =1
The question is that: Can we determine coefficients C, for which the power series

converges to a function satisfying the differential equation? Now term-by-term
differentiation of the proposed series solution gives

dy < n-1
—= nc, X
dx nZ:: "

Using the last result and the assumed solution, we have

We would like to add the two series in this equation. To this end we write
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d o0
dy 2xy =1-¢,x° + ch X"t =>"2c,x™"  and then proceed as in the previous
X n=2

example by letting k=n-1, k=n+1 in the first and second series, respectively.

d
Therefore, last equation becomes d—y—2xy C, + E (k+1) ck+1x E 2Cy 1x
X
k=1

After we add the series term wise, it follows that

% —2Xy=C + i[(k +1)0ea =~ 264 X"

k=1
Substituting in the given differential equation, we obtain

0+ 2 [ (K+1) 0y — 204 | X< =
k1

In order to have this true, it is necessary that all the coefficients must be zero. This means
that

C_LZO, (k+1)ck+1_2Ck—1:0’ k:1,2,3,...

This equation provides a recurrence relation that determines the coefficientC, . Since
k + 1= O for all the indicated values of K , we can write as

2C, 4
Iteration of this last formula then gives
2
2
k=2, c¢;==¢,=0
2 1 1
k=3, c4zzc2=500:§c0
2
k =4, Cs :§C3 =0
1 1
k=5 cs=—cC, =.—2!C0 _ac0
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2 1 1

and so on. Thus from the original assumption (7), we find

0

= > ¢y X" =Gy + X+ CoX” +C5X° +CyX* +CyX° 4+

1 1
=Cy +O+c0x2 +0+§Cox4+0+§cox6 +0+--
2n

=Cy {1+x2+ix4+ix6+--1=co X
21 3! o N!

Since the coefficient C, remains completely undetermined, we have in fact found the

general solution of the differential equation.
Note that

The differential equation in this example and the differential equation in the following
example can be easily solved by the other methods. The point of these two examples is to
prepare ourselves for finding the power series solution of the differential equations with

variable coefficients.
Example 12

Find solution of the de: 4y" + y =0 in the form of a powers series in X .

Solution We assume that a solution of the given differential equation exists in the form

o0 o0
of y=> cX"=cyp+D coX"
n=0 n=1

Then term by term differentiation of the proposed series solution yields

0 e}
y'=Y nex"t=c + > nex"
n=1

n=2

=> n(n-1)c,x"?
n=2

Substituting the expression for y”and Y, we obtain
4y"+y = Z4n (n-1)c,x"" +Zcx
n=2

Notice that both series start with x° . If we, respectively, substitute
k=n-2, k=n, k=0,12,...
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in the first series and second series on the right hand side of the last equation. Then we
after using, inturn, n=k +2 andn =Kk, we get

4y”+y:Z4(k+2)(k+1)ck+2xk +chxk

k=0 k=0
or 4y"+y=">[4(k+2)(k+1)ce,p + |X*
k=0

Substituting in the given differential equation, we obtain
> [4(k+2)(k+1)c o+ X =0
k=0

From this last identity we conclude that

4k +2)k +1)c,,, +¢, =0

P—

2 Ak + 2)k +1)’

From iteration of this recurrence relation it follows that

k=0L12,...

or

C. = —Cy _ Co
2421 2221
C. = —C _ C,
 43.2 2231
_Cz Co
C, = =4 —
Y443 2°4
_Cs Cl
C. = =4 —
> 454 @ 2'51
C. = —C, _ Co
® 465 2°6!
_Cs Cl

C, = = —
To476 287!

and so forth. This iteration leaves both Cyand C,arbitrary. From the original assumption
we have

Y =Cy +CX+C, X2 +C X%+, X +C X% +CX° +C, X+

+ ..

C C C C C C
— Co + ClX _ 0 X2 _ 1 X3 + 0 X4 + 1 X5 _ 0 XG _ 1 X7
2%.2! 2°.3! 2.4 25! 2°6! 2°.7!
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or
y=co|1- 1o, b a1 e, +¢| x— LI S S B S
22 21 24 41 26 61 2231 24 51 26 71

is a general solution. When the series are written in summation notation,

k=0

the ratio test can be applied to show that both series converges for all X. You might also
recognize the Maclaurin series as y, (X ) =Co c0s(x/2)and y,(x)= 2c, sin(x/2).

29.1 Exercise

Find the interval of convergence of the given power series.

w k
1. Zz—xk

ka1 K

2 (x+7)
2.

2R
3. Zk'zkxk

k=0

© k-1 |
4. kZ—Z‘)TX

Find the first four terms of a power series in X for the given function.

5. e*sinx
6. e*In(1-x)

2
X ox° X

7. | X——+———+-
3 5 7

Solve each differential equation in the manner of the previous chapters and then compare
the results with the solutions obtained by assuming a power series solution

y:ZCan
n=0
8. y'—xzy:O
9. y'+y=0
10. 2y"+y'=0
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30 Solution about Ordinary Points
30.1 Analytic Function

A function f is said to be analytic at a point a if it can be represented by a power series in
(x-a) with a positive radius of convergence.

Suppose the linear second-order differential equation

a,(X)y"+a;(X)y' +a,(x)y =0 (1)
is put into the form
y"+P(X)y +Q(x)y =0 (2)

by dividing by the leading coefficient a, (x) .
30.2 Ordinary and singular points

A point x, is said to be a ordinary point of a differential equation (1) if both P(x) and
Q(x) are analytic at x,. A point that is not an ordinary point is said to be singular point
of the equation.

30.2.1 Polynomial Coefficients

If a,(x),a,(x) and a,(x) are polynomials with no common factors, then x = x, is
Q) an ordinary point if a,(x) = 0or
(i) asingular pointif a,(x)=0.

Example

(@) The singular points of the equation (x2 -1)y"+2xy'+6y=0 are the solutions of
x? —1=0 or x =+1. All other finite values of x are the ordinary points.

(b) The singular points need not be real numbers.

The equation (x2 +1)y"+2xy’'+6y =0 has the singular points at the solutions of
x*+1=0, namely, x = +i.
All other finite values, real or complex, are ordinary points.

Example The Cauchy-Euler equation ax?y” + bxy’ +cy = 0, where a, b and c are
constants, has singular pointat x =0.

All other finite values of x, real or complex, are ordinary points.
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30.3 Theorem (Existence of Power Series Solution)

If x=Xx, is an ordinary point of the differential equation y"+P(x)y'+Q(x)y =0, we
can always find two linearly independent solutions in the form of power series centered at

Xo o y=2¢,(x—X,)". A series solution converges at least for |x— x0| <R, where R
n=0

is the distance from X, to the closest singular point (real or complex).
Example Solve y"—2xy =0.

Solution

We see that x =0 is an ordinary point of the equation. Since there are no finite singular

points, there exist two solutions of the form y:chx” convergent for |x|<oo.
n=0
Proceeding, we write

yr — Z ncnxn—l

=2-1¢,x° + Y _n(n-1)c, x"* = 2¢ x"*

n=3 n=0

both series start with X

Letting k =n—2 in the first series and k = n+1 in the second, we have

Y= 2xy =265+ > (K+2)(K +1)c X< = > 20 _gx*
k=1 k=1

=2¢, + ) [(k+2)(k +1)c,,, — 2, ,]x* =0

k=1

2¢, =0 and (k+2)(k+2c,,,—2c,, =0
The last expression is same as

2c, ,

Chpp=———, K=123,---
(k+2)(k+1)
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. . 2(;0
Iteration gives C, = 3_2
2C
“ 43
C5=§%=0 because C2 =0
2¢c, 22
Ce = = Co
6-5 6-5-3-2
2c, 22
C, = = C,
7-6 7-6-4-3
2C
C8 =ﬁ=
c _2C, 28
°79.8 986532
2¢c, 28
Cp = = C,
10-9 10-9-7-6-4-3
2
Chy = e =0 , and so on.
11-10

It is obvious that both c,and c, are arbitrary. Now
Y =Cy +C X+ Cy X2 +C X%+ X* +C X% + X% +C, X7 4+ CoX® +CoX® +C X0+ ey X+
2 2

3 6
6-5-3-2 7-6-4-3

2
3. 3.0 13 olx +0+————+

23 9 23
79865320 "100.7.6.4.

y=Coy+CX+0+ CoX° +5——— olx +0

3c1x10+0+---

_ 2 3 22 s 23 9
y=Collt 35X +6532" *o86532" '

2 4 . 23 10
talx+ 43X 7623 1097643
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Example Solve (x2 +1)y"+xy'—y=0.

Solution

Since the singular points are X==i, x=0 is the ordinary point, a power series will

converge at least for |x| <1. The assumption y = chx” leads to

n=0

o0 0 o0
(X2 +1) > n(n —ex" 2+ Xy neyx" 1 - > cpx"
n::2 I1=1 n::o

0 .0] Q0 o0
= > n(n-Dcpx"+ > n(n—1)c,x"2 + > ncpx™ > cpx”
n=2 n=2 =1 n=0

=2C,X° —Cpx° +6C,X + ¢, X— X+ > n(n—1)c x" + > n(n—1)c,x"

n=2 n=4

2 +incnx” —icnx”
n=2 n=2

k=n k=n-2

=2Cy —Cp +6C3X + Z [k(k=Dcy +(k+2)(k +1)cy ;o +key —ck]xk =0

k=2

or 2Co —Cp +6C3X + Z [(k+D)(k-D)cy +(k+2)(k +l)ck+2]xk =0.

k=2
Thus 2c,—C, =0
c, =0
(k+D)(k =Dy +(k+2)(k +1)c,» =0
This implies

1
C2 = ECO

c,=0
—(k-1)
Coi2 =7 3 G
(k+2)
Iteration of the last formula gives
1 1 1

K WA NPT ST

k=23
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c5=—gc3=0
¢ =—Sc, = ¢, =13
6" 2.4.6° 223°
4
c7:—?c5:0
o _. 5.__.35 __ 135
® 8°% 2.46.8"° 2441 °
6
Cg——§C7:O
c ——lc __ 357 c —1'3'5'7c and so on
T 107® 2.4.6-810° 2°51 0 '
Therefore
y:co+olx+czx2+C3x3+c4x4+c5x5+c6x6+c7x7+c:8x8+---

_ 1o 1 4 13 6 135 8 1-3-5:7 10
Y=ot ol X o X o T ey

The solutions are

11-3-5---(2n-3)
2"l

1 2 & 2
no)=colt+ 53+ 3 (-0 X2, <1

Y2 (X) =Cyx.

Example If we seek a solution y =>"c,x" for the equation y"—(1+X)y =0,
n=0

we obtain ¢, = C% and the three-term recurrence relation

Cr.s :&, k=123,
(k +D(k +2)
To simplify the iteration we can first choose c, # 0,c, = 0; this yields one solution. The

other solution follows from next choosing ¢, = 0,c; # 0. With the first assumption we
find
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1
CZZECO
o =cl+c0=c_0=1C
2.3 2.3 6°
_CZ+C1_ C0 1

C = =—=C
Y 3.4 234 24°

JGtC G 1 L L dsoon.
4.5 4.5°2.3 27 30

5

Thus one solution is

y1(X) :co[l+%x2 +%x3+%x4 +%x5 +--4].

Similarly if we choose ¢, =0, then

c,=0

¢, =ut% _& 1.
2.3 23 6

(:lecz+c1:i:ic1
3-4 3.4 12

_Cyt+C, G

Cs = _ 1 c, and so on.
4.5 2-3-4.5 120

ion i P VOV S JVC S S
Hence another solution is y2(x)—cl[x+6x +12X +120X

Each series converges for all finite values of x.

_|_]

30.4 Non-polynomial Coefficients

The next example illustrates how to find a power series solution about an ordinary point
of a differential equation when its coefficients are not polynomials. In this example we
see an application of multiplication of two power series that we discussed earlier.

Example Solve y”+ (cosx)y =0

Solution The equation has no singular point.

. X _ . . .
Since cosx = 1——+———|+ .-+, It is seen that x = 0 is an ordinary point.

Thus the assumption y = > ¢, x" leads to
n=0
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y”+(cosx)y:in(n—l)cnx”‘z—(1—X—+X——---)icnx”
n=2 2' 4! n=0
x2 x4 X6 2
_(202+6c3x+12c4x +2005x +- )+(1——+ﬁ—ﬁ+---)(co+olx+c2x +--)

=2Cy +Cp +(6C3+ ¢ )X+ (12¢4 +Cy —%co)x2 +(20c5 +¢c3 —%ol)x?’ o
If the last line be identically zero, we must have

C
2C2+Co =0:>C2 2—70

603+ol=0:>c3:—%

12C4 +C2—%C0 =0:>C4 Ii—g

20c5 +C3 _%Ol =0=c5= 30 and so on. c,and c, are arbitrary.

Now y=CO +G_|_X+02X2+C3X3+C4X4+C5X5+"'

__oz 4G.3,%.,4,G.5
or y=Cp+CX > 6x +12x +3OX
4

y= c(l— X +ix

. 13, 1.5 .
15 )+ ¢ (X 6x +—X )

30

1 1 1 1
X) =Co[1-=x*+-—x*---] and X) =C[X—= X +—x°—--.
Y1 (X) = ¢l MR ] Y.(X) =¢[ s T30 ]

Since the differential equation has no singular point, both series converge for all finite
values of Xx.

30.5 Exercise
In each of the following problems find two linearly independent power series solutions
about the ordinary point x =0.

1. y”+x2y=0

2. y'—=xy'+2y=0

3. Y'+2xy'+2y=0

4. (X+2)y"+xy'-y=0
5. (x2+2)y"—6y:0
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31 Solutions about Singular Points

If x=x, issingular point, it is not always possible to find a solution of the form

y= Z cn(x—x)" for the equation a,(X)y”+a (X)y +ag(x)y =0

n=0
However, we may be able to find a solution of the form
o0
y=Y cn(x=x)"*", where r is constant to be determined.
n=0

To define regular/irregular singular points, we put the given equation into the standard
form y"+P(X)y'+Q(x)y =0

31.1 Regular and Irregular Singular Points

A Singular point x =X, of the given equation a,(x)y"+a;(x)y'+ag(x)y =0 is said to be
a regular singular point if both (x—x,)P(x) and (x—xO)ZQ(x) are analytic at x,. A
singular point that is not regular is said to be an irregular singular point of the equation.
31.1.1 Polynomial Coefficients

If the coefficients in the given differential equation a,(x)y"+a(X)y +ag(x)y =0 are
polynomials with no common factors, above definition is equivalent to the following:
8,0 4 80
a,(x) a, ()
terms, respectively. If the factor (x—x,) appears at most to the first powers in

the denominator of P(x) and at most to the second power in the denominator of
Q(x),then x = X, is a regular singular point.

Let a,(x,)=0 Form P(x) and Q(x)by reducing to lowest

Example 1 x =42 are singular points of the equation (x2 —4)2 y'+(x=2)y'+y=0
Dividing the equation by (x* —4)* = (x—2)*(x +2)*, we find that

1 1

TR T e A R R

1. x =2 isaregular singular point because power of x—2 inP(x) is1andin
Q(x)is 2.
2. X =-—2 isan irregular singular point because power of x+2 inP(x) is 2.
The 1st condition is violated.
Example 2
Both x =0 and x = —1are singular points of the differential equation.
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x2(x +1)2 y"+ (x2 -1)y'+2y=0
Because x*(x+1)> =0 orx=0,-1
Now write the equation in the form

" x2 —1 , 2
y+73 2Vt 5 7¥=0
X“(x+1) X“(x+1)

x =1 Y+ 2 y
x2(x+1) x2(x+1)2
x-1 2

So P(x) =m and Q(x) =m

or y"+ =0

Shows that x =0  isairregular singular point since (x —0) appears to the second
powers in the denominator of P(x).

Note, however, x = -1 is a regular singular point.
Example 3
a) x=1and x=-1 are singular points of the differential equation

@a- x2)y"+—2xy'+30y =0

Because 1-x* =0 or x==1.
Now write the equation in the form

Y- 2X Y+ 30 y=0
(1—x2) 1-x2
" 2X , 30
or y"— y'+ y=0
@—x)A+x @—x)1+x)
—2X 30
P(X)=————— d =
*) -xarx) Q09 1-x )L+X)

Clearly x =+1 are regular singular points.

(b) x =0 is an irregular singular points of the differential equation
x3y”—2xy'+5y =0
or ”—%y’+%y=0 giving Q(x):%.
X X X

(©) x =0 is a regular singular points of the differential equation
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X y'=2xy'+5y=0

Because the equation can be written as y"—2y’ +i y =0 giving P(x) =-2and
X

Q) =—.

X

In part (c) of Example 3 we noticed that (x —0) and (x — 0)* do not even appear in the
denominators of P(x) and Q(x) respectively. Remember, these factors can appear at
most in this fashion. For a singular point x = x,, any nonnegative power of (x —Xx,) less

than one (namely, zero) and nonnegative power less than two (namely, zero and one) in
the denominators of P(x) and Q(X), respectively, imply X, is a regular singular point.

Please note that the singular points can also be complex numbers.

For example, x = + 3i are regular singular points of the equation
(x2 +9)y"+-3xy'+(1-x)y =0

Because the equation can be written as

" 3x , 1-x

y _x2+9y+x2+9y=0'
_ -3x _ 1-X
PO =T ¥ T 3 3

31.2 Method of Frobenius

To solve a differential equation a,(x)y” +a;(X)y’+ap(x)y = 0about a regular singular
point we employ the Frobenius’ Theorem.

31.2.1 Frobenius’ Theorem

If x=x, isaregularsingular point of equation a,(x)y"+a;(X)y +ap(x)y =0, then
there exists at least one series solution of the form

y=(x=%X0)" D ch(x=x%0)" =D cy(x—x9)"""
n=0 n=0

where the number r is a constant that must be determined. The series will converge at
least on some interval 0 < x—X, <R.

o0
Note that the solutions of the form Y = D" cn(x—xp)""" are not guaranteed.
n=0

Method of Frobenius
1. Identify regular singular point xg,

© Copyright Virtual University of Pakistan 268



Differential Equations (MTH401) VU

o0

2. Substitute Y= c,(x—x)"*" in the given differential equation,
n=0

3. Determine the unknown exponent r and the coefficients c,.

4. For simplicity assume thatx, =0.

Example 4
As x =0 is regular singular points of the differential equation

3xy"+y'—y=0.

We try a solution of the form ¥ => ¢ x"™".

n=0

Therefore  y'=>"(n+r)c x"" ™.
n=0

And y' =Y (n+r)(n+r-1c, x""2
n=0

) 0 0
3Xy"+ Y =y =3y (n+r)(n+r-1c,x" " +> (e, x™ S xm
n=0 n=0 n=0

o0 o)
=> (n+r)@n+3r —2)c,xMrL > e,x™.
n=0

n=0

X" [r(3r —2)c,x +i (n+r)(3n+3r—2)c, x"* — icnx” |
n=1 n=0

k=n-1 k=n

X' [r(3r =2)c X+ Y [(k+r+1)(3k +3r +1)c, —ck]xk} =0
k=0

which implies r(3r-2)c, =0
(k+r+1)Bk+3r+1c,,-c, =0, k=0,12,...

Since nothing is gained by taking ¢, = 0, we must then have

r(3r—2)=0 [called the indicial equation and its roots r = %,0 are called

indicial roots or exponents of the singularity.]
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and Couy = % K
(k+r+1)Bk+3r+1)

=0,12,..

Substitute r, :% and r, =0 in the above equation and these values will give two

different recurrence relations:

For rlzg, Ck+1=c—k, k=0,12,.. (1)
3 3k +5)(k +1)
For r,=0 Con=— T k=0,12,.. @)
T (k+D(3k +1)
Iteration of (1) gives C, = Co_
5.1
C, = i - Co
82 258
C2 o
C3 = =
11.3 315.8.11
C
Ca C3 _ 0

T144 415.8.11.14

C
In general C 0

L= , h=12,..
n!5.8.11.14...(3n +2)
Iteration of (2) gives
C0
C,=—-
1
C2 = C—l = CO
24 214
¢, S
C3 =
3.7 31.47
C3 o
C4 = =
410 41.4.7.10
C
In general C 0 =12,..

= , n
" nl1.4.7..(3n-2)
Thus we obtain two series solutions
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o .
=c X3 |1+ X" 3
=% { r]Z::ln!5.8.11.14...(3n+2) ] ®

“ 1
ool o | 4
Y2=6C { ~n1.4.7..(3n-2) } “

By the ratio test it can be demonstrated that both (3) and (4) converge for all finite values
of x. Also it should be clear from the form of (3) and (4) that neither series is a constant

multiple of the other and therefore, Y:(X) and ¥2(X) are linearly independent on the x-
axis. Hence by the superposition principle

2 = nel
C X3+ L X
y=C,y,(X)+C,y,(X) = ~'n!5.8.11.14...(3n + 2)

o0 1 n
e {“ le nIL4.7..(30-2) | } x| < o0

is an other solution of the differential equation. On any interval not containing the
origin, this combination represents the general solution of the differential equation

Note: The method of Frobenius may not always provide 2 solutions.

Example: The differential equation xy”+3y’—y =0 has regular singular pointat x =0

o0
We try a solution of the form ¥ = " ¢ x"*"
n=0

0 0
Thereforey'= > (n+rc,x™ " L and y"=> (n+r)(n+r-1)c,x™" 2.
n=0 n=0

sothat xy”+3y' —y= X' [r(r +2)c Xt + i[(k +r+1)(k+r+3)c,, —ck]x"} =0
k=0

so that the indicial equation and exponent are r(r+2)=0 and r, =0, r,=-2,
respectively.

Since (k+r+1)(k+r+3)c,,,—-c, =0, k=0,12,.. (1)
it follows that when r, =0,

Ck
Gt = T A
(k+21)(k +3)
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CO
C,=—1
‘13

_ G 26
224 24
-2

35 3I5!
_ G _ 2%
4746 416!
cnzi, n=12,..

n'(n+2)!

Thus one series solution is

22 22
— 01 = yn — - n, )
Vi C°X[+§ N+ 2! ] %2, i+ 2)! x| <00

Now when r, = -2, (1) becomes
(k -1k +2)c,,, —c, =0 (2)
but note here that we do not divide by (k —1)(k +1) immediately since this term is zero
for k =1. However, we use the recurrence relation (2) for the cases k =0and k =1:
-1.1c,-¢, =0 and 0.2c, —c, =0
The latter equation implies that ¢, = 0and so the former equation implies that ¢, =0.

Continuing, we find

Cy

Cppg = ——X—— k=23,
(k =1)(k +1)
C2

C, =——

o

o S _ 2¢,

Y24 24

c _C 2c,

> 35 315!
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In general c 26, 3,4,5
= h=5,4,...
" (n=2)In!
Thus X°+ 3 : 3
{ nZ:; (n— 2)'nI } ®)

However, close inspection of (3) reveals that y, is simply constant multiple of ;.

To see this, let k =n—2 in (3). We conclude that the method of Frobenius gives only one
series solution of the given differential equation.

31.3 Cases of Indicial Roots

When using the method of Frobenius, we usually distinguish three cases corresponding to
the nature of the indicial roots. For the sake of discussion let us suppose that r, and r, are

the real solutions of the indicial equation and that, when appropriate, r, denotes the
largest root.

31.3.1 Case | (Roots not Differing by an Integer)

If r, and r, are distinct and do not differ by an integer, then their exist two linearly
independent solutions of the differential equation of the form

y, =Y c,x"%..cy#0,and y, = b x"", by #0.
n=0 n=0
Example 6 Solve 2xy"+ (1+x)y'+y =0.

Solution: If Y= c x™",then

2xy" + L+ X)y' +y =2 (n+r)(n+r-Dc x"+ > (n+r)c x4+

n=0 n=0

Do (n+r)e,x™ + > e x™
n=0 n=0

=Y (n+r)@2n+2r =1, x4 > (n+r+1)c, x™
n=0

n=0

=x" [r(2r —Dex T+ (n+r)@2n+2r =e X"+ > (n+r+1)c,x" ]

n=1 n=0
n=k+1 k=n
= x[r(Zr—l)cox1+Z[(k+r+1)(2k+2r +1)ck+l+(k+r+l)ck]xk}:0
k=0
which implies r(2r-1)=0
(k+r+D)(2k+2r+1)c,, +(k+r+2)c, =0, k=0,12,... (1)
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Forr = % we can divide by k +§ in the above equation to obtain

_ &
KT 2(k +1)
—C
=21
_ —C _ Co
722 " 222
___Cz _ —Co
“T 23 23
-1 n
In general C, = ( 23 G , =123,
n
1 0 _ n
Thus we have y, =c,x2[1 +Z (an)l x" ], which converges for x> 0.As given, the
n=1 n:

1
series is not meaningful for x <0 because of the presence of x?2.

Now for r, =0, (1) becomes

_ G
K12k 41
—C
C, = 1°
C2 = _Cl :C—O
3 1.3
C, = —C, _ —Cy
5 1.35
c, = —Cy _ Co
7 1.3.5.7
(-1)"c,

In general

C, = , n=1,2,3,...
1.3.5.7..(2n-1)

Thus second solution is
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_ S (_1)“ n
Y2 =5 {1+;1.3.5.7...(2n—1)x } [ <o

On the interval (0,), the general solution is

y= Clyl(x) + Cz Y, (X)

32 Solutions about Singular Points

32.1 Method of Frobenius (Cases Il and 111)

When the roots of the indicial equation differ by a positive integer, we may or may not
be able to find two solutions of

a,(X)y"+a,(x)y" +a,(x)y =0 (1)
having form y = icn (x=x,)"" (2
n=0

If not, then one solution corresponding to the smaller root contains a logarithmic term.
When the exponents are equal, a second solution always contains a logarithm. This latter
situation is similar to the solution of the Cauchy-Euler differencial equation when the
roots of the auxiliary equation are equal. We have the next two cases.

32.1.1 Case Il (Roots Differing by a Positive Integer)

Ifr, —r, =N, where N is a positive integer, then there exist two linearly independent
solutions of the form

V1= >, cnxn+r1 ,Co =0 (3a)
n=0
y2 =Cy1(X)Inx+ > bnxn+r2 ,bg =0 (3b)
n=0

Where C is a constant that could be zero.
Equal Indicial Roots:

If B =T, there always exist two linearly independent solutions of (1) of the form

o0
n—+r.
Yy, = zocnx 1,co=0 (4a)
Nn=
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Yo =y1(X)Inx+ Z bnanrlrl I =T, (4b)
n=1
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Example 7:  Solve xy"+(x—-6)y' -3y =0 1)

Solution: The assumption y =>"c,x"" leads to
n=0

xy"+(x—-6)y' -3y

= i(n +r)(n+r-1)c x""t - 6i(n +r)c X" 4 i(n +1)c, X" =3> ¢ X"
n=0

n=0 n=0 n=0

=X’ [r(r ST+ Y (M- T)e XY (04 _3)C“XH}

n=1 n=0
X' {r(r ~T)Cx " +Zw:[(k +r+)(k +r-6)c,, +(k+r-3)c, ]xk} =0
k=0

Thus r(r-7)=0 sothatr, =7,r,=0,r,—r, =7,and
(k+r+)(k+r-6)c.,+(k+r-3)c, =0, k=0,123,... (2
For smaller root r, =0, (2)becomes
(k+1)(k-6)c, , +(k—3)c, =0 (3)
recurrence relationbecomes
k-3
Chi1 = _gck
(k +21)(k —6)
Since k-6=0, when, k=6, we do not divide by this term until k>6.we find
1.(-6)c, +(-3)c, =0
2.(-5)c, +(-2)c,=0
3.(-4)c,+(-1).c, =0
4.(-3)c,+0c, =0
5.(-2)c;+1c, =0
6. (-1)c,+2c, =0
7.0.c, +3.c, =0
This implies that

c, =C; =C, =0, But ¢, and c, can be chosen arbitrarily.

1
Hence c,=——=C
1 2 0
¢,=—1¢ =Lg
2 5 1 lO 0

© Copyright Virtual University of Pakistan 277



Differential Equations (MTH401) VU

1 1

C,=——C,=———-C 4
127 120 ° @
and fork>7
—(k-3
Ck+l:¥0k
(k +1)(k —6)
—4
C8 :ac7
Lo 245,
® 927°% 2189
. - -6 . 456 ;
1037 318910 '
J— n+l . . oo —
_(-1)"™4-5-6---(n-4) ) N8 9.10,.- ©)

&= n=7)18-9-10-- ()

If we choose ¢, =0andc, = 01t follows that we obtain the polynomial solution

1 1 1
Y, = Co[ ——X+—X2——X3],
' 2 10 120
Butwhen ¢, #=0andc, =0, It follows that a second, though infinite series solution

IS

;& ()"45.6--(n-4)_,
Vo=l 42, (—7)18.910-n

n=8

(-1)*4.5-6 --- (k+3)Xk+3

= ol +k§ k18-9-10 - (K+7) g <= ©)

Finally the general solution of equation (1) on the interval (0, ) is
Y =¢,y,(X) +C,Y, (%)

2 —_— k . . DY
=C, [1_£X+ixz_ixs]+cz[x7 _l_z( 1) 4-5-6 (k+3)xk+7]
>"" 10" 120 £ 118.9.10--- (k+7)

It is interesting to observe that in example 9 the larger root r,=7 were not used. Had we
done so, we would have obtained a series solution of the form*

y = i Cn Xn+7 (7)
n=0
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Where c, are given by equation (2) with r,=7
—(k+4
Cn= ( ) Cy»
(k+8)(k +1)

Iteration of this latter recurrence relation then would yield only one solution, namely the
solution given by (6) with c, playing the role ofc,)

k=0,12..

When the roots of indicial equation differ by a positive integer, the second solution may
contain a logarithm.

On the other hand if we fail to find second series type solution, we can always use the
fact that

Ip(x)dx

1()

is a solution of the equation y” + P(x)y’'+ Q(x)y = 0,whenever y, is a known solution.

= y,(9]° ®

Note: In case 2 it is always a good idea to work with smaller roots first.
Example8 Find the general solution of xy” +3y'—y =0

Solution The method of Frobenius provide only one solution to this equation, namely,

1.1 1
=1+ x4+ —x"+—x>+--
n'(n+2)' 37 24 360 9)

From (8) we obtain a second solution

:M8
|

jp(x)dx

=000 5 =00 | x

XL+ =X+ X +ix +-F

3 24 360
dx
:yl(x)_[ 7 1
L+ =X+ =X+ =X +-]
3 36 30
_ 2 1 2 19
X 1-—X+=X"——=X"+---]dx
yl()j Sl x X = ]
2 19
———t—t —Inx——x+
= %X )[ 3x 4 270 }
1 2 19
==y, (X)Inx+y,(x +———X+... *
Fn0nx ) oo s 2 B *)
1 1 2 19 -
.-.y:clyl(x)+c{zyl(x)lnx+yl(x)(—F &—270x+...ﬂ (**)
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Example 9 Find the general solution of
xy"+3y'-y=0
Solution :
Y, =Y, Inx+> b x"? (10)
n=0
Y=y Gy
~nl(n+2)!
differentiate (10) gives
y, = Y, y, Inx+>(n-2)b,x"*
X n=0
v, ==Ly By S (n-2)(n - 3)b, X"
X X n=0
so that
xys +3y, —y, =In x[xyl" +3y, - yl} +2y, + Ly Z(n 2)(n-3)b, x"
+32 (n—=2)b,x"*=>"b x"?
n=0
=2y, 2N +Z(n 2nb,x"*=>"b x"?  (12)
n=0
where we have combmed the 1st two summationsand used the fact that
Xy; +3y; =y, =0
Differentiate (11) we can write (12) as
3 3 X" +3 (n=2)nb x"* —$"b x"?
nzn'(n+2)' Z:§r1'(n+2)' Zi( e Zi "
=0(=2)b, X + (b, —b,)x 2 + Z an+d) 43 (n-2)nb,x"* — 3 b X"
=0 '(n + 2)' n=2 n=1
-2 4(k+1) k-1
—(b, +b,)x +Z{kl(k ) +k(k+2)b,,, —b,,, X (13)
Setting (13) equal to zero then gives b, = —b,and
AKED |k 2)b,, b, =0, Fork=0,1,2, ... (14)
kl(k +1)!
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When k=0 in equation (14) we have 2+0-2b, —b, = 0so that but
b, =2,b, =-2,but b, is arbitrary
Rewriting equation (14) as

Ba 4(k +1)

bk+2 = (15)
k(k+2) k!'(k+2)k(k+2)
and evaluating for k=1,2,... gives
o e 4
3 9
Lyl 1, %
8 32 24 288
and so on. Thus we can finally write
Y, =Y, InXx+byx? +bx™ +b, + b+
— -2 -1 bZ 4
=y, INXx=2x72 +2x" +Db, + 3 g (16)

Where b, is arbitrary.
Equivalent Solution: At this point you may be wondering whether (*) and (16) are really

equivalent. If we choose c,=4

y, = yllnx+(—%+i—ﬁx+---j
X

in equation (**), then

3x 135
Y, = y|nX+(1+%X+2_14X2+3_20Xa+”')(—3+£—ﬁx+ j (17)
2 ! x> 3x 135

=y, Inx—2x7? cox14+ 2919
36 108

Which is precisely obtained what we obtained from (16). If b, is chosen as%

The next example illustrates the case when the indicial roots are equal.

© Copyright Virtual University of Pakistan 281



Differential Equations (MTH401)

VU

Example :10
Find the general solutionof xy”+y' —4y=0 18)

Solution :The assumption y:chx”+r leads to
n=0

Xy"+y =4y =" (n+r)(n+r-1)c, X"+ ) (nn)e, XM =4 e XM
n=0 n=0 n=0

o0 0

:Z (n+r)2cnxn+r—l _ 4zcnxn+r
n=0 n=0

=X {rzcoxl +Y(n+n)e,x" -4y cnx”}

n=1 n=0

= X' {rzcox‘l + Y (k+r+l)’c,,, — 4ck}xk =0
k=0

Therefore r?=0, and so the indicial roots are equal: r, = r, = 0. Moreover we have

(k+r+1%c,,, —4c, =0,k=0,1,2,...

(19)

Clearly the roots r, = 0 will yield one solution corresponding to the coefficients defined

by the iteration of

4c,

C,. =—X _ k=0,1,2,...
L (k+1)?

The result is

s n

4" a
A :COHZZOWX X[ < o0

{ %)dx

¥ = 1002 =00 o

2
x[1+4x+4x2+1:x3+--}

= yl(X)J.§|:1—8X +40x? —%)& +--}dx

- yl(x)j[%—8+40x—%x2 +..}dx

(20)
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= yl(x)[lnx—8x+20x2 —%XS +}

Thus on the interval (0, «) the general solution of (18) is

y=cy,(X)+c, {yl(x) InXx+y,(x) (—SX +20x? —%xs + ﬂ

where vy, (X) is defined by (20)

In case Il we can also determine y, (x) of example9 directly from assumption (4b)
Exercises

In problem 1-10 determine the singular points of each differential equation. Classify each
the singular point as regular or irregular.

1 xy'+4x’y'+3y=0
2 xy"—(x+3)?%y=0
3 (X*-9Yy' +(x+3)+2y=0

14 1 ’ 1
by T x=1) y=0

5 (X*+4x)y"-2xy'+6y=0)

6 X*(X=5)°y" +4xy'+(x-2)y=0

7 (X*+x=6)Y' +(x+3)y +(x-2)y=0

8 x(X*+D*Y'+y=0

9 (X = 25)(x—2)*y" +3x(x—-2)y' + 7(x+5)y =0
10 (X} =2x* =3x)°y"+ x(x+3)’Y' + (x+1)y =0

In problem 11-22 show that the indicial roots do not differ by an integer. Use the method
of Frobenius to obtain two linearly independent series solutions about the regular singular
point x, = 0 Form the general solution on (0, «)

11.2xy"—y'+2y =0
12. 2xy"+5y' +xy =0

13. 4xy”+%y'+y=0

14. 2x°y"—xy'+(x*+1)y =0
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15.

16.

(2]

17.

18.

19.

20

21.
22.
In problem 23-34 show that the indicial roots differ by an integer. Use the method of

xXy"+(2-x)y+y=0

2
XY —| x==1y'+xy=0
9
2xy"+(3+2x)y'+y =0
xzy”+xy’+(x2 —gjy =0

9x°y" +9x°y' +2y =0

C2X°Y"+3xy'+ (2x-1)y =0

2X°y" = x(x-1)y -y =0
X(x=2)y"-y' -2y =0

Frobenius to obtain two linearly independent series solutions about the regular singular
pointXx, = 0 Form the general solution on (0, «)

23

24,

25.

26.

217.
28.
29.
30.
31.
32.
33.
34.

Xy"+2y'—=xy =0

yn+§y1_2yzo
X
xy"+y=0
Xy'+y'+y=0
Xy'—y'+y=0

xy"+y —4xy =0

xy"—y' +x’y =0

X2y" + xy' +(x2 —%)y =0

X(x=1)y"+3y'-2y =0

xy"+(1L-x)y—y=0

XY +x(x=1)y +y=0

X°y"+(x-1)y -2y=0
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33 Bessel’s Differential Equation

2

A second order linear differential equation of the form x? % + x% + (x2 —v? )y =0
X X

is called Bessel’s differential equation.

Solution of this equation is usually denoted by Jv(x)and is known as Bessel’s

function. This equation occurs frequently in advanced studies in applied mathematics,
physics and engineering.

33.1 Series Solution of Bessel’s Differential Equation

Bessel’s differential equation is x2y” + Xy’ +(x2 —v2) y=0 1)

If we assume that y = > C,x™" = y'=> C (n+rx™ ™ =

n=0 n=0
y' = Coln+r)(n+r-1)x"r2
n=0
So that
x2y”+xy’+(x2—v) Z (n+r)(n+r-1)x™" +> Cp(n+r)x™"

n=0

o0 o0
Z n+r+2 ZCanH -0
n=0 n=0

e e} e e}
Co (r2 —vz)xr +x' Y Cy [(n+ r)(n+r-1)+(n+ r)—szxn +x" Y Cpx"=0 ... (2)
n=1 n=0
From (2) we see that the indicial equation is r2 —v? =0, so the indicial roots are rn=v
I, =—v.When r; =v then (2) becomes

xvicnn(n +2V)X" + x> C x"2 =0

n=1 n=0

"I (1+2v)Cx + iCnn(n +2v)X" + ) C x"? |=0
n=2 n=0
k=n-2 k=n
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X" {(1+ 2v)clx+i[(k +2)(k+2+2v)C,,, +ck]xk+z} =0
k=0
We can write
(1+2v)C, =0
(k+2)k +2+2V)Cy,p +C, =0

_C ©
k+2)k +2+2v)
k=012,...

Ck+2 = (

The choice C, =0in (3) implies
C,=C,=C,=...=0
so for k =0,2,4,... we find, after letting k +2=2n , n=1,2,3,... that

_C2n—2

C. —__“on2
o 2°n(n+v)

(4)

Thus

Cy _ Co
22.2.(2+v) 2%.1.2.(1+v)(2+V)
Cy Cq

Ce = . 5
° 22.3.(3+v)  28.1.2:3-(1+v)(2+v)(3+V) ©)

(-1)"¢c
22" Y (1+v)(2+v)-+(n+v)

Con = n=12.3,...

It is standard practice to choose C,to be a specific value namely

1

Co=ry——
2'T(1+vV)

where I'(1+v)the Gamma function. Also

I'l+a)=al(a).
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Using this property, we can reduce the indicated product in the denominator of (5) to one
term. For example

F@+v+1) =(1+v)C(1+v)

F1+v+2)=(2+V)T'(2+V)

=(2+V)(1+Vv)I@+v)
Hence we can write (5) as
(-1)"
Con = 2n+v
29 114+ v) (24 V) (n+V)T(1+V)
n
_ (-3) n=012,...

C22M"Vnirven)
So the solution is
) 00 n 2n+v
2n+v (1) [XJ
y= ) Conx =) ———| —
ngb n n%;‘)n!l“(1+v+n) 2
If v>0, the series converges at least on the interval [0 ).

33.2 Bessel’s Function of the First Kind

As for r, =v, we have

~ ) (_1)n (EJZHV
W)= 2 a2 ©

n=0
Also for the second exponent r, = -V, we have

~ o0 (_1)n (EJZn—v
v0= 2 Ciravam 2 0

n=0

The function Jv(x) and J_, (x) are called Bessel function of the first kind of order v and
—V respectively.

Now some care must be taken in writing the general solution of (1). When v=0, itis
clear that (6) and (7) are the same. If v>0and r, —r, =v— (— v) = 2V is not a positive

integer, then J,(x) and J_,(x) are linearly independent solutions of (1) on (0, %) and
so the general solution of the interval would be

y =CyJ, (x)+C,I_, (x)
If r, —r, =2v is a positive integer, a second series solution of (1) may exists.

Example 1 Find the general solution of the equation
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x%y" + xy'+(x2 —ﬂy =0

n (O, oo)
Solution The Bessel differential equation is
X2y" +xy'+(x2 ~v? )y =0 (1)
xzy”+xy'+(x2—%)y=0 2)
. 1 1
Comparing (1) and (2), we get Vo= 2 therefore v = iE
So general solution of (1) is y= ClJl/z(X)+ C,d 4/5(%)

Example 2 Find the general solution of the equation: x*y" + xy' + (xz —éjy =0

Solution: We identify vZ = é therefore v = J_r%

So general solution is y = C;J;,5(X)+CyJ ;/5(X)
Example 3 Derive the formula xJj, (X) =V, (X)—XJy41(X)

Solution

As J, ﬁj: nlr(;)n(fjm

@+v+n)\ 2

o0 2n+v
XJ' Z 2n +V) (5)

n'F(1+v+ n)

. o0 (_1)n (Xj2n+v i _ nn [£j2n+v
nr@+v+n) 2 nIF(1+v+n)

n=0

© 2n+v-1
=V, +x
nza n-1 'F(l+v+n)( j

k=n-1

o0 K 2k +v+1
=vJV(x)—xZ—( 2) (5)
ko KIT(2+v+k)\ 2

=Wy (X)=XJy41(X)
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So XJy (X)) =Vdy (X)=xJy41(X)

Example 4 Derive the recurrence relation 2J/ (x)=J, ;(x)—J,,4(x)

Solution:

Saett 5 Gt () )
S store oesf3) (3
Saaes ) ()

ol el
e es)

Puts—1=pin2"term =s=p+1

o )P n+2(p+1)-1
Lo+ 3 B

2 =pl(n+p+1)\2
1 1 —1(-1)P° (x)"EP
Lo+ 33U ()
2 25 pln+1+ppl2
1 1
Ih ()= In1(%) =5 Ina (%)
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=235 (})= 3,2 ()= 3,2 (%)

1
Example 5 Derive the expression of J (X) forn=+—

Solution: Consider J,(x ):i (-1)° )(;jm%

s:OSI(
As nl=T(n+1)

= Jn(x)=§F(8+ = [5)'”25

DIr(n+s+1)\ 2

put n=1/2

® s i
J1/2 Z ( 1) [ij

ol (s+)r@/2+s+1)\ 2

Z (-1)° (XJ;zS

F(s +DI(s+3/2)\ 2

Expanding R.H.S of above

I\)\H

J X (-1) X §+2(1)
1/2(X) r(0+1)r(0+3/2) (Ej F(1+1)F(1+3/2) (_)

(1 [zf”(%...

1
x\2"
T2 +1)r(2+3/2) [Ej TTE+)rE+3/2)\ 2

1 5 9
_2 ﬁjz_ﬂ(ﬁjﬁﬁ(ij?_
Jr\2)  3dz\2 2.5.3J7\ 2
1, a4t
\/_ \/_ 3 25/2 15 29/2

_x a4
\/_ \/_ 3 25/2 1529/2

_N2x| o2 A . axt
Tz | J2v2 392252 "15.42.27

él

k)
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_\/E\/;{ x2 x4 }
= 1-—+

Jr 6 120
_N2edx 1 oK X
Jroo X 3 5l

_\/E\/'_\/;sinx

= J1/2(x)=\/gsinx

Similarly for n=-1/2, we proceed further as before,

( ):si ( ) )(;Jmswhere n'=T(n+1)

sl(n+s)!

0 (_1)5 [ijn+25
g‘ r's+HYIr'(n+s+1)\ 2

U
||

ut n_—1
P 2

(-1)°

o X ——+25
112 SZ;‘)F(S+1)F( 1/2+s+)\ 2 (_j

J ) . (_1)5 X —§+25
-1/2 (X) - g} I(s+DI(s+1/2) (Ej

Expanding the R.H.S of above we get

P (32, (z)‘z”(”
-1/2 rO+)ro+1/2)\ 2 ra+yra+1/2)\ 2

(-7 (5)}2(2) )

Te+re+1/2)\ 2
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1 2 1 x )2 1 x 2
SV S S S U W 1
rOre/2)\x rr@/i2)\2)  rEere/2)l\ 2

3 7
__ 1 E_;(EJH;[EJZ_...
Or@2Vx 31 g 92 3 lrwo
2

1 {\/_ 2X3/2 2_2X7/2 :l

+ —
F(1/2)\/§ 23/2 2.327/2

2 ox¥2 o2
\/; 2312 +§27/2_"1

\/E 2X3/2 ) X7/2 _}

Jx2 4 316

3/2 712
V2 % oaxt
J‘J‘ 2 38

Sl sl 2l 5=

§s |

1
-
><(A)
><\|

—_ _|_ — e
Jxooo2 24 }

2 4
{1_X_+X__..1
20 4
:J_l,z(x):‘/icosx

X

Remarks:

alw

Bessel functions of index half an odd integer are called Spherical Bessel functions. Like
other Bessel functions spherical Bessel functions are used in many physical problems.
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Exercise

Find the general solution of the given differential equation on (0, oo).
1. x2y”+xy'+(x2—%jy:0
2. x2y”+xy’+(x2 —1)y:0
2 " ' 2 _
3. 4x°y"+4xy +(4x —25)y_0

4, 16x2y”+16xy’+(16x2 —1) y=0

Express the given Bessel function in terms of sin x and cos X, and power of X.
5. J3/2(x)
6. Js/2(x)

7. J37/2(%)
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34 Legendre’s Differential Equation

A second order linear differential equation of the form
(1— G )y” —2xy'+n(n+1)y =0

is called Legendre’s differential equation and any of its solution is called Legendre’s
function. If n is positive integer then the solution of Legendre’s differential equation is
called a Legendere’s polynomial of degree n and is denoted by P, (x)

We assume a solution of the form  y = ZCka
(1—x2)y"—2xy’+n(n +1)y=

(l—xz) 3 Cek(k-1)xk2 23 Cpkx +n(n+1) 3 i x¥
k=2 k=1 k=0

= ickk(k —1)x? - ickk(k ~1)x* —2§:ckkxk +n(n +1)§:Ckxk
k=2 k=2

k=1 k=0

=[n(n+1)C, +2C, |x° + [n(n +1)C, — 2C, + 6C, [x + ickk(k —1)x*?

k=4
j=k—2
B ickk(k ~1)x* - ZiCkkxk +n(n +1)ickxk
=2 . &2 k=2
=k j=k ik
=[n(n+1)Cy+2C; |+[(n-1)(n+2)C; +6Cg |x
Z[ (i+2)(i+1) J+2+(”‘j)(n+j+1)CjJXj=0
= n(n + 1)CO + 2C2 =0

(n-1)(n+2)C;+6C3 =0

(i+2)(i+2)Cp, +(n=j)(n+j+1)C, =0, j=2,34,..

nin+1
or C,=- (2! )CO
c, =_(n—1)3(|n+2)cl
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(n—j)(n+j+1)C.;

o)1) C i=23,... (1)

Cj+2 ==
From Iteration formula (1)

(n—2)n+ 3)C (n—2)n)Yn+1)n+ 3)C

4.3 ? 4 0
. :_(n—B)(n+4)C3 _(n=3)n-1)n +2)(n+4)Cl
5.4 5|
c. _ (n-4)(n+5) 4 _ (n-4)(n-2) n(n+1)(n+3)(n+5)CO
5-6 6!
C. =—(n_§)(2+6)(35 :_(n—5)(n—3)(n—1)7(In+2)(n+4)(n+6)cl

and so on. Thus at least ‘X‘ <1, we obtain two linearly independent power series
solutions.

PR E ITRE R
~(n=4)n-2)n(n +1)(n+3)(n+5)x6 +}
6!

V,(x)= Cl[x ~(n —1)3('n + 2)X3 .\ (n-3)(n —1)5(!n +2)n+ 4)x5

(n—5)n—3)fn-1)r +2)n+4)n+6) - +}

7!

Note that if nis even integer, the first series terminates, where Y, (X) is an infinite series.
For example if N =4, then
4.5 2-4.5-7 35
y]_(X): CO|: _7)(2 + TXA'} = C0|:1—10X2 + ?X4:|

Similarly, when nis an odd integer, the series for y, (X)terminates with X".i.e when n

iS a non-negative integer, we obtain an nth-degree polynomial solution of Legendre’s
equation. Since we know that a constant multiple of a solution of Legendre’s equation is

also a solution, it is traditional to choose specific values for C,and C,depending on
whether N is even or odd positive integer, respectively.

Forn=0, we choose C, =1 and for n=2,4,6,...
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com(p Y

Whereas for n =1, we choose C, =1and for n=3,5,7,...

_( (/2 1.3-...n
G=(=) 2-4...(n-1)

For example, when n =4, we have
1-3 35
X)= —1‘”2—{1—10x2 +—x4}

_3_ 3050 3

8 8 8
yl(x):%(35x4 —30x? +3)

34.1 Legendre’s Polynomials

Legendre’s Polynomials are specific n™ degree polynomials and are denoted by P, (x)

From the series for y;(x)and y,(x)and from the above choices of Cyand C,, we find
that the first several Legendre’s polynomials are

Py(x)=1

P(x)=x
Po()= 5 (66" -1

P (x)= %<5x3 - 3x)
Py(x) = %(35x4 ~30x% +3)

P.(x)= %(63x5 —70x° +15x)

Note that P,(x), P,(x), P,(x), Py(x),...are, in turn particular solution of the differential
equations

0 (1—x2)y”—2xy':0
1 (1—x2)y”—2xy'—2y=0

n

n
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n=2 (1—x2)y”—2xy’+6y:0
n=3 (1—x2)y”—2xy’+12y=0

34.2 Rodrigues Formula for Legendre’s Polynomials
The Legendre Polynomials are also generated by Rodrigues formula

_ 1 dn 2 n
Palx)= 2"l dx" (X _1>

34.3 Generating Function For Legendre’s Polynomials

The Legendre’s polynomials are the coefficient of 2" in the expansion of
1
p=(1-2xz+7%)>
in ascending powers of z.

Now ¢:(1—2xz+zz)_; ={1-z(2x-2z)} 2

Therefore by Binomial Series

¢ =1+%z(2x— z)+i23j{—z(2x— z)}2 + _;[;3j(jj {~z(2x- z)}3 o

:1+%z(2x—z)+§zz(4x2 + 72 —4xz)+%z3(8x3—z3 —12x22+6x22)+~-

=1+ zx—%z2 +%x222 +§z4 —§x23—ix3z3—iz6 —Exzz4 +E 5

8 2 2 16 4
=1+ Xz +%(3x2 —1)22 +%(5x3 —3x) 23 +%(35x4 —30x2 +3)z4 +-
Also

iPn(x)z” =R (X)+ P (X)z+P,(X)2* + Py (x)Z° +---

n=0

Equating Coefficients of (1) and (2)

Xz +- -

(1)
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X
1
E(BXZ —1)

P (x)= %(5X3 —3x)

P,(x) :%(35%‘ ~30x* +3)

Which are Legendre’s Polynomials
34.4 Recurrence Relation

Recurrence relations that relate Legendre’s polynomials of different degrees are also very
important in some aspects of their application. We shall derive one such relation using
the formula

1 o
(1-2xt+t*) 2 =3P (x)-t" Q)
n=0

Differentiating both sides of (1) with respect to t gives

(1- 2xt+t) ZnP X)t" ZnP X)t"

s0 that after multiplying by 1— 2xt +t*, we have

(x—t)(1-2xt +t2)_i =(1-2xt +t2)inPn(x)t”1

n=1

(x=1) 3P, (X)t" = (L-2xt +7) Y0P, ()"

n=0 n=1

ixpn(x)tn_ipn(x)tm_g P (x)t™* +2x> 0P, (x

n=1

0 2
x+xt+ZxP X)t"—t— ZPn " —x - 2(3)(2 1}

n=

= NP, (x)t" + 2x°t + ZXZ R, (X)t" = > nP,(x)t"™* =0
n=2
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Observing the appropriate cancellations, simplifying and changing the summation indices

Z[ K+1)R;(X)+(2k +1)xP (x) — kR, (x) |t =0

Equating the total coefficient of t*“to zero gives the three-term recurrence relation

(k+1)P;(X) = (2k+1)xP, (X) + kP, (x) =0,  k=2.3.4,...

34.5 Orthogonally of Legendre’s Polynomials
Proof:

Legendre’s Differential Equation is (1— G ) y"—2xy’+n(n+1)y=0
Let P, (x) and Py, (x) are two solutions of Legendre’s differential equation then

( )P’x —2xPy (x)+n(n+1)PR,(x)=0,and

(152 ) P (x) = 2xP (X)+m(m+1) Pry (x) =0

which we can write
[(1—x2)Pﬁ(x)]+n(n+1)Pn(x):0 o)
[(1—x2)Pn’1(x)]+m(m+1)Pm(x):0 @

Multiplying (1) by Py, (x)and (2) by P, (x) and subtracting, we get

Pm(x){(l—xZ)P,;}'—Pn(x){(l—xz)P,;](x)}'
+{n(n+1)—m(m+1)} Py (x)Py(x)=0

©)

Now

Add and subtract(l—xZ)P'mP'n to formulizetheabove

Bn(0{ AP | ~R (0 a-x0)P
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:(1—x2)Pr§] (X) P4 (x)+ P (X)[(l—XZ)Pﬁ (X)]
—(1—x2)Pr{n (x) Py (x)+Py (x)[(l—xz)% (X)]
:(1—x2)[Pn(X)Pﬁ(X)— Pr'n(X)Pn(X)]’

Which shows that (3) can be written as

(13 )P ()P (x) P }}

+[n(n+1)-m(m+1) [Py (x Pn() 0
((1—x2){Pm(x)P,;(x)—Pr'n(x)Pn}),+(n—m)(n+m+l)Pm(x)Pn(x)zo
(nm)(m+42) B ()P ()= (152 ) (B () B (x) B ()P ()}

b b '
(n—m)(m+n+1)ij(x)Pn(x)dx=j((1—x2){P,{1(x)Pn(x)—Pm(x)Pr;(x)})dx

b

b
(n=m)(m-+n-2) [ By (x) P (x)dx =137 )} { Ry (%) Py () =Ry (X) Py (%)}

a

As 1—x2 = 0for x=+1 s0
1
(n—m)(n+m+l)jPm(x)Pn(x)dx:O for x=+1
-1
Since m & n are non-negative

1
= j Pn (X)Py(x)dx=0 for m=n

-1
which shows that Legendre’s Polynomials are orthogonal w.r.to the weight function
w( x)=1over the interval [-1 1]
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34.6 Normality condition for Legendre’ Polynomials
Consider the generating function
1

(1—2xt+t2)_2 =3 By ()t™ @
m=0
Also
1w
(1—2xt+t ) 2 = Z (2)
Multiplying (1) and (2)
-1 0
(1-2xt+62) "= 3 X R (x) Ry ()™
m=0n=0

Integrating from -1 to 1
1

1 o o 1
J dx= > > ij(x)Pn(x)tm+”dx

(1—2xt+t2) m=0n=0_1

-1
1
1 -2t 20201 m-+n
- oxdx= 20 2 [ P (%) P (x)t™ Ml
(1—2xt+t ) m=0n=0_1
-1
1 o0 o0 1
_—In(1—2xt+t )‘ Z Z I Pn( )tm+ndx
2t m=0n=0_-1

:mi:oéo } P (%) Py (X)tmdez—%[ln(l—Zth)—In(1+2t+t2)}

-1

:—%[In(l—t)2 —In(1+t2)}

=—2it{ln(1+t)2 —In(l—tz)}
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——2[In(1+t)-In(1-1)]

1 2 3 4 2 3
- t—0—94———+ -t ...
t 23 4 2 3

23 2t° }
+...

» 1 t t

Z j P, (X ] t?"dx =241+ +

b 2(1)+1 2(
Equating coefficient of t2n on both sides

:>} [Py (x)]zdx = 2n2+1

1
= j P (X) Py (x)dx =
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which shows that Legender polynomials are normal with respect to the weight function

w(x)= 2n2+10ver the interval —1< x <1,

Remark:

Orthognality condition for P, (X) can also be written as

1

2
[men (x)dx—(mjﬁm,n
0 ., 1fm=#n

where o =
mn {1 ,otherwise

34.7 Exercise
1. Show that the Legendre’s equation has an alternative form

%[(1—x2)%]+n(n+1)y=o

2. Show that the equation
2
sin9u+cosed—y+n(n+1)(sinH)y:O can be
do? do

transformed into Legendre’s equation by means of the substitution x = cosé

3. Use the explicit Legendre’s polynomials B (x), P> (x), P> (x), and P3(x)

1
to evaluate j Pnzdx for n=0,1, 2, 3. Generalize the results.
-1
4. Use the explicit Legendre polynomials B (x), P> (x), Py (x), and Py(x)
1
to evaluate I Pn (X) Py (x)dxfor n=m. Generalize the results.
-1
5. The Legendre’s polynomials are also generated by Rodrigues’ formula
n n
Py (x)= . d—(x2 —1)
2"n1dx"

verify the results for n=0,1, 2, 3.
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35 Systems of Linear Differential Equations
o Recall that the mathematical model for the motion of a mass attached to a spring
or for the response of a series electrical circuit is a differential equation.

2
au+bﬂ+cy= f(x)
dx

dx?

o However, we can attach two or more springs together to hold two masses m;
andm,. Similarly a network of parallel circuits can be formed.

3

| QUSSR YV

&

o To model these latter situations, we would need two or more coupled or

simultaneous equations to describe the motion of the masses or the response of
the network.

o Therefore, in this lecture we will discuss the theory and solution of the systems of
simultaneous linear differential equations with constant coefficients.

Note that

An nthorder linear differential equation with constant coefficients a,, a,, ..., a,is
an equation of the form
dny dn—ly dy
a——+a  —=+--+a—+a,y=0g(x
n an n-1 dxn_l 1dX oy g( )
. d .o d? nodn . . .
If we write D=—,D“ =——,---,D" =——then this equation can be written as follows
dx dx? dx"

(anDn +an_1D(”‘1)+---+a1D+ao)y: g(t)

35.1 Simultaneous Differential Equations

The simultaneous ordinary differential equations involve two or more equations that
contain derivatives of two or more unknown functions of a single independent variable.
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Example 1 If x,yand z are functions of the variable t, then

2
4c(th2x:_5x+y
d?y
2 e =3Xx-Yy

and
X'=3x+y'+z'=5
X+y' —-6z"=t-1
are systems of simultaneous differential equations.

35.2 Solution of a System
A solution of a system of differential equations is a set of differentiable functions

x=f(t), y=g(t) x=h(),...
those satisfy each equation of the system on some interval I .
35.2.1 Systematic Elimination (Operator Method)

o This method of solution of a system of linear homogeneous or linear non-
homogeneous differential equations is based on the process of systematic
elimination of the dependent variables.

o This elimination provides us a single differential equation in one of the dependent
variables that has not been eliminated.

o This equation would be a linear homogeneous or a linear non-homogeneous
differential equation and can be solved by employing one of the methods
discussed earlier to obtain one of the dependent variables.

Notice that the analogue of multiplying an algebraic equation by a constant is operating
on a differential equation with some combination of derivatives.

Step 1 First write the differential equations of the system in a form that involves the
differential operator D .

Step 2 We retain first of the dependent variables and eliminate the rest from the
differential equations of the system.

Step 3 The result of this elimination is to be a single linear differential equation with
constant coefficients in the retained variable. We solve this equation to obtain the value
of this variable.

Step 4 Next, we retain second of the dependent variables and eliminate all others
variables

Step 5 The result of the elimination performed in step 4 is to be again a single linear
differential equation with constant coefficients in the retained 2" variable. We again
solve this equation and obtain the value of the second dependent variable. This process of
elimination is continued untill all the variables are taken care of.
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Step 6 The computed values of the dependent variables don’t satisfy the given system for
every choice of all the arbitrary constants. By substituting the values of the dependent
variables computed in step 5 into an equation of the original system, we can reduce the
number of constant from the solution set.

Step 7 We use the work done in step number 6 to write the solution set of the given
system of linear differential equations.
. . . dy dx
Example 1 Solve the system of differential equations oo 2X, e 3y
Solution:

Step 1 The given system of linear differential equations can be written in the differential
operator form as

Dy = 2x, Dx =3y
or 2x—Dy =0, Dx-3y=0

Step 2 Next we eliminate one of the two variables, say x, from the two differential
equations. Operating on the first equation by D while multiplying the second by 2 and
then subtracting eliminates x from the system. It follows that

~D?y+6y=0 or D°y-6y=0.

Step 3 Clearly, the result is a single linear differential equation with constant coefficients
in the retained variable y . The roots of the auxiliary equation are real and distinct

m, -6 and m, - /6,

Therefore, y(t)= ce’® L, c,e t

Step 4 We now eliminate the variable y that was retained in the previous step.

Multiplying the first equation by—3, while operating on the second by Dand then
adding gives the differential equation for x,

D2x—6x=0.

Step 5 Again, the result is a single linear differential equation with constant coefficients
in the retained variable x. We now solve this equation and obtain the value of the second

dependent variable. The roots of the auxiliary equation arem = +4/6 . It follows that
x(t)=ce® Uicel

Hence the values of the dependent variables x(t), y(t) are.
x(t)=c,e® t roe 0l

y(t):cleﬁt +c2e’£t
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Step 6 Substituting the values of x(t) and y(t) from step 5 into first equation of the
given system, we have

(\/6C1 - 2c3)e*@t + (— \/Ecz - 2c4)e_\/gt =0.
Since this expression is to be zero for all values oft, we must have
6 —2c53=0, —+/6cy—2c, =0

6 6

or 03:701, (:4:—7(:2

Notice that if we substitute the computed values of x(t) and y(t) into the second

equation of the system, we shall find that the same relationship holds between the
constants.

Step 7 Hence, by using the above values of ¢, andc,, we write the solution of the given
system as

Example 2
Solve the following system of differential equations
Dx+(D+2)y =0
(D-3) x-2y=0
Solution:
Step 1 The differential equations of the given system are already in the operator form.

Step 2 We eliminate the variable x from the two equations of the system. Thus operating
on the first equation by D —3and on the second by D and then subtracting eliminates X
from the system. The resulting differential equation for the retained variable vy is

[([D-3)D+2)+2D]y=0
(D2+D—6)y =0

Step 3 The auxiliary equation of the differential equation for y obtained in the last step
IS

m2+m-6=0=(m-2)m+3)=0
Since the roots of the auxiliary equation are

m =2, mp=-3
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Therefore, the solution for the dependent variable vy is

2 3t

y(t)=ce?t +cpe”

Step 4 Multiplying the first equation by 2 while operating on the second by (D + 2) and
then adding yields the differential equation for x
(D?+D-6)x=0,
Step 5 The auxiliary equation for this equation for x is
m? +m-6=0=(M-2)(m+3)
The roots of this auxiliary equation are
m =2, my=-3
Thus, the solution for the retained variable x is

2t 3t

X(t)=cge +cqe”

Writing two solutions together, we have

t 3t

+Cye
3t

X(t) = cqe?
y(t) = ¢;e?

Step 6 To reduce the number of constants, we substitute the last two equations into the
first equation of the given system to obtain

tcye”

(4c, +2c3)e? +(—cy —3cy )™ =0

Since this relation is to hold for all values of the independent variablet. Therefore, we
must have

4C1+2C3 =0, —Co —3C4 =0.
1
or C3 =—2Cq, Cq = _§C2

Step 7 Hence, a solution of the given system of differential equations is

x(t)=—2c,e?t —%cze_3t

2t 3t

y(t)=cre”" +coe”
Example 3

Solve the system
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dx d’y

— —Ax+—=t*
dt dt
o + X + L =0
dt dt

Solution:

Step 1 First we write the differential equations of the system in the differential operator
(D-4)x+ D%y =t?

form:
(D+1)x+Dy=0

Step 2 Then we eliminate one of the dependent variables, say x. Operating on the first
equation with the operator D +1, on the second equation with the operator D — 4 and then

subtracting, we obtain [(D+1)D? —(D -4)D] y = (D +1)t?
or (D®+4D)y=t2+2t

Step 3 The auxiliary equation of the differential equation found in the previous step is
m?’+4m:0:m(m2 +4)
Therefore, roots of the auxiliary equation are
m =0, mp=2i, mg=-2i
So that the complementary function for the retained variable y is
Yo =Cp +Cp COS 2t +cgsin 2t.
To determine the particular solution y ,we use undetermined coefficients. Therefore, we

assume: y, = At> + Bt? +Ct. = Y/ =3At’ + 2Bt +C,

= ypH =6At+ 2B, yp=6A

Thus y’lg +4y’p =12At% + 8Bt +6A+4C

Substituting in the differential equation found in step, we obtain
12At* +8Bt+6A+4C =t* + 2t
Equating coefficients of t2, t and constant terms yields
12A=1, 8B=2, 6A+4C=0,
Solving these equations give
A=1/12, B=1/4, C=-1/8.

Hence, the solution for the variable y is given by
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Y=Yct+VYp
1'[2—1

. 1.3
or =C1 +CyCOS2t +CqSIN2t +—1° +— —t.
Y=t 3 12 4 8

Step 4 Next we eliminate the variable y from the given system. For this purpose we

multiply first equation with 1 while operate on the second equation with the operator D
and then subtracting, we obtain

[(D-4)-D(D+Dx= t?
or (D2 + 4) x =—t?
Step 5 The auxiliary equation of the differential equation for x is

m2+4:0:>m:i2i

The roots of the auxiliary equation are complex. Therefore, the complementary function
for x is: X, =C4 COS2t + Cg Sin 2t

The method of undetermined coefficients can be applied to obtain a particular solution.

We assume that Xp = At + Bt +C.
Then x’IO =2At + B, x’b =2A
Therefore Xy +4X ) = 2A+4At2 + 4Bt + 4C

Substituting in the differential equation for x, we obtain
AAt? + 4Bt + 2A+4C = —t?

Equating the coefficients of t2, t and constant terms, we have
4A=-1, 4B=0, 2A+4C=0
Solving these equations we obtain
A=-1/4,B=0,C=1/8

Thus Xp =—£t2+1
4 8

So that x = x; + X :c4c032t+c5s.in2t—£t2+1
¢ P 4 8

Hence, we have

. 1 1
X=Xc+Xp =C4 c032t+c5sm2t—zt2 +§

. 13 1., 1
=Cy1 +CyCOS2t+CqsSIN2t + —1t° +—t° ——t.
Y=t 3 12 4 8
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Step 6 Now C,and Cgcan be expressed in terms of ¢, and cgby substituting these
values of xand y into the second equation of the given system and we find, after

combining the terms, (c5 —2¢,4 —2¢5 )sin 2t +(2¢5 + ¢4 +2¢3)cos 2t = 0

Sothat ¢, —2c, —2¢c, =0, 2c5+C4+2c3=0

Solving the last two equations for c4 and cgin terms of C,and C5 gives
Cy :—%(402 +2c3), Cs =%(202 —4c3).

Step 7 Finally, a solution of the given system is found to be

x(t)= —%(4c2 +2C3)cos 2t +%(2c2 —4cq)sin 2t _%tz J%t

. 13 1, 1
t)=cy +CyC0S2t +C3SIN2t + —t° +—1° ——t.
y(t)=cr+c; 3 12 4 3
Exercise
Solve, if possible, the given system of differential equations by either systematic
elimination.
dx dy
1. —=x+4+7y, —=x-2
dt y dt y
2. %—4y:1, x+d—y:2
dt dt

3. D+1x+(D-1)y=2, 3x+(D+2)y=-1

2
d x+ﬂ:

a% o dy
dt? dt

-5X, +—=-X+4y
dt dt

5. D?x-Dy=t, (D+3)x+(D+3)y=2

2
6. %+d—y=et, —ﬂ+%+x+y:0
dt dt t

7. (D—1)x+(D2+1)y=1, (Dz—l)x+(D+1)y=2
8. Dx=y, Dy =z, Dz =x

dx dy dz
—=-X+2, —=-yY+12, —=-X+Y
dt dt dt

10. Dx-2Dy=t2, (D+1)x-2(D+1)y=1
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36 Systems of Linear Differential Equations

36.1 Solution of Using Determinants

If Lj,L,, Lz and L, denote linear differential operators with constant coefficients, then a
system of linear differential equations in two variables x and y can be written as

Lix+ Loy = gq(t)
Lgx+Lgy =0(t)

To eliminate y , we operate on the first equation with L, and on the second equation with
L, and then subtracting, we obtain : (LyLs — LyLg)x = L4g1 — Lo g5

Similarly, operating on the first equation with Lzand second equation with Ljand then
subtracting, we obtain: (LjLs — LyLg)y = Lygs — L30p

Ly Lo 01 Lo
v hly Ly = = L4091 -Ly9, =
L3 Ly do Ly
Ly 01
And L3gp —Lzg; = L
3 g2

Hence, the given system of differential equations can be decoupled into nth order
differential equations. These equations use determinants similar to those used in Cramer’s
rule:

L 0
L3 92
The uncoupled differential equations can be solved in the usual manner.
Note that

o The determinant on left hand side in each of these equations can be expanded in
the usual algebraic sense. This means that the symbol D occurring in L;is to be

treated as an algebraic quantity. The result of this expansion is a differential
operator of ordern, which is operated on X andy .

Ly Lo
Ly Ly

01 Lo
P Ly

L L
1 2 X
L3 Ly

and

o However, some care should be exercised in the expansion of the determinant on
the right hand side. We must expand these determinants in the sense of the

internal differential operators actually operating on the functions g;andg,.
Therefore, the symbol D occurring in L; is to be treated as an algebraic quantity.
36.2 Solution Method

The steps involved in application of the method of detailed above can be summarized as
follows:
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Step 1 First we have to write the differential equations of the given system in the
differential operator form

Lix+ Loy = g;(t)
Lex+Lay = gol(t)
Step 2 We find the determinants
L L
L L,

01 Ly (L 01
92 La| |Ls P

Step 3 If the first determinant is non-zero, then it represents an n™ order differential
operator and we decoupled the given system by writing the differential equations

Ly L, ! L,
L3 Ly 92 Ly
Ly L, Ly = Ly 91
L3 Ly L3 g2

Step 4 Find the complementary functions for the two equations. Remember that the
auxiliary equation and hence the complementary function of each of these differential
equations is the same.

Step 5 Find the particular integrals Xpand ypusing method of undetermined
coefficients or the method of variation of parameters.
Step 6 Finally, we write the general solutions for both the dependent variables Xand y
X=X +Xp, Y=Yc+Yp-
Step 7 Reduce the number of constants by substituting in one of the differential
equations of the given system
Note that

If the determinant found in step 2 is zero, then the system may have a solution containing
any number of independent constants or the system may have no solution at all. Similar
remarks hold for systems larger than system indicated in the previous discussion.

Example 1
Solve the following homogeneous system of differential equations
2 ax_ oX + ay = ¢!
d dt
ax_ X+ ay = 5et
dt dt

Solution: Step 1 First we write the differential equations of the system in terms of the
differential operator D
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(2D-5)x+Dy=¢'
(D-1)x+ Dy = 5¢!
Step 2 We form the determinant
2D-5 ¢
D-1 5e

el D
5l D

2D-5 D
D-1 D/

Step 3 Since the 1* determinant is non-zero

2D=5 D—(2D 5)D—(D-1)D
D-1 D|
2D-5 D|
or =D?-4D %0
D-1 D

Therefore, we write the decoupled equations

20-5 D| _|e' D
D-1 D| |5t p

2D-5 D 2D-5 e
b-1D D-1 5e'

After expanding we find that

(D2 —4D)x: Del —D(5 o) = —4et

(D2 —4D) y = (2D —5)(5et) — (D —1)et = —15¢t

Step 4 We find the complementary function for the two equations. The auxiliary
equation for both of the differential equations is:

m2—4m:0:>m:0,4
The auxiliary equation has real and distinct roots

Xc =01 + cyet

Yo =C3+ C4(i‘4t

Step 5 We now use the method of undetermined coefficients to find the particular
integrals X andy .
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Since g1 (t)=—4 e, gy (t)=-15 !
We assume that
_ Aal _pat

Xp = Ae", Yp = Be
Then D Xp = Aet, D2xp = Aé!
And D Yp = Bel, D2yIo = Bel
Substituting in the differential equations, we have

Ael —4Aet =—4¢t

Be! —4Bel = —15¢!
or —3Ael =—4e', —3Be! =—15¢!

Equating coefficients of e' and constant terms, we obtain

4 t
Step 6 Hence, the general solution of the two decoupled equations

_ _ 4t 4t

y=Yc+Yp=C3 +c4e4t +5et

Step 7 Substituting these solutions for xand y into the second equation of the given
system, we obtain

—c1 +(3c +4c4)e4t =0

or =0, ¢ 3c
1=V Cg=—-——C).
4

Hence, the general solution of the given system of differential equations is

x(t):c2e4t+§et
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y(t)=c3 —%cze4t +5el

If we re-notate the constants Co and Cc3 as C; and Co, respectively. Then the
solution of the system can be written as:

x(t):cle"’t+%et

y(t)=—%c1e4t +Cp + 56t
X'=3x-y-1
Example 2 Solve ¢
y'=x+y+4e

Solution:

Step 1 First we write the differential equations of the system in terms of the
differential operator D

(D-3x+y=-1
—x+(D-1)y = 4e'
Step 2 We form the determinant
D-3 1J
-1 D-1
Step 3 Since the 1% determinant is non-zero

D-3 1
-1 D-

4et D-

-1 1J‘D—3 1

J:D2—4D+4¢0

1 1

4et D-
D-3 -1
—1  4¢

Therefore, we write the decoupled equations

D-3 1
X =

D-3 1
-1 D-1

After expanding we find that
(D-2x=1-4¢"

(D-2)*y=-1-8e".

Step 4 We find the complementary function for the two equations. The auxiliary
equation for both of the differential equations is:
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(m-22=0=>m=2.2
The auxiliary equation has real and equal roots

Xc = cre?t +cote?t

Yo = 0362t + C4t€2t
Step 5 We now use the method of undetermined coefficients to find the particular
integrals Xpandy,. As g1 (t)=1-4 e, gp(t)=-1-8¢
So we assume that
_ t _ t
xp =A+Be’, yp =C+Ee

Then DX, = Be!, szp = Be'

And Dy, =Ee', D%y, =Ee
Substituting in the differential equations

(D-2)°x, = D?x, —4Dx,, +4x, =1-4¢'

(D-2)°y, =D%y, -4Dy, +4y, = -1-8e'
Therefore, we have

Be' —4Be +4A+4Be! =1 4¢!

Eet —4Ee' +4C +4Ee' =—1-8¢!

or Be' +4A=1-4e!, Eel+4C=-1-8¢
B= -4, A:%
Equating coefficients of e' and constant terms, we obtain
C=——, E=-8
1 .t 1 ot
So that Xp :Z—4e » Yp :—Z—8e

Step 6 Hence, the general solution of the two decoupled equations

1
X=X +X, =ce?t +cote® +=—4e
C p 4

t

Y=Y +Yp = cge?t +cyte? —%—Set
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Step 7 Substituting these solutions for xand y into the second equation of the given
system, we obtain: (c3 —¢; + ¢4 Je? +(cq —c, Jte? =0

or Cy =Cy, C3=C—Cq =C; —Cy.

Hence, a solution of the given system of differential equations is

t

1
x(t)=ce® +c,te® +y e

y(t)=(c; —c, e +cyte? —%—Set

Example 3 Given the system
Dx + Dz =t2
2x+ D2y =gl
~2Dx-2y+(D+1)z=0
Find the differential equation for the dependent variables x, yandz.

Solution:

Stepl The differential equations of the system are already written in the differential
operator form.

Step 2 We form the determinant

D 0 DJ| [t2 0 D D t> D D 0 t?
2 D2 o0, e D? 0| |2 e o0/ |2 D%¢
—2D -2 D+1 |0 -2 D+1 |-2D 0 D+1 |-2D -2 0
D 0 D , )
Step 3 -~ 1% determinant=0 =| 2 D? 0 _pP 0]|+D 2 Db
9D -2 Ds 2 D+ —2D -2
D 0 D
2 D? 0 |=D[D%+D?-4)x0
-2D -2 D+

Therefore, we can write the decoupled equations

D 0 D t2 0 D
2 D2 0 |-x=let D2 0
-2D -2 D+ 0 -2 D+
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D 0 D D t2 D
2 D2 0 |-y=[2 e 0
-2D -2 D+ -2D 0 D+
D 0 D D 0 t?
2 D? 0 |-z=| 2 D? ¢
~2D -2 D+ ~-2D -2 0

The determinant on the left hand side in these equations has already been expanded. Now
we expand the determinants on the right hand side by the cofactors of an appropriate row.

2
t> 0 D
2 t 2
el D2 0 :D O]Jt2+De D
0 _2 Da1 -2 D+ 0 -2
=D?(D +1)t? + D(=2e!) = (D® + D?)t? — 2¢*
=22
D t2 D t > o t
> ¢ o |=D[® OJ—‘ZDD J¥+D 2 ¢
— + _
2D 0 Ds 0 D+ 2D 0
= D[(D +1)e']-[(D +1)(2t%)] + D[2De']
= 26" —4t—2t% + 2e' = 46! - 2t% — 4t
D 0 t? ) ,
2 D2 et|=pP” €4 2 D72
oD -2 0 —2 0| |-2D -2

= D(2e") + (-4 + 2D3)t? = 2e' —4t? +0

=2el —4t?

Hence the differential equations for the dependent variables x, y and z can be written as
D[3D3 + D? - 4y)x=2- 2!

or D@D3+D2—4ﬁy=4&—2ﬂ—4t
D[D3 + D? — dy)z = 26! — 412

Again we remind that the D symbol on the left-hand side is to be treated as an algebraic
quantity, but this is not the case on the right-hand side.
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36.3 Exercise
Solve, if possible, the given system of differential equations by use of determinants.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

dx

—=2X-Y, —=X-2
dt Yoo y
%:—y+t, ﬂ:x—t
dt dt

(D2+5)x—2y:0, —2x+(D2+2)y:O

2 2
d—2X:4y+et, d—zyz4x—et
dt dt
2
H+ﬂ=—5x, %+d—y:—x+4y
di2  dt dt dt

Dx+ D2y =e%, (D+1)x+(D-1)y =4

(Dz—l)x—y:O, (D-1)x+Dy=0

(2D%2 —-D-1)x-(2D+1)y =1, (D-1)x+Dy=-1

2
%+ﬂ:et, —u+—x+x+y:0
dt dt dt2  dt

2Dx+(D-1)y=t,  Dx+Dy=t?
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37 Systems of Linear First-Order Equation

In the preceding lectures we dealt with linear systems of the form
RI.l(D)X1+ Fﬁ_2(D)X2 +-ee+ Pln (D)Xn :bl(t)
P21(D)X1+ P22(D)X2 +- 1t PZI’] (D)Xn =b2 (t)

Py (D)X +Pna (D) Xy +-+-+ Py (D) Xy = by (t)
where the Pij were polynomials in the differential operator D.

37.1 The nthOrder System
1. The study of systems of first-order differential equations

dx

M t, X%, Xo,...,
" gl( X1, Xo Xn)
dX,

272 _ t, X, Xo,...,
dx
d_tnzgn(tixlixz’-“’xn)

is also particularly important in advanced mathematics. This system of n first-order
equations is called and nth-order system.

2. Every nth-order differential equation

y(n) =F(t,y,Y,..., y(n_l)

as well as most systems of differential equations, can be reduced to the nth-order system.

37.2 Linear Normal Form

A particularly, but important, case of the nth-order system is of those systems having the
linear normal or canonical form:

dx

d_tl = all(t)xl +a;, (t)xz +ota, (t)Xn + fl(t)
dx

d_'[2 = a21(t)X1 +ay (t)X2 et ay, (t)Xn + fz(t)
dx

dtn = anl(t)xl + anz(t)xz +--ta,, (t)xn + fn(t)
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where the coefficients a; and the f; are the continuous functions on a common interval | .

When f; (t):O,i =1,2,...,n,the system is said to be homogeneous; otherwise it is
called non-homogeneous.

37.3 Reduction of a Linear Differential Equation to a System
Suppose a linear nth-order differential equation is first written as

d" a a n-1 ,(n-
_g’:__o L RV S Ry )
dt an an an

If we then introduce the variables

n-1
y:Xl’ y’:Xz’ y”:X3,°-°ly( ):Xn
it follows that
y,: X],_ = XZ! y”: X,2 = X3,..., y(n_l) = X;_]_l = Xn’ y(n) — Xr’]

Hence the given nth-order differential equation can be expressed as an nth-order system:

X{ =X

X, =X3

X3 =X

4 —

Xp-1 = Xn
a a a,_

Xy =Xy — Xy — e = x4 f (1),
al’l an an

Inspection of this system reveals that it is in the form of an nth-order system.
Example 1
Reduce the third-order equation
2y" =—-y—4y'+6y" +sint
or 2y" —6y"+4y'+y =sint
to the normal form.
Solution: Write the differential equation as

n

1 1 .
=——yv-2V'+3y"+=sint
y 2)’ y y >

Now introduce the variables
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' "
Y=XuY =X, ¥ =X,

Then
X =y =x,
X; = Y" = X3
X% =y"

Hence, we can write the given differential equation in the linear normal form
X| = Xo
X5 = X3

X3 :—%xl—sz +3x3+%sint

Example 2
Rewrite the given second order differential equation as a system in the normal form

2
297 4 Y 5y

dx2  dx
Solution:
We write the given the differential equation as

ing = —Zg—i + g y
Now introduce the variables

y=x, Y'=X%
Then

y'=x =X

y!l — X’2
So that the given differential equation can be written in the form of a system
X{ = Xo

, 5
Xp = —2Xo +§x1

This is the linear normal or canonical form.
Example 3
Write the following differential equation as an equivalent system in the Canonical form.
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d 3
—! +y=¢'
dt
Solution:
First write the given differential equation as
d 3
4—3}/ - —y + et
dt
dividing by 4 on both sides
d? 1 1
or —3’ =——y+-¢
dt 4 4
Now introduce the variables
y=X, Y =X, ¥y =X
Then
y’ = xl' = Xy
y' =X =%
ym — Xé
Hence, the given differential equation can be written as an equivalent system.
X| = Xo
Xy = X3
%z——&+—é
Clearly, this system is in the linear normal or the Canonical form.
Example 4
Rewrite the differential equation in the linear normal form
t2y”+ty'+(t2 -4)y=0
Solution:
First we write the equation in the form
t2y0 — _tyf_(tZ _4)y
1, (t2-4)
or "=y —>——y t20
¢ ¢’ t?
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or y'=—-y'-

Then introduce the variables

y=X, Y =X

Then

The system is in the required linear normal or the cnonical form.
37.3.1 Systems Reduced to Normal Form

Using Procedure similar to that used for a single equation, we can reduce most systems of
the linear form

F%I_l(D)X1+F?|_2(D)X2 + -4 Pln(D)Xn
P1 (D)X, + Py (D) Xp +++ P (D) %y =by (1)

Pi1 (D)X +Pha (D) Xy +++-+ Py (D) Xy = by (t)

to the canonical form. To accomplish this we need to solve the system for the highest
order derivative of each dependent variable.

Note: It is not always possible to solve the given system for the highest-order derivative
of each dependent variable.

Example 5
Reduce the following system to the normal form

(D2—D+5)X+2D2y=et
—2X + (D2+2)y =3t?

Solution:
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First write the given system in the differential operator form
D2x+2D?y =e! —5x+ Dx
D2y =3t% +2x -2y
Then eliminate Dy by multiplying the second equation by 2 and subtracting from first
equation to have
D?x =e' -6t —9x+ 4y + Dx.

Also D2y =3t% +2x -2y
We are now in a position to introduce the new variables. Therefore, we suppose that
Dx=u, Dy=v
Thus, the expressions for D?x and D2y, respectively, become
Du=e' -6t —9x+4y+u
Dv =3t% +2x - 2y.
Thus the original system can be written as
Dx=u
Dy =v
Du=-9x+4y+u+e' -6t
Dv = 2x -2y + 3t?
Clearly, this system is in the canonical form.

Example 6
If possible, re-write the given system in the canonical form

X'+4x -y’ =Tt
X"+ y'—2y =3t
Solution:
First we write the differential equations of the system in the differential operator form
Dx+4x—-Dy =1t
Dx +Dy -2y =3t
To eliminate Dy we add the two equations of the system, to obtain
2Dx =10t -4x+2y
or Dx=-2x+y+5t
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Next to solve for the Dy, we eliminate DX . For this purpose we simply subtract the first
equation from second equation of the system, to have

—4x+2Dy -2y =-4t
2Dy =4x+2y -4t

or Dy =2x+y-2t

Hence the original system is equivalent to the following system
Dx=-2x+y+5t
Dy=2x+y-2t

Clearly the system is in the normal form.
Example 7 If possible, re-write the given system in the linear normal form

3 2
CICSIYEE LI L
dt dt2  dt
2

9% g2 g 9X 59y
dt? dt ~ dt

Solution:

First write the given system in the differential operator form
D3x = 4x—3D2x+4Dy
D2y =10t? - 4Dx + 3Dy

No need to eliminate anything as the equations are already expressing the highest-order
derivatives of X and Yy in terms of the remaining functions and derivatives. Therefore, we

are now in a position to introduce new variables. Suppose that Dx =u, Dy=v
— D?’x=Du=w= D2y: Dv, D3x = Dw

Then the expressions for D3x and for D2y can be written as
Dw=4x+4v—-3w
Dv =10t? —4u +3v
Hence, the given system of differential equations is equivalent to the following system
Dx=u
Dy =v
Du=w
Dv =10t? —4u +3v
Dw=4x+4v-3w
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This new system is clearly in the linear normal form.

37.4 Degenerate Systems
The systems of differential equations of the form

Py (D)X +Pna (D) Xy +++-+ Py (D) Xy = by (t)
those cannot be reduced to a linear system in normal form is said to be a degenerate
system.
Example 8 If possible, re-write the following system in a linear normal form
(D+1)x+(D+1)y=0
2Dx+(2D+1)y =0
Solution:

The given system is already written in the differential operator form. The system can be
written in the form

Dx+x + Dy+y=0

2Dx +2Dy +y=0
We eliminate Dx to solve for the highest derivative Dy by multiplying the first
equation with 2 and then subtracting second equation from the first one. Thus we have

2Dx+2x + 2Dy+2y=0
+2Dx + 2Dy+ y=0

2X + y=0

Therefore, it is impossible to solve the system for the highest derivative of each
dependent variable; the system cannot be reduced to the canonical form. Hence the
system is a degenerate.

Example 9
If possible, re-write the following system of differential equations in the canonical form

X"+y'=1
X"+y'=-1
Solution:
We write the system in the operator form
D2x+Dy= 1
D%x+Dy=-1
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To solve for a highest order derivative of y in terms of the remaining functions and
derivatives, we subtract the second equation from the first and we obtain

D2x+Dy= 1
+D?x+ Dy =-1
0=2

This is absurd. Thus the given system cannot be reduced to a canonical form. Hence the
system is a degenerate system.

Example 10
If possible, re-write the given system
(2D+1)x-2Dy= 4
Dx - Dy= ¢
Solution:
The given system is already in the operator form and can be written as
2Dx+x—-2Dy= 4
Dx — Dy= ¢

To solve for the highest derivative Dy, we eliminate the highest derivative DX.

Therefore, multiply the second equation with 2 and then subtract from the first equation
to have

2Dx+x-2Dy = 4
+2Dx  F2Dy =+2¢

X — 4-2¢!

Therefore, it is impossible to solve the system for the highest derivatives of each variable.
Thus the system cannot be reduced to the linear normal form. Hence, the system is a
degenerate system.

37.5 Applications of Linear Normal Forms

The systems having the linear normal form arise naturally in some physical applications.
The following example provides an application of a homogeneous linear normal system
in two dependent variables.

Example 11

Tank Acontains 50 gallons of water in which 25 pounds of salt are dissolved. A second
tank B contains 50 gallons of pure water. Liquid is pumped in and out of the tank at rates
shown in Figure. Derive the differential equations that describe the number of pounds
x,(t)and x,(t)of salt at any time in tanks Aand B, respectively.
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Diira wiatar 2 Aal [ min Nivh

—

11irn 1 ~Aal [ min

N

NMivtiira 2 nal [ min

Nivtiira A nal [ min

Solution:
Tank A

Input through pipea = (3 gal/min)-(0 Ib/gal)=0
Input through pipeb = (1 gal/min)- %Ib/galj:% Ib/min

Thus, total input for the tank A = O+X—2 X
50 50

Output through pipe ¢ = (4 gal/min)- ﬁIb/gal :ﬂlb/min
50 50
Hence, the net rate of change of x,(t) in Ib/minis given by
X .
—==Input - output
qt p P
g _ % 4%
dt 50 50

dx, -2 X,
or —S =X+
dt 25 50

or

Tank B

Input through pipe cis 4 gal/min :%Ib/min
Output through pipe bis 1 gal/min :%Ib/ min

Similarly output through pipe d is 3 gal/min :%Ib/min
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Total output for the tank b = X2y 3%, _ 4%,
50 50 50

Hence, the net rate of change of x,(t)in Ib/min

dx, .
—2 —jnput —output

dt
or dx, _A4 4%
dt 50 50
or dx, _2x 2%
dt 25 25

Thus we obtain the first order system

Xm_—2X Xy

dt 25750
dx, 2% 2X,
dt 25 25

We observe that the foregoing system is accompanied the initial conditions
x,(0)= 25, x,(0)=0.

Exercise
Rewrite the given differential equation as a system in linear normal form.
2
1. M—3ﬂ+4y:sin3t
dt>  dt
2. y"-3y"+6y' -10y=t>+1
4 2
3. —d y—2u+4d—y+y:t
dt*  dt?  dx
4 3
4 297¥+9f¥—8y:10
dt dt

Rewrite, if possible, the given system in the linear normal form.

5. (D—1)x—Dy:t2, X+ Dy=5t-2

6. x"—-2y"=sint, x"+y"=cost

7oy ==k X + Ko (Xp —X), MyXp =— Ky (X —X%)
8. D’x+ Dy =4t, ~D?’x+(D +1)y = 6t* +10
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38 Introduction to Matrices
38.1 Matrix

A rectangular array of numbers or functions subject to certain rules and conditions is
called a matrix. Matrices are denoted by capital letters A, B,...,Y,Z. The numbers or

functions are called elements or entries of the matrix. The elements of a matrix are
denoted by small letters a,b,...,y,z.
38.2 Rows and Columns

The horizontal and vertical lines in a matrix are, respectively, called the rows and
columns of the matrix.

38.3 Order of a Matrix

If a matrix has m rows and n columns then we say that the size or order of the matrix is
mxn. If A isamatrix having m rows and ncolumns then the matrix can be written as

all a.12 v a.ln

a21 a22 e a2n
A=

Adn1 An2  --- Qpn

38.4 Square Matrix

A matrix having nrows and n columns is said to be a nxn square matrix or a square
matrix of order n. The element, or entry, in the ith row and jth column of a mxn

matrix A is written as aj - Therefore a 1 x 1 matrix is simply a constant or a function.

38.5 Equality of matrix

Any two matrices A and B are said to be equal if and only if they have the same orders
and the corresponding elements of the two matrices are equal. Thus if A =[ajj]mn.n and

B = [bjj Imxn then
A=B & ajj =bij’ Vi, j
38.6 Column Matrix

A column matrix X is any matrix having n rows and only one column. Thus the column
matrix X can be written as
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X = |bz1 |=[o1]nx

A column matrix is also called a column vector or simply a vector.
38.7 Multiple of matrices
A multiple of a matrix A is defined to be

i ka]_l ka12 oo kaln |
ka21 ka22 cee ka2n
kA=| _ | = [Kajjlmxn
 kapy kamo fes kamn |

Where k is a constant or it is a function. Notice that the product kA is same as the
product Ak . Therefore, we can write

kA = Ak
Example 1
2 -3 10 -15
(@) 5| 4 ~1|=|20 -5

1/5 6 1 30

1 et
(b) e |-2|=|-2¢et
4 4t

2 29_3t 2
Since we know that kA = Ak . Therefore, we can write e 3. = a = et
5 5e~
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38.8 Addition of Matrices

Any two matrices can be added only when they have same orders and the resulting
matrix is obtained by adding the corresponding entries. Therefore, if A=[a;j] and

B =[bjj] are two mxn matrices then their sum is defined to be the matrix A+ B defined
by A+B =[aij +bij]

Example 2 Consider the following two matrices of order 3x3

A= 0 4 6|, B=|9 3 5

Since the given matrices have same orders. Therefore, these matrices can be added and
their sum is given by

2+4 -1+7 3+(-8) 6 6 -5
A+B=| 0+9 4+3 6+5 |=| 9 7 11
-6+1 10+(-) -5+2 -5 9 -3
Example 3 Write the following single column matrix as the sum of three column vectors
3t* — 2¢
t? + 7t
5t
Solution
3t%-2¢'] (3% (o) (-2¢t) (3 0) (-2
247t |=| 2 |+ 7t|+] O |[=|1|t®+|7|t+]| O |é
S5t 0 S5t 0 0 5 0

38.9 Difference of Matrices

The difference of two matrices A and B of same order mxn is defined to be the matrix
A-B=A+(-B)

The matrix — B is obtained by multiplying the matrix B with—1. So that
-B=(-1)B
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38.10 Multiplication of Matrices

Any two matrices A and B are conformable for the product AB, if the number of
columns in the first matrix A is equal to the number of rows in the second matrix B .
Thus if the order of the matrix A is mxn then to make the product AB possible order
of the matrix B must benx p. Then the order of the product matrix AB is mx p. Thus

If the matrices A and

Amxn - Bnx p~ Cmx p

B are given by

a;p  ap an b1 bp - by
apy axp - A b1 b2 bop
A= ,B= .
l8m1 @m2 - @mn | | b b2 brp |
Then
A agp aqn || P11 bro by
apy ap agy || P21 D22 bop
AB = .
l8m1 @m2 - @mn | P Dn2 bnp |
agibyg +agobpg +---+agbpy Ay p +a1obop + -+ a1nbpp
ap1byy +apobpg +--+appbpy - az1bp + @by + o+ azpbpp
amiP1y +amabog + -+ @mpbny - -ambrp +amabop + -+ @mpbpp
n
=1 > aikhy
k=1 nxp
Example 4

If possible, find the products AB and BA, when

(@)

ol el
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5 8
—4 -3
(b) A=[1 0], B:[ J
2 0
2 7

Solution
(a) The matrices A and B are square matrices of order 2. Therefore, both of the products
AB and BA are possible.

4 79 -2 4.9+7-6 4-(-2)+7-8 78 48
AB: = =
3 5\6 8 3-9+5-6 3-(-2)+5-8 57 34
9 -2Y4 7 9:-4+(-2)-3 9:7+(-2)-5 30 53
Similarly BA= = =
6 8 \3 5 6-4+8-3 6-7+8-5 48 82
(b) The product AB s possible as the number of columns in the matrix A and the

number of rows in B is 2. However, the product BA is not possible because the number of
rows in the matrix B and the number of rows in Ais not same.

5.(-4)+8-2  5-(-3)+8-0) (-4 -15
AB=|1-(-4)+0-2 1.(-3)+0.0 |=|-4 -3
2.(-4)+7-2 2-(-3)+7-0/ |6 -6

Note that

In general, matrix multiplication is not commutative. This means that AB = BA . For
example, we observe in part (a) of the previous example

78 48 30 53
AB = , BA=
57 34 48 82

Clearly AB = BA.. Similarly in part (b) of the example, we have

—4 -15
AB=|-4 -3
6 -6

However, the product BA is not possible.

Example 5
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2 -1 3Y-3) (2-(-3)+(-1)-6+3-4 0
(a) 0 4 5|6 |=| 0(-3)+4:6+5-6 |=|44
1 -79)\ 4 1-(-3)+(-7)-6+9-4 -9

-4 2\ x —4x+2y
(b) =

3 8y 3x+8y
38.11 Multiplicative Identity

For a given positive integern, the nxn matrix

100 -0
010 --0
I=(f001--0
000 -1

is called the multiplicative identity matrix. If A is a matrix of ordernxn, then it can be
verified that

I-A=A-1=A
Also, it is readily verified that if X is any nx1column matrix, then |- X = X

38.12 Zero Matrix

A matrix consisting of all zero entries is called a zero matrix or null matrix and is denoted

by O. For example
0 00
0= : 0= : O0=/00
0 00

and soon. If Aand O are mx n matrices, then
A+O=0+A=A
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38.13 Associative Law

The matrix multiplication is associative. This means that if A, B and Caremx p, pxr
and rxn matrices, then A(BC) = (AB)C.Theresultisa mxn matrix.

38.14 Distributive Law

If B and Care matrices of order rxn and A is a matrix of order mxr, then the
distributive law states that A(B+C) = AB+ AC

Furthermore, if the product (A+ B)C is defined, then (A+B)C = AC+BC

38.15 Determinant of a Matrix

Associated with every square matrix A of constants, there is a number called the
determinant of the matrix, which is denoted by det(A)or |A|

Example 6 Find the determinant of the following matrix
3 6 2

A= 2 51
-12 4

Solution
The determinant of the matrix A is given by

3 62
det(A)=|2 5 1
~12 4

We expand the det(A) by cofactors of the first row, we obtain

3 6 2
5 1] |2 1 |2 5
det(A)=|2 5 1/=3 -6 +2
2 4 |-1 4 “]-1 2
124
or det(A) =3(20-2) - 6(8 +1) + 2(4 +5) =18

38.16 Transpose of a Matrix
The transpose of a mxn matrix A is obtained by interchanging rows and columns of the
matrix and is denoted by A'" . In other words, rows of A become the columns of A" . If
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a1 2 - . . o App
a a . . . - a
A .21 22 . 2n
am1 am2 Amn
Then
a1 ay o @ml
a;p ap @
Al —
a|n  azp ot Amp

Since order of the matrix A is mxn, the order of the transpose matrix AY is nxm.

Example 7

(a) The transpose of matrix

3 6 2
A= 2 51
-12 4

32 -1
is AV — 16 5 2
21 4

(b) If X denotes the matrix

5
X =0
3

Then XU =[5 0 3]
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38.17 Multiplicative Inverse of a Matrix

Suppose that A is a square matrix of order nxn. If there exists an nxn matrix B such
that

AB=BA=1I
Then B is said to be the multiplicative inverse of the matrix A and is denoted by
B=A1,
3818 Non-Singular Matrices
A square matrix Aof order nxnis said to be a non-singular matrix if
det(A)#0

Otherwise the square matrix A is said to be singular. Thus for a singular A we must
have

det(A)=0
Theorem If A is a square matrix of order nxn then the matrix has a multiplicative
inverse A~ if and only if the matrix A is non-singular.

Theorem Let A be a non singular matrix of order nxn and let C; denote the cofactor
(signed minor) of the corresponding entry aj; in the matrix A i.e.

Cij =(-D'" My
M is the determinant of the (n—1)x(n—1) matrix obtained by deleting the ith row and
jth column from A. Then inverse of the matrix A is given by

11
det(A)

Cip"

Further Explanation

1. For further reference we take n=2so that A isa 2x2 non-singular matrix given by

aj1 a2
A=
a1 ap

Therefore Cll =dyy, C12 =—anq, C21 =—ajo and C22 =a1. So that

tr
Al 1 a2 ~axn| 1 azp —ap
det(A){-ay, ay det(A){-ap ay
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2. For a 3x3 non-singular matrix

A1 9 3
A=| ay; ay; ap3

d3] dzp dagg

dp1 a3

,C1p =—

)

az1 4ass

and so on. Therefore, inverse of the matrix A is given by

Cii Co1 az;
N

=—— Cip Cyp C
det A 12 22 V32

Ciz Co3 Cg3

Example 8
Find, if possible, the multiplicative inverse for the matrix

1 4
A= .
2 10

The matrix A is non-singular because

Solution:

1 4

det(A) = =10-8=2

2 10

Therefore, A 2 exists and is given by

. 110 -4 5 -2
A7 = — e
22 1 -1 1/2

Check

a21 a22
a3l a32

13
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1 1 45 -2 5-4 -2+2 10
AA™" = = = =1
2 10\-11/2 10-10 —-4+5 01
L 5 -2\1 4 5-4 20-20 10
AA_ = = = =|
-11/2)\2 10 -1+1 —-4+5 01
Find, if possible, the multiplicative inverse of the following matrix
2 2
A=
33

The matrix is singular because

Example 9

Solution:

2 2

det(A)=| |=2-3-2.3=0
3

Therefore, the multiplicative inverse A~Lof the matrix does not exist.
Example 10
Find the multiplicative inverse for the following matrix

2 20
x|l —2 11
3 01

Solution:
2 20

Since det(A)=|-2 1 1/=2(1-0)-2(-2-3)+0(0-3) =120

3 01

Therefore, the given matrix is non singular. So that, the multiplicative inverse A~Lof the

matrix A exists. The cofactors corresponding to the entries in each row are

1 -21

Cip =

:I:L Cpp =-—

-2
=5 Ci3=
3

0

© Copyright Virtual University of Pakistan

342



Differential Equations (MTH401) VU

20 20 2 2
Co1=- =-2, Cp= =2, Coz=- =6
01 31 30
20 2 0 2 2
Ca1= =2, Ca2 =- =-2, Cg3= =6
11 -2 -2 1
1 -2 2 1/12 -1/6 1/6
Hence Al:% 5 2 -2|=|5/12 1/6 -1/6

-3 6 6 -1/4 1/2 1/2

Please verify that A- Atl=Atl A=
38.19 Derivative of a Matrix of functions
Suppose that

A =[ &) ]

is a matrix whose entries are functions those are differentiable on a common interval,
then derivative of the matrix A(t) is a matrix whose entries are derivatives of the

corresponding entries of the matrix A(t). Thus

dA _| dajj
dt | dt
mxn

The derivative of a matrix is also denoted by A'(t).

mxn

38.20 Integral of a Matrix of Functions
Suppose that A(t)z(aij (t))mxn IS a matrix whose entries are functions those are

continuous on a common interval containing t, then integral of the matrix A(t) is a
matrix whose entries are integrals of the corresponding entries of the matrix A(t) . Thus

t
t
j A(s)ds = U a: (s)dsj
ty
to mxn
Example 11
Find the derivative and the integral of the following matrix
sin 2t
X({t)=| e
8t-1

Solution:
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The derivative and integral of the given matrix are, respectively, given by

d .
E(S'” 2t) 2cos 2t
, d 3t 3t
X't)=| —(e =| 3e
(t) OIOIt( )
—(8t-1 8
dt( )
t
jsinths
‘ 0 —1/2cos2t+1/2
t
[X(s)ds = je?’tds =|1/3e3 -1/3
0 O 42 _t
jSt—lds
0

38.21 Augmented Matrix

Consider an algebraic system of nlinear equations in nunknowns
11X +@1pXp + -+ 81 Xp = by
do1X1 +ago Xy +---+aon Xy = b2

Suppose that A denotes the coefficient matrix in the above algebraic system, then

a1 2 - Ay

dp; apy -+ App
A=

|@m1 8m2 *°° @mn |

It is well known that Cramer’s rule can be used to solve the system, whenever det(A) = 0.
However, it is also well known that a Herculean effort is required to solve the system if
n>3. Thus for larger systems the Gaussian and Gauss-Jordon elimination methods are
preferred and in these methods we apply elementary row operations on augmented
matrix.

The augmented matrix of the system of linear equations is the following nx(n+1)

matrix
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a1 app - b

apyp axp -+ Ay by
A =

| apt Apz o appy by

If Bdenotes the column matrix of the by, Vi=12,...,n then the augmented matrix of
the above mentioned system of linear algebraic equations can be written as (A| B).

38.22 Elementary Row Operations
The elementary row operations consist of the following three operations

o Multiply a row by a non-zero constant.
o Interchange any row with another row.
o Add a non-zero constant multiple of one row to another row.

These row operations on the augmented matrix of a system are equivalent to, multiplying
an equation by a non-zero constant, interchanging position of any two equations of the
system and adding a constant multiple of an equation to another equation.

38.23 The Gaussian and Gauss-Jordon Methods

In the Gaussian Elimination method we carry out a succession of elementary row
operations on the augmented matrix of the system of linear equations to be solved until it
is transformed into row-echelon form, a matrix that has the following structure:

o The first non-zero entry in a non-zero row is 1.

o In consecutive nonzero rows the first entry 1 in the lower row appears to the right
of the first 1 in the higher row.

o Rows consisting of all 0’s are at the bottom of the matrix.

In the Gauss-Jordan method the row operations are continued until the augmented matrix
is transformed into the reduced row-echelon form. A reduced row-echelon matrix has the
structure similar to row-echelon, but with an additional property.

o The first non-zero entry in a non-zero row is 1.

o In consecutive nonzero rows the first entry 1 in the lower row appears to the right
of the first 1 in the higher row.

o Rows consisting of all 0’s are at the bottom of the matrix.

o A column containing a first entry 1 has 0’s everywhere else.

Example 1
(@) The following two matrices are in row-echelon form.
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150 |2

001-62 |2
010 |-1],

000 O 1 (4
000 |O

Please verify that the three conditions of the structure of the echelon form are satisfied.
(b) The following two matrices are in reduced row-echelon form.

100 |7

001 -60 |-6
010 |-1],

000 O 1 | 4
000 (O

Please notice that all remaining entries in the columns containing a leading entry 1 are 0.
Notation

To keep track of the row operations on an augmented matrix, we utilized the following
notation:

Symbol Meaning
Interchange the rows i and j.
R Multiply the ith row by a nonzero constantc.
i

CRj + R Multiply the ith row by ¢ and then add to the jth row.

Example 2

Solve the following system of linear algebraic equations by the (a) Gaussian elimination
and (b) Gauss-Jordan elimination

2% +6Xy + X3 = 7
X + 2% —X3=-1
X +7Xy —4x3= 9
Solution
(@) The augmented matrix of the system is
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2 6 1|7
1 2 -1-1
5 7 -409

By interchanging first and second row i.e. by R;, , we obtain

1 2 -1-1
2 6 1|7
5 7 -409

Multiplying first row with —2and —5 and then adding to 2™ and 3™ row i.e. by
- R, + R, and-5R; + Ry, we obtain

1 2 -1-1
0 2 3|9
0 -3 114

Multiply the second row with1/2, i.e. the operation%R2 , yields

1 2 -1/-1
0 1 3/29/2
0 -3 1|14

Next add three times the second row to the third row, the operation 3R, + R; gives

1 2 -1|-1
0 1 3/2(9/2
0 0 11/255/2

Finally, multiply the third row with2/11. This means the operation 1—21R1

1 2 -1/-1
0 1 3/29/2
0 0 1|5
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The last matrix is in row-echelon form and represents the system

X1+X2—X3:1
3

Xo +—Xq3 =9/2

2 2 3

X3:5

Now by the backward substitution we obtain the solution set of the given system of linear
algebraic equations

X =10, X, =—3, X3=5

(b) W start with the last matrix in part (a). Since the first in the second and third rows are
1's we must, in turn, making the remaining entries in the second and third columns Os:

1 2 -1/-1
0 1 3/29/2
0 0 1|5

Adding —2 times the 2nd row to first row, this means the operation - 2R, + R;, we have

1 0 -4|-10
0 1 3/29/2
00 1|5

Finally by 4 times the third row to first and —1/2 times the third row to second row, i.e.

. -1 .
the operations 4R; + R, and7 R; +R,, yields

10 0|-10
010|-3
0015

The last matrix is now in reduce row-echelon form .Because of what the matrix means in
terms of equations, it evident that the solution of the system

Xl :10, X2 :—3, X3 :5
Example 3

Use the Gauss-Jordan elimination to solve the following system of linear algebraic
X+3y—-2z=-7

equations: 4x+y+3z=5
2X—-5y+7z2=19

Solution:
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1 3 -2-7
The augmented matrixis |4 1 3|5
2 -5 7119
1 3 -2-7
—4R; +R, and - 2R, +R, Yyields |0 -11 11|33
0 -11 1133
1 3 -2-7
-1 -1
R and T produces |0 1 -1|-3
01 -1-3
10 12
0 0 0|0

In this case the last matrix in reduced row-echelon form implies that the original system
of three equations in three unknowns.

X+2=2, y-2=-3
We can assign an arbitrarily value toz . If we letz =t, t € R, then we see that the system
has infinitely many solutions:

X=2-1, y=-3+t, z=t
Geometrically, these equations are the parametric equations for the line of intersection of
the planes

X+0y+0z=2, Ox+y—-z=-3

38.24 Exercise
Write the given sum as a single column matrix

2 -1 3t
Lot t |+(t-1)-t|-2 4
-1 3 — 5t

1 -3 4 t —t 2

2. |2 5 -=1|l2t-1(+| 1 |-| 8

0 -4 -2 —t 4) (-6

Determine whether the given matrix is singular or non-singular. If singular, find AL,
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3 2 1
3. A=l 4 1 O
-2 5 -1

o dX
Find —
dt

1.

—sin2t —4cos2t
5. X = 2

—3sin2t + 5cos 2t

6. If A(t)—( )

e cosrt

2 t
then find (a) j At)dt, (o) j A(s)ds.
2t 3t2-1 0 ;

7. Find theintegraljB(t)dt if B(t)—[Gt 2]
' ] 1/t 4t

Solve the given system of equations by either Gaussian elimination or by the Gauss-
Jordon elimination.

8. 5x—-2y+4z=10
X +y+z =9
4x-3y+3z=1

9. X + Xp - X3 - X=-1
X + X + X3 + X=3
X{ = Xo + X3 - X= 3
4% + Xo-2%3+X, =0

10. X + X9 —X3 +3%4 =1

Xo —X3—4xX, =0

X +2Xy —2%3 —X4 =6
4% +7X, — IX3 =9

© Copyright Virtual University of Pakistan

350



Differential Equations (MTH401) VU

39 The Eigenvalue problem

39.1 Eigenvalues and Eigenvectors

Let A bea Nnxn matrix. A number 2 is said to be an eigenvalue of A if there exists a
nonzero solution vector K of the system of linear differential equations:

AK =K

The solution vector K is said to be an eigenvector corresponding to the eigenvalue A4 .
Using properties of matrix algebra, we can write the above equation in the following
alternative form

(A-AK =0
where | is the identity matrix.

Ky

k

If we let K= K,

Then the above system is same as the following system of linear algebraic equations
(all —/l)kl +a12k2 +"'+a1nkn :O

anKn +anoky +--+(ay, —4)k, =0
Clearly, an obvious solution of this system is the trivial solution
k,=k,=...=k, =0
However, we are seeking only a non-trivial solution of the system.

39.2 The Non-trivial solution
The non-trivial solution of the system exists only when

det(A—A1)=0

This equation is called the characteristic equation of the matrix A. Thus the Eigenvalues
of the matrix A are given by the roots of the characteristic equation. To find an
eigenvector corresponding to an eigenvalue A we simply solve the system of linear
algebraic equations

det(A-21)K =0
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This system of equations can be solved by applying the Gauss-Jordan elimination to the
augmented matrix

(A-21 |0)
Verify that the following column vector is an eigenvector
1
K= -1
1

is an eigenvector of the following 3% 3 matrix

0 -1 -3
A= 2 3 3
-2 1 1

Solution:

By carrying out the multiplication AK'| we see that

0 -1 -3)(1 -2
AK=| 2 3 3| -1|=(-2)| 2 |=(-2)K
2 1 1)1 1

Hence the number A =-2 is an eigenvalue of the given matrix A.
Example 5
Find the eigenvalues and eigenvectors of

1 2 1
A= 6 -1 0
-1 -2 -1
Solution:
Eigenvalues

The characteristic equation of the matrix A is
1-4 2 1
det(A—/ll): 6 -1-A 0 |=0
-1 -2 -1-A

Expanding with respect to 3 column
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6 -1-4 1-1 2
:—1 0+( 2= 44"
—13+(- ( )z
:>—/1(i+4)(/1—3)=0
= 1=0,-4,3
Eigenvectors
For 4, =0 we have
1 2 110
(A-0]0)=| 6 -1 010
-1 -2 -1/0
By —6R; + Ry, Ri + Ry
1 2 110
0 -13 -6|0
0 O 0|0
1
By ——R
y 13 2
12 110
0 1 6/13|0
00 00
By —2R, + Ry
0 1/1310
0 1 6/13/|0
00 0|0

Thus we have the following equations in k;, kyandks. The number kscan be chosen
arbitrarily

kg =—(1/13)ky, ky =—(6/13)kg

Choosingk, =—13, we get k; =1 and k, = 6. Hence, the eigenvector corresponding 4, =0
is

© Copyright Virtual University of Pakistan 353



Differential Equations (MTH401) VU

1
K,=| 6
-13
For A, =—4, we have
5 2 1/0
(A+4 |0)=| 6 3 00
-1 -2 3/0
By (_1)R3’ R32
1 2 3|0
6 3 010
52 110
By —6R; + Ry, —5R; + R3
1 2 -3|0
0 -9 18|0
0 -8 16|0
1 1
By -——R,, —=R
Y=gz TgTs
1 2 =30
01 -20
01 -2 0
10 1/0
By -2R, +R;, —R,+R3 |0 1 -2{0
00 010

Hence we obtain the following two equations involving k;, k,andks.

Choosing K :1, we have kg =-1 k= 2. Hence we have an eigenvector
1
. . A, =—4
corresponding to the eigenvalue 72 , K, =2
1
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-2 2 110
Finally,forﬂ?:‘?’,wehave(A—SI|O): 6 -4 010
1 -2 —4l0

By using the Gauss Jordon elimination as used for other values, we obtain (verify!)

1 0 110
0 1 3/2|0
0O 0 010

So that we obtain the equations k; = —k3, k, =(-3/2)kg

The choice ky =—2 leadstok,; =2, k, =3. Hence, we have the following eigenvector

Note that:

The component Ky could be chosen as any nonzero number. Therefore, a nonzero
constant multiple of an eigenvector is also an eigenvector.

Example 6

3 4
Find the eigenvalues and eigenvectors of A= ( j

-1 7
Solution:
From the characteristic equation of the given matrix is
3-1 4
det ( A-11 ) = =0
-1 7-2
or B-A)(7T-2)+4=0=(2-5)"=0

Therefore, the characteristic equation has repeated real roots. Thus the matrix has an
eigenvalue of multiplicity two. 4, =4, =5
In the case of a 2%2 matrix there is no need to use Gauss-Jordan elimination. To find the
eigenvector(s) corresponding to A= 5We resort to the system of linear equations

(A—5I ) K=0
or in its equivalent form

—2k; +4k, =0

kl + 2k2 = O
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It is apparent from this system that k, = 2K, .

Thus if we choose Ky = 1, we find the single eigenvector K; = [f)
Example 7
Find the eigenvalues and eigenvectors of
9 11
A=l1 9 1
1 19
Solution

The characteristic equation of the given matrix is

9-21 1
det(A-al)=| 1 9-2 1 |=0
1 9-2

or (A-11)(4-8)°=0=>1=11, 8, 8

Thus the eigenvalues of the matrix are 44 =11, 4, = 4; =8

2 1 10
For 4 =1L wehave (A-11110)=| 1 -2 10

1 0 -1, 0
The Gauss-Jordan elimination gives| 0 1 -1| 0
00 00

1
K,=1
1

ki=ks Ky =ky 1 ks =1

Hence, , then

11 1/0

Now for %2 =8 we have, (A-8110)=|1 1 1[0
11 1)0

11 10

0 0 0|0

Again the Gauss-Jordon elimination gives 0|0
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Therefore, Ky +k; +ks =0
We are free to select two of the variables arbitrarily. Choosing, on the one hand,
ko =1 k; =04and, on the other, Ko =0, kg =1 e obtain two linearly independent
-1 -1
eigenvectors corresponding to a single eigenvalue K, ={1 |, K;=[0
0 1
Note that
Thus we note that when a " <N matrix A possesses N distinct eigenvaluesﬂi’ Agreea Ay
, aset of N linearly independent eigenvectors Ky Ka,n Ky can be found.

However, when the characteristic equation has repeated roots, it may not be possible to
find N linearly independent eigenvectors of the matrix.

39.3 Exercise

Find the eigenvalues and eigenvectors of the given matrix.

-1 2
1,

—78j

2 1
2,

21}

-8 -1
3,

160}

5 -1 0
4. 10 -5 9

5 -1 0

300
5. [0 2 0

401

0 4 0
6. |-1 -4 0

0 0 -2

Show that the given matrix has complex eigenvalues.

)
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40 Matrices and Systems of Linear First-Order Equations

40.1 Matrix form of a system

Consider the following system of linear first-order differential equations

dx

d_'[1 = a1 ()X +835 ()X + -+ 8y, ()X + T, (1)
dx

d_t2 = 321('[)X1 + azz(t)xz +eeet a2ﬂ (t)xn + f2 (t)
dx

d_tn = 8y ()% +8n2 ()X +++- 48 (U)X, + Ty (1)

Suppose that X, A(t) and F(t), respectively, denote the following matrices

X (t) a1(t) ag,(t) - ag,(t) fi(t)
X — Xz:(t) A= a21:(t) azz:(t) a2n:(t) CE(t) = fz:(t)
Xn (t) any (t) an2 (t) “** App (t) fn (t)

Then the system of differential equations can be written as

¥ (1) ap(t) a) - @) ) () f (t)
d | %) | _| () a3 - @) || X0 N fa (1)
dt : : : 3 ) R

Xn (t) an (t) an2 (t) o App (t) Xn (t) fn (t)
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or simply
dX
—=A(t)X +F(t
m (t) (t)
If the system of differential equations is homogenous, then F(t) =0 and we can write
dX
—=A()X
pm (t)

Both the non-homogeneous and the homogeneous systems can also be written as
X' =AX +F, X'=AX
Example 1

Write the following non-homogeneous system of differential equations in the matrix form

%:—2x+5y+e‘—2t
dt

ﬂ =4x -3y +10t
dt

Solution:
If we suppose that

-

Then, the given non-homogeneous differential equations can be written as
dX (-2 5 et -2t
—= X+
dt 4 -3 10t
; (=2 5 1), (-2
or X' = X+ e + t
4 -3 0 10

Solution Vector

Consider a homogeneous system of differential equations
dx
e

A solution vector on an interval | of the homogeneous system is any column matrix

AX
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X (t)

X = XZ;(t)

Xn.(t)

The entries of the solution vector have to be differentiable functions satisfying each

equation of the system on the interval |.
Example 2
Verify that

-2t 6t
1) _ e 3 3e
I e N

A 5 506t

are solution of the following system of the homogeneous differential equations

/ (1 3}
X! = X
5 3

on the interval (—o0,00)

Solution
Since
e—2t / _% 2t
X1 = 5 = Xl = 5
-e t 2e t
Further
5 3 _e—2t 5e_2t _3e—2t
—2e_2t /
or AXq = =Xq
2e_2t
Similarly
3 eot / |18 ebt
5 e6t 30 e t
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[1 3} 3 bt 366t 115 (Ot
and AXop = =
5 3){5ebt | [(15ebt 415 bt
18¢5t /
or AXo = =X,
30e5t

Thus, the vectors X1 and X2 satisfy the homogeneous linear system

Hence, the given vectors are solutions of the given homogeneous system of differential
equations.

Note that

Much of the theory of the systems of n linear first-order differential equations is similar
to that of the linear nth -order differential equations.

40.2 Initial =VValue Problem

Let ty denote any point in some interval denoted by | and

x1(to) 71
X (tg) = XZ(;tO) X - 7/:2
Xn (to) 7n

7i;1=12,...,n are given constants. Then the problem of solving the system of
differential equations

dX
= AOX+F(®

Subject to the initial conditions
X(tp) = Xo

is called an initial value problem on the interval 1 .
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40.3 Theorem: Existence of a unique Solution

Suppose that the entries of the matrices A(t) and F() in the system of differential

X _ A)X + F(t)
equations dt being considered in the above mentioned initial value

problem, are continuous functions on a common interval | that contains the point tO.
Then there exist a unique solution of the initial-value problem on the interval | .

40.4 Superposition Principle

Suppose that X1, Xo,..., X, be a set of solution vectors of the homogenous system

dX
—~ = A@)X
Fraatal)

on an interval | . Then the principle of superposition states that linear combination

X =1 X1 +CoXo +---+Cg Xi
Cj;i=12,...,k being arbitrary constants, is also a solution of the system on the same
interval | .
Note that

An immediate consequence of the principle of superposition is that a constant multiple of
any solution vector of a homogenous system of first order differential equation is also a
solution of the system.

Example 3
Consider the following homogeneous system of differential equations

1 0 1
x'=| 1 1 0]X
2 0 -1

Also consider a solution vector X1 of the system that is given by

cost
X1 = —lcost+£sint
2 2
—cost—sint

For any constant ¢; the vector X =y X1 is also a solution of the homogeneous system.
To verify this we differentiae the vector X with respect to t
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—sint
dX dX 1 1 .
— =0 ——=0C1| —cost+=sint
dt dt 2 2
—cost+sint
Also
1 0 1 cost
1 1 .
AX=¢q| 1 1 0 —Ecost+§smt
-2 0 -1 —cost-sint
—sint

AX =q %cost+%sint
—cost+sint

Thus, we have verified that:
dX
P
Hence the vector ¢ X1 is also a solution vector of the homogeneous system of differential
equations.

AX

Example 4
Consider the following system considered in the previous example 4

1 0 1
x'=[ 1 1 0]X
2 0 -1

We know from the previous example that the vector X1 is a solution of the system

cost
X1 = —lumt+lﬁnt
2 2

—cost-sint
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0
If X, =| ¢
0
0
Then X'y =|¢

and AXp,=| 1 1 0 ||e']=

Therefore
AXj = X}

Hence the vector X, is a solution vector of the homogeneous system. We can verify that
the following vector is also a solution of the homogeneous system.

X :C]_X1+C2X2

cost 0

1 1 .
or X=q —Ecost+§smt +Co el
—cost—sint 0

40.5 Linear Dependence of Solution Vectors

Let X1, X9, X3,..., Xk be a set of solution vectors, on an interval |, of the homogenous

system of differential equations
X _ ax
dt

We say that the set is linearly dependent on | if there exist constants ¢;,C»,C3...,Cg not
all zero such that

X({A)=cy X1(t)+CcoXo(t)+---+c Xk (t)=0, Vtel
Note that

o Any two solution vectors X; and X are linearly dependent if and only if one
of the two vectors is a constant multiple of the other.
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o For k>2 if the set of ksolution vectors is linearly dependent then we can
express at least one of the solution vectors as a linear combination of the
remaining vectors.

40.6 Linear Independence of Solution Vectors

Suppose that X1, Xo,..., Xk is a set of solution vectors, on an interval I, of the
homogenous system of differential equations

d_X:Ax
dt

Then the set of solution vectors is said to be linearly independent if it is not linearly
dependent on the interval | . This means that

X)) = Xq(t)+CcoXo(t)+:-- 4+ XK (1) =0
only when each ¢; =0.

Example 5
Consider the following two column vectors

X 3e! X et
1= ' 2=
el et
t -t
3e - e
Since _Xm = , _dX2 =
dt A dt _ et
(2 3} 3et) [ee'—3et| (3] dx;
and = = -1
1 =2) ¢ 3et — 2¢t el dt
Similarly
(2 —3} et ~ 2e7t _3e7t ~ — et _dXy
1 -2)| gt ot ot ot dt

Hence both the vectors X; and X are solutions of the homogeneous system

(2 -3
X' = X
1 -2

Now suppose that ¢y, Coare any two arbitrary real constants such that
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C]_X1+C2X2 =0

el

This means that
3c1et + (:Ze_t =0

clet + cze_t =0

The only solution of these equations for the arbitrary constants ¢; and c is
Gl =C = 0
Hence, the solution vectors X, and X, are linearly independent on (—oo, ).

Example 6
Again consider the same homogeneous system as considered in the previous example

, (2 -3
X' = X
1 -2
We have already seen that the vectors X1, Xo i.e.

3et X e_t
, Ko =
et e_t

X1 =

are solutions of the homogeneous system. We can verify that the following vector X3

L+ cosht
X3 =
cosht
is also a solution of the homogeneous system However, the set of solutions that consists
of X1, X2 and X, is linearly dependent because X3 is a linear combination of the

other two vectors
1 1

XS =EX1+EX2

40.7 Exercise
Write the given system in matrix form.
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X
1. d—:x—y+z+t—l
dt
d
Y o oxyy-—z-3t?
dt
Z
d—:x+y+z+t2—t+2
dt
2. %:—3x+4y+e_tsin2t
dt
%=5x+9y+4e_t0052t
dt
3. %:—3x+4y—9z
dt
dy
—2 —BX—
dt d
d—i:10x+4y+3z
dx —t -
4, — =-3Xx+4y+e "sin2t
dt
ﬂ:5x+9y+4e_t0032t
dt
Write the given system without of use of matrices
7 5 -9 0 8
5. X/=|4 1 1 |x+|2]et-|0le?®
0 -2 3 1 3
S-S R P
dtly) (1 1 ){y) (8 2t+1
’ X 1 -1 2)\(x 1 3
A A IR y |+ 2 et =] 1]t
z -2 5 6)\z 2 1

Verify that the vector X is the solution of the given system
dx
8. —=-2X+5Yy
dt

%:—2x+4y, X =(

5cost j t
e
dt

3cost—sint
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’ 1 2 1 1
10 d_)t(: 6 -1 0 |X; X=| 6
-1 -2 -1 -13
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41 Matrices and Systems of Linear 1¥-Order Equations

(Continued)
41.1 Theorem

A necessary and sufficient condition that the set of solutions, on an interval 1., consisting
of the vectors

X1 X12 XIn

Xy = X21 X, = X21 N X2n
- o I S L LR
Xn1 Xn2 Xnn

of the homogenous system X/ = AX to be linearly independent is that the Wronskian of
these solutions is non-zero for everyt € | . Thus

X1 X2 -~ Xn
X X D
W (X1, Xp,.., Xp) =| 21 722 2N 20, vtel
Note that
o It can be shown that if X, X,,..., X, are solution vectors of the system, then
either
W (X1, X2,...,Xp) %0, Vtel
or W (X1, X2,...,Xp) =0, Vtel

Thus if we can show that W = 0 for sometg € |, then W =0, Vte | and hence
the solutions are linearly independent on |

o Unlike our previous definition of the Wronskian, the determinant does not involve
any differentiation.

Example 1
As verified earlier that the vectors

1) 2t 3) 6t
X1 = e 7, Xo= e
= ) e[

are solutions of the following homogeneous system.

/ 1 3
X! = X
5 3
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Clearly, X, and X, are linearly independent on (—0,) as neither of the vectors is a
constant multiple of the other. We now compute Wronskian of the solution vectors X,
and Xo.

e—2t 366t

W (X1, Xp) = =8eM 20, Vte(~o, )

a2t bt

41.2 Fundamental set of solution

Suppose that {Xl, Xo,..., Xn} is a set of n solution vectors, on an interval I , of a

homogenous system x! = AX . The set is said to be a fundamental set of solutions of the
system on the interval | if the solution vectors X1, X»,..., Xare linearly independent.

41.2.1 Theorem (Existence of a Fundamental Set)

There exist a fundamental set of solution for the homogenous system X' =AX onan
interval |

41.3 General solution
Suppose that X1, Xo,..., X}, is a fundamental set of solution of the homogenous system
X' =AX on an intervall . Then any linear combination of the solution vectors
X1, X9,..., Xy of the form

X=X +Cp X9 +---4+Ch Xy
Cj;1=1,2,...,n being arbitrary constants is said to be the general solution of the system
on the interval | .
Note that
For appropriate choices of the arbitrary constants ¢;,C»,...,C any solution, on the

interval |, of the homogeneous system X' = AX can be obtained from the general
solution.

Example 2
As discussed in the Example 1, the following vectors are linearly independent solutions

1) _ot 3) 6t
X1 = e ", Xo= e
=) xe(g)

of the following homogeneous system of differential equations on (—, )

(13
X' = X
5 3
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Hence X7 and X, form a fundamental set of solution of the system on the interval
(—o0,0) . Hence, the general solution of the system on (—o0,) is

1 3
X =C1X1+02X2 =C1( :JG_Zt +Co (Sjef’t

Example 3

Consider the vectors X1, X5 and X3 these vectors are given by
in
1 cos'[l 0 1 S tl
X1=| —=cost+=sint |, X, =|1 (e, X3=| —=sint——=cost
2 2 2 2
—cost—sint —sint+cost

It has been verified in the last lecture that the vectors Xjand Xo are solutions of the
homogeneous system

1 0 1
x'=[ 1 1 0]X
2 0 -1

It can be easily verified that the vector X3 is also a solution of the system. We now
compute the Wronskian of the solution vectors X1, X9 and X3

cost 0 sint
1 1. 1. 1
W (X,, X,,X;) =|-=cost+=sint e —=sint—=cost
2 2 27 2
—cost —sint 0 —sint + cost
Expand from 2" column

cost sint

t
or W (X ,X ’X =e . .
(X1, X2, X3) —cost—sint —sint+cost

or W(Xq, Xo, X3)=el 20, VteR

Thus, we conclude that X1, Xo and X3 form a fundamental set of solution on (—oo, o)
. Hence, the general solution of the system on (—o0, ©) is

X =C1X1+C2X2 +C3X3

or
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cost sint
0

X=q —icost+£sint +Cy| 1 e
2 2
0

t+c3 —lsint—lcost
2 2

—cost—sint —sint+cost

41.4 Non-homogeneous Systems

As stated earlier in this lecture that a system of differential equations such as
dX
—— = A()X +F(t
m (t) (t)

is non-homogeneous if F (t) =0, Vt. The general solution of such a system consists of a
complementary function and a particular integral.

41.4.1 Particular Integral

A particular solution, on an interval | , of a non-homogeneous system is any vector X D

free of arbitrary parameters, whose entries are functions that satisfy each equation of the
system.

Example 4
Show that the vector

3t-4
X p -
—5t+6
is a particular solution of the following non-homogeneous system on the interval (- o, o)
, (1 3 12t-11
X'= X+
5 3 -3
Differentiating the given vector with respect tot , we obtain

, 3

3 12t-11 1 3)( 3t-4 12t-11
Xp+ = +

4 P O (el iy

3} X, +(12t—11} :((Bt—4)+3(—5t+6) J+[12t—11j
3 -3 53t —4)+3(-5t+6) -3

Solution:

Further

or

7~ N /7 N\
(G2 T [ 2 ol
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1 3 12t-11 -12t+14 12t-11
or XIO + = +

5 3 -3 -2 -3

1 3 12t-11 3 '
or Xp+ = =Xp

5 3 -3 -5

Thus the given vector XIo satisfies the non-homogeneous system of differential

equations. Hence, the given vector X D is a particular solution of the non-homogeneous
system.

41.5 Theorem
Let Xq, X9,..., Xk be a set of solution vectors of the homogenous system X =AX on
an interval land let X P be any solution vector of the non-homogenous system
X = AX + F(t) on the same interval | . Then3 constants ¢;,C,,...,C, such that

Xp :C1X1+C2X2 +...+Cka + Xp
is also a solution of the non-homogenous system on the interval.

41.5.1 Complementary function

Let Xq, X9,..., Xybe solution vectors of the homogenous systemX':AX on an
interval | , then the general solution

X =¢1X1+CoXo +...+Cn X

of the homogeneous system is called the complementary function of the non-
homogeneous system X' = AX + F(t) on the same interval | .

41.5.2 General solution of a Non homogenous systems
Let X P be a particular integral and X the complementary function, on an interval | , of
the non-homogenous system
X! = A)X +F(t).
The general solution of the non-homogenous system on the interval | is defined to be
X=X.+X D

Example 5
In Example 4 it was verified that
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3t—-4
X p =
-5t+6

is a particular solution, on (—oo, ©) , of the non-homogenous system

, (1 3 12t -11
X' = X+
5 3 -3

As we have seen earlier, the general solution of the associated homogeneous system i.e.
the complementary function of the given non-homogeneous system is

1 3
Xc = Cl[—l] e 2ty Co (SJEGt

Hence the general solution, on (-, o), of the non-homogeneous system is

1) o 3) gt [ 3t-4
X:cl(_lje +c2[5je + BB

41.6 Fundamental Matrix
Suppose that the a fundamental set of n solution vectors of a homogeneous system

X/ = AX ,onan interval | , consists of the vectors

X11 X12 Xln

X = X21 X, = X22 X - X2n
-1 0 N N L | R
Xn1 Xn2 Xnn

Then a fundamental matrix of the system on the interval | is given by

X1 X2 .-~ Xn
X201 X292 ... Xop
p(t)=] : :

Example 6
As verified earlier, the following vectors
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13
form a fundamental set of solutions of the system on (—o0, ), X' = (5 3]X

. RV i S ! 3) 6t
So that the general solution of the system is X =¢; 1 e © +0Co e

S)
e~2t g6t
Hence, a fundamental matrix of the system on the interval is ¢(t) =
_e2t bt

Note that
o The general solution of the system can be written as
-2t 6t
e 3e C
X = ( 1]3X:¢(t)C, C=(c )"
o Since X =¢(t)C is asolution of the system X’ = A(t) X . Therefore
¢'(t)C = A(t)p(t)C - [#'(t) - Alt)p()IC =0

Since the last equation is to hold for every t in the interval | for every possible column
matrix of constants C , we must have ¢'(t) — A(t)¢(t) =0 = ¢'(t) = A(t)4(t)

Note that

o The fundamental matrix ¢(t) of a homogenous system X' = A(t)X is non-
singular because the determinant det(¢(t)) coincides with the Wronskian of the
solution vectors of the system and linear independence of the solution vectors
guarantees thatdet(g(t)) = 0.

o Let ¢(t) be a fundamental matrix of the homogenous system X' = A(t)X on an
interval | . Then, in view of the above mentioned observation, the inverse of the
matrix ¢ '(t) exists for every value of t in the interval | .

41.7 Exercise

The given vectors are the solutions of a system X' = AX . Determine whether the vectors
form a fundamental set on (- oo, ).
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1 2 8
11. X1= Jet’XZ 2[ jet-i-( jtet
-1 6 -8
1 1 2
-13 -1 -2
(21 1)t Dt [ 1)t
13. X' = X - e ; Xp = e + te
3 4 7 1 -1

Verify that vector X b is a particular solution of the given systems

14.%=x+4y+2t—7, ﬂ=3x+2y—4t—18
Xp= 2 t+ X
Pol-1) 1
2 1 -5 1
15. X = X + ; -
M ENH
1 2 3 -1 sin3t
16. x'=| -4 2 0|X+| 4 [sin3t: Xp| O
-6 1 0 3 cos 3t
1) 2t 1) -6t
17. Xq = e =, Xo= e
1 1 1 3 2
18. X1 = -2 |+t]| 2|, Xo = -2 |, X3 = -6 |+t| 4
4 2 4 12 4
19. Prove that the general solution of the homogeneous system
0 60
X'=11 0 1|X
1 10

on the interval (—oo,00) is
6

X=c|-1|e
-5

t

-3 2
+Co| 1 e_2t+03 1 e
1 1
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42 Homogeneous Linear Systems

Most of the theory developed for a single linear differential equation can be extended to a
system of such differential equations. The extension is not entirely obvious. However,
using the notation and some ideas of matrix algebra discussed in a previous lecture most
effectively carry it out. Therefore, in the present and in the next lecture we will learn to
solve the homogeneous linear systems of linear differential equations with real constant
coefficients.

Example 1
Consider the homogeneous system of differential equations

dx

— =X+3
dt y
dy

— =5X+3
dt y

In matrix form the system can be written as

et ls 3l

If we suppose that

-

Then the system can again be re-written as

1 3
X' = X

Now suppose that Xq and Xo denote the vectors

y e—2t y 3e6t
1= ) 2~
_ e 56t
Then
! —2e7 4 X 18 &%
1= ) 2=
2e_2t 30 e6t
1 3 e—2t e—2t 3e—2t
Now AXl = =
5 3 e—2t Se_Zt _ 3e_2t
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AX ~2¢7% X4
pe2t
Similarly
1 3)[ 3%t 3e6t 1 15¢6t
5 3)| 5ebt | | 15e0t 1156t
18 &% ,
or AX2 = = X2
30 bt

Hence, X7 and X» are solutions of the homogeneous system of differential equations
X' = AX . Further
e—2t 366t

WXy, X)=| "~ T =8eM 20, VteR
—e oe

Thus, the solutions vectors X1 and Xo are linearly independent. Hence, these vectors
form a fundamental set of solutions on(—o0,). Therefore, the general solution of the
system on (—oo,00) is

X = C]_Xl + 02X2

1 3
X = cl[_lje_2t +Co (5Je6t

o Each of the solution vectors Xq and Xo are of the form

k
xz[ 1Je/1t
ko

Where kjand k» are constants.

Note that

o The question arises whether we can always find a solution of the homogeneous
system X'= AX, Ais nxn matrix of constants, of the form
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ke
k
w =| K2 |2t _ ket

for the homogenous linear 1* order system.

42.1 Eigenvalues and Eigenvectors
Suppose that

ky
k
X = 2 et = ket

Kn

is a solution of the system
d_X = AX
dt
where A isan nxn matrix of constants then
dX
22K A et
dt

Substituting this last equation in the homogeneous system X' = AX , we have

Kiett = AKe = AK = 4K

or (A-21)K=0

This represents a system of linear algebraic equations. The linear 1% order homogenous
system of differential equations

d_X:Ax
dt

has a non-trivial solution X if there exist a non-trivial solution K of the system of
algebraic equations

det(A— A1) =0

This equation is called characteristic equation of the matrix A and represents an nth
degree polynomial in 4 .
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42.1.1 Case 1 (Distinct real eigenvalues)

Suppose that the coefficient matrix A in the homogeneous system of differential
equations

dx _

dt
has n distinct eigenvalues A1, 4o, 43,..., 45 and K1, Ko,..., K, be the corresponding
eigenvectors. Then the general solution of the system on (—o0,0) is given by

AX

X = clkleﬂ‘lt + (:2k2e}“2t + c3k3e’13t o +Cp kne/1nt
Example 2
Solve the following homogeneous system of differential equations

dx

—=2Xx+3
dt y
dy

— =2X+
dt y

Solution
The given system can be written in the matrix form as

dx

dt | (2 3)(«x
dy | (2 1)y
dt

Therefore, the coefficient matrix

(3 3

Now we find the eigenvalues and eigenvectors of the coefficient A. The characteristics
equation is

2-1 3
det(A—/II):‘ ) 2‘

det(A—Al)=A%2-31-4
Therefore, the characteristic equation is

det(A—A1)=0=4%2-31-4
or A+)(A-4)=0=>1=-1 4
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Therefore, roots of the characteristic equation are real and distinct and so are the

eigenvalues.
For A =—1, we have
2+1 3 k:
(A—AK = 1
2 1+1 k2

3kg + 3k
or (A—ADK =| T2
2k1+2k2
3k1+3k2=0
Hence (A-AHK=0=
2k1+2k2=0

These two equations are no different and represent the equation
k1+k2 :0:>k1:—k2

Thus we can choose value of the constant ko arbitrarily. If we choose ko =—1 then
kg =1. Hence the corresponding eigenvector is

For A = 4 we have

(A—M)K:[Z_4 3][li
2 1-4)| k,

—2k1+3k2
or (A-AK =
2kq —3ko
—2Ky +3ko =0
Hence (A-AK=0=
2ky —3ko =0

Again the above two equations are not different and represent the equation

2k1—3k2:0:>k1:%

Again, the constant k, can be chosen arbitrarily. Let us choose ko =2 thenk; =3.
Thus the corresponding eigenvector is

ol
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Therefore, we obtain two linearly independent solution vectors of the given homogeneous

system.
1t 3) a4t
X1 = e, Xy= e

Hence the general solution of the system is the following

X =01X1+c2X2

1 3
or chl( 1je_t+cz[2je4t

o ( x(t)j B [ cre ! +3ce™ J
v —cie !+ 2c,e™
This means that the solution of the system is
X(t) = cle_t + 302e4t
y(t) = —cle_t + 2c2e4t

Example 3
Solve the homogeneous system

dx
—=—4X+Yy+zZ
dt y
dy

— =X+b5y-z
dt y

dz

—=y-3z

dt y

Solution:
The given system can be written as

dx/dt -4 1 1 X
dy/dt|=| 1 5 -1}y
dz/dt 0 1 -3)\z

Therefore the coefficient matrix of the system of differential equations is

-4 1 1
A= 1 5 -1
0 1 -3
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Therefore A-Al = 1 5-4 -1

Thus the characteristic equation is
-4-1 1 1
det(A-Al)=| 1 5-4 -1 |=0
0 1 -3-2

Expanding the determinant using cofactors of third row, we obtain

—(A+3)(A+H(1-5)=0
A=-3, -4, 5

Thus the characteristic equation has real and distinct roots and so are the eigenvalues of
the coefficient matrix A. To find the eigenvectors corresponding to these computed
eigenvalues, we need to solve the following system of linear algebraic equations for
k1,ko andkg when 1 =-3, —4, 5, successively.
-4-4 1 1 k1 0
det(A-ANDK=0= 1 5-1 -1 ko |=|0
0 1 -3-21)\Kk3 0
For solving this system we use Gauss-Jordon elimination technique, which consists of

reducing the augmented matrix to the reduced echelon form by applying the elementary
row operations. The augmented matrix of the system of linear algebraic equations is

-4-21 1 1 0
1 5-4 -1 0
0 1 -3-4 0

For A = -3, the augmented matrix becomes:

-11 10
1 8 -1 0
0 1 00

Appling the row operationRy9,Ry +Rj,Ro3, R3—-9Ry,R; —8Ry in succession
reduces the augmented matrix in the reduced echelon form.
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-1
0
0

o O B+
o - O
o O o

So that we have the following equivalent system

1 0 -1Yk\ (0

01 0k, |=[0

00 0)\k) (0
or k]_:kg, k2:0

Therefore, the constant kg can be chosen arbitrarily. If we choosekg =1, thenk; =1, So
that the corresponding eigenvector is

1
Ky=|0
1

For A, = -4, the augmented matrix becomes

01 1 0
(A+41)]0) =[1 9 -1 0
01 1 0

We apply elementary row operations to transform the matrix to the following reduced
echelon form:

1 0 -10 O

01 1 O

00 0 O
Thus kl :10k3, k2 = —k3

Again k3 can be chosen arbitrarily, therefore choosing k3 =1 we get k; =10, kyp =-1
Hence, the second eigenvector is
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Finally, when 13 =5 the augmented matrix becomes

91 1 0
((A-51)]0) = |1 0 -1 0
0 1 -80

The application of the elementary row operation transforms the augmented matrix to the
reduced echelon form

1 0 -1 0

01 -8 0

00 0 O
Thus kl = k3, k2 = 8|(3

If we choosekg =1, then k; =1 and ko =8. Thus the eigenvector corresponding to

/13:5is
1
K3 =|8
1

Thus we obtain three linearly independent solution vectors

1 10 1
X1=| 0 e, X, =| -1]e™™, Xg=|8|e™
1 1 1
Hence, the general solution of the given homogeneous system is
1 10 1
X=¢|0 e_3t+c2 -1 e_4t+c3 8 |e™
1 1 1

42.1.2 Case 2 (Complex eigenvalues)

Suppose that the coefficient matrix A in the homogeneous system of differential
equations

dx

—=AX
dt

© Copyright Virtual University of Pakistan 385



Differential Equations (MTH401) VU

has complex eigenvalues. This means that roots of the characteristic equation
det(A-A41)=0

are imaginary.

42.2 Theorem (Solutions corresponding to complex eigenvalues )

Suppose that K is an eigenvector corresponding to the complex eigenvalue

M=a+if; a, feR
of the coefficient matrix A with real entries, then the vectors Xq and X5 given by

Xl = Kle/ilt, X2 = Rleﬂlt

are solution of the homogeneous system.

d_X: AX
dt
Example 4

Consider the following homogeneous system of differential equations

dx
_:6)(_
dt y
dy

— =5x+4
dt y

The system can be written as

dx/dt 6 -1\ X
or -
dy/dt 5 4 )y

Therefore the coefficient matrix of the system is

SN

So that the characteristic equation is

6-4 -1
det(A—Al) = =0
5 4-4
or (6-21)(4—1)+5=0=2%-101+29

Now using the quadratic formula we have
ﬂl =5+2i, 12 =5-2i

© Copyright Virtual University of Pakistan 386



Differential Equations (MTH401) VU

For, 41 =5+ 2i, we must solve the system of linear algebraic equations

(1-2i)kg —kp =0
5k1 - (1-|— 2i)k2 =0

or k2 =(1—2i)k1

}:} (l—2i)k1—k2 =0

Therefore, it follows that after we choose k; =1 then ko =1-2i. So that one
eigenvector is given by

e

Similarly for 1o = 5—2i we must solve the system of linear algebraic equations

(1+2i)ky —ko =0
5ky — (1—2i)ky =0

or Ko = (1+2i)kg

}:>(1+2i)k1—k2 =0

Therefore, it follows that after we choose ki =1 then kp =1+2i. So that second
eigenvector is given by

Ko = 1
2_1+2i

Consequently, two solution of the homogeneous system are

X1=( 1 'je(5+2i)t’ Xy = ( 1 _je(5—2i)t
1-2i 1+ 2i

By the superposition principle another solution of the system is

X =g [1_12ije(5+2i)t ‘) (1+12ije(5—2i)t

Note that

The entries in Ko corresponding to A, are the conjugates of the entries in Kj
corresponding to A 1. Further, Ay is conjugate of 41 . Therefore, we can write this as

Ao =11, Ky =K1
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42.3 Theorem(Real solutions corresponding to a complex eigenvalue)
Suppose that
o A =a+if isacomplex eigenvalue of the matrix A in the system
dX
e

o Kjis an eigenvector corresponding to the eigen value 4,

AX

1 — I —
o B =§(K1 +K1) =Re(Kyp), By =§(—K1 +K1) =Im(Ky)
Then two linearly independent solutions of the system on (—o0, ) are given by

X1 = (By cos Bt —By sin pt)e*!
X, = (B, cos Bt + By sin Bt)e!

Example 5
Solve the system

) ( 2 8 J
X' = X
-1 -2
The coefficient matrix of the system is
A —
—1 —2

Therefore

Thus, the characteristic equation is

2-1 8
deKA—ﬂD:O:‘ ‘

-1 -2-4
—(2-2)(2+2)+8=0=4°+4
Thus the Eigenvalues are of the coefficient matrix are 44 = 2iand Ay = A1=-2i.

For A1 we see that the system of linear algebraic equations (A—Al1)K =0
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(2—-2i)ky +8ky =0
-k —(2+2i)ko =0
Solving these equations, we obtain
k1 =—(2+2i)ko

Choosingky =—1 gives k; = (2+ 2i)ko . Thus the corresponding eigenvector is

(2+m] (2] (2)
K1= = +1
-1 -1 0
2 2
So that Bj_:Re(Kl):(_lj,Bz=|m(K1)=£Oj

Sincea =0, the general solution of the given system of differential equations is

(2 2\ . 2 2 .
X=q cos2t— sin2t |+Co cos 2t + sin 2t
-1 0 0 -1

2c052t—25in2tj [20032t+23in2tj
+02

X =c
1 —Ccos2t —sin2t

Example 6
Solve the following system of differential equations

p( 12
x! = X
~1/2 1

The coefficient matrix of the given system is

1 2
A=
[—uz 1)

Solution:

1-4 2
Thus A-Al =
-1/2 1-2
So that the characteristic equation is
-4 2
det(A-A1)=0=
-1/2 1-4
or A% -21+2=0

Therefore, by the quadratic formula we obtain
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A=(2+4-8)/2
Thus the eigenvalues of the coefficient matrix are
ﬂ'l :l—l-i, /12 211 =1-]i

Now an eigenvector associated with the eigenvalue A is
2 2) (O
K]_: = +1
o))
From _[? B, = 0
“=lo) P27

So that we have the following two linearly independent solutions of the system

e ol s o]

Hence, the general solution of the system is

R

2cost) ¢ 2sint) ¢
or X=q _ e +0Co e
-sint cost

42.4 Exercise
Find the general solution of the given system

dx
1. —=x+2
dt y
dy
— =4Xx+3
dt d
2 %:1x+9y
dt 2
ﬂ=1x+2y
da 2
-6 2
3 X’:( jx
-3 1
dx
4, — =
a
d—y:8x
dt
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1 01
5. X'=[{0 1 0|X
1 01
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43 Real and Repeated Eigenvalues

In the previous lecture we tried to learn how to solve a system of linear differential
equations having a coefficient matrix that has real distinct and complex eigenvalues. In
this lecture, we consider the systems

X'=AX
in which some of the n eigenvalue A,,4,,45,...,4, of the nxn coefficient matrix
A are repeated.

43.1 Eigenvalue of multiplicity m

Suppose that mis a positive integer and (1 —4q)Mis a factor of the characteristic
equation

det(A— A1)=0

Further, suppose that (}L — ﬂl)m *+1is not a factor of the characteristic equation. Then the

number A, is said to be an eigenvalue of the coefficient matrix of multiplicitym .

43.1.1 Method of solution
Consider the following system of n linear differential equations in nunknowns
X'=AX

Suppose that the coefficient matrix has an eigenvalue of multiplicity of m. There are two
possibilities of the existence of the eigenvectors corresponding to this repeated
eigenvalue:

o For the nxn coefficient matrix A, it may be possible to find mlinearly
independent eigenvectors K1,Kp,..., Ky corresponding to the eigenvalue A, of

multiplicity m < n. In this case the general solution of the system contains the
linear combination

clKleﬂ“lt +Co Kzeﬁ1t +---+Cp Kneﬂﬁt

o If there is only one eigenvector corresponding to the eigenvalue A, of multiplicity
m, then m linearly independent solutions of the form
X, =K, e™
X, = K, +K,,e*
tm—l Z/l
X =K ———e"+K ——o
"™ (m-1)! " (m-2)!
where the column vectors Kijj can always be found.

tm—2
At At
er +---+K e
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43.1.2 Eigenvalue of Multiplicity Two
We begin by considering the systems of differential equations X'= AX in which the
coefficient matrix A has an eigenvalue A, of multiplicity two. Then there are two
possibilities;
o Whether we can find two linearly independent eigenvectors corresponding to
eigenvalue 4, or

o We cannot find two linearly independent eigenvectors corresponding to
eigenvalue 4, .

The case of the possibility of us being able to find two linearly independent eigenvectors
K1, K2 corresponding to the eigenvalue A, is clear. In this case the general solution of
the system contains the linear combination

It At
c,Kte™ +c,K e

Therefore, we suppose that there is only one eigenvector K1 associated with this
eigenvalue and hence only one solution vector X1. Then, a second solution can be found
of the following form:

X = Kte/al 4 peit

In this expression for a second solution, K and P are column vectors

kg 4]
k

K=|"2| p=| "2
K Pn

We substitute the expression for X o into the system X' = AX and simplify to obtain

(AK -4 K) te +(AP-A4P—-K) e =0

Since this last equation is to hold for all values of t, we must have:

(A-11)K=0, (A-}l)P=K

First equation does not tell anything new and simply states that K must be an eigenvector
of the coefficient matrix A associated with the eigenvalue A,. Therefore, by solving this
equation we find one solution

X, = Ke*

To find the second solution X ,, we only need to solve, for the vector P, the additional
system
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(A-J1)P=K

First we solve a homogeneous system of differential equations having coefficient matrix
for which we can find two distinct eigenvectors corresponding to a double eigenvalue and
then in the second example we consider the case when cannot find two eigenvectors.

Example 1
Find general solution of the following system of linear differential equations

3 -18
X'= X
2 -9
The coefficient matrix of the system is
3 -18
A=
2 -9

Thus det(A—Al) =

Solution:

3-4 -18

2 -9-41

Therefore, the characteristic equation of the coefficient matrix Ais

3-1 -18
det(A—Al)=0=
2 —9-1
or —(3-2)©9+1)+36=0
or (1+3)2=0=>1=-3-3

Therefore, the coefficient matrix A of the given system has an eigenvalue of multiplicity
two. This means that

Q=4 =-3

(3—1 -18 j(klj {Oj
Now (A-ANK =0= =
2 -9-2)\k, 0

For A = -3, this system of linear algebraic equations becomes

6 —18) k) (0) (6k;—18k, =0
= |=
2 -6 \k,) (0) |2k —6ky=0

However
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6k, —18k, =0
= kl —3k2 =0
2k, — 6k, =0
Thus kl =3k2

This means that the value of the constant k, can be chosen arbitrarily. If we choose
k, =1, we find the following single eigenvector for the eigenvalue 4 = -3.

5

K=

1

The corresponding one solution of the system of differential equations is given by

3) _3t
X1=|"le

But since we are interested in forming the general solution of the system, we need to
pursue the question of finding a second solution. We identify the column vectors K and

RO

Then (A+3')P=K:{2 __l:J(Elsz(fJ

Therefore, we need to solve the following system of linear algebraic equations to find P
6py -18py =3

2p—6py =1

or p,=—(1-2p,)/6

}:>2p1—6p2 1

Therefore, the number p; can be chosen arbitrarily. So we have an infinite number of
choices for p,and p,. However, if we choose p, =1, we find p, =1/6. Similarly, if

we choose the value of P; =1/2 then p, =0. Hence the column vector P is given by

.

Consequently, the second solution is given by

3 1
X5 :( Jte_3t +|2)e st
1 0
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Hence the general solution of the given system of linear differential equations is then

X=C1X1+C2X2
1
3) _ 3 =
X=cy| o™ tcy| e +| 2]
1 1 .

Solve the homogeneous system

Example 2

1 -2 2
X'=-2 1 -=-2X
2 -2 1

Solution:
The coefficient matrix of the system is:
1 -2 2
A= -2 1 =2
2 -2 1
To write the characteristic we find the expansion of the determinant:
1-14 -2 2
det(A—M )= -2 1-1 =2
2 -2 1-2
The value of the determinant is
det(A-A1)=5+91+34° - A°
Therefore, the characteristic equation is

5+91+342-4%=0

or ~(A1+10°(2-5)=0

or A=-1 -1 5

Therefore, the eigenvalues of the coefficient matrix A are
A=4,=-1 A4, =5

Clearly —1 is a double root of the coefficient matrix A.
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1-2 -2 2 \(k) (0
Now (A-ADK=0=| -2 1-4 -2 ||k, |=|0
0

2 -2 1-2)(k,

For A, = —1, this system of the algebraic equations become

2 -2 2)\(k) (0
2 2 -2k |=]0

2

2 -2 2 )k 0
The augmented matrix of the system is
2 -2 2|0
(A+10)=| -2 2 -2|0
2 -2 2|0

By applying the Gauss-Jordon method, the augmented matrix reduces to the reduced
echelon form

1 -1 1|0
0O 0 0)0
0O 0 0|0
Thus kl—k2+k3:0:>kl:k2—k3

By choosing k, =1 and k; =0 in k; =k, —Kk;,we obtain k; =1 and so one
eigenvector is

1
K, =1
0
But the choice K, =1, k; =1 implies k; = 0. Hence, a second eigenvector is given by

K,=|1
1

Since neither eigenvector is a constant multiple of the other, we have found,
corresponding to the same eigenvalue, two linearly independent solutions
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Last for A; =5 we obtain the system of algebraic equations

~4 -2 2\(k) (0
—2 -4 2|k, |=|0
2 -2 -4k, ) o

3

The augmented matrix of the algebraic system is

-4 -2 210
(A-5110)=| -2 -4 -2/0
2 -2 -4]0

By the elementary row operation we can transform the augmented matrix to the reduced
echelon form

1 0 -1/0

01 110

0 0 010
or k, =k;, k, =-k,

Picking k3 =1, we obtain k; =1, k, =—1. Thus a third eigenvector is the following

K;=|-1
1
Hence, we conclude that the general solution of the system is
1 0 1
X=c|1let+c,|1]et+c,|-1]e
0 1 1

5t
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43.1.3 Eigenvalues of Multiplicity Three

When a matrix A has only one eigenvector associated with an eigenvalue ﬂiof
multiplicity three of the coefficient matrix A, we can find a second solution X, and a
third solution X3 of the following forms
X, = Kte™ +pe™
2

i At At
X3:K3e1+Pte +Qe

The K, P and Q are vectors given by

k1 pl ql
k

K=| 72| P= & and Q:q,2
kn pn q n

By substituting X into the system X'= AX, we find the column vectors K, P and Q
must satisfy the equations

(A= 1)K =0
(A= 1)P=K
(A-241)Q=P

The solutions of first and second equations can be utilized in the formulation of the
solution X, and X,,.

Example
Find the general solution of the following homogeneous system

4 1 0
X'=0 4 1|X
0 0 4

Solution
The coefficient matrix of the system is

A=

o O b
o b~
H~ — O

© Copyright Virtual University of Pakistan 399



Differential Equations (MTH401) VU

4—-4 1
Then det(A—M)z 0 4-1 1
0 0 4-4
Therefore, the characteristic equation is
4—4 1 0
det(A—/H)=0: 0 4-1 1
0 0 4-2

Expanding the determinant in the last equation w.r.to the 3™ row to obtain

3+3 4-7 1
-t
or (4-2) [(4-2)(4-2)-0]=0
or (4-1) =0=>1=4, 4, 4

Thus, A =4 is an eigenvalue of the coefficient matrix A of multiplicity three. For A =4,
we solve the following system of algebraic equations

4-) 1 0 Yk ) (0
(A-2)K=0_| 0 4-1 1 |k, [=|0
0 0 4-2)\k,) 0

0 1 0Yk) (0

0 0 1]k,|=|0

0 0 O)k,) O
=

Ok, +1k, + 0k, =0
0k, + 0k, +1k, =0 :>k2—0
Ok, + 0k, +0k, =0 °

Therefore, the value of k is arbitrary. If we choose k1 =1, then the eigen vector K is

1
K=[0
0
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1
Hence the first solution vector X, = Ke* =] 0 [e"

o

Now for the second solution we solve the system
01 0Yp ) (1) Op,+1p,+0p;=1 p, =1
(A-A)P=K_|0 0 1|/ p,|=|0|_ Op+0p,+1p,=0,=P,=1
0 0 0){p,) \O) Op,+0p,+0p,=0| P3=0

1
Hence, the vector P isgivenby P=|1
0
Therefore, a second solution is
1 1 1 1
X, =Kte® +Pe” | X, =|0[te" +|1 [e* X,=||0|t+|1]e"
=
0 0 0 0

Finally for the third solution we solve (A—A1)Q =P

010 ql 1 0g, +1q, +0q; =1 g =1
of0 0 1}4q,|=1]|_ 0g,+0q,+1q,=0;=10, =1
0 0 O d, 0 0qg, +0q, +0g, =0 q; =1

1
Hence, the vector Q is givenby Q=] 1
1
Therefore, third solution vector is
2
X, =K %eﬂt +Pte® + Qe™t
1 e 1 1 1 , 1 1
X,=| 0 Se |1 [tef | 1]e® Xy =||0|Sa]n |te|1]|e®
0 0 1 0 0 1

The general solution of the given system is
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X =¢ X, +C, X, +C; X,

1 1) (1 1) (1) (1
X=c|0e"+c,||O[t+|1 [|e*+]|0 %+ 1(t+]1|]e"

0 0 0 0 0 1
Exercise

Find the general solution of the give systems

dx
1. —=-6X+5
dt y
dy
—=-bx+4
dt y
dx
2. —=—-X+3
dt y
dy
—=-3X+5
dt y
dx
3. —=3x—-y-z
dt y
dy
L =X+y-12
a Y
%—x—y+z
dt
5 -4 0
4, X'={1 0 2|X
0 2 5
1 0 O
5. X'=[0 3 11X
0 -1 1
1 0 O
6. X'=l2 2 —-1|X
01 O
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44 Non-Homogeneous System

44 .1 Definition
Consider the system of linear first order differential equations

dx
d—tlzall(t) X1+a]_2(t) X2+"'+a1n(t) Xn+f1(t)
dx
d_t2:a21(t) X1+322(t) X2"'+azn(t) Xp + fz(t)
dx,

—t:anl(t) X +an(t) Xo+-+ap (t) X+ fo(t)
where a; are coefficients and f;are continuous on common interval | . The system is

said to be non-homogeneous when f; (t)#0,Vi =1,2,...,n. Otherwise it is called a

homogeneous system.
44.2 Matrix Notation

In the matrix notation we can write the above system of differential can be written as
x| (ault) a(t). a,()) %) ()
A% | _2(t) an(t). a(t)| X .\ f,(t)
dt| : : : | :
X, ) laa(t) a,(t).. a,(t))\x, f,(t)
or X'=AX + F(t)

44.3 Method of Solution

To find general solution of the non-homogeneous system of linear differential equations, we need to find:
O The complementary function X, which is general solution of the corresponding homogeneous

system X' = AX..
Q Any particular solution X pof the non-homogeneous system X'=AX + F(t) by the

method of undetermined coefficients and the variation of parameters.

The general solution X of the system is then given by sum of the complementary function and the
particular solution.

X =X¢+ X,

44.4 Method of Undetermined Coefficients
44.4.1 The form of F(t)
As mentioned earlier in the analogous case of a single nth order non-homogeneous linear differential
equations. The entries in the matrix F (t) can have one of the following forms:
o Constant functions.
Polynomial functions
Exponential functions
sin(f x), cos(p x)

Finite sums and products of these functions.

0O 000
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Otherwise, we cannot apply the method of undetermined coefficients to find a particular
solution of the non-homogeneous system.

44.4.2 Duplication of Terms

The assumption for the particular solution X, has to be based on the prior knowledge of
the complementary function X to avoid duplication of terms between X and X, .
Example 1

Solve the system on the interval (_OO’ OO)
-1 2 -8
X'= X +
-1 1 3

To find Xe , we solve the following homogeneous system

-1 2
X'= X

We find the determinant
det (A-Al) = ‘

Solution

-1-1 2
-1 1—2‘
det (A-Al) =(-1-1) (1-2)+2
det (A-21) =22 +2-2-1+2=2%+1
The characteristic equation is
det (A-21)=0=4%+1

A2 1= i=+i

or

So that the coefficient matrix of the system has complex eigenvalues A4 =l and A =1
with @ =0ang A ==%1,

To find the eigenvector corresponding toﬂ’l, we must solve the system of linear algebraic

equations
-1-i 2 \k B 0
-1 1-i)k,) (0

—(1+i) kg + 2k =0
—k1+(1—i) k2 =0

or

Clearly, the second equation of the system is (1+ I)times the first equation. So that both
of the equations can be reduced to the following single equation

Ky :(1_ i)kz
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Thus, the value of k,can be chosen arbitrarily. Choosing k, =1, we get k; =1—1.

Hence, the eigenvector corresponding to /4, is

1-i 1) (-1
K, = = +1
1 1 0
Now we form the matrices B, and B,

B, = Re(k; ) :GJ B, =Im (k1)=(_1j

0

Then, we obtain the following two linearly independent solutions from:

X1 =(By cos ft— B, sin At)e!
X, = (B, c0s Bt + By sin pt)e?!

1 -1
Therefore X1 :K jcost—( jsint}eOt
1 0
-1 1
Xzz{cost( ]J{ jsint}eot
0 1
cost sint cost+sint
cost 0 cost
—cost sint —cost+sint
X2 = —+ . = B
0 sint sint

Thus the complementary function is given by
X.=¢X; +¢ X

cost+5|nt —cost+sint
or Xe= .
cost sint

Now since F(t) is a constant vector, we assume a constant particular solution vector

by
Substituting this vector into the original system leads to
-1 2 -
X! = % + 8
-1 1)\p 3

0
Since X;) = j
0

Thus (Oj: —ay +2by j+(—8]
0 —a+ bl 3

0 —a; +2b, —8
or [0 g +2by J

-+ b+3
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This leads to the following pair of linear algebraic equations
—a +2b-8=0
-+ b +3=0
Subtracting, we have
b -11=0=1D =11
Substituting this value of by into the second equation of the above system of algebraic

equations yields
a,=11+3=14
Thus our particular solution is

X_14
P l11

Hence, the general solution of the non-homogeneous system is

cost +sint —cost +sint 14
X=¢ +C, ) +
cost sint 11
Note that

o In the above example the entries of the matrix F(t) were constants and the
complementary function X_did not involve any constant vector. Thus there was
no duplication of terms between X and X, .

o However, if F(t) were a constant vector and the coefficient matrix had an
eigenvalue A =0. Then X_contains a constant vector. In such a situation the
assumption for the particular solution X D would be

%o 5

instead of

Example 2
Solve the system

%:6x+y+6t
dt

ﬂ:4x+3y—10t+4
dt

Solution
In the matrix notation

o PR YK
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6 1
or xe( jX+F(t)
4 3

Where F(t)= (_iOJt + (ZJ

We first solve the homogeneous system

6 1
X'= X
4 3
Now, we use characteristic equation to find the eigen values
6-A1 1
=0
3-1
= (6-1)(3-4)-4=0
= A*-91+14=0
So A=2and A, =7
The eigen vector corresponding to eigen value A = A, = 2, is obtained from

det(A - Al)=

k

A— DK, =0, Where K, =| *

(A= 21K, =
2

or (A-2I)K, =0,

AR e
ere)-)

or
4k, +k, =0
P2l Ak 4k, =0
4k, +k, =0
we choose K1 zlarbitrarilythen K, =-4
Hence the related corresponding eigen vector is
1
K, =
A
Now an eigen vector associated with A=2 :7is determined from the following

system
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)
K, =
(A_E2I)K2:O,Where Kz
o

L4 —4)k,) (o

-k, +k, =0
4k, — 4k, =0

1
Therefore 1

Consequently the complementary function is

1 1
X, = cl(_ Aje” +c, [Je”
6 0
F(t):( jt +( j
Since -10 4

Now we find a particular solution of the system having the same form.

X = %™
" b, by

where 8,8y, bland b2 are constants to be determined.
in the matrix terms we must have

, (61 6 0
Xp: Xp+ t+
4 3 -10 4
1 (2, <] 6 0
L+ + t+
3)|\b, b, -10 4
1\ at +a, . 6t +0
3\ b,t+Db —10t+4
a, 6a,t + 6a, + b,t + b, . 6t+0
b, 4a,t + 4a, + 3b,t + 30 —10t + 4
a, 6a,t + b,t+ 6t + 6a, + b
b, 4a,t +3b,t —10t + 4a, +3b, + 4

. ((6a2 + b, + 6)t + (6a, +b —a,) ]:[oj

(4a, +3b, —10)t + (4a, +3b, —b, +4)) |0

}:>—k1+k2:0

O
N
~ O A O
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from this last identity we conclude that

6a, + b, + 6=0
Solving the first two equations simultaneously yields
Substituting these values into the last two equations and solving for @, andb, gives

And

.
17

10
b =—
17

It follows therefore that a particular solution vector is

-2 —4]7
X, = t+
(o ko)

and so the general solution of the system on (— oo, 0)is

X=X,+X b
1 1 -2 —4/7
=c| "+, "+ t+
-4 1 6 10/7
Example 3
Determine the form of the particular solution vector X IOfor
%=5x+3y—2e‘t +1
dt
Yy y+e ' —5t+7
dt
Solution

First, we write the system in the matrix form

S

5 3
or xe( jX+F(t)
-1 1
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dx/dt X
where X'= , X = and
(dy/dtJ (yj
S e N
()= 1)® "ls) Ty

Now we solve the homogeneous system X' = ( jX to determine the eigen values,

we use the characteristic equation
det(A—Al)=0
5-1 3
or
-1 1-4
= A*-61+8=0
=>A1=2,4

‘:(5—1)(1—1)+3=o

So the eigen values are 4, =2and A, =4
For A = A, =2, an eigen vector corresponding to this eigen value is obtained from
(A-21)K, =0

ol
(2 2
ERAE

3k, +3k, =0
= -k, -k, =0
We choose k, =—1thenk, =1
1
Therefore K, :( J

Similarly for A =1, =4

(5 3)e))

k, +3k, =0

=k, +3k, =0
-k, -3k, =0
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Choosingk, =—1, we get k; =3

3
Therefore K, :( J

Hence the complementary solution is

1 3
X, = cl[_ Je” + c{_ Je‘”

Now since

We assume a particular solution of the form
a a a
by b, ) by

If we replace e tin F(t)on et (A =2an eigen value), then the correct form of the
particular solution is

X, =| % ket o] S ler o[22 ey [
> ", b, b, | b,

44 .5 Variation of Parameters

Variation of parameters is more powerful technique than the method of undetermined
coefficients.

Note:

We now develop a systematic produce for finding a solution of the non-homogeneous
linear vector differential equation

X
ax_ AX + F(t) 1)
dt
Assuming that we know the corresponding homogeneous vector differential equation
dX
—=AX 2
dt

Let ¢(t)be a fundamental matrix of the homogeneous system (2), then we can express
the general solution of (2) in the form
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X.=¢(t)C

where Cis an arbitrary n-rowed constant vector. We replace the constant vector C by a
column matrix of functions

uy (t)
u(t)= Uz:(t)
Uy (1)
so that X =g(t)U(t) (3)

is particular solution of the non-homogeneous system (1).
The derivative of (3) by the product rule is

Xp=¢(t) U't)+¢' (U (1) (4)
Now we substitute equation (3) and (4) in the equation (1) then we have
(1) U'(t)+¢' (1)U (t)= Ag(t)U (t) + F(t) (5)

Since $'(t)= Ag(t)
On substituting this value of ¢'(t)into (5),
We have

p(t)U'(t)+ Ap(t)U ()= Ag(t)U (t) + F(t)

Thus, equation (5) become s

or $(t) U'(t)=F(t) (6)

Multiplying ¢~ (t)on both sides of equation (6), we get

$7 M) V') =47 F(t)
or U't)=¢(t) F(t)
or U(t)=[¢*(t) F(t)dt

Hence by equation (3)

X, =g(t)[¢7(t) F(t)dt (7)

is particular solution of the non-homogeneous system (1).
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To calculate the indefinite integral of the column matrix ¢_1(t) F(t)in (7), we integrate
each entry. Thus the general solution of the system (1) is

X=X, +X,

or

X =g(t)C+g(t)[47(t) F(t)at ®)
Example
Find the general solution of the non-homogeneous system

(—3 1j Lstj
X'= X+
2 -4 e

on the interval (— oo, o)

Solution
We first solve the corresponding homogeneous system

X'=£"3 1jx
2 -4
The characteristic equation of the coefficient matrix is
-3-1 1
2 —4-2
or (-3-4)-4-1)-2=0
=1 +41+31+12-2=0
=1 +71+10=0
= 12 +51+24+10=0
= AUA+5)+2(1+5)=0
=(A+5)1+2)=0
=M =-2, A,=-5

det(A — Al)=

-

So the eigen values are 4, =—2and 4, =-5

Now we find the eigen vectors corresponding to A, and A, respectively,

Therefore
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(A—ﬂ1|2)K1 -
(A-21,)K, =0

-3+2 1 Yk (0
SO =
2 -4+2)\k,) (0
-k +k, ) (O
2k, -2k, ) 0

K, 4k, =0
1t }:Mzg

or

2k, — 2k, =0

We choose k, =larbitrarily then k; =1

o[

Hence the eigen vector is

Now an eigen vector associated with A, = A =—5is determined from the following

system
(A _ﬂzlz)Kz =0

i [ o —41+5j&
=5 )0
=)o

2k, +k, =0
2k, +k, =0

We choose arbitrarily k, =1then k, =—2

1
Therefore K, :( 2}

The solution vectors of the homogeneous system are

(o
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X,and X, can be written as

The complementary solution

. =C X, +¢C, X,

)l

Next, we form the fundamental matrix

¢(t)=[ 51;]

and the inverse of this fundamental matrix is
2t le
e -
1
o7 (t)= ]

Now we find X 1Y

1 e5t -1 e5t e

3

3 3 ( Jdt
t

1 t
2t
R j 2te2idt + j 5 dt
dt = 5o

— £Ze

e j teStdt — j % e*dt
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2t
P 28 2| gy et
x _|¢€ e 2 3
P e 2t 275t @5t g5t 1
t——— | ——dt—— e*
5 5 3.4
tﬁ_ﬁ lt
W e e 2 2 3
P -2t -5t 5t 5t
L
5 25 12
oty le t 11
_ 2 3 5 25 12
P 1 1, 2t 2 1 4
t——+-€¢ ——+—+—-¢
2 3 5 25 6
6, 27 1
—t—-—+=e
x |5 50 4
13, 21 1
R .
5 50 2

Hence the general solution of the non-homogeneous system on the interval (— 00, oo) is

X=X, +X,
=g(1)C+g(t)[¢7 (1) F(t)a

—t—-——+—¢e
or 1 1
201(1]BH+C2( zje5t+ 5 50 4

44.6 Exercise

Use the method of undetermined coefficients to solve the given system on (- oo, o)
dx
1. —=5X+9y+2
dt

ﬂ:—x+1ly+6

dt

© Copyright Virtual University of Pakistan 416



Differential Equations (MTH401)

VU

dx

2. —=X+3y-2t?

dt

ay
dt
dx
3. I
dt
ay
dt
X 1

=X—4y+4t+9e

d =3X+y+t+5

6t

=4x+y—t+e”
; x':(

4 1/3 -3)
X + e

9 6 10

-1 5 sint
X +

-1 1 — 2cost

Use variation of parameters to solve the given system

dx

6. —=3x—-3y+4
dt
dy
—=2x-2y-1
dt y
2 - sin2t) ,,
7. X'= X + e
4 2 2cost
0 2 2
8. X'= X+ 5
-1 3 e
3 2 1
9. X'= X +
-2 - 1
0 - sect
10. X' = X +
1 0 0
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