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Differential Equations (MTH401)                                                                                    VU 
 

1 Introduction 
 Background 

            Linear  y=mx+c 
 Quadratic ax2+bx+c=0 
 Cubic  ax3+bx2+cx+d=0 
Systems of Linear equations 
  ax+by+c=0 
  lx+my+n=0 
Solution ? 
Equation 
Differential Operator 
 
 
   Taking anti derivative on both sides 
y=ln x 
From the past 
 Algebra 
 Trigonometry 
 Calculus 
 Differentiation 
 Integration 
 Differentiation 

• Algebraic Functions 
• Trigonometric Functions 
• Logarithmic Functions 
• Exponential Functions 
• Inverse Trigonometric Functions   

 More Differentiation 
• Successive Differentiation 
• Higher Order 
• Leibnitz Theorem 

 Applications 
• Maxima and Minima 
• Tangent and Normal 

 Partial Derivatives 

y=f(x) 
f(x,y)=0 
z=f(x,y) 

1dy
dx x

=
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Integration 
 Reverse of Differentiation 
 By parts 
 By substitution 
 By Partial Fractions 
 Reduction Formula 

Frequently required 

 Standard Differentiation formulae 
 Standard Integration Formulae 

Differential Equations 

 Something New 
 Mostly old stuff 

• Presented differently 
• Analyzed differently 
• Applied Differently 
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2  Fundamentals 
 Definition of a differential equation. 
 Classification of differential equations. 
 Solution of a differential equation. 
 Initial value problems associated to DE. 
 Existence and uniqueness of solutions  

2.1 Elements of the Theory 
 Applicable to: 

• Chemistry 
• Physics 
• Engineering 
• Medicine 
• Biology 
• Anthropology 

 Differential Equation – involves an unknown function with one or more of its 
derivatives 

 Ordinary D.E. – a function where the unknown is dependent upon only one 
independent variable 

Examples of D.Eqs  

 

   

 

                                                                       

 

 

 

 

 

 

2.2 Specific Examples of ODE’s 

( ). ( )du F t G u
dt

=  , the growth equation 

2

2 sin ( )d g F t
dt l

θ θ+ = , the pendulum equation 

2
2

2 ( 1) 0d y dyy y
dt dt

ε+ + + = , the van der Pol equation, 

( )
32

2

2 2

2 2

5                          1

4            0

5 4     

                         0

                    

2            0

x

dy y
dx
y x dx xdy

d y dy y e
dx dx

u v
y x
u vx y u
x y
u u u

x t t

− =

− + =

 + − = 
 

∂ ∂
+ =

∂ ∂
∂ ∂

+ =
∂ ∂

∂ ∂ ∂
− + =

∂ ∂ ∂
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2

2 ( )d Q dQ QL R E t
dt dt C

+ + = , the LCR oscillator equation 

2
2( )2 ( ) ( ),

( )
dp b ta t p p v t
dt u t

= − + −  a Riccati equation 

2.3 The order of an equation 
• The order of the highest derivative appearing in the equation 

 

 

 

 

2.4 Ordinary Differential Equation 
If an equation contains only ordinary derivatives of one or more dependent variables, 
w.r.t a single variable, then it is said to be an Ordinary Differential Equation (ODE). For 
example the differential equation 

 

 

 

is an ordinary differential equation. 

2.5 Partial Differential Equation 
 Similarly an equation that involves partial derivatives of one or more dependent 
variables w.r.t two or more independent variables is called a Partial Differential Equation 
(PDE). For example the equation  

  

 

 is a partial differential equation. 

2.6 Results from ODE data 
 The solution of a general differential equation:f(t, y, y’, . . . , y(n)) = 0 is defined 

over some interval I having the following properties: 
 y(t) and its first n derivatives exist for all t in I so that y(t) and its first n - 1 

derivates must be continuous in I 
 y(t) satisfies the differential equation for all t in I 
 General Solution – all solutions to the differential equation can be represented in 

this form for all constants 
 Particular Solution – contains no arbitrary constants 
 Initial Condition 
 Boundary Condition 
 Initial Value Problem (IVP) 

32

2 5 4          xd y dy y e
dx dx

 + − = 
 

4 2
2

4 2                  0y ua
x x

∂ ∂
+ =

∂ ∂

32

2 5 4  xd y dy y e
dx dx

 + − = 
 

4 2
2

4 2                   0u ua
x x

∂ ∂
+ =

∂ ∂
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 Boundary Value Problem(BVP) 
 IVP Examples 
 The Logistic Equation 

• p’ = ap – bp2  
• with initial condition p(t0) = p0; for p0 = 10 the solution is: 
• p(t) = 10a / (10b + (a – 10b)e-a(t-t0)) 

 The mass-spring system equation 
• x’’ + (a / m) x’ + (k / m)x  = g + (F(t) / m) 

2.7 BVP Examples 
• Differential equations 

 y’’ + 9y = sin(t) 
• with initial conditions y(0) = 1, y’(2p) = -1 
• y(t) = (1/8) sin(t) + cos(3t) + sin (3t) 

 y’’ + p2y = 0 
• with initial conditions y(0) = 2, y(1) = -2 
• y(t) = 2cos(pt) + (c)sin(pt) 

2.8 Properties of ODE’s 
 Linear – if the nth-order differential equation can be written: 

• an(t)y(n) + an-1(t)y(n-1) + . . . + a1y’ + a0(t)y = h(t) 
 Nonlinear – not linear 

  x3(y’’’)3-x2y(y’’)2+3xy’+5y=ex 

2.9 Superposition 
 Superposition – allows us to decompose a problem into smaller, simpler parts and 

then combine them to find a solution to the original problem. 
2.10 Explicit Solution 
A solution of a differential equation 

 

 

 

that can be written as y = f(x) is known as an explicit solution . 
Example: The solution y = xex is an explicit solution of the differential equation 

 

 

2.11 Implicit Solution 
A relation G(x,y) is known as an implicit solution of a differential equation, if it defines 
one or more explicit solution on I. 
Example: The solution x2 + y2 - 4=0 is an implicit solution of the equation  y’ = - x/y  
as it defines two explicit solutions y=+(4-x2)1/2 

2 2

2 2, , , , , 0dy d y d yF x y
dx dx dx

 
= 

 


2

2 2 0d y dy y
dx dx

− + =
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3 Separable Equations 
The differential equation of the form 

                                               ),( yxf
dx
dy

=  

is called separable if it can be written in the form 

 )()( ygxh
dx
dy

=  

3.1 Solution steps of Separable Equations 
To solve a separable equation, we perform the following steps:  

1.  We solve the equation 0)( =yg  to find the constant solutions of the equation.  

 2.  For non-constant solutions we write the equation in the form.  

 dxxh
yg

dy )(
)(

=  

      Then integrate 
1

( )
( )

dy h x dx
g y

⌠


⌡

= ∫  

      to obtain a solution of the form 
  CxHyG += )()(   

3. We list the entire constant and the non-constant solutions to avoid repetition..  

4.  If you are given an IVP, use the initial condition to find the particular solution.  

 Note that: 

 (a) No need to use two constants of integration because CCC =− 21 .   
 (b) The constants of integration may be relabeled in a convenient way.  
 (c) Since a particular solution may coincide with a constant solution, step 3 is 
important. 
 
Example 1:  

Find the particular solution of  2)1(    ,12

=
−

= y
x

y
dx
dy

 

Solution:    

1.  By solving the equation:   012 =−y ,We obtain the constant solutions: 1±=y    

2.  Rewrite the equation as x
dx

y
dy

=
−12  

     Resolving into partial fractions and integrating, we obtain  

                                   ⌡
⌠=

⌡

⌠








+

−
−

dx
x

dy
yy

1 
1

1
1

1
2
1    
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     Integration of rational functions, we get   

 Cx
y
y

+=
+
− ||ln

|1|
|1|ln

2
1

    

3. The solutions to the given differential equation are  

                                               






±=

+=
+
−

1                     

||ln
|1|
|1|ln

2
1

y

Cx
y
y

 

4.  Since the constant solutions do not satisfy the initial condition, we plug in the 
condition  

2=y  When  1=x  in the solution found in step 2 to find the value of C . 

 C=







3
1ln

2
1

 

      The above implicit solution can be rewritten in an explicit form as:    

  2

2

3
3

x
xy

−
+

=  

Example 2:   

Solve the differential equation 2

11
ydt

dy
+=  

Solution:  

1. We find roots of the equation to find constant solutions; 011 2 =+
y  

            No constant solutions exist because the equation has no real roots. 
2. For non-constant solutions, we separate the variables and integrate  

 ∫=⌡
⌠

+
dt

y
dy

2/11
 

          Since 
1

11
1/11

1
22

2

2 +
−=

+
=

+ yy
y

y
 

          Thus ⌡
⌠ −=

+
− )(tan

/1
1

2 yy
y1

dy
 

           So that Ctyy +=− − )(tan 1
 

      It is not easy to find the solution in an explicit form i.e. y as a function of t.   
3. Since ∃  no constant solutions, all solutions are given by the implicit equation 

found   in step 2. 
Example 3:    

Solve the initial value problem 10   ,1 2222 =+++= )y(ytyt
dt
dy
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Solution:   
1. Since  )1)(1(1 222222 ytytyt ++=+++  

The equation is separable & has no constant solutions because ∃  no real roots of  

                   01 2 =+ y .                 
2. For non-constant solutions we separate the variables and integrate.  

    dtt
y

dy )1(
1

2
2 +=

+
 

  ∫ dtt
y

dy )1(
1

2
2 +=⌡

⌠
+

 

    Ctty ++=−

3
)(tan

3
1  

           Which can be written as  

 







++= Ctty

3
tan

3

 

3. Since ∃  no constant solutions, all solutions are given by the implicit or explicit 
equation.  

 
      4. The initial condition 1)0( =y  gives  

     4
)1(tan 1 π

== −C  

           The particular solution to the initial value problem is  

  43
)(tan

3
1 π

++=− tty  

            or in the explicit form   







++=

43
tan

3 πtty  

     Example 4: 

     Solve ( ) 01 =−+ ydxdyx  

     Solution:  

Dividing with ( )yx+1 , we can write the given equation as 

   ( )x
y

dx
dy

+
=

1  

1. The only constant solution is 0=y  
2. For non-constant solution we separate the variables 
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                                              x
dx

y
dy

+
=

1  

      Integrating both sides, we have 

  ⌡
⌠

+
=⌡

⌠
x

dx
y

dy
1

 

                            11lnln cxy ++=  

                                 11 .|1|ln|1|ln cexecxey +=++=    

            or                  ( )xcecexy +±==+= 1 |1|      11   

                            ( ) 11 ,     
c

y C x C e= + = ±  

            If we use ||ln c  instead of 1c then the solution can be written as 

                       ||ln|1|ln||ln cxy ++=  

            or  ( )xcy += 1ln||ln  

            So that      ( )xcy += 1 . 
        3. The solutions to the given equation are 

    
( )
0           

1         

=

+=

y

xcy
 

Example 5 
 
Solve ( ) 02 324 =++ − dyeydxxy x . 
 

Solution: The differential equation can be written as   







+






−=

2
 3

2

4

y
yxxe

dx
dy   

1.  Since 0
22

4

=⇒
+

y
y

y . Therefore, the only constant solution is 0=y . 

2. We separate the variables   

 ( ) 02or      02 423
4

2
3 =++=

+
+ −− dyyydxxedy

y
ydxxe xx      

     Integrating, with use integration by parts by parts on the first term, yields 

  1
3133

3
2

9
1

3
1 cyyexe xx =−−− −−  
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( ) cc
yy

xe x =++=− 13
3 9c      where6913  

3. All the solutions are: 
( )

0             y         

 6913 3
3

=

++=− c
yy

xe x

                                

 Example 6: Solve the initial value problems 

(a) ( ) 1)0(      ,1 2 =−= yy
dx
dy  (b)  ( ) 01.1)0(      ,1 2 =−= yy

dx
dy  

and compare the solutions. 

Solutions:  

1. Since 10)1( 2 =⇒=− yy . Therefore, the only constant solution is 0=y . 

2.  We separate the variables 

  
( )

( ) dxdyy- dx
y

dy
==

−
−2

2 1or    
1

 

      Integrating both sides we have 

 ( )∫     1 2 ∫=− − dxdyy  

     
( ) cxy

+=
+−

− +−

12
1 12

 

    or         cx
y

+=
−

−
1

1
 

3. All the solutions of the equation are 

   
1             

1
1

=

+=
−

−

y

cx
y  

4. We plug in the conditions to find particular solutions of both the problems 

 

(a) ( ) 0 when 110 ==⇒= xyy . So we have 

                      −∞=⇒−=⇒+=
−

− ccc
0
10

11
1  

    The particular solution is 
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                  01
1

1
=−⇒−∞=

−
− y

y
 

     So that the solution is 1=y , which is same as constant solution. 

(b) ( ) 0  when  01.101.10 ==⇒= xyy . So we have 

1000
101.1

1
−=⇒+=

−
− cc  

     So that solution of the problem is 

                        
x

yx
y −

+=⇒−=
−

−
100

11100
1

1  

5. Comparison: A radical change in the solutions of the differential equation has    

    Occurred corresponding to a very small change in the condition!!   

Example 7: 

Solve the initial value problems 

(a) ( ) 1)0(      ,01.01 2 =+−= yy
dx
dy  (b)  ( ) .1)0(      ,01.01 2 =−−= yy

dx
dy  

Solution:  

(a) First consider the problem 

                ( ) 1)0(      ,01.01 2 =+−= yy
dx
dy

 

     We separate the variables to find the non-constant solutions 

( ) ( )
dx

y

dy
=

−+ 22
101.0

 

      Integrate both sides   

    ( )
( ) ( )

⌡

⌠
=

−+

−
∫ dx

y

yd
22

101.0

1  

      So that   cxy
+=

−−

01.0
1tan

01.0
1 1  
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                                    ( )cxy
+=







 −− 01.0
01.0
1tan 1  

                                      ( )[ ]cxy
+=

− 01.0tan
01.0
1  

     or    ( )[ ]cxy ++= 01.0tan01.01  

     Applying  ( ) 0   when   110 ==⇒= xyy , we have 

                                    ( ) ( ) cc =⇒+=− 0001.00tan 1  

     Thus the solution of the problem is 

                                      ( )xy  01.0tan01.01+=   

  (b) Now consider the problem  

( ) .1)0(      ,01.01 2 =−−= yy
dx
dy  

     We separate the variables to find the non-constant solutions 

    
( ) ( )22

 

1 0.01

d y dx
y

=
− −

 

                                              
( )

( ) ( )22

1

1 0.01

d y
dx

y

⌠



⌡

−
=

− −
∫  

                                                cx
y
y

+=
+−
−−

01.01
01.01ln

01.02
1  

       Applying the condition ( ) 0  when 110 ==⇒= xyy    

                                            0
01.0
01.0ln

01.02
1

=⇒=
− cc  

                                                  x
y
y  01.02

01.01
01.01ln =

+−
−−  

                                                     
101.01

01.01  01.02 xe
y
y

=
+−
−−  
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 Simplification:  

 By using the property  
dc
dc

ba
ba

d
c

b
a

−
+

=
−
+

⇒=  

           
1

1
01.0101.01
01.0101.01

01.02

01.02

−

+
=

−+−−−
+−+−−

xe

xe
yy
yy

 

                          
2 0.01

2 0.01
2 2 1
2 0.01 1

y e

e

− +
=

− −
 

                                                   
1

1
01.0
1

01.02

01.02

−

+
=

−
−

e

ey
 

     













−

+
−=−

1

101.01
01.02

01.02

e

ey  

   














−

+
−=

1

101.01
01.02

01.02

e

ey  

Comparison: 
 
The solutions of both the problems are 

 

              (a) ( )xy  01.0tan  01.01          +=   

              (b)














−

+
−=

1

101.01
01.02

01.02

e

ey  

Again a radical change has occurred corresponding to a very small in the differential 
equation! 

3.2 Exercise 

Solve the given differential equation by separation of variables. 

1. 
2

54
32









+
+

=
x
y

dx
dy  
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2. 0cscsec2 =+ ydxxdy  

3. ( ) 0cos2sin 2 =−+ dyyexxdxe yy  

4. 
842

33
−+−

−−+
=

yxxy
yxxy

dx
dy  

5. 
33
22

−+−
−−+

=
xyxy
xyxy

dx
dy  

6. ( ) ( ) dxydyxy 2
1

22
1

2 44 +=−  

7. ( ) yy
dx
dyxx +=+  

Solve the given differential equation subject to the indicated initial condition. 

8. ( ) ( )dyxxdxe y cos1sin1 +=+− , ( ) 00 =y  

9. ( ) ( ) 0411 24 =+++ dxyxdyx , ( ) 01 =y  

10. ( ) dxyxydy 2
1

2 14 += ,   ( ) 10 =y  
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4 Homogeneous Differential Equations 
A differential equation of the form 

 ),( yxf
dx
dy

=   

Is said to be homogeneous if the function ),( yxf  is homogeneous, which means  

            ( , ) ( , ) nf tx ty t f x y= For some real number n, for any number t . 
 
Example 1    
Determine whether the following functions are homogeneous 

                                      
( )





+−=
+

=

)4/(3ln),(

  ),(
232

22

xyxyxyxg
yx

xyyxf
                  

Solution:   
The functions ),( yxf is homogeneous because 

                                   ),(
)(

),( 22222

2

yxf
yx

xy
yxt

xyttytxf =
+

=
+

=  

Similarly, for the function ),( yxg we see that  

                   ),(
4

3ln
)4(

3ln),( 23

2

233

23

yxg
xyx
yx

xyxt
yxttytxg =








+

−
=








+

−
=       

  Therefore, the second function is also homogeneous.  
   Hence the differential equations  

                                       








=

=

),(

  ),(

yxg
dx
dy

yxf
dx
dy

 

    Are homogeneous differential equations 
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4.1 Method of Solution 

To solve the homogeneous differential equation  ),( yxf
dx
dy

= .We use the substitution 

x
yv = .If ),( yxf is homogeneous of degree zero, then we have

)(),1(),( vFvfyxf ==  

Since vvxy +′=′ , the differential equation becomes ),1( vfv
dx
dvx =+  

 This is a separable equation. We solve and go back to old variable y  through xvy = . 
 

 Summary:  

1. Identify the equation as homogeneous by checking ),(),( yxfttytxf n= ; 

 2. Write out the substitution
x
yv = ; 

 3. Through easy differentiation, find the new equation satisfied by the new function v ;  

                                            ),1( vfv
dx
dvx =+  

 4. Solve the new equation (which is always separable) to find v ;  

 5. Go back to the old function y  through the substitution vxy = ;  

 6. If we have an IVP, we need to use the initial condition to find the constant of 
integration.  

Caution: 
 Since we have to solve a separable equation, we must be careful about the 

constant solutions. 
 If the substitution vxy =  does not reduce the equation to separable form then the 

equation is not homogeneous or something is wrong along the way. 

Example 2  Solve the differential equation yx
yx

dx
dy

+
+−

=
2

52
 

Solution:    

Step 1.  It is easy to check that the function  yx
yxyxf

+
+−

=
2

52),(   is a homogeneous 

function.  

Step 2.  To solve the differential equation we substitute x
yv =                                         

 
                                                © Copyright Virtual University of Pakistan                                                 16 



Differential Equations (MTH401)                                                                                    VU 
 

Step 3. Differentiating w.r.t x , we obtain v
v

xvx
xvxvvx

+
+−

=
+
+−

=+′
2

52
2

52
 

     which gives 





 −

+
+−

= v
v

v
xdx

dv
2

521
       

       This is a separable.  At this stage please refer to the Caution! 

Step 4.   Solving by separation of variables all solutions are implicitly given by  

                             Cxvv +=−+−− |)ln(||1|ln3|)2ln(|4  

Step 5.  Going back to the function y through the substitution vxy = , we get  

                              Cxyxy       ||ln3|2|ln4 =−+−−  

4 3

1 1

4 3

14 3

4 3

14 3

4 3

14 3

4 3
1

4 3
1

24 ln 3ln ln

2ln ln ln ln , ln

( 2 ) ( )ln ln ln

( 2 ) ( )ln . ln

( 2 ) ( ).

( 2 ) ( )

( 2 ) ( )

y x y x x c
x x

y x y x x c c c
x x

y x y x c x
x x

y x y x c x
x x

y x y x c x
x x

x y x y x c x
y x y x c

−

−

−

−

−

−

−

−

−

− −
− + = +

− −
+ = + =

− −
+ =

− −
=

− −
=

− − =

− − =

 

       Note that the implicit equation can be rewritten as  

                                  
4

1
3 )2()( xyCxy −=−  

 
4.2 Equations reducible to homogenous form 

The differential equation  

is not homogenous.  However, it can be reduced to a homogenous form as detailed below 

 

222

111

cybxa
cybxa

dx
dy

++
++

=
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4.2.1 Case 1 

 

      We use the substitution ybxaz 11 +=  which reduces the equation to a separable 
equation in the variables x  and z . Solving the resulting separable equation and 
replacing z  with ybxa 11 + , we obtain the solution of the given differential equation. 

4.2.2 Case 2  

 

In this case we substitute kYyhXx +=+=            ,    

Where h  and k  are constants to be determined. Then the equation becomes 

                                      
22222

11111

ckbhaYbXa
ckbhaYbXa

dX
dY

++++
++++

=  

We choose h and k such that 

 




=++
=++

0
0

222

111

ckbha
ckbha

      

This reduces the equation to 

                                         
YbXa
YbXa

dX
dY

22

11

+
+

=     

Which is homogenous differential equation in X  andY , and can be solved accordingly. 
After having solved the last equation we come back to the old variables x  and y . 

Example 3 

Solve the differential equation 
232
132

++
−+

−=
yx
yx

dx
dy

      

Solution: 

Since 
2

1

2

1 1
b
b

a
a

== , we substitute yxz 32 += , so that 





 −= 2

3
1

dx
dz

dx
dy

  

     

2

1

2

1

b
b

a
a

=

2

1

2

1

b
b

a
a

≠
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Thus the equation becomes 
2
12

3
1

+
−

−=





 −

z
z

dx
dz

 i.e.
2
7

+
+−

=
z
z

dx
dz    

This is a variable separable form, and can be written as dxdz
z

z
=








+−
+

7
2

 

Integrating both sides we get ( ) Axzz +=−−− 7ln9       

Simplifying and replacing z with yx 32 + , we obtain ( ) Ayxyx ++=−+− 33732ln 9  
   

or ( ) ( ) Ayx ecceyx ==−+ +−        ,732 39     

Example 4 Solve the differential equation 
( )

52
42

−+
−+

=
yx
yx

dx
dy

   

Solution: By substitution kYyhXx +=+=           , , the given differential equation 

reduces to ( ) ( )
( ) ( )522

422
−+++
−+++

=
khYX
khYX

dX
dY      

We choose h  and k  such that ,042 =−+ kh     052 =−+ kh     

Solving these equations we have 2=h , 1=k . Therefore, we have 

 
YX
YX

dX
dY

+
+

=
2

2
       

This is a homogenous equation. We substitute VXY =  to obtain  

V
V

dX
dVX

+
−

=
2
1 2

    or     
X

dXdV
V
V

=





−
+

21
2

   

Resolving into partial fractions and integrating both sides we obtain 

( ) ( )
⌡

⌠
⌡
⌠=








+

+
− X

dXdV
VV 12

1
12

3 or ( ) ( ) AXVV lnln1ln
2
11ln

2
3

+=++−−    

Simplifying and removing ( ln ) from both sides, we get ( ) ( ) 23 1/1 −=+− CXVV , 
2−= AC   
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( ) ( )

( )

( )

( )

( )

3 1
2 2

3 1
2 2

3 1
2 2

13 2 2

1
3 2 2

3 1
2 2

3

3 1ln 1 ln 1 ln ln
2 2

ln(1 ) ln 1 ln

ln(1 ) 1 ln

(1 ) 1
" 2"

(1 ) 1

(1 ) 1

( )

V V X A

V V XA

V V XA

V V XA
taking power onboth sides

V V X A
Yput V
X

Y Y X A
X X

X Y X Y X A
X X

X Y X
X Y

−

−

−

− − −

−
− −

−
− −

− − + + = +

− + + =

− + =

− + =

−

− + =

=

 − + = 
 

− +    =   
   

−
+

3 1 2 2

2

3

3

,
( )

2, 1
( 1) / 3

X A

say c A
X Y c
X Y

put X x Y y
x y x y c

− + − −

−

=

=

−
=

+
= − = −

+ − + − =

 

Now substituting 
X
YV = , 2−= xX , 1−= yY  and simplifying, we obtain 

( ) ( ) Cyxyx =−+−− 3/1 3 .This is solution of the given differential equation, an 
implicit one. 

4.3 Exercise 
Solve the following Differential Equations 

1. 02)( 344 =−+ ydyxdxyx  

2. 12

2

++=
y
x

x
y

dx
dy  

3. xydydxyex x
y

=









+

−
22  
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4. 0cos =







−+ dyx

y
xyydx  

5. ( ) 0222223 =+−++ dyyxxydxyxyx  

Solve the initial value problems 

6. ( ) ( ) 6)2(         ,046593 222 −==+−++ ydyxyxdxyxyx  

7. ( ) 1
2
1            ,2 =






=−+ yy

dx
dyxyyx  

8. ( ) 0)1(             ,0// ==−+ ydyxedxyex xyxy  

9. 0)1(          ,cosh ==− y
x
y

x
y

dx
dy  
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5 Exact Differential Equations 

Let us first rewrite the given differential equation ),( yxf
dx
dy

=  

into the alternative form

),(
),(),(      where0),(),( 

yxN
yxMyxfdyyxNdxyxM −==+  

This equation is an exact differential equation if the following condition is satisfied  

 x
N

y
M

∂
∂

=
∂

∂
 

This condition of exactness insures the existence of a function ),( yxF  such that  

                                         ),( yxM
x
F

=
∂
∂

, ),( yxN
y
F

=
∂
∂

 

5.1 Method of Solution  
If the given equation is exact then the solution procedure consists of the following steps: 

Step 1.  Check that the equation is exact by verifying the condition x
N

y
M

∂
∂

=
∂

∂
  

Step 2.  Write down the system ),( yxM
x
F

=
∂
∂

, ),( yxN
y
F

=
∂
∂  

Step 3.  Integrate either the 1st equation w. r. to x or 2nd w. r. to y. If we choose the 1st 

equation then ∫ += )(),(),( ydxyxMyxF θ .The function )(yθ is an arbitrary 

function of y , integration w.r.to x ; y  being constant.  

Step 4.  Use second equation in step 2 and the equation in step 3 to find )(yθ ′ . 

( ) ),()(),( yxNydxyxM
yy

F
=′+

∂
∂

=
∂
∂

∫ θ  

∫∂
∂

−=′ dxyxM
y

yxNy ),(),()(θ  

Step 5. Integrate to find )(yθ  and write down the function F (x, y);  

Step 6.  All the solutions are given by the implicit equation  

         CyxF =),(  

Step 7.  If you are given an IVP, plug in the initial condition to find the constant C.  
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Caution: x should disappear from )(yθ ′ . Otherwise something is wrong!           

Example 1 Solve ( ) ( ) 023 32 =+++ dyyxdxyx  

Solution: Here yxNyxM +=+= 32    and   23 ⇒  22 3,3 x
x
Nx

y
M

=
∂
∂

=
∂

∂  

∴
 x

N
y

M
∂
∂

=
∂

∂ . Hence the equation is exact. The LHS of the equation must be an exact 

differential i.e. ∃  a function ),( yxf such that Myx
x
f

=+=
∂
∂ 23 2 and Nyx

y
f

=+=
∂
∂ 3  

Integrating 1st of these equations w. r. t. x, have ),(2),( 3 yhxyxyxf ++=  

where )(yh is the constant of integration. Differentiating the above equation w. r. t. y and 

using 2nd, we obtain Nyxyhx
y
f

=+=′+=
∂
∂ 33 )(  

Comparing yyh =′ )(  is independent of x or integrating, we have 
2

)(
2yyh =  

Thus 
2

2),(
2

3 yxyxyxf ++= .Hence the general solution of the given equation is given 

by cyxf =),( i.e. cyxyx =++
2

2
2

3 .Note that we could start with the 2nd equation  

Nyx
y
f

=+=
∂
∂ 3  to reach on the above solution of the given equation! 

Example 2 Solve the initial value problem  

( ) ( ) .0cos2sinsincossin2 22 =−++ dyxyxdxxyxxy , .3)0( =y  

Solution: Here xyxxyM sincossin2 2+=  and xyxN cos2sin 2 −=  

,sin2cossin2 xyxx
y

M
+=

∂
∂  ,sin2cossin2 xyxx

x
N

+=
∂
∂  
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This implies
x
N

y
M

∂
∂

=
∂

∂ Thus given equation is exact.Hence there exists a function

),( yxf such that Mxyxxy
x
f

=+=
∂
∂ sincossin2 2 and Nxyx

y
f

=−=
∂
∂ cos2sin 2  

Integrating 1st of these w. r. t. x, we have ),(cossin),( 22 yhxyxyyxf +−=  

Differentiating this equation w. r. t. y substituting in N
y
f

=
∂
∂  

xyxyhxyx cos2sin)(cos2sin 22 −=′+−  And 1)(or        0)( cyhyh ==′  

Hence the general solution of the given equation is 2),( cyxf =  

i.e. ,cossin 22 Cxyxy =−  where  21 ccC −= . Now applying the initial condition that 

when ,3,0 == yx we have 9sincos 22 =− xyxy  is the required solution. 

Example 3: Solve the DE ( ) ( )2 2cos 2 cos 2 0y ye y xy dx xe x x y y dy− + − + =   

Solution:The equation is neither separable nor homogenous.  

As 
( )
( ) 





+−=

−=

yxyxxeyxN
xyyeyxM

y

y

2cos2,
cos,

2

2

and
x
Nxyxyxye

y
M y

∂
∂

=−+=
∂

∂ cossin2 2  

Hence the given equation is exact and a function ),( yxf  exist for which 

( )
x
fyxM

∂
∂

=,   and  ( )
y
fyxN

∂
∂

=, which means that xyye
x
f y cos2 −=

∂
∂

 and   

yxyxxe
y
f y 2cos2 2 +−=

∂
∂

.Let us start with the second equation i.e.

yxyxxe
y
f y 2cos2 2 +−=

∂
∂

.Integrating both sides w.r.to y , we obtain 

( ) ∫ ydyxydyxdyyexyxf 2cos22, +∫−∫= . Note that while integrating w.r.to y , x  

is treated as constant.  Therefore ( ) ( )xhyxyxeyxf y ++−= 22 sin, ,  

h  is an arbitrary function of x . From this equation we obtain 
x
f

∂
∂  and equate it to M   
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( ) xyyexhxyye
x
f yy coscos 22 −=′+−=

∂
∂

.So that ( ) Cxhxh =⇒=′ )(0       

Hence one-parameter family of solution is given by 0sin 22 =++− cyxyxe y
 

Example 4 Solve ( ) 0 1 2 2 =−+ dyxdxxy  

 

Solution:  Clearly     ( ) xyyxM 2, =  and ( ) =yxN , 12 −x ⇒  
x
Nx

y
M

∂
∂

==
∂

∂ 2  

The equation is exact and ∃  a function ( )yxf ,  such that xy
x
f 2=

∂
∂

  and  12 −=
∂
∂ x
y
f

 

We integrate first of these equations to obtain. ( ) ( )ygyxyxf += 2,  

Here ( )yg  is an arbitrary function y . We find 
y
f

∂
∂  and equate it to ( )yxN ,   

( ) 122 −=′+=
∂
∂ xygx

y
f

⇒  ( ) yygyg −=⇒−=′ )(    1    

Constant of integration need not to be included as the solution is given by ( ) cyxf =,  

Hence a one-parameter family of solutions is given by cyyx =−2     

Example 5 Solve the initial value problem  

( ) ( ) 01sincos 22 =−+− dyxydxxyxx , ( )0 2y =  

Solution:  As ( )





−=

−=
2

2

1            ),(

  sin . cos),(

xyyxN

yxxxyxM
⇒  

x
Nxy

y
M

∂
∂

=−=
∂

∂ 2  

Therefore the equation is exact and ∃  a function ( )yxf ,  such that  

2  s .  cos yxxinx
x
f

−=
∂
∂

  and   )1( 2xy
y
f

−=
∂
∂

.Now integrating 2nd of these equations 

w.r.t.  ‘ y ’ keeping ‘ x ’constant, we obtain  ( ) ( ) ( )xhxyyxf +−= 2
2

1
2

,  

Differentiate w.r.t. ‘ x ’ and equate the result to ),( yxM  
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( ) 22 sincos xyxxxhxy
x
f

−=′+−=
∂
∂

⇒ ( ) xxxh sincos=′  

Integrating w.r.to x , we obtain  ( ) ( )( ) xdxxxxh 2cos
2
1sincos −=−−= ∫  

Thus a one parameter family solutions of the given differential equation is  

( ) 1
22

2

cos
2
11

2
cxxy

=−− ⇒ ( ) cxxy =−− 222 cos1 ,where 12c  has been 

replaced by C . The initial condition 2=y  when 0=x  demand, that ( ) ( ) c=− 0cos14 2 so 

that 3=c .   Thus the solution of the initial value problem is ( ) 3cos1 222 =−− xxy  

5.2 Exercise  
Determine whether the given equations is exact. If so, please solve. 

1. ( ) ( ) 0coscossinsin =++− dyyxxdxxyy  

2. ( )dyxdx
x
yx ln1ln1 −=






 ++  

3. ( ) 0ln1ln =







++− − dyy

y
dxeyy xy  

4. 03sin343cos12 3
2 =+−+






 +− xyx

x
y

dx
dyx

x
y  

5. 011
22222 =








+

++







+

−+ dy
yx

xyedx
yx

y
xx

y  

6. Solve the given differential equations subject to indicated initial conditions. 

7. ( ) ( ) 1)0(       ,02 ==++++ ydyyexdxye yx  

8. 1)1(         ,0
2

3
45

22

==+






 − y
y
x

dx
dy

y
xy  

9. 1y(0)            ),sin(2cos
1

1
2 =+=








−+

+
xyy

dx
dyxyx

y
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10. Find the value of k, so that the given differential equation is exact. 
( ) ( )3 4 32 sin 20 sin 0x y xy ky dx x x xy dyy − + − + =  

11. ( ) ( ) 0sincos6 223 =−−+ dyyxykxdxyxy  
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6 Integrating Factor Technique 
If the equation  0),(),( =+ dyyxNdxyxM  is not exact, then we must have 

x
N

y
M

∂
∂

≠
∂

∂
.Therefore, we look for a function u (x, y)  such that the equation

0),(),(),(),( =+ dyyxNyxudxyxMyxu  becomes exact. The function u (x, y)  
(if it exists) is called the integrating factor (IF) and it satisfies the equation due to the 
condition of exactness.    

    N
x
uu

x
NM

y
uu

y
M

∂
∂

+
∂
∂

=
∂
∂

+
∂

∂
 

This is a partial differential equation and is very difficult to solve. Consequently, the 
determination of the integrating factor is extremely difficult except for some special 
cases: 

Example Show that )/(1 22 yx + is an integrating factor for the equation

( ) ,022 =−−+ ydydxxyx  and then solve the equation. 

Solution: Since yxyxM −=−+=  N     ,22 ⇒ 0   ,2 =
∂
∂

=
∂

∂
x
Ny

y
M

⇒  x
N

y
M

∂
∂

≠
∂

∂
 

and the equation is not exact. However, if the equation is multiplied by )/(1 22 yx +  then 

the equation becomes 01 2222 =
+

−







+

− dy
yx

ydx
yx

x  

Now 2222     and    1
yx

yN
yx

xM
+

−=
+

−= ⇒
( ) x

N

yx

xy
y

M
∂
∂

=
+

=
∂

∂   2
222

 

So that this new equation is exact. The equation can be solved.  However, it is simpler to 

observe that the given equation can also written

[ ] 0)ln(
2
1or              0 22

22 =+−=
+
+

− yxddx
yx
ydyxdxdx or ( ) 0

2
ln 22

=










 +
−

yxxd  

Hence, by integration, we have kyxx =+− 22ln  

6.1 Case 1 
When ∃ an integrating factor u (x), a function of x  only. This happens if the expression  
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N
x
N

y
M

∂
∂

−
∂

∂

is a function of x only. Then the integrating factor ),( yxu  is given by                






















⌡

⌠ ∂
∂

−
∂

∂

= dx
N

x
N

y
M

u exp  

6.2 Case 2 
When ∃  an integrating factor )(yu , a function of y only. This happens if the expression 

M
y

M
x
N

∂
∂

−
∂
∂

is a function of y  only. Then IF ),( yxu  is given b






















⌡

⌠ ∂
∂

−
∂
∂

= dy
M

y
M

x
N

u exp  

6.3 Case 3 

 If the given equation is homogeneous and 0≠+ yNxM Then  yNxM
u

+
=

1
 

6.4 Case 4 
If the given equation is of the form 0)()( =+ dyxyxgdxxyyf  

and 0≠− yNxM Then 
yNxM

u
−

=
1  

Once the IF is found, we multiply the old equation by u to get a new one, which is exact. 
Solve the exact equation and write the solution.  

Advice: If possible, we should check whether or not the new equation is exact? 

Summary: 
Step 1. Write the given equation in the form 

                                        0),(),( =+ dyyxNdxyxM  
     provided the equation is not already in this form and determine M  and N .   
Step 2.  Check for exactness of the equation by finding whether or not  
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 x
N

y
M

∂
∂

=
∂

∂
 

Step 3.  (a) If the equation is not exact, then evaluate  

  N
x
N

y
M

∂
∂

−
∂

∂

 

    If this expression is a function of x  only, then  

 






















⌡

⌠ ∂
∂

−
∂

∂

= dx
N

x
N

y
M

xu exp)(  

    Otherwise, evaluate  

 
M

y
M

x
N

∂
∂

−
∂
∂

 

    If this expression is a function of y only, then  

 





















⌡

⌠ ∂
∂

−
∂
∂

= dy
M

y
M

x
N

yu exp)(  

    In the absence of these 2 possibilities, better use some other technique. However, we   
    could also try cases 3 and 4 in step 4 and 5 
Step 4.  Test whether the equation is homogeneous and   

 0≠+ yNxM  

    If yes then  yNxM
u

+
=

1
 

 

Step 5.  Test whether the equation is of the form 

 0)()( =+ dyxyxgdxxyyf   

       and whether 0≠− yNxM   

       If yes then  
yNxM

u
−

=
1  

Step 6. Multiply old equation by u. if possible, check whether or not the new equation is 
exact?  

Step 7. Solve the new equation using steps described in the previous section.  

 
                                                © Copyright Virtual University of Pakistan                                                 30 



Differential Equations (MTH401)                                                                                    VU 
 

Example 1 Solve the differential equation xyx
yxy

dx
dy

+
+

−= 2

23

 

Solution:   
1. The given differential equation can be written in form 

                                        0)()3( 22 =+++ dyxyxdxyxy  

     Therefore 

                                      
23),( yxyyxM +=  

 

                                       xyxyxN += 2),(  
                            

2.  Now                            yx
y

M 23 +=
∂

∂ , yx
x
N

+=
∂
∂ 2 . 

                                      x
N

y
M

∂
∂

≠
∂

∂
∴           

3. To find an IF we evaluate 

 
xN

x
N

y
M

1
=

∂
∂

−
∂

∂

 

   which is a function of x only.  
4.Therefore, an IF u (x) exists and is given by  

 xeexu xdx
x ===

⌡
⌠

)ln(
1

)(  
 

5. Multiplying the given equation with the IF, we obtain 

                                            0)()3( 2322 =+++ dyyxxdxxyyx    
    which is exact. (Please check!)  
 

6. This step consists of solving this last exact differential equation.   
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Solution of new exact equation: 

1.  Since
x
Nxyx

y
M

∂
∂

=+=
∂

∂ 23 2 , the equation is exact. 

2. We find F (x, y) by solving the system  

 










+=
∂
∂

+=
∂
∂

.

3

23

22

yxx
y
F

xyyx
x
F

 

3. We integrate the first equation to get  

 )(
2

),( 2
2

3 yyxyxyxF θ++=  

 

4. We differentiate F  w. r. t. ‘y’  and use the second equation of the system in step 2 to 
obtain 

 yxxyyxx
y
F 2323 )( +=′++=

∂
∂ θ  

                                                 0=′⇒ θ ,   No dependence on x. 

5. Integrating the last equation to obtain C=θ .  Therefore, the function ),( yxF  is  

 2
2

3

2
),( yxyxyxF +=  

      We don't have to keep the constant C, see next step.  

6. All the solutions are given by the implicit equation CyxF =),(  i.e. 

 
2 2

3
2

x yx y C+ =  

 
Note that it can be verified that the function  

 
1( , )

2 (2 )
u x y

xy x y
=

+  

is another integrating factor for the same equation as the new equation  

                     
2 21 1(3 ) ( ) 0

2 (2 ) 2 (2 )
xy y dx x xy dy

xy x y xy x y
+ + + =

+ +  
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is exact. This means that we may not have uniqueness of the integrating factor.  

Example 2. Solve ( ) 0222 22 =++− xydydxyxx  

Solution:   
xyN

yxxM
2

22 22

=
+−=

⇒ y
x
Ny

y
M 2,4 =

∂
∂

=
∂

∂
⇒

x
N

y
M

∂
∂

≠
∂

∂
∴  

The equation is not exact .Here 
xxy

yy
N

NM xy 1
2

24
=

−
=

−
 

Therefore, I.F. is given by 





= ∫ dx

x
u 1exp ⇒ xu =  

Multiplying the equation by I.F = x, we have 

( ) 0222 2223 =++− ydyxdxxyxx .This equation is exact. The required Solution is

0
22

34

3
2

4
cyxxx

=+− ⇒ cyxxx =+− 2234 1283  

Example 3 Solve 0sin =







−+ dyy

y
xdx  

Solution: Here 

 

x
N

y
M

yx
N

y
M

y
y
xNM

∂
∂

≠
∂

∂
∴

=
∂
∂

=
∂

∂

−==

1    ,0

sin      ,1

 

The equation is not exact. 

Now   

  
y

y
M

MN yx 1
1

01

=
−

=
−
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Therefore, the IF is y
y

dyyu == ∫exp)(  

Multiplying the equation by y, we have 

  0)sin( =−+ dyyyxydx  

or  0sin =−+ ydyyxdyydx  

or  0sin)( =− ydyyxyd  

Integrating, we have 

  cyyyxy =−+ sincos  

Which is the required solution 

Example 4 

Solve     ( ) ( ) 032 2322 =−−− dyyxxdxxyyx  

 

Solution:  Comparing with 

 

0=+ NdyMdx  

 

we see that 

2 2 3 22    and    N ( 3 )M x y xy x x y= − = − −   

Since both M  and N  are homogeneous. Therefore, the given equation is homogeneous. 

Now  

  032 22223223 ≠=+−−=+ yxyxyxyxyxyNxM  

Hence, the factor u is given by 

   22
1
yx

u =             yNxM
u

+
=

1
  

Multiplying the given equation with the integrating factor u , we obtain. 
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    0321
2 =










−−








− dy

yy
xdx

xy
 

 

Now 

    
yy

x
xy

M 3N     and      21
2 +

−
=−=  

and therefore 

         
x
N

yy
M

∂
∂

=−=
∂

∂
2

1  

Therefore, the new equation is exact and solution of this new equation is given by 

 Cyx
y
x

=+− ||ln3||ln2  

 

Example 5 
 

Solve   ( ) ( ) 02 2222 =−++ dyyxxyxdxyxxyy  

Solution: 
The given equation is of the form 

      0)()( =+ dyxyxgdxxyyf  

Now comparing with 

 

      0=+ NdyMdx  

We see that   

( ) ( )2222 N    and   2 yxxyxyxxyyM −=+=  

Further 

   
0       3                      

2
33

33223322

≠=

+−+=−

yx

yxyxyxyxyNxM
 

Therefore, the integrating factor u is 
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           yNxM
u

yx
u

−
==

1        ,
3

1
33   

Now multiplying the given equation by the integrating factor, we obtain 

 

   011
3
121

3
1

22 =







−+








+ dy

yxy
dx

xyx
 

Therefore, solutions of the given differential equation are given by 

 

   Cyx
xy

=−+− ||ln||ln21  

 

 where 3C0 =C 

6.5 Exercise 
Solve by finding an I.F 

1. ( )2 2xdy ydx x y dx− = +   

2. 0sin
=

−
+ dx

x
xydy  

3. ( ) ( ) 0422 434 =−+++ dyxyxydxyy  

4. ( ) 0222 =++ xydydxyx  

5. ( ) 0234 2 =++ xydydxyx  

6. ( ) ( ) 0223 3342 =++ dyyxdxxyyx  

7. 12 −+= ye
dx
dy x  

8. ( ) ( ) 03 22 =+++ dyxyxdxyxy  

9. ( ) 02 2 =−+ − dyexyydx y  

10. ( ) 0cossin2 =++ ydyxydxx  
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7 First Order Linear Equations 
The differential equation of the form:  

 )()()( xcyxb
dx
dyxa =+  

is a linear differential equation of first order. The equation can be rewritten in the 
following famous form. 

    )()( xqyxp
dx
dy

=+  

where )(xp  and )(xq are continuous functions. 
 
7.1 Method of solution 
The general solution of the first order linear differential equation is given by  

 
∫

)(
)()(

xu
Cdxxqxuy +

=  

 Where  ∫( )dxxpxu )(exp)( =  
The function )(xu is called the integrating factor.  If it is an IVP then use it to find the 
constant C. 

 Summary: 

1. Identify that the equation is 1st order linear equation. Rewrite  it in the form  

 )()( xqyxp
dx
dy

=+  

      if the equation is not already in this form. 

2. Find the integrating factor  

   
∫=

dxxp
exu

)(
)(  

3. Write down the general solution  

 
)(

)()(

xu

Cdxxqxu
y

∫ +
=  

4. If you are given an IVP, use the initial condition to find the constant C.  

 

5. Plug in the calculated value to write the particular solution of the problem.  
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Example 1:  
 Solve the initial value problem  

 2)0(        ),(cos)tan( 2 ==+′ yxyxy  
Solution:  
1.The equation is already in the standard form 

 )()( xqyxp
dx
dy

=+  

    with  

                                                 




=

=

xq(x)

xxp
2cos

 tan)(
     

2. Since                                    

                                    ∫ xxdxx  secln cosln  tan =−=  
 

     Therefore, the integrating factor is given by 

                                              ∫ xdxxexu sec tan)( ==   

 

3.  Further, because 

                                         ∫∫ == xdxxdxxx sin cos cossec 2
  

    So that the general solution is given by  

                                             ( ) xCx
x

Cxy  cos sin
sec

sin
+=

+
=  

 

4. We use the initial condition 2)0( =y to find the value of the constant C  

 2)0( == Cy  

 

5. Therefore the solution of the initial value problem is  

 

 ( ) xxy cos2sin +=  
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Example 2: Solve the IVP              4.0)0(      ,
1

2
1

2
22 =

+
=

+
− y

t
y

t
t

dt
dy

 

Solution:  
1.The given equation is a 1st order linear and is already in the requisite form  

                                   )()( xqyxp
dx
dy

=+  

   with                                       








+
=

+
−=

2

2

1
2    )(

1
2)(

t
tq

t
ttp

                

2. Since                           |1|ln
1

2 2
2 tdt

t
t

+−=⌡
⌠









+
−  

    Therefore, the integrating factor is given by 

 
1221

2

)1()( −⌡

⌠

+
−

+== tetu
dt

t

t

         
3. Hence, the general solution is given by   

                         )(

)()(

tu

Cdttqtu
y ∫ +

= , ∫ ⌡
⌠

+
= dt

t
dttqtu 22 )1(

2)()(  

    Now                 dt
t

t
t

dt
t

ttdt
t 

⌡

⌠








+

−
+

=⌡
⌠

+
−+

=⌡
⌠

+ 22

2

222

22

22 )1(1
12

)1(
12

)1(
2

 

     The first integral is clearly t1tan− . For the 2nd we will use integration by parts   

      with t   as first function  and 22 )1(
2

t
t

+  as 2nd function. 

                  ⌡

⌠
⌡
⌠ +

+
−=

+
+








+
−=

+
− )(tan

11
1

1
1

)1(
2 1

22222

2

t
t

tdt
tt

tdt
t
t

  

                 2
11

2
1

22 1
)(tan)(tan

1
)(tan2

)1(
2

t
ttt

t
ttdt

t +
+=−

+
+=⌡

⌠
+

−−−
 

      The general solution is: 





 +

+
++= C

t
ttty 2

1-2

1
)(tan )1(  

4. The condition 4.0)0( =y  gives 4.0=C  
      5. Therefore, solution to the initial value problem can be written as:   

 )1(4.0)(tan)1( 212 tttty ++++= −
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Example 3:  

Find the solution to the problem 

 1 . cos . sincos 32 +−=′ ytytt , 0
4

=





πy  

Solution:  
1.  The equation is 1st order linear and is not in the standard form 

 )()( xqyxp
dx
dy

=+  

Therefore we rewrite the equation as         

                                          
tt

y
t
ty

 sincos
1

 sin
  cos

2=+′  

2. Hence, the integrating factor is given by  

                               tte
dt

t
t

etu  sin| sin|lnsin
cos

)( ===



⌡

⌠

   
 

3. Therefore, the general solution is given by 

 
t

Cdt
tt

t 
y

 sin
 sincos

1sin 2⌡
⌠ +

=   

     Since    

                                       tdt
t

dt
tt

t  tan
cos

1
 sin  cos

1sin 22 =⌡
⌠=⌡

⌠
 

 
     Therefore  

 tCt
t

C
tt

Cty  csc sec
 sin cos

1
 sin

 tan
+=+=

+
=  

  
(1) The initial condition 0)4/( =πy  implies  

 022 =+ C  
       which gives 1−=C .  

(2) Therefore, the particular solution to the initial value problem is  
 t t y cscsec −=  

Example 4   Solve ( )32 dyx y y
dx

+ =  

Solution: We have 32yx
y

dx
dy

+
=  
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This equation is not linear in y .  Let us regard x  as dependent variable and y  as 

independent variable. The equation may be written as 
y

yx
dy
dx 32+

=  

Or 221 yx
ydy

dx
=− , which is linear in . 

   
yy

dy
y

IF 11lnexp1exp =







=









⌡

⌠








−=  

 Multiplying with the
y

IF 1
= , we get       211

2 yx
ydy

dx
y

=− ⇒
 

y
y
x

dy
d 2  =








 

Integrating, we have        2 cy
y
x

+= ⇒
 

( )  2 cyyx +=  is the required solution.  

Example 5 Solve ( ) ( ) 121431 +=−+− xyx
dx
dyx  

Solution: The equation can be rewritten as 
( )31

1
1

4

−

+
=

−
+

x

xy
xdx

dy  

Here ( ) .
1

4
−

=
x

xP Therefore, an integrating factor of the given equation is 

( )[ ] ( )44 11lnexp
1

4exp −=−=




⌡
⌠

−
= xx

x
dxIF  

Multiplying the given equation by the IF,we get ( ) ( ) 1141 234 −=−+− xyx
dx
dyx  

⇒  ( )[ ] 11 24 −=− xxy
dx
d . Integrating both sides, we obtain ( ) cxxxy +−=−

3
1

3
4

which is the required solution. 

7.2 Exercise   
Solve the following differential equations 

 

1. xey
x

x
dx
dy 212 −=






 +

+  
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2. xexy
dx
dy 3233 −=+  

 

3. ( ) xyxx
dx
dyx =++ cot1  

 

4. ( ) ( ) 111 ++=−+ nx xeny
dx
dyx  

 

5. ( )
( )22

2

1
141
x

xy
dx
dyx

+
=++  

 

6. θθ
θ

cossec =+ r
d
dr  

 

7. xx

x

ee
ey

dx
dy

−

−

+
−

=+
21  

 

8. ( )dyxedx y 23 −=  

 

Solve the initial value problems 
 

9. ( ) ( ) 20      ,2 23 =−+= yeexy
dx
dy xx  

 

10. ( ) ( ) ( ) 11       ,31122 2 =−+=+++ yxyx
dx
dyxx  
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8 Bernoulli Equations 
A differential equation that can be written in the form  

 
nyxqyxp

dx
dy )()( =+  

is called Bernoulli equation. 
8.1 Method of solution 
For 1,0=n the equation reduces to 1st order linear DE and can be solved accordingly. 

For 1,0≠n  we divide the equation with 
ny to write it in the form 

                                   )()( 1 xqyxp
dx
dyy nn =+ −−  

and then put  

                                                
nyv −= 1

 
                                 
Differentiating w.r.t. ‘x’, we obtain 

 yynv n ′−=′ −)1(  
 
Therefore the equation becomes 

 )()1()()1( xqnvxpn
dx
dv

−=−+  

               
 This is a linear equation satisfied by v . Once it is solved, you will obtain the function          

          
)1(

1
nvy −=  

If 1>n , then we add the solution 0=y  to the solutions found the above technique.    
Summary 
1.Identify the equation  

 
nyxqyxp

dx
dy )()( =+  

as Bernoulli equation. 

Find  n. If 1,0≠n  divide by ny and substitute; 

 

 
nyv −= 1
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2. Through easy differentiation, find the new equation    

 

 )()1()()1( xqnvxpn
dx
dv

−=−+  

  

3. This is a linear equation.  Solve the linear equation to find v. 
 

4. Go back to the old function y through the substitution 
)1(

1
nvy −= . 

 

6. If 1>n , then include y = 0 to in the solution. 
 

7. If you have an IVP, use the initial condition to find the particular solution.  

Example 1: Solve the equation 
3yy

dx
dy

+=  

Solution:    
1. The given differential can be written as 

                                             
3yy

dx
dy

=−  

      which is a Bernoulli equation with 

 1)(,1)( =−= xqxp , n=3.  

       Dividing with 3y we get 

                                               123 =− −− y
dx
dyy  

      Therefore we substitute 

 
231 −− == yyv  

 
2. Differentiating w.r.t. ‘x’ we have  

                                                    





−=−

dx
dv

dx
dyy

2
13

 

    So that the equation reduces to 
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 22 −=+ v
dx
dv

 

3. This is a linear equation. To solve this we find the integrating factor )(xu  

 
xdx

eexu 22
)( =∫=                                        

     The solution of the linear equation is given by 

                                        
( )

x

x

e

cdxe

xu

cdxxqxu
v 2

2 2

)(

)()( ∫∫ +−
=

+
=  

     Since  
xx edxe 22 )2( −=−∫                           

     Therefore, the solution for v  is given by  

 12
2

2

−=
+−

= − x
x

x

Ce
e

Cev  

4. To go back to y  we substitute 2−= yv . Therefore the general solution of the given 

DE is 

 ( ) 2
1

2 1 −− −±= xCey  

5. Since 1>n , we include the 0=y  in the solutions. Hence, all solutions are                  

                                          0=y ,      2
12 )1(

−− −±= xCey  

Example 2: 

Solve 21 xyy
xdx

dy
=+  

Solution: In the given equation we identify ( ) ( ) 2  and    ,1
=== nxxq

x
xP .  

Thus the substitution 1−= yw gives 

 
.1 xw

xdx
dw

−=−
 

The integrating factor for this linear equation is 
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 1lnln 1
−−⌡

⌠−
===

−

xeee xxx
dx

 

Hence [ ] .11 −=− wx
dx
d

 

Integrating this latter form, we get 

 .or    21 cxxwcxwx +−=+−=−  

Since 1−= yw , we obtain 
w

y 1
=  or  

 
cxx

y
+−

= 2
1

 

For 0>n  the trivial solution 0=y  is a solution of the given equation. In this example, 
0=y  is a singular solution of the given equation. 

Example 3 

Solve: 
2
1

21
xy

x
xy

dx
dy

=
−

+
 (1) 

Solution: Dividing (1) by 2
1

y , the given equation becomes 

 xy
x

x
dx
dyy =

−
+

−
2
1

2
2
1

1
 (2) 

Put  vy =2
1

 or.  
dx
dv

dx
dyy =

−
2

1

2
1

 

Then (2) reduces to 

 ( ) 212 2
xv

x
x

dx
dv

=
−

+  (3) 

This is linear in v . 

 

( ) ( ) ( ) 4
1

22
2 11ln

4
1exp

12
expI.F

−

−=



 −
−

=





⌡
⌠

−
= xxdx

x
x  

Multiplying (3) by ( ) ,1 4
1

2
−

− x  we get 
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 ( )
( ) ( ) 4/124/52

4
1

2

1212
1

x

xv
x

x
dx
dvx

−
=

−
+−

−

 

or ( ) ( )











−−

−
=












−

−−
4
1

24
1

2 12
4
11 xxvx

dx
d

 

Integrating, we have 

 ( ) ( ) cxxv +
−−

=−
−

4/3
1

4
11

4
3

2
4
1

2  

or ( )
3

11
24/12 xxcv −

−−=  

or ( )
3

11
24/122

1
xxcy −

−−=  

is the required solution. 

8.2 Exercise  

Solve the following differential equations 

1. xyy
dx
dyx ln2=+  

2. 3xyy
dx
dy

=+  

3. 2yey
dx
dy x=−  

4. ( )13 −= xyy
dx
dy

 

5. ( ) 21 xyyx
dx
dyx =+−  
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6. xyy
dx
dyx =+ 22

 

Solve the initial-value problems 

7. ( )
2
11      ,32 42 ==− yyxy

dx
dyx  

8. ( ) 40         ,12/32/1 ==+ yy
dx
dyy  

9. ( ) ( ) 01          ,11 2 ==+ y
dx
dyxyxy  

10. ( ) 11         ,2 2 =−= y
y
x

x
y

dx
dy

 

 
8.3 Substitutions 

 Sometimes a differential equation can be transformed by means of a substitution 
into a form that could then be solved by one of the standard methods i.e. Methods 
used to solve separable, homogeneous, exact, linear,  and Bernoulli’s  differential 
equation.  

 An equation may look different from any of those that we have studied in the 
previous lectures, but through a sensible change of variables perhaps an 
apparently difficult problem may be readily solved.  

 Although no firm rules can be given on the basis of which these substitution could 
be selected, a working axiom might be: Try something! It sometimes pays to be 
clever. 

Example 1 

The differential equation ( ) ( ) 02121 =−++ dyxyxdxxyy  

is not separable, not homogeneous, not exact, not linear, and not Bernoulli.  

However, if we stare at the equation long enough, we might be prompted to try the 
substitution  

 x
uyxyu
2

or        2 ==  

Since 22x
udxxdudy −

=  
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The equation becomes, after we simplify ( ) .012 2 =−+ xduudxu  

we obtain cuux =−− − lnln2 1  

xy
c

y
x

2
1

2
ln +=

 

,
2

2/1
1

xyec
y

x
=  

xyyecx 2/1
12= , where ce was replaced by 1c . We can also replace 12c by 2c  if 

desired 

Note: The differential equation in the example possesses the trivial solution 0=y , but 
then this function is not included in the one-parameter family of solution. 

Example 2 
Solve  

.6322 2 −=+ xy
dx
dyxy  

Solution:  

The presence of the term dx
dyy2 prompts us to try 

2yu =  

Since dx
dyy

dx
du 2=  

Therefore, the equation becomes: 632 −=+ xu
dx
dux  

 

or 
x

u
xdx

du 632
−=+  

This equation has the form of 1st order linear differential equation  

 )()( xQyxP
dx
dy

=+  

 with       
x

xP 2)( =  and 
x

xQ 63)( −=  

Therefore, the integrating factor of the equation is given by 

 
                                                © Copyright Virtual University of Pakistan                                                 49 



Differential Equations (MTH401)                                                                                    VU 
 

             I.F = 
2ln

2
2

xee xdx
x ==

⌡
⌠

 

Multiplying with the IF gives  [ ] xxux
dx
d 63 22 −=  

Integrating both sides, we obtain 

                  3 232 cxxux +−=  or            .3 2322 cxxyx +−=  

Example 3 
Solve   

 xye
y

xy
dx
dyx /3

=−  

Solution: 
 

 If we let  

x
yu =  

Then the given differential equation can be simplified to 

 

  dxduuue =−  

Integrating both sides, we have 

  ∫∫ =− dxduuue  

 

Using the integration by parts on LHS, we have 

  cxueuue +=−−−−  

or 

               ( ) uexcu −=+ 11  Where c1=-c 

 

We then re-substitute  

  x
yu =  
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and simplify to obtain 

  ( ) xyexcxxy / 1 −=+  

 Example 4 
Solve  

  
2

2

2
2 






=

dx
dyx

dx
yd

 

Solution:  
If we let     

  yu ′=    

Then      

   ydxdu ′′=/  

Then, the equation reduces to  

       2 2xu
dx
du

=  

Which is separable form. Separating the variables, we obtain 

  xdx
u
du 22 =  

Integrating both sides yields 

  ∫∫ =− xdxduu 22  

or  
2
1

21 cxu +=− −
 

The constant is written as 2
1c for convenience.  

Since   yu ′=− /11  

Therefore      1
2
1

2 cxdx
dy

+
−=  

or  2
1

2 cx
dxdy
+

−=  
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0)1( =++ dyyeydx x

( ) ( ) 0 /12 2 / =−++ − dyyxdxe yx

)(tan ln2 2 csc2 yx
dx
dyyx −=

)( sin1 yxex
dx
dy +−=+

12 242 +=+ yxxy
dx
dyx

22 xe
dx
dyxe yy =−

  
⌡

⌠

+
−=∫ 22

1cx

dxdy  

  
1

1

1
2 tan1

c
x

c
cy −−=+     

8.4 Exercise 
Solve the differential equations by using an appropriate substitution. 

 
1.   

 

2.  

 

3.  

 

4.  

 

5.  

 

6.  

 

7.  

 

 

yxexx
dx
dyy =+ ln2
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9 Solved Problems 
2 2

2 2

2 2 2 2

2

2

2

2 2

Example 1:   '

Solution:  

put  then  

1   

1

Integrating

ln ln
2

ln | |
2

2 ln | |

x yy
xy

dy x y
dx xy

dy dwy wx w x
dx dx

dw x w x ww x
dx xxw w

dww x w
dx w

dxwdw
x

w x c

y xc
x

y x xc

+
=

+
=

= = +

+ +
+ = =

+ = +

=

= +

=

=
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(2 - )
Example 2:  

(2 - )
Solution:   

put   

(2 - )

2 -

2 - 2

2( - )

2( - )

2 (1- )

put     
1We get

1-
- ln |1- | ln | | ln | |
- ln |1- | l

xy ydy
dx x

xy ydy
dx x

y wx

dw xwx xww x
dx x
dww x w w
dx

dwx w w
dx

dw dx
xw w

dw dx
xw w

dw dx
xw w

w t
dxdt

t x
t x c
t

=

=

=

+ =

+ =

=

=

=

=

=

=

= +
=

∫ ∫

∫ ∫

∫ ∫

-1

-1

-1

n | |
(1- )

(1- )

(1- y/x ) =xc

xc
t xc

w xc

=

=
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2 2

2 2

2 2

2 2

2 2

Example 3: (2 3) (2 4) 0
Solution:(2 -3) (2 4) 0

(2 -3) (2 4)

4

(2 -3) (2 4)

Integrate w.r.t. ' '
( , ) -3 ( )

Differentiate w.r.t. ' '
¶ 2
¶

y x dx yx dy
y x dx yx dy

Here M y x and N yx
M Nxy
y x

f fy x and yx
x y

x
f x y x y x h y

y
f x
y

− + + =

+ + =

= = +
∂ ∂

= =
∂ ∂

∂ ∂
= = +

∂ ∂

= +

= 2 2

2 2
1

'( ) 2 4

'( ) 4
Integrate w.r.t. 'y'
h(y)=4y+c
x y -3x+4y=C

y h y x y N

h y

+ = + =

=

 
2

2 2

2 2

2

2

2

2

2

2

( / )

2 2 ( / ) 2 ( / )

2 2 ( / ) 2 ( / )

( / )

2Example 4:  
2

2Solution: 
2

put /
After subsitution

1
2

2
1

Integrating

ln | | ln |1 | ln

ln | | ln | (1

x y

x y x y

x y x y

x y

w

w

w

w

w

w

dy xye
dx y y e x e

dx y y e x e
dy xye

x y w

dw ey
dy we

dy we dw
y e

y e c

y c e

=
+ +

+ +
=

=

+
=

=
+

= + +

= +
2

2( / )

) |

(1 )x yy c e= +  
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2

2

2

2

2

2

3

3Example 5:
ln ln

3Solution:
ln ln

1 3
ln ln

1 3( ) and ( )
ln ln

1. exp( ) ln
ln

Multiply both side by ln
1ln 3

( ln ) 3

Integrate
3ln
3

dy y x
dx x x x

dy y x
dx x x x

dy xy
dx x x x

xp x q x
x x x

I F dx x
x x

x
dyx y x
dx x

d y x x
dx

xy x c

+ =

+ =

+ =

= =

= =

+ =

=

= +

∫
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2 2

2 2

x

2

Example 6:  ( 2 ) - 0
Solution:Here 2      -

M N=2ye +2x,     =-2x
y x

M NClearly  
y x

The given equation is not exact.    
divide the equation by y  to make it exact

2

x

x

x

y e xy dx x dy
M y e xy N x

xe d
y

+ =

= + =
∂ ∂
∂ ∂

∂ ∂
≠

∂ ∂

 
+ 

 

2

2

2

2
x

2

2
x

2
x

- 0

M 2x NNow =- =
y y x

Equation is exact 
 

f 2x f x= e +           = -
x y y y

Integrate w.r.t. ' '
xf(x,y)=e +
y

xe + =c
y

xx dy
y

x

 
+ = 

 
∂ ∂
∂ ∂

  ∂ ∂
  ∂ ∂   
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[ ]

[ ]

Example 7:

cos ( sin cos ) 1

Solution: cos ( sin cos ) 1   

sin cos 1
cos cos

1tan 1/
cos

.    exp( (tan 1/ ) ) sec

secsec sec tan 1/
cos

sec

dyx x y x x x
dx

dyx x y x x x
dx

dy x x xy
dx x x x x
dy y x x
dx x x
I F x x dx x x

dy x xx x yx x x x
dx x x
dx x

+ + =

+ + =

+ + =  

+ + =

= + =

+ + =

∫

[ ]

[ ]

2

2

sec tan sec sec

sec sec

sec tan

y y x x x x x
dx

d xy x x
dx
xy x x c

+ + =

=

= +
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2 2

2 2

2

2

2

2

2

2

2

2

lnExample 8:

lnSolution:

put   

2

ln
2

2 ln2

lnHere   ( ) 2 / ( )

2. exp( )

2 2ln

( ) 2 ln

Integrate
=2[xlnx-x]

y y

y y

y

y

dy xxe e
dx x

dy xxe e
dx x

e u
dy due
dx dx

x du xu
dx x

du xu
dx x x

xp x x And Q x
x

I F dx x
x

dux xu x
dx

d x u x
dx

x u

+ =

+ =

=

=

+ =

+ =

= =

= =

+ =

=

∫

2 2

+c
2[ ln - ]yx e x x x c= +
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2

2

2

Example 9: ln

Solution: ln

1 ln

put ln

. .

( )

Integrate

.
2

ln
2

x

x

x

x

dx x

x x

x
x

x
x

dy y y ye
dx

dy y y ye
dx

dy y e
y dx

y u
du u e
dx

I F e e
d e u e
dx

ee u c

ee y c

+ =

+ =

+ =

=

+ =

∫= =

=

= +

= +  
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2

-1

Example 10: 2 csc 2 2 - ln tan

Solution:2 csc 2 2 - ln tan

put ln tan

sin cos

2 sin cos 2 -
2sin cos

2 -

1 2

. exp( 1/ )

2

( ) 2

ln tan

dyx y x y
dx

dyx y x y
dx

y u
dy duy y
dx dx

x y y du x u
y y dx

dux x u
dx

du u
dx x
I F xdx x

dux u x
dx

d xu x
dx
xu x c
u x cx

y x c

=

=

=

=

=

=

+ =

= =

+ =

=

= +

= +

= +

∫

-1x
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2 3

2 3

2 3

2 3

3
2

3

3

-

- - 2

- 2

Example 11: 1 ( )

Solution: 1 ( )

Put

(Bernouli's)

1 1

put1/

-

- -

. exp( - )

- -

( ) -

Inte

x

x

x

x

x

x

x

x

x x x

x x

dy x y x y e
dx

dy x y x y e
dx

x y u
du u u e
dx
du u u e
dx

du e
u dx u

u w
dw w e
dx

dw w e
dx
I F dx e

dwe we e
dx

d e w e
dx

+ + + = +

+ + + = +

+ =

+ =

+ =

+ =

=

+ =

=

= =

=

=

∫

2
-

3

3

grate
-

2
1 -

2
1 -

2

x
x

x
x

x
x

ee w c

e ce
u

e ce
x y

= +

= +

= +
+
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2

2

2

2

2

-1

-1
1

1

1

Example 12: (4 1)

Solution: (4 1)

put 4 1
weget

- 4

4

1
4

Integrate
1 tan
2 2

tan 2
2

2 tan(2 )
4 1 2 tan(2 )

dy x y
dx

dy x y
dx

x y u

du u
dx
du u
dx

du dx
u

u x c

u x c

u x c
x y x c

= + +

= + +

+ + =

=

= +

=
+

= +

= +

= +
+ + = +
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2 2

2 2

2 2

2 2 2

2

2 2

2 2 2

2 2

2

2 2

-1

-1

Example 13: ( )

Solution :( )

put

( -1)

-

Integrate
-

(1- )

- tan

( ) - tan

dyx y a
dx

dyx y a
dx

x y u
duu a
dx

duu u a
dx
u du dx

u a

u a a du dx
u a

a du dx
u a

uu a x c
a

x yx y a x c
a

+ =

+ =

+ =

=

=

=
+

+
=

+

=
+

= +

+
+ = +

∫ ∫

∫ ∫
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2 2

2 2

2 2

Example 14 :   2 0

Solution : 2 0

put

- 2 0

. ( )

( )

Integrating
-

x

x x x

x x

x x x

dyy x y x
dx

dyy x y x
dx

x y u
du x u x
dx
du u x
dx
I F Exp dx e

due ue xe
dx

d e u xe
dx

e u xe e c

+ + + =

+ + + =

+ =

+ + =

+ =

= =

+ =

=

= +

∫
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-( )

-( )

-

-

Example 15 : ' 1 sin
Solution : ' 1 sin
put

sin

1 sin

sin
Integrate

-cos
ln | -cos |

ln | -cos |

x y

x y

u

u

u

u

y e x
y e x

x y u
du e x
dx

du xdx
e
e du xdx

e x c
u x c
x y x c

+

+

+ =

+ =
+ =

=

=

=

= +
= +
+ = +
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4 2 3 3 3

4 2 3 3 3

3 3

2 3 3 2

3 2 2 3

4 2 3 3

3

2

3

3 3 3

Example 16 : ' 2 -3
Solution : ' 2 -3
put

3 3

3 -3

-
3

2 -3
3

6 -9 /

Integrate
2 -9 ln

2 -9 ln

x y y x y x
x y y x y x

x y u
dy dux y x y
dx dx

dy dux y x y
dx dx

dy x dux y x y
dx dx

x du x
dx

du x x
dx

u x x c
x y x x c

+ =

+ =

=

+ =

=

=

=

=

= +

= +  
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2

Example 17:Solvecos( )
Solution:cos( )

put 1 ,

cos [ -1] 1

cos 1[1- ]
1 cos 1 cos

1[1- sec ]
2 2

Integrate

- tan
2

- tan
2

x y dy dx
x y dy dx

dy dvx y v or we get
dx dx

dvv
dx

vdx dv dv
v v

vdx dv

vx c v

x yx c v

+ =
+ =

+ = + =

=

= =
+ +

=

+ =

+
+ =
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10 Applications of First Order Differential Equations 

      In order to translate a physical phenomenon in terms of mathematics, we strive for a 
set of equations that describe the system adequately. This set of equations is called a 
Model  for the phenomenon. The basic steps in building such a model consist of the 
following steps:  

Step 1:  We clearly state the assumptions on which the model will be based. These 
assumptions should describe the relationships among the quantities to be studied. 

Step 2:  Completely describe the parameters and variables to be used in the model.  

Step 3:  Use the assumptions (from Step 1) to derive mathematical equations relating the 
parameters and variables (from Step 2).  

The mathematical models for physical phenomenon often lead to a differential equation 
or a set of differential equations. The applications of the differential equations we will 
discuss in next two lectures include: 
 

 Orthogonal Trajectories. 
 Population dynamics. 
 Radioactive decay. 
 Newton’s Law of cooling. 
 Carbon dating. 
 Chemical reactions. 
etc. 

 
10.1 Orthogonal Trajectories   

 We know that that the solutions of a 1st order differential equation, e.g. separable 
equations, may be given by an implicit equation  

  

                                   ( ) 0,, =CyxF    
     with 1 parameter C , which represents a family of curves. Member curves   
     can be obtained by fixing the parameter C.  Similarly an nth order DE will 
     yields an n-parameter family of curves/solutions. 
 

                       ( ) 0,,,,, 11 =nCCCyxF    
 
 The question arises that whether or not we can turn the problem around: Starting 

with an n-parameter family of curves, can we find an associated nth order 
differential equation free of parameters and representing the family. The answer 
in most cases is yes. 

 Let us try to see, with reference to a 1-parameter family of curves, how to proceed 
if the answer to the question is yes. 
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1. Differentiate with respect to x, and get an equation-involving x, y, 
dx
dy and C.  

2. Using the original equation, we may be able to eliminate the parameter C from 
the new equation. 

3. The next step is doing some algebra to rewrite this equation in an explicit 
form  

                                 ( )yxf
dx
dy ,=  

Example Find the differential equation satisfied by the family xCyx  22 =+  

Solution:  

1. We differentiate the equation with respect to x, to get  

                                        C
dx
dyyx =+ 22  

2. Since we have from the original equation that 

                                        x
yxC

22 +
=  

 then we get  

                                   x
yx

dx
dyyx

22

22 +
=+  

3. The explicit form of the above differential equation is 

                                    xy
xy

dx
dy

2

22 −
=  

This last equation is the desired DE free of parameters representing the given family.  

 

Example.  Let us consider the example of the following two families of curves 
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                                    



=+
=

222

           
Cyx
mxy

 

The first family describes all the straight lines passing through the origin while the 
second family describes all the circles centered at the origin. If we draw the two families 
together on the same graph we get 

 

Clearly whenever one line intersects one circle, the tangent line to the circle (at the point 
of intersection) and the line are perpendicular i.e. orthogonal to each other. We say that 
the two families of curves are orthogonal at the point of intersection. 

10.2 Orthogonal curves 
 Any two curves 1C  and 2C  are said to be orthogonal if their tangent lines 1T  and 2T  at 
their point of intersection are perpendicular. This means that slopes are negative 
reciprocals of each other, except when 1T  and 2T  are parallel to the coordinate axes. 
10.3 Orthogonal Trajectories (OT)  
When all curves of a family 0  : 11 =ℑ )G(x, y, c  orthogonally intersect all curves of 
another family 0),,(  : 22 =ℑ cyxH  then each curve of the families is said to be 
orthogonal trajectory of the other.  
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Example:  
As we can see from the previous figure that the family of straight lines mxy   =  and the 

family of circles
222 Cyx =+  are orthogonal trajectories.   

Orthogonal trajectories occur naturally in many areas of physics, fluid dynamics, in the 
study of electricity and magnetism etc. For example the lines of force are perpendicular 
to the equipotential curves i.e. curves of constant potential. 
10.3.1 Method of finding Orthogonal Trajectory 
Consider a family of curves ℑ .  Assume that an associated DE may be found, which is 
given by: 

                                           ),( yxf
dx
dy

=  

Since dx
dy

 gives slope of the tangent to a curve of the family ℑ  through ),( yx . 

Therefore, the slope of the line orthogonal to this tangent is 
),(

1
yxf

− .  So that the 

slope of the line that is tangent to the orthogonal curve through ),( yx is given by 

),(
1

yxf
− . In other words, the family of orthogonal curves are solutions to the 

differential equation  

                                          ),(
1

yxfdx
dy

−=  

The steps can be summarized as follows: 
Summary: 

In order to find Orthogonal Trajectories of a family of curves ℑ we perform the 
following steps:  

Step 1. Consider a family of curves ℑ  and find the associated differential equation.  

Step 2.  Rewrite this differential equation in the explicit form  

                                 ),( yxf
dx
dy

=  

Step 3.  Write down the differential equation associated to the orthogonal family  

                  ),(
1

yxfdx
dy

−=  

Step 4.  Solve the new equation. The solutions are exactly the family of orthogonal 
curves.  
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Step 5.  A specific curve from the orthogonal family may be required, something like an 
IVP.  

Example 1  
Find the orthogonal Trajectory to the family of circles  

          
222 Cyx =+  

Solution: 
The given equation represents a family of concentric circles centered at the origin. 
Step 1. We differentiate w.r.t. ‘ x ’ to find the DE satisfied by the circles. 

                                         022 =+ x
dx
dyy  

Step 2. We rewrite this equation in the explicit form  

                                          y
x

dx
dy

−=  

Step 3. Next we write down the  DE for the orthogonal family  

         x
y

yxdx
dy

=
−

−=
)/(

1
 

Step 4.This is a linear as well as a separable DE. Using the technique of linear  
    equation, we find the integrating factor  

   x
exu

dx
x 1)(

  1

==
⌡
⌠−

 

    which gives the solution 

   mxuy =)( .   
   or  

                                mx
xu

my ==
)(  

   Which represent a family of straight lines through origin.  Hence the family of  

  straight lines mxy =  and the family of circles 
222 Cyx =+ are Orthogonal  

  Trajectories.  
 
 
 
Step 5. A geometrical view of these Orthogonal Trajectories is: 
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Example 2   
Find the Orthogonal Trajectory to the family of circles  

    xCyx   222 =+  
Solution :  
1. We differentiate the given equation to find the DE satisfied by the circles. 

                           x
yxCCx

dx
dyy

2
       ,

22 +
==+  

2. The explicit differential equation associated to the family of circles is  

         xy
xy

dx
dy

2

22 −
=  

3. Hence the differential equation for the orthogonal family is  
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         22

2
yx

xy
dx
dy

−
=  

4. This DE is a homogeneous, to solve this equation we substitute xyv /=      

     or  equivalently   vxy = .        Then we have   

                          v
dx
dvx

dx
dy

+=  and   222 1
22

v
v

yx
xy

−
=

−
 

   Therefore the homogeneous differential equation in step 3 becomes  

     21
2

v
vv

dx
dvx

−
=+  

   Algebraic manipulations reduce this equation to the separable form:  

              











−

+
= 2

3

1
1

v
vv

xdx
dv

 

   The constant solutions are given by  

                      0)1( 0 23 =+⇒  =+ vv  vv  
   The only constant solution is 0=v .   
 
To find the non-constant solutions we separate the variables  
        

dx
x

dv
vv
v 11

3

2

=
+
−  

Integrate  

                           ⌡

⌠
⌡
⌠=

+

− xd
x

vd
vv
v  1 1

3

2

 

Resolving into partial fractions the integrand on LHS, we obtain 

       22

2

3

2

1
21

)1(
11

v
v

vvv
v

vv
v

+
−=

+
−

=
+
−

 

 Hence we have  

                 ]1ln[||ln  
1

21 1 2
23

2
+−=

⌡

⌠
⌡
⌠









+
−=

+

− vvvd
v
v

v
vd

vv
v

 

Hence the solution of the separable equation becomes 
         Cxvv ln||ln]1ln[||ln 2 +=+−  

which is equivalent to  
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                                          x C
v

v
=

+12   

where 0≠C .  Hence all the solutions are 

                       






=
+

=

Cx
v

v
         v

      
1

0     

2
  

We go back to y  to get 0=y  and C
xy

y
=

+ 22  which is equivalent to  

                        




=+

=

myyx

y

   

0               
22  

5. Which is x-axis and a family of circles centered on y -axis.  A geometrical   
     view of both the families is shown in the next slide.  
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10.4 Population Dynamics 
  bSome natural questions related to population problems are the following:  
 

 What will the population of a certain country after e.g. ten years?  
 How are we protecting the resources from extinction?  

 

The easiest population dynamics model is the exponential model.  This model is based 
on the assumption: 

 

The rate of change of the population is proportional to the existing population. 

  

If )(tP  measures the population of a species at any time t then because of the above 
mentioned assumption we can write 
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                                                         kP
dt
dP

=  

 

where the rate k  is constant of proportionality.  Clearly the above equation is linear as 
well as separable. To solve this equation we multiply the equation with the integrating 

factor kte−  to obtain 
 

                                                   0 =



 − kteP

dt
d

 

 
Integrating both sides we obtain 
 

                                       CkteP =−      or    kteCP   =  
 
If P0 is the initial population then 0)0( PP = .  So that 0PC =  and obtain  
 

                                                  
ktePtP   )( 0=  

 

Clearly, we must have 0>k  for growth and 0<k  for the decay.  
 
Example: 
The population of a certain community is known to increase at a rate proportional to the 
number of people present at any time. The population has doubled in 5 years, how long 
would it take to triple?. If it is known that the population of the community is 10,000 
after 3 years. What was the initial population? What will be the population in 30 years? 
Solution: 
Suppose that 0P  is initial population of the community and )(tP  the population at any 

time t then the population growth is governed by the differential equation 

                                             kP
dt
dP

=  

As we know solution of the differential equation is given by 

    
ktePtP   )( 0=  

Since 02)5( PP = . Therefore, from the last equation we have 
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                              255  2 00 =⇒= kekePP  
This means that  

                    69315.02ln5 ==k    or      13863.0
5

69315.0
==k  

Therefore, the solution of the equation becomes 

                            
tePtP  13863.0  )( 0=  

If 1t is the time taken for the population to triple then  

                            31386.01386.0  3 11
00 =⇒= tetePP  

                years 89265.7
1386.0

3ln
1 ≈==t  

 
Now using the information 000,10)3( =P , we obtain from the solution that 

                          41589.0
000,10)3)( 13863.0(  000,10 00

e
PeP =⇒=  

Therefore, the initial population of the community was 

                                     65980 ≈P  
Hence solution of the model is 

             tetP  13863.0 6598 )( =  
So that the population in 30 years is given by 

                                1589.46598) 13863.0)(30(6598 )30( eeP ==  
or   ( ) ( )( )0011.64659830 =P  

or   ( ) 42227930 ≈P  
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11 Radioactive Decay  

 

     In physics a radioactive substance disintegrates or transmutes into the atoms of 
another element. Many radioactive materials disintegrate at a rate proportional to the 
amount present. Therefore, if )(tA  is the amount of a radioactive substance present at 
time t , then the rate of change of )(tA with respect to time t  is given by 

    kA
dt
dA

=  

where k is a constant of proportionality. Let the initial amount of the material be 0A  

then 0)0( AA = . As discussed in the population growth model the solution of the 
differential equation is 

    kteAtA 0)( =  

The constant k can be determined using half-life of the radioactive material.  
 
The half-life of a radioactive substance is the time it takes for one-half of the atoms in an 
initial amount 0A  to disintegrate or transmute into atoms of another element. The half-
life measures stability of a radioactive substance. The longer the half-life of a substance, 
the more stable it is. If T  denotes the half-life then 

                                                  
2

)( 0A
TA =  

Therefore, using this condition and the solution of the model we obtain 

        
kteAA

0
0

2
=  

So that       2 ln−=kT  

Therefore, if we know T , we can get k  and vice-versa. The half-life of some important 
radioactive materials is given in many textbooks of Physics and Chemistry. For example 
the half-life of 14−C  is 5568 ± 30 years.  
 
Example 1: 
 A radioactive isotope has a half-life of 16 days. We have 30 g at the end of 30 days. 
How much radioisotope was initially present?  
Solution:   Let )(tA  be the amount present at time t  and 0A  the initial amount of the 
isotope.   Then we have to solve the initial value problem. 

    30)30(     , == AkA
dt
dA
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We know that the solution of the IVP is given by 

                                            kteAtA 0)( =  

If T  the half-life then the constant is given k  by   

                       16
2ln2lnor         2 ln −=−=−=

T
kkT   

Now using the condition 30)30( =A , we have 

                  
keA 3030 0=   

So that the initial amount is given by 

                       g 04.11016
2ln30

3030300 ==−= ekeA   
Example 2  
A breeder reactor converts the relatively stable uranium 238 into the isotope plutonium 

239. After 15 years it is determined that 0.043% of the initial amount 0A  of the 
plutonium has disintegrated. Find the half-life of this isotope if the rate of disintegration 
is proportional to the amount remaining. 
Solution: 
Let )(tA  denotes the amount remaining at any time t , then we need to find solution to 
the initial value problem  

    0)0(      , AAkA
dt
dA

==  

which we know is given by 

         kteAtA 0)( =  

If 0.043% disintegration of the atoms of A0  means that 99.957% of the substance 

remains. Further %957.99  of 0A  equals 0)99957.0( A . So that  

                   ( ) 0 99957.0      )15( AA =  
So that                        

                                           ( ) 00  99957.0     15ke AA =  

               )99957.0ln(15 =k  

Or             00002867.0
15

)99957.0ln(
−==k  

Hence                          teAtA   00002867.0)( 0
−=  
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If T denotes the half-life then 
2

)( 0A
TA = . Thus     

             TeTeAA   00002867.0
2
1or          00002867.0

2 0
0 −=−=  

                                2ln
2
1lnT  00002867.0 −=






=−  

years  180,24
  00002867.0

 2ln 
≈=T    

  
11.1 Newton's Law of Cooling  
         From experimental observations it is known that the temperature T (t) of an object  
changes at a rate proportional to the difference between the temperature in the body and 
the temperature Tm of the surrounding environment. This is what is known as Newton's 
law of cooling.  
If initial temperature of the cooling body is 0T  then we obtain the initial value problem    

                                         ( ) 0)0(   , TTTTk
dt
dT

m =−=  

 where k is constant of proportionality. The differential equation in the problem is linear 
as well as separable.  
Separating the variables and integrating we obtain 

                                          ∫=⌡
⌠

−
dtk

TT
dT

m

  

This means that  

    CktTT m +=− ||ln  

    
CkteTT m

+=−  

                
C

m eCeCTtT kt =+= 11        where)(  

Now applying the initial condition 
0)0( TT = , we see that mTTC −= 01 . Thus the 

solution of the initial value problem is given by  

                 )()( 0
kteTTTtT mm −+=  

Hence, If temperatures at times 1t  and 2t are known then we have                   

                   2
02

1
01 )(  )(  ,  )(  )( ktkt eTTTtTeTTTtT mmmm −=−−=−  
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So that we can write 

    
)21(

)(
)(

2

1
ttk

e
TtT
TtT

m

m
−

=
−
−

 

This equation provides the value of k  if the interval of time ‘ 21 tt − ’ is known and vice-

versa.  

Example 3:   Suppose that a dead body was discovered at midnight in a room when its 
temperature was 80° F . The temperature of the room is kept constant at 60° F . Two 
hours later the temperature of the body dropped to 75° F  .  Find the time of death.  
Solution:  

Assume that the dead person was not sick, then  

                FTFT o
m

o 60  and T 6.98)0( 0 ===  
Therefore, we have to solve the initial value problem 

                                ( ) 6.98)0(   , 60 =−= TTk
dt
dT

   

We know that the solution of the initial value problem is 

              )()( 0
kteTTTtT mm −+=  

So that                         
)21(

)(
)(

2

1
ttk

e
TtT
TtT

m

m
−

=
−
−

 

The observed temperatures of the cooling object, i.e. the dead body, are  

                                 FtTFtT oo 75)(    and    80)( 21 ==   
Substituting these values we obtain 

        hours   221   as  2
6075
6080

=−=
−
− ttke  

So        1438.0
3
4ln

2
1

==k  

Now suppose that 1t  and 2t denote the times of death and discovery of the dead body 
then 

      FtTFTtT oo 80)(    and    6.98)0()( 21 ===  

For the time of death, we need to determine the interval dttt =− 21 . Now 

                d

m

m kte
ttk

e
TtT
TtT

=
−
−

⇒
−

=
−
−

6080
606.98     

)21(

)(
)(

2

1
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or    573.4
20

6.38ln1
≈=

k
td  

Hence the time of death is 7:42 PM. 
 
11.2 Carbon Dating 

 The isotope  C–14  is produced in the atmosphere by the action of cosmic 
radiation on nitrogen.  

 
 The ratio of C-14 to ordinary carbon in the atmosphere appears to be constant.  

 
 The proportionate amount of the isotope in all living organisms is same as that in 

the atmosphere.  
 

 When an organism dies, the absorption of 14−C  by breathing or eating ceases. 
 

 Thus comparison of the proportionate amount of 14−C  present, say, in a fossil 
with constant ratio found in the atmosphere provides a reasonable estimate of its 
age.  

 
 The method has been used to date wooden furniture in Egyptian tombs. 

 
 Since the method is based on the knowledge of half-life of the radio active 14−C  

(5600 years approximately), the initial value problem discussed in the 
radioactivity model governs this analysis. 

Example 
    A fossilized bone is found to contain 1000/1 of the original amount of C–14.  
Determine the age of the fissile. 
Solution:    
   Let A(t) be the amount present at any time t and A0 the original amount of C–14. 
Therefore, the process is governed by the initial value problem. 

      0)0(     , AAkA
dt
dA

==
           

We know that the solution of the problem is 

        
kteAtA 0)( =  

Since the half life of the carbon isotope is 5600 years. Therefore, 

                              2
)5600( 0AA =

 

So that              
 2ln5600or       5600

2 0
0 −== kkeAA

 

          00012378.0      −=k  
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Hence 

              
teAtA )00012378.0()( 0

−=  

If t denotes the time when fossilized bone was found then 
1000

)( 0A
tA =    

  1000ln 00012378.0     )00012378.0(
1000 0

0 −=−⇒−= tteA
A

 

Therefore 

   years 800,55
00012378.0

1000ln
==t      
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12 Applications of Non-linear Equations 
  

As we know that the solution of the exponential model for the population growth is 

      
ktePtP   )( 0=  

0P  being the initial population. From this solution we conclude that                                         

(a) If  0>k  the population grows and expand to infinity i.e. 
∞→

+∞=
t

tP )(lim   

(b) If 0<k  the population will shrink to approach 0, which means extinction.  
 
Note that: 
(1) The prediction in the first case ( 0>k ) differs substantially from what is actually 
observed, population growth is eventually limited by some factor! 
(2) Detrimental effects on the environment such as pollution and excessive and 
competitive demands for food and fuel etc. can have inhibitive effects on the population 
growth. 
  
12.1 Logistic equation 
Another model was proposed to remedy this flaw in the exponential model. This is called 
the logistic model (also called Verhulst-Pearl model).  

     Suppose that 0>a  is constant average rate of birth and that the death rate is 

proportional to the population )(tP  at any time t . Thus if 
dt
dP

P
1  is the rate of growth 

per individual then   

            ) (or        1 bPaP
dt
dPbPa

dt
dP

P
−=−=  

where b  is constant of proportionality. The term 0  ,2 >− bbP  can be interpreted as 
inhibition term. When 0=b , the equation reduces to the one in exponential model.  
Solution to the logistic equation is also very important in ecological, sociological and 
even in managerial sciences. 
 
12.1.1 Solution of the Logistic equation 
The logistic equation     

) ( bPaP
dt
dP

−=  

can be easily identified as a nonlinear equation that is separable. The constant solutions 
of the equation are given by  
                                           0  ) ( =− bPaP  
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b
aP ==⇒    and    0P      

For non-constant solutions we separate the variables  

    ( ) dt
bPaP

dP
=

−
  

Resolving into partial fractions we have 

            dtdP
bPa
ab

P
a

=





−
+

//1
 

Integrating   CtbPa
a

P
a

+=−− ||ln1||ln1
   

            aCat
bPa

P
+=

−
ln  

or    aCeCateC
bPa

P
==

− 11       where  

Easy algebraic manipulations give  

      atebC
aC

atebC

ateaC
tP −+

=
+

=
1

1

1

1

1
)(  

Here 1C is an arbitrary constant. If we are given the initial condition 0)0( PP = , 
b
aP ≠0  

we obtain 
0

0
1 bPa

P
C

−
= . Substituting this value in the last equation and simplifying, we 

obtain   

                atebPabP
aP

tP −−+
=

)(
)(

00

0     

Clearly      b
a

bP
aP

tPt ==
∞→

0

0)(lim ,  limited growth  

 Note that 
b
aP =  is a singular solution of the logistic equation.  

 
12.1.2 Special Cases of Logistic Equation 
12.1.2.1 1. Epidemic Spread 
 
Suppose that one person infected from a contagious disease is introduced in a fixed 
population of n people.  
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The natural assumption is that the rate 
dt
dx of spread of disease is proportional to the 

number )(tx  of the infected people and number )(ty of people not infected people.  
Then  

    kxy
dt
dx

=  

Since           1+=+ nyx  
Therefore, we have the following initial value problem   
     

                             1)0(     ),1( =−+= xxnkx
dt
dx

 

 
 The last equation is a special case of the logistic equation  and has also been used for 
the spread of information and the impact of advertising in centers of population.  
 
12.1.3 A Modification of LE 
A modification of the nonlinear logistic differential equation is the following 
 

    ) ln( PbaP
dt
dP

−=  

 
has been used in the studies of solid tumors, in actuarial predictions, and in the growth 
of revenue from the sale of a commercial product in addition to growth or decline of 
population. 
 
Example  

Suppose a student carrying a flu virus returns to an isolated college campus of 1000 
students. If it is assumed that the rate at which the virus spreads is proportional not only 
to the number x of infected students but also to the number of students not infected,  
determine the number of infected students after 6 days if it is further observed that after 
4 days  x(4) =50.  

Solution 
Assume that no one leaves the campus throughout the duration of the disease. We must 
solve the initial-value problem 

 1)0(     ),1000( =−= xxkx
dt
dx

  . 
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We identify 

                                       kb    and   1000 == ka    

Since the solution of logistic equation is 

                                      atebPabP
aP

tP −−+
=

)(
)(

00

0  

Therefore we have 

                     ktektkek

ktx 10009991

1000
1000999

1000)( −+
=−+

= .   

Now, using x(4)= 50, we determine k  

 ke 40009991

100050
−+

=  

We find .0009906.0
999
19ln

4000
1

=
−

=k  

Thus     

                                               te
tx  9906.09991

1000)( −+
=  

Finally                                   

                                         students  2769436.59991

1000)6( =−+
=

e
x   . 

12.2 Chemical reactions 
In a first order chemical reaction, the molecules of a substance A decompose into smaller 
molecules. This decomposition takes place at a rate proportional to the amount of the 
first substance that has not undergone conversion. The disintegration of a radioactive 
substance is an example of the first order reaction. If X  is the remaining amount of the 
substance A  at any time t then 

                                          Xk
dt
dX  =   

0<k  because X  is decreasing. 
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In a 2nd order reaction two chemicals A  and B  react to form another chemical C  at a 
rate proportional to the product of the remaining concentrations of the two chemicals.  
 
If X  denotes the amount of the chemical C  that has formed at time t . Then the 
instantaneous amounts of the first two chemicals A  and B  not converted to the 
chemical C  are X−α  and X−β , respectively.  Hence the rate of formation of 

chemical C  is given by 
 

                                   ( ) ( )Xk
dt
dX

−= βα  X-   

 
where k  is constant of proportionality.  
 
Example: 
A compound C is formed when two chemicals A and B are combined. The resulting 
reaction between the two chemicals is such that for each gram of A , 4 grams of B  are 
used. It is observed that 30 grams of the compound C  are formed in 10 minutes. 
Determine the amount of C  at any time if the rate of   reaction is proportional to the 
amounts of A  and B remaining and if initially there are 50 grams of A  and 32 grams 
of B . How much of the compound C  is present at 15 minutes? Interpret the solution as 

∞→t  
 
Solution: 
 
If )(tX  denote the number of grams of chemical C  present at any time t . Then  
                                    0)0( =X  and 30)10( =X  

Suppose that there are 2 grams of the compound C  and we have used a  grams of A  
and b  grams of B  then 

                                2=+ ba  and  ab 4=  

 Solving the two equations we have   

                          )5/1( 2
5
2

==a    and )5/4( 2
5
8

==b   

 In general, if there were for X grams of C  then we must have 

                           5
    Xa =      and        Xb

5
4     =   
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Therefore the amounts of A  and B  remaining at any time t are then 

                         XX
5
4    32   and  

5
    50 −−     

respectively . 

 

Therefore,  the rate at which chemical C  is formed satisfies the differential equation 

 





 −






 −= XX

dt
dX

5
432

5
50   λ  

or 

                                    25/4   ),40)(250( λ=−−= kXXk
dt
dX

 

We now solve this differential equation. 

By separation of variables and partial fraction, we can write 

 ( )( ) kdt
XX

dX
=

−− 40250  

                    kdtdX
X

dX
X

=
−

+
−

−
40

210/1
250

210/1
 

      1210
40

250ln ckt
X
X

+=
−
−

 

        1
22

210
40
250 cecWherektec

X
X

==
−
−

 

When 0=t , 0=X , so it follows at this point that 4/252 =c . Using 30=X  at 
10=t , we find 

   1258.0
25
88ln

10
1210 ==k  

With this information we solve for X : 
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                         













−−

−−
=

te

tetX
 1258.0425

 1258.01 1000)(  

It is clear that as te  1258.0− 0→  as ∞→t . Therefore 40→X  as ∞→t . This 
fact can also be verified from the following table that 40→X  as ∞→t . 

t 10 15 20 25 30 35 

X 30 34.78 37.25 38.54 39.22 39.59 

 

This means that there are 40 grams of compound C  formed, leaving  

       A chemical of grams   42)40(
5
150 =−  

and        B  chemical of grams    0)40(
5
432 =−  

12.3 Miscellaneous Applications 
 
 The velocity v  of a falling mass m , subjected to air resistance proportional to 

instantaneous velocity, is given by the differential equation 

kvmg
dx
dvm −=  

Here 0>k  is constant of proportionality.  
 
 The rate at which a drug disseminates into bloodstream is governed by the 

differential equation 
  

                                            BxA
dt
dx

−=  

Here BA   ,  are positive constants and )(tx  describes the concentration of drug in 

the bloodstream at any time .t   
 The rate of memorization of a subject is given by 
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AkAMk
dt
dA

21 )( −−=  

Here 0  ,0 21 >> kk  and )(tA  is the amount of material memorized in time ,t  
M  is the total amount to be memorized and AM −  is the amount remaining to 
be memorized. 
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13 Higher Order Linear Differential Equations 
 

13.1 Preliminary theory 
 A differential equation of the form 

)()()()()( 011

1
1 xgyxa

dx
dyxa

dx
ydxa

dx
ydxa n

n
nn

n
n =++++

−

−

−   

or )()()()()( 01
)1(

1
)( xgyxayxayxayxa n

n
n

n =+′+++ −
−   

where )(),(,),(),( 10 xgxaxaxa n are functions of x  and 0)( ≠xan , is 
called a linear differential equation with variable coefficients. 

 However, we shall first study the differential equations with constant coefficients 
i.e. equations of the type 

)(011

1
1 xgya

dx
dya

dx
yda

dx
yda n

n
nn

n
n =++++

−

−

−   

where naaa ,,, 10  are real constants. This equation is non-homogeneous 
differential equation and 

 If 0)( =xg  then the differential equation becomes 

0011

1
1 =++++

−

−

− ya
dx
dya

dx
yda

dx
yda n

n
nn

n
n   

 which is known as the associated homogeneous differential equation. 

13.2 Initial -Value Problem 
For a linear nth-order differential equation, the problem: 

Solve: )()()()()( 011

1
1 xgyxa

dx
dyxa

dx
ydxa

dx
ydxa n

n
nn

n
n =++++

−

−

−   

Subject to: ,)( 00 yxy =  / / 1 1
0 0 0 0( ) ,... ( )n ny x y y x y− −= =    

1
0

/
00 ,,, −nyyy   being arbitrary constants, is called an initial-value problem (IVP).  

The specified values ,)( 00 yxy =
1

00
1/

00
/ )(,,)( −− == nn yxyyxy  are called initial-

conditions. 

For 2=n  the initial-value problem reduces to 

 Solve:  )()()()( 012

2
2 xgyxa

dx
dyxa

dx
ydxa =++   
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Subject to: ,)( 00 yxy = …,  /
00

/ )( yxy =  

13.2.1 Solution of IVP 

A function satisfying the differential equation on I whose graph passes through ),( 00 yx  
such that the slope of the curve at the point is the number /

0y  is called solution of the 
initial value problem. 

13.3 Theorem ( Existence and Uniqueness of Solutions) 
      Let )(),(),...,(),( 011 xaxaxaxa nn − and )(xg  be continuous on an interval I and let

Ixxan ∈∀≠    ,0)( . If Ixx ∈= 0 ,  then a solution )(xy of the initial-value problem exist 
on I  and is unique. 

Example 1 

Consider the function   xeey xx 33 22 −+= −  

 This is a solution to the following initial value problem 

 ,124// xyy =−    ,4)0( =y 1)0(/ =y  

Since 
xx ee

dx
yd 22
2

2
412 −+=  

and  xxeeeey
dx

yd xxxx 12124124124 2222
2

2
=+−−+=− −−  

Further 4013)0( =−+=y  and 1326)0( =−−=′y   

Hence xeey xx 33 22 −+= −  

 is a solution of the initial value problem. We observe that  

 The equation is linear differential equation. 
 The coefficients being constant are continuous.  
 The function xxg 12)( = being polynomial is continuous. 
 The leading coefficient 01)(2 ≠=xa  for all values of .x Hence the function 

xeey xx 33 22 −+= −  is the unique solution. 
Example 2 
Consider the initial-value problem  

 

,0753 ////// =+−+ yyyy     

,0)1( =y  ,0)1(/ =y  0)1(// =y  

Clearly the problem possesses the trivial solution 0=y .  
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Since 

 The equation is homogeneous linear differential equation.  
 The coefficients of the equation are constants.  
 Being constant the coefficient are continuous. 
 The leading coefficient 033 ≠=a . 

Hence 0=y  is the only solution of the initial value problem. 

Note: If 0=na ? 

If 0)( =xan  in the differential equation 

)()()()()( 011

1
1 xgyxa

dx
dyxa

dx
ydxa

dx
ydxa

n

n
nn

n
n =++++

−

−

−   

for some Ix ∈  then  

 Solution of initial-value problem may not be unique. 
 Solution of initial-value problem may not even exist. 

Example 4 
Consider the function 

   32 ++= xcxy  

and the initial-value problem 

622 ///2 =+− yxyyx   

,3)0( =y  1)0(/ =y   

Then    12 +=′ cxy  and  cy 2=′′  

Therefore )3(2)12(2)2(22 22///2 ++++−=+− xcxcxxcxyxyyx  

        
.6

622242 222

=
+++−−= xcxxcxcx

 

Also  330)0(     3)0( =++⇒= cy  

and  11)0(2      1)0(/ =+⇒= cy  

So that for any choice of c , the function '' y  satisfies the differential equation and the 
initial conditions. Hence the solution of the initial value problem is not unique. 

 Note that 

 The equation is linear differential equation. 
 The coefficients being polynomials are continuous everywhere. 
 The function )(xg being constant is constant everywhere. 
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 The leading coefficient 0)( 2
2 == xxa  at ),(0 ∞−∞∈=x . 

Hence 0)(2 =xa  brought non-uniqueness in the solution 

13.4 Boundary-value problem (BVP) 
 

For a 2nd order linear differential equation, the problem    

 Solve:  )()()()( 012

2

2 xgyxa
dx
dyxa

dx
ydxa =++  

Subject to: ,)( 0yay =  1)( yby =   

is called a boundary-value problem. The specified values ,)( 0yay =  and 1)( yby =  are 
called boundary conditions.  
 

13.4.1 Solution of BVP 
 

A solution of the boundary value problem is a function satisfying the differential equation 
on some interval I , containing a  and b , whose graph passes through two points ),( 0ya  
and ),( 1yb .   

Example 5 
Consider the function 

363 2 +−= xxy  

We can prove that this function is a solution of the boundary-value problem 

 ,622 ///2 =+− yxyyx   

,0)1( =y  3)2( =y  

Since  6  ,66 2

2
=−=

dx
ydx

dx
dy  

Therefore 661261212622 222
2

2
2 =+−++−=+− xxxxxy

dx
dyx

dx
ydx  

Also  331212)2(    ,0363)1( =+−==+−= yy  

Therefore, the function '' y satisfies both the differential equation and the boundary 
conditions. Hence y is a solution of the boundary value problem. 

 . 
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13.4.2 Possible Boundary Conditions 
For a 2nd order linear non-homogeneous differential equation 

)()()()( 012

2

2 xgyxa
dx
dyxa

dx
ydxa =++  

all the possible pairs of boundary conditions are 

,)( 0yay =   ,)( 1yby =   

  ,)( /
0

/ yay =   ,)( 1yby =  

  ,)( 0yay =   ,)( 1
// yby =  

  ,)( /
0

/ yay =   /
1

/ )( yby =  

where 1
/
00 ,, yyy  and /

1y  denote the arbitrary constants.  

In General: 
All the four pairs of conditions mentioned above are just special cases of the general 
boundary conditions 

2
/

22
1

/
11

)()(
)()(

γβα
γβα

=+
=+

byby
ayay  

where    { }1,0,,, 2121 ∈ββαα  
Note that 

A boundary value problem may have 

 Several solutions. 
 A unique solution, or 
 No solution at all. 

Example 1 
Consider the function  

xcxcy 4sin4cos 21 +=  

and the boundary value problem 

   0)2/(    ,0)0(     ,016// ===+ πyyyy   

Then  

016
16

)4sin4cos(16

4cos44sin4

//

//
21

//
21

/

=+

−=

+−=

+−=

yy
yy

xcxcy
xcxcy
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Therefore, the function  

xcxcy 4sin4cos 21 +=  

satisfies the differential equation  

016// =+ yy . 

Now  apply the boundary conditions 

Applying  0)0( =y    

We obtain 

  0
0sin0cos0

1
21

=⇒
+=

c
cc  

So that  

xcy 4sin2= .  

But when we apply the 2nd condition 0)2/( =πy , we have 

   π2sin0 2c=  

Since 02sin =π , the condition is satisfied for any choice of 2c , solution of the problem is 
the one-parameter family of functions 

xcy 4sin2=  

 Hence, there are an infinite number of solutions of the boundary value problem. 

Example 2 

Solve the boundary value problem 016// =+ yy , ,0)0( =y  ,0
8

=





πy  

Solution: 
As verified in the previous example that the function 

xcxcy 4sin4cos 21 +=  

satisfies the differential equation 

016// =+ yy  

We now apply the boundary conditions 

  000)0( 1 +=⇒= cy  

and  2000)8/( cy +=⇒=π  

So that  21 0 cc ==  

Hence 

0=y    

 
                                                © Copyright Virtual University of Pakistan                                                 99 



Differential Equations (MTH401)                                                                                    VU 
 

is the only solution of the boundary-value problem.  

Example 3 

Solve the differential equation 016// =+ yy subject to the boundary conditions 

1)2/(   ,0)0( == πyy . 

Solution:As verified in an earlier example that the function xcxcy 4sin4cos 21 +=  

satisfies the differential equation 016// =+ yy  . 

We now apply the boundary conditions 

 000)0( 1 +=⇒= cy  

Therefore 01 =c  

So that xcy 4sin2=  

However 1   2sin   1)2/( 2 =⇒= ππ cy  

or 010.1 2 =⇒= c  

This is a clear contradiction. Therefore, the boundary value problem has no solution. 

13.5 Linear Dependence 
A set of functions 

 

 { })(,),(),( 21 xfxfxf n  

is said to be linearly dependent on an interval I if  ∃  constants nccc ,,, 21   not all zero, 
such that 

Ixxfcxfcxfc nn ∈∀=+++       ,0)(.)()( 2211   

13.6  Linear Independence 
A set of functions { })(,),(),( 21 xfxfxf n  is said to be linearly independent on an 
interval I if Ixxfcxfcxfc nn ∈∀=+++        ,0)()()( 2211  ,only when 

.021 ==== nccc   

13.6.1 Case of two functions 

If 2=n  then the set of functions becomes{ })(),( 21 xfxf  

If we suppose that 0)()( 2211 =+ xfcxfc  

Also that the functions are linearly dependent on an interval I  then either 01 ≠c  or 
02 ≠c .  
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Let us assume that 01 ≠c , then )()( 2
1

2
1 xf

c
cxf −= .Hence  )(1 xf  is the constant multiple 

of  )(2 xf .Conversely, if we suppose )( c )( 221 xfxf =   

Then 0)()()1( 221 =+− xfcxf , Ix ∈∀  

So that the functions are linearly dependent because 11 −=c . 

Hence, we conclude that: 

 Any two functions )( and )( 21 xfxf are linearly dependent on an interval I if and 
only if one is the constant multiple of the other. 

 Any two functions are linearly independent when neither is a constant multiple of 
the other on an interval I. 

 In general a set of n  functions { })(,),(),( 21 xfxfxf n  is linearly dependent if at 
least one of them can be expressed as a linear combination of the remaining. 

Example 1 
The functions  

     )  ,(          ,2sin)(1 ∞−∞∈∀= xxxf   

 )  ,(    ,cossin)(2 ∞−∞∈∀= xxxxf   

If we choose 
2
1

1 =c  and 12 −=c  then 

 ( ) 0 cos  sin     cos  sin2
2
1cossin2sin 21 =−=+ xxxxxxcxc  

 Hence, the two functions )(1 xf  and )(2 xf  are linearly dependent. 

Example 2 
Consider the functions  

xxf 2
1 cos)( = , )2/,2/(       ,sin)( 2

2 ππ−∈∀= xxxf ,  

xxf 2
3 sec)( = , )2/,2/(       ,tan)( 2

4 ππ−∈∀= xxxf   

If we choose 1c ,1c ,1 4321 =−=== cc , then 

 

0011
tantan1sincos

tansecsincos

)()()()(   

2222

2
4

2
3

2
2

2
1

44332211

=+−=
+−−++=

+++=

+++

xxxx

xcxcxcxc

xfcxfcxfcxfc

 

Therefore, the given functions are linearly dependent. 

Note that  
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The function )(3 xf  can be written as a linear combination of other three functions 

( )xfxf 21 ),(  and )(4 xf  because xxxx 2222 tansincossec ++= . 

Example 3 
Consider the functions 

 

),(        ,)(

),(          ,)(
),(      ,1)(

2
3

2

1

∞−∞∈∀=

∞−∞∈∀=
∞−∞∈∀+=

xxxf

xxxf
xxxf

 

Then 

 0)()()( 332211 =++ xfcxfcxfc  

means that 

 0            )1( 2
321 =+++ xcxcxc  

or 0            )( 2
3211 =+++ xcxccc  

Equating coefficients of x  and 2x  constant terms we obtain 

31 0 cc ==  

021 =+ cc   

Therefore 0321 === ccc  

Hence, the three functions )(),( 21 xfxf  and )(3 xf  are linearly independent. 

13.7  Wronskian 
Suppose that the function )(,),( ),( 21 xfxfxf n  possesses at least 1−n  derivatives then 
the determinant  

11
2

1
1

//
2

/
1

21

        
   

    

−−− n
n

nn

n

n

fff

fff

fff











 

is called Wronskian of the functions )(,),( ),( 21 xfxfxf n and is denoted by 
( ))(,),(),( 111 xfxfxfW 

. 

13.8  Theorem (Criterion for Linearly Independent Functions) 
Suppose the functions )(,),( ),( 21 xfxfxf n  possess at least n-1 derivatives on an 
interval I . If  
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 0))(,),( ),(( 21 ≠xfxfxfW n   

for at least one point in I , then functions )(,),( ),( 21 xfxfxf n  are linearly independent 
on the interval I . 

Note that this is only a sufficient condition for linear independence of a set of functions. 

In other words: 

If )(,),( ),( 21 xfxfxf n  possesses at least 1−n  derivatives on an interval and are 
linearly dependent on I , then  IxxfxfxfW n ∈∀=      ,0))(,),( ),(( 21   

However, the converse is not true. i.e. a Vanishing Wronskian does not guarantee linear 
dependence of functions. 

Example 1 
The functions 

 ( )
( ) xxf

xxf
2cos1

 sin

2

2
1

−=
=   

are linearly dependent because 

 )2 cos1(
2
1sin 2 xx −=  

We observe that for all ),( ∞−∞∈x  

 ( ) ( )( )
xxx

xx
xfxfW

2sin2cossin2

2cos1sin
,

2

21
−

=  

  
xxx

xxxx
2coscossin2   

cossin22sinsin2 2

+
−=  

  

       0
]1cos[sin 2sin

]sincos1sin2[ 2sin

]2cos1sin2[ 2sin

22

222

2

=
−+=

−+−=

+−=

xxx

xxxx

xxx

 

Example 2 
Consider the functions 

  ( ) ( ) 212
1

1      , , 2 mmexfxexf
xmm

≠==  

The functions are linearly independent because 

 0)()( 2211 =+ xfcxfc  

if and only if  21 0 cc ==  as  21 mm ≠  
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Now for all Rx ∈  

 

( )
( ) ( )

0                     
                      

,

21

21

21

21

12

21

≠
−=

=

+ xmm

xmxm

xmxm
xmxm

emm

emem

ee
eeW

 

Thus 2 1  and ff are linearly independent of any interval on x-axis. 

Example 3 

If βα  and  are real numbers, 0≠β , then the functions 

 xeyxey xx ββ αα sin and cos 21 ==   

are linearly independent on any interval of the x-axis because 

 
( )

xexexexe

xexe

xexeW

xxxx

xx

xx

βαβββαββ

ββ

ββ

αααα

αα

αα

sincoscossin

sincos

sin,cos

++−
=

 

 ( ) .0sincos 2222 ≠=+= xx exxe αα ββββ  

Example 4 
The functions  

 ( ) ( ) ( ) xxx exxfxexfexf 2
321  and  , , ===   

are linearly independent on any interval of the x-axis because for all Rx ∈ , we have 

 

( )

02                           

242
2,,

3

2

2

2

2

≠=

+++
++=

x

xxxxxx

xxxxx

xxx

xxx

e

exeexexee
xeexexee

exxee
exxeeW

 

13.9 Exercise 
1. Given that    

xx ececy −+= 21  

is a two-parameter family of solutions of  the differential equation 

0=−′′ yy  
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on ( )∞∞− , , find a member of the family satisfying the boundary conditions  

( ) ( ) 11   ,00 =′= yy . 

2. Given that    

xcxccy sincos 321 ++=  

is a three-parameter family of solutions of the differential equation 

0=′+′′′ yy  

on the interval ( )∞∞− , , find a member of the family satisfying the initial 
conditions ( ) ( ) ( ) 1,2  ,0 −=′′=′= πππ yyy . 

3. Given that    

xxcxcy ln21 +=  

is a two-parameter family of solutions of the differential equation 
02 =+′−′′ yyxyx on ( )∞∞− , . Find a member of the family satisfying the initial 

conditions  

( ) ( ) .11  ,31 −=′= yy  

Determine whether the functions in problems 4-7 are linearly independent or 
dependent on ( )∞∞− , . 

4. ( ) ( ) ( ) 2
3

2
21 34    ,    , xxxfxxfxxf −===  

5. ( ) ( ) ( ) xexfxxfxf === 321   ,   ,0  
6. ( ) ( ) ( ) xxfxfxxf 2

321 cos    ,1    ,2cos ===  

7. ( ) ( ) ( ) xxfexfexf xx sinh    ,    , 321 === −   

Show by computing the Wronskian that the given functions are linearly independent 
on the indicated interval. 

8. ( )∞∞,-       ;cot  ,tan xx  

9. ( )∞∞− ,    ;4x-xx , e, ee  

10. ( )∞0,    ;ln,ln, 2 xxxxx  
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14 Solutions of Higher Order Linear Equations 

14.1 Preliminary Theory 
 In order to solve an nth order non-homogeneous linear differential equation 

  ( ) ( ) ( ) ( ) ( )xgyxa
dx
dyxa

dx
ydxa

dx
ydxa n

n

nn

n

n =++++ −

−

− 011

1

1   

we first solve the associated homogeneous differential equation 

  ( ) ( ) ( ) ( ) 0011

1

1 =++++ −

−

− yxa
dx
dyxa

dx
ydxa

dx
ydxa n

n

nn

n

n   

 Therefore, we first concentrate upon the preliminary theory and the methods of 
solving the homogeneous linear differential equation. 

 We recall that a function )(xfy =  that satisfies the associated homogeneous 
equation 

  ( ) ( ) ( ) ( ) 0011

1

1 =++++ −

−

− yxa
dx
dyxa

dx
ydxa

dx
ydxa n

n

nn

n

n   

 is called solution of the differential equation. 

       

14.2 Superposition Principle 

Suppose that nyyy ,,, 21   are solutions on an interval I  of the homogeneous linear 
differential equation 

  ( ) ( ) ( ) ( ) 0011

1

1 =++++ −

−

− yxa
dx
dyxa

dx
ydxa

dx
ydxa n

n

nn

n

n   

Then  

  ( ) ( ) ( ),2211 xycxycxycy nn+++=   

nccc ,,, 21   being arbitrary constants is also a solution of the differential equation. 

Note that 

 A constant multiple ( )xycy 11=  of a solution ( )xy1  of the homogeneous linear 
differential equation is also a solution of the equation. 

 The homogeneous linear differential equations always possess the trivial solution 
0=y . 

 The superposition principle is a property of linear differential equations and it 
does not hold in case of non-linear differential equations. 

Example 1 The functions  xxx eycyey 3
3

2
21   and  ,, ===  all satisfy the homogeneous 

differential equation 
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  06116 2

2

3

3

=−+− y
dx
dy

dx
yd

dx
yd  

on ( )∞∞− , . Thus 321  and , yyy  are all solutions of the differential equation 

Now suppose that    

  .3
3

2
21

xxx ecececy ++=   

Then 

  .32 3
3

2
21

xxx ececec
dx
dy

++=  

  .94 3
3

2
212

2
xxx ececec

dx
yd

++=  

  .278 3
3

2
213

3
xxx ececec

dx
yd

++=  

Therefore 

 
( ) ( )

( )
( ) ( ) ( )

0
606030301212

6335427 
6222486116

6116

3
3

2
21

3333
3

2222
21

2

2

3

3

=
−+−+−=

−+−+
−+−+−+−=

−+−

xxx
xxxx

xxxxxxxx

ececec
eeeec

eeeeceeeec

y
dx
dy

dx
yd

dx
yd

 

Thus  

  .3
3

2
21

xxx ecececy ++=  

is also a solution of the differential equation. 

Example 2 The function 2xy =  is a solution of the homogeneous linear equation 

0432 =+′−′′ yyxyx  on ( )∞,0 . 

Now consider 2cxy = ⇒  2cy    and    2 =′′=′ cxy  

So that 046243 2222 =+−=+′−′′ cxcxcxyyxyx  

Hence the function 2cxy =  is also a solution of the given differential equation.  

The Wronskian 

Suppose that 21, yy  are 2 solutions, on an interval I , of the second order homogeneous 
linear differential equation  
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  0012

2

2 =++ ya
dx
dya

dx
yda  

Then either  ( ) IxyyW ∈∀=         ,0, 21  

or  ( ) Ix yyW ∈∀≠        ,0, 21    

To verify this we write the equation as  

  02

2

=++ Qy
dx

Pdy
dx

yd  

Now  ( )
21

21
21,

yy
yy

yyW
′′

= 2121 yyyy ′−′=  

Differentiating w.r.to x , we have 

  2121 yyyy
dx

dW ′′−′′=  

Since 1y and 2y are solutions of the differential equation 

  02

2

=++ Qy
dx

Pdy
dx

yd  

Therefore 

  0111 =+′+′′ QyyPy  

  0222 =+′+′′ QyyPy  

Multiplying 1st equation by 2y and 2nd by 1y  the have 

  0212121 =+′+′′ yQyyyPyy  

  0212121 =+′+′′ yQyyPyyy  

Subtracting the two equations we have: 

  ( ) ( ) 021211221 =′−′+′′−′′ yyyyPyyyy  

or   0=+ PW
dx

dW  

This is a linear 1st order differential equation in W , whose solution is 

  ∫−= PdxceW  

Therefore 

 If 0≠c  then  ( ) IxyyW ∈∀≠      ,0, 21  

 If 0=c  then  ( ) IxyyW ∈∀=      ,0, 21  
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Hence Wronskian of 21   and  yy  is either identically zero or is never zero on I .  

In general 

If nyyy ,,, 21  are n  solutions, on an interval I , of the homogeneous nth order linear 
differential equation with constants coefficients 

 0011

1
1 =++++

−

−

− ya
dx
dya

dx
yda

dx
yda

n

n
nn

n
n   

Then 

Either  ( ) IxyyyW n ∈∀=    ,0,,, 21   

or  ( ) IxyyyW n ∈∀≠    ,0,,, 21    

14.3 Linear Independence of Solutions 
Suppose that 

  nyyy ,,, 21    

are n solutions, on an interval I , of the homogeneous linear nth-order differential 
equation  

 ( ) ( ) ( ) ( ) 0011

1

1 =++++ −

−

− yxa
dx
dyxa

dx
ydxa

dx
ydxa n

n

nn

n

n   

Then the set of solutions is linearly independent on I if and only if 

  ( ) 0,,2,1 ≠nyyyW   

In other words 
The solutions  

 nyyy ,,, 21   

are linearly dependent if and only if   

 
 ( ) IxyyyW n ∈∀=    ,0,,2,1    

14.4 Fundamental Set of Solutions 
A set 

 { }nyyy ,,, 21    

of n linearly independent solutions, on interval I , of the homogeneous linear nth-order 
differential equation 

 ( ) ( ) ( ) ( ) 0011

1

1 =++++ −

−

− yxa
dx
dyxa

dx
ydxa

dx
ydxa n

n

nn

n

n   
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is said to be a fundamental set of  solutions on the interval I . 

14.4.1 Existence of a Fundamental Set 
There always exists a fundamental set of solutions for a linear nth-order homogeneous 
differential equation 

 ( ) ( ) ( ) ( ) 0011

1

1 =++++ −

−

− yxa
dx
dyxa

dx
ydxa

dx
ydxa n

n

nn

n

n   

on an interval I. 

14.5 General Solution-Homogeneous Equations 
Suppose that  

  { }nyyy ,,, 21   

is a fundamental set of solutions, on an interval I, of the homogeneous linear nth-order  
differential equation  

 ( ) ( ) ( ) ( ) 0011

1

1 =++++
−

−

− yxa
dx
dyxa

dx
ydxa

dx
ydxa n

n

nn

n

n   

Then the general solution of the equation on the interval I is defined to be 

  ( ) ( ) ( )xycxycxycy nn+++= 2211    

Here nccc ,,, 21   are arbitrary constants. 

Example 1 The functions  xeyxey 3  and  3
21

−==  

are solutions of the differential equation 09 =−′′ yy  

Since Ixxexe

xexexexeW ∈∀≠−=−−

−
=





 −    ,063333

333,3  

Therefore 21  and yy  from a fundamental set of solutions on ( )∞∞− , . Hence general 
solution of the differential equation on the ( )∞∞− ,  is   
 xx ececy 3

2
3

1
−+=  

Example 2 

Consider the function xexy 353sinh4 −−=  

Then xexy 3153cosh12 −+=′ ,  xexy 3453sinh36 −−=′′  

⇒  yyxexy 9or              353sinh49 =′′




 −−=′′ ,  

Therefore 09 =−′′ yy  
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Hence   xexy 353sinh4 −−=  

is a particular solution of differential equation. 
   09 =−′′ yy  

 

 

The general solution of the differential equation is 

  xecxecy 33
21

−+=  

Choosing  7,2 21 −== cc  

We obtain    xexey 3732 −−=  

  xexexey 353232 −−−−=  

  xe
xexey 35

2

33
 4 −−












 −−
=  

  xexy 353sinh4 −−=  

Hence, the particular solution has been obtained from the general solution.                  

Example 3 

Consider the differential equation 06116 2

2

3

3

=−+− y
dx
dy

dx
yd

dx
yd  

and suppose that  xeyxeyxey 3  and 2  , 321 ===  

Then  3
1

3

2
1

2
1

dx
yd

dx
ydxe

dx
dy

===  

Therefore xxxx eeeey
dx
dy

dx
yd

dx
yd 6116611

2
6

3
1

1
2
1

3
1 −+−=−+−  

or   01212611
2

2
6

3

3
1

111 =−=−+− xx eey
dx
dy

dx

yd

dx

yd
  

Thus the function 1y  is a solution of the differential equation. Similarly, we can verify 
that the other two functions i.e. 2y  and 3y  also satisfy the differential equation.  

Now for all Rx ∈  
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Ixxe
xexexe

xexexe

xexexe
xexexeW ∈∀≠==





     062

3924

3322

32
3,2,  

Therefore 3 ,21  and, yyy form a fundamental solution of the differential equation on

( )∞∞− , . We conclude that 
xecxecxecy 32

321 ++=  

is the general solution of the differential equation on the interval ( )∞∞− , . 

14.6 Non-Homogeneous Equations 
A function py that satisfies the non-homogeneous differential equation 

  ( ) ( ) ( ) ( ) ( )xgyxa
dx
dyxa

ndx

yndxna
ndx

yndxna =+++
−

−

−+ 011

1

1   

and is free of parameters is called the particular solution of the differential equation 

Example 1 Suppose that 3=py  ⇒ 0=′′py  

So that 
( )

27

3909

=

+=+′′ pp yy
 

Therefore  3=py  is a particular solution of the differential equation 279 =+′′ pp yy  

Example 2 Suppose that xxy p −= 3 ⇒ xyxy pp 6   ,13 2 =′′−=′  

Therefore ( ) 




 −−





 −+=−′+′′ xxxxxxyyxyx ppp

38123262822 xx 634 +=  

Therefore xxpy −= 3  is a particular solution of the differential equation 

xxyyxyx 6482 32 +=−′+′′  
14.7 Complementary Function 
The general solution nyncycyccy +++= 2211  

of the homogeneous linear differential equation

( ) ( ) ( ) ( ) 0011

1

1 =++++ −

−

− yxa
dx
dyxa

dx
ydxa

dx
ydxa n

n

nn

n

n   

is known as the complementary function for the non-homogeneous linear differential 
equation. 
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  ( ) ( ) ( ) ( ) ( )xgyxa
dx
dyxa

dx
ydxa

dx
ydxa n

n

nn

n

n =++++
−

−

− 011

1

1   

 

14.8 General Solution of Non-Homogeneous Equations 
Suppose that 

 The particular solution of the non-homogeneous equation 

 ( ) ( ) ( ) ( ) ( )xgyxa
dx
dyxa

dx
ydxa

dx
ydxa n

n

nn

n

n =++++
−

−

− 011

1

1   

is py . 

 The complementary function of the non-homogeneous differential equation 

 ( ) ( ) ( ) ( ) 0011

1

1 =++++
−

−

− yxa
dx
dyxa

dx
ydxa

dx
ydxa n

n

nn

n

n   

is  

nnc ycycycy +++= 2211 . 

 Then general solution of the non-homogeneous equation on the interval I is  
given by 
  pc yyy +=  
or  

( ) ( ) ( ) ( ) ( ) ( )xyxyxyxycxycxycy pcpnn +=++++= 2211  

Hence   General Solution = Complementary solution + any particular solution. 

Example  Suppose that xpy
2
1

12
11

−−=  

Then pp yypy ′′′==′′−=′ 0  ,
2
1  

∴ xxy
dx
dy

dx
yd

dx
yd

p
ppp 33

2
11

2
11006116 2

2

3

3

=++−−=−+−  

Hence xpy
2
1

12
11

−−=  is a particular solution of the non-homogeneous equation 

  xy
dx
dy

dx
yd

dx
yd 36116 2

2

3

3
=−+−  

Now consider xecxecxeccy 32
321 ++=  

Then 
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xxx

xxx

xxx

ececec
dx

cyd

ececec
dx

cyd

ececec
dx

cdy

3
3

2
213

3

3
3

2
212

2

3
3

2
21

278

94

32

++=

++=

++=

 

Since, 

  cy
dx

cdy

dx
cyd

dx
cyd

6116 2

2

3

3
−+−  

  

( )
( ) ( )

0
606030301212

63211

946278

3
3

3
3

2
2

2
211

3
3

2
21

3
3

2
21

3
3

2
21

3
3

2
21

=
−+−+−=

++−+++

++−++=

xxxxxx

xxxxxx

xxxxxx

ecececececec
ecececececec
ecececececec

 

Thus cy is general solution of associated homogeneous differential equation 

  06116 2

2

3

3
=−+− y

dx
dy

dx
yd

dx
yd  

Hence general solution of the non-homogeneous equation is 

  pycyy += xxecxecxec
2
1

12
1132

321 −−++=  

14.9 Superposition Principle for Non-homogeneous Equations 
Suppose that  

kpypypy ,,
2

,
1

 denote the particular solutions of the k differential 

equation ( ) ( ) ( ) ( ) ( ) ( ) ( ),01
1

1 xigyxayxayxayxa n
n

n
n =+′+++ −

−   

ki ,2,1= , on an interval I . Then ( ) ( ) )(
21

xpyxpyxpypy
k

+++=   

is a particular solution of

( ) ( ) ( ) ( ) ( ) ( ) ( )xkgxgxgyxayxa
n

yxna
n

yxna +++=+′++
−

−+
















 2101

1

1
 

Example 
Consider the differential equation 

    xexxexexxyyy −++−+−=+′−′′ 2228241643 2  

Suppose that 
x

p
x

pp xeyeyxy ==−=
321

           ,       ,4 22  
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Then   21624843
111

xxyyy ppp −+−=+′−′′  

 

Therefore  24
1

xpy −=  

is a particular solution of the non-homogenous differential equation    
   8241643 2 −+−=+′−′′ xxyyy  

Similarly, it can be verified that  

 2
2

xepy =  and xxepy =
3

 

are particular solutions of the equations:  
xeyyy 2243 =+′−′′    

and   xx exeyy-y −=+′′′ 243        

respectively.  

Hence  xxexexpypypypy ++−=++= 224
321

 

is a particular solution of the differential equation 

  xexxexexxyyy −++−+−=+′−′′ 2228241643 2    

14.10 Exercise 

Verify that the given functions form a fundamental set of solutions of the differential 
equation on the indicated interval. Form the general solution. 

11. ( )∞∞−=−′−′′ − ,   ,,   ;012 43 xx eeyyy  

12. ( )∞∞−=+′−′′ ,   ,2sin,2cos   ;052 xexeyyy xx  

13. ( ) ( ) ( )∞=+′+′′ ,0   ,lnin ,lncos   ;02 xsxyyxyx  

14. ( )∞∞−=+′−′′ ,   ,,   ;044 2/2/ xx xeeyyy  

15. ( )∞=+′−′′ ,0     ,   ;0126 432 xxyyxyx  

16. ( )∞∞−=−′′ ,   ,2sinh  ,2cosh   ;04 xxyy  
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Verify that the given two-parameter family of functions is the general solution of the non-
homogeneous differential equation on the indicated interval. 

17. ,sec xyy =+′′  ( ) ( )xxxxxcxcy coslncossinsincos 21 +++= , ( )2/2/ ππ , − . 

18. 124244 2 −+=+′−′′ xeyyy x ,    2222
2

2
1 −+++= xexxececy xxx  

19. ( )∞∞−++==+′−′′ ,,   eececyeyyy xxxx 6    ,24107 5
2

2
1  

20. ( )∞−++=−=+′+′′ −− ,x,   xxcxcyxxyyxyx 0
6
1

15
1    ,5 21

2
2/1

1
22  
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15 Construction of a Second Solution 
15.1 General Case 
Consider the differential equation 

  0)()()( 012

2

2 =++ yxa
dx
dyxa

dx
ydxa  

We divide by )(2 xa  to put the above equation in the form 

  0)()( /// =++ yxQyxPy  

Where )(xP  and )(xQ  are continuous on some interval I . 

Suppose that I    ,0)(1 ∈∀≠ xxy  is a solution of the differential equation 

Then    0  1
/

1
//

1 =++ yQyPy  

We define ( ) ( )1  y u x y x=  then 

  /
1

/
1 uyuyy +=′ ,  uyuyyuy ′′+′′+′′=′′ 1111 2  

 0)2(][ /
1

/
1

//
11

/
1

//
1

/// =+++++=++ uPyyuyQyPyyuQyPyy
zero

  

 

This implies that we must have 

  0)2( /
1

/
1

//
1 =++ uPyyuy   

If we suppose ,uw ′= then 

  0)2( 1
/

1
/

1 =++ wPyywy  

The equation is separable. Separating variables we have from the last equation 

. 0)2(
1

/
1 =++ dxP

y
y

w
dw  

Integrating 

  
∫ +−=+ cPdxyw 1ln2ln

 

  
∫−

=

+−= ∫
Pdxecwy

cPdxwy

1
2

1

2
1ln

 

  2
1

1

y

dxPdxecw
∫−

=   

 
                                                © Copyright Virtual University of Pakistan                                                 117 



Differential Equations (MTH401)                                                                                    VU 
 

 

or  2
1

1/

y

Pdxecu
∫−

=   

Integrating again, we obtain  

  22
1

1 cdx
y

Pdxecu +
⌡

⌠ ∫−
=  

Hence ).()()()( 122
1

111 xycdx
y

Pdxexycxyxuy +
⌡

⌠ ∫−
==  

Choosing 11 =c and 02 =c , we obtain a second solution of the differential equation 

  dx
y

Pdxexyy
⌡

⌠ ∫−
= 2

1
12 )(  

The Woolskin    

 
( ) ( )( )



⌡

⌠ ∫−
′+

∫−
′



⌡

⌠ ∫−

=

dx
y

Pdxey
y

Pdxey

dx
y

Pdxeyy

xyxyW

2
1

1
1

1

2
1

11

2,1
 

                x,Pdxe ∀≠∫−= 0  

Therefore )(1 xy  and )(2 xy  are linear independent set of solutions. So that they form a 
fundamental set of solutions of the differential equation 

   0)()( /// =++ yxQyxPy  

Hence the general solution of the differential equation is 

   ( ) ( ) ( )xycx  ycxy 2211 +=  
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Example 1 
Given that 

 2
1 xy =  

 is a solution of  

 043 ///2 =+− yxyyx  

Find general solution of the differential equation on the interval ( )∞,0 . 

Solution: 

The equation can be written as 

  ,043
2

/// =+− y
x

y
x

y  

The 2nd solution 2y is given by 

  dx
y

exyy
Pdx



⌡

⌠
=

∫−

2
1

12 )(  

or  dx
x

exdx
x

exy
xxdx


⌡

⌠
=

⌡

⌠
=

∫
4

ln
2

4

3
2

2

3

 

  xxdx
x

xy ln1 22
2 =⌡

⌠=  

Hence the general solution of the differential equation on ( )∞,0  is given by 

  2211 c y ycy +=  

or  xxcy lnc x 2
2

2
1 +=  

Example 2 
Verify that 

 
x
xy sin

1 =  

 is a solution of 

 0)41( 2///2 =−++ yxxyyx   

on ( )π,0 . Find a second solution of the equation. 
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Solution: 

The differential equation can be written as  

  0)
4

11(1
2

/// =−++ y
x

y
x

y  

The 2nd solution is given by 

  dx
y

eyy
Pdx



⌡

⌠
=

∫−

2
1

12  

Therefore  2
2

sin
sin( )

dx
xx ey dxxx

x

−
⌠





⌡

∫
=  

       2

sin
sin

x x dx
x xx

⌠


⌡

−
=  

       2sin cscx xdx
x

−
= ∫  

      sin cos( cot )x xx
x x

−
= − =  

 Thus the second solution is 

   
x
xy cos

2 =  

Hence, general solution of the differential equation is 

  







+








=

x
xc

x
xcy cossin

21  

15.2 Order Reduction 
Example 3 
Given that 

   3
1 xy =  

is a solution of the differential equation 

    ,06//2 =− yyx  

Find second solution of the equation 

Solution 
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We write the given equation as: 

   06
2

// =− y
x

y   

So that   2

6)(
x

xP −=  

Therefore 

 

    dx
y

eyy
Pdx



⌡

⌠
=

∫−

2
1

12  

    
2

6

3
2 6

xey x dx
x

−⌠



⌡

∫
=  

    

6

3
2 6

xey x dx
x

⌠



⌡

=  

Therefore, using the formula 

    dx
y

eyy
Pdx



⌡

⌠
=

∫−

2
1

12  

We encounter an integral that is difficult or impossible to evaluate. 

 

Hence, we conclude sometimes use of the formula to find a second solution is not 
suitable. We need to try something else. 

Alternatively, we can try the reduction of order to find 2y . For this purpose, we again 
define 

   ( ) ( ) )(1 xyxuxy =   or   3).( xxuy =   

then 

   
xuuxuxy

uxuxy
66

3
/23

32

++′′=′′
′+=′  

Substituting the values of yy ′′, in the given differential equation 

   062 =−′′ yyx  

we have 
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    06)66( 3232 =−+′+′′ uxxuuxuxx  

or   06 45 =′+′′ uxux  

or   ,06
=′+′′ u

x
u  

If we take uw ′= then 

   06/ =+ w
x

w  

This is separable as well as linear first order differential equation in w . For using the 
latter, we find the integrating factor 

  6ln6
6

1

. xe
dx

xeFI x ===

⌡

⌠

 

Multiplying with the 6xIF =  , we obtain 

   06 56 =+′ wxwx  

or   0)( 6 =wx
dx
d  

Integrating w.r.t. ’ x ’, we have 

   1
6 cwx =  

or   6
1/

x
cu =  

Integrating once again, gives 

   25
1

5
c

x
cu +−=  

Therefore   3
22

13

5
xc

x
cuxy +

−
==  

Choosing 02 =c  and 51 −=c , we obtain 

   22
1
x

y =  

Thus the second solution is given by 

   22
1
x

y =  

Hence, general solution of the given differential equation is  

   2211 ycycy +=  
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i.e.    ( )2
2

3
1 /1 xcxcy +=  

Where 21  and cc are constants. 

15.3 Exercise 
Find the 2nd solution of each of Differential equations by reducing order or by 
using the formula. 

1. 1y        ;0 1
/// ==− yy  

 
2. xxeyyy −==++ 1

/// y        ;02  

 
3. xyy siny        ;09 1

// ==+  

 
4. xeyy 5

1
// y        ;025 ==−  

 
5. 2

1
/// y        ;06 xeyyy ==−+  

 
6. 2

1
///2 y        ;062 xyxyyx ==−+  

 
7. xxyyx lny        ;04 21

1
//2 ==+  

 
8. 1y        ;02)1( 1

///2 ==−− xyyx  

 
9. )cos(lny        ;053 2

1
///2 xxyxyyx ==+−  

 
10. xyxyyx ==−++ 1

/// y        ;0)1(  
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16 Homogeneous Linear Equations with Constant Coefficients 

We know that the linear first order differential equation 0=+ my
dx
dy  

m being a constant, has the exponential solution on ( )∞∞− ,  as mxecy −= 1 . 

The question? 
 The question is whether or not the exponential solutions of the higher-order 

differential equations 
  ,00

/
1

//
2

)1(
1

)( =+++++ −
− yayayayaya n

n
n

n   
exist on ( )∞∞− , . 

 In fact all the solutions of this equation are exponential functions or constructed 
out of exponential functions. 

Recall that the linear differential of order n  is an equation of the form 

)()()()()( 011

1
1 xgyxa

dx
dyxa

dx
ydxa

dx
ydxa n

n
nn

n
n =++++

−

−

−   

16.1 Method of Solution 

Taking 2=n , the nth-order differential equation becomes 0012

2

2 =++ ya
dx
dya

dx
yda  

This equation can be written as 02

2

=++ cy
dx
dyb

dx
yda  

We now try a solution of the exponential form mxey = ⇒ mxmey =′ and mxemy 2=′′  

Substituting in the differential equation, we have 0)( 2 =++ cbmamemx  

Since ( )∞∞−∈∀≠ ,    ,0 xemx , therefore 02 =++ cbmam   

This algebraic equation is known as the Auxiliary equation (AE).The solution of the 
auxiliary equation determines the solutions of the differential equation. 

16.1.1 Case 1 (Distinct Real Roots) 

If the auxiliary equation has distinct real roots 1m  and 2m then we have the following two 

solutions of the differential equation. xmeyxmey 2 and 1 21 ==  

These solutions are linearly independent because

( ) xmmemm
yy
yy

yyW )(
12/

2
/

1

21
21 21),( +−==  

Since 21 mm ≠ and ( ) 021 ≠+ xmme , therefore ( ) ( )∞∞−∈∀≠ ,  0, 21 xyyW . 
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Hence  

 1y and 2y form a fundamental set of solutions of the differential equation. 

  The general solution of the differential equation on ( )∞∞− ,  is  

          
xmxm ececy 21 21 +=  

16.1.2 Case 2 (Repeated Roots) 

If the auxiliary equation has real and equal roots i.e. 2121       with  , mmmmm ==     

Then we obtain only one exponential solution mxecy 1=  

To construct a second solution we rewrite the equation in the form 0=+′+′′ y
a
cy

a
by  

Comparing with 0=+′+′′ QyyPy  

We make the identification 
a
bP =  

Thus a second solution is given by dx
e
eedx

y
eyy mx

x
a
b

mx
Pdx




⌡

⌠
=



⌡

⌠
=

−−∫
2

 

2
1

12  

Since the auxiliary equation is a quadratic algebraic equation and has equal roots 

Therefore,   04. 2 =−= acbDisc  

We know from the quadratic formula  
2

42

a
acbbm −±−

=  

we have
a
bm −=2 .Therefore mx

mx

mx
mx xedx

e
eey == ∫ 2

2
2  

Hence the general solution is mxmxmx exccxececy )( 2121 +=+=  

16.1.3 Case 3 (Complex Roots) 

If the auxiliary equation has complex roots βα i±  then, with βα im +=1  and 

βα im −=2 , where α >0 and β >0 are real, the general solution of the differential 

equation is xixi ececy )(
2

)(
1

βαβα −+ +=  

First we choose the following two pairs of values of 21  and cc ,  121 == cc    

11 21 −== ,cc ,then we have xixi

xixi

eey
eey

)()(
2

)()(
1

βαβα

βαβα

−+

−+

−=
+= .We know by the Euler’s Formula 

that ∈+= θθθθ      ,sincos iei R . 
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Using this formula, we can simplify the solutions 1y and 2y as 

xieeeey
xeeeey

xxixix

xxixix

β
β

αββα

αββα

sin2)(
cos2)(

2

1
=−=
=+=

−

−
 

We can drop constant to write. xxey βα cos1 = ,  xxey βα sin2 =  

The Wronskian: ( )  x   βeβxβx , eeW αxαxαx ∀≠= 0sincos 2  

Therefore, ) sin(  ), cos( xexe xx ββ αα  form a fundamental set of solutions of the 
differential equation on ( )∞∞− , .Hence general solution of the differential equation is  

xecxecy xx ββ αα sincos 21 +=  ⇒ )sincos( 21 xcxcey x ββα +=  

Example: Solve 0352 =−′−′′ yyy  

Solution: The given differential equation is 0352 =−′−′′ yyy  

Put  mxey = ⇒ mxmx emy,mey 2   =′′=′ .Substituting in the give differential equation, 

we have ( ) 0 352 2 =−− mxemm . Since xemx    0 ∀≠ , the auxiliary equation is 

0   as      0352 2 ≠=−− mxemm ⇒ ( )( ) 3  ,
2
103 12 −=⇒=−+ mmm  

Therefore, the auxiliary equation has distinct real roots 3  and  
2
1

21 =−= mm  

Hence the general solution of the differential equation is xx ececy 3
2

)2/1(
1 += −  

Example 2 Solve 02510 =+′−′′ yyy  

Solution: We put mxey = ⇒ mxmx emyme 2,y =′′=′  

Substituting in the given differential equation, we have 0)2510( 2 =+− mxemm  

Since xemx   0 ∀≠ , the auxiliary equation is 025102 =+− mm  

( ) 05 2 =−m ⇒ 5 ,5=m .Thus the auxiliary equation has repeated real roots i.e  

21 5 mm == . Hence general solution of the differential equation is 

xx xececy 5
2

5
1 += ⇒  xexccy 5

21 )( +=  

Example 3 Solve the initial value problem: ( ) ( ) 2010
0134

=′=
=+′−′′

y,  -y
yyy

 

Solution: Given that the differential equation 0134 =+′−′′ yyy  

Put mxey = ⇒ mxmx emy,  mey 2=′′=′  
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Substituting in the given differential equation, we have: 0)134( 2 =+− mxemm    

Since xemx ∀≠ 0 , the auxiliary equation is 01342 =+− mm  

By quadratic formula, the solution of the auxiliary equation is im 32
2

52164
±=

−±
=  

Thus the auxiliary equation has complex roots imim 32       ,32 21 −=+=  

Hence general solution of the differential equation is ( )xcxcey x 3sin3cos 21
2 +=  

Example 4  Solve the differential equations (a)  02 =+′′ yky , (b) 02 =−′′ yky  

Solution First consider the differential equation 02 =+′′ yky , 

Put mxey = ⇒ mxmx emymey 2  and  =′′=′ . 

Substituting in the given differential equation, we have: ( ) 0  22 =+ mxekm  

Since xemx ∀≠ 0 , the auxiliary equation is 022 =+ km ⇒ , kim ±=   
Therefore, the auxiliary equation has complex roots kimkim −=+= 0    ,0 21  
Hence general solution of the differential equation is kxckxcy sincos 21 +=  

Next consider the differential equation 02
2

2

=− yk
dx

yd  

Substituting values , and yy ′′ we have. ( ) 022 =− mxekm  

 Since ,0≠mxe the auxiliary equation is 022 =− km ⇒ km ±=  
Thus the auxiliary equation has distinct real roots kmkm −=+= 21   ,  

Hence the general solution is .21
kxkx ececy −+=  

16.2 Higher Order Equations 
If we consider nth order homogeneous linear differential equation 

 0011

1
1 =++++

−

−

− ya
dx
dya

dx
yda

dx
yda n

n
nn

n
n   

Then, the auxiliary equation is an nth degree polynomial equation  

 001
1

1 =++++ −
− amamama n

n
n

n   

16.2.1 Case 1 (Real distinct roots) 

If the roots nmmm ,,, 21  of the auxiliary equation are all real and distinct, then the 

general solution of the equation is xm
n

xmxm necececy +++= 

21 21  
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16.2.2 Case 2 (Real & repeated roots) 
We suppose that 1m  is a root of multiplicity n  of the auxiliary equation, then it can be 
shown that  

  xmnxmxm exxee 111 1,,, −
  

are n  linearly independent solutions of the differential equation. Hence general solution 
of the differential equation is  

  xmn
n

xmxm excxececy 111 1
21

−+++=   

16.2.3 Case 3 (Complex roots) 
Suppose that coefficients of the auxiliary equation are real. 

 We fix n at 6, all roots of the auxiliary are complex, namely  
 1 1 2 2 3 3,     ,i i iα β α β α β± ± ±  

 Then the general solution of the differential equation  
1 2

3

1 1 2 1 3 2 4 2

5 3 6 3

( cos sin ) ( cos sin )

( cos sin )

x x

x

y e c x c x e c x c x

e c x c x

α α

α

β β β β

β β

= + + +

+ +
 

 If 6=n , two roots of the auxiliary equation are real and equal and the remaining 
4 are complex, namely 2211     , βαβα ii ±±  
Then the general solution is 

xmxmxx xececxcxcexcxcey 1121 6524231211 )sincos()sincos( +++++= ββββ αα  
 If βα im +=1  is a complex root of multiplicity k of the auxiliary equation. Then 

its conjugate βα im −=2  is also a root of multiplicity k . Thus from Case 2 , the 
differential equation has k2 solutions 
 ( ) ( ) ( ) ( )xikxixixi exexxee βαβαβαβα +−+++ 12 ,,  ,  ,   

 ( ) ( ) ( ) ( )xikxixixi exexxee βαβαβαβα −−−−− 12 ,,  ,  ,   
 By using the Euler’s formula, we conclude that the general solution of the 

differential equation is a linear combination of the linearly independent solutions 
 xexxexxxexe xkxxx ββββ αααα cos,,cos  ,cos  ,cos 12 −

  

 xexxexxxexe xkxxx ββββ αααα sin,,sin  ,sin  ,sin 12 −
  

 Thus if 3=k  then 
 ( ) ( ) ][ sincos 2

321
2

321 xxdxddxxcxccey x ββα +++++=  
16.3 Solving the Auxiliary Equation 
Recall that the auxiliary equation of nth degree differential equation is nth degree 
polynomial equation  

 Solving the auxiliary equation could be difficult 
  2n   ,0)( >=mPn  
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 One way to solve this polynomial equation is to guess a root 1m . Then 1mm −  is a 
factor of the polynomial )(mPn . 

 Dividing with 1mm −  synthetically or otherwise, we find the factorization   
  )( )()( 1 mQmmmPn −=  

 We then try to find roots of the quotient i.e. roots of the polynomial equation  
  0)( =mQ  

 Note that if 
q
pm =1  is a rational real root of the equation 

  2n   ,0)( >=mPn  
then p  is a factor of 0a and q  of na .  

 By using this fact we can construct a list of all possible rational roots of the 
auxiliary equation and test each of them by synthetic division. 

Example 1 Solve the differential equation 043 =−′′+′′′ yyy  

Solution:Given the differential equation 043 =−′′+′′′ yyy . Put mxey =  

⇒ mxmxmx emyemyme 3///2///    and  ,y ===  

Substituting this in the given differential equation, we have 

 0)43( 23 =−+ mxemm  

Since 0≠mxe ⇒     043 23 =−+ mm  

So that the auxiliary equation is     043 23 =−+ mm  

Solution of the AE 

If we take 1=m  then we see that 043143 23 =−+=−+ mm  

Therefore 1=m  satisfies the auxiliary equations so that  m-1 is a factor of the polynomial 

4233 −+ mm . By synthetic division, we can writ ( )( )44143 223 ++−=−+ mmmmm  

So, 223 )2)(1(43 +−=−+ mmmm =0 0)2)(1( 2 =+−⇒ mm ⇒ 2,2,1 −−=m  

Hence solution of the differential equation is  xxx xecececy 2
3

2
21

−− ++=  

Example 2  

Solve 041053 ////// =−++ yyyy  

Solution: Given the differential equation 041053 ////// =−++ yyyy  

Put mxey = ⇒ mxmxmx emyemyme 3///2///    and  ,y ===  
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 Therefore the auxiliary equation is   041053 23 =−++ mmm     

Solution of the auxiliary equation: 

a) 4−=


a and all its factors are: 
 4 ,2 ,1                 : ±±±p  

b) 3=na and all its factors are: 
 3  1,                 : ±±q  

c) List of possible rational roots of the auxiliary equation is 

 
3
4,

3
4,

3
2,

3
2,

3
1,

3
1 4, 4,- 2, 2,- 1, 1,-              : −−−

q
p  

d) Testing each of these successively by synthetic division we find 

 
 0          12        6        3      

   4   21
41053  

3
1 −




  

Consequently a root of the auxiliary equation is 31=m  

The coefficients of the quotient are 12      6     3  

Thus we can write the auxiliary equation as: ( ) ( ) 01263 31 2 =++− mmm  

0
3
1

=−m       or 01263 2 =++ mm ⇒ 31or        31 imm ±−==  

Hence solution of the given DE is: ( )xcxcxeecy x 3sin3cos 32
)3/1(

1 +−+=  

Example 3    Solve the differential equation 02 2

2

4

4
=++ y

dx
yd

dx
yd  

Solution: Given the differential equation 02 2

2

4

4
=++ y

dx
yd

dx
yd . 

Put mxey = ⇒ mxmx emymey 2  , =′′=′  

Substituting in the differential equation, we obtain ( ) 0  12 24 =++ mxemm  

Since 0≠mxe , the auxiliary equation is 012 24 =++ mm ⇒ 0)1( 22 =+m  

iim ±±=⇒   , ⇒ imm == 31    and  imm  42 −==  

Thus i is a root of the auxiliary equation of multiplicity 2 and so is i− .  

Now 0=α  and 1=β .Hence the general solution of the differential equation is 

[ ]xxddxxccey x sin)(cos)( 2121
0 +++= ⇒ xxdxxcxdxcy sincossincos 2211 +++=  
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Exercise 
Find the general solution of the given differential equations. 

1. 08// =− yy  
2. 023 /// =+− yyy  
3. 04 /// =−+ yyy  
4. 0432 /// =+− yyy  
5. 044 ////// =++ yyy  
6. 05 ///// =+ yy  
7. 01243 ////// =−−+ yyyy  

Solve the given differential equations subject to the indicated initial conditions. 

8.       ,0652 ////// =−−+ yyyy 1)0(,0)0()0( /// === yyy  

9. 04

4

=
dx

yd , 5)0(,4)0(,3)0(,2)0( ////// ==== yyyy  

10. 04

4
=− y

dx
yd

, 1)0(,0)0()0()0( ////// ==== yyyy  
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17 Method of Undetermined Coefficients(Superposition Approach) 
Recall  

1.  That a non-homogeneous linear differential equation of order n  is an equation of the 
form 

 )(011

1

1 xgya
dx
dya

dx
yda

dx
yda n

n

nn

n

n =++++ −

−

−   

The coefficients naaa ,,, 10  can be functions of x . However, we will discuss 
equations with constant coefficients. 

2. That to obtain the general solution of a non-homogeneous linear differential equation 
we must find: 

 

 The complementary function cy , which is general solution of the associated 

homogeneous differential equation. 
 Any particular solution py of the non-homogeneous differential equation. 

3. That the general solution of the non-homogeneous linear differential equation is given 
by 

 General solution = Complementary function + Particular Integral 

Finding  
Complementary function has been discussed in the previous lecture. In the next three 
lectures we will discuss methods for finding a particular integral for the non-
homogeneous equation, namely 

 The method of undetermined coefficients-superposition approach 
 The method undetermined coefficients-annihilator operator approach. 
 The method of variation of parameters. 

 The Method of Undetermined Coefficient 
The method of undetermined coefficients developed here is limited to non-homogeneous 
linear differential equations 

 That have constant coefficients, and  
 Where the function )(xg  has a specific form. 

17.1 The form of Input function )(xg  
The input function )(xg  can have one of the following forms: 

 A constant function k.  
 A polynomial function  
 An exponential function ex 
 The trigonometric functions ) cos(  ), sin( xx ββ   
 Finite sums and products of these functions. 
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Otherwise, we cannot apply the method of undetermined coefficients. 

17.2  Solution Steps 
Consist of performing the following steps. 

      Step 1 Determine the form of the input function )(xg . 

Step 2  Assume the general form of 
p

y according to the form of )(xg  

Step 3  Substitute in the given non-homogeneous differential equation. 

Step 4  Simplify and equate coefficients of like terms from both sides. 

Step 5  Solve the resulting equations to find the unknown coefficients. 

Step 6  Substitute the calculated values of coefficients in assumed py   

17.2.1 Restriction on Input function g  

The input function g is restricted to have one of the above stated forms because of the 
reason:  

 The derivatives of sums and products of polynomials, exponentials etc are again 
sums and products of similar kind of functions. 

 The expression pcypbypay ++ ///  has to be identically equal to the input 

function )(xg .  

Therefore, to make an educated guess, py  is assured to have the same form as g . 

Caution! 

 In addition to the form of the input function )(xg , the educated guess for py must 

take into consideration the functions that make up the complementary function cy

. 
 No function in the assumed py must be a solution of the associated homogeneous 

differential equation. This means that the assumed py  should not contain terms 
that duplicate terms in cy . 

Taking for granted that no function in the assumed py is duplicated by a function in cy , 

some forms of g  and the corresponding forms of py are given in the following table. 
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17.3 Trial particular solutions 

 
17.4 Input function ( )xg as a sum 
Suppose that  

 The input function ( )xg consists of a sum of m terms of the kind listed in the 
above table i.e. 
  ( ) ( ) ( ) ( ).21 xgxgxgxg m+++=   

 The trial forms corresponding to ( ) ( ) ( )xgxgxg m , , , 21   be
mppp yyy ,,,

21
 . 

 

Number The input function )(xg  The assumed particular solution 
p

y  

1 Any constant e.g. 1 A  

2 75 +x  BAx +  

3 223 −x  cBxAx ++2  

4 13 +− xx  DCxBxAx +++ 23  

5   4sin x  xBxA 4 sin 4 cos +  

6 x4cos  xBxA 4 sin 4 cos +  

7 xe5  xAe5  

8 xex 5)29( −  xeBAx 5)( +  

9 xex 52  xeCBxAx 5)2( ++  

10 xxe 4sin3  xxeBxxeA 4sin3 4cos3 +  

11 xx 4sin25  1 1 1 2 2 2
2 2( )cos 4 ( )sin 4A x B x C x A x B x C x+ + + + +  

12 xxxe 4cos3  xxeDCxxxeBAx 4sin3)(4cos3)( +++  
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Then the particular solution of the given non-homogeneous differential equation is 
   

mpppp yyyy +++= 

21
  

In other words, the form of py is a linear combination of all the linearly independent 
functions generated by repeated differentiation of the input function )(xg . 

Example 1 Solve 63224 2/// +−=−+ xxyyy  

Solution:  

Complementary function: To find cy , we first solve the associated homogeneous 

equation 024 /// =−+ yyy  

We put mxey = ,   mxemymxmey 2  , =′′=′  

Then the associated homogeneous equation gives 

   0)24( 2 =−+ mxemm  

 Therefore, the auxiliary equation is xmxemm      ,0   as   0242 ∀≠=−+  

Using the quadratic formula, roots of the auxiliary equation are 62 ±−=m  

Thus we have real and distinct roots of the auxiliary equation 
62    and    62 21 +−=−−= mm  . 

Hence the complementary function is xecxeccy )62()62(
21

+−++−=   

Next we find a particular solution of the non-homogeneous differential equation. 

Particular Integral Since the input function 632)( 2 +−= xxxg   

is a quadratic polynomial. Therefore, we assume that CBxAxy p ++= 2  

⇒ AyBAxy pp 2   and   2 /// =+=  

⇒ CBxAxBAxAyyy ppp 22248224 2/// −−−++=−+  

Substituting in the given equation, we have 

632222482 22 +−=−−−++ xxCBxAxBAxA  

Or 632)242()28(2 22 +−=−++−+− xxCBAxBAAx  

Equating the coefficients of the like powers of x , we have 

2 2A - = , 3-  2B-8A = , 6  2C-4B2A =+  

Solving this system of equations leads to the values  

.9    ,25    ,1 −=−=−= CBA Thus a particular solution of the given equation is 

 
                                                © Copyright Virtual University of Pakistan                                                 135 



Differential Equations (MTH401)                                                                                    VU 
 

9
2
52 −−−= xxy p .Hence, the general solution of the given non-homogeneous 

differential equation is given by  pycyy +=   

⇒ xecxecxxy )62(
2

)62(9
2
52

1
+−++−+−−−=  

Example 2  Solve the differential equation xyyy 3sin2/// =+−  

Solution:  Complementary function: To find cy , we solve the associated homogeneous 

differential equation 0/// =+− yyy .Put mxey = ⇒ mxemymxmey 2  , =′′=′

.Substitute in the given differential equation to obtain the auxiliary equation 

012 =+− mm ⇒
2

 31 im ±
=    

Hence, the auxiliary equation has complex roots. Hence the complementary function is 

   







+= xcxcxecy

2
3

2
3)2/1( sincos 21  

Particular Integral Since successive differentiation of  xxg 3sin)( =  produce 
xx 3cos    and     3sin .Therefore, we include both of these terms in the assumed particular 

solution, see table 

.3sin3cos xBxApy += ⇒ .3cos33sin3 xBxApy +−=′ .3sin93cos9 xBxApy −−=′′
 

∴ .3sin)83(3cos)38(/// xBAxBAyyy ppp −+−−=+−
 

Substituting in the given differential equation: 

.3sin23cos03sin)83(3cos)38( xxxBAxBA +=−+−−  

From the resulting equations 283  ,038 =−=−− BABA  

Solving these equations, we obtain 73/16,73/6 −== BA  

A particular solution of the equation is  xxpy 3sin
73
163cos

73
6

−=  

 Hence the general solution of the given non-homogeneous differential equation is 

           xxxcxcxey 3sin
73
163cos

73
6

2
3

2
3)2/1( sincos 21 −+








+=  

Example 3 Solve xxexyyy 2/// 65432 +−=−−  

Solution:  Complementary function 
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To find cy , we solve the associated homogeneous equation 032 /// =−− yyy   

Put mxey = ⇒ mxemymxmey 2  , =′′=′    

Substitute in the given differential equation to obtain the auxiliary equation

0)3)(1(
0322

=−+⇒
=−−

mm
mm

⇒ 3 ,1−=m  

Therefore, the auxiliary equation has real distinct root 3 2 ,11 =−= mm  

Thus the complementary function is xecxeccy 3
21 +−= . 

Particular integral 

Since  )()(26)54()( 21 xgxgxxexxg +=+−=  

Corresponding to )(1 xg  : BAxy
p

+=
1

  

Corresponding to )(2 xg : 
xeDCxy

p
2)(

2
+=  

The superposition principle suggests that we assume a particular solution 

21 ppp yyy += ⇒ xeDCxBAxy p
2 )( +++= ⇒ xCexeDCxAy p

22 )(2 +++=′  

⇒ xCexeDCxy p
242 )(4 ++=′′ .Substituting in the given: 

∴ 
xxxx

xxxx
ppp

DeCxeBAxCeDe

CxeACeDeCxeyyy
2222

2222///

333324                                   

42444    32

−−−−−−

−−++=−−
 

Simplifying and grouping like terms 

.654)32(332332 222/// xxx
ppp xexeDCCxeBAAxyyy +−=−+−−−−=−−  

Substituting in the non-homogeneous differential equation, we have 

  xxxx exexeDCCxeBAAx 2222 0654)32(3323 ++−=−+−−−−  

Now equating constant terms and coefficients of x , xxe2 and xe2 , we obtain  

532 −=−− BA , 4          3 =− A , 6          3 =− C , 032 =− DC  

Solving these algebraic equations, we find 
34         ,2
923     ,34

-DC
BA

=−=
=−=

 

Thus, a particular solution of the non-homogeneous equation is  
xx

p e xexy 22 )3(42)923()34( −−+−=  
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∴general solution: xx
pc execxecyyy 22x3

21 )3(4-e x 2)923() 34( −+−+−=+=  

17.5 Duplication between py  and cy  
 If a function in the assumed py  is also present in cy  then this function is a 

solution of the associated homogeneous differential equation. In this case the 
obvious assumption for the form of py  is not correct. 

 In this case we suppose that the input function is made up of terms of n kinds i.e. 
  )()()()( 21 xgxgxgxg n+++=   
and corresponding to this input function the assumed particular solution py is  

  
npppp yyyy +++= 

21
 

 If a 
ipy contain terms that duplicate terms in cy , then that 

ipy must be multiplied 

with nx , n  being the least positive integer that eliminates the duplication. 

Example 4  Find a particular solution of the following non-homogeneous differential 
equation xeyyy 845 /// =+− . 

Solution: To find cy , we solve the associated homogeneous differential equation  

045 /// =+− yyy  

 We put mxey =  in the given equation, so that the auxiliary equation is  

4 ,1    0452 =⇒=+− mmm ⇒ xx
c ececy 4

21 +=  

 xexg 8)( = ⇒ x
p Aey =   

Substituting in the given non-homogeneous differential equation, we obtain 

xexAexAexAe 845 =+− ⇒ xe80 =   

Clearly we have made a wrong assumption for py , as we did not remove the duplication. 

Since xAe  is present in cy . Therefore, it is a solution of the associated homogeneous 

differential equation 045 /// =+− yyy  

To avoid this we find a particular solution of the form x
p Axey =   

We notice that there is no duplication between cy  and this new assumption for py  

Now xxxx
p AeAxeAeAxey 2y     , //

p
/ +=+=  .Substituting in the given differential 

equation, we obtain .84552 xxxxxx eAxeAeAxeAeAxe =+−−+  
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or .3883 −=⇒=− AeAe xx So that a particular solution of the given equation is given 
by x

p ey )38(−=  Hence, the general solution of the given equation is 
4

21 (8 / 3)  x x xy c e c e x e= + −  

Example 5 Determine the form of the particular solution 

(a)     xexexyyy −−−=+− 73525/8//  

(b)   .cos4// xxyy =+  

Solution:  

(a)  To find cy  we solve the associated homogeneous differential equation
0258 /// =+− yyy  

Put mxey =  ⇒ the auxiliary equation is immm 3402582 ±=⇒=+−   

Roots of the auxiliary equation are complex 

∴ )3sin23cos(4
1 xcxcxecy +=  

The input function is xexxexexxg −−=−−−= )735(735)(  

Therefore, we assume a particular solution of the form  xeDCxBxAxpy −+++= )23(  

Notice that there is no duplication between the terms in py and the terms in cy . 
Therefore, while proceeding further we can easily calculate the value CBA  , ,  and D . 

(b) Consider the associated homogeneous differential equation 04// =+ yy  

Since xxxg cos)( = .Therefore, we assume a particular solution of the form 

xDCxxBAxy p sin)(cos)( +++= .Again observe that there is no duplication of terms 
between cy  and py   

Example 6  

Determine the form of a particular solution of // / 2 63 5sin 2 7 xy y y x x xe− + = − +  

Solution:  To find cy , we solve the associated homogeneous differential equation 

0/// =+− yyy .Put mxey = ,then the auxiliary equation is 

2
31012 immm ±

=⇒=+− ⇒ 







+= xcxcxecy

2
3sin22

3cos1
)2/1(  

 1

2 6
2 3( ) 3 5sin 2 7 ( ) ( ) ( )xg x x x xe g x g x g x= − + = + +  
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Corresponding to 2
1 3)( xxg = :  CBxAxy p ++= 2

1
 

Corresponding to 2 ( ) 5sin 2g x x= − :  xExDy p 2sin2cos
2

+=  

Corresponding to 6
3( ) 7 xg x xe=   :  )(

3
GFxy p += e6x 

Hence, the assumption for the particular solution is 
321 pppp yyyy ++=   

⇒ 6x2 )(2sin2cos eGFxxExDCBxAxy p ++++++=
 

No term in this assumption duplicate any term in the complementary function
xx

c ececy 7
2

2
1 +=  

Example 7 

Find a particular solution of  xeyyy =+− /// 2  

Solution: Consider the associated homogeneous equation 02 /// =+− yyy  

Put mxey = .Then the auxiliary equation is :
1  ,1            

0)1(12 22

=⇒
=−=+−

m
mmm  

Roots of the auxiliary equation are real and equal. Therefore, xx
c xececy 21 +=  

Since xexg =)( .Therefore, we assume that x
p Aey =  

This assumption fails because of duplication between cy  and py . We multiply with x  

Therefore, we now assume x
p Axey = .However, the duplication is still there. Therefore, 

we again multiply with x  and assume x
p eAxy 2=  

Since there is no duplication, this is acceptable form of the trial x
p exy 2

2
1

=  

Example 8  Solve the initial value problem:
2)(y0,)y(

             ,sin104
/

//

==

+=+

ππ

xxyy
 

Solution  Consider the associated homogeneous differential equation 

0// =+ yy .Put mxey =  Then the auxiliary equation is imm  012 ±=⇒=+  

The roots of the auxiliary equation are complex. Therefore, the complementary function 
is xcxcyc sincos 21 +=  

Since )()(sin104)( 21 xgxgxxxg +=+=  

Therefore, we assume that   sincos C     , 
21

xDxyBAxy pp +=+=  
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So that xDxBAx sincos Cyp +++=  

Clearly, there is duplication of the functions xcos and xsin . To remove this duplication 
we multiply 

2py with x . Therefore, we assume that 

  .sincos xC xDxxBAxy p +++=  

  2 sin cos 2 cos sinpy C x Cx x D x Dx x′′ = − − + −  

So that  xDxBAx cosx2sin C2yy p
//

p +−+=+  

Substituting into the given non-homogeneous differential equation, we have  

xxxDxBAx sin104cosx2sin C2 +=+−+  

Equating constant terms and coefficients of x , xsin , xx cos , we obtain 

  02  ,102  ,4  ,0 ==−== DCAB  

So that  0  ,5 ,0 ,4 =−=== DCBA  

Thus    xxxy p cos54 −=  

Hence the general solution of the differential equation is  

xxxcxcyyy pc cos5- x4sincos 21 ++=+=  

We now apply the initial conditions to find 1c  and 2c . 

0cos54sincos0)( 21 =−++⇒= ππππππ ccy  

Since   1cos,0sin −== ππ  

Therefore    91 π=c  

 Now   xxxxcxy cos5sin54cossin9 2
/ −+++−= π   

Therefore 2cos5sin54cossin92)( 2
/ =−+++−⇒= πππππππ cy  

 7.c2                          =∴  

Hence the solution of the initial value problem is  

.cos54sin7cos9 xxxxxy −++= π  

Example 9 Solve the differential equation          122696 32/// xexyyy −+=+−  

Solution: The associated homogeneous differential equation is 096 /// =+− yyy .Put 
mxey = .Then the auxiliary equation is 3 ,30962 =⇒=+− mmm  

Thus the complementary function is xx
c xececy 3

2
3

1 +=   
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Since )()(12)2()( 21
32 xgxgexxg x +=−+=  

We assume that 

Corresponding to 2)( 2
1 += xxg : CBxAxy p ++= 2

1
 

Corresponding to xexg 3
2 12)( −= : x

p Dey 3
2

=  

Thus the assumed form of the particular solution is  
x

p DeCBxAxy 32 +++=  

The function xe3 in 
2py is duplicated between cy  and py . Multiplication with x  does 

not remove this duplication. However, if we multiply 
2py with 2x , this duplication is 

removed. 

Thus the operative from of a particular solution is 
x

p eDxCBxAxy 322 +++=  

Then   xx
p eDxDxeBAxy 323 322 +++=′  

and   xxx
p eDxDxeDeAy 3233 9622 +++=′′   

Substituting into the given differential equation and collecting like term, we obtain 
xx

ppp exDeBAxBAAxy 3232/// 12262C962)912(9y6y −+=++−++−+=+−

Equating constant terms and coefficients of 2, xx  and xe3 yields 

 0912     2,C962 =+−=+− BABA  

 122                        ,6  9 −== DA  

Solving these equations, we have the values of the unknown coefficients 

 -6D  and   32,98,32 ==== CBA  

Thus   x
p exxxy 322 6

3
2

9
8

3
2

−++=   

Hence the general solution .6
3
2

9
8

3
2yy 3223

2
3

1pc
xxx exxxxececy −++++=+=  

Higher –Order Equation 
The method of undetermined coefficients can also be used for higher order equations of 
the form 

)(... 011

1

1 xgya
dx
dya

dx
yda

dx
yda n

n

nn

n

n =++++
−

−

−  
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with constant coefficients. The only requirement is that )(xg consists of the proper kinds 
of functions as discussed earlier. 

Example 10 Solve xeyy x cos///// =+  

Solution: 
To find the complementary function we solve the associated homogeneous differential 
equation 0///// =+ yy  

Put mxmxmx emymeyey 2,, =′′=′=  

Then the auxiliary equation is 0   23 =+ mm ⇒ 1,0,00)1(2 −=⇒=+ mmm  

The auxiliary equation has equal and distinct real roots. Therefore, the complementary 
function is 

x
c ecxccy −++= 321  

Since     xexg x cos)( =  

Therefore, we assume that 

xBexAey xx
p sincos +=   

Clearly, there is no duplication of terms between cy  and py .  

Substituting the derivatives of py  in the given differential equation and grouping the like 
terms, we have 

.cossin)24(cos)42(///// xexeBAxeBAyy xxx
pp =−−++−=+  

Equating the coefficients, of xex cos  and xex sin , yields 

024,142 =−−=+− BABA  

Solving these equations, we obtain 
   5/1,10/1 =−= BA  

So that a particular solution is 

xexeecxccy xxx
p sin)5/1(cos)10/1(321 +−++= −  

Hence the general solution of the given differential equation is 

   xexeecxccy xxx
p sin)5/1(cos)10/1(321 +−++= −  

Example 12 Determine the form of a particular solution of the DE xeyy −−=′′′+′′′′ 1  

Solution Consider the associated homogeneous differential equation 0=′′′+′′′′ yy  
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The auxiliary equation is 1 ,0 ,0 ,0034 −=⇒=+ mmm  

Therefore, the complementary function is x
c ecxcxccy −+++= 4

2
321  

Since )()(1)( 21 xgxgexg x +=−= −  

Corresponding to 1)(1 =xg :   Apy =1
 

Corresponding to xexg −−=)(2 :  x
p Bey −=

2
   

Therefore, the normal assumption for the particular solution is 

   x
p BeAy −+=   

Clearly there is duplication of  

(i) The constant function between cy  and 1py . 

(ii) The exponential function xe− between cy  and 2py . 

To remove this duplication, we multiply 1py with 3x  and 
2py with x . This duplication 

can’t be removed by multiplying with x and 2x .  Hence, the correct assumption for the 
particular solution py is x

p BxeAxy −+= 3  

17.6 Exercise 
Solve the following differential equations using the undetermined coefficients. 

1.            2
4
1 2/// xxyyy +=++  

2.            26100208 2/// xxexyyy −=+−  

3.          483 32// xexyy −=+  
4.          2cos344 /// xyyy =−−  
5.            2sin)3(4 2// xxyy −=+  
6.            6425 23/// +−−=− xxxyy  
7.            )sin3(cos22 2/// xxeyyy x −=+−  

Solve the following initial value problems. 

8.           5020    ,)3(44 2///  )(,y) y(exyyy /x ==+=++ −  

9. 0)0(,0)0(        ,cos /
0

2
2

2

===+ xxtFx
dt

xd γω  

10.           4)0(,30   50    ,8528 //2///  y)(y,) y(exyy /x −==−=+−=+ −  
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18 Undetermined Coefficient (Annihilator Operator 
Approach) 

Recall  

1.  That a non-homogeneous linear differential equation of order n  is an equation of the 
form 

 )(011

1
1 xgya

dx
dya

dx
yda

dx
yda

n

n
nn

n
n =++++

−

−

−   

       The following differential equation is called the associated homogeneous equation 

  0011

1
1 =++++

−

−

− ya
dx
dya

dx
yda

dx
yda n

n
nn

n
n   

The coefficients naaa ,,, 10  can be functions of x . However, we will discuss 
equations with constant coefficients. 

2. That to obtain the general solution of a non-homogeneous linear differential equation 
we must find: 

 The complementary function cy , which is general solution of the associated 

homogeneous differential equation. 
 Any particular solution py of the non-homogeneous differential equation. 

3. That the general solution of the non-homogeneous linear differential equation is given 
by 

  General Solution = Complementary Function + Particular Integral 
 Finding the complementary function has been completely discussed in an earlier 

lecture 
 In the previous lecture, we studied a method for finding particular integral of the 

non-homogeneous equations. This was the method of undetermined coefficients 
developed from the viewpoint of superposition principle.   

 In the present lecture, we will learn to find particular integral of the non-
homogeneous equations by the same method utilizing the concept of differential 
annihilator operators. 

18.1 Differential Operators 
 In calculus, the differential coefficient dxd /  is often denoted by the capital letter

D . So that 

    Dy
dx
dy

=  

The symbol D  is known as differential operator. 

 This operator transforms a differentiable function into another function, e.g. 
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  xxDxxxxDeeD xx 2sin2)2(cos  ,1215)65(  ,4)( 22344 −=−=−=   

 The differential operator D  possesses the property of linearity. This means that if 
gf  , are two differentiable functions, then    

   )()()}()({ xbDgxaDfxbgxafD +=+         

Where a  and b  are constants. Because of this property, we say that D  is a linear 
differential operator. 

 Higher order derivatives can be expressed in terms of the operator D  in a natural 
manner: 

yDDyD
dx
dy

dx
d

xd
yd 2

2

2
)( ==






=  

 Similarly  

   yD
xd
ydyD

dx
yd n

n

n
==  ,,3

3

3
  

 The following polynomial expression of degree n  involving the operator D   
  01

1
1 aDaDaDa n

n
n

n ++++ −
−   

is also a linear differential operator.   

For example, the following expressions are all linear differential operators   

       3+D , 432 −+ DD , DDD 465 23 +−   

18.2 Differential Equation in Terms of D 
   Any linear differential equation can be expressed in terms of the notation D . Consider a    
2nd order equation with constant coefficients 

   )(/// xgcybyay =++    

Since   yD
dx

ydDy
dx
dy 2

2

2
, ==  

Therefore the equation can be written as   

)(2 xgcybDyyaD =++    

or   )()( 2 xgycbDaD =++  

Now, we define another differential operator L as 

   cbDaDL ++= 2    
Then the equation can be compactly written as  
   )()( xgyL =  
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The operator L  is a second-order linear differential operator with constant coefficients.   

Example 1 Consider the differential equation  352/// −=++ xyyy   

Since    yD
dx

ydDy
dx
dy 2

2

2
, ==  

Therefore, the equation can be written as 

  35)2( 2 −=++ xyDD  

Now, we define the operator L as 

22 ++= DDL  
Then the given differential can be compactly written as  
  35)( −= xyL  

Factorization of a differential operator   
 An nth-order linear differential operator  

  01
1

1 aDaDaDaL n
n

n
n ++++= −

−     

with constant coefficients can be factorized, whenever the characteristics 
polynomial equation 

 01
1

1 amamamaL n
n

n
n ++++= −

−   

can be factorized.  

 The factors of a linear differential operator with constant coefficients commute. 

Example 2  
(a) Consider the following 2nd order linear differential operator 

  652 ++ DD  

If we treat D  as an algebraic quantity, then the operator can be factorized as 

)3)(2(652 ++=++ DDDD   

(b)  To illustrate the commutative property of the factors, we consider a twice-
differentiable function )(xfy = . Then we can write  

   yDDyDDyDD )2)(3()3)(2()65( 2 ++=++=++  

To verify this we let  yyyDw 3)3( +′=+=  

Then  wDwwD 2   )2( +=+ ⇒  )62()3(   )2( //// yyyywD +++=+  

⇒ yyywD 65)2( /// ++=+  ⇒ yyyyDD 65)3)(2( /// ++=++  
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Similarly if we let  

  )2()2( / yyyDw +=+=   

Then   )63()2(3)3( //// yyyywDwwD +++=+=+  

or  yyywD 65)3( /// ++=+  

or  yyyyDD 65)2)(3( /// ++=++  

Therefore, we can write from the two expressions that 

yDDyDD )3)(2()2)(3( ++=++    

Hence  yDDyDD )3)(2()2)(3( ++=++  

Example 3 

(a) The operator 12 −D  can be factorized as  

                                          ( ) ( ) .  1 1        12 −+=− DDD  

 or   ( ) ( )1 1-D        12 +=− DD  

(b) The operator 22 ++ DD  does not factor with real numbers. 

Example 4  The differential equation  044 =+′+′′ yyy  

 can be written as ( ) 0442 =++ yDD ⇒ ( ) 0)2(2 =++ yDD ⇒  ( ) .02 2 =+ yD   

18.3 Annihilator Operator 
Suppose that  

 L is a linear differential operator with constant coefficients.  
 y = f(x) defines a sufficiently differentiable function. 
 The function f is such that  L(y)=0 

Then the differential operator L is said to be an annihilator operator of the function f.  

Example 5 

Since 0,Dx =  ,02 =xD  ,023 =xD    ,034 =xD  

Therefore, the differential operators D ,  2D , 3D ,    ,4D  

are annihilator operators of the following functio    ,   ,   ,   ),constant a( 32 xxxk  

In general, the differential operator nD  annihilates each of the functions  

12 ,,,,1 −nxxx   
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Hence, we conclude that the polynomial function  1
110

−
−+++ n

n xcxcc   

can be annihilated by finding an operator that annihilates the highest power of .x  

Example 6 Find a differential operator that annihilates the polynomial function 
32 851 xxy +−= . 

Solution    Since ,034 =xD ⇒ ( ) .0851 3244 =+−= xxDyD  

Hence, 4D  is the differential operator that annihilates the function .y  

Note that the functions that are annihilated by an nth-order linear differential operator L  
are simply those functions that can be obtained from the general solution of the 
homogeneous differential equation  

.0)( =yL  

Example 7 Consider the homogeneous linear differential equation of order n  

0)( =− yD nα .The auxiliary equation of the differential equation is 0)( =− nm α  

⇒  )  times(  ,,, nm ααα =   

Therefore, the auxiliary equation has a real root α of multiplicity n . So that the 
differential equation has the following linearly independent solutions: 

                                              .,,,,  1 2  xnxxx exexxee αααα −
    

Therefore, the general solution of the differential equation is 

          xn
n

xxx excexcxececy αααα 12
321

−++++=   

So that the differential operator nD )( α−  

annihilates each of the functions  xnxxx exexxee  1 2   ,  , , , αααα −
  

Hence, as a consequence of the fact that the differentiation can be performed term by 
term, the differential operator nD )( α−   

annihilates the function xn
n

xxx excexcxececy αααα 12
321

−++++=   

Example 8 

Find an annihilator operator for the functions:(a) xexf 5)( = , (b) xx xeexg 22 64)( −=  

Solution      

(a)  Since ( ) .0555 555 =−=− xxx eeeD  

Therefore, the annihilator operator of function f  is given by 5−= DL  
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We notice that in this case 1  ,5 == nα . 

      

(b) Similarly        

   ( ) ( ) )6)(44( )4)(44(642 2222222 xxxx xeDDeDDxeeD +−−+−=−−  

or ( ) ( ) xxxxxxxx eexexeeexeeD 222222222 242448483232 642 −+−+−=−−  

or ( ) ( ) 0642 222 =−− xx xeeD  

Therefore, the annihilator operator of the function g is given by 2)2( −= DL  

We notice that in this case n== 2α . 

Example 9 Consider the differential equation ( )( ) 02 222 =++− yDD
n

βαα  

The auxiliary equation is ( )( ) 02 222 =++−
n

mm βαα ⇒ ( ) 02 222 =++− βααmm  

Therefore, when βα   ,  are real numbers, we have from the quadratic formula 

( )
βα

βααα
im ±=

+−±
=

2
442 222

 

Therefore, the auxiliary equation has the following two complex roots of multiplicity .n  

  βαβα imim −=+= 21    ,  

Thus, the general solution of the differential equation is a linear combination of the 
following linearly independent solutions 

  2 1cos ,  cos ,  cos ,  ,  cosx x x n xe x xe x x e x x e xα α α αβ β β β−
  

  2 1sin ,  sin ,  sin ,  ,  sinx x x n xe x xe x x e x x e xα α α αβ β β β−
  

Hence, the differential operator 

  ( )( ) nDD  2 222 βαα ++−  

is the annihilator operator of the functions 

  2 1cos ,  cos ,  cos ,  ,  cosx x x n xe x xe x x e x x e xα α α αβ β β β−
  

  2 1sin ,  sin ,  sin ,  ,  sinx x x n xe x xe x x e x x e xα α α αβ β β β−
  

Example 10 If we take  1  ,2  ,1 ==−= nβα   

Then the differential operator ( )( ) nDD  2 222 βαα ++−  becomes 522 ++ DD .   

Also, it can be verified that ( ) 02cos 522 =++ − xeDD x . 
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Therefore, the linear differential operator 522 ++ DD   

annihilates the functions
( )
( ) xexy

xexy
x

x

2sin 

 2cos

2

1
−

−

=

=
 

Now, consider the differential equation 

  ( ) 0 522 =++ yDD   

The auxiliary equation is 
im

mm
 21

0522

±−=⇒
=++  

Therefore, the functions 
( )
( ) xexy

xexy
x

x

2sin 

 2cos

2

1
−

−

=

=
 

are the two linearly independent  solutions of the differential equation 

( )2 2 5 0D D y+ + = , 

Therefore, the operator also annihilates a linear combination of 1y  and 2y ,  e.g.   

1 25 9 5 cos 2 9 sin 2x xy y e x e x− −− = − . 

Example 11  If we take 2  ,1  ,0 === nβα   

Then the differential operator ( )( ) nDD  2 222 βαα ++−  

Becomes 12)1( 2422 ++=+ DDD  

 Also, it can be verified that 

  ( ) 0cos 12 24 =++ xDD   

  ( ) 0  sin 12 24 =++ xDD  

and  

  ( ) 0cos 12 24 =++ xxDD  

  ( ) 0sin 12 24 =++ xxDD  

Therefore, the linear differential operator 

  12 24 ++ DD   
annihilates the functions 

xxxx
xx

sin   ,cos
sin        ,cos
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Example 12 Taking 1n  ,0 ==α , the operator  ( )( ) nDD  2 222 βαα ++−  becomes 

22 βD +  

Since  ( ) 0 cos coscos 2222 =+−=+ xxβxβD ββββ  

 ( ) 0 sin sin sin 2222 =+−=+ xxxββD ββββ  

Therefore, the differential operator annihilates the functions 
  xxgxxf  sin)(    , cos)( ββ ==  

Note that  
 If a linear differential operator with constant coefficients is such that 

    ( ) 01 =yL , ( ) 02 =yL  

i.e. the operator L annihilates the functions 1y and 2y . Then the operator L  
annihilates their linear combination. 

( ) ( )[ ] 02211 =+ xycxycL .  

This result follows from the linearity property of the differential operator L . 

 

 Suppose that 1L and 2L  are linear operators with constant coefficients such that 
    ( ) ( ) 0     ,0 2211 == yLyL  

and    ( ) ( ) 0     ,0 1221 ≠≠ yLyL  

then the product of these differential operators 21LL  annihilates the linear sum 

 ( ) ( )xyxy 21 +  

So that    ( ) ( )[ ] 02121 =+ xyxyLL  

  

To demonstrate this fact we use the linearity property for writing 

    ( ) ( ) ( )2211212121 yLLyLLyyLL +=+  

  

Since   1221 LLLL =  

 therefore  ( ) ( ) ( )2211122121 yLLyLLyyLL +=+  

 or   ( ) )]([)]([ 2211122121 yLLyLLyyLL +=+  

 But we know that ( ) ( ) 0     ,0 2211 == yLyL  

 Therefore  ( ) 0]0[]0[ 122121 =+=+ LLyyLL  
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Example 13  Find a differential operator that annihilates the function
xxxf 3sin67)( +−=  

Solution Suppose that xxxxy 3sin6)(y   ,7)( 21 =−=  

  ⇒
( )

( ) 03sin9)()9(

      0         7          )(
2

2
2

2
1

2

=+=+

=−=

xDxyD

xDxyD
 

Therefore, )9( 22 +DD  annihilates the function ).(xf  

Example 14 Find a differential operator that annihilates the function 
3( ) x xf x e xe−= +  

Solution Suppose that 3
1 2( ) ,    y ( )x xy x e x xe−= =  

  ⇒
( ) ( )
( ) ( ) .01    1

  ,0    3      3
2

2
2

3
1

=−=−

=+=+ −

x

x

xeDyD

eDyD
 

Therefore, the product of two operators ( )( )213 −+ DD  

annihilates the given function  xx xeexf += −3)(  

Note that  
 The differential operator that annihilates a function is not unique. For example,    

  0 )5( 5 =− xeD ,  

( ) ( ) ,0 1 5 5 =+− xeDD  

( ) 0 5 52 =− xeDD  

Therefore, there are 3 annihilator operators of the functions, namely   
  ( )5−D , ( ) ( )1 5 +− DD , ( ) 25 DD −   

 When we seek a differential annihilator for a function, we want the operator of 
lowest possible order that does the job. 

18.4 Exercise 
Write the given differential equation in the form ( ) ( ),xgyL = where L is a differential 
operator with constant coefficients. 

1. xy
dx
dy sin95 =+  

2. 384 +=+ xy
dx
dy  
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3. x
dx
dy

dx
yd

dx
yd 454 2

2

3

3
=+−  

4. xy
dx
dy

dx
yd

dx
yd sin1672 2

2

3

3
−=−+−  

 
Factor the given differentiable operator, if possible. 

5. 49 2 −D  
6. 52 −D  
7. 10132 23 +−+ DDD  
8. 168 24 +− DD  

 

Verify that the given differential operator annihilates the indicated functions 

9. 2412 x/e;   yD =−  

10. x x-;    yD 8sin58cos264  4 =+  

 

Find a differential operator that annihilates the given function. 

11. xxex 63+  
12. xsin1+  
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19 Undetermined Coefficients(Annihilator Operator 

Approach) 
The method of undetermined coefficients that utilizes the concept of annihilator operator 
approach is also limited to non-homogeneous linear differential equations 

 That have constant coefficients, and  
 Where the function )(xg  has a specific form. 

The form of )(xg :The input function )(xg  has to have one of the following forms: 

 A constant function k .  
 A polynomial function  

 An exponential function xe  
 The trigonometric functions ) cos(  ), sin( xx ββ   
 Finite sums and products of these functions. 

Otherwise, we cannot apply the method of undetermined coefficients. 

19.1 Solution Method 
Consider the following non-homogeneous linear differential equation with constant 
coefficients of order n  

  )(011

1

1 xgya
dx
dya

dx
yda

dx
yda n

n

nn

n

n =++++ −

−

−   

If L  denotes the following differential operator  

   01
1

1 aDaDaDaL n
n

n
n ++++= −

−   

Then the non-homogeneous linear differential equation of order n  can be written as  

                                     )()( xgyL =   

The function )(xg should consist of finite sums and products of the proper kind of 
functions as already explained.   

The method of undetermined coefficients, annihilator operator approach, for finding a 
particular integral of the non-homogeneous equation consists of the following steps: 
Step 1 Write the given non-homogeneous linear differential equation in the form 
   )()( xgyL =   

Step 2 Find the complementary solution cy  by finding the general solution of the 
 associated homogeneous differential  equation:       

0)( =yL  

Step 3 Operate on both sides of the non-homogeneous equation with a differential 
 operator 1L  that annihilates the function g(x). 
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Step 4 Find the general solution of the higher-order homogeneous differential equation 

0)(1 =yLL  

Step 5 Delete all those terms from the solution in step 4 that are duplicated in the 
 complementary solution cy , found in step 2.  

Step 6 Form a linear combination py  of the terms that remain. This is the form of a 
 particular solution of the non-homogeneous differential equation 
   )((y) xgL =    

Step 7 Substitute py  found in step 6 into the given non-homogeneous linear differential  
 equation  
   )()( xgyL =   

 Match coefficients of various functions on each side of the equality and solve the 
 resulting system of equations for the unknown coefficients in py . 

Step 8 With the particular integral found in step 7, form the general solution of the given 
 differential equation as: pc yyy +=   

Example 1  Solve 2
2

2

423 xy
dx
dy

dx
yd

=++ .                                              

Solution:    

Step 1 Since   yD
dx

ydDy
dx
dy 2

2

2
  , ==  

Therefore, the given differential equation can be written as 

    ( ) 22 4  23 xyDD =++  

Step 2 To find the complementary function cy , we consider the associated homogeneous 
differential equation 

    ( ) 0  23 2 =++ yDD  

The auxiliary equation is 
2 3 2 ( 1)( 2) 0
              1, 2

m m m m
m

+ + = + + =
⇒ = − −

 

Therefore, the auxiliary equation has two distinct real roots.  

    11 −=m , 22 −=m , 

 Thus, the complementary function is given by xecxeccy 2
21

−+−=  
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Step 3 In this case the input function is 

    24)( xxg =  

Further    04)( 233 == xDxgD  

Therefore, the differential operator 3D annihilates the function g . Operating on both 
sides of the equation in step 1, we have 

    
0 )23(

4)23(
23

2323

=++

=++

yDDD

xDyDDD
 

This is the homogeneous equation of order 5.  Next we solve this higher order equation. 

Step 4 The auxiliary equation of the differential equation in step 3 is 

0)23( 23 =++ mmm    

   0)2)(1(3 =++ mmm  

  2 ,1 ,0 ,0 ,0 −−=m  

Thus its general solution of the differential equation must be 
xx ececxcxccy 2

54
2

321
−− ++++=                                     

Step 5 The following terms constitute cy   

   xx ecec 2
54

−− +   

Therefore, we remove these terms and the remaining terms are  

    2
321 xcxcc ++  

Step 6 This means that the basic structure of the particular solution py  is 

2CxBxAy p ++= ,                                                   

Where the constants 1c , 2c  and 3c  have been replaced, with A, B, and C, respectively.  

Step 7 Since    2CxBxAy p ++=  

,2CxBy p +=′       

Cy p 2=′′  

 Therefore  222263223 CxBxACxBCyyy ppp +++++=+′+′′  

or   )232()62()2(23 2 CBAxCBxCyyy ppp +++++=+′+′′  
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Substituting into the given differential equation, we have  

   004)232()62()2( 22 ++=+++++ xxCBAxCBxC  

Equating the coefficients of xx ,2  and the constant terms, we have  

0232
062
42

 C  BA
  C         B 
            C         

=++
=+
=

 

Solving these equations, we obtain  
    2C   ,6   ,7 =−== BA   

 Hence    2267 xxy p +−=  

Step 8 The general solution of the given non-homogeneous differential equation is  
    pc yyy +=  

    22
21 267 xxececy xx +−++= −− . 

Example 2 Solve xe
dx
dy

dx
yd x  sin483 3
2

2
+=−                                                            

Solution:      

Step 1   Since   yD
dx

ydDy
dx
dy 2

2

2
  , ==  

Therefore, the given differential equation can be written as 

    ( ) xeyDD x sin48 3 32 +=−  

 

Step 2 We first consider the associated homogeneous differential equation to find cy    

The auxiliary equation is 
    3 ,00)3( =⇒=− mmm  

Thus the auxiliary equation has real and distinct roots. So that we have 
x

c eccy 3
21 +=  

 

Step 3 In this case the input function is given by  

    xexg x sin48)( 3 +=  

Since    0) sin4)(1(  ,0)8)(3( 23 =+=− xDeD x  
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Therefore, the operators 3−D  and 12 +D  annihilate xe38  and x sin4 , respectively. So 
the operator )1)(3( 2 +− DD annihilates the input function ).(xg  This means that 

   0)sin8)(1)(3()()1)(3( 322 =++−=+− xeDDxgDD x  

 We apply )1)(3( 2 +− DD  to both sides of the differential equation in step 1 to obtain  

0)3)(1)(3( 22 =−+− yDDDD .                                  

This is homogeneous differential equation of order 5. 

Step 4 The auxiliary equation of the higher order equation found in step 3 is 

0)3)(1)(3( 22 =−+− mmmm  

     0)1()3( 22 =+− mmm  

   im    ,3  ,3  ,0 ±=⇒  

Thus, the general solution of the differential equation  

            xcxcxececcy xx  sin cos 54
3

3
3

21 ++++=                  

Step 5 First two terms in this solution are already present in cy   

xecc 3
21 +   

 Therefore, we eliminate these terms. The remaining terms are 

   xcxcxec x  sin cos 54
3

3 ++  

Step 6 Therefore, the basic structure of the particular solution py must be  

 xCxBAxey x
p sincos3 ++=  

The constants 4,3  cc and 5c have been replaced with the constants BA  , and C , 
respectively. 

Step 7 Since  xCxBAxey x
p sincos3 ++=  

Therefore  33 3 ( 3 )cos (3 )sinx
p py y Ae B C x B C x′′ ′− = + − − + −  

Substituting into the given differential equation, we have 

 3 33 ( 3 )cos (3 )sin 8 4sinx xAe B C x B C x e x+ − − + − = + . 

Equating coefficients of xe x cos ,3  and xsin , we obtain 

   43  ,03  ,83 =−=−−= CBCBA  

Solving these equations we obtain 
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   8 / 3,   6 / 5,   2 / 5A B C= = = −  

xxxey x
p sin

5
2cos

5
6

3
8 3 −+= . 

Step 8 The general solution of the differential equation is then 

3 3
1 2

8 6 2cos sin
3 5 5

x xy c c e xe x x= + + + − . 

Example 3  

Solve  
2

2 8 5 2 xd y y x e
dx

−+ = +   .           

Solution  
Step 1 The given differential equation can be written as 

   xexyD −+=+ 25)8( 2  

 

Step 2 The associated homogeneous differential equation is 

   0)8( 2 =+ yD  

Roots of the auxiliary equation are complex 

   im  22±=  

Therefore, the complementary function is  

   xcxcyc  22sin 22cos 21 +=  

Step 3 Since   0)1(   ,02 =+= −xeDxD   

Therefore the operators 2D  and 1+D annihilate the functions x5  and xe−2 .  We apply 
)1(2 +DD  to the non-homogeneous differential equation 

0)8)(1( 22 =++ yDDD .  

This is a homogeneous differential equation of order 5.  

 
Step 4 The auxiliary equation of this differential equation is  

    
im

mmm

 22 ,1 ,0 ,0

0)8)(1( 22

±−=⇒

=++  

Therefore, the general solution of this equation must be 

51 2 3 4cos2 2 sin 2 2 xy c x c x c c x c e−= + + + +  
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Step 5 Since the following terms are already present in cy  

   xcxc 22sin22cos 21 +  

Thus we remove these terms. The remaining ones are 

   xecxcc −++ 543  

 
Step 6 The basic form of the particular solution of the equation is  

   x
p CeBxAy −++=  

The constants 43,cc and 5c have been replaced with BA  , and C . 

Step 7 Since   x
p CeBxAy −++=  

Therefore  x
pp CeBxAyy −++=+′′ 9888  

Substituting in the given differential equation, we have 

   8 8 9 5 2x xA Bx Ce x e− −+ + = +  

Equating coefficients of xex −  , and the constant terms, we have 

   9/2  ,85 ,0 === C/BA  

Thus    x
p exy −+=

9
2

8
5  

 

Step 8 Hence, the general solution of the given differential equation is 

   pc yyy +=  

or   1 2
5 2cos 2 2 sin 2 2
8 9

xy c x c x x e−= + + + . 

Example 4  Solve   xxxy
dx

yd coscos2

2
−=+      

Solution:    
Step 1 The given differential equation can be written as 

    xxxyD coscos)1( 2 −=+  

Step 2 Consider the associated differential equation 
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   0)1( 2 =+ yD  

The auxiliary equation is  

012 =+m  im  ±=⇒  

Therefore  xcxcyc sincos 21 +=  

Step 3 Since   0)cos()1( 22 =+ xxD   
2 2( 1) cos 0  ;     0D x x+ = ≠   

Therefore, the operator 22 )1( +D annihilates the input function  

   xxx coscos −  

Thus operating on both sides of the non-homogeneous equation with 22 )1( +D , we have  

0)1()1( 222 =++ yDD    

or   0)1( 32 =+ yD  

This is a homogeneous equation of order 6. 

Step 4 The auxiliary equation of this higher order differential equation is 

   iiiiiimm −−−=⇒=+  , , , , ,0)1( 32   

Therefore, the auxiliary equation has complex roots i , and i− both of multiplicity 3. We 
conclude that 

xxcxxcxxcxxcxcxcy sincossincossincos 2
6

2
54321 +++++=  

Step 5 Since first two terms in the above solution are already present in cy    

xcxc sincos 21 +   

Therefore, we remove these terms. 

Step 6 The basic form of the particular solution is 

xExxCxxBxxAxy p sincossincos 22 +++=  

Step 7 Since    xExxCxxBxxAxy p sincossincos 22 +++=    

Therefore 

xEAxCBxCxxExyy pp sin)22(cos)22(sin4cos4 +−+++−=+′′  

Substituting in the given differential equation, we obtain 
  xxxxEAxCBxCxxEx coscossin)22(cos)22(sin4cos4 −=+−+++−                

Equating coefficients of xxxxx cos,sin,cos  and xsin , we obtain  
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022    ,122

0         4    ,1             4
=+−−=+

=−=
EACB

CE
 

Solving these equations we obtain 
   4/1  ,0  ,2/1  ,4/1 ==−== ECBA  

Thus   xxxxxxy p sin
4
1sin

2
1cos

4
1 2+−=  

Step 8 Hence the general solution of the differential equation is 

xxxxxxxcxcy sin
4
1sin

2
1cos

4
1sincos 2

21 +−++= . 

Example 5 Determine the form of a particular solution for  

xey
dx
dy

dx
yd x cos102 2
2

2
−=+−           

Solution 
Step 1 The given differential equation can be written as 

  xeyDD x cos10)12( 22 −=+−   

Step 2 To find the complementary function, we consider  

02 =+′−′′ yyy   

The auxiliary equation is  

0122 =+− mm ⇒ 1 ,10)1( 2 =⇒=− mm  

The complementary function for the given equation is 
xx

c xececy 21 +=  

Step 3 Since 0cos)54( 22 =++ − xeDD x  

Applying the operator )54( 2 ++ DD  to both sides of the equation, we have 

0)12)(54( 22 =+−++ yDDDD            

This is homogeneous differential equation of order 4.                        

Step 4 The auxiliary equation is 

    
1 ,1 ,2  

0)12)(54( 22

im
mmmm

±−=⇒
=+−++  

Therefore, general solution of the 4th order homogeneous equation is   
2 2

1 2 3 4cos sinx x x xy c e c xe c e x c e x− −= + + +  
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Step 5 Since the terms xx xecec 21 +  are already present in cy , therefore, we remove these 

and the remaining terms are xecxec xx sincos 2
4

2
3

−− +  

Step 6 Therefore, the form of the particular solution of the non-homogeneous equation is  

         ∴      xBexAey xx
p sincos 22 −− +=  

Note that the steps 7 and 8 are not needed, as we don’t have to solve the given 
differential equation. 

Example 6  Determine the form of a particular solution for  

xx eexxx
dx
dy

dx
yd

dx
yd 5222

2

2

3

3
346544 ++−=+− .                 

Solution: 
Step 1 The given differential can be rewritten as 

   ( ) xx eexxxyDDD 522223 3465 44 ++−=+−  

Step 2 To find the complementary function, we consider the equation 

( ) 0 44 23 =+− yDDD   

 The auxiliary equation is  

044 23 =+− mmm  

0)44( 2 =+− mmm  

2 ,2 ,00)2( 2 =⇒=− mmm  

Thus the complementary function is 

    xx
c xececcy 2

3
2

21 ++=  

Step 3 Since   xx eexxxxg 5222 3465)( ++−=  

Further   0)65( 23 =− xxD  

0)2( 223 =− xexD  

0)5( 5 =− xeD  

Therefore the following operator must annihilate the input function )(xg . Therefore, 
applying the operator )5()2( 33 −− DDD  to both sides of the non-homogeneous 
equation, we have 

0)4)(5()2( 2333 =+−−− yDDDDDD  

or         0)5()2( 54 =−− yDDD  

 
                                                © Copyright Virtual University of Pakistan                                                 164 



Differential Equations (MTH401)                                                                                    VU 
 

This is homogeneous differential equation of order 10. 

Step 4 The auxiliary equation for the 10th order differential equation is 

   
5 ,2 ,2 ,2 ,2 ,2 ,0 ,0 ,0 ,0

0)5()2( 54

=⇒
=−−

m
mmm  

 Hence the general solution of the 10th order equation is  

  xxxxxx ecexcexcexcxececxcxcxccy 5
10

24
9

23
8

22
7

2
6

2
5

3
4

2
321 +++++++++=    

Step 5 Since the following terms constitute the complementary function cy , we remove 

these    xx xececc 2
6

2
51 ++  

Thus the remaining terms are 

  xxxx ecexcexcexcxcxcxc 5
10

24
9

23
8

22
7

3
4

2
32 ++++++  

Hence, the form of the particular solution of the given equation is  
2 3 2 2 3 2 4 2 5x x x x

py Ax Bx Cx Ex e Fx e Gx e He= + + + + + +
\ 

19.2 Exercise 

Solve the given differential equation by the undetermined coefficients. 

1. 29572 −=+′−′′ yyy  
2. 543 −=′+′′ xyy  
3. xeyyy 6522 =+′+′′  
4. 8sin3cos44 −+=+′′ xxyy  
5. xexyyy −=+′+′′ 22  
6. xxyy sincos4 −=+′′  
7. 7+−=−′+′′−′′′ − xx exeyyyy  
8. xxyy sin42cos8 −=+′′ , 1)2/( −=πy , 0)2/( =′ πy  
9. 52 +=′+′′−′′′ xxeyyy , y(0)=2,  2)0( =′y , 1)0( −=′′y  
10. xexyy +=′′′−)4( , y(0)=0, 0)0( =′y , 0)0( =′′y , 0)0( =′′′y  
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20   Variation of Parameters 
Recall  

 That a non-homogeneous linear differential equation with constant coefficients is 
an equation of the form 

 )(011

1
1 xgya

dx
dya

dx
yda

dx
yda

n

n
nn

n
n =++++

−

−

−   

 The general solution of such an equation is given by 

  General Solution = Complementary Function + Particular Integral 
 Finding the complementary function has already been completely discussed. 
 In the last two lectures, we learnt how to find the particular integral of the non-

homogeneous equations by using the undetermined coefficients.  
 That the general solution of a linear first order differential equation of the form 

  ( ) ( )xfyxP
dx
dy

=+  

 is given by  ( ) 1.  Pdx Pdx Pdxy e e f x dx c e− −∫ ∫ ∫= +∫  

Note that 
 In this last equation, the 2nd term  

    ∫−= Pdxecyc 1  

 is solution of the associated homogeneous equation: 

  ( ) 0=+ yxP
dx
dy  

 Similarly, the 1st  term 

  ( )dxxfePdxey Pdx
p ..∫ ∫∫= −  

 is a particular solution of the first order non-homogeneous linear  differential 
 equation.  

 Therefore, the solution of the first order linear differential equation can be written 
in the form 

   pc yyy +=  

In this lecture, we will use the variation of parameters to find the particular integral of the 
non-homogeneous equation. 

The Variation of Parameters 
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20.1 First order equation 
The particular solution py  of the first order linear differential equation is given by 

   ( )dxxfePdxey Pdx
p ..∫ ∫∫= −  

This formula can also be derived by another method, known as the variation of 
parameters. The basic procedure is same as discussed in the lecture on construction of a 
second solution 

Since     ∫−
=

Pdxey1  

is the solution of the homogeneous differential equation 

   ( ) ,0=+ yxP
dx
dy  

and the equation is linear. Therefore, the general solution of the equation is 

  ( )xycy 11=  

The variation of parameters consists of finding a function ( )xu1  such that  

  ( ) ( )1 1 py u x y x=  

is a particular solution of the non-homogeneous differential equation  

   ( ) ( ) dy P x y f x
dx

+ =  

Notice that the parameter 1c  has been replaced by the variable 1 u . We substitute py in 

the given equation to obtain  

  ( ) ( )xf
dx
duyyxP

dx
dyu =+



 + 1

11
1

1  

Since 1y  is a solution of the non-homogeneous differential equation. Therefore we must 
have  

  ( )1
1 0dy P x y

dx
+ =  

So that we obtain 

∴  ( )1
1

duy f x
dx

=  

This is a variable separable equation. By separating the variables, we have  
( )
( )1

1

f x
du dx

y x
=  
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Integrating the last expression w.r.to x , we obtain 

  
( ) ( )1

1

( )
Pdxf x

u x dx e f x dx
y

⌠


⌡

∫= = ⋅∫  

Therefore, the particular solution py  of the given first-order differential equation is .  

                  1 1( )y u x y=  

or  ( )∫ ∫∫−= dxxfPdxePdxey p  ..  

  
( )
( )1

1

f x
u dx

y x
=

⌠

⌡

 

20.2 Second Order Equation 
Consider the 2nd order linear non-homogeneous differential equation 

   ( ) ( ) ( ) ( )xgyxayxayxa =+′+′′ 012   

By dividing with )(2 xa , we can write this equation in the standard form 

  ( ) ( ) ( )xfyxQyxPy =+′+′′  

The functions ( ) ( ) ( ),    P x Q x f xand  are continuous on some interval I . For the 
complementary function we consider the associated homogeneous differential equation 

  ( ) ( ) 0=+′+′′ yxQyxPy  

Complementary function 

Suppose that 21  and yy  are two linearly independent solutions of the homogeneous 
equation. Then 1 2and  y y  form a fundamental set of solutions of the homogeneous 
equation on the interval I . Thus the complementary function is  

  ( ) ( )xycxycyc 2211 +=  

Since 21  and yy  are solutions of the homogeneous equation. Therefore, we have 

  ( ) ( ) 0  111 =+′+′′ yxQyxPy  

  ( ) ( ) 0  222 =+′+′′ yxQyxPy  

 Particular Integral 

For finding a particular solution y p , we replace the parameters 1c and 2c in the 

complementary function with the unknown variables )(1 xu  and )(2 xu . So that the 
assumed particular integral is 
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  ( ) ( ) ( ) ( )1 1 2 2py u x y x u x y x= +  

Since we seek to determine two unknown functions 1u and 2u , we need two equations 
involving these unknowns. One of these two equations results from substituting the 
assumed py in the given differential equation. We impose the other equation to simplify 
the first derivative and thereby the 2nd derivative of py .   

 2211221122221111 yuyuyuyuyuyuuyyuy p ′+′+′+′=′+′+′+′=′  

To avoid 2nd derivatives of 1u  and 2u , we impose the condition 

  02211 =′+′ yuyu  

Then  2211 yuyuy p ′+′=′  

So that   

 22221111 yuyuyuyuy p ′′+′′+′′+′′=′′  

Therefore 

 
2211̀2211

22221111

                                             

                              

yQuyQuyPuyPu

yuyuyuyuyQyPy ppp

++′+′+

′′+′′+′′+′′=+′+′′
 

Substituting in the given non-homogeneous differential equation yields    

 

              )(            2211̀221122221111 xfyQuyQuyPuyPuyuyuyuyu =++′+′+′′+′′+′′+′′  

 

or            )(][]  [ 221122221111 xfyuyuQyyPyuyQyPyu =′′+′′++′+′′++′+′′    

 

Now making use of the relations 

  ( ) ( ) 0  111 =+′+′′ yxQyxPy  

  ( ) ( ) 0  222 =+′+′′ yxQyxPy  

we obtain 

  ( )xfyuyu =′′+′′ 2211  

Hence 1u and 2u must be functions that satisfy the equations 

  02211 =′+′ yuyu  

  ( )xfyuyu =′′+′′ 2211          

By using the Cramer’s rule, the solution of this set of equations is given by     
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W
Wu 1

1 =′ ,  
W
Wu 2

2 =′  

WhereW , 1W  and 2W  denote the following determinants  

 ( ) ( )
2 11 2

1 2
2 11 2

0 0
,       ,     

y yy y
W W W

f x y y f xy y
= = =

′ ′′ ′
 

The determinant W  can be identified as the Wronskian of the solutions 1y  and 2y . Since 
the solutions 21  and yy  are linearly independent on I . Therefore  

 ( ) ( )( ) .    ,0, 21 IxxyxyW ∈∀≠  

Now integrating the expressions for 1u′  and 2u′ , we obtain the values of 1u and 2u , hence 
the particular solution of the non-homogeneous linear differential equation.  

20.3 Summary of the Method 
To solve the 2nd order non-homogeneous linear differential equation 

 ( ),012 xgyayaya =+′+′′  

using the variation of parameters, we need to perform the following steps: 

 

Step 1 We find the complementary function by solving the associated homogeneous 
differential equation  

 0012 =+′+′′ yayaya  

Step 2 If the complementary function of the equation is given by  

 2211 ycyccy +=   

then 1y  and 2y  are two linearly independent solutions of the homogeneous differential 
equation. Then compute the Wronskian of these solutions. 

 
21

21

yy
yy

W
′′

=  

Step 3 By dividing with 2a , we transform the given non-homogeneous equation into the 
standard form 

 ( ) ( ) ( )xfyxQyxPy =+′+′′   

and we identify the function ( )xf .  

Step 4 We now construct the determinants 21  and WW  given by 

 
2

2
1 )(

0
yxf
y

W
′

= ,  
)(

0

1

1
2 xfy

y
W

′
=  
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 Step 5 Next we determine the derivatives of the unknown variables 1u  and 2u  through 
the relations  

 
W
Wu

W
Wu 2

2
1

1     , =′=′  

 Step 6 Integrate the derivatives 21   and  uu ′′  to find the unknown variables 1u  and 2u . So 
that 

 1 2
1 2  ,     W Wu d x u d x 

W W
⌠ ⌠
  
⌡ ⌡

= =  

Step 7 Write a particular solution of the given non-homogeneous equation as 
 2211 yuyupy +=  

Step 8 The general solution of the differential equation is then given by 

 22112211   yuyuycycpycyy +++=+= . 

20.3.1 Constants of Integration 
We don’t need to introduce the constants of integration, when computing the indefinite 
integrals in step 6 to find the unknown functions of 1 2  and u u . For, if we do introduce 
these constants, then   

 1 1 1 2 1 2( )   ( )py u a y u b y= + + +  

So that the general solution of the given non-homogeneous differential equation is   

 ( ) ( ) 2121112211 ybuyauycycyyy pc +++++=+=  

or ( ) ( )1 1 1 2 1 2 1 1 2 2y c a y c b y u y u y= + + + + +  

If we replace 11 ac + with 1C and 2 1c b+ with 2C , we obtain 

 22112211 yuyuyCyCy +++=  

This does not provide anything new and is similar to the general solution found in step 8, 
namely 

  1 1 2 2 1 1 2 2y c y c y u y u y= + + +  

Example 1 

Solve  ( ) 24 4 1 .xy y y x e′′ ′− + = +  

Solution:  
 
Step 1 To find the complementary function 
  044 =+′−′′ yyy  
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Put   mxemymxmeymxey 2,, =′′=′=   

Then the auxiliary equation is 

  0442 =+− mm  

  ( ) 02 2 =−m 2 ,2=⇒ m  

Repeated real roots of the auxiliary equation 

  2 2
1 2    x x

cy c e c xe= +  

Step 2 By the inspection of the complementary function cy , we make the identification   

   xx xeyey 2
2

2
1  and ==  

 Therefore ( ) ( ) xe
exee

xee
xeeWyyW x

xxx

xx
xx ∀≠=

+
==  ,0

22
, , 4

222

22
22

21  

 
Step 3 The given differential equation is  

  ( ) xexyyy 2144 +=+′−′′  

Since this equation is already in the standard form 

  ( ) ( ) ( )xfyxQyxPy =+′+′′  

Therefore, we identify the function )(xf as 

  ( ) ( ) xexxf 2 1+=  

Step 4 We now construct the determinants  

  
( ) ( )

2
4

1 2 2 2

0
1

1 2

x
x

x x x

xe
W x xe

x e xe e
= = − +

+ +
 

  
( ) ( )

2
4

2 2 2

0
1

2 1

x
x

x x

e
W x e

e x e
= = +

+
 

Step 5 We determine the derivatives of the functions 1u  and 2u  in this step  

  

( )

( ) 1 1

1

4

4
2

2

2
4

4
1

1

+=
+

==′

−−=
+

−==′

x
e

ex
W
Wu

xx
e

xex
W
Wu

x

x

x

x

 

Step 6 Integrating the last two expressions, we obtain  
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.

2
      )1(

   
23

)(

2

2

23
2

1

xxdxxu

xxdxxxu

+=+=

−−=−−=

∫

∫
 

Remember! We don’t have to add the constants of integration. 

Step 7 Therefore, a particular solution of then given differential equation is 

  xxexxxexx
py 2

2

22 
2

2

3

3














++













−−=  

or  xexx
py 2

2

2

6

3














+=  

Step 8 Hence, the general solution of the given differential equation is  

  
3 2

2
1 2

2 2
6 2

x x xx xy y y c e c xe ec p
 

= + = + + + 
 

 

 

Example 2 

Solve  .3csc364 xyy =+′′  

Solution:  
Step 1 To find the complementary function we solve the associated homogeneous 
differential equation 
   090364 =+′′⇒=+′′ yyyy  

The auxiliary equation is  

  imm  3092 ±=⇒=+  

Roots of the auxiliary equation are complex. Therefore, the complementary function is 

  xcxccy 3sin3cos 21 +=  

Step 2 From the complementary function, we identify  

   3sin  ,3cos 21 xyxy ==  

as two linearly independent solutions of the associated homogeneous equation. Therefore 

       ( ) 3
3cos33sin3

3sin3cos
3sin,3cos =

−
=

xx
xx

xxW  

Step 3 By dividing with 4 , we put the given equation in the following standard form   
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  .3csc
4
19 xyy =+′′  

So that we identify the function )(xf as 

  ( ) xxf 3csc
4
1

=  

 

 

Step 4 We now construct the determinants 1W  and 2W  

 

 1

0 sin 3
1 1csc3 sin 31 4 4csc3 3cos3

4

x
W x x

x x
= = − ⋅ = −  

 2

cos3 0
1 cos3

1 4 sin 33sin 3 csc3
4

x
xW
xx x

= =
−

  

Step 5 Therefore, the derivatives 1u′ and 2u′  are given by 

 
x
x

W
Wu

W
Wu

3sin
3cos

12
1    , 

12
1 2

2
1

1 ==′−==′  

Step 6 Integrating the last two equations w.r.to x , we obtain 

 xuxu 3sinln
36
1    and    

12
1

21 =−=  

Note that no constants of integration have been added. 

Step 7 The particular solution of the non-homogeneous equation is 

 ( )1 1cos3 sin 3 ln sin 3
12 36

y x x x xp = − +  

Step 8 Hence, the general solution of the given differential equation is 

                ( ) xxxxxcxcpycyy 3sinln3sin
36
13cos

12
13sin3cos 21 +−+=+=  

Example 3 

Solve  .1
x

yy =−′′  

Solution:  
Step 1 For the complementary function consider the associated homogeneous equation  
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  0=−′′ yy  

To solve this equation we put 

   mxmxmx emyemyey 2,  , =′′=′=  

Then the auxiliary equation is:  

  1012 ±=⇒=− mm  

The roots of the auxiliary equation are real and distinct. Therefore, the complementary 
function is 

  xecxeccy −+= 21  

 
Step 2 From the complementary function we find 

  xeyxey −== 21    ,  

The functions 1y  and 2y  are two linearly independent solutions of the homogeneous 
equation. The Wronskian of these solutions is  

  ( ) 2
  

      , −=
−

= −

−
−

xx

xx
xx

ee
eeeeW  

 
Step 3 The given equation is already in the standard form 

  ( ) ( ) ( )y p x y Q x y f x′′ ′+ + =  

Here   
x

xf 1)( =  

 

Step 4 We now form the determinants 

  

)/1( 
 /1 

0    W

)/1(
 /1

0 W

2

1

xe
xe

e

xe
ex
e

x
x

x

x
x

x

==

−=
−

= −
−

−

 

Step 5 Therefore, the derivatives of the unknown functions 1u and 2u are given by 

  ( )
x

exe
W
W

u
xx

22
/11

1
−−

=
−

−==′  
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  ( )
x

exe
W
Wu

xx

22
/12

2 −=
−

==′  

Step 6 We integrate these two equations to find the unknown functions 1u  and 2u . 

  1
1
2

xeu dx
x

−⌠


⌡

= ,   2
1
2

xeu dx
x

⌠


⌡

= −  

 

 

The integrals defining 21  and uu  cannot be expressed in terms of the elementary functions 
and it is customary to write such integral as: 

  1 2
1 1,     -
2 2

x xt t

xx

e eu dt u dt
t t

−⌠ ⌠
 
  ⌡⌡

= =




 

Step 7 A particular solution of the non-homogeneous equations is 

  
⌡

⌠
⌡
⌠−= −

−x

x

x

x

t
x

t
x

p dt
t

eedt
t

eey




2
1

2
1  

Step 8 Hence, the general solution of the given differential equation is 

 ⌡
⌠−⌡

⌠++=+= −
−

−
x

x

t
x

x

x

t
xxx dt

t
eedt

t
eeececpycyy



2
1

2
1

21  
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21 Variation of Parameters Method for Higher-Order 
Equations 

The method of the variation of parameters just examined for second-order differential 
equations can be generalized for an   nth-order equation of the type. 

 )(011

1
1 xgya

dx
dya

dx
yda

dx
yda n

n
nn

n
n =++++

−

−

−   

The application of the method to nth order differential equations consists of performing 
the following steps.  
Step 1 To find the complementary function we solve the associated homogeneous 
equation 

 
1

1 1 01 0
n n

n nn n
d y d y dya a a a y
dx dx dx

−

− −+ + + + =  

Step 2 Suppose that the complementary function for the equation is 

 nn ycycycy +++= 2211  

Then nyyy ,,, 21  are n  linearly independent solutions of the homogeneous equation. 
Therefore, we compute Wronskian of these solutions. 

 ( )

1 2

1 2

1 2 3

( 1) ( 1) ( 1)
1 2

, , , ,

n

n

n

n n n
n

y y y
y y y

W y y y y

y y y− − −

′ ′ ′

=





    

   



 

Step 4 We write the differential equation in the form 

  ( ) ( ) ( ) ( ) ( ) ( )1
1 1

n n
ny P x y P x y P x y f x−

− ′+ + + + =


  

and compute the determinants kW ; 1, 2, ,k n=  ; by replacing the kth  column of W by 

the column    

)(

0

0

0

xf


 

Step 5 Next we find the derivatives nuuu ′′′ , , , 21  of the unknown functions  nuuu ,,, 21   
through the relations 
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    nk
W
W

u k
k  , ,2 ,1       , ==′  

Note that these derivatives can be found by solving the n equations 

   

( ) ( ) ( ) ( )xfuyuyuy

uyuyuy
uyuyuy

n
n

n
nn

nn

nn

=′++′+′

=′′++′′+′′
=′++′+′

−−− 1
2

1
21

1
1

2211

2211

            

                                                             
0                                         
0                                         









 

 

Step 6 Integrate the derivative functions computed in the step 5 to find the functions ku  

   nkdx
W
W

u k
k  , ,2 ,1       , =⌡

⌠=  

Step 7 We write a particular solution of the given non-homogeneous equation as  

 ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2p n ny u x y x u x y x u x y x= + + +  

Step 8 Having found the complementary function cy  and the particular integral py , we 

write the general solution by substitution in the expression: pc yyy +=  

Note that   

 The first 1−n equations in step 5 are assumptions made to simplify the first 1−n
derivatives of py . The last equation in the system results from substituting the 

particular integral py  and its derivatives into the given nth  order linear 
differential equation and then simplifying. 

 Depending upon how the integrals of the derivatives ku′  of the unknown functions 
are found, the answer for py  may be different for different attempts to find py  
for the same equation. 

 When asked to solve an initial value problem, we need to be sure to apply the 
initial conditions to the general solution and not to the complementary function 
alone, thinking that it is only cy  that involves the arbitrary constants.  

Example 1 Solve the differential equation by variation of parameters. 
3

3 cscd y dy x
dxdx

+ =

Solution: Step1  The associated homogeneous equation is 03

3
=+

dx
dy

dx
yd  

Auxiliary equation 03 =+ mm ( ) 01 2 =+⇒ mm ⇒ ,0=m    im  ±=  

Therefore the complementary function is 1 2 3cos siny c c x c xc = + +  
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Step 2: Since 1 2 3cos siny c c x c xc = + + ⇒ 1 2 31,     cos ,     siny y x y x= = =  

So that the Wronskian of the solutions 321  and , yyy  

 ( )1 2 3

1 cos sin
, , 0 sin cos

0 cos sin

x x
W y y y x x

x x
= −

− −
 

By the elementary row operation 31 RR + , we have 

        
sincos0

cossin0
001

xx
xx

−−
−=  

       ( ) 01cossin 22 ≠=+= xx  

Step 3: The given differential equation is already in the required standard form 

  0  0 cscy y y y x′′′ + ′′ + ′ + =  

Step 4: Next we find the determinants 321  and , WWW by respectively, replacing 1st, 2nd 

and 3rd column of W by the column
0
0

csc x
 

 
xxx

xx
xx

W
sincoscsc

cossin0
sincos0

1

−−
−=  

      ( )2 2csc  sin cos cscx x x x= + =  

2

1 0 sin
 0 0 cos
0 csc sin

x
W x

x x
=

−
  

       
0 cos

 cos csc cot
csc sin

x
x x x

x x
= = − = −

−
 

 

and 3

1 cos 0
 0 sin 0
0 cos csc

x
W x

x x
= −

−

sin 0
sin csc 1

cos csc
x

x x
x x

−
= = − = −

−
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Step 5: We compute the derivatives of the functions 321  and   , uuu  as: 

  x
W
Wu csc1

1 ==′  

  x
W
Wu cot2

2 −==′  

  13
3 −==′

W
Wu  

Step 6: Integrate these derivatives to find 321  and , uuu  

  ⌡
⌠ −=== ∫ xxxdxdx

W
Wu cotcsclncsc1

1  

  2
2

coscot ln sin
sin

W xu dx xdx dx x
W x

⌠ ⌠
 


⌡⌡

−
= = − = = −∫  

  ⌡
⌠ −=−== ∫ xdxdx

W
Wu 13

3  

Step 7: A particular solution of the non-homogeneous equation is 

  ln csc cot cos ln sin siny x x x x x xp = − − −  

Step 8: The general solution of the given differential equation is: 

1 2 3cos sin ln csc cot cos  ln sin siny c c x c x x x x x x x= + + + − − −  

Example 2 
Solve the differential equation by variation of parameters. 
  xyy tan=′+′′′   

Solution 
Step 1:  We find the complementary function by solving the associated homogeneous 
equation 
  0=′+′′′ yy  

Corresponding auxiliary equation is 

  03 =+ mm ( ) 01 2 =+⇒ mm  

  ,0=m    im  ±=  

Therefore the complementary function is 

  xcxcccy sincos 321 ++=  

Step 2: Since    
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  xcxcccy sincos 321 ++=  

Therefore  xyxyy sin    ,cos    ,1 321 ===  

Now we compute the Wronskian of 321  and   , yyy  

  ( )1 2 3

1 cos sin
, , 0 sin cos

0 cos sin

x x
W y y y x x

x x
= −

− −
 

By the elementary row operation 31 RR + , we have 

        
sincos0

cossin0
001

xx
xx

−−
−=  

       ( ) 01cossin 22 ≠=+= xx  

Step 3: The given differential equation is already in the required standard form 
  xyyyy  tan0  0 =⋅+′+′′⋅+′′′  

Step 4: The determinants 321  and , WWW are found by replacing the 1st, 2nd and 3rd 
column of W by the column   

    
xtan

0
0

 

Therefore 

 1

0 cos sin
0 sin cos

tan cos sin

x x
W x x

x x x
= −

− −
 

      ( )2 2tan  cos sin tanx x x x= + =  

                             2

1 0 sin
0 0 cos
0 tan sin

x
W x

x x
=

−
 ( ) xxx sintancos01 −=−=  

and 
xx

x
x

W
tancos0

0sin0
0cos1

3
−
−= ( ) xxxx tansin0tansin1 −=−−=  

Step 5: We compute the derivatives of the functions 321  and   , uuu . 
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  x
W
Wu tan1

1 ==′  

  2
2 sinWu x

W
′ = = −  

  xx
W
W

u tansin3
3 −==′  

Step 6:  We integrate these derivatives to find 321  and , uuu  

 1
1

sintan  ln cos
cos

W xu dx x dx dx x
W x

⌠ ⌠
 


⌡⌡

= = = − − = −∫  

 2
2 sin  cosWu dx x dx x

W
⌠


⌡

= = − =∫  

 ( ) ( )
( )

3
3

2

2 2

sin tan

sinsin sin sec
cos

cos 1 sec cos sec sec

cos sec cos sec

sin ln sec tan

Wu dx x xdx
W

xx dx x dx
x

x xdx x x x dx

x x dx xdx xdx

x x x

⌠


⌡

⌠


⌡

= = −

= − = −

= − = −

= − = −

= − +

∫

∫

∫ ∫
∫ ∫ ∫

 

Step 7:  Thus, a particular solution of the non-homogeneous equation 
 

( ) ( )
2 2

ln cos cos  cos sin ln sec tan  sin

ln cos cos sin sin ln sec tan

ln cos 1 sin ln sec tan

y x x x x x x xp

x x x x x x

x x x x

= − + + − +

= − + + − +

= − + − +

 

Step 8:  Hence, the general solution of the given differential equation is: 

 xxxxxcxccy tanseclnsin1coslnsincos 321 +−+−++=  

or ( ) xxxxxcxccy tanseclnsincoslnsincos1 321 +−−+++=  

or 1 2 3cos sin ln cos sin ln sec tany d c x c x x x x x= + + − − +  

where 1d represents 1 1c + . 

Example 3 
Solve the differential equation by variation of parameters. 
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  32 2 xy y y y e′′′ ′′ ′− − + =   

Solution 
Step 1: The associated homogeneous equation is 
  2 2 0y y y y′′′ ′′ ′− − + =  

The auxiliary equation of the homogeneous differential equation is 

  3 22 2 0m m m− − + =  

                      ( )2( 2) 1 0

1,2, 1

m m

m

⇒ − − =

⇒ = −
 

The roots of the auxiliary equation are real and distinct. Therefore cy  is given by  

  2
1 2 3

x x x
cy c e c e c e−= + +  

Step 2: From cy  we find that three linearly independent solutions of the homogeneous 
differential equation. 

  2
1 2 3,   ,   x x xy e y e y e−= = =  

 Thus the Wronskian of the solutions 321  and , yyy  is given by 

  

2

2 2

2

1 1 1
2 1 2 1

1 4 14

x x x

x x x x x x

x x x

e e e

W e e e e e e

e e e

−

− −

−

= − = ⋅ ⋅ −  

By applying the row operations  2 1 3 1,   R R R R− − , we obtain 

  2 2
1 1 1
0 1 2 6 0
0 3 0

x xW e e= − = ≠  

Step 3: The given differential equation is already in the required standard form 
 

  32 2 xy y y y e′′′ ′′ ′− − + =  

Step 4: Next we find the determinants 321  and , WWW by, respectively, replacing the 1st, 
2nd and 3rd column of W by the column   
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0
0
3xe

     

∴
( )

( )

2
2

3 12 3
1 2

3 2

3 4

0

0 2 1
2

4

2 3

x x
x x

x x x
x x

x x x

x x x x

e e
e e

W e e e
e e

e e e

e e e e

−
−

+−
−

−

= − = −
−

= − − = −

                

( )

( )

3 2 3
2

3

0 0 3 3

0

0 1

2

x x
x x

x x x
x x

x x x

x x

e e
e e

W e e e
e e

e e e

e e e e

−
−

+−
−

−

= − = −
−

= − − − =

 

and 

( )

2
2

2 3
3 2

2 3

3 3 3 6

0

2 0
2

4

2

x x
x x

x x x
x x

x x x

x x x x

e e
e e

W e e e
e e

e e e

e e e e

= =

= − =

 

Step 5: Therefore, the derivatives of the unknown functions 321  and   , uuu  are given by. 

  x
x

x
e

e
e

W
Wu 2

2

4
1

1 2
1

6
3

−=
−

==′  

  
3

2
2 2

2 1
36 

x
x

x
W eu e
W e

′ = = =  

  x
x

x
e

e
e

W
W

u 4
2

6
3

3 6
1

6
===′  

Step 6: Integrate these derivatives to find 321  and , uuu  

  ⌡
⌠ ⌡

⌠ −=−=−== ∫ xxx edxedxedx
W
Wu 2221

1 4
1

2
1

2
1  

  2
2

1 1
3 3

x xWu dx e dx e
W

⌠ ⌠
 


⌡⌡

= = =  

 
                                                © Copyright Virtual University of Pakistan                                                 184 



Differential Equations (MTH401)                                                                                    VU 
 

  ⌡
⌠

⌡
⌠ === xx edxedx

W
W

u 443
3 24

1
6
1  

Step 7: A particular solution of the non-homogeneous equation is 

  3 3 31 1 1
4 3 24

x x xy e e ep = − + +  

Step 8: The general solution of the given differential equation is: 

 2 3 3 3
1 2 3

1 1 1
4 3 24

x x x x x xy c e c e c e e e e−= + + − + +  

21.1 Exercise 

Solve the differential equations by variations of parameters. 

1. xyy tan=+′′  

2. xxyy tansec=+′′  

3. xyy 2sec=+′′  

4. xexyy 3/9=−′′  

5. ( )21/2 xeyyy x +=+′−′′  

6. 22/ 144 xeyyy x −=+′−′′  

7. xyy 2sec4 =′+′′′  

8. 262 xyy =′′−′′′  

Solve the initial value problems. 

9. 12 +=−′+′′ xyyy  

10. ( ) xexxyyy 22 61244 −=+′−′′  

 
 
 
 
 
 
 
 

 
 

                                                © Copyright Virtual University of Pakistan                                                 185 



Differential Equations (MTH401)                                                                                    VU 
 

22 Applications of Second Order Differential Equation 
 

 A single differential equation can serve as mathematical model for many different 
phenomena in science and engineering. 

 Different forms of the 2nd order linear differential equation 

  ( )
2

2

d y dya b cy f x
dx dx

+ + =  

appear in the analysis of problems in physics, chemistry and biology. 
 In the present and next lecture we shall focus on one application; the motion of a 

mass attached to a spring. 

 We shall see, what the individual terms ( )
2

2 ,    ,     and d y dya b cy f x
dx dx

 means in 

the context of vibrational system. 
 Except for the terminology and physical interpretation of the terms 

 ( )
2

2 ,    ,   ,  d y dya b cy f x
dx dx

 

the mathematics of a series circuit is identical to that of a vibrating spring-mass 
system. Therefore we will discuss an LRC circuit in lecture. 

22.1 Simple Harmonic Motion 
When the Newton’s 2nd law is combined with the Hook’s Law, we can derive a 
differential equation governing the motion of a mass attached to spring–the simple 
harmonic motion. 

22.1.1 Hook’s Law 
Suppose that 

 A mass is attached to a flexible spring suspended from a rigid support, then 
 The spring stretches by an amount ‘s’. 
 The spring exerts a restoring F opposite to the direction of elongation or stretch.  

The Hook’s law states that the force F is proportional to the elongation s. i.e 

  ksF =  

Where k is constant of proportionality, and is called spring constant. 

Note That 

 Different masses stretch a spring by different amount i.e s  is different for 
different m . 

 The spring is characterized by the spring constant k .  

 For example if 10 lbsW = and ts f
2
1

=  

Then  ksF =  

or  k





=

2
110  
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or  lbs/ft  20=k  
 If 8 lbsW = then  ( )s208 = ⇒ ft  5/2=s  

 

22.1.2 Newton’s Second Law 
When a force F acts upon a body, the acceleration a is produced in the direction of the 
force whose magnitude is proportional to the magnitude of force. i.e 

  maF =  

Where m  is constant of proportionality and it represents mass of the body. 

22.1.3 Weight 
 The gravitational force exerted by the earth on a body of mass m is called weight 

of the body, denoted by W  
 In the absence of air resistance, the only force acting on a freely falling body is its 

weight. Thus from Newton’s 2nd law of motion 
  mg=W  
Where m  is measured in slugs, kilograms or grams and 2ft/s32=g , 2/8.9 sm  or 

2cm/s  980 . 
22.1.4 Differential Equation 

 When a body of mass m is attached to a spring  
 The spring stretches by an amount s and attains an equilibrium position. 
 At the equilibrium position, the weight is balanced by the restoring force ks . 

Thus, the condition of equilibrium is 
      0mg ks mg ks= ⇒ − =    

 If the mass is displaced by an amount x from its equilibrium position and then 
released. The restoring force becomes k(s + x). So that the resultant of weight and 
the restoring force acting on the body is given by 
 Resultant= ( ) .mgxsk ++−  
By Newton’s 2nd Law of motion, we can written 

 ( ) mgxsk
dt

xdm ++−=2

2
 

or mgkskx
dt

xdm +−−=2

2
 

Since 0=− ksmg  

Therefore kx
dt

xdm −=2

2
 

 The negative indicates that the restoring force of the spring acts opposite to the 
direction of motion. 
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 The displacements measured below the equilibrium position are positive. 
 

 By dividing with m , the last equation can be written as: 

 02

2

=+ x
m
k

dt
xd  

            or 
2

2
2 0d x x

dt
ω+ =  

 Where 2 .k
m

ω =  This equation is known as the equation of simple harmonic 

 motion or as the free un-damped motion. 

22.1.5 Initial Conditions 
Associated with the differential equation 

 
2

2
2 0d x x

dt
ω+ =  

are the obvious initial conditions  

 ( ) ( ) βxx =′= 0   ,0 α  

These initial conditions represent the initial displacement and the initial velocity. For 
example 

 If 0   ,0 <> βα then the body starts from a point below the equilibrium position 
with an imparted upward velocity. 

 If 0   ,0 =< βα then the body starts from rest α units above the equilibrium 
position. 

22.1.6 Solution and Equation of Motion 
Consider the equation of simple harmonic motion 

 
2

2
2 0d x x

dt
ω+ =  

Put mxex = , mxem
dt

xd 2
2

2
=  

Then the auxiliary equation is 

 2 2 0m ω+ =  ⇒   m  iω= ±  

Thus the auxiliary equation has complex roots. 

 1 2m i,   m iω ω= = −  

Hence, the general solution of the equation of simple harmonic motion is 

 ( ) 1 2cos sinx t c t c tω ω= +  
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22.1.7 Alternative form of Solution 
It is often convenient to write the above solution in a alternative simpler form. Consider 

 ( ) 1 2cos sinx t c t c tω ω= +  

and suppose that RA,  ∈φ  such that  

 φφ cos2  ,sin1 AcAc ==  

Then 2
2

2
1 ccA += , 

2

1tan
c

c
=φ  

So that 

 ( ) sin  cos cos   sin  x t A t B tω ωφ φ= +  

or ( ) ( )sin  x t A tω φ= +  

The number φ  is called the phase angle; 

Note that: 
This form of the solution of the equation of simple harmonic motion is very useful 
because 

 Amplitude of free vibrations becomes very obvious 
 The times when the body crosses equilibrium position are given by 

 ( )0 sin 0 x tω φ= ⇒ + =  
or t nω πφ+ =  

 Where n is a non-negative integer. 

The Nature of Simple Harmonic Motion 
22.1.8 Amplitude 

 We know that the solution of the equation of simple harmonic motion can be 
written as 

 ( ) ( )sin  x t A tω φ= +  

 Clearly, the maximum distance that the suspended body can travel on either side 
of the equilibrium position is A . 

 This maximum distance called the amplitude of motion and is given by 

  AAmplitude = 2
2

2
1 cc +=  

22.1.9 A Vibration or a Cycle 
In travelling from x = A to x = - A and then back to A, the vibrating body completes one 
vibration or one cycle. 
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22.1.10Period of Vibration 
The simple harmonic motion of the suspended body is periodic and it repeats its position 
after a specific time periodT . We know that the distance of the mass at any time t  is 
given by 

  ( )sinx A tω φ= +  

Since  2sinA t πω
ω

φ  + +    
 

   ( )sin 2A tω πφ = + +   

     ( )sin  A tω φ = +   

Therefore, the distances of the suspended body from the equilibrium position at the times

t  and 2t π
ω

+ are same 

Further, velocity of the body at any time t  is given by 

  ( )cos  dx A t
dt

ω ω φ= +  

  2cosA t πω ω
ω

φ  + +  
  

  

       [ ]cos  2A tω ω πφ= + +  

       ( )cos  A tω ω φ= +  

Therefore the velocity of the body remains unaltered if t  is increased by 2 /π ω . Hence 
the time period of free vibrations described by the 2nd order differential equation  

 
2

2
2 0d x x

dt
ω+ =  

is given by 

    2T π
ω

=  

22.1.11Frequency 
The number of vibration /cycle completed in a unit of time is known as frequency of the 
free vibrations, denoted by f . Since the cycles completed in time T  is 1. Therefore, the 
number of cycles completed in a unit of time is T/1  

Hence 

   1
2

f
T

ω
π

= =  
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Example 1 
Solve and interpret the initial value problem 

  0162

2
=+ x

dt
xd  

  ( ) ( ) 00  ,100 =′= xx . 

Interpretation 
Comparing the initial conditions 

  ( ) ( ) 00  ,100 =′= xx . 

With 

  ( ) ( ) βxα,  x =′= 00  

We see that 
  010 ==  , βα  

Thus the problem is equivalent to  

 Pulling the mass on a spring 10 units below the equilibrium position. 
 Holding it there until time 0=t  and then releasing the mass from rest. 

Solution 
Consider the differential equation 

  0162

2
=+ x

dt
xd  

Put mtmt em
dt

xdex 2
2

2
   , ==  

Then, the auxiliary equation is 

  0162 =+m  

 ⇒  im 40 ±=  

Therefore, the general solution is: 

 ( ) tctctx 4sin4cos 21 +=  

Now we apply the initial conditions. 

  ( ) 100.1.100 21 =+⇒= ccx  

Thus  101 =c  

So that ( ) tcttx 4sin4cos10 2+=  
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 tct
dt
dx 4cos44sin40 2+−=  

Therefore ( ) 00 =′x    ( ) 01.4040 2 =+−⇒ c  

Thus   02 =c  

Hence, the solution of the initial value problem is 

  ( ) ttx 4cos10=  

Note that 
 Clearly, the solution shows that once the system is set into motion, it stays in 

motion with mass bouncing back and forth with amplitude being units  10 . 
 Since 4ω = . Therefore, the period of oscillation is 

   seconds  
24

2 ππ
==T  

Example 2 
A mass weighing 2lbs stretches a spring 6 inches. At t = 0 the mass is released from a 

point 8 inches below the equilibrium position with an upward velocity of sft /
3
4 . 

Determine the function x (t) that describes the subsequent free motion. 

Solution 
For consistency of units with the engineering system, we make the following conversions 

  foot 
2
1inches 6 =  

  foot 
3
2 inches 8 = . 

Further weight of the body is given to be 

  lbs 2W =  

But   mg=W  

Therefore  
32
2W

==
g

m  

or  slugs. 
16
1

=m  

Since foot 
2
1

== sStretch  

Therefore by Hook’s Law, we can write 

 
                                                © Copyright Virtual University of Pakistan                                                 192 



Differential Equations (MTH401)                                                                                    VU 
 

 





=

2
12 k  lbs/ft 4=⇒ k  

 

Hence the equation of simple harmonic motion 

 kx
dt

xdm −=2

2
 

becomes  

 x
dt

xd 4
16
1

2

2
−=  

or 0642

2
=+ x

dt
xd . 

Since the initial displacement is tinches f  
3
2  8 = and the initial velocity is ft/s 

3
4− , the 

initial conditions are: 

  ( ) ( )
3
40    ,

3
20 −=′= xx  

The negative sign indicates that the initial velocity is given in the upward i.e negative 
direction. Thus, we need to solve the initial value problem. 

Solve  0642

2
=+ x

dt
xd  

Subject to ( ) ( )
3
40   ,

3
20 −=′= xx  

Putting  mtmt em
dt

xdex 2
2

2
  , ==  

We obtain the auxiliary equation 

  0642 =+m  

or  im 8±=  

The general solution of the equation is  

 ( ) tctctx 8sin8cos 21 +=  

Now, we apply the initial conditions. 

 ( )
3
20 =x    

3
20.1. 21 =+⇒ cc  
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Thus  
3
2

1 =c  

 

So that  ( ) tcttx 8sin8cos
3
2

2+=  

Since  

  ( ) tcttx 8cos88sin
3

16
2+−=′ . 

Therefore  

 ( )
3
40 −=′x  

3
41.80.

3
16

2 −=+−⇒ c  

Thus    

   
6
1

2 −=c . 

Hence, solution of the initial value problem is 

 ( ) .8sin
6
18cos

3
2 tttx −=  

Example 3 
Write the solution of the initial value problem discussed in the previous example in the 
form 

  ( ) ( )sin  x t A tω φ= + . 

Solution 
The initial value discussed in the previous example is: 

Solve  0642

2
=+ x

dt
xd  

Subject to ( ) ( )
3
40    ,

3
20 −=′= xx  

Solution of the problem is 

 ( ) tttx 8sin
6
18cos

3
2

−=  

Thus amplitude of motion is given by 

 ft 69.0
6
17

6
1

3
2 22

≈=





−+






=A  
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and the phase angle is defined by 

 0
17
4

6/17
3/2

sin >==φ  

 0
17
1

6/17
6/1

cos <−=−=φ  

 

Therefore 
  4tan −=φ  

or  ( ) radians 326.14tan 1 −=−−  

Since ,0  ,0 cossin <> φφ the phase angle φ must be in 2nd quadrant. 

Thus 
 radians 816.1326.1 =−= πφ  

Hence the required form of the solution is 

 ( ) ( )816.18sin
6
17

+= ttx  

Example 4 
For the motion described by the initial value problem 

Solve 
2

2 64 0d x x
dt

+ =  

Subject to ( ) ( )
3
40   ,

3
20 −=′= xx  

Find the first value of time for which the mass passes through the equilibrium position 
heading downward. 

Solution 
We know that the solution of initial value problem is 

 ( ) tttx 8sin
6
18cos

3
2

−= . 

This solution can be written in the form 

 ( ) ( )816.18sin
6
17

+= ttx  

The values of t  for which the mass passes through the equilibrium position i.e for which 
0=x  are given by 

 πφ nwt =+  
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Where ,2,1=n , therefore, we have 

 ,3816.18     ,2816.18     ,816.18 321 πππ =+=+=+ ttt or
  9510   5580   1660 321 ,.t, .t, .t ===  

Hence, the mass passes through the equilibrium position  0=x  heading downward first 
time at 558.02 =t seconds. 

22.2 Exercise 
State in words a possible physical interpretation of the given initial-value problems. 

1. ( ) ( ) 203003
32
4

−=′−==+′′ x,   x,         xx  

2. ( ) ( ) 007.0004
16
1

=′==+′′ x,   x,         xx  

Write the solution of the given initial-value problem in the form ( ) ( )φϖ += tAtx sin  

3. ( ) ( ) 10020025 =′−==+′′ x,   x,         xx  

4. ( ) ( ) 201008
2
1

−=′==+′′ x,   x,         xx  

5. ( ) ( )2 0 0 1 0 2 2x x ,         x ,   x′′ ′+ = = − = −  

6. ( ) ( ) 16040016
4
1

=′==+′′ x,   x,         xx  

7. ( ) ( ) 10100101.0 =′==+′′ x,   x,         xx  

8. ( ) ( ) 30400 =′−==+′′ x,   x,         xx  

9. The period of free undamped oscillations of a mass on a spring is 4/π seconds. If 
the spring constant is 16 lb/ft, what is the numerical value of the weight? 

10. A 4-lb weight is attached to a spring, whose spring constant is lb/ft  16 . What is 
period of simple harmonic motion? 

11. A 24-lb weight, attached to the spring, stretches it 4 inches. Find the equation of 
the motion if the weight is released from rest from a point 3 inches above the 
equilibrium position. 

12. A 20-lb weight stretches a spring 6 inches. The weight is released from rest 6 
inches below the equilibrium position. 

a) Find the position of the weight at seconds. 
32
9,

4
,

6
,

8
,

12
πππππ

=t  

b) What is the velocity of the weight when 16/3π=t seconds? In which 
direction is the weight heading at this instant? 

c) At what times does the weight pass through the equilibrium position? 
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23 Damped Motion 
In the previous lecture, we discussed the free harmonic motion that assumes no retarding 
forces acting on the moving mass. However 

 No retarding forces acting on the moving body is not realistic, because 

 There always exists at least a resisting force due to surrounding medium. 

For example a mass can be suspended in a viscous medium. Hence, the damping forces 
need to be included in a realistic analysis. 

23.1 Damping Force 
In the study of mechanics, the damping forces acting on a body are considered to be 

proportional to a power of the instantaneous velocity
dt
dx . In the hydro dynamical 

problems, the damping force is proportional to ( )2/ dtdx .  So that in these problems 

  
2







=

dt
dx-βrceDamping fo  

Where β  is a positive damping constant and negative sign indicates that the damping 
force acts in a direction opposite to the direction of motion. 

In the present discussion, we shall assume that the damping force is proportional to the 

instantaneous velocity
dt
dx . Thus for us 

  





=

dt
dx-βrceDamping fo  

23.2 The Differential Equation 
Suppose That 

 A body of mass m  is attached to a spring. 

 The spring stretches by an amount s  to attain the equilibrium position. 

 The mass is further displaced by an amount x  and then released. 

 No external forces are impressed on the system. 

Therefore, there are three forces acting on the mass, namely: 

a) Weight mg  of the body 

b) Restoring force ( )xsk +−  

c) Damping force 







dt
dx-β  

Therefore, total force acting on the mass m  is  
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  ( ) 





−+−

dt
dxβxskmg  

So that by Newton’s second law of motion, we have 

 ( ) 





−+−=

dt
dxβxskmg

dt
xdm 2

2
 

Since in the equilibrium position 
   0=− ksmg  

 Therefore  





−−=

dt
dxβkx

dt
xdm 2

2
 

Dividing with m , we obtain the differential equation of free damped motion 

  02

2
=+






+ x

m
k

dt
dx

m
β

dt
xd  

For algebraic convenience, we suppose that 

  
m
k,    

m
βλ == 22 ω  

Then the equation becomes: 

  02 2
2

2

=++ x
dt
dxλ

dt
xd ω  

23.2.1 Solution of the Differential Equation 
Consider the equation of the free damped motion 

  02 2
2

2

=++ x
dt
dxλ

dt
xd ω  

Put mtex = , mtme
dt
dx

= , mtem
dt

xd 2
2

2
=  

Then the auxiliary equation is: 

  02 22 =++ ωλmm  

Solving by use of quadratic formula, we obtain 

  2 2m λ λ ω= − ± −  

Thus the roots of the auxiliary equation are 

 22
2

22
1 ωω −−−=−+−= λλ,     mλλm  

Depending upon the sign of the quantity 22 ωλ − , we can now distinguish three possible 
cases of the roots of the auxiliary equation.  
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Case 1    Real and distinct roots 

If 022 >−ωλ then kβ > and the system is said to be over-damped. The solution of the 
equation of free damped motion is 

  ( ) tmtm ecectx 21
21 +=  

or  ( ) [ ]ttt ececetx
2222

21
ωλωλλ −−−− +=  

This equation represents smooth and non oscillatory motion. 

Case 2   Real and equal roots 

If 022 =−ωλ , then kβ =  and the system is said to be critically damped, because any 
slight decrease in the damping force would result in oscillatory motion. The general 
solution of the differential equation of free damped force is 

   ( ) tmtm tecectx  11
2

 
1 +=  

or   ( ) ( )tccetx t
21 += −λ  

Case 3   Complex roots 

If 022 <− wλ , then kβ <  and the system is said to be under-damped. We need to 
rewrite the roots of the auxiliary equation as: 

 imim 22
2

22
1     , λωλλωλ −−−=−+−=  

Thus, the general solution of the equation of free damped motion is 

 ( ) 



 −+−= − tλctλcetx λt 22

2
22

1 sincos ωω  

This represents an oscillatory motion; but amplitude of vibration ∞→→ t as 0 because of 
the coefficient te λ− . 

Note that  

Each of the three solutions contain the damping factor ,0 , >− λλte  the displacements of 
the mass become negligible for larger times. 
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23.2.2 Alternative form of the Solution 

When 022 <−ωλ , the solution of the differential equation of free damped motion 

   02 2
2

2
=++ x

dt
dx

dt
xd ωλ  

is  ( ) 



 −+−= − tλctλcetx λt 22

2
22

1 sincos ωω  

Suppose that  A and φ  are two real numbers such that 

   
A
c

A
c 21 cos   ,sin == φφ  

So that    
2

12
2

2
1 tan    ,

c
cccA =+= φ  

The number φ is known as the phase angle. Then the solution of the equation becomes: 

 ( ) 



 −+−= − φλωφλωλ sincoscossin 2222 ttAetx t  

or  ( ) ( ) sin 22 φωλ +−= − tλAetx t  

Note that 

 The coefficient tAe λ−  is called the damped amplitude of vibrations. 

 The time interval between two successive maxima of ( )tx is called quasi period, 
and is given by the number 

    
22

2

λω

π

−
 

 The following number is known as the quasi frequency. 

  
π

λω
2

22 −
 

 The graph of the solution  

   ( ) ( ) tλAetx λt φω +−= − 22sin  
crosses positive t-axis, i.e the line 0=x , at times that are given by 

   πφω ntλ =+−  22  
Where ,3,2,1=n .  
For example, if we have  

   ( ) 





 −= −

3
2sin5.0 πtetx t  
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Then   ππ nt =−
3

2  

or ,2
3

2 ,
3

2 ,0
3

2 321 πππππ
=−=−=− ttt  

or ,
6

7  ,
6

4  ,
6 321

πππ
=== ttt  

We notice that difference between two successive roots is  

   
2
1

21 ==− −
π

kk tt quasi period 

Since quasi period ππ
==

2
2 . Therefore 

   
2
1

21 ==− −
π

kk tt  quasi period   

 Since ( ) tAetx λ−≤  when 2 2sin  1tω λ φ− + ≤ , the graph of the solution  

  ( ) ( ) sin 22 φωλ +−= − tλAetx t  
touches the graphs of the exponential functions 
    tAe λ−±  
at the values of t  for which  

   ( ) 1 sin 22 ±=+− φω tλ  
This means those values of t  for which   

  ( )
2

1222 πφω +=+− ntλ  

or  ( )
22

)2/(12
λ

nt
−

−+
=

ω

φπ where 0,1,2,3,n =    

Again, if we consider 

  ( ) 





 −= −

3
2sin5.0 πtetx t  

Then     ,
2

5
3

2  ,
2

3
3

2  ,
23

2 *
3

*
2

*
1

ππππππ
=−=−=− ttt  

Or    , 
12

17   ,
12

11   ,
12
5 *

3
*

2
*

1
πππ

=== ttt  

Again, we notice that the difference between successive values is  

    
2

*
1

* π
=− −kk tt  

 The values of t  for which the graph of the solution  

  ( ) ( ) sin 22 φωλ +−= − tλAetx t  
touches the exponential graph are not the values for which the function attains its 
relative extremum. 
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Example 1 
Interpret and solve the initial value problem 

  0452

2
=++ x

dt
dx

dt
xd  

  ( ) ( ) 10     ,10 =′= xx  

Find extreme values of the solution and check whether the graph crosses the equilibrium 
position. 

Interpretation 
Comparing the given differential equation 

  0452

2
=++ x

dt
dx

dt
xd  

with the general equation of the free damped motion 

  02 2
2

2
=++ x

dt
dxλ

dt
xd ω  

we see that 

  4
2
5 2 == ω,    λ  

so that  022 >−ωλ  

Therefore, the problem represents the over-damped motion of a mass on a spring. 

Inspection of the boundary conditions 

  ( ) ( ) 10     ,10 =′= xx  

reveals that the mass starts 1 unit below the equilibrium position with a downward 
velocity of 1 ft/sec. 

Solution 
To solve the differential equation  

  0452

2
=++ x

dt
dx

dt
xd  

We put  mtmtmt em
dt

xdme
dt
dxex 2

2

2
   ,   , ===  

Then the auxiliary equation is 

  0452 =++ mm  

 ⇒  ( ) ( ) 01 4 =++ mm  
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 ⇒  4       ,1 −=−= mm , 

Therefore, the auxiliary equation has distinct real roots 
  4       ,1 −=−= mm  

Thus the solution of the differential equation is: 

  ( ) tt ecectx 4
21

−− +=  

So that  ( ) tt ecectx 4
21 4 −− −−=′  

Now, we apply the boundary conditions 

  ( ) 11.1.10 21 =+⇒= ccx  

  ( ) 1410 21 =−−⇒=′ ccx  

Thus 

   121 =+ cc  

    14 21 =−− cc  

Solving these two equations, we have. 

  
3
2    ,

3
5

21 −== cc  

Therefore, solution of the initial value problem is 

  ( ) tt eetx 4
3
2

3
5 −− −=  

Extremum 

Since  ( ) tt eetx 4
3
2

3
5 −− −=  

Therefore  tt ee
dt
dx 4

3
8

3
5 −− +−=  

So that   ( ) 0=′ tx   ⇒   0
3
8

3
5 4 =+− −− tt ee  

or  
5
8ln

3
1

5
83 =⇒= te t  

or   157.0=t  

Since  tt ee
dt

xd 4
2

2

3
32

3
5 −− −=  

Therefore at ,157.0=t  we have 
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  628.0157.0
2

2

3
32  

3
5 −− −= ee

dt
xd  

        0267.4692.5425.1 <−=−=  

So that the solution ( )tx  has a maximum at 157.0=t  and maximum value of x  is: 

  ( ) 069.1157.0 =x  

Hence the mass attains an extreme displacement of ft 1.069 below the equilibrium 
position. 

Check 

Suppose that the graph of ( )tx  does cross the axist − , that is, the mass passes through 
the equilibrium position. Then a value of t  exists for which  

  ( ) 0=tx  

i.e  0
3
2

3
5 4 =− −− tt ee  

 ⇒
5
23 =te  

or  305.0
5
2ln

3
1

−==t  

This value of t  is physically irrelevant because time can never be negative. Hence, the 
mass never passes through the equilibrium position. 

Example 2 
An 8-lb weight stretches a spring 2ft. Assuming that a damping force numerically equals 
to two times the instantaneous velocity acts on the system. Determine the equation of 
motion if the weight is released from the equilibrium position with an upward velocity of 
3 ft / sec. 

Solution 
Since 

  lbs 8Weight = , ft 2Stretch == s  

Therefore, by Hook’s law 

     k2        8 =  

   ft / lb  4=⇒ k  

Since   





=

dt
dxforceDamping 2  

Therefore   2=β  
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Also  slugs  
4
1

32
8      

g
Weight

==⇒= mmass  

 

Thus, the differential equation of motion of the free damped motion is given by 

   





−−=

dt
dxβkx

dt
xdm 2

2
 

or   





−−=

dt
dxx

dt
xd 24

4
1

2

2
 

or   01682

2
=++ x

dt
dx

dt
xd  

Since the mass is released from equilibrium position with an upward velocity sft /  3 . 
Therefore the initial conditions are: 

   ( ) ( ) 3000 −=′= x,      x  

Thus we need to solve the initial value problem 

Solve   01682

2
=++ x

dt
dx

dt
xd  

Subject to   ( ) ( ) 30     ,00 −=′= xx  

Put   mtmtmt em
dt

xd,   me
dt
dx,   ex 2

2

2
===  

Thus the auxiliary equation is 

   01682 =++ mm  

or  ( ) 04 2 =+m 4  ,4 −−=⇒ m  

So that roots of the auxiliary equation are real and equal. 

   21 4 mm =−=  

Hence the system is critically damped and the solution of the governing differential 
equation is 

   ( ) tt tecectx 4
2

4
1

−− +=  

Moreover, the system is critically damped. 

We now apply the boundary conditions. 

  ( ) 00.1.00 21 =+⇒= ccx  

           01 =⇒ c  

 
                                                © Copyright Virtual University of Pakistan                                                 205 



Differential Equations (MTH401)                                                                                    VU 
 

Thus  ( ) ttectx 4
2

−=  

⇒  tt tecec
dt
dx 4

2
4

2 4 −− −=  

So that ( ) 301.30 2 −=−⇒−=′ cx  

        32 −=⇒ c  

Thus solution of the initial value problem is 

  ( ) ttetx 43 −−=  

Extremum 

Since    ( ) ttetx 43 −−=  

Therefore   tt tee
dt
dx 44 123 −− +−=  

   ( )te t 413 4 −−= −  

Thus   
4
10 =⇒= t

dt
dx  

The corresponding extreme displacement is 

  ft 276.0
4
13

4
1 1 −=






−=






 −ex  

Thus the weight reaches a maximum height of ft 0.276 above the equilibrium position. 

Example 3 

A 16-lb weight is attached to a ft-5 long spring. At equilibrium the spring measures 
8.2ft .If the weight is pushed up and released from rest at a point ft-2 above the 
equilibrium position. Find the displacement ( )tx  if it is further known that the 
surrounding medium offers a resistance numerically equal to the instantaneous velocity. 

Solution 
ft 5  spring stretched-un ofLength =  

ft 8.2 mequilibriuat  spring ofLength =  

Thus ft 2.3 spring of Elongation == s  

By Hook’s law, we have 

 ( ) ft / lb 52.316 =⇒= kk  

Further slugs 
2
1

32
16     

g
Weight

==⇒= mmass  
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Since   
dt
dxforceDamping =  

Therefore    1=β  

Thus the differential equation of the free damped motion is given by 

  
dt
dxβkx

dt
xdm −−=2

2
 

or  
dt
dxx

dt
xd

−−= 5
2
1

2

2
 

or  01022

2
=++ x

dt
dx

dt
xd  

Since the spring is released from rest at a point 2 ft above the equilibrium position. 

The initial conditions are: 

  ( ) ( ) 0020 =′−= x,    x  

Hence we need to solve the initial value problem 

  01022

2
=++ x

dt
dx

dt
xd  

  ( ) ( ) 0020 =′−= x,    x  

To solve the differential equation, we put  

 .em
dt

xd,  me
dt
dx,   ex mtmtmt 2

2

2
===  

Then the auxiliary equation is  

  01022 =++ mm  

or  im 31±−=  

So that the auxiliary equation has complex roots 

  ii,     mm 3131 21 −−=+−=  

The system is under-damped and the solution of the differential equation is: 

  ( ) ( )tctcetx t 3sin3cos 21 += −  

Now we apply the boundary conditions 

 ( ) 20.1.20 21 −=+⇒−= ccx  

       21 −=⇒ c  
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Thus  ( ) ( )tctetx t 3sin3cos2 2+−= −  

 ( ) ( )tctetcte
dt
dx tt 3sin3cos23cos33sin6 22 +−−+= −−  

Therefore ( ) 02300 2 =+⇒=′ cx  

       
3
2

2
−

=c  

Hence, solution of the initial value problem is 

  ( ) 





 −−= − ttetx t 3sin

3
23cos2  

Example 4 
Write the solution of the initial value problem 

    01022

2

=++ x
dt
dx

dt
xd  

    ( ) ( ) 0020 =′−= x,    x  

in the alternative form 

    ( ) ( )φ+= − tAetx t 3sin  

Solution 
We know from previous example that the solution of the initial value problem is 

    ( ) 





 −−= − ttetx t 3sin

3
23cos2  

Suppose that φ and A  are real numbers such that 

    
AA

3/2cos    ,2sin −
=−= φφ  

Then    10
3
2

9
44 =+=A  

Also      3
3/2

2tan =
−

−
=φ  

Therefore   ( ) radian 249.13tan 1 =−  

Since  0,cos ,0sin << φφ the phase angle φ  must be in 3rd quadrant. 

Therefore 
    radians 391.4249.1 =+= πφ  
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Hence 

    ( ) ( )391.43sin10
3
2

+= − tetx t  

The values of γtt =  where the graph of the solution crosses positive axis-t and the 

values *
γtt =  where the graph of the solution touches the graphs of te−






± 10

3
2  are 

given in the following table.  

γ  γt  *
γt  ( )*

γtx  

1 .631 1.154 0.665 

2 1.678 2.202 -0.233 

3 2.725 3.249 0.082 

4 3.772 4.296 -0.029 

23.2.3 Quasi Period 

Since ( ) ( )391.43sin10
3
2

+= − tetx t ⇒ 322 =−ωλ  

So that the quasi period is given by seconds 
3

22
22

π

ωλ

π
=

−
 

Hence, difference between the successive * and γγ tt  is 
3
π units.  

23.3 Exercise 
Give a possible interpretation of the given initial value problems. 

1. ( ) ( ) 5100002
6
1 .x,  ,        xxxx −=′==+′+′′  

2. ( ) ( ) 102002
32
16

=′−==+′+′′ x,  ,        xxxx  

3. A 4-lb weight is attached to a spring whose constant is 2 lb /ft. The medium offers 
a resistance to the motion of the weight numerically equal to the instantaneous 
velocity. If the weight is released from a point 1 ft above the equilibrium position 
with a downward velocity of 8 ft / s, determine the time that the weight passes 
through the equilibrium position. Find the time for which the weight attains its 
extreme displacement from the equilibrium position. What is the position of the 
weight at this instant? 

4. A 4-ft spring measures 8 ft long after an 8-lb weight is attached to it. The medium 
through which the weight moves offers a resistance numerically equal to 2 times 
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the instantaneous velocity. Find the equation of motion if the weight is released 
from the equilibrium position with a downward velocity of 5 ft / s. Find the time 
for which the weight attains its extreme displacement from the equilibrium 
position. What is the position of the weight at this instant? 

5. A 1-kg mass is attached to a spring whose constant is 16 N / m and the entire 
system is then submerged in to a liquid that imparts a damping force numerically 
equal to 10 times the instantaneous velocity. Determine the equations of motion if 

a. The weight is released from rest 1m below the equilibrium position;  
and 

b. The weight is released 1m below the equilibrium position with and 
upward velocity of 12 m/s. 

6. A force of 2-lb stretches a spring 1 ft. A 3.2-lb weight is attached to the spring 
and the system is then immersed in a medium that imparts damping force 
numerically equal to 0.4 times the instantaneous velocity. 
a. Find the equation of motion if the weight is released from rest 1 ft above the 

equilibrium position. 
b. Express the equation of motion in the form ( ) ( )2 2sin  tx t Ae tλ ω λ φ−= − +  

c. Find the first times for which the weight passes through the equilibrium 
position heading upward. 

7. After a 10-lb weight is attached to a 5-ft spring, the spring measures 7-ft long. 
The 10-lb weight is removed and replaced with an 8-lb weight and the entire 
system is placed in a medium offering a resistance numerically equal to the 
instantaneous velocity. 
a. Find the equation of motion if the weight is released 1/ 2 ft below the 

equilibrium position with a downward velocity of 1ft / s. 
b. Express the equation of motion in the form ( ) ( )2 2sin  tx t Ae tλ ω λ φ−= − +  

c. Find the time for which the weight passes through the equilibrium position 
heading downward. 

8. A 10-lb weight attached to a spring stretches it 2 ft. The weight is attached to a 
dashpot-damping device that offers a resistance numerically equal to ( )0>ββ  
times the instantaneous velocity. Determine the values of the damping constant β  
so that the subsequent motion is 

a. Over-damped 
b. Critically damped 
c. Under-damped 

9. A mass of 40 g. stretches a spring 10cm. A damping device imparts a resistance to 
motion numerically equal to 560 (measured in dynes /(cm / s)) times the 
instantaneous velocity. Find the equation of motion if the mass is released from 
the equilibrium position with downward velocity of 2 cm / s. 

10. The quasi period of an under-damped, vibrating 1-slugs mass of a spring is 2/π  
seconds. If the spring constant is 25 lb / ft, find the damping constant β . 
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24 Forced Motion   

In this last lecture on the applications of second order linear differential equations, we 
consider 

 A vibrational system consisting of a body of mass m attached to a spring. The 
motion of the body is being driven by an external force ( )tf  i.e. forced motion.  

 Flow of current in an electrical circuit that consists of an inductor, resistor and a 
capacitor connected in series, because of its similarity with the forced motion. 

24.1 Forced motion with damping 
Suppose that we now take into consideration an external force ( )tf . Then, the forces 
acting on the system are:  

a) Weight of the body mg=  
b) The restoring force = ( )xsk +−  
c) The damping effect )/( dtdxβ−=  
d) The external force ( ).tf=  

Hence x denotes the distance of the mass m  from the equilibrium position. Thus the total 
force acting on the mass m  is given by  

    ( ) ( )tf
dt
dxxskmgForce +






−+−= β  

By the Newton’s 2nd law of motion, we have 

    2

2

dt
xdmmaForce ==  

Therefore   ( )tf
dt
dxkxksmg

dt
xdm +






−−−= β2

2

 

But    0=− ksmg  

So that    ( )
m

tfx
m
k

dt
dx

mdt
xd

=+





+

β
2

2

 

or    ( )tFx
dt
dx

dt
xd

=++ 2
2

2
2 ωλ  

where ( ) ( ) 2,   2  and 
f t kF t
m m m

βλ ω= = = . 

Note that 
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 The last equation is a non-homogeneous differential equation governing the forced 
motion with damping. 
 

 To solve this equation, we use either the method of undetermined coefficients or 
the variation of parameters. 

Example 1 
Interpret and solve the initial value problem  

    tx
dt
dx

dt
xd 4cos522.1

5
1

2

2

=++  

    ( ) ( ) 00    ,
2
10 =′= xx  

Interpretation 
The problem represents a vibrational system consisting of 

 A mass 
5
1

=m  slugs or kilograms 

 The mass is attached to a spring having spring constant ft / lb 2=k or mN /  

 The mass is released from rest ft 
2
1  or meter below the equilibrium position 

 The motion is damped with damping constant 2.1=β . 
 The motion is being driven by an external periodic force ( ) ttf 4cos5= that has 

period
2
π

=T . 

Solution 
Given the differential equation 

    tx
dt
dx

dt
xd 4cos522.1

5
1

2

2

=++  

or    tx
dt
dx

dt
xd 4cos251062

2

=++  

First consider the associated homogeneous differential equation. 

    01062

2
=++ x

dt
dx

dt
xd  

Put    mtmtmt em
dt

xd,   me
dt
dx,  ex 2

2

2

===  

Then the auxiliary equation is: 

     01062 =++ mm  
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    ⇒  im ±−= 3  

Thus the auxiliary equation has complex roots 

    imim −−=+−= 3   ,3 21  

So that the complementary function of the equation is  

    ( )tctctecx sin2cos1
3 +−=  

To find a particular integral of non-homogeneous differential equation we use the 
undetermined coefficients, we assume that 

    ( ) tBtAtx p 4sin4cos +=  

Then    ( ) tBtAtx p 4cos44sin4 +−=′  

    ( ) tBtAtx p 4sin164cos16 −−=′′  

So that 

  

 
( ) ( ) tBAtBA

tBtAtB

tAtBtAxxx ppp

4sin6244cos246
4sin104cos104cos24

4sin244sin164cos16106

−−++−=
+++

−−−=+′+′′

 

 

Substituting in the given non-homogeneous differential equation, we obtain 

( ) ( ) ttBAtBA 4cos254sin 6244cos246 =−−++−  

Equating coefficients, we have 

    25246 =+− BA  

     0624 =−− BA  

Solving these equations, we obtain 

    
51
50

102
25

=−= ,  BA  

Thus    ( ) tttx p 4sin
51
504cos

102
25

+−=  

 

Hence the general solution of the differential equation is: 

  ( ) [ ] tttctcetx t 4sin
51
504cos

102
25sincos 21

3 +−+= −  

 ( ) [ ] ( ) tttctcetctcetx tt 4cos
51

2004sin
51
50cossinsincos3 21

3
21

3 +++−++−=′ −−  
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Now    ( )
2
10 =x  gives 

    
2
1

102
251.1 =−c  

or    
102

2551
102
25

2
1

1
+

=+=c  

or    
51
38

1 =c  

Also    ( ) 00 =′x  gives 

    0
51

2003 21 =++− cc  

or    
51
86

51
114

51
200

2 −=+−=c  

Hence the solution of the initial value problem is: 

  ( ) ttttetx t 4sin
51
504cos

102
25sin

51
86cos

51
383 +−






 −= −  

24.2 Transient and Steady-State Terms 
Due to the presence of the factor te 3− we notice that the complementary function 

   ( ) 





 −= − ttetx t

c sin
51
86cos

51
383  

possesses the property that 

    ( ) 0lim =
∞→

txc
x

 

Thus for large time, the displacements of the weight are closely approximated by the 
particular solution 

   ( ) tttx p 4sin
51
504cos

102
25

+−=  

Since ( ) ∞→→ ttxc  as 0 , it is said to be transient term or transient solution. The 
particular solution ( )tx p is called the steady-state solution 

Hence, when F is a periodic function, such as 

   ( ) ( ) γtFt  Fγt    or  FtF cossin 00 ==  

The general solution of the equation  
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    ( )tFx
dt
dx

dt
xd

=++ 2
2

2
2 ωλ  

consists of 

  ( ) nte SolutioSteady StasolutionTransient tx +=  

 
Example 2 
Solve the initial value problem  

    ttx
dt
dx

dt
xd sin2cos4222

2

+=++  

    ( ) ( ) 30    ,00 =′= xx  

Solution 
First consider the associated homogeneous linear differential equation 

    0222

2

=++ x
dt
dx

dt
xd  

Put    2,  ,mx mx mxx e x me   x m e′ ′′= = =   

Then the auxiliary equation is 

    0222 =++ mm  

or    im ±−=
−±−

= 1
2

842  

Thus the complementary function is  

 

    ( )tctcex t
c sincos 21 += −  

 

 

For the particular integral we assume that  

 

    tBtAx p sincos +=  

    tBtAx p cossin +−=′  

    tBtAx p sincos −−=′′  

So that  
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2

2 2 2p p
p

d x dx
x

dtdt
+ + tBtAtBtAtBtA sin2cos2cos2sin2sincos +++−−−=  

or ( ) ( )
2

2 2 2 2 cos 2 sinp p
p

d x dx
x A B t A B t

dtdt
+ + = + + − +  

    
Substituting in the given differential equation, we have 

  ( ) ( ) tttBAtBA sin2cos4sin2cos2 +=+−++  

Equating coefficients, we obtain 

    42 =+ BA  

            22 =+− BA  
Solving these two equations, we have: 
    2B       ,0 ==A  

Thus     tx p sin2=  

Hence general solution of the differential equation is  

    pc xxx +=  

or    ( ) ( ) ttctcetx t sin2sincos 21 ++= −  

Thus  ( ) ( ) ( ) ttctcetctcetx tt cos2cossinsincos 2121 ++−++−=′ −−  

Now we apply the boundary conditions 

   ( ) 000.1.  00 21 =++⇒= ccx  

       01 =⇒ c  

( ) 321.1. 30 21 =++−⇒=′ ccx  

       12 =⇒ c  

Thus solution of the initial value problem is 

    ttex t sin2sin += −  

Since     0   as   0sin →→− tte t  

Therefore 

  TermTransient te t =− sin ,   StateSteadyt  sin2 =  
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Hence   


stateSteadyTransient

t ttex
−

− += sin2   sin  

We notice that the effect of the transient term becomes negligible for about 

    π2>t  

24.3 Motion without Damping 
If the system is impressed upon by a periodic force and there is no damping force then 
there is no transient term in the solution. 

Example 3 
Solve the initial value problem 

   γtFxω
dt

xd
o sin2

2

2
=+  

   ( ) ( ) 0000 =′= x,   x  

Where oF is a constant 

Solution 
For complementary function, consider the associated homogeneous differential equation 

   02
2

2
=+ x

dt
xd ω  

Put   mtmt emxex 2  , =′′=  

Then the auxiliary equation is 

   imm ωω ±=⇒=+ 022  

Thus the complementary function is 

   ( ) ωtcωtctxc sincos 21 +=  

To find a particular solution, we assume that  

   ( ) γtBγtAtx p sincos +=  

Then   ( ) γtBγγtAγtx p cossin +−=′  

   ( ) γtBγγtAγtx p sincos 22 −−=′′  

 

 

Therefore, 

  γtBωγtAωγtBγγtAγxωx pp sincossincos 22222 ++−−=+′′  
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 ( ) ( ) tBtAxx pp γγωγγωω sincos 22222 −+−=+′′  

Substituting in the given differential equation, we have 

  ( ) ( ) tFγtγωBγtγωA o γsinsincos 2222 =−+−  

Equating coefficients, we have 

   ( ) ( ) oFBA =−=− 2222     ,0 γωγω  

Solving these two equations, we obtain 

     220
γω −

== oF
  B,         A  ( )ωγ ≠  

Therefore  ( ) t
F

tx o
p γ

γω
sin22 









−
=  

 

Hence, the general solution of the differential equation is  

   ( ) γt
γω

F
ωtcωtctx o sinsincos 2221 









−
++=  

Then   ( ) 1 2 2 2sin cos cosoFx t c ω ωt c ω ωt γt
ω γ

γ′ = − + +
−

 

Now we apply the boundary conditions 

     ( ) 000.1.  00 21 =++⇒= ccx  

              01 =⇒ c  

( ) 1 2 2 20 0 0 1 oFx  c .  c ω.
ω γ

γ′ = ⇒ + +
−

= 0 

          ( )222 γωω
γ

−
−

=⇒ oF
c  

Thus solution of the initial value problem is 

   ( ) ( )( ) ( )ωγγωωγ
γωω

≠+−
−

=     , sin sin22 tt
F

tx o  

Note that the solution is not defined for ωγ = , However ( )
ωγ →

txlim can be obtained using 

the L’Hôpital’s rule 
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    ( ) ( )22
sinsinlim

γωω
γtωωtγFtx oωγ −

+−
=

→
 

           
( )

( )22

sinsin
lim

γωω
γ

γωωγ
γω

ωγ −

+−
=

→
d
d

tt
d
d

Fo  

       
ωγ

γtωtωtωF
ωγo 2

cossinlim
−

+−
=

→
 

       








−

+−
= 22

cossin
ω

ωtωtωtFo  

       ωtt
ω

F
ωt

ω

F oo cos
2

sin
2 2 −=  

Clearly ( ) ∞→∞→ ttx   as    .Therefore there is no transient term when there is no 
damping force in the presence of a periodic impressed force. 

24.4 Electric Circuits 
Many different physical systems can be described by a second order linear differential 
equation similar to the differential equation of the forced motion:

( )tfkx
dt
dx

dt
xdm =++ β2

2

 

One such analogous case is that of an LRC-Series circuit. Because of the similarity in 
mathematics that governs these two systems, it might be possible to use our intuitive 
understanding of one to help understand the other. 

24.5 The LRC Series Circuits 
The LRC series circuit consist of an inductor, resistor and capacitor connected in series 
with a time varying source voltage )(tE , 

24.5.1 Resistor 
A resistor is an electrical component that limits or regulates the flow of electrical current 
in an electrical circuit. 

The measure of the extent to which a resistor impedes or resists with the flow of current 
through it is called resistance, denoted by R . 

Clearly higher the resistance, lower the flow of current. Lower the resistance, higher the 
flow of current. Therefore, we conclude that the flow of current is inversely proportional 
to the resistance, i.e  
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R
VI 1.=

⇒ IRV =  

WhereV is constant of proportionality and it represents the voltage. The above equation 
is mathematical statement of the well known as Ohm’s Law. 

24.5.2 Inductor 
An inductor is a passive electronic component that stores energy in the form of magnetic 
field. In its simplest form the conductor consists of a wire loop or coil wound on some 
suitable material. 

Whenever current through an inductor changes, i.e increases or decreases, a counter emf 
is induced in it, which tends to oppose this change. This property of the coil due to which 
it opposes any change of current through it is called the inductance. 

Suppose that I denotes the current then the rate of change of current is given by 
dt
dI

This 

produces a counter emf voltageV . Then V is directly proportional to dt
dI

 

     dt
dIVα

   ⇒  dt
dILV =

 
Where L is constant of proportionality, which represents inductance of the inductor. The 
standard unit for measurement of inductance is Henry, denoted by H . 

24.5.3 Capacitor 
A capacitor is a passive electronic component of an electronic circuit that has the ability 
to store charge and opposes any change of voltage in the circuit. The ability of a capacitor 
to store charge is called capacitance of the capacitor denoted byC . If q+  coulomb of a 
charge to the capacitor and the potential difference of V volts is established between 2 
plates of the capacitor then 

    Cq     α ⇒ CVq =  

or    C
qV =

 

WhereC is called constant of proportionality, which represent capacitance. The standard 
unit to measure capacitance is farad, denoted by F . 

24.6 Kirchhoff’s Voltage Law 
The Kirchhoff’s 2nd law states that the sum of the voltage drops around any closed loop 
equals the sum of the voltage rises around that loop. In other words the algebraic sum of 
voltages around the close loop is zero. 
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24.6.1 The Differential Equation  
Now we consider the following circuit consisting of an inductor, a resistor and a 
capacitor in series with a time varying voltage source ( )tE . 

 
If cRL VVV and ,  denote the voltage drop across the inductor, resistor and capacitor 
respectively. Then 

   
C
qVRIV

dt
dILV cRL ===    ,  ,  

Now by Kirchhoff’s law, the sum of cRL VVV and , must equal the source voltage ( )tE i.e 

   ( )tEVVV cRL =++  

or   ( )tE
C
qRI

dt
dIL =++  

Since the electric current I represents the rate of flow of charge
dt
dq . Therefore, we can 

write 

    
dt
dqI =  

Substituting in the last equation, we have: 

   ( )tE
C
q

dt
dqR

dt
qdL =++2

2
 

Note that: 
 We have seen this equation before! It is mathematically exactly the same as the 

equation for a driven, damped harmonic oscillator. 

 If ( ) 0 ,0 ≠= RtE  the electric vibration of the circuit are said to be free damped 
oscillation. 

 If ( ) 0 ,0 == RtE then the electric vibration can be called free un-damped 
oscillations. 

24.6.2 Solution of the differential equation 
The differential equation that governs the flow of charge in an LRC-Series circuit is 
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    ( )tE
C
q

dt
dqR

dt
qdL =++2

2
 

This is a non-homogeneous linear differential equation of order-2. Therefore, the general 
solution of this equation consists of a complementary function and particular integral. 

For the complementary function we find general solution of the associated homogeneous 
differential equation 

    02

2
=++

C
q

dt
dqR

dt
qdL  

We put       ,   , mtmt me
dt
dqeq == mtem

dt
qd 2
2

2
=  

Then the auxiliary equation of the associated homogeneous differential equation is: 

     012 =++
C

RmLm  

If 0≠R then, depending on the discriminant, the auxiliary equation may have 

 Real and distinct roots 

 Real and equal roots 

 Complex roots 
Case 1 Real and distinct roots 

If 042 >−=
C
LRDisc  

Then the auxiliary equation has real and distinct roots. In this case, the circuit is said to 
be over damped.  

Case 2 Real and equal 

If 042 =−=
c
LRDisc  

Then the auxiliary equation has real and equal roots. In this case, the circuit is said to be 
critically damped.  

Case 3 Complex roots 

If 
042 <−=

c
LRDisc

 
Then the auxiliary equation has complex roots. In this case, the circuit is said to be under 
damped.  

Note that 
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 Since by the quadratic formula, we know that 

    
L

cLRRm
2

/42 −±−
=  

In each of the above mentioned three cases, the general solution of the non-

homogeneous governing equation contains the factor LRte 2/− . Therefore 

    ( ) ∞→→ ttq  as 0  

 In the under damped case when ( ) oqq =0 the charge on the capacitor oscillates as it 
decays. This means that the capacitor is charging and discharging as ∞→t  

 In the under damped case, i.e. when ( ) 0 and ,00 == RE , the electrical vibration do 
not approach zero as ∞→t . This means that the response of the circuit is Simple 
Harmonic. 
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25 Forced Motion (Examples)   
Example 1 Consider an LC series circuit in which ( ) 0=tE  

Determine the charge ( )tq on the capacitor for 0>t if its initial charge is oq  and if 
initially there is no current flowing in the circuit. 

Solution 
Since in an LC series circuit, there is no resistor. Therefore,     

     0=
dt
dqR  

So that, the governing differential equation becomes 

    01
2

2
=+ q

cdt
qdL  

The initial conditions for the circuit are 

    ( ) ( ) 00   ,0 == Iqq o  

Since     ( )tI
dt
dq

=  

Therefore the initial conditions are equivalent to  

    ( ) ( ) 000 =′= q,   qq o  

Thus, we have to solve the initial value problem. 

    01
2

2
=+ q

cdt
qdL  

    ( ) ( ) 000 =′= q,   qq o  

To solve the governing differential equation, we put 

    mtmt em
dt

qd,   eq 2
2

2
==  

So that the auxiliary equation is: 

    012 =+
c

Lm  

   ⇒  
Lc

m 12 −=  

   ⇒  i
Lc

m 







±=

1  

Therefore, the solution of the differential equation is : 
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  ( ) 







+








= t

Lc
ct

Lc
ctq 1sin1cos 21  

Now, we apply the boundary conditions  

   ( ) oqq =0 ⇒ 0.1. 21 ccqo +=  

        ⇒ oqc =1  

Thus    ( ) 







+








= t

Lc
ct

Lc
qtq o

1sin1cos 2  

Differentiating w.r to t , we have: 

    21 1sin cosoq cdq t t
dt Lc Lc Lc Lc

   = − +   
   

 

Now    ( ) 00 =′q ⇒ 01.0 2 =+
Lc

c  

        ⇒ 02 =c  

Hence 

    ( ) t
Lc

qtq o
1cos=  

Since    ( )
dt
dqtI =  

Therefore, current in the circuit is given by  

    ( ) 






−= t
LCLc

qtI o 1sin  

Example 2 

Find the charge ( )tq on the capacitor in an LRC series circuit when L=0.25 Henry, R=10 
Ohms, C=0.001 farad, ( ) 0=tE , ( ) oqq =0 and ( )0I =0. 

Solution 
We know that for an LRC circuit, the governing differential equation is  

    ( )tE
c
q

dt
dqR

dt
qdL =++2

2
 

Since
4
125.0 ==L , 110 0 001

1000
R   ,C .= = =  

Therefore, the equation becomes: 
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    0100010
4
1

2

2
=++ q

dt
dq

dt
qd

 

or    04000402

2
=++ q

dt
dq

dt
qd

 

The initial conditions are 

    ( ) ( ) 000 == ,  Iqq o  

or    ( ) ( ) 000 =′= q,  qq o  

To solve the differential equation, we put  

   mtmtmt em
dt

qdme
dt
dqeq 2

2

2
    ,    , ===  

Therefore, the auxiliary equation is 

   04000402 =++ mm  

              
2

16000160040 −±−
=⇒ m  

   im  6020 ±−=⇒  

Thus, the solution of the differential equation is 

   ( ) ( )tctcetq t 60sin60cos 21
20 += −  

Now, we apply the initial conditions 

   ( ) oo qccqq =+⇒= 0.1.0 21  

         oqc =⇒ 1  

Therefore  ( ) ( )tctqetq o
t 60sin60cos 2

20 += −  

Now       ( ) ( ) ( )tctqetctqetq o
t

o
t 60cos 60 60sin6060cos60cos20 2

20
2

20 +−++−=′ −−  

Thus    ( ) 2 20 0 20 20 60 .1 0oq q c c′ = ⇒ − − + =  

       2 2
oqc⇒ =  

Hence the solution of the initial value problem is  

    ( ) 20 1cos 60 sin 60
2

t
oq t q e t t−  = + 

 
 

As discussed in the previous lectures, a single sine function 
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   ( ) ( )249.160sin
3

10 20 += − teqtq to  

Since 0≠R and ( ) 0lim =
∞→

tq
t

 

Therefore the solution of the given differential equation is transient solution. 

Note that 
The electric vibrations in this case are free damped oscillations as there is no impressed 
voltage ( )tE on the circuit. 

Example 3 

Find the steady state of solution ( )tq p and the steady state current in an LRC series circuit 

when the impressed voltage is ( ) sinoE t E tγ=  

Solution 

The steady state solution ( )tq p is a particular solution of the differential equation 

    
2

2

1 sino
d q dqL R q E t
dt dt C

γ+ + =  

We use the method of undetermined coefficients, for finding ( )tq p . Therefore, we assume  

    ( ) sin cosq t A t B tγ γ= +  

Then    ( ) cos sinq t A t B tγ γ γ γ′ = −  

    ( ) tBtAtq γγγγ cossin 22 −−=′′   

Therefore     

 
t

C
Bt

C
AtBR

tARtBLtALq
Cdt

dqR
dt

qdL

γγγγ

γγγγγγ

cossinsin

coscossin1 22
2

2

++−

+−−=++
 

            tARBL
C
BtBRAL

C
A γγγγγγ cossin 22





 +−+



 −−=  

Substituting in the given differential equation, we obtain 

tEtARBL
C
BtBRAL

C
A

o γγγγγγγ sincossin 22 =



 +−+



 −−  

Equating coefficients of t sinγ and t cosγ , we obtain 

    oEBRAL
C
A

=−− γγ 2  
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    2 0B BL AR
C

γ γ− + =  

or    oEBRAL
C

=−





 − γγ 21  

    01 2 =





 −+ BL

C
AR γγ  

To solve these equations, we have from second equation 
21

ARB
L

C

γ

γ

−
=

−
 

Substituting in the first equation and simplifying, we obtain 

2 2 2
2 2

1

2 1

oE L
CA

LL R
C C

γ
γ

γ γ
γ

 
− 

 =
 

− − + + 
 

 

Using this value of A  and simplifying yields









++−−

=
2

22
22 12 R

CC
LL

RE
B o

γ
γγ

 

If we use the notations 

              22
222 12 then 1

γ
γ

γ
γ

CC
LLX

C
LX +−=−=  

   2
22

22222 12  then    R
CC

LLZRXZ ++−=+=
γ

γ  

Then  22 B          ,
Z
RE

Z
XE

A oo

γγ −
=

−
=  

Therefore, the steady-state charge is given by ( ) t
Z

RE
t

Z

XE
tq oo

p γ
γ

γ
γ

cossin 22 −−=  

So that the steady-state current is given by ( ) 





 −= t

Z
Xt

Z
R

Z
E

tI o
p γγ cossin  

Note that 

 The quantity 
γ

γ
C

LX 1
−= is called the reactance of the circuit. 

 The quantity 22 RXZ += is called impedance of the circuit. 

 Both the reactance and the impedance are measured in ohms. 
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Exercise 
11. A 16-lb weight stretches a spring 8/3 ft. Initially the weight starts from rest 2-ft 

below the equilibrium position and the subsequent motion takes place in a 
medium that offers a damping force numerically equal to ½ the instantaneous 
velocity. Find the equation of motion, if the weight is driven by an external force 
equal to ( ) .3cos10 ttf =  

12. A mass 1-slug, when attached to a spring, stretches it 2-ft and then comes to rest 
in the equilibrium position. Starting at 0=t , an external force equal to 

( ) ttf 4sin8= is applied to the system. Find the equation of motion if the 
surrounding medium offers a damping force numerically equal to 8 times the 
instantaneous velocity. 

13. In problem 2 determine the equation of motion if the external force is 
( ) tetf t 4sin−= . Analyze the displacements for t → ∞ . 

14. When a mass of 2 kilograms is attached to a spring whose constant is 32 N/m, it 
comes to rest in the equilibrium position. Starting at 0,t =  a force equal to 

( ) tetf t 4cos68 2−=  is applied to the system. Find the equation of motion in the 
absence of damping. 

15. In problem 4 write the equation of motion in the form 
   ( ) ( ) ( )θ+++= − tBeφωtAtx t 4sinsin 2 . 
What is the amplitude of vibrations after a very long time? 

16. Find the charge on the capacitor and the current in an LC series circuit. Where

( )  volts60   farad, 
16
1   Henry, 1 === tECL . Assuming that ( ) ( ) 00 and 00 == iq . 

 

17. Determine whether an LRC series circuit, where 3 Henrys,   10 ohms, L R= =  
farad 1.0=C is over-damped, critically damped or under-damped. 

18. Find the charge on the capacitor in an LRC series circuit when Henry 4/1=L , 
( ) ( ) ( ) amperes 00 and coulombs 40  volts,0  farad, 300/1  ohms, 20 ===== iqtECR

 Is the charge on the capacitor ever equal to zero? 

Find the charge on the capacitor and the current in the given LRC series circuit. Find the 
maximum charge on the capacitor. 

19. ( ) ( )5 / 3 henrys,  10 ohms,  1/30 farad, 300 volts,  0 0 coulombs,  L R C E t q= = = = =

 ( ) amperes 00 =i  
20. ( ) ( )   coulombs, 00   volts,30 farad, 0.0004  ohms, 100  henry,  1 ===== qtECRL

 ( ) amperes 20 =i  
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26 Differential Equations with Variable Coefficients 
So far we have been solving Linear Differential Equations with constant coefficients. 

We will now discuss the Differential Equations with non-constant (variable) 
coefficients.These equations normally arise in applications such as temperature or 
potential u in the region bounded between two concentric spheres. Then under some 

circumstances we have to solve the differential equation 022

2

=+
dr
du

dr
udr  

where the variable r>0 represents the radial distance measured outward from the center 
of the spheres. 

Differential equations with variable coefficients such as  

 0)( 222 =−+′+′′ yvxyxyx  

 0)1(2)1( 2 =++′−′′− ynnyxyx  

and 022 =+′−′′ nyyxy  

occur in applications ranging from potential problems, temperature distributions and vibration phenomena 
to quantum mechanics. 

The differential equations with variable coefficients cannot be solved so easily. 

26.1 Cauchy- Euler Equation 
Any linear differential equation of the form  

)(011

1
1

1 xgya
dx

ydxa
dx

ydxa
dx

ydxa n

n
n

nn

n
n

n =++++ −

−
−

−   

where 01 ,,, aaa nn − are constants, is said to be a Cauchy-Euler equation or equi-
dimensional equation. The degree of each monomial coefficient matches the order of 
differentiation i.e nx is the coefficient of nth derivative of y, 1−nx  of (n-1)th derivative of 
y, etc. 

For convenience we consider a homogeneous second-order differential equation  

  
2

2
2 0,d y dyax bx cy

dxdx
+ + =   0≠x  

The solution of higher-order equations follows analogously.  

Also, we can solve the non-homogeneous equation 

  
2

2
2 ( ),d y dyax bx cy g x

dxdx
+ + =   0≠x  

by variation of parameters after finding the complementary function ).(xyc  
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We find the general solution on the interval ),0( ∞  and the solution on ),0( −∞  can be 
obtained by substituting xt −=  in the differential equation. 

26.1.1 Method of Solution 

We try a solution of the form mxy = , where m is to be determined. The first and second 
derivatives are, respectively, 

 1−= mmx
dx
dy    and   

2
2

2 ( 1) md y m m x
dx

−= −  

Consequently the differential equation becomes 

 mmm cxmxbxxmmaxcy
dx
dybx

dx
ydax +⋅+−⋅=++ −− 122
2

2
2 )1(  

    mmm cxbmxxmam ++−= )1(  

    ( ( 1) )mx am m bm c= − + +  

Thus mxy = is a solution of the differential equation whenever m is a solution of the 
auxiliary equation 

0))1(( =++− cbmmam  or  0)(2 =+−+ cmabam  

The solution of the differential equation depends on the roots of the AE.  

26.1.2 Case-I (Distinct Real Roots) 

Let 1m  and 2m  denote the real roots of the auxiliary equation such that 21 mm ≠ . Then  
  1mxy =  and 2mxy =   form a fundamental set of solutions.  

Hence the general solution is 

   21
21

mm xcxcy += . 

Example 1 Solve     
2

2
2 2 4 0d y dyx x y

dxdx
− − =  

Solution: Suppose that mxy = , then 1−= mmx
dx
dy   ,   

2
2

2 ( 1) md y m m x
dx

−= −  

Now substituting in the differential equation, we get: 

mmm xmxxxmmxy
dx
dyx

dx
ydx 42)1(42 122
2

2
2 −⋅−−⋅=−− −− ( ( 1) 2 4)mx m m m= − − −  

⇒ 2( 3 4) 0mx m m− − =     if 0432 =−− mm  

This implies 4,1 21 =−= mm ; roots are real and distinct. 
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So the solution is  4
2

1
1 xcxcy += − . 

26.1.3 Case II (Repeated Real Roots) 
If the roots of the auxiliary equation are repeated, that is, then we obtain only one 
solution 1mxy = .  

To construct a second solution 2y , we first write the Cauchy-Euler equation in the form   

022

2

=++ y
ax
c

dx
dy

ax
b

dx
yd  

Comparing with 0)()(2

2

=++ yxQ
dx
dyxP

dx
yd  

We make the identification 
ax
bxP =)(  . Thus 

   ∫
∫

= dx
x

exy m

dx
ax
b

m
22 )( 1

1  

        ∫
−

= dx
x

ex m

x
a
b

m
1

1
2

ln)(

 

                   21 1.
b

m max x x dx−−= ∫  

Since roots of the AE  0)(2 =+−+ cmabam   are equal, therefore  discriminant is zero  

   i.e 
a
abm

2
)(

1
−

−=   or  1
( )2 b am

a
−

− = +  

   12 .
b b a

m a ay x x x dx
− −

= ∫   

   ∫ == .ln11
2 xx

x
dxxy mm  

The general solution is then 

 xxcxcy mm ln11
21 +=        

Example 2  Solve      .084 2

2
2 =++ y

dx
dyx

dx
ydx  

Solution: Suppose that mxy = , then 1−= mmx
dx
dy   ,   .)1( 2

2

2
−−= mxmm

dx
yd  

Substituting in the differential equation, we get: 
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0)144()18)1(4(84 2
2

2
2 =++=++−=++ mmxmmmxy

dx
dyx

dx
ydx mm  

if 0144 2 =++ mm  or 0)12( 2 =+m . Since 
2
1

1 −=m , the general solution is  

xxcxcy ln2
1

2
2
1

1

−−
+= . 

  For higher order equations, if 1m is a root of multiplicity k, then it can be shown that: 
2 11 1 1 1, ln , (ln ) , , (ln )m m m m kx x x x x x x −
 are k linearly independent solutions.  

Correspondingly, the general solution of the differential equation must then contain a 
linear combination of these k solutions.                  

26.1.4 Case III (Conjugate Complex Roots) 

If the roots of the auxiliary equation are the conjugate pair ,1 βα im +=   βα im −=2  

where α  and β >0 are real, then the solution is 1 2 .i iy c x c xα β α β+ −= +  

But, as in the case of equations with constant coefficients, when the roots of the auxiliary 
equation are complex, we wish to write the solution in terms of real functions only. We 
note the identity  

  lnln( ) ,i i i xxx e eβ β β= =    

which, by Euler’s formula, is the same as  

  cos( ln ) sin( ln )ix x i xβ β β= +  

Similarly we have 

  cos( ln ) sin( ln )ix x i xβ β β− = −  

Adding and subtracting last two results yields, respectively,  

  2cos( ln )i ix x xβ β β−+ =  

 and 2 sin( ln )i ix x i xβ β β−− =  

From the fact that 1 2
i iy c x c xα β α β+ −= + is the solution of  2 0ax y bxy cy+ + =′′ ′ , 

for any values of constants 1c  and 2c , we see that  

 1 ( ),i iy x x xβ βα −= +   1 2( 1)c c= =  

 2 ( ),i iy x x xβ βα −= −   1 2( 1, 1)c c= = −  

or 1 2 (cos( ln ))y x xα β=  , 2 2 (sin( ln ))y x xα β= are also solutions. 
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 Since 0;0))lnsin(),lncos(( 12 >≠= − ββββ ααα xxxxxW , on the interval ),,0( ∞  we 
conclude that )lncos(1 xxy βα= and )lnsin(2 xxy βα= constitute a fundamental set of 
real solutions of the differential equation. Hence the general solution is 

)]lnsin()lncos([ 211 xcxcxy ββα +=  

Example 3 Solve the initial value problem ,0332

2
2 =++ y

dx
dyx

dx
ydx 5)1(,1)1( −=′= yy  

Solution: Let us suppose that:    mxy = , then 1−= mmx
dx
dy   and   .)1( 2

2

2
−−= mxmm

dx
yd  

0)32()33)1((33 2
2

2
2 =++=++−=++ mmxmmmxy

dx
dyx

dx
ydx mm  

if  0322 =++ mm .  

From the quadratic formula we find that im 211 +−=  and im 211 −−= . If we make 
the identifications 1−=α  and 2=β , so the general solution of the differential 
equation is )]ln2sin()ln2cos([ 21

1
1 xcxcxy += − . 

By applying the conditions 5)1(,1)1( −=′= yy , we find that 11 =c  and 222 −=c .  

Thus the solution to the initial value problem is )]ln2sin(22)ln2[cos(1
1 xxxy −= −  

Example 4 Solve the third-order Cauchy-Euler differential  equation 

  ,0875 2

2
2

3

3
3 =+++ y

dx
dyx

dx
ydx

dx
ydx  

Solution 

 The first three derivative of  mxy =  are 

 1−= mmx
dx
dy ,  2

2

2

)1( −−= mxmm
dx

yd ,  
3

3
3 ( 1)( 2) ,md y m m m x

dx
−= − −  

so the given differential equation becomes 

,87)1(5)2)(1(875 12233
2

2
2

3

3
3 mmmm xxmxxmmxxmmmxy

dx
dyx

dx
ydx

dx
ydx ++−+−−=+++ −−−  

       )87)1(5)2)(1(( ++−+−−= mmmmmmxm  

       )842( 23 +++= mmmxm  

In this case we see that mxy =  is a solution of the differential equation, provided m is a 
root of the cubic equation  

  0842 23 =+++ mmm   
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or  0)4)(2( 2 =++ mm  

The roots are: imimm 2,2,2 321 −==−= .  

 

Hence the general solution is 

  )ln2sin()ln2cos( 32
2

11 xcxcxcy ++= −  

Example 5 Solve the non-homogeneous equation 2 43 3 2 xx y xy y x e− + =′′ ′  

Solution Put  mxy =  ⇒ 1−= mmx
dx
dy ,  2

2

2

)1( −−= mxmm
dx

yd  

Therefore we get the auxiliary equation, 

 033)1( =+−− mmm  or 0)3)(1( =−− mm  or 3,1=m  

Thus  3
21 xcxcyc +=  

Before using variation of  parameters to find the particular solution 2211 yuyuy p += , 

recall that the formulas 
W
Wu 1

1 =′  and  
W
Wu 2

2 =′ , where 
2

2
1 )(

0
yxf
y

W
′

=  , 
)(

0

1

1
2 xfy

y
W

′
=

, and W is the Wronskian of  1y  and 2y , were derived under the assumption that the 
differential equation has been put into special form    . )()()( xfyxQyxPy =+′+′′  

Therefore we divide the given equation by 2x , and form xexy
x

y
x

y 2
2 233

=+′−′′  

we make the identification xexxf 22)( =  . Now with xy =1 , 2
2 xy = , and 

3
2

3

2
31

x
x
xx

W == ,    x
x ex

xex
x

W 5
22

3

1 2
32

0
−== ,  x

x ex
ex

xx
W 3

22 2
21

==  

we find  

  x
x

ex
x
exu 2
3

5

1 2
2

−==′  and x
x

e
x
exu ==′
3

3

2 2
2  

   xxx exeexu 222
1 −+−=  and xeu =2 . 

Hence   2211 yuyuy p +=  

            xxxxxx xeexxexexeex 22)22( 232 −=+−+−=  

Finally we have xx
pc xeexxcxcyyy 22 23

21 −++=+=  

26.2 Exercises 
1. 24 0x y y+ =′′  
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2. 0xy y− =′′ ′  

3. 2 5 3 0x y xy y+ + =′′ ′  

4. 24 4 0x y xy y+ − =′′ ′  

5. 2 7 41 0x y xy y− + =′′ ′  

6. 
3 23 2

3 22 4 4 0d y d y dyx x x y
dxdx dx

− + − =  

7. 
4 3 24 3 2

4 3 26 9 3 0d y d y d y dyx x x x y
dxdx dx dx

+ + + + =  

8. 2 5 8 0; (1) 0, (1) 4x y xy y y y− + = = =′′ ′ ′  

9. 2 3 ln2 2 xx y xy y x− + =′′ ′  

10. 
3 23 2 3

3 23 6 6 3 lnd y d y dyx x x y x
dxdx dx

− + − = +  
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27 Cauchy-Euler Equation (Alternative Method of Solution) 
We reduce any Cauchy-Euler differential equation to a differential equation with constant coefficients 
through the substitution  

  tx e=    or   xt ln=   

dt
dy

xdx
dt

dt
dy

dx
dy

⋅=⋅=∴
1  

dt
dy

xdt
dy

dx
d

xdt
dy

xdx
d

dx
yd

⋅−⋅=⋅= 22

2 1)(1)1(  

 or 
dt
dy

xdx
dt

dt
dy

dt
d

xdx
yd

⋅−⋅= 22

2 1)(1  

 or 
dt
dy

xdt
yd

xdx
yd

⋅−⋅= 22

2

22

2 11  

Therefore   
dt
dy

dx
dyx = , 

dt
dy

dt
yd

dx
ydx −= 2

2

2

2
2  

Now introduce the notation 

  ,, 2

2
2

dx
dD

dx
dD ==  etc. 

and  ,, 2

2
2

dt
d

dt
d

=∆=∆    etc. 

Therefore, we have   

  ∆=xD  

  2 2 2 ( 1)x D = ∆ − ∆ = ∆ ∆ −  

Similarly 

  3 3 ( 1)( 2)x D = ∆ ∆ − ∆ −  

  4 4 ( 1)( 2)( 3)x D = ∆ ∆ − ∆ − ∆ −   so on so forth. 

This substitution in a given Cauchy-Euler differential equation will reduce it into a 
differential equation with constant coefficients.  
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At this stage we suppose mty e=  to obtain an auxiliary equation and write the solution 

in terms of y and t. We then go back to x  through tx e= . 
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Example 1 Solve 0422

2
2 =−− y

dx
dyx

dx
ydx  

Solution The given differential equation can be written as 

 0)42( 22 =−− yxDDx  

With the substitution tx e=  or xt ln= , we obtain  

  ∆=xD ,  )1(22 −∆∆=Dx  

Therefore the equation becomes: 
  0]42)1([ =−∆−−∆∆ y  

 or 0)43( 2 =−∆−∆ y  

 or 0432

2

=−− y
dt
dy

dt
yd  

Now substitute:  mty e=  then mtdy me
dt

= ,  
2

2
2

mtd y m e
dt

=  

Thus 2( 3 4) 0mtm m e− − =   or   0432 =−− mm , which is the auxiliary equation. 

  0)4)(1( =−+ mm        4,1−=m  

The roots of the auxiliary equation are distinct and real, so the solution is 

 

  4
1 2

t ty c e c e−= +  

But    tx e= , therefore the answer will be 

  1 4
1 2y c x c x−= +  

Example 2 Solve 084 2

2
2 =++ y

dx
dyx

dx
ydx  

Solution  The differential equation can be written as: 

  0)184( 22 =++ yxDDx  

Where  2

2
2,

dx
dD

dx
dD ==  

Now with the substitution tx e= or lnt x= , ∆=xD  , )1(22 −∆∆=Dx   where 
dt
d

=∆  

The equation becomes: 
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 0)18)1(4( =+∆+−∆∆ y         or 0)144( 2 =+∆+∆ y  

 
2

24 4 0d y dy y
dt dt

+ + =  

Now substituting mty e=  then  mtdy me
dt

= , 
2 2
2

mtd y m e
dt

= , we get

 2(4 4 1) 0mtm m e+ + =  

 or 0144 2 =++ mm  or 0)12( 2 =+m  

 or 
2
1,

2
1

−−=m ; the roots are real but repeated.  

Therefore the solution is 

 
1
21 2( )

t
y c c t e

−
= +  

 or 
1
21 2( ln )y c c x x

−
= +  

 i-e 
1 1
2 21 2 lny c x c x x

− −
= +  

Example 3 Solve the initial value problem 0332

2
2 =++ y

dx
dyx

dx
ydx , 5)1(,1)1( −=′= yy  

Solution 
The given differential can be written as: 

  0)33( 22 =++ yxDDx  

Now with the substitution tx e=  or  lnt x=  we have: 

 ∆=xD  , )1(22 −∆∆=Dx  

Thus the equation becomes: 

 0)33)1(( =+∆+−∆∆ y   or 0)32( 2 =+∆+∆ y  

 0322

2

=++ y
dt
dy

dt
yd  

Put mty e=  then  the A.E. equation is: 

 or 0322 =++ mm  

 or 21
2

1242 im ±−=
−±−

=  
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So that solution is: 

 1 2( cos 2 sin 2 )ty e c t c t−= +  

 or 1
1 2( cos 2 ln sin 2 ln )y x c x c x−= +  

 

Now 1)1( =y  gives, 1 21 ( cos 0 sin 0)c c= +  11 =⇒ c  

 
2 2

1 2 1 2( cos 2 ln sin 2 ln ) ( 2 sin 2 ln 2 cos 2 ln )y x c x c x x c x c x− −′ = − + + − +  

5)1( −=′∴ y  gives: ]2[]0[5 21 cc ++−=−  or 452 12 −=−= cc , 22
2
4

2 −=
−

=c  

Hence solution of the IVP is: 

 1[cos( 2 ln ) 2 2 sin( 2 ln )]y x x x−= − . 

Example 4 Solve  0875 2

2
2

3

3
3 =+++ y

dx
dyx

dx
ydx

dx
ydx  

Solution The given differential equation can be written as: 

  0)875( 2233 =+++ yxDDxDx  

Now with the substitution tx e=   or  lnt x=  we have: 

 ∆=xD  , )1(22 −∆∆=Dx , )2)(1(33 −∆−∆∆=Dx  

So the equation becomes: 
 0)87)1(5)2)(1(( =+∆+−∆∆+−∆−∆∆ y  

 or 0)875523( 223 =+∆+∆−∆+∆+∆−∆ y  

 or 0)842( 23 =+∆+∆+∆ y  

 or 0842 2

2

3

3

=+++ y
dt
dy

dt
yd

dt
yd   

Put mty e= , then the auxiliary equation is: 

 0842 23 =+++ mmm  

 or  0)2)(4( 2 =++ mm  

       ,2−=m  or i2±  

So the solution is: 

  2
1 2 3cos2 sin 2ty c e c t c t−= + +  
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 or  2
1 2 3cos(2ln ) sin(2ln )y c x c x c x−= + +  

Example 5 Solve the non-homogeneous differential equation
2 43 3 2 xx y xy y x e− + =′′ ′  

Solution  
First consider the associated homogeneous differential equation. 

 2 3 3 0x y xy y− + =′′ ′  

With the notation 2
2

2

, D
dx
dD

dx
d

== , the differential equation becomes: 

  2 2( 3 3) 0x D xD y− + =  

With the substitution tx e=  or lnt x= , we have:  

  ∆=xD ,  )1(22 −∆∆=Dx  

 

So the homogeneous differential equation becomes: 
  0]33)1([ =+∆−−∆∆ y  

  0)34( 2 =+∆−∆ y  

 or 0342

2

=+− y
dt
dy

dt
yd  

Put mty e=  then the AE is: 

 0342 =+− mm  or  0)1)(3( =−− mm , or 3,1=m  

 3
1 2

t tcy c e c e∴ = + , as tx e=  

    3
1 2cy c x c x= +  

For py we write the differential equation as:  

 2
2

3 3 2 xy y y x ex x
− + =′′ ′  

3
1 2py u x u x= + ,  where 1u  and 2u  are functions given by  

 1
1

Wu
W

=′  ,  2
2

Wu
W

=′ ,  

with 
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3
3

2
2

1 3
x xW x

x
= =  , 

3
5

1 2 2
0 2

2 3
x

x
xW x e

x e x
= = −  and 

3
2 2

0
2

1 2
x

x
x

W x e
x e

= =  

So that     
5 2

1 3
2
2

x xx eu x e
x

= = −′    and   
3

2 3
2
2

x xx eu e
x

= =′  

     2 2
1 [ 2 ]x x xu x e dx x e xe dx∴ = − = − −∫ ∫   

  2 2[ ]x x xx e xe e dx= − + − ∫  

  2 2 2x x xx e xe e= − + −   

and 2
x xu e dx e= =∫ . 

Therefore 2 3 2( 2 2 ) 2 2x x x x x x
py x x e xe e x e x e xe= − + − + = −   

Hence the general solution is: c py y y= +  ⇒ 3 2
1 2 2 2x xy c x c x x e xe= + + −  

Example 6 Solve   
22

2 lnd y dyx x y x
dxdx

− + =  

Solution Consider the associated homogeneous differential equation. 

 
22

2 0d y dyx x y
dxdx

− + = or 2 2( 1) 0x D xD y− + =   

With the substitution tx e= , we have: xD = ∆ ,  2 2 ( 1)x D = ∆ ∆ −  

So the homogeneous differential equation becomes: 0]1)1([ =+∆−−∆∆ y  

⇒ 0)12( 2 =+∆−∆ y  ⇒ 022

2

=+− y
dt
dy

dt
yd  

Putting mty e= , we get the auxiliary equation as: 0122 =+− mm  ⇒ 0)1( 2 =−m   ⇒

1,1=m  ⇒ 1 2
t t

cy c e c te∴ = +    ⇒ 1 2 lncy c x c x x= +  . 

Now the non-homogeneous differential equation becomes: 

 
2
2 2d y dy y t

dtdt
− + =  
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By the method of undetermined coefficients we try a particular solution of the form 
py A Bt= + . This assumption leads to  

tBtAB =++− 2  so that A=2 and B=1 

Using c py y y= + , we get  

 1 2 2t t
cy c e c te t= + + + ; 

So the general solution of the original differential equation on the interval ),0( ∞  is 

 1 2 ln 2 lncy c x c x x x= + + +  

27.1 Exercises 

Solve using tx e=  

11. 
2

2 0d y dyx
dxdx

+ =  

12. 
22

2 4 0d y dyx x y
dxdx

+ + =  

13. 
22 22 3 0d y dyx x y

dxdx
−− =  

14. 
22 25225 0d y dyx x y

dxdx
+ + =  

15. 
22 623 0d y dyx x y

dxdx
+ + =  

16. 
4 3

64 3 0d y d yx
dx dx

+ =  

17. 
22 32 0, (1) 0, '(0) 4d y dyx x y y

dxdx
+ = = =  

18. 
22

2 0, (1) 1, '(1) 2d y dyx x y y y
dxdx

+ + = = =  

19. 2
22 102 8d y dyx x y x

dxdx
+ + =  

20. 3

2 52 9 202 x
d y dyx x ydxdx

+ − =  
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28 Power Series (An Introduction) 
 A standard technique for solving linear differential equations with variable 

coefficients is to find a solution as an infinite series. Often this solution can be 
found in the form of a power series. 

 Therefore, in this lecture we discuss some of the more important facts about 
power series. 

 However, for an in-depth review of the infinite series concept one should consult 
a standard calculus text. 

28.1 Power Series 
  A power series in( ax − ) is an infinite series of the form  

 ( ) 2
0 1 2

0
( ) ( )n

n
n

c x a c c x a c x a
∞

=

− = + − + − +∑ . 

The coefficients 0 1 2,  ,  ,c c c   and a  are constants and x  represents a variable. In this 
discussion we will only be concerned with the cases where the coefficients, x  and a  are 
real numbers. The number a  is known as the centre of the power series. \ 

Example 1 The infinite series 
( ) 1 2 3

2 2 2
1

1
2 3

n
n

n

x xx x
n

+∞

=

−
= − + −∑   

is a power series in x . This series is centered at zero. 

28.2 Convergence and Divergence 
 If we choose a specified value of the variable x  then the power series becomes an 

infinite series of constants. If, for the given x , the sum of terms of the power 
series equals a finite real number, then the series is said to be convergent at x .  

 A power series that is not convergent is said to be a divergent series. This means 
that the sum of terms of a divergent power series is not equal to a finite real 
number. 

Example 2 

(a)  Consider the power series 
2 3

0
1

! 2! 3!

n

n

x x xx
n=

∞
= + + + +∑   

Since for 1x =  the series become 
0

1 11 1
! 2! 3!

n

n

x e
n=

∞
= + + + + =∑   

Therefore, the power series converges 1x =  to the number e  

(b) Consider the power series 
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2 3

0
!( 2) 1 ( 2) 2!( 2) 3!( 2)

n

nn x x x x
=

∞
+ = + + + + + + +∑   

The series diverges  x∀ , except at 2x = − . For instance, if we take 1x =  then the series 

becomes 
0

!( 2) 1 3 18
n

nn x
=

∞
+ = + + +∑   

Clearly the sum of all terms on right hand side is not a finite number. Therefore, the 
series is divergent at 1x = .  Similarly, we can see its divergence at all other values of 

2x ≠ −    

28.2.1 The Ratio Test 

To determine for which values of x  a power series is convergent, one can often use the 

Ratio Test. The Ratio test states that if   
0 0

( )n
n n

n n
a c x a

∞ ∞

= =
= −∑ ∑ is a power series and   

 1 1lim lim | - |n n
n nn n

a c
x a L

a c
+ +

→∞ →∞
= =  

Then: 

 The power series converges absolutely for those values of x  for which 1L < . 

 The power series diverges for those values of x for which 1 or L = L > ∞ . 

 The test is inconclusive for those values of  x  for which 1L = . 
28.2.2 Interval of Convergence 

The set of all real values of x  for which a power series  

 ( )
0

n
n

n
c x a

∞

=

−∑  

converges is known as the interval of convergence of the power series.  

28.2.3 Radius of Convergence 

Consider a power series ( )∑
∞

=
−

0n

n
n axc  

Then exactly one of the following three possibilities is true: 

 The series converges only at its center x a= .    
 The series converges for all values of x .  
 There is a number 0>R  such that the series converges absolutely x∀  satisfying 

Rax <−  and diverges for Rax >− . This means that the series converges for 
( , )x a R a R∈ − +  and diverges out side this interval. 

 
                                                © Copyright Virtual University of Pakistan                                                 246 



Differential Equations (MTH401)                                                                                    VU 
 

The number R  is called the radius of convergence of the power series.  If first possibility 
holds then 0R =  and in case of 2nd possibility we write R = ∞ . 

From the Ratio test we can clearly see that the radius of convergence is given by 

 
1

lim n
n n

c
R

c→∞ +
=  

provided the limit exists. 

28.2.4 Convergence at an Endpoint 

If the radius of convergence of a power series is 0>R , then the interval of convergence 
of the series is one of the following 

[ ]( , ),  ( , ],  [ , ),  ,a R a R a R a R a R a R a R a R− + − + − + − +  

To determine which of these intervals is the interval of convergence, we must conduct 
separate investigations for the numbers x a R and x a R= − = + .  

Example 3 Consider the power series 
1 1

1 n
n

n n
a x

n

∞ ∞

= =
=∑ ∑  

Then 
1

1lim lim
1

n
n

nn nn

a x n
a n x

+
+

→∞ →∞
= ⋅

+
 

or 1lim lim lim | | | |
1 1

n
n n nn

a n nx x x
a n n

+

→∞ →∞ →∞
= ⋅ = =

+ +
 

Therefore, it follows from the Ratio Test that the power series converges absolutely for 
those values of x  which satisfy   1x <  

This means that the power series converges if x  belongs to the interval ( 1,1)−  

The series diverges outside this interval i.e. when 1x > or 1x < − . The convergence of 
the power series at the numbers 1 and 1−  must be investigated separately by substituting 
into the power series. 

a) When we substitute 1x = , we obtain  

 
1

1 1 1 1(1) 1
2 3

n

n n n

∞

=
= + + + + +∑    

which is a divergent p -series, with
1
2

p = . 
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b) When we substitute 1x = − , we obtain 

 
1

1 1 1 ( 1)( 1) 1
2 3

n
n

n n n

∞

=

−
− = − + − + + +∑    

which converges, by alternating series test. 

Hence, the interval of convergence of the power series is [ 1,1)− . This means that the 
series is convergent for those vales of x  which satisfy 

  1    1x− ≤ <    

Example 4 Find the interval of convergence of the power series 

   

( )
1 1

3

2

n

n n
n n

x
a

n

∞ ∞

= =

−
=

⋅
∑ ∑

 
Solution The power series is centered at 3 and the radius of convergence of the series is 

    
( )12 1

lim 2
2

n

nn

n
R

n

+

→∞

+
= =

⋅
 

Hence, the series converges absolutely for those values of x which satisfy the inequality 

3 2 1 5x x− < ⇒ < <   

(a) At the left endpoint we substitute 1=x  in the given power series to obtain the series 

of constants: 
( )

1 1

1 n

n
n n

a
n

∞ ∞

= =

−
=∑ ∑  

This series is convergent by the alternating series test.  

(b) At the right endpoint we substitute 5=x  in the given series and obtain the following 

harmonic series of constants
1

1

n n

∞

=
∑  

Since a harmonic series is always divergent, the above power series is divergent.  

Hence, the series the interval of convergence of the given power series is a half open and 
half closed interval[ )1, 5 . 

28.3 Absolute Convergence 
Within its interval of convergence a power series converges absolutely. In other words, 

the series of absolute values ( )∑
∞

=
−

on

n
n axc   

converges for all values x  in the interval of convergence.   
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28.4 Power Series Representation of Functions 

A power series ( )
0

n
n

n
c x a

∞

=
−∑ determines a function f whose domain is the interval of 

convergence of the power series.  Thus for all x  in the interval of convergence, we write 

( ) ( ) ( ) ( ) ( )∑
∞

=
+−+−+−+=−=

0

3
3

2
210

n

n
n axcaxcaxccaxcxf  

If a function is f  is defined in this way, we say that ( )
0

n
n

n
c x a

∞

=
−∑ is a power series 

representation for ( )f x . We also say that f is represented by the power series 

 

28.4.1 Theorem 

Suppose that a power series ( )
0

n
n

n
c x a

∞

=
−∑  has a radius of convergence 0>R  and for 

every x  in the interval of convergence a function f is defined by 

 ( ) ( ) ( ) ( ) ( )∑
∞

=
+−+−+−+=−=

0

3
3

2
210

n

n
n axcaxcaxccaxcxf  

Then 

 

 The function f  is continuous, differentiable, and integrable on the interval
( ),  a R a R− + . 

 Moreover, ( )xf ′ and ( )f x dx∫  can be found from term-by-term differentiation 

and ntegration. 
Therefore 

 ( ) ( ) ( ) ( )2 1
1 2 3

1
2 3 n

n
n

f x c c x a c x a nc x a
∞

−

=

′ = + − + − + = −∑  

 ( ) ( ) ( ) ( )2 3

0 1 2 
2 3

x a x a
f x dx C c x a c c

− −
= + − + + +∫   

   
( ) 1

0 1

n

n
n

x a
C c

n

+∞

=

−
= +

+∑  

The series obtained by differentiation and integration have same radius of convergence. 
However, the convergence at the end points x a R= −  and x a R= +  of the interval 
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may change. This means that the interval of convergence may be different from the 
interval of convergence of the original series. 

Example 5 Find a function f  that is represented by the power series 

  2 31 ( 1)n nx x x x− + − + + − +   

Solution  The given power series is a geometric series whose common ratio is r x= − . 
Therefore, if 1x <  then the series converges and its sum is 

  
1

1 1
aS

r x
= =

− +
 

Hence we can write 

  2 31 1 ( 1)
1

n nx x x x
x

= − + − + + − +
+

   

This last expression is the power series representation for the function
1( )

1
f x

x
=

+
.  

28.4.2 Series that are Identically Zero 

If for all real numbers x in the interval of convergence, a power series is identically zero 
i.e. 

  ( ) 0,     0n
n

n o
c x a R

∞

=
− = >∑  

Then all the coefficients in the power series are zero. Thus we can write 

   0,       0,1, 2,nc n= ∀ =   

28.5 Analytic at a Point 
A function f  is said to be analytic at point a  if the function can be represented by power 
series in ( ax − ) with a positive radius of convergence. The notion of analyticity at a 
point will be important in finding power series solution of a differential equation. 

Example 6 Since the functions xe , xcos , and ( )ln 1 x+  can be represented by the 
power series 

 
2 3

1
2! 3!

x x xe x= + + + +  

 
2 4

cos 1
2 24
x xx = − + −  

 
2 3

ln(1 )
2 3
x xx x+ = − + −  
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Therefore, these functions are analytic at the point 0.x =   

28.6 Arithmetic of Power Series 
 Power series can be combined through the operations of addition, multiplication, 

and division.  
 The procedure for addition, multiplication and division of power series is similar 

to the way in which polynomials are added, multiplied, and divided. 
  Thus we add coefficients of like powers of x , use the distributive law and collect 

like terms, and perform long division. 

Example 7  If both of the following power series converge for Rx <  

 ( ) ( )
0 0

,    n n
n n

n n
f x c x g x b x

∞ ∞

= =
= =∑ ∑   

 Then ( ) ( ) ( )∑
∞

=
+=+

0n

n
nn xbcxgxf  

and ( ) ( ) ( ) ( ) 2
0 0 0 1 1 0 0 2 1 1 2 0f x g x c b c b c b x c b c b c b x⋅ = + + + + + +  

Example 8 Find the first four terms of a power series in x  for the product xex cos . 

Solution: From calculus the Maclaurin series for xe and xcos  are, respectively, 

  

2 3 4

2 4

   1  
2 6 24

cos 1 .
2 24

x x x xe x

x xx

= + + + + +

= − + −





 

Multiplying the two series and collecting the like terms yields 

( )

2 3 4 2 4

2 3 4

3 4

cos 1 1 .
2 6 24 2 24

1 1 1 1 1 1 11 1
2 2 2 6 24 4 24

1
3 6

x x x x x xe x x

x x x x

x xx

   
= + + + + + − + −     

   
     = + + − + + − + + − + +     
     

= + − − +

 





 

  The interval of convergence of the power series for both the functions xe  and xcos  is 
( )∞∞− , . Consequently the interval of convergence of the power series for their product 

xex cos  is also ( )∞∞− , . 

Example 9 Find the first four terms of a power series in x  for the function xsec . 
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Solution We know that 
2 4 61sec ,  cos 1

cos 2 24 720
x x xx x

x
= = − + − +  

 Therefore using long division, we have  

 

2

2 4 6

2 4 6

2 4 6

2 4 6

4 6

4 6

6

51
2

1 1
2 24 720

1
2 24 720

         
2 24 720

              
2 4 48

5 7                  
24 360
5 5                    
24 48

61                             
720

x

x x x

x x x

x x x

x x x

x x

x x

x

+ +

− + − +

− + − +

− + −

− + −

− +

− +

−















4 661
24 720
x x

+ +

 

Hence, the power series for the function ( ) secf x x=  is     

++++=
720
61

24
5

2
1sec

642 xxxx      

The interval of convergence of this series is ( )2/ ,2/ ππ− .  

Note that 
 The procedures illustrated in examples 2 and 3 are obviously tedious to do by 

hand.  

 Therefore, problems of this sort can be done using a computer algebra system 
(CAS) such as Mathematica.  

 When we type the command: Series [ ] { },  ,  0, 8  Sec x x   and enter, the 
Mathematica immediately gives the result obtained in the above example. 

 For finding power series solutions it is important that we become adept at 
simplifying the sum of two or more power series, each series expressed in 
summation (sigma) notation, to an expression with a single .∑ This often 
requires a shift of the summation indices. 
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 In order to add any two power series, we must ensure that:  
 
    (a) That summation indices in both series start with the same number.  
    (b) That the powers of x  in each of the power series be “in phase”.  
Therefore, if one series starts with a multiple of, say, x  to the first power, then the 
other series must also start with the same power of the same power of x . 

Example 10 Write the following sum of two series as one power series  

 ∑∑
∞

=

+
∞

=

− +
0

1

1

1 62
n

n
n

n

n
n xncxnc  

Solution To write the given sum power series as one series, we write it as follows: 

               1 1 0 1 1
1

1 0 2 0
2 6 2 1 2 6n n n n

n n n n
n n n n

nc x nc x c x nc x nc x
∞ ∞ ∞ ∞

− + − +

= = = =
+ = ⋅ + +∑ ∑ ∑ ∑  

The first series on right hand side starts with 1x  for 2n =  and the second series also 
starts with 1x  for 0n = .  Both the series on the right side start with 1x . 

To get the same summation index we are inspired by the exponents of x  which is 1n −
in the first series and 1n +  in the second series. Therefore, we let  

 1,   1k n k n= − = +  

in the first series and second series, respectively. So that the right side becomes: 

 ( )1 1 1
1 1

2 2 1 6( 1)k k
k k

k k
c k c x k c x

∞ ∞

+ −
= =

+ + + −∑ ∑ .      

Recall that the summation index is a “dummy” variable. The fact that 1−= nk in one 
case and 1+= nk in the other should cause no confusion if you keep in mind that it is 
the value of the summation index that is important. In both cases k takes on the same 
successive values

,3,2,1 for 
,4,3,2=n (for 1−= nk )and

,2,1,0=n (for 1+= nk )  

We are now in a position to add the two series in the given sum term by term: 

( )1 1
1 1 1

1 0 1
2 6 2 2 1 6( 1)n n k

n n k k
n n k

nc x nc x c k c k c x
∞ ∞ ∞

− +
+ −

= = =
+ = +  + + −  ∑ ∑ ∑      

If you are not convinced, then write out a few terms on both series of the last equation. 
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29 Power Series Solution of a Differential Equation 
We know that the explicit solution of the linear first-order differential equation

 02 =− xy
dx
dy

      

is   
2xy e=   

Also 
2 3 4

1
2 6 24
x x xxe x= + + + + +  

If we replace x by 2x  in the series representation of xe , we can write the solution of the 
differential equation as 

 ∑
∞

=
=

0

2

!n

n

n
xy  

This last series converges for all real values of x . In other words, knowing the solution 
in advance, we were able to find an infinite series solution of the differential equation. 

We now propose to obtain a power series solution of the differential equation directly; 
the method of attack is similar to the technique of undetermined coefficients. 

Example 11 

Find a solution of the DE: 02 =− xy
dx
dy

 in the form of power series in x .  

Solution If we assume that a solution of the given equation exists in the form 

 0
0 1

n n
n n

n n
y c x c c x

∞ ∞

= =
= = +∑ ∑       

The question is that: Can we determine coefficients nc  for which the power series 
converges to a function satisfying the differential equation? Now term-by-term 
differentiation of the proposed series solution gives 

 1

1

n
n

n

dy nc x
dx

∞
−

=
= ∑  

Using the last result and the assumed solution, we have  

 ∑ ∑
∞

=

∞

=

+− −=−
1 0

11 22
n n

n
n

n
n xcxncxy

dx
dy

   

We would like to add the two series in this equation. To this end we write 
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∑∑
∞

=

+
∞

=

− −+⋅=−
0

1

2

10
1 212

n

n
n

n

n
n xcxncxcxy

dx
dy

    and then proceed as in the previous 

example by letting  1,    1k n k n= − = +  in the first and second series, respectively. 

Therefore, last equation becomes ( )1 1 1
1 1

2 1 2k k
k k

k k

dy xy c k c x c x
dx

∞ ∞

+ −
= =

− = + + −∑ ∑  

After we add the series term wise, it follows that 

( )[ ]∑
∞

=
−+ −++=−

1
111 212

k

k
kk xcckcxy

dx
dy

  

Substituting in the given differential equation, we obtain 

 ( )1 1 1
1

1 2 0k
k k

k
c k c c x

∞

+ −
=

+  + −  = ∑  

In order to have this true, it is necessary that all the coefficients must be zero. This means 
that 

 ( )1 1 10,   1 2 0,      1, 2,3,k kc k c c k+ −= + − = =    

This equation provides a recurrence relation that determines the coefficient kc . Since 
01 ≠+k  for all the indicated values of k , we can write as  

   
1

2 1
1 +

= −
+ k

cc k
k       

Iteration of this last formula then gives 

 002 2
2       ,1 ccck ===  

 0
3
2       ,2 13 === cck  

 4 2 0 0
2 1 13,        
4 2 2!

k c c c c= = = =  

 0
5
2       ,4 35 === cck  

 0046 !3
1

!23
1

6
2       ,5 cccck =

⋅
===  

 0
7
2       ,6 57 === cck  
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 0068 !4
1

!34
1

8
2       ,7 cccck =

⋅
===  

and so on. Thus from the original assumption (7), we find 

2 3 4 5
0 1 2 3 4 5

0

2 4 6
0 0 0 0

2
2 4 6

0 0
0

1 10 0 0 0
2! 3!

1 11
2! 3! !

n
n

n

n

n

y c x c c x c x c x c x c x

c c x c x c x

xc x x x c
n

∞

=

∞

=

= = + + + + + +

= + + + + + + + +

 = + + + + =  

∑

∑







 

Since the coefficient 0c  remains completely undetermined, we have in fact found the 
general solution of the differential equation. 

Note that 
The differential equation in this example and the differential equation in the following 
example can be easily solved by the other methods. The point of these two examples is to 
prepare ourselves for finding the power series solution of the differential equations with 
variable coefficients. 

Example 12 

Find solution of the de: 04 =+′′ yy  in the form of a powers series in x . 

Solution  We assume that a solution of the given differential equation exists in the form 

of  0
0 1

n n
n n

n n
y c x c c x

∞ ∞

= =
= = +∑ ∑  

Then term by term differentiation of the proposed series solution yields 

  1 1
1

1 2

n n
n n

n n
y nc x c nc x

∞ ∞
− −

= =

′ = = +∑ ∑  

 ( ) 2

2
1 n

n
n

y n n c x
∞

−

=

′′ = −∑  

Substituting the expression for y ′′ and y , we obtain 

 ( ) 2

2 0
4 4 1 n n

n n
n n

y y n n c x c x
∞ ∞

−

= =

′′ + = − +∑ ∑  

Notice that both series start with 0x . If we, respectively, substitute  

 2,   ,   0,1, 2,k n k n k= − = =   
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in the first series and second series on the right hand side of the last equation. Then we 
after using, in turn, 2 n k= + and n k= , we get 

 ( ) ( ) 2
0 0

4 4 2 1 k k
k k

k k
y y k k c x c x

∞ ∞

+
= =

′′ + = + + +∑ ∑  

or ( ) ( ) 2
0

4 4 2 1 k
k k

k
y y k k c c x

∞

+
=

′′ + =  + + +  ∑  

Substituting in the given differential equation, we obtain 

 ( ) ( ) 2
0

4 2 1 0k
k k

k
k k c c x

∞

+
=

 + + +  = ∑  

From this last identity we conclude that 

 ( )( ) 0124 2 =+++ + kk cckk  

or ( )( ) ,2,1,0    ,
1242 =

++
−

=+ k
kk

cc k
k  

From iteration of this recurrence relation it follows that 

 

0 0
2 2

1 1
3 2

02
4 4

3 1
5 4

04
6 6

5 1
7 6

4.2.1 2 .2!

4.3 2 2 .3!

4.4.3 2 .4!

4.5.4 2 .5!

4.6.5 2 .6!

4.7.6 2 .7!

c cc

c cc

ccc

c cc

ccc

c cc

−
= = −

−
= = −

⋅
−

= = +

−
= = +

−
= = −

−
= = −

 

and so forth. This iteration leaves both 0c and 1c arbitrary. From the original assumption 
we have 

 

2 3 4 5 6 7
0 1 2 3 4 5 6 7

2 3 4 5 6 70 0 01 1 1
0 1 2 2 4 4 6 62 .2! 2 .3! 2 .4! 2 .5! 2 .6! 2 .7!

y c c x c x c x c x c x c x c x
c c cc c cc c x x x x x x x

= + + + + + + + +

= + − − + + − − +




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or
2 4 6 3 5 7

0 12 4 6 2 4 6
1 1 1 1 1 11

2 .2! 2 .4! 2 .6! 2 .3! 2 .5! 2 .7!
y c x x x c x x x x   = − + − + + − + − +      

   

is a general solution. When the series are written in summation notation, 

          ( ) ( )
( )

2

1 0
0

1
2 ! 2

k k

k

xy x c
k

∞

=

−  =  
 

∑ and ( ) ( )
( )

2 1

2 1
0

1
2

2 1 ! 2

k k

k

xy x c
k

+∞

=

−  =  +  
∑  

the ratio test can be applied to show that both series converges for all x . You might also 
recognize the Maclaurin series as ( ) ( )2 0 cos / 2y x c x= and ( ) ( )2/sin2 12 xcxy = . 

29.1 Exercise 

Find the interval of convergence of the given power series. 

1. 
1

2k
k

k
x

k

∞

=
∑  

2. 
( )

1

7 n

n

x
n

∞

=

+
∑  

3. 
0

!2k k

k
k x

∞

=
∑  

4. 2
0

1 k
k

k

k x
k

∞

=

−∑  

Find the first four terms of a power series in x  for the given function. 

5. sinxe x  
6. ( )ln 1xe x−  

7. 
23 5 7

3 5 7
x x xx

 
− + − +  

 
  

Solve each differential equation in the manner of the previous chapters and then compare 
the results with the solutions obtained by assuming a power series solution  

0

n
n

n
y c x

∞

=
= ∑  

8. 2 0y x y′ − =  
9. 0y y′′ + =  
10. 2 0y y′′ ′+ =  

 
                                                © Copyright Virtual University of Pakistan                                                 258 



Differential Equations (MTH401)                                                                                    VU 
 

30 Solution about Ordinary Points 
30.1 Analytic Function 
 A function f is said to be analytic at a point a if it can be represented by a power series in 
(x-a) with a positive radius of convergence. 

Suppose the linear second-order differential equation  

0)()()( 012 =+′+′′ yxayxayxa    (1) 

is put into the form  

 0)()( =+′+′′ yxQyxPy     (2) 

by dividing by the leading coefficient )(2 xa . 

30.2 Ordinary and singular points 
A point 0x  is said to be a ordinary point of a differential equation (1) if both P(x) and 
Q(x) are analytic at 0x . A point that is not an ordinary point is said to be singular point 
of the equation. 

30.2.1 Polynomial Coefficients 

If  )(2 xa , )(1 xa  and )(0 xa  are polynomials with no common factors, then 0xx = is  

(i) an ordinary point if 0)(2 ≠xa or 
(ii) a singular point if 0)(2 =xa . 

Example 

(a) The singular points of the equation 2( 1) 2 6 0x y xy y′′ ′− + + =  are the solutions of 
012 =−x  or 1±=x . All other finite values of x are the ordinary points. 

(b) The singular points need not be real numbers.  

The equation 2( 1) 2 6 0x y xy y′′ ′+ + + =  has the singular points at the solutions of 
012 =+x , namely, ix ±= .  

All other finite values, real or complex, are ordinary points. 

Example The Cauchy-Euler equation 02 =+′+′′ cyybxyax , where a, b and c are 
constants, has singular point at 0=x .  

All other finite values of x, real or complex, are ordinary points. 
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30.3 Theorem (Existence of Power Series Solution) 
If  0xx =  is an ordinary point of the differential equation 0)()( =+′+′′ yxQyxPy , we 
can always find two linearly independent solutions in the form of power series centered at 

0x  : .)(
0

0∑
∞

=

−=
n

n
n xxcy A series solution converges at least for Rxx <− 0 , where R 

is the distance from 0x  to the closest singular point (real or complex). 

Example Solve 02 =−′′ xyy .  

Solution 

We see that 0=x  is an ordinary point of the equation. Since there are no finite singular 

points, there exist two solutions of the form ∑
∞

=

=
0n

n
n xcy convergent for ∞<x . 

Proceeding, we write  

  1

1

n
n

n
y nc x

∞
−

=

′ = ∑  

  2

2
( 1) n

n
n

y n n c x
∞

−

=

′′ = −∑  

  2 1

2 0
2 ( 1) 2n n

n n
n n

y xy n n c x c x
∞ ∞

− +

= =

′′ − = − −∑ ∑  

  
  

∑ ∑
∞

=

∞

=

+− −−+⋅=
3 0

120
2 2)1(12

n n

n
n

n
n xcxcnnxc  

                 both series start with x 

Letting 2−= nk  in the first series and 1+= nk  in the second, we have 

  2 2 1
1 1

2 2 ( 2)( 1) 2k k
k k

k k
y xy c k k c x c x

∞ ∞

+ −
= =

′′ − = + + + −∑ ∑  

  0]2)1)(2[(2 1
1

22 =−+++= −

∞

=
+∑ k

k
k

k xcckkc  

 

  02 2 =c   and  02)1)(2( 12 =−++ −+ kk cckk  

The last expression is same as 

  ,
)1)(2(

2 1
2 ++

= −
+ kk

c
c k

k  ,3,2,1=k  
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Iteration gives  
23

2 0
3 ⋅

=
c

c  

34
2 1

4 ⋅
=

cc  

2
5

2 0
5 4

cc = =
⋅

  because c2 = 0 

0

2
3

6 2356
2

56
2

c
c

c
⋅⋅⋅

=
⋅

=  

   1

2
4

7 3467
2

67
2 ccc

⋅⋅⋅
=

⋅
=   

   0
78

2 5
8 =

⋅
=

c
c  

   0

3
6

9 235689
2

89
2

c
c

c
⋅⋅⋅⋅⋅

=
⋅

=  

   1

3
7

10 3467910
2

910
2

c
c

c
⋅⋅⋅⋅⋅

=
⋅

=  

   0
1011

2 8
11 =

⋅
=

c
c  , and so on. 

 

It is obvious that both 0c and 1c  are arbitrary. Now 

++++++++++++= 11
11

10
10

9
9

8
8

7
7

6
6

5
5

4
4

3
3

2
210 xcxcxcxcxcxcxcxcxcxcxccy  

2 23 4 6 7
0 1 0 1 0 1

3 39 10
0 1

2 2 2 20 0 0
3 2 4 3 6 5 3 2 7 6 4 3

2 2 0
9 8 6 5 3 2 10 9 7 6 4 3

y c c x c x c x c x c x

c x c x

= + + + + + + + +
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

+ + + +
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅



 

 
2 33 6 9

0

2 34 7 10
1

2 2 2[1 ]
3 2 6 5 3 2 9 8 6 5 3 2

2 2 2[ ].
4 3 7 6 4 3 10 9 7 6 4 3

y c x x x

c x x x x

= + + + +
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

+ + + + +
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅




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Example Solve  2( 1) 0.x y xy y+ + − =′′ ′  

Solution 

Since the singular points are x i= ± , 0=x  is the ordinary point, a power series will 

converge at least for 1<x .  The assumption ∑
∞

=

=
0n

n
n xcy leads to  

  2 2 1

2 1 0
( 1) ( 1) n n n

n n n
n n n

x n n c x x nc x c x
∞ ∞ ∞

− −

= = =
+ − + −∑ ∑ ∑   

   2

2 2 1 0
( 1) ( 1)n n n n

n n n n
n n n n

n n c x n n c x nc x c x
∞ ∞ ∞ ∞

−

= = = =
= − + − + −∑ ∑ ∑ ∑  

 

0 0 2
2 0 3 1 1

2 4 2 2
2 6 ( 1) ( 1)n n n n

n n n n
n n n n

c x c x c x c x c x n n c x n n c x nc x c x
∞ ∞ ∞ ∞

−

= = = =

= − + + − + − + − + −∑ ∑ ∑ ∑
   

 

           k=n                   k=n-2                k=n           k=n 

 2 0 3 2
2

2 6 [ ( 1) ( 2)( 1) ] 0k
k k k k

k
c c c x k k c k k c kc c x

∞
+

=
= − + + − + + + + − =∑  

or 2 0 3 2
2

2 6 [( 1)( 1) ( 2)( 1) ] 0.k
k k

k
c c c x k k c k k c x

∞
+

=
− + + + − + + + =∑  

Thus   02 02 =− cc   

                     03 =c  

  2( 1)( 1) ( 2)( 1) 0k kk k c k k c ++ − + + + =  

This implies 

02 2
1 cc =  

03 =c  

  2
( 1) ,

( 2)k k
kc c

k+

− −
=

+
 2,3,k =   

Iteration of the last formula gives   

 02024 !22
1

42
1

4
1 cccc −=

⋅
−=−=  
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0
5
2

35 =−= cc  

03046 !32
31

642
3

6
3 cccc ⋅

=
⋅⋅

=−=  

  0
7
4

57 =−= cc   

  8 6 0 04

5 3 5 1 3 5
8 2 4 6 8 2 4!

c c c c⋅ ⋅ ⋅
= − = − = −

⋅ ⋅ ⋅
 

  0
9
6

79 =−= cc  

  050810 !52
7531

108642
753

10
7 cccc ⋅⋅⋅

=
⋅⋅⋅⋅

⋅⋅
−=−=  and so on. 

   
Therefore 

 

 2 3 4 5 6 7 8
5 70 1 2 3 4 6 8y c c x c x c x c x c x c x c x c x= + + + + + + + + +  

 

2 4 6 8 10
1 0 52 3 4

1 1 1 3 1 3 5 1 3 5 7[1 ]
2 2 5!2 2! 2 3! 2 4!

y c x c x x x x x⋅ ⋅ ⋅ ⋅ ⋅ ⋅= + + − + − + −  

 

The solutions are 

2 1 2
1 0

2

1 1 3 5 (2 3)( ) [1 ( 1) ],
2 2 !

n n
n nn

ny x c x x
∞

−

=

⋅ ⋅ −= + + −∑      1<x  

2 1( ) .y x c x=  

Example If we seek a solution ∑
∞

=

=
0n

n
n xcy  for the equation (1 ) 0,y x y− + =′′  

we obtain 2
0

2
cc =  and the three-term recurrence relation 

  ,
)2)(1(

1
2 ++

+
= −

+ kk
cc

c kk
k  ,3,2,1=k  

To simplify the iteration we can first choose ;0,0 10 =≠ cc  this yields one solution. The 
other solution follows from next choosing 0,0 10 ≠= cc . With the first assumption we 
find 
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02 2
1 cc =  

   0
001

3 6
1

3232
c

ccc
c =

⋅
=

⋅
+

=  

0
012

4 24
1

43243
c

cccc =
⋅⋅

=
⋅
+

=  

0
023

5 30
1]

2
1

32
1[

5454
c

ccc
c =+

⋅⋅
=

⋅
+

=  and so on.    

Thus one solution is 

2 3 4 5
1 0

1 1 1 1( ) [1 ].
2 6 24 30

y x c x x x x= + + + + +  

Similarly if we choose 00 =c , then 

02 =c  

   1
101

3 6
1

3232
cccc

c =
⋅

=
⋅
+

=  

1
112

4 12
1

4343
ccccc =

⋅
=

⋅
+

=  

1
123

5 120
1

543254
cccc

c =
⋅⋅⋅

=
⋅
+

=  and so on. 

Hence another solution is 3 4 5
2 1

1 1 1( ) [ ].
6 12 120

y x c x x x x= + + + +  

Each series converges for all finite values of x. 

30.4 Non-polynomial Coefficients 
The next example illustrates how to find a power series solution about an ordinary point 
of a differential equation when its coefficients are not polynomials. In this example we 
see an application of multiplication of two power series that we discussed earlier. 

Example   Solve 0)(cos =+′′ yxy  

Solution The equation has no singular point. 

Since ,
!6!4!2

1cos
642

+−+−=
xxxx  it is seen that 0=x  is an ordinary point.  

Thus the assumption ∑
∞

=

=
0n

n
n xcy  leads to  
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2 4
2

2 0
(cos ) ( 1) (1 )

2! 4!
n n

n n
n n

x xy x y n n c x c x
∞ ∞

−

= =

′′ + = − − − + −∑ ∑  

2 4 62 3 2
52 3 4 0 1 2(2 6 12 20 ) (1 )( )

2! 4! 6!
x x xc c x c x c x c c x c x= + + + + + − + − + + + +    

2 3
52 0 3 1 4 2 0 3 1

1 12 (6 ) (12 ) (20 )
2 2

c c c c x c c c x c c c x= + + + + + − + + − +  

If the last line be identically zero, we must have 

0
2 0 22 0

2
cc c c+ = ⇒ = −  

1
3 1 36 0

6
cc c c+ = ⇒ = −  

 0
4 2 0 4

112 0
2 12

cc c c c+ − = ⇒ =  

 1
5 53 1

120 0
2 30

cc c c c+ − = ⇒ =  and so on. 0c and 1c  are arbitrary.  

Now 2 3 4 5
50 1 2 3 4y c c x c x c x c x c x += + + + + +   

or  2 3 4 50 01 1
0 1 2 6 12 30

c cc cy c c x x x x x −= + − − + +   

2 4 3 5
0 1

1 1 1 1(1 ) ( )
2 12 6 30

y c x x c x x x −= − + − + − +   

]
12
1

2
11[)( 42

01 −+−= xxcxy   and   3 5
2 1

1 1( ) [ ]
6 30

y x c x x x= − + −  

Since the differential equation has no singular point, both series converge for all finite 
values of .x  

30.5 Exercise 
In each of the following problems find two linearly independent power series solutions 
about the ordinary point 0=x . 

1. 2 0y x y+ =′′  

2. 2 0y xy y− + =′′ ′  

3. 2 2 0y xy y+ + =′′ ′  

4. ( 2) 0x y xy y+ + − =′′ ′  

5. 2( 2) 6 0x y y+ − =′′  
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31 Solutions about Singular Points 
If =x x 0 is singular point, it is not always possible to find a solution of the form

 0
0

( )n
n

n
y c x x

∞

=
= −∑  for the equation 2 1 0( ) ( ) ( ) 0a x y a x y a x y′′ ′+ + =  

However, we may be able to find a solution of the form  

 0
0

( )n r
n

n
y c x x

∞
+

=
= −∑ , where r is constant to be determined.                    

 To define regular/irregular singular points, we put the given equation into the standard 
form ( ) ( ) 0y P x y Q x y′′ ′+ + =  

31.1  Regular and Irregular Singular Points 
A Singular point =x x 0  of the given equation 2 1 0( ) ( ) ( ) 0a x y a x y a x y′′ ′+ + =  is said to be 

a regular singular point if both )()( 0 xPxx −  and 2
0( ) ( )x x Q x−  are analytic at 0x . A 

singular point that is not regular is said to be an irregular singular point of the equation. 

31.1.1 Polynomial Coefficients                    

If the coefficients in the given differential equation 2 1 0( ) ( ) ( ) 0a x y a x y a x y′′ ′+ + =  are 
polynomials with no common factors, above definition is equivalent to the following: 

Let 2 0( ) 0a x =  Form )(xP  and )(xQ by reducing 
)(
)(

2

1

xa
xa

and 
)(
)(

2

0

xa
xa

 to lowest 

terms, respectively.  If the factor )( 0xx −  appears at most to the first powers in 
the denominator of )(xP  and at most to the second power in the denominator of 

),(xQ then 0xx =  is a regular singular point.                              

Example 1  2±=x are singular points of the equation 2 2( 4) ( 2) 0x y x y y′′ ′− + − + =  

Dividing the equation by 2222 )2()2()4( +−=− xxx , we find that 

   2)2)(2(
1)(

+−
=

xx
xP  and  22 )2()2(

1)(
+−

=
xx

xQ  

1. 2=x  is a regular singular point because power of 2−x    in )(xP   is 1 and in 
)(xQ is 2. 

2. 2x = −  is an irregular singular point because power of 2x +    in )(xP   is 2.  

The 1st condition is violated. 

Example 2 

Both 0=x  and 1−=x are singular points of the differential equation. 
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2 2 2( 1) ( 1) 2 0x x y x y y′′ ′+ + − + =  

Because 0)1( 22 =+xx    or 0=x ,-1 

Now write the equation in the form 

  
2

2 2 2 2
1 2 0

( 1) ( 1)
xy y y

x x x x
−′′ ′+ + =
+ +

 

 or  2 2 2
1 2 0

( 1) ( 1)
xy y y

x x x x
−′′ ′+ + =
+ +

 

So  
)1(

1)( 2 +
−

=
xx

xxP  and 22 )1(
2)(
+

=
xx

xQ  

Shows that 0=x       is a irregular singular point since )0( −x  appears to the second 
powers in the denominator of  ).(xP  

Note, however, 1−=x  is a regular singular point. 

Example 3 

a)  1=x  and 1−=x     are singular points of the differential equation 

2(1 ) 2 30 0x y xy y′′ ′− + − + =  

Because 01 2 =− x   or 1±=x . 

Now write the equation in the form 

   2 2
2 30 0

(1 ) 1
xy y y
x x

′′ ′− + =
− −

 

or 2 30 0
(1 )(1 ) (1 )(1 )

xy y y
x x x x

′′ ′− + =
− + − +

 

2( )
(1 )(1 )

xP x
x x
−

=
− +

    and    30( )
(1 )(1 )

Q x
x x

=
− +

 

Clearly 1±=x  are regular singular points. 

(b) 0=x  is an irregular singular points of the differential equation 

3 2 5 0x y xy y′′ ′− + =  

or 2 3
2 5 0y y y
x x

′′ ′− + =  giving 3

5)(
x

xQ = . 

(c) 0=x  is a regular singular points of the differential equation 
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2 5 0x y xy y′′ ′− + =  

Because the equation can be written as 52 0y y y
x

′′ ′− + =  giving 2)( −=xP and  

x
xQ 5)( = . 

In part (c) of Example 3 we noticed that ( 0−x ) and 2)0( −x do not even appear in the 
denominators of )(xP  and )(xQ respectively. Remember, these factors can appear at 
most in this fashion. For a singular point 0xx = , any nonnegative power of )( 0xx − less 
than one (namely, zero) and nonnegative power less than two (namely, zero and one) in 
the denominators of ( )P x  and )(xQ , respectively, imply 0x  is a regular singular point. 

Please note that the singular points can also be complex numbers. 

For example, ±=x 3i are regular singular points of the equation
 2( 9) 3 (1 ) 0x y xy x y′′ ′+ + − + − =  

Because the equation can be written as 

.0
9

1
9

3
22 =

+
−

+′
+

−′′ y
x

xy
x

xy   

∴ .
)3)(3(

3)(
ixix

xxP
+−

−
=  .

)3)(3(
1)(

ixix
xxQ

+−
−

=  

31.2 Method of Frobenius 
To solve a differential equation 2 1 0( ) ( ) ( ) 0a x y a x y a x y′′ ′+ + = about a regular singular 
point we employ the Frobenius’ Theorem. 

31.2.1 Frobenius’ Theorem 

If  =x x 0 is a regular singular point of equation 2 1 0( ) ( ) ( ) 0a x y a x y a x y′′ ′+ + = , then 
there exists at least one series solution of the form 

                  0 0 0
0 0

( ) ( ) ( )r n n r
n n

n n
y x x c x x c x x

∞ ∞
+

= =
= − − = −∑ ∑  

where the number r is a constant that must be determined. The series will converge at 
least on some interval .0 0 Rxx <−<   

Note that the solutions of the form =y 0
0

( )n r
n

n
c x x

∞
+

=
−∑ are not guaranteed. 

Method of Frobenius 
1. Identify regular singular point 0x ,  
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2. Substitute     =y 0
0

( )n r
n

n
c x x

∞
+

=
−∑  in the given differential equation, 

3. Determine the unknown exponent r and the coefficients .nc  
4. For simplicity assume that 00 =x . 

Example 4 

As 0=x  is regular singular points of the differential equation    

.03 =−′+′′ yyyx  

We try a solution of the form =y ∑
∞

=

+

0
.

n

rn
n xc   

 Therefore        ∑
∞

=

−++=′
0

1.)(
n

rn
n xcrny         

And  ∑
∞

=

−+−++=′′
0

2 .)1)((
n

rn
n xcrnrny     

=−′+′′ yyyx3 ∑
∞

=

−+−++
0

1)1)((3
n

rn
n xcrnrn 1

0
( ) n r

n
n

n r c x
∞

+ −

=
+ +∑ -  ∑

∞

=

+

0
.

n

rn
n xc                                                                                                                                                                                

              = 1

0
( )(3 3 2) n r

n
n

n r n r c x
∞

+ −

=
+ + −∑ ∑

∞

=

+−
0

.
n

rn
n xc  

                                       = [ ∑
∞

=

−− −+++−
1

11
0 )233)(()23(

n

n
n

r xcrnrnxcrrx ]∑
∞

=

−
0

.
n

n
n xc  

                                                                            1−= nk                             nk =                                            

                                       = 1
0 1

0
(3 2) [( 1)(3 3 1) ] 0r k

k k
k

x r r c x k r k r c c x
∞

−
+

=

 − + + + + + − =  
∑  

  which implies 0)23( 0 =− crr  

0)133)(1( 1 =−++++ + kk ccrkrk  ,  0,1, 2,...k =    

  Since nothing is gained by taking 00 =c , we must then have 

0)23( =−rr       [called the indicial equation and its roots 0,
3
2

=r are called  

           indicial roots or exponents of the singularity.] 
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and           
)133)(1(1 ++++

=+ rkrk
c

c k
k , 0,1, 2,...k =                                                 

Substitute 
3
2

1 =r   and  02 =r  in the above equation and these values will give two 

different recurrence relations:      

  For  
3
2

1 =r ,   
)1)(53(1 ++

=+ kk
c

c k
k ,  0,1, 2,...k =  (1) 

                

  For 02 =r         
)13)(1(1 ++

=+ kk
c

c k
k ,   0,1, 2,...k =      (2)  

 Iteration of (1)  gives   
1.5
0

1
c

c =  

                                                 
8.5!22.8

01
2

ccc ==  

                                                             02
3 11.3 3!5.8.11

ccc = =  

                                                             3 0
4 14.4 4!5.8.11.14

ccc = =                                               

. 

                             In general         0

!5.8.11.14...(3 2)n
cc

n n
=

+
,  1, 2,...n =  

Iteration of (2)  gives                       

1.1
0

1
c

c =                                                                                                        

4.1!24.2
01

2
ccc ==  

02
3 3.7 3!1.4.7

ccc = =  

3 0
4 4.10 4!1.4.7.10

ccc = =        

   In general  0

!1.4.7...(3 2)n
cc

n n
=

−
,  1, 2,...n =  

Thus we obtain two series solutions 
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2
31 0

1

11
!5.8.11.14...(3 2)

n

n
y c x x

n n

∞

=

 
= + 

+  
∑          (3) 

                         0
2 0

1

11
!1.4.7...(3 2)

n

n
y c x x

n n

∞

=

 
= + − 

∑ .                (4) 

By the ratio test it can be demonstrated that both (3) and (4) converge for all finite values  
of x. Also it should be clear from the form of  (3) and (4) that neither series is a constant 

multiple of the other and therefore, )(1 xy  and )(2 xy  are linearly independent on the x-
axis. Hence by the superposition principle 

)()( 2211 xyCxyCy += =

2 2
3 3

1
1

1
!5.8.11.14...(3 2)

n

n
C x x

n n

∞ +

=

 
+ + 
∑

 

 

                                                
2

1

11
!1.4.7...(3 2)

n

n
C x

n n

∞

=

 
+ + − 

∑
,    ∞<x  

 

is   an other solution of the differential equation. On any interval not containing the 
origin, this combination represents the general solution of the differential equation           

Note: The method of Frobenius may not always provide 2 solutions.               

Example: The differential equation 3 0xy y y′′ ′+ − =   has regular singular point at 0=x

We try a solution of the form =y
0

n r
n

n
c x

∞
+

=
∑   

 Therefore 1

0
( ) n r

n
n

y n r c x
∞

+ −

=
′ = +∑  and   ∑

∞

=

−+−++=′′
0

2 .)1)((
n

rn
n xcrnrny    

so that  =−′+′′ yyyx 3 1
0 1

0
( 2) [( 1)( 3) ] 0r k

k k
k

x r r c x k r k r c c x
∞

−
+

=

 + + + + + + − =  
∑  

so that the indicial equation and exponent are 0)2( =+rr  and 01 =r , 22 −=r , 
respectively.  

Since 0)3)(1( 1 =−++++ + kk ccrkrk  ,         0,1, 2,...k =          (1) 

it follows that when 01 =r ,                                                        

                                            
)3)(1(1 ++

=+ kk
c

c k
k ,                                                 
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3.1
0

1
c

c =  

                                              
!4!2

2
4.2

01
2

ccc ==  

                                          02
3

2
3.5 3!5!
c cc = =  

                                          3 0
4

2
4.6 4!6!
c cc = =        

                                             

                                            
)!2(!

2 0

+
=

nn
c

cn ,  1, 2,...n =  

Thus one series solution is  

 [ ]n

n
x

nn
xcy

)!2(!
21

1

0
01 +

+= ∑
∞

=

  0
0

2
!( 2)!

n

n
c x

n n

∞

=

=
+∑ , ∞<x . 

Now when 22 −=r , (1) becomes 

          0)1)(1( 1 =−+− + kk cckk           (2) 

but note here that we do not divide by )1)(1( +− kk immediately since this term is zero 

for 1=k . However, we use the recurrence relation (2) for the cases 0=k and 1=k : 

    01.1 01 =−− cc         and 02.0 12 =− cc  

The latter equation implies that 01 =c and so the former equation implies that 00 =c . 

Continuing, we find 

)1)(1(1 +−
=+ kk

c
c k

k                     2,3,...k =                                                                                             

3.1
2

3
cc =  

!4!.2
2

4.2
23

4
cc

c ==  

4 2
5

2 ,...
3.5 3!.5!
c cc = =  

 
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In general 
!)!2(

2 2

nn
ccn −

= ,  3, 4,5,...n =  

Thus  2 2
2 2

3

2
( 2)! !

n

n
y c x x x

n n

∞
−

=

 
= + − 

∑ .         (3) 

However, close inspection of (3) reveals that 2y is simply constant multiple of 1y . 

To see this, let 2−= nk  in (3). We conclude that the method of Frobenius gives only one 
series solution of the given differential equation. 

31.3 Cases of Indicial Roots 
When using the method of Frobenius, we usually distinguish three cases corresponding to 
the nature of the indicial roots. For the sake of discussion let us suppose that 1r  and 2r  are 
the real solutions of the indicial equation and that, when appropriate, 1r  denotes the 
largest root. 

31.3.1 Case I (Roots not Differing by an Integer) 

If 1r  and 2r are distinct and do not differ by an integer, then their exist two linearly 
independent solutions of the differential equation of the form 

         ∑
∞

=

+=
0

1 .1

n

rn
n xcy . 00 ≠c , and ∑

∞

=

+=
0

2
2

n

rn
n xby ,  .00 ≠b  

Example 6 Solve .0)1(2 =+′++′′ yyxyx  

Solution:  If     =y ∑
∞

=

+

0n

rn
n xc , then 

=+′++′′ yyxyx )1(2 ∑
∞

=

−+ +−++
0

1)1)((2
n

rn
n xcrnrn ∑

∞

=

−+ ++
0

1)(
n

rn
n xcrn        

       ∑
∞

=

+ ++
0

)(
n

rn
n xcrn ∑

∞

=

+

0n

rn
n xc  

∑
∞

=

−+ +−++=
0

1)122)((
n

rn
n xcrnrn ∑

∞

=

+++
0

)1(
n

rn
n xcrn  

   [ ∑
∞

=

−− −+++−=
1

11
0 )122)(()12(

n

n
n

r xcrnrnxcrrx ]∑
∞

=

+++
0

)1(
n

n
n xcrn  

                                      1n k= +      nk =  

1
0 1

0
(2 1) [( 1)(2 2 1) ( 1) ] 0r k

k k
k

x r r c x k r k r c k r c x
∞

−
+

=

 = − + + + + + + + + =  
∑  

  which implies                 )12( −rr =0 

0)1()122)(1( 1 =+++++++ + kk crkcrkrk , 0,1, 2,...k =       (1) 

 
                                                © Copyright Virtual University of Pakistan                                                 273 



Differential Equations (MTH401)                                                                                    VU 
 

 For 
2
1

1 =r , we can divide by 
2
3

+k  in the above equation to obtain                                 

                                     
)1(21 +

−
=+ k

c
c k

k ,                                                 

                                      
1.2
0

1
c

c
−

=  

                                         
!2.22.2 2

01
2

ccc =
−

=  

                                            02
3 32.3 2 .3!

ccc −−
= =  

                                                          

                       In general  
!2

)1( 0

n
c

c n

n

n
−

= ,  1, 2,3,...n =  

Thus we have  [ ]n
n

n

n
x

n
xcy

!2
)1(1

1

2
1

01
−

+= ∑
∞

=

,  which converges for x 0≥ .As given, the 

series is not meaningful for 0<x  because of the presence of  2
1

x .      

Now for 02 =r , (1) becomes                         

121 +
−

=+ k
c

c k
k                                                                                                                 

1
0

1
c

c
−

=  

3.13
01

2
ccc =

−
=  

5.3.15
02

3
ccc

−
=

−
=  

7.5.3.17
03

4
cc

c =
−

=  

                                       . 

In general   
)12...(7.5.3.1

)1( 0

−
−

=
n

c
c

n

n ,  1, 2,3,...n =  

Thus second solution is 
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                        2 0
1

( 1)1
1.3.5.7...(2 1)

n
n

n
y c x

n

∞

=

 −
= + − 

∑ .   .∞<x       

On the interval ( ∞,0 ), the general solution is 

                       ).()( 2211 xyCxyCy +=  
 

 

 

 

32 Solutions about Singular Points 

32.1 Method of Frobenius (Cases II and III) 
   When the roots of the indicial equation differ by a positive integer, we may or may not 
be able to find two solutions of  

0)()()( 012 =+′+′′ yxayxayxa    (1) 

having form rn

n
n xxcy +

∞

=

−= ∑ )( 0
0

    (2) 

If not, then one solution corresponding to the smaller root contains a logarithmic term. 
When the exponents are equal, a second solution always contains a logarithm. This latter 
situation is similar to the solution of the Cauchy-Euler differencial equation when the 
roots of the auxiliary equation are equal. We have the next two cases. 
32.1.1 Case II (Roots Differing by a Positive Integer) 

If ,21 Nrr =− where N is a positive integer, then there exist two linearly independent 
solutions of the form 

11 0
0

, 0n r
n

n
y c x c

∞ +

=
= ≠∑                  (3 )a     

22 1 0
0

( )ln , 0n r
n

n
y Cy x x b x b

∞ +

=
= + ≠∑   (3 )b  

Where C is a constant that could be zero. 

Equal Indicial Roots:   

If 1 2r r= , there always exist two linearly independent solutions of (1) of the form 

1
1 0

0
, 0n

n r

n
y c x c

∞ +

=
= ≠∑    (4 )a  
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1
1 22 1

1
( )ln n r r rn

n
y y x x b x

∞ +
=

=
= + ∑       (4 )b  
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Example 7: Solve 03)6( =−′−+′′ yyxyx   (1)  

Solution: The assumption rn

n
n xcy +

∞

=
∑=

0

leads to 

yyxyx 3)6( −′−+′′  

 rn

n
n

rn

n
n

rn

n
n

rn

n
n xcxcrnxcrnxcrnrn +

∞

=

+
∞

=

−+
∞

=

−+
∞

=
∑∑∑∑ −+++−−++=

00

1

0

1

0
3)()(6)1)((   

1 1
0

1 0
( 7) ( )( 7) ( 3)r n n

n n
n n

x r r c x n r n r c x n r c x
∞ ∞

− −

= =

 = − + + + − + + −  
∑ ∑  

[ ]1
0 1

0
( 7) ( 1)( 6) ( 3) 0r k

k k
k

x r r c x k r k r c k r c x
∞

−
+

=

 − + + + + − + + − =  
∑  

Thus  07)-r(r = so that andrrrr ,7,0,7 2121 =−==  

)6)(1( −+++ rkrk 1 ( 3) 0, 0,1,2,3,... (2)k kc k r c k+ + + − = =  

For smaller root 2 0, (2)r becomes=  

                    0)3()6)(1( 1 =−+−+ + kk ckckk                                (3) 

1
( 3)

( 1)( 6)k k

recurrence relationbecomes
kc c

k k+

−
= −

+ −
 

Since k-6=0, when, k=6, we do not divide by this term until k>6.we find   

   

1 0

2 1

3 2

4 3

5 4

6 5

7 6

1.( 6) ( 3) 0
2.( 5) ( 2) 0
3.( 4) ( 1). 0
4.(-3) 0. 0
5. (-2) 1. 0
6. (-1) 2. 0
7.0. 3. 0

c c
c c
c c
c c
c c
c c

c c

− + − =
− + − =
− + − =

+ =
+ =
+ =

+ =

     

This implies that 

,0654 === ccc  But 0c  and 7c  can be chosen arbitrarily. 

Hence   
2
1

1 −=c 0c  

   2c =
5
1

− 1c   = 1
10 0c  
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   3c =
12
1

− 2c
120

1
−= 0c                                                  (4) 

and for k 7≥  

1

8 7

9 8 7

10 9 7

1

7

( 3)
( 1)( 6)
4

8.1
5 4.5

9.2 2!8.9
6 4.5.6

10.3 3!8.9.10

( 1) 4 5 6 ( 4) , 8,9,10, (5)
( 7)!8 9 10 ( )

k k

n

n

kc c
k k

c c

c c c

c c c

nc c n
n n

+

+

− −
=

+ −
−

=

= − =

− −
= =

⋅
⋅
⋅

− ⋅ ⋅ ⋅⋅ ⋅ −
= = ⋅⋅⋅

− ⋅ ⋅ ⋅⋅ ⋅

 

If we choose 7c = 00 0 ≠andc It follows that we obtain the polynomial solution 

=1y  ],
120

1
10
1

2
11[ 32

0 xxxc −+−  

But when 7c ≠ = 00 0 =andc , It follows that a second, though infinite series solution 
is 

1
7

2 7
8

( 1) 4 5 6 ( 4)[ ]
( 7)! 8 9 10

n
n

n

ny c x x
n n

+∞

=

− ⋅ ⋅ ⋅⋅ ⋅ −
= +

− ⋅ ⋅ ⋅⋅ ⋅∑  

      = 7 3
7

1

( 1) 4 5 6 ( 3)[ ]
!8 9 10 ( 7)

k
k

k

kc x x
k k

∞
+

=

− ⋅ ⋅ ⋅⋅ ⋅ +
+

⋅ ⋅ ⋅⋅ ⋅ +∑ , <x ∞                  (6) 

Finally the general solution of equation (1) on the interval (0, ∞ ) is 

Y = )()( 2211 xycxyc +  

  = 1c ]
120

1
10
1

2
11[ 32 xxx −+− + 7 7

2
1

( 1) 4 5 6 ( 3)[ ]
! 8 9 10 ( 7)

k
k

n

kc x x
k k

∞
+

=

− ⋅ ⋅ ⋅⋅ ⋅ +
+

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ +∑  

It is interesting to observe that in example 9 the larger root 1r =7 were not used. Had we 
done so, we would have obtained a series solution of the form* 

   ∑
∞

=

+=
0

7

n

n
n xcy     (7) 
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Where nc  are given by equation (2) with 1r =7  

  1
( 4) , 0,1, 2...

( 8)( 1)k k
kc c k

k k+

− +
= =

+ +
 

Iteration of this latter recurrence relation then would yield only one solution, namely the 
solution given by (6) with 0c playing the role of 7c ) 

When the roots of indicial equation differ by a positive integer, the second solution may 
contain a logarithm. 

On the other hand if we fail to find second series type solution, we can always use the 
fact that  

  ∫
∫

=
−

dx
xy

exyy
dxxp

)(
)( 2

1

)(

12    (8) 

is a solution of the equation 0)()( =+′+′′ yxQyxPy ,whenever 1y  is a known solution. 

Note: In case 2 it is always a good idea to work with smaller roots first. 

Example8 Find the general solution of 03 =−′+′′ yyyx  

Solution The method of Frobenius provide only one solution to this equation, namely, 

 
+=

+
= ∑

∞

=

1
)!2(!

2
0

1
n

nx
nn

y 2 31 1 1
3 24 360

x x x+ + + ⋅⋅⋅
               (9) 

From (8) we obtain a second solution 

 ∫
∫

=
−

dx
xy

exyy
dxxp

)(
)( 2

1

)(

12 = )(1 xy
3 2 3 21 1 1[1 ]

3 24 360

dx

x x x x+ + + + ⋅⋅⋅
∫  

    = )(1 xy
3 2 32 7 1[1 ]

3 36 30

dx

x x x x+ + + + ⋅⋅⋅
∫  

    = )(1 xy 2 3
3

1 2 1 19[1 ]
3 4 270

x x x dx
x

− + − + ⋅⋅⋅∫  

        

1 2

1 1 2

1 1 2 1 1 2

1 2 1 19( ) ln ...
2 3 4 270

1 1 2 19( ) ln ( ) ... (*)
4 2 3 270

1 1 2 19( ) ( ) ln ( ) ... (**)
4 2 3 270

y x x x
x x

y x x y x x
x x

y c y x c y x x y x x
x x

 = − + + − +  
 = + − + − +  

  ∴ = + + − + − +    
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Example 9 Find the general solution of 

n 2
2 1 n

n 0

n
1

n 0

n 31
2 1 n

n 0

n 41 1
2 1 n2

n 0

2 2 2 1 1

xy 3y y 0
Solution :

y y ln x b x (10)

2y x (11)
n!(n 2)!

differentiate (10)gives
yy y ln x (n 2)b x
x

y 2yy y ln x (n 2)(n 3)b x
x x

so that

xy 3y y ln x xy 3y

∞
−

=

∞

=

∞
−

=

∞
−

=

′′ ′+ − =

= +

=
+

′ ′= + + −

′
′′ ′′= − + + + − −

′′ ′′′ ′+ − = +

∑

∑

∑

∑

n 31
1 1 n

n 0

n 3 n 2
n n

n 0 n 0

n 3 n 21
1 n n

n 0 n 0

1 1 1

2yy 2y (n 2)(n 3)b x
x

3 (n 2)b x b x

2y2y (n 2)nb x b x (12)
x

where we havecombined the1st twosummations and used the fact that
xy 3y y 0
Differentiate (11

∞
−

=

∞ ∞
− −

= =

∞ ∞
− −

= =

  ′− + + + − −
 

+ − −

′= + + − −

′′ ′+ − =

∑

∑ ∑

∑ ∑

) wecan write (12)as

 

∑ ∑∑ ∑
∞

=

∞

=

−
∞

=

∞

=

−−− −−+
+

+
+0 0

2

0 0

311 )2(
)!2(!

4
)!2(!

4
n n

n
n

n n

n
n

nn xbxnbnx
nn

x
nn

n  

 
 

= ∑ ∑ ∑
∞

=

∞

=

∞

=

−−−−− −−+
+
+

+−−+−
0 2 1

2312
10

3
0 )2(

)!2(!
)1(4)()2(0

n n n

n
n

n
n

n xbxnbnx
nn
nxbbxb  

 

  2 1
0 1 2 1

0

4( 1)( ) ( 2) .
!( 2)!

k
k k

k

kb b x k k b b x
k k

∞
− −

+ +
=

 +
− + + + + − + 

∑   (13) 

Setting (13) equal to zero then gives 01 bb −= and  

           ,0)2(
)!1(!
)1(4

12 =−++
+
+

++ kk bbkk
kk
k   For k=0, 1, 2, …  (14) 
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When k=0 in equation (14) we have 2+0 02 12 =−⋅ bb so that but  

,2,2 01 −== bb but 2b is arbitrary 

Rewriting equation (14) as 

         
)2()!2(!

)1(4
)2(

1
2 ++

+
−

+
= +

+ kkkk
k

kk
b

b k
k       (15)    

and evaluating for k=1,2,… gives 

       
9
4

3
2

3 −=
bb                                           

       
288
25

24
1

32
1

8
1

234 −=−= bbb        

and so on. Thus we can finally write  

 ⋅⋅⋅+++++= −− xbbxbxbxyy 32
1

1
2

012 ln  

        = ⋅⋅+





 −+++− −− xbbxxxy

9
4

3
22ln 2

2
12

1                                                   (16) 

Where 2b  is arbitrary. 

Equivalent Solution: At this point you may be wondering whether (*) and (16) are really 

equivalent. If we choose 42 =c  in equation (**), then 

    =2y  xy ln1 + 





 ⋅⋅⋅+−+− x

xx 135
38

3
82

2  

         =2y  xy ln1 +
2 31 1 11

3 24 360
x x x + + + + ⋅⋅⋅ 

  





 ⋅⋅⋅+−+− x

xx 135
38

3
82

2      (17) 

                                                       
2 1

1
29 19ln 2 2 ...
36 108

y x x x x− −= − + + − +  

Which is precisely obtained what we obtained from (16). If 2b is chosen as
36
29  

The next example illustrates the case when the indicial roots are equal. 
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n
n=0

1 1
n n n

n=0 n=0 n=0

2 1
n n

n=0 n=0

:10
4 0 (18)

:  assumption y= c  leads to

4 (n+r)(n+r-1)c (n+r)c 4 c

= (n+r) c 4 c

n r

n r n r n r

n r n r

r

Example
Find the general solutionof xy y y

Solution The x

xy y y x x x

x x

x r

∞
+

∞ ∞ ∞
+ − + − +

∞ ∞
+ − +

′′ ′+ − =

′′ ′+ − = + −

−

=

∑

∑ ∑ ∑

∑ ∑

2 1 2 1
0 n n

n=1 n=0

2 1 2
0 k+1 k

k=0

(n+r) c 4 c

(k+r+1) c 4c 0

n n

r k

c x x x

x r c x x

∞ ∞
− −

∞
−

 + −  
 = + − =  

∑ ∑

∑

 

Therefore 2r =0, and so the indicial roots are equal: .021 == rr Moreover we have  

                   ,04)1( 1
2 =−++ + kk ccrk k=0,1,2,…                                       (19) 

Clearly the roots 01 =r  will yield one solution corresponding to the coefficients defined 
by the iteration of 

  21 )1(
4
+

=+ k
c

c k
k      k=0,1,2,… 

The result is 

  ∞<∑=
∞

=
xx

n
cy

n

n
n

,
)!(

4
0

201                                                         (20) 

∫∫




 ⋅⋅⋅++++

=
∫

=
−

2
32

12
1

)
1

12

9
16441

)(
)(

)(
xxxx

dxxydx
xy

exyy
dx

x
 

    

   2 3
1

1 1472y (x) 1 8x 40x x dx
x 9

 = − + − + ⋅⋅⋅  ∫  

    

             2
1

1 1472y (x) 8 40x x ... dx
x 9

 = − + − +  ∫  
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2 3
1

1472y (x) ln x 8x 20x x
27

 = − + − + ⋅⋅⋅  
                                     

Thus on the interval (0, ∞ ) the general solution of (18) is 

2 3
1 1 2 1 1

1472y c y (x) c y (x) ln x y (x) 8x 20x x ...
27

  = + + − + − +    
     

where )(1 xy  is defined by (20) 

In case II we can also determine )(2 xy of example9 directly from assumption (4b) 
Exercises 
In problem 1-10 determine the singular points of each differential equation. Classify each 
the singular point as regular or irregular. 

1       034 23 =+′+′′ yyxyx  

2       0)3( 2 =+−′′ − yxyx  

3    02)3()9( 2 =+++′′− yxyx  

4       0
)1(

11
3 =

−
+′−′′ y

x
y

x
y   

 5      062)4( 3 =+′−′′+ yyxyxx ) 

6       0)2(4)5( 22 =−+′+′′− yxyxyxx      

7       0)2()3()6( 22 =−+′++′′−+ yxyxyxx  

8       0)1( 22 =+′′+ yyxx  

9 0)5(7)2(3)2)(25( 223 =++′−+′′−− yxyxxyxxx  

10 0)1()3()32( 2223 =++′++′′−− yxyxxyxxx  

In problem 11-22 show that the indicial roots do not differ by an integer. Use the method 
of Frobenius to obtain two linearly independent series solutions about the regular singular 
point 00 =x  Form the general solution on (0, ∞ ) 

11. 022 =+′−′′ yyyx  

12. 052 =+′+′′ xyyyx  

13.   0
2
14 =+′+′′ yyyx  

14.   0)1(2 22 =++′−′′ yxyxyx  
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15.    0)2(3 =+′−+′′ yyxyx  

16.   0
9
22 =+′






 −−′′ xyyxyx  

17.  0)23(2 =+′++′′ yyxyx  

18.   0
9
422 =






 −+′+′′ yxyxyx  

19.  0299 22 =+′+′′ yyxyx  

20. 0)12(32 2 =−+′+′′ yxyxyx  

21.  0)1(2 2 =−′−−′′ yyxxyx  

22. 02)2( =−′−′′− yyyxx  

In problem 23-34 show that the indicial roots differ by an integer. Use the method of 
Frobenius to obtain two linearly independent series solutions about the regular singular 
point 00 =x  Form the general solution on (0, ∞ ) 

23. 02 =−′+′′ xyyyx  

24.  0
4
122 =






 −+′+′′ yxyxyx  

25. 023)1( =−′+′′− yyyxx  

26. 023
=−′+′′ yy

x
y  

27. 0)1( =−′−+′′ yyxyx  

28. 0=+′′ yyx  

29. 0=+′+′′ yyyx  

30. 0=+′−′′ yyyx  

31. 0)1(2 =+′−+′′ yyxxyx  

32. 04 =−′+′′ xyyyx  

33. 02)1(2 =−′−+′′ yyxyx  

34. 03 =+′−′′ yxyyx  
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33 Bessel’s Differential Equation 

A second order linear differential equation of the form ( ) 022
2

2
2 =−++ yvx

dx
dyx

dx
ydx  

is called Bessel’s differential equation. 

    Solution of this equation is usually denoted by ( )xJ v and is known as Bessel’s 
function. This equation occurs frequently in advanced studies in applied mathematics, 
physics and engineering. 

33.1 Series Solution of Bessel’s Differential Equation 

Bessel’s differential equation is  ( )2 2 2 0x y xy x v y′′ ′+ + − =   (1) 

If we assume that ∑
∞

=

+=
0n

rn
n xCy ⇒ ( )∑

∞

=

−++=′
0

1

n

rn
n xrnCy ⇒

( )( )∑
∞

=

−+−++=′′
0

21 
n

rn
n xrnrnCy  

So that   

( ) ( ) ( ) ( )

∑∑

∑∑
∞

=

+
∞

=

++

∞

=

+
∞

=

+

=−+

++−++=−+′+′′

00

22

00

222

0

 1 

n

rn
n

n

rn
n

n

rn
n

n

rn
n

xCvxC

xrnCxrnrnCyvxyxyx

 

( ) ( )( ) ( )2 2 2 2
o

1 0
1 0r r n r n

n n
n n

C r v x x C n r n r n r v x x C x
∞ ∞

+

= =

 − + + + − + + − + = ∑ ∑  … (2) 

From (2) we see that the indicial equation is 022 =− vr , so the indicial roots are vr =1 , 
vr −=2 . When vr =1  then (2) becomes 

 

 

( )

( ) ( )

2

1 0

2
1

2 0

2

2 0

1 2 2 0

v n v n
n n

n n

v n n
n n

n n

k n k n

x C n n v x x C x

x v C x C n n v x C x

∞ ∞
+

= =

∞ ∞
+

= =

= − =

+ + =

 
 

+ + + + = 
 
 

∑ ∑

∑ ∑
 
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 ( ) ( )( ) 2
1 2

0
1 2 2 2 2 0v k

k k
k

x v C x k k v C C x
∞

+
+

=

 
+ + + + + + =    

∑  

We can write 

  ( ) 11 2 0v C+ =  

  ( )( ) 0222 2 =++++ + kk CCvkk  

  ( )( )vkk
C

C k
k 2222 +++

−
=+     (3) 

  ,2,1,0=k  

The choice 1 0C = in (3) implies 

  1 3 5 0C C C= = = =  

so for ,4,2,0=k  we find, after letting ,3,2,1  ,  22 ==+ nnk  that 

  
( )

2 2
2 22

n
n

CC
n n v

−−
=

+
     (4) 

Thus 

  

( )

( ) ( )( )

( ) ( )( )( )

( )
( )( ) ( )

0
2 2

02
4 2 4

04
6 2 6

0
2 2

2 1 1

2 2 2 2 1 2 1 2

2 3 3 2 1 2 3 1 2 3
                                                                    

1
              1, 2,3,

2 ! 1 2

n

n n

CC
v

CCC
v v v

CCC
v v v v

C
C n

n v v n v

= −
⋅ ⋅ +

= − =
⋅ ⋅ + ⋅ ⋅ ⋅ + +

= − = −
⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ + + +

−
= =

⋅ + + +

  





(5) 

It is standard practice to choose 0C to be a specific value namely 

  0
1

2 (1 )vC
v

=
Γ +

 

where (1 )vΓ + the Gamma function. Also  

  (1 ) ( )α α αΓ + = Γ . 

 
                                                © Copyright Virtual University of Pakistan                                                 286 



Differential Equations (MTH401)                                                                                    VU 
 

Using this property, we can reduce the indicated product in the denominator of (5) to one 
term. For example 

  ( ) ( )(1 1) 1 1v v vΓ + + = + Γ +  

  
( )
( )( )

(1 2) 2 (2 )

2 1 (1 )

v v v

v v v

Γ + + = + Γ +

= + + Γ +
 

Hence we can write (5) as 

 

( )
( )( ) ( )

( )

2 2

2

1

2 n! 1 2 (1 )

1
,                    0,1, 2,

2 n! (1 )

n

n n v

n

n v

C
v v n v v

n
v n

+

+

−
=

+ + + Γ +

−
= =

Γ + +





 

So the solution is 

 ( ) 2
2

2
0 0

1
! (1 ) 2

n n v
n v

n
n n

xy C x
n v n

+∞ ∞
+

= =

−  = =  Γ + +  
∑ ∑  

If 0≥v , the series converges at least on the interval [ )∞   0 . 

33.2 Bessel’s Function of the First Kind 
As for vr =1 , we have 

  ( ) ( ) 2

0

1
J

( !) (1 ) 2

n n v

v
n

xx
n v n

+∞

=

−  =  Γ + +  
∑    (6) 

Also for the second exponent vr −=2 , we have 

  ( ) ( ) 2

0

1
J

( !) (1 ) 2

n n v

v
n

xx
n v n

−∞

−
=

−  =  Γ − +  
∑   (7) 

The function ( )xvJ  and ( )xv−J  are called Bessel function of the first kind of order v and 
v−  respectively. 

Now some care must be taken in writing the general solution of (1). When 0=v , it is 
clear that (6) and (7) are the same. If 0>v and ( ) vvvrr 221 =−−=−  is not a positive 
integer, then ( )xvJ  and ( )xv−J  are linearly independent solutions of (1) on ( )∞ ,0  and 
so the general solution of the interval would be 

 ( ) ( )xCxCy vv −+= JJ 21  

If vrr 221 =−  is a positive integer, a second series solution of (1) may exists. 

Example 1 Find the general solution of the equation  
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0

4
122 =






 −+′+′′ yxyxyx

 on ( )∞  ,0  

Solution The Bessel differential equation is 

 ( ) 0222 =−+′+′′ yvxyxyx     (1) 

 0
4
122 =






 −+′+′′ yxyxyx     (2) 

Comparing (1) and (2), we get 
4
12 =v , therefore 

2
1

±=v  

So general solution of (1) is  ( ) ( )xCxCy 2/122/11 JJ −+=  

Example 2 Find the general solution of the equation: 0
9
122 =






 −+′+′′ yxyxyx  

Solution: We identify 
9
12 =v , therefore 

3
1

±=v  

So general solution is ( ) ( )xCxCy 3/123/11 JJ −+=  

Example 3 Derive the formula ( ) ( ) ( )1J J Jv v vx x v x x x+′ = −  

Solution 

As ( ) ( ) 2

0

1
J

! (1 ) 2

n n v

v
n

xx
n v n

+∞

=

−  =  Γ + +  
∑  

    

 ( ) ( ) ( ) 2

0

1 2
J

! (1 ) 2

n n v

v
n

n v xx x
n v n

+∞

=

− +  ′ =  Γ + +  
∑  

                         

( ) ( )

( ) ( )
( )

2 2

0 0
2 1

0
1

1 1
2

! (1 ) 2 ! (1 ) 2

1
J

1 ! (1 ) 2

n nn v n v

n n
n n v

v
n

k n

nx xv
n v n n v n

xv x x
n v n

+ +∞ ∞

= =
+ −∞

=
= −

− −   = ⋅ + ⋅   Γ + + Γ + +   

−  = + ⋅  − Γ + +  

∑ ∑

∑


 

                          ( ) ( ) 2 1

0

1
J

! (2 ) 2

k k v

v
k

xv x x
k v k

+ +∞

=

−  = −  Γ + +  
∑  

                          ( ) ( )1J Jv vv x x x+= −  
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So  ( ) ( ) ( )1J J Jv v vx x v x x x+= −′  

 

Example 4 Derive the recurrence relation ( ) ( ) ( )xJxJxJ nnn 112 +− −=′  

Solution: 

As  ( ) ( )
( )∑

∞

=

+









+
−

=
0

2

2
1

s

sns

n
x

!sns!
xJ  

 ( ) ( )
( ) ( )

2 1

0

1 12
! ! 2 2

s n s

n
s

xJ x n s
s n s

+ −∞

=

−    ′ = +    +    
∑  

 ( )
( ) ( )

2 1

0

1 1
! ! 2 2

s n s

s

xn s s
s n s

+ −∞

=

−    = + +    +    
∑  

 
( )
( ) ( ) ( )

( )∑∑
∞

=

−+∞

=

−+















⋅

+
−

+













+

+
−

=
0

12

0

12

2
1

2
1

2
1

2
1

s

sns

s

sns xs
!sns!

xsn
!sns!

 

 

( )
( )( ) ( )

( )
( ) ( )∑

∑
∞

=

−+

∞

=

−+















⋅

+−
−

+















+

−++
−

=

0

12
0

12

2
1

21
1

2
1

21
1

s

sns

s

sns

x
!sn!ss

s

xsn
!snsns!

 

 
( )

( )
( )

( ) ( )∑∑
∞

=

−+∞

=

+−







⋅

+−
−

+







+−
−

=
1

12

0

21

21
1

2
1

21
1

2
1

s

sns

s

sns x
!sn!s

x
!sns!

 

 ( ) ( )
( ) ( )∑

∞

=

−+

− 







+−
−

+=
1

12

1 21
1

2
1

2
1

s

sns

n
x

!sn!s
xJ  

 Put ps =−1 in 2nd term ⇒ 1+= ps  

 ( ) ( )
( )

( )

∑
∞

=

−+++

− 







++
−

+=
0

1121

1 21
1

2
1

2
1

p

pnp

n
x

!pnp!
xJ  

 ( ) ( )
( )∑

∞

=

++

− 







++
−−

+=
0

21

1 21
11

2
1

2
1

p

pnp

n
x

!pnp!
xJ  

( ) ( ) ( )1 1
1 1
2 2n n nJ x J x J x− +′ = −  
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( ) ( ) ( )xJxJxJ nnn 112 +− −=′⇒  

Example 5  Derive the expression of ( )xJn  for 
2
1

±=n  

Solution:  Consider ( ) ( )
( )∑

∞

=

+









+
−

=
0

2

2
1

s

sns

n
x

!sns!
xJ  

 As ! ( 1)n n= Γ +  

( ) ( ) 2

0

1
( 1) ( 1) 2

s n s

n
s

xJ x
s n s

+∞

=

−  ⇒ =  Γ + Γ + +  
∑  

 put 2/1=n  

( ) ( )
1 2
2

1/ 2
0

1
( 1) (1/ 2 1) 2

s s

s

xJ x
s s

+∞

=

−  =  Γ + Γ + +  
∑  

    
( )

1 2
2

0

1
( 1) ( 3 / 2) 2

s s

s

x
s s

+∞

=

−  =  Γ + Γ +  
∑  

Expanding R.H.S of above 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 10 10 2 1
2 2

1/ 2

1 12 32 2 2 3
2 2

1 1
(0 1) (0 3/ 2) 2 (1 1) (1 3/ 2) 2

1 1
(2 1) (2 3/ 2) 2 (3 1) (3 3/ 2) 2

x xJ x

x x

+ +

+ +

− −   = +   Γ + Γ + Γ + Γ +   

− −   + + +   Γ + Γ + Γ + Γ +   


 

 −







⋅⋅
⋅⋅

+





⋅

−





=

2
9

2
5

2
1

2352
222

23
22

2
2 xxx

πππ
 

 







−

⋅
+

⋅
−⋅= 2/9

4

2/5

2

215
4

23
4

2
21 xxxxx

π
 

  







−+

⋅
−= 2/9

4

2/5

2

215
4

23
4

2
2 xxx

π
 

  







−

⋅⋅
+

⋅⋅
−

⋅
= 2/9

4

2/5

2

2215
4

223
4

22
22 xxx

π
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  







−+−

⋅
= 

1206
12 42 xxx

π
 

  







−+−⋅

⋅
= 

!5!3
12 53 xxx
x

x
π

 

  xx sin2
π
⋅

=  

 ( )1/ 2
2 sinJ x x
xπ

⇒ =  

Similarly for 1/ 2n = − , we proceed further as before, 

  

 ( ) ( )
( )∑

∞

=

+









+
−

=
0

2

2
1

s

sns

n
x

!sns!
xJ where ! ( 1)n n= Γ +  

( ) ( ) 2

0

1
( 1) ( 1) 2

s n s

n
s

xJ x
s n s

+∞

=

−  ⇒ =  Γ + Γ + +  
∑  

put 
2
1

−=n  

 ( ) ( )
1 2
2

1/ 2
0

1
( 1) ( 1/ 2 1) 2

s s

s

xJ x
s s

− +∞

−
=

−  =  Γ + Γ − + +  
∑  

 ( ) ( )
1 2
2

1/ 2
0

1
( 1) ( 1/ 2) 2

s s

s

xJ x
s s

− +∞

−
=

−  =  Γ + Γ +  
∑  

  

 Expanding the R.H.S of above we get 

( ) ( ) ( ) ( )

( ) ( )

1 10 1 2 1
2 2

1/ 2

12 2 2
2

1 1
(0 1) (0 1/ 2) 2 (1 1) (1 1/ 2) 2

1
(2 1) (2 1/ 2) 2

x xJ x

x

− − +

−

− +

− −   = +   Γ + Γ + Γ + Γ +   

−  + + Γ + Γ +  

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( )
3 7
2 2

1/ 2
1 2 1 1

(1) (1/ 2) (2) (3 / 2) 2 (3) (5 / 2) 2
x xJ x

x−
   = − + −   Γ Γ Γ Γ Γ Γ   

  

 
3 7
2 21 2 1 1

1 3 1(1) (1/ 2) 2 21 (1/ 2) 2 (1/ 2)
2 2 2

x x
x

   = − + −   Γ    ⋅ ⋅Γ ⋅ ⋅ Γ
  

3 / 2 7 / 2

3/ 2 7 / 2
1 2 2 2 2

(1/ 2) 2 32 2
x x

x

 ⋅
= − + − 

Γ ⋅  
  









−+−= 2/7

2/7

2/3

2/3

23
2

2
221 xx

xπ
 









−+−= 

163
2

4
2

2
22 2/72/3 xx

xπ
 









−+−= 

83
1

22
22 2/72/3 xx

xπ
 









−+−= 

242
12 2/72/3 xx
xπ

 









−+−= 

242
2 2/72/3 xx

x
x

xπ
 









−+−= 

!4!2
12 42 xx

xπ
 

x
x

cos2
π

=     −+−=
!4!2

1cos
42 xxx  

 ( ) x
x

xJ cos2
2/1 π

=⇒ −  

Remarks: 
Bessel functions of index half an odd integer are called Spherical Bessel functions. Like 
other Bessel functions spherical Bessel functions are used in many physical problems. 
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Exercise 
Find the general solution of the given differential equation on ( )0, ∞ . 

1. 2 2 1 0
9

x y xy x y ′′ ′+ + − = 
 

 

2. ( )2 2 1 0x y xy x y′′ ′+ + − =  

3. ( )2 24 4 4 25 0x y xy x y′′ ′+ + − =  

4. ( )2 216 16 16 1 0x y xy x y′′ ′+ + − =  

Express the given Bessel function in terms of sin x  and cos x , and power of x . 

5. ( )3/ 2J x  

6. ( )5 / 2J x  

7. ( )7 / 2J x  
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34 Legendre’s Differential Equation 
A second order linear differential equation of the form 

  ( ) ( ) 0121 2 =++′−′′− ynnyxyx  

is called Legendre’s differential equation and any of its solution is called Legendre’s 
function. If n  is positive integer then the solution of Legendre’s differential equation is 
called a Legendere’s polynomial of degree n  and is denoted by ( )xPn . 

We assume a solution of the form 
0

k k
k

y C x
∞

=

= ∑  

( ) ( )

( ) ( ) ( )

2

2 2

2 1 0

1 2 1

                   1 1 2 1k k k
k k k

k k k

x y xy n n y

x C k k x C kx n n C x
∞ ∞ ∞

−

= = =

′′ ′∴ − − + + =

− − − + +∑ ∑ ∑
 

                 ( ) ( ) ( ) k

k
k

k

k
k

k

k
k

k

k
k xCnnkxCxkkCxkkC ∑∑∑∑

∞

=

∞

=

∞

=

−
∞

=
++−−−−=

012

2

2
1211  

( )[ ] ( )[ ] ( )

( ) ( )
  

  

kj

k

k
k

kj

k

k
k

kj

k

k
k

kj

k

k
k

xCnnkxCxkkC

xkkCxCCCnnxCCnn

=

∞

=

=

∞

=

=

∞

=

−=

∞

=

−

∑∑∑

∑

++−−−

−++−++++=

222

2

4

2
311

0
20

121

162121

 

( ) ( )( )

( )( ) ( )( )

0 2 1 3

2
2

1 2 1 2 6

2 1 1 0j
j j

j

n n C C n n C C x

j j C n j n j C x
∞

+
=

   = + + + − + +   

 + + + + − + + = ∑
 

⇒   ( ) 021 20 =++ CCnn  

  ( )( ) 1 31 2 6 0n n C C− + + =  

  ( )( ) ( )( )22 1 1 0, 2,3,4,...j jj j C n j n j C j++ + + − + + = =  

or  
( )

02 !2
1 CnnC +

−=  

  ( )( )
3 1

1 2
3!

n n
C C

− +
= −  
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  ( )( )
( )( )2

1
;     2,3,

2 1j j
n j n j

C C j
j j+
− + +

= − =
+ +

  (1) 

From Iteration formula (1) 

 
( )( ) ( )( )( )( )

024 !4
312

34
32 CnnnnCnnC ++−

=
⋅

+−
−=  

 
( )( ) ( )( )( )( )

135 !5
4213

45
43 CnnnnCnnC ++−−

=
⋅

+−
−=  

 ( )( ) ( )( ) ( )( )( )
6 4 0

4 5 4 2  1 3 5
 

5 6 6!
n n n n n n n n

C C C
− + − − + + +

= − = −
⋅

 

 
( )( ) ( )( )( )( )( )( )

157 !7
642135

67
65 CnnnnnnCnnC +++−−−

−=
⋅

+−
−=  

and so on. Thus at least 1<x , we obtain two linearly independent power series 
solutions. 

 

( ) ( ) ( ) ( )( )

( )( ) ( )( )( )

+

+++−−
−


 ++−

+
+

−=



6

42
01

!6
531 24

!4
312

!2
11

xnnnnnn

xnnnnxnnCxy
 

 

 

( ) ( )( ) ( )( )( )( )

( )( )( )( )( )( )

+

+++−−−
−


 ++−−

+
+−

−=



7

53
12

!7
642135

!5
4213

!3
21

xnnnnnn

xnnnnxnnxCxy
 

Note that if n is even integer, the first series terminates, where ( )xy2 is an infinite series. 
For example if 4=n , then 

 ( ) 



 +−=



 ⋅⋅⋅

+
⋅

−= 42
0

42
01 3

35101
!4

7542
!2
541 xxCxxCxy  

Similarly, when n is an odd integer, the series for ( )xy2 terminates with nx .i.e when n
is a non-negative integer, we obtain an nth-degree polynomial solution of Legendre’s 
equation. Since we know that a constant multiple of a solution of Legendre’s equation is 
also a solution, it is traditional to choose specific values for 0C and 1C depending on 
whether n is even or odd positive integer, respectively. 

For 0=n , we choose 10 =C  and for ,6,4,2=n  
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  ( ) ( )
( )n

nC n





⋅⋅
−⋅⋅

−=
42

1311 2/
0  

Whereas for 1=n , we choose 11 =C and for ,7,5,3=n  

  ( )( )
( )

1 2
1

1 31
2 4 1

n nC
n

− ⋅ ⋅
= −

⋅ ⋅ −




 

For example, when 4=n , we have 

  ( ) ( ) 



 +−

⋅
⋅

−= 422/4
1 3

35101
42
311 xxxy  

  42

8
35

8
30

8
3 xx +−=  

  ( ) ( )33035
8
1 24

1 +−= xxxy  

34.1 Legendre’s Polynomials 
Legendre’s Polynomials are specific nth degree polynomials and are denoted by ( )xPn . 
From the series for ( )xy1 and ( )xy2 and from the above choices of 0C and 1C , we find 
that the first several Legendre’s polynomials are 

 ( ) 10 =xP  

 ( ) xxP =1  

 ( ) ( )13
2
1 2

2 −= xxP  

 ( ) ( )xxxP 35
2
1 3

3 −=  

 ( ) ( )33035
8
1 24

4 +−= xxxP  

 ( ) ( )xxxxP 157063
8
1 35

5 +−=  

Note that ( ) ( ) ( ) ( ),,,, 3210 xPxPxPxP are, in turn particular solution of the differential 
equations 

 0=n  ( ) 021 2 =′−′′− yxyx  

 1=n  ( ) 0221 2 =−′−′′− yyxyx  
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 2=n  ( ) 0621 2 =+′−′′− yyxyx  

 3=n  ( ) 01221 2 =+′−′′− yyxyx  

 …  … … … … 
34.2 Rodrigues Formula for Legendre’s Polynomials 
The Legendre Polynomials are also generated by Rodrigues formula 

  ( ) ( )nn

n

nn x
dx
d

n
xP 1

!2
1 2 −=  

34.3 Generating Function For Legendre’s Polynomials 

The Legendre’s polynomials are the coefficient of nz in the expansion of  

  ( )
1

2 21 2xz zφ
−

= − +  

in ascending powers of z . 

Now  ( )
1

2 21 2xz zφ
−

= − +  ( ){ }
1
21 2z x z −

= − −  

Therefore by Binomial Series 

( ) ( ){ } ( ){ }2 3
1 3 1 3 5

1 2 2 2 2 21 2 2 2
2 2! 3!

z x z z x z z x zφ

− − −    − −    
    = + − + − − + − − +  

( ) ( ) ( )2 2 2 3 3 3 2 21 3 51 2 4 4 8 12 6
2 8 16

z x z z x z xz z x z x z xz= + − + + − + − − + +  

2 2 2 4 3 3 3 6 2 4 51 3 3 3 5 5 15 151
2 2 8 2 2 16 4 8

zx z x z z xz x z z x z xz= + − + + − − − − + +  

( ) ( ) ( )2 2 3 3 4 2 41 1 11 3 1 5 3 35 30 3
2 2 8

xz x z x x z x x z= + + − + − + − + +   (1) 

Also 

( ) ( ) ( ) ( ) ( )2 3
0 1 2 3

0

n
n

n
P x z P x P x z P x z P x z

∞

=

= + + + +∑   

Equating Coefficients of (1) and (2) 
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( )
( )

( ) ( )

( ) ( )

( ) ( )

0

1

2
2

3
3

4 2
4

1

1 3 1
2
1 5 3
2
1 35 30 3
8

P x

P x x

P x x

P x x x

P x x x

=

=

= −

= −

= − +

 

Which are Legendre’s Polynomials 

34.4 Recurrence Relation 
Recurrence relations that relate Legendre’s polynomials of different degrees are also very 
important in some aspects of their application. We shall derive one such relation using 
the formula 

   ( ) ( )
1

2 2

0
1 2 n

n
n

xt t P x t
∞−

=

− + = ⋅∑    (1) 

Differentiating both sides of (1) with respect to t gives  

  ( ) ( ) ( ) ( )
3

2 1 12

0 1
1 2 n n

n n
n n

xt t x t nP x t nP x t
∞ ∞− − −

= =

− + − = =∑ ∑  

so that after multiplying by 21 2xt t− + , we have 

  ( )( ) ( ) ( )
1

2 2 12

1
1 2 1 2 n

n
n

x t xt t xt t nP x t
∞− −

=

− − + = − + ∑  

  ( ) ( ) ( ) ( )2 1

0 1
1 2n n

n n
n n

x t P x t xt t nP x t
∞ ∞

−

= =

− = − +∑ ∑  

  
( ) ( ) ( ) ( )

( )

1 1

0 0 1 1

1

1

2

0

n n n n
n n n n

n n n n

n
n

n

xP x t P x t nP x t x nP x t

nP x t

∞ ∞ ∞ ∞
+ −

= = = =

∞
+

=

− − +

− =

∑ ∑ ∑ ∑

∑
 

  
( ) ( )

( ) ( ) ( )

2
2 1

2 1

1 2 1

3 2 1

3 12
2

2 2 0

n n
n n

n n

n n n
n n n

n n n

xx x t xP x t t P x t x t

nP x t x t x nP x t nP x t

∞ ∞
+

= =

∞ ∞ ∞
− +

= = =

 −
+ + − − − −  

 

− + + − =

∑ ∑

∑ ∑ ∑
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Observing the appropriate cancellations, simplifying and changing the summation indices 

  ( ) ( ) ( ) ( ) ( )1 1
2

1 2 1 0k
k k k

k
k P x k xP x kP x t

∞

+ −
=

− + + + − =  ∑  

Equating the total coefficient of kt to zero gives the three-term recurrence relation 

 
 ( ) ( ) ( ) ( ) ( )1 11 2 1 0,           2,3,4,k k kk P x k xP x kP x k+ −+ − + + = =   

 

34.5 Orthogonally of Legendre’s Polynomials 
Proof: 

Legendre’s Differential Equation is ( ) ( )21 2 1 0x y xy n n y′′ ′− − + + =  

Let ( )nP x  and ( )mP x  are two solutions of Legendre’s differential equation then 

  ( ) ( ) ( ) ( ) ( )21 2 1 0n n nx P x xP x n n P x′′ ′− − + + = , and   

  ( ) ( ) ( ) ( ) ( )21 2 1 0m m mx P x xP x m m P x′′ ′− − + + =  

which we can write 

  ( ) ( ) ( ) ( )21 1 0n nx P x n n P x
′ ′− + + =  

    (1) 

  ( ) ( ) ( ) ( )21 1 0m mx P x m m P x
′ ′− + + =  

   (2) 

Multiplying (1) by ( )mP x and (2) by ( )nP x  and subtracting, we get 

  
( ) ( ){ } ( ) ( ) ( ){ }
( ) ( ){ } ( ) ( )

2 21 1

1 1 0

m n n m

m n

P x x P P x x P x

n n m m P x P x

′ ′
′ ′− − −

+ + − + =
  (3) 

Now 

  
{ } { }

2 ' '

' '2 ' 2 '

(1 )

( ) (1 ) ( ) (1 )

m n

m n n m

Add and subtract x P P to formulize the above

P x x P P x x P

−

− − −
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 2

2 2

1 1

1 1

m n m n

m n n m

x P x P x P x x P x

x P x P x P x x P x

′ ′ ′ ′= − + −  
′ ′ ′ ′− − + −  

 

  ( )[ ]21 ( ) ( ) ( ) ( )n n m nx P x P x P x P x ′′ ′= − −  

Which shows that (3) can be written as 

  ( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( )

21

1 1 0

m n m n

m n

x P x P x P x P x

n n m m P x P x

′ ′ ′− −  
+  + − +  = 

 

( ) ( ) ( ) ( ){ }( ) ( ) ( ) ( ) ( )21 1 0m n m n m nx P x P x P x P n m n m P x P x
′

′ ′− − + − + + =  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }( )21 1m n m n m nn m m n P x P x x P x P x P x P x
′

′ ′− + + = − −  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }( )21 1
b b

m n m n m n
a a

n m m n P x P x dx x P x P x P x P x dx
′

′ ′− + + = − −∫ ∫

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }21 1
b b

m n m n m n
aa

n m m n P x P x dx x P x P x P x P x′ ′− + + = − −∫  

 As 21 0x− = for 1x = ±  so 

( ) ( ) ( ) ( )
1

1
1 0m nn m n m P x P x dx

−

− + + =∫   for 1x = ±  

Since  & m n  are non-negative 

( ) ( )
1

1
0  for m nP x P x dx m n

−

⇒ = ≠∫  

which shows that Legendre’s Polynomials are orthogonal w.r.to the weight function 
( ) 1w x = over the interval [ ]1   1−  
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34.6 Normality condition for Legendre’ Polynomials 
Consider the generating function 

  ( ) ( )
1

2 2
0

1 2 m
m

m
xt t P x t

∞−

=
− + = ∑    (1) 

Also 

  ( ) ( )
1

2 2
0

1 2 n
n

n
xt t P x t

∞−

=
− + = ∑     (2) 

Multiplying (1) and (2) 

  ( ) ( ) ( )
12

0 0
1 2 m n

m n
m n

xt t P x P x t
∞ ∞− +

= =
− + = ∑ ∑  

Integrating from -1 to 1 

  
( ) ( ) ( )

1
1

2
0 0 1

1

1

1 2
m n

m n
m n

dx P x P x t dx
xt t

∞ ∞
+

= = −
−

=
− +

⌠

⌡

∑ ∑ ∫  

  
( ) ( ) ( )

1
1

2
0 0 1

1

1 2
2 1 2

m n
m n

m n

t dx P x P x t dx
t xt t

∞ ∞
+

= = −
−

−
− =

− +

⌠

⌡

∑ ∑ ∫  

  ( ) ( ) ( )
112

1 0 0 1

1 ln 1 2
2

m n
m n

m n
xt t P x P x t dx

t

∞ ∞
+

− = = −

− − + = ∑ ∑ ∫  

 
 

( ) ( ) ( ) ( )
1

2 2

0 0 1

1 ln 1 2 ln 1 2
2

m n
m n

m n
P x P x t dx t t t t

t

∞ ∞
+

= = −

 ⇒ = − − + − + +  ∑ ∑ ∫  

             ( ) ( )2 21 ln 1 ln 1
2

t t
t

 = − − − +  
 

           ( ) ( ){ }2 21 ln 1 ln 1
2

t t
t

= − + − −  

 
                                                © Copyright Virtual University of Pakistan                                                 301 



Differential Equations (MTH401)                                                                                    VU 
 

   ( ) ( )1 ln 1 ln 1t t
t

= −  + − −    

  
2 3 4 2 3 41
2 3 4 2 3 4
t t t t t tt t

t

    
 =  − + − +  −  − − − − − 
        

   

  
3 51 2 22

3 5
t tt

t

  = + + + 
  

  

  
3 52
3 5
t tt

t

  = + + + 
  

  

  
2 4

2 1
3 5
t t  = + + + 

  
  

  ( ) ( )
1 2 4

0 0 1
2 1

3 5
m n

m n
m n

t tP x P x t dx
∞ ∞

+

= = −

  ⇒ = + + + 
  

∑ ∑ ∫   

  for m n=  

  ( ) ( )
1 2 4

0 1
2 1

3 5
n n

n n
n

t tP x P x t dx
∞

+

= −

  ⇒ = + + + 
  

∑ ∫   

 

 ( )
( )

( )
( )

( ) ( )

1 2 1 2 2 22 2

0 1
2 1

2 1 1 2 2 1 2 1

n
n

n
n

t t tP x t dx
n

∞

= −

  ⇒   = + + + +   + + +  
∑ ∫   

Equating coefficient of 2nt on both sides 

  ( )
1

2

1

2
2 1nP x dx

n
−

⇒   =  +∫  

  ( ) ( )
1

1

2
2 1n nP x P x dx

n
−

⇒ =
+∫  

  ( ) ( )
1

1

2 1 1
2n n

nP x P x dx
−

+
⇒ =∫  
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which shows that Legender polynomials are normal with respect to the weight function 

( ) 2 1
2

nw x +
= over the interval 1 1x− < < . 

Remark: 

Orthognality condition for ( )nP x  can also be written as 

  ( ) ( )
1

,
1

2
2 1n n m nP x P x dx

n
δ

−

 =  + ∫  

  where ,
0      ,     if 
1      ,otherwisem n

m n
δ

≠
= 


 

34.7 Exercise 
1. Show that the Legendre’s equation has an alternative form 

  ( ) ( )21 1 0d dyx n n y
dx dx

 − + + =  
 

2. Show that the equation 

  ( ) ( )
2

2sin cos 1 sin 0d y dy n n y
dd

θ θ θ
θθ

+ + + =  can be 

transformed into Legendre’s equation by means of the substitution cosx θ=  

3. Use the explicit Legendre’s polynomials ( ) ( ) ( ) ( )1 2 2 3,  ,  ,  and P x P x P x P x  

to evaluate 
1

2

1
nP dx

−
∫  for 0,1, 2, 3.n =  Generalize the results. 

4. Use the explicit Legendre polynomials ( ) ( ) ( ) ( )1 2 2 3,  ,  ,  and P x P x P x P x  

to evaluate ( ) ( )
1

1
n mP x P x dx

−
∫ for n m≠ . Generalize the results. 

5. The Legendre’s polynomials are also generated by Rodrigues’ formula 

  ( ) ( )21 1
2 !

n n
n n n

dP x x
n dx

= −  

verify the results for 0,1, 2, 3.n =  
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35 Systems of Linear Differential Equations 
 Recall that the mathematical model for the motion of a mass attached to a spring 

or for the response of a series electrical circuit is a differential equation. 

 
2

2 ( )d y dya b cy f x
dxdx

+ + =  

 However, we can attach two or more springs together to hold two masses 1m  
 and 2m . Similarly a network of parallel circuits can be formed.  

           

 To model these latter situations, we would need two or more coupled or 
simultaneous equations to describe the motion of the masses or the response of 
the network. 

 Therefore, in this lecture we will discuss the theory and solution of the systems of 
simultaneous linear differential equations with constant coefficients. 

Note that 

An nth order linear differential equation with constant coefficients 0 1,   ,  ,  na a a is 
an equation of the form 

 
1

1 1 01 ( )
n n

n nn n
d y d y dya a a a y g x

dxdx dx

−

− −+ + + + =  

If we write n

n
n

dx
dD

dx
dD

dx
dD === ,,, 2

2
2

 then this equation can be written as follows   

 ( )( ) ( )1
1 1 0

nn
n na D a D a D a y g t−

−+ + + + =  

35.1 Simultaneous Differential Equations  
The simultaneous ordinary differential equations involve two or more equations that 
contain derivatives of two or more unknown functions of a single independent variable.  
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Example 1  If zyx  and , are functions of the variable t , then  

 yx
dt

xd
+−= 54 2

2

 

 yx
dt

yd
−= 32 2

2

  

and 
 53 =′+′+−′ zyxx                  
 16 −=′−′+ tzyx  

are systems of simultaneous differential equations. 

35.2 Solution of a System 
A solution of a system of differential equations is a set of differentiable functions  

 ( ) ( ) ( )  ,  ,   , thxtgytfx ===   

those satisfy each equation of the system on some interval I . 

35.2.1 Systematic Elimination (Operator Method) 
 This method of solution of a system of linear homogeneous or linear non-

homogeneous differential equations is based on the process of systematic 
elimination of the dependent variables.   

 This elimination provides us a single differential equation in one of the dependent 
variables that has not been eliminated. 

 This equation would be a linear homogeneous or a linear non-homogeneous 
differential equation and can be solved by employing one of the methods 
discussed earlier to obtain one of the dependent variables.   

Notice that the analogue of multiplying an algebraic equation by a constant is operating 
on a differential equation with some combination of derivatives.  

Step 1 First write the differential equations of the system in a form that involves the 
differential operator D .    

Step 2 We retain first of the dependent variables and eliminate the rest from the 
differential equations of the system.  

Step 3 The result of this elimination is to be a single linear differential equation with 
constant coefficients in the retained variable. We solve this equation to obtain the value 
of this variable.    

Step 4 Next, we retain second of the dependent variables and eliminate all others 
variables      

Step 5 The result of the elimination performed in step 4 is to be again a single linear 
differential equation with constant coefficients in the retained 2nd variable. We again 
solve this equation and obtain the value of the second dependent variable. This process of 
elimination is continued untill all the variables are taken care of.   
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Step 6 The computed values of the dependent variables don’t satisfy the given system for 
every choice of all the arbitrary constants. By substituting the values of the dependent 
variables computed in step 5 into an equation of the original system, we can reduce the 
number of constant from the solution set.    

Step 7 We use the work done in step number 6 to write the solution set of the given 
system of linear differential equations.  

Example 1  Solve the system of differential equations 2 ,        3dy dxx y
dt dt

= =  

Solution: 
Step 1 The given system of linear differential equations can be written in the differential 
operator form as  
  yDxxDy 3           ,2     ==     

or   03       ,02 =−=− yDxDyx     

Step 2 Next we eliminate one of the two variables, say x , from the two differential 
equations. Operating on the first equation by D  while multiplying the second by 2 and 
then subtracting eliminates x  from the system. It follows that 

  .06or      06 22 =−=+− yyDyyD  

Step 3 Clearly, the result is a single linear differential equation with constant coefficients 
in the retained variable y . The roots of the auxiliary equation are real and distinct   
  ,6   and   6 21 −== mm  

Therefore, ( ) 6  6  
1 2

t ty t c e c e−= +     

Step 4 We now eliminate the variable y  that was retained in the previous step. 
Multiplying the first equation by 3− , while operating on the second by D and then 
adding gives the differential equation for ,x  

   .062 =− xxD   

Step 5 Again, the result is a single linear differential equation with constant coefficients 
in the retained variable x .  We now solve this equation and obtain the value of the second 
dependent variable. The roots of the auxiliary equation are 6±=m . It follows that 

  ( ) 3 4
6  6  x t c e c et t−= +   

Hence the values of the dependent variables ( ) )(  , tytx  are. 

  
( )
( )

3 4

1 2

6  

6  6  

6  x t c e c e

y t c e c e

t

t t

t −

−

= +

= +
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Step 6 Substituting the values of ( )tx  and ( )ty    from step 5 into first equation of the 
given system, we have  

  ( ) ( ) .0 26 26 6
42

6
31 =−−+− − tt eccecc  

Since this expression is to be zero for all values of t , we must have 

  026      ,026 4231 =−−=− cccc  

or  3 1 4 2

6 6,              
2 2

c c c c= = −  

Notice that if we substitute the computed values of )(tx  and )(ty  into the second 
equation of the system, we shall find that the same relationship holds between the 
constants.  

Step 7 Hence, by using the above values of 1c  and 2c , we write the solution of the given 
system as   

  ( ) 1 2
6 66 6

2 2
t tx t c e c c−= −  

  ( ) 1 2
6 6t ty t c e c e−= +  

Example 2 
Solve the following system of differential equations 

  
( )

( ) 02  3
02

=−−
=++

yxD
yDDx

   

Solution:  
Step 1 The differential equations of the given system are already in the operator form. 

Step 2 We eliminate the variable x  from the two equations of the system. Thus operating 
on the first equation by 3−D and on the second by D and then subtracting eliminates x  
from the system. The resulting differential equation for the retained variable y  is 

  
( )( )[ ]
( ) 0               6

   0 223
2 =−+

=++−

yDD

yDDD
 

Step 3 The auxiliary equation of the differential equation for y  obtained in the last step 
is 

   ( )( ) 032062 =+−⇒=−+ mmmm  

Since the roots of the auxiliary equation are  

   3   ,2 21 −== mm  
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Therefore, the solution for the dependent variable y is 

  ( ) tt ececty 3
2

2
1

−+=     

Step 4 Multiplying the first equation by 2 while operating on the second by )2( +D and 
then adding yields the differential equation for x  

    ( ) ,062 =−+ xDD  

Step 5 The auxiliary equation for this equation for x  is 

  )3)(2(062 +−==−+ mmmm  

The roots of this auxiliary equation are 

  3   ,2 21 −== mm  

Thus, the solution for the retained variable x  is 

  ( ) tt ecectx 3
4

2
3

−+=   

Writing two solutions together, we have 

  
( )
( ) tt

tt

ececty

ecectx
3

2
2

1

3
4

2
3

−

−

+=

+=
 

Step 6 To reduce the number of constants, we substitute the last two equations into the 
first equation of the given system to obtain 

  ( ) ( ) 0 3  24 3
42

2
31 =−−++ − tt eccecc  

Since this relation is to hold for all values of the independent variable t . Therefore, we 
must have 

   .03        ,024 4231 =−−=+ cccc  

or  2413 3
1                  ,2 cccc −=−=  

Step 7 Hence, a solution of the given system of differential equations is 

  
( )

( ) tt

tt

ececty

ecectx

3
2

2
1

3
2

2
1 3

12

−

−

+=

−−=
 

Example 3 
Solve the system 
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2
2

24

          0

dx d yx t
dt dt

dx dyx
dt dt

− + =

+ + =
    

Solution:  
Step 1 First we write the differential equations of the system in the differential operator 

form: 
( )
( ) 01

4 22

=++
=+−

DyxD
tyDxD   

Step 2 Then we eliminate one of the dependent variables, say x . Operating on the first 
equation with the operator 1+D , on the second equation with the operator 4−D  and then 
subtracting, we obtain ( ) ( ) ( ) 22  1 4 1  ][ tDyDDDD +=−−+  

or ( ) .2 4 23 ttyDD +=+  

Step 3 The auxiliary equation of the differential equation found in the previous step is 

  )4( 04 23 +==+ mmmm   

Therefore, roots of the auxiliary equation are 

  imimm  2     , 2     ,0  321 −===   

So that the complementary function for the retained variable y is 

  .2sin2cos 321 tctcccy ++=  

To determine the particular solution py we use undetermined coefficients. Therefore, we 

assume: .23 CtBtAty p ++=  ⇒ 23 2 ,py At Bt C′ = + +   

⇒ ,26 BAty p +=′′  Ay p 6=′′′  

Thus 24 12 8 6 4p py y At Bt A C′′′ ′+ = + + +  

Substituting in the differential equation found in step, we obtain 

    2 212 8 6 4 2At Bt A C t t+ + + = +  

 Equating coefficients of tt   ,2  and constant terms yields 

   ,046      ,28     ,112 =+== CABA  

Solving these equations give  
   1/12,  1/ 4,  1/ 8.A B C= = = −  

Hence, the solution for the variable y is given by 
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   pc yyy +=  

or   .
8
1

4
1

12
12sin2cos 23

321 ttttctccy −++++=   

Step 4 Next we eliminate the variable y from the given system. For this purpose we 
multiply first equation with 1 while operate on the second equation with the operator D  
and then subtracting, we obtain 

               )]1()4[( 2txDDD =+−−  

or    22                    )4  ( txD −=+  

Step 5 The auxiliary equation of the differential equation for x  is 

   imm  2042 ±=⇒=+  

The roots of the auxiliary equation are complex. Therefore, the complementary function 
for x  is: tctcxc 2sin2cos 54 +=      

The method of undetermined coefficients can be applied to obtain a particular solution. 
We assume that  .2 CBtAtx p ++=  

Then  AxBAtx pp 2  ,2 =′′+=′  

Therefore  CBtAtAxx pp 44424 2 +++=+′′   

Substituting in the differential equation for x , we obtain 

   22 4244 tCABtAt −=+++  

Equating the coefficients of 2t , t  and constant terms, we have 
   042    ,04   ,14 =+=−= CABA  

Solving these equations we obtain 
   8/1  ,0  ,4/1 ==−= CBA  

Thus  
8
1

4
1 2 +−= tx p  

So that 
8
1

4
12sin2cos 2

54 +−+=+= ttctcxxx pc  

Hence, we have 

.
8
1

4
1

12
12sin2cos

8
1

4
12sin2cos

23
321

2
54

ttttctccy

ttctcxxx pc

−++++=

+−+=+=
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Step 6 Now 4c and 5c can be expressed in terms of  2c and 3c by substituting these 
values of x and y  into the second equation of the given system and we find, after 
combining the terms, ( ) ( ) 02cos222sin22 345245 =+++−− tccctccc  

So that 5 4 22 2 0,    c c c− − = 022 345 =++ ccc  

Solving the last two equations for 54  and cc in terms of 2c and 3c  gives 

   ( )324 24
5
1 ccc +−= ,   ( ).42

5
1

325 ccc −=  

Step 7 Finally, a solution of the given system is found to be 

( ) ( ) ( ) tttcctcctx
8
1

4
12sin42

5
12cos24

5
1 2

3232 +−−++−=              

( ) .
8
1

4
1

12
12sin2cos 23

321 ttttctccty −++++=  

Exercise 
Solve, if possible, the given system of differential equations by either systematic 
elimination. 

1. yx
dt
dyyx

dt
dx 2      ,7 −=+=  

2. 2      ,14 =+=−
dt
dyxy

dt
dx  

3. ( ) ( ) ( ) 123      ,211 −=++=−++ yDxyDxD  

4. yx
dt
dy

dt
dxx

dt
dy

dt
xd 4       ,52

2
+−=+−=+  

5. ( ) ( ) 233       ,2 =+++=− yDxDtDyxD  

6. 0      , 2

2
=+++−=+ yx

dt
dx

dt
xde

dt
dy

dt
dx t  

7. ( ) ( ) ( ) ( ) 211       ,111 22 =++−=++− yDxDyDxD  

8. xDzzDyyDx ===        ,       ,  

9. yx
dt
dzzy

dt
dyzx

dt
dx

+−=+−=+−=      ,    ,  

10. ( ) ( ) 1121      ,2 2 =+−+=− yDxDtDyDx  
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36 Systems of Linear Differential Equations 

36.1 Solution of Using Determinants 
If 321 ,, LLL  and 4L  denote linear differential operators with constant coefficients, then a 
system of linear differential equations in two variables x  and y can be written as 

   
( )
( )tgyLxL
tgyLxL

243

121
=+
=+

  

To eliminate y , we operate on the first equation with 4L and on the second equation with 

2L and then subtracting, we obtain : ( )    22143241 gLgLxLLLL −=−  

Similarly, operating on the first equation with 3L and second equation with 1L and then 
subtracting, we obtain: ( ) 13213241 gLgLyLLLL −=−  



43

21
3241 LL

LL
LLLL =− ⇒

42

21
2214 Lg

Lg
gLgL =−  

And 
23

11
1321 gL

gL
gLgL =−  

Hence, the given system of differential equations can be decoupled into nth  order 
differential equations. These equations use determinants similar to those used in Cramer’s 
rule: 

 
23

11

43

21

42

21

43

21     and    
gL
gL

y
LL
LL

Lg
Lg

x
LL
LL

==  

The uncoupled differential equations can be solved in the usual manner.   

Note that  
 The determinant on left hand side in each of these equations can be expanded in 

the usual algebraic sense. This means that the symbol D  occurring in iL is to be 
treated as an algebraic quantity.  The result of this expansion is a differential 
operator of order n , which is operated on x  and y . 

 However, some care should be exercised in the expansion of the determinant on 
the right hand side. We must expand these determinants in the sense of the 
internal differential operators actually operating on the functions 1g and 2g .  
Therefore, the symbol D  occurring in iL  is to be treated as an algebraic quantity. 

36.2 Solution Method 
The steps involved in application of the method of detailed above can be summarized as 
follows: 
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Step 1 First we have to write the differential equations of the given system in the 
differential operator form   

   
( )
( )tgyLxL
tgyLxL

243

121

=+
=+

 

Step 2 We find the determinants   

   
23

11

42

21

43

21    ,   ,
gL
gL

Lg
Lg

LL
LL

 

Step 3 If the first determinant is non-zero, then it represents an nth order differential 
operator and we decoupled the given system by writing the differential equations 

   

23

11

43

21

42

21

43

21

  

 

gL
gL

y
LL
LL

Lg
Lg

x
LL
LL

=⋅

=⋅

  

Step 4 Find the complementary functions for the two equations. Remember that the 
auxiliary equation and hence the complementary function of each of these differential 
equations is the same.  

Step 5 Find the particular integrals px and py using method of undetermined 
coefficients or the method of variation of parameters. 

Step 6 Finally, we write the general solutions for both the dependent variables x and y   
   pcpc yyyxxx +=+=   , . 

Step 7 Reduce the number of constants by substituting in one of the differential 
 equations of the given system 

Note that 
If the determinant found in step 2 is zero, then the system may have a solution containing 
any number of independent constants or the system may have no solution at all. Similar 
remarks hold for systems larger than system indicated in the previous discussion. 

Example 1 
Solve the following homogeneous system of differential equations 

    
2 5

5

t

t

dx dyx e
dt dt

dx dyx e
dt dt

− + =

− + =
     

Solution: Step 1 First we write the differential equations of the system in terms of the 
differential operator D  
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( )2 5

( 1) 5

t

t

D x Dy e

D x Dy e

− + =

− + =
 

Step 2 We form the determinant 

       
2 5 2 5

,   ,    
1 5 1 5

t t

t t
D D e D D e
D D e D D e

− −
− −

 

Step 3 Since the 1st determinant is non-zero 

    
2 5

(2 5) ( 1)
1

D D
D D D D

D D
−

= − − −
−

 

or   22 5
4 0

1
D D

D D
D D

−
= − ≠

−
 

Therefore, we write the decoupled equations   

       
2 5

 
1 5

t

t
D D e D

x
D D e D

−
=

−
 

       
2 5 2 5

 
1 1 5

t

t
D D D e

y
D D D e

− −
=

− −
 

After expanding we find that 

        ( )2 4 (5 ) 4t t tD D x De D e e− = − = −  

   ( )2 4 (2 5)(5 ) ( 1) 15t t tD D y D e D e e− = − − − = −  

Step 4 We find the complementary function for the two equations. The auxiliary 
equation for both of the differential equations is:   

           2 4 0 0, 4m m m− = ⇒ =  

The auxiliary equation has real and distinct roots 

           
4

1 2
4

3 4

t

t

x c c ec
y c c ec

= +

= +
 

Step 5 We now use the method of undetermined coefficients to find the particular 
integrals px and py .  
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Since   ( ) ( )1 24 ,   15 t tg t e g t e= − = −  

We assume that           

     ,    t t
p px Ae y Be= =  

Then     t
pD x Ae= ,      2 t

pD x Ae=  

And     t
pD y Be= ,      2 t

pD y Be=  

Substituting in the differential equations, we have 

   
4 4

4 15

t t t

t t t
Ae Ae e

Be Be e

− = −

− = −
 

or  3 4 ,   3 15t t t tAe e Be e− = − − = −  

Equating coefficients of te  and constant terms, we obtain 

   
4 ,    5
3

A B= =  

So that  
4 ,   5
3

t t
p px e y e= =  

Step 6 Hence, the general solution of the two decoupled equations 

   4
1 2

4
3

t tx x x c c e ec p= + = + +    

   4
3 4 5t ty y y c c e ec p= + = + +    

Step 7 Substituting these solutions for x and y into the second equation of the given 
system, we obtain 

   ( ) 4
1 2 43 4 0tc c c e− + + =  

or  1 4 2
30,   .
4

c c c= = −  

 

Hence, the general solution of the given system of differential equations is  

   ( ) 4
2

4
3

t tx t c e e= +  
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   ( ) 4
3 2

3 5
4

t ty t c c e e= − +  

If we re-notate the constants 2c  and 3c  as 1c  and 2c , respectively.  Then the 
solution of the system can be written as: 

   ( ) 4
1

4
3

t tx t c e e= +  

   ( ) 4
1 2

3 5
4

t ty t c e c e= − + +  

Example 2  Solve teyxy

yxx

4

13

++=′

−−=′
     

Solution:  
Step 1 First we write the differential equations of the system in terms of the 
differential operator D  

   
( )

( ) teyDx

yxD

41

13

=−+−

−=+−
 

Step 2 We form the determinant 

       tt e
D

DeD
D

41
13

   ,
14

11
  ,

11
13

−
−

−
−

−−
−

 

Step 3 Since the 1st determinant is non-zero 

    044
11

13 2 ≠+−=
−−

−
DD

D
D

 

Therefore, we write the decoupled equations   

       
14

11
 

11
13

−
−

=
−−

−
De

x
D

D
t  

       
3 1 3 1

 
1 1 1 4 t

D D
y

D e
− − −

=
− − −

 

After expanding we find that 

        ( ) texD  412 2 −=−  

        ( ) . 812 2 teyD −−=−  

Step 4 We find the complementary function for the two equations. The auxiliary 
equation for both of the differential equations is:   
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           ( ) 02 2 =−m 2,2=⇒ m  

The auxiliary equation has real and equal roots 

           
2 2

1 2
2 2

3 4

t t

t t

x c e c tec
y c e c tec

= +

= +
            

Step 5 We now use the method of undetermined coefficients to find the particular 

integrals px and py . As ( ) ( )1 21 4 ,   1 8 t tg t e g t e= − = − −  

So we assume that           

     ,    t t
p px A Be y C Ee= + = +  

Then    t
p BexD = ,      t

p BexD =2  

And     t
pD y Ee= ,      2 t

pD y Ee=  

Substituting in the differential equations   

   
( )
( ) t

pppp

t
pppp

eyDyyDyD

exDxxDxD

81442

41 442
22

22

−−=+−=−

−=+−=−
 

Therefore, we have 

   
4 4 4 1 4

4 4 4 1 8

t t t t

t t t t
Be Be A Be e

Ee Ee C Ee e

− + + = −

− + + = − −
 

 

or  4 1 4 ,   E 4 1 8t t t tBe A e e C e+ = − + = − −  

Equating coefficients of te  and constant terms, we obtain 

1    -4,  
4

1 ,      8
4

B A

C E

= =

= − = −
 

So that 
1 14 ,   8
4 4

t t
p px e y e= − = − −  

Step 6 Hence, the general solution of the two decoupled equations 

   ttt etececpxcxx 4
4
12

2
2

1 −++=+=    

   ttt etececpycyy 8
4
12

4
2

3 −−+=+=    
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Step 7 Substituting these solutions for x and y into the second equation of the given 

system, we obtain: ( ) ( ) 02
24

2
413 =−++− tt tecceccc  

or  .   , 2141324 ccccccc −=−==  

Hence, a solution of the given system of differential equations is  

   ( ) ttt etecectx 4
4
12

2
2

1 −++=  

   ( ) ( ) ttt etececcty 8
4
12

2
2

21 −−+−=  

Example 3  Given the system 

( ) 0  122    
                 2   

                     
2

2

=++−−
=+

=+

zDyDx
eyDx

tDzDx
t  

Find the differential equation for the dependent variables ,x y and z . 

Solution:  
Step1 The differential equations of the system are already written in the differential 
operator form. 

Step 2 We form the determinant 

022
2

0
   , 

102
02   , 

120
0 

0 
   , 

122
02

0
2

22

2

2

2

−−+−+−+−− D
eD
tD

DD
e

DtD

D
De

Dt

DD
D

DD
ttt  

Step 3 1st determinant 0≠  ⇒
22

2
12

0

122
02

0 22
2

−−
+

+−
=

+−− D
DD

D
DD

DD
D

DD
 

( ) 043
122

02
0

232 ≠−+=
+−−

DDD
DD

D
DD

 

Therefore, we can write the decoupled equations 

120
0 

0 
   

122
02

0
2

2

2

+−
=⋅

+−− D
De

Dt
x

DD
D

DD
t  
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102

02  
122

02
0 2

2

+−
=⋅

+−− DD
e

DtD
y

DD
D

DD
t  

   
022

2
0

  
122

02
0

2

2

2

−−
=⋅

+−− D
eD
tD

z
DD

D
DD

t  

The determinant on the left hand side in these equations has already been expanded. Now 
we expand the determinants on the right hand side by the cofactors of an appropriate row.  

   
t

tt

t
t

e

etDDeDtDD

DeDt
D

D

D
De

Dt

22

2)()2()1(

20
  

12
0

120
0 

0 

22322

2
2

2
2

2

−=

−+=−++=

−
+

+−
=

+−

 

   

.4242242

]2[)]2)(1[(])1[(

02
2 

12
02

10
0 

102
02

22

2

2

2

tteette

DeDtDeDD

D
eDt

DDD
eD

DD
e

DtD

ttt

tt

tt
t

−−=+−−=

++−+=

−
+

+−
−

+
=

+−

 

2

223

2
22

2

2

42

042)24()2(

22
2

02
D

022
2

0

te

tetDeD

t
D

DeD
D

eD
tD

t

tt

t
t

−=

+−=+−+=

−−
+

−
=

−−

 

Hence the differential equations for the dependent variables yx   ,  and z can be written as 

     ( ) texyDDD 22  43 23 −=−+  

or     ( ) .424 43 223 tteyyDDD t −−=−+  

    ( ) 223 42 43 tezyDDD t −=−+  

Again we remind that the D  symbol on the left-hand side is to be treated as an algebraic 
quantity, but this is not the case on the right-hand side. 
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36.3 Exercise 
Solve, if possible, the given system of differential equations by use of determinants. 

11. 2 ,       2dx dyx y x y
dt dt

= − = −  

12. ,       dx dyy t x t
dt dt

= − + = −  

13. ( ) ( )2 25 2 0,       -2 2 0D x y x D y+ − = + + =  

14. 
2 2

2 24 ,        4t td x d yy e x e
dt dt

= + = −  

15. 
2

2 5 ,        4d x dy dx dyx x y
dt dt dtdt

+ = − + = − +  

16. 2 3 3,   ( 1) ( 1) 4t tDx D y e D x D y e+ = + + − =  

17. ( ) ( )2 1 0,        1 0D x y D x Dy− − = − + =  

18. 2(2 1) (2 1) 1,        ( 1) 1D D x D y D x Dy− − − + = − + = −  

19. 
2

2,     0tdx dy d x dxe x y
dt dt dtdt

+ = − + + + =  

20. 22 ( 1) ,       Dx D y t Dx Dy t+ − = + =  
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37 Systems of Linear First-Order Equation 
In the preceding lectures we dealt with linear systems of the form 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

                                                        

n n

n n

n n nn n n

P D x P D x P D x b t

P D x P D x P D x b t

P D x P D x P D x b t

+ + + =

+ + + =

+ + + =





   



  

where the ijP were polynomials in the differential operator .D   

37.1 The nth Order System 
1. The study of systems of first-order differential equations 

 

( )

( )

( )

1
1 1 2

2
2 1 2

1 2

, , , ,

, , , ,

  

, , , ,

n

n

n
n n

dx g t x x x
dt
dx g t x x x
dt

dx
g t x x x

dt

=

=

=









      

is also particularly  important in advanced mathematics. This system of n first-order 
equations is called and nth-order system. 
2. Every nth-order differential equation 

 

  ( ) ( )( )1, , , ,n ny F t y y y −′=   

as well as most systems of differential equations, can be reduced to the nth-order system.  

37.2 Linear Normal Form 
A particularly, but important, case of the nth-order system is of those systems having the 
linear normal or canonical form:  

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )tfxtaxtaxta
dt

dx

tfxtaxtaxta
dt

dx

tfxtaxtaxta
dt
dx

nnnnnn
n

nn

nn

++++=

++++=

++++=









2211

22222121
2

11212111
1
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where the coefficients ija and the if are the continuous functions on a common interval I . 

When ( ) 0, 1, 2, , ,if t i n= =  the system is said to be homogeneous; otherwise it is 
called non-homogeneous. 

37.3 Reduction of  a Linear Differential Equation to a System 
Suppose a linear nth-order differential equation is first written as 

 ( ) ( ).1110 tfy
a

ay
a
ay

a
a

dt
yd n

n

n

nn
n

n
+−−′−−= −−

    

If we then introduce the variables 

  

 ( )
n

n xyxyxyxy ==′′=′= −1
321 ,,   ,   ,      

it follows that  

 ( ) ,,,  , 1
1

3221 nn
n xxyxxyxxy =′==′=′′=′=′ −

−
  ( )n

ny x′=  

 Hence the given nth-order differential equation can be expressed as an nth-order system: 

 

( )

1 2

2 3

3 4

1

0 11
1 2

  
  
  

  .

n n

n
n n

n n n

x x
x x
x x

x x
a aax x x x f t
a a a

−

−

′ =
′ =
′ =

′ =

′ = − − − − +





   

  

Inspection of  this system reveals that it is in the form of an nth-order system. 

Example 1 
Reduce the third-order equation 
  tyyyy sin642 +′′+′−−=′′′  

or  tyyyy sin462 =+′+′′−′′′  

to the normal form. 

Solution: Write the differential equation as  

  
1 12 3 sin
2 2

y y y y t′′′ ′ ′′= − − + +  

Now introduce the variables 
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  .,, 321 xyxyxy =′′=′=  

Then 

  21 xyx =′=′  

  32 xyx =′′=′  

  yx ′′′=′3  

Hence, we can write the given differential equation in the linear normal form 

  
1 2

2 3

3 1 2 3
1 12 3 sin
2 2

x x
x x

x x x x t

′ =
′ =

′ = − − + +

    

Example 2 
Rewrite the given second order differential equation as a system in the normal form 

 
2

22 4 5 0d y dy y
dxdx

+ − =  

Solution: 
We write the given the differential equation as  

  
2

2
52
2

d y dy y
dxdx

= − +  

Now introduce the variables 

 1 2,   y x y x′= =  

Then 

  1 2

2

y x x
y x
′ ′= =
′′ ′=

 

So that the given differential equation can be written in the form of a system 

      
1 2

2 2 1

 
52
2

x x

x x x

′ =

′ = − +
 

This is the linear normal or canonical form. 

Example 3 
Write the following differential equation as an equivalent system in the Canonical form. 
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 tey
dt

yd
=+3

3

4  

Solution: 
First write the given differential equation as 

 tey
dt

yd
+−=3

3

4  

dividing by 4 on both sides 

or tey
dt

yd
4
1

4
1

3

3

+−=  

Now introduce the variables 

 1 2 3,  ,  y x y x y x′ ′′= = =  

Then 

 
1 2

2 3

3

y x x
y x x
y x

′ ′= =
′′ ′= =
′′′ ′=

 

Hence, the given differential equation can be written as an equivalent system.  

 
1 2

2 3

3 1
1 1
4 4

t

x x
x x

x x e

′ =
′ =

′ = − +

 

Clearly, this system is in the linear normal or the Canonical form. 

 

 Example 4 
Rewrite the differential equation in the linear normal form 

 2 2( 4) 0t y ty t y′′ ′+ + − =  

Solution: 
First we write the equation in the form 

 ( )ytytyt 422 −−′−=′′  

or ( ) 0    ,41
2

2

≠
−

−′−=′′ ty
t

ty
t

y  

 
                                                © Copyright Virtual University of Pakistan                                                 324 



Differential Equations (MTH401)                                                                                    VU 
 

or 
2

2
1 4ty y y
t t

−′′ ′= − −   

Then introduce the variables 

 1 2,  y x y x′= =   

 

 

Then 

 1 2

2

y x x
y x
′ ′= =
′′ ′=

 

Hence, the given equation is equivalent to the following system. 

 
1 2

2

2 2 12
1 4

x x

tx x x
t t

′ =

−′ = − −
 

The system is in the required linear normal or the cnonical form. 

37.3.1 Systems Reduced to Normal Form 
Using Procedure similar to that used for a single equation, we can reduce most systems of 
the linear form 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

                                                        

n n

n n

n n nn n n

P D x P D x P D x b t

P D x P D x P D x b t

P D x P D x P D x b t

+ + + =

+ + + =

+ + + =





   



 

to the canonical form. To accomplish this we need to solve the system for the highest 
order derivative of each dependent variable.  

Note: It is not always possible to solve the given system for the highest-order derivative 
of each dependent variable. 

Example 5 
Reduce the following system to the normal form 

 
( )

( )
2 2

2 2

5 2

2     2   3

tD D x D y e

x D y t

− + + =

− + + =
 

Solution:  
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First write the given system in the differential operator form   

  
2 2

2 2

2 5

3 2 2

tD x D y e x Dx

D y t x y

+ = − +

= + −
   

Then eliminate yD 2  by multiplying the second equation by 2 and subtracting from first 
equation to have 

  .496 22 DxyxtexD t ++−−=  

Also   2 23 2 2D y t x y= + −  

We are now in a position to introduce the new variables.  Therefore, we suppose that 
  ,   Dx u Dy v= =   

Thus, the expressions for xD 2  and yD 2 , respectively, become 

  uyxteDu t ++−−= 496 2  

  .223 2 yxtDv −+=  

Thus the original system can be written as 

  uDx =  
  vDy =  

  29 4 6tDu x y u e t= − + + + −  

  2322 tyxDv +−=  

Clearly, this system is in the canonical form.  

Example 6 
If possible, re-write the given system in the canonical form 

  
4       7

       2 3
x x y t

x y y t
′ ′+ − =

′ ′+ − =
 

Solution: 
First we write the differential equations of the system in the differential operator form 

  
4       7

       + 2 3
Dx x Dy t
Dx Dy y t

+ − =
− =

 

To eliminate Dy  we add the two equations of the system, to obtain 

  2 10 4 2Dx t x y= − +  

or  2 5Dx x y t= − + +  
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Next to solve for the Dy , we eliminate Dx . For this purpose we simply subtract the first 
equation from second equation of the system, to have 
  4 2 2 4x Dy y t− + − = −  

     2 4 2 4Dy x y t= + −  

or     2 2Dy x y t= + −  

Hence the original system is equivalent to the following system 

      
2 5

2 2
Dx x y t
Dy x y t

= − + +
= + −

 

Clearly the system is in the normal form. 

Example 7 If possible, re-write the given system in the linear normal form 

  

3 2

3 2

2
2

2

4 3 4

10 4 3

d x d x dyx
dtdt dt

d y dx dyt
dt dtdt

= − +

= − +

 

Solution: 
First write the given system in the differential operator form  

 
3 2

2 2

4 3 4

10 4 3

D x x D x Dy

D y t Dx Dy

= − +

= − +
  

No need to eliminate anything as the equations are already expressing the highest-order 
derivatives of x  and y in terms of the remaining functions and derivatives. Therefore, we 
are now in a position to introduce new variables. Suppose that ,   Dx u Dy v= =  

⇒ 2D x Du w= = ⇒ 2 3,   D y Dv D x Dw= =  

Then the expressions for 3D x  and for 2D y can be written as 

 
2

4 4 3

10 4 3

Dw x v w

Dv t u v

= + −

= − +
 

Hence, the given system of differential equations is equivalent to the following system  

 
210 4 3

4 4 3

Dx u
Dy v
Du w

Dv t u v
Dw x v w

=
=
=

= − +
= + −
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This new system is clearly in the linear normal form.  

37.4 Degenerate Systems 
The systems of differential equations of the form 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

                                                        

n n

n n

n n nn n n

P D x P D x P D x b t

P D x P D x P D x b t

P D x P D x P D x b t

+ + + =

+ + + =

+ + + =





   



 

those cannot be reduced to a linear system in normal form is said to be a degenerate 
system. 

Example 8 If possible, re-write the following system in a linear normal form  

  
( ) ( )

( ) 0122
011

=++
=+++

yDDx
yDxD

  

Solution: 
The given system is already written in the differential operator form. The system can be 
written in the form 

  
  0

2   2  0
Dx x Dy y

Dx Dy y
+ + + =

+ + =
 

We eliminate Dx  to solve for the highest derivative Dy  by multiplying the first 
equation with 2 and then subtracting second equation from the first one. Thus we have  

  
  2 2   2 2 0

2         2D   0

          2              0

Dx x Dy y
Dx y y

x y

+ + + =
± ± ± =

+ =

 

Therefore, it is impossible to solve the system for the highest derivative of each 
dependent variable; the system cannot be reduced to the canonical form.  Hence the 
system is a degenerate. 

Example 9 
If possible, re-write the following system of differential equations in the canonical form 

 
1

1
x y
x y
′′ ′+ =
′′ ′+ = −

 

Solution: 
We write the system in the operator form 

 
2

2

  1

1

D x Dy

D x Dy

+ =

+ = −
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To solve for a highest order derivative of y  in terms of the remaining functions and 
derivatives, we subtract the second equation from the first and we obtain 

  

2

2

    1

1

           0 2

D x Dy

D x Dy

+ =

± ± = −

=

   

This is absurd. Thus the given system cannot be reduced to a canonical form. Hence the 
system is a degenerate system. 

Example 10 
If possible, re-write the given system 

 
(2 1) 2  4

      t

D x Dy

Dx Dy e

+ − =

− =
 

Solution: 
The given system is already in the operator form and can be written as 

 
2 2  4

      t

Dx x Dy

Dx Dy e

+ − =

− =
 

To solve for the highest derivative Dy , we eliminate the highest derivative Dx . 
Therefore, multiply the second equation with 2 and then subtract from the first equation 
to have 

     t

2 2     4

2      2Dy 2e

                   4 2 t

Dx x Dy

Dx

x e

+ − =

± = ±

= −

  

Therefore, it is impossible to solve the system for the highest derivatives of each variable. 
Thus the system cannot be reduced to the linear normal form. Hence, the system is a 
degenerate system. 

37.5 Applications of Linear Normal Forms 
The systems having the linear normal form arise naturally in some physical applications. 
The following example provides an application of a homogeneous linear normal system 
in two dependent variables. 

Example 11 
Tank A contains 50 gallons of water in which 25 pounds of salt are dissolved. A second 
tank B contains 50 gallons of pure water. Liquid is pumped in and out of the tank at rates 
shown in Figure. Derive the differential equations that describe the number of pounds 

( )tx1 and ( )tx2 of salt at any time in tanks , and BA respectively. 
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Solution: 
Tank A 

Input through pipe a  = ( ) ( )3 gal/min 0 lb/gal 0⋅ =  

Input through pipe b  = ( ) 2 21 gal/min lb/gal  lb / min
50 50
x x ⋅ = 

 
 

Thus, total input for the tank A  = 
5050

0 22 xx
=+  

Output through pipe c  = ( ) 1 144 gal/min lb/gal lb / min
50 50
x x ⋅ = 

 
 

Hence, the net rate of change of ( )tx1  in lb / min is given by 

   1  - dx input output
dt

=  

or   1 2 14
50 50

dx x x
dt

= −  

or   
5025

2 2
1

1 xx
dt
dx

+
−

=  

Tank B 

Input through pipe c is 144 gal/min lb / min
50
x

=  

Output through pipe b is 21 gal/min lb / min
50
x

=  

Similarly output through pipe d  is 233 gal/min lb / min
50
x

=  

Mixture 1 gal / min Pure water 3 gal / min 

A B 

Mixture 4 gal / min 

a b 

c d 
Mixture 3 gal / min 
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Total output for the tank b  
50
4

50
3

50
222 xxx

=+=  

Hence, the net rate of change of ( )tx2 in min/lb  

    2dx input output
dt

= −  

or    2 1 24 4
50 50

dx x x
dt

= −  

or    2 1 22 2
25 25

dx x x
dt

= −  

Thus we obtain the first order system 

    
5025

2 2
1

1 xx
dt
dx

+
−

=  

    
25
2

25
2 212 xx

dt
dx

−=  

 We observe that the foregoing system is accompanied the initial conditions  

  ( ) ( ) .00  ,250 21 == xx  

Exercise 

Rewrite the given differential equation as a system in linear normal form. 

1. 
2

2 3 4 sin 3d y dy y t
dtdt

− + =  

2. 23 6 10 1y y y y t′′′ ′′ ′− + − = +  

3. 
4 2

4 22 4d y d y dy y t
dxdt dt

− + + =  

4. 
4 3

4 32 8 10d y d y y
dt dt

+ − =  

Rewrite, if possible, the given system in the linear normal form. 

5. 2( 1) ,    5 2D x Dy t x Dy t− − = + = −  
6. 2 sin ,   cosx y t x y t′′ ′′ ′′ ′′− = + =  
7. 1 1 1 1 2 2 1 2 2 2 2 1( ),        ( )m x k x k x x m x k x x′′ ′′= − + − = − −  
8. ( ) 1061          ,4 222 +=++−=+ tyDxDtDyxD  
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38 Introduction to Matrices 
38.1 Matrix 

A rectangular array of numbers or functions subject to certain rules and conditions is 
called a matrix. Matrices are denoted by capital letters ZYBA ,,,,  . The numbers or 
functions are called elements or entries of the matrix. The elements of a matrix are 
denoted by small letters zyba ,,,,  .  

38.2 Rows and Columns 
The horizontal and vertical lines in a matrix are, respectively, called the rows and 
columns of the matrix. 

38.3 Order of a Matrix                    
If a matrix has m  rows and n  columns then we say that the size or order of the matrix is

nm × . If A  is a matrix having m  rows and n columns then the matrix can be written as   

                                   

11 12 1

21 22 2

1 2

n

n

m m mn

a a a
a a a

A

a a a

 
 
 
 =
 
 
 
 





   

   



   

38.4 Square Matrix 
A matrix having n rows and n  columns is said to be a nn ×  square matrix or a square 
matrix of order n. The element, or entry, in the ith  row and jth  column of a nm ×  
matrix A is written as ija .  Therefore a 1 x 1 matrix is simply a constant or a function. 

38.5 Equality of matrix 
Any two matrices A  and B  are said to be equal if and only if they have the same orders 
and the corresponding elements of the two matrices are equal. Thus if  nmijaA ×= ][  and 

nmijbB ×= ][  then 

jibaBA ijij ,    , ∀=⇔=   

38.6 Column Matrix 
A column matrix X  is any matrix having n  rows and only one column. Thus the column 
matrix X can be written as 
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    11

1

31

21

11

][   ×=



























= ni

n

b

b

b

b

b

X



 

A column matrix is also called a column vector or simply a vector. 

38.7 Multiple of matrices 
A multiple of a matrix A  is defined to be  

 

   nmij

mnmm

n

n

ka

kakaka

kakaka

kakaka

kA ×=























= ][

21

22221

11211









          

Where k  is a constant or it is a function. Notice that the product kA  is same as the 
product Ak . Therefore, we can write 

 AkkA =  

Example 1 

(a) 



















−

−

=



















−

−

⋅

301

520

1510

65/1

14

32

5           

(b)   





















−=



















−⋅

t

t

t

t

e

e

e

e

4

2

4

2

1

        

Since we know that AkkA = . Therefore, we can write      t
t

t
t e

e

e
e 3

3

3
3  

5

2
 

5

2

5

2
−

−

−
−












=












=












⋅    
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38.8 Addition of Matrices 
     Any two matrices can be added only when they have same orders and the resulting 
matrix is obtained by adding the corresponding entries. Therefore, if ][ ijaA =  and 

][ ijbB =  are two nm ×  matrices then their sum is defined to be the matrix BA +  defined 

by ][ ijij baBA +=+  

Example 2  Consider the following two matrices of order 33×    

                            


















−−

−

=

5106

640

312

A ,   


















−

−

=

211

539

874

B   

Since the given matrices have same orders. Therefore, these matrices can be added and 
their sum is given by  

 

                 


















−−

−

=



















+−−++−

+++

−++−+

=+

395

1179

566

25)1(1016

563490

)8(37142

BA  

Example 3 Write the following single column matrix as the sum of three column vectors  

       
















+
−

t
tt
et t

5
7
23

2

2

 

Solution 
                   

2 2

2 2 2

3 2 3 0 2 3 0 2
7 7 0 1 7 0

5 0 5 0 0 5 0

t t

t

t e t e
t t t t t t e

t t

   −  − −                      + = + + = + +                                   

 

38.9 Difference of Matrices 
The difference of two matrices A  and B  of same order nm ×  is defined to be the matrix  

 )( BABA −+=−  

 The matrix B−  is obtained by multiplying the matrix B  with 1− .  So that 
 BB  ) 1 ( −=−   
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38.10 Multiplication of Matrices 
   Any two matrices A  and B  are conformable for the product AB , if the number of 
columns in the first matrix A  is equal to the number of rows in the second matrix B . 
Thus if the order of the matrix A  is nm ×  then to make the product AB  possible order 
of the matrix B  must be pn × .  Then the order of the product matrix AB  is pm × . Thus  

    pmpnnm CBA ××× =⋅  

If the matrices A  and B  are given by    

 























=























=

npnn

p

p

mnmm

n

n

bbb

bbb

bbb

B

aaa

aaa

aaa

A

















21

22221

11211

21

22221

11211

  ,  

Then 

    













































=

npnn

p

p

mnmm

n

n

bbb

bbb

bbb

aaa

aaa

aaa

AB

















21

22221

11211

21

22221

11211

              

 

       



























++++++

++++++

++++++

=

npmnpmpmnmnmm

npnppnn

npnppnn

babababababa

babababababa

babababababa











22111212111

22221211221221121

12121111121121111

 

 

                         
pn

n

k
kjikba

×=










= ∑

1
                                                              

Example 4 
If possible, find the products AB and BA , when 

(a)     










=

53

74
A , 










 −
=

86

29
B  
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(b)   


















=

7

0

8

2

1

5

A ,  









 −−
=

02

34
B  

Solution 
(a) The matrices A  and B are square matrices of order 2. Therefore, both of the products     

     AB  and BA are possible.  

        










=












⋅+−⋅⋅+⋅

⋅+−⋅⋅+⋅
=










 −











=

3457

4878

85)2(36593

87)2(46794

86

29

53

74
AB              

Similarly  










=












⋅+⋅⋅+⋅

⋅−+⋅⋅−+⋅
=




















 −
=

8248

5330

58763846

5)2(793)2(49

53

74

86

29
BA  

(b) The product AB is possible as the number of columns in the matrix A  and the 
number of rows in B is 2. However, the product BA is not possible because the number of 
rows in the matrix B and the number of rows in A is not same. 



















−

−

−

−

−

=



















⋅+−⋅

⋅+−⋅

⋅+−⋅

⋅+−⋅

⋅+−⋅

⋅+−⋅

=

6

3

15

6

4

4

07)3(2

00)3(1

08)3(5

27)4(2

20)4(1

28)4(5

AB  

Note that 
In general, matrix multiplication is not commutative. This means that BAAB ≠  . For 
example, we observe in part (a) of the previous example 

                                           










=

3457

4878
AB ,  











=

8248

5330
BA  

Clearly .BAAB ≠ .  Similarly in part (b) of the example, we have  



















−

−

−

−

−

=

6

3

15

6

4

4

AB  

However, the product BA  is not possible.  

Example 5 
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(a)     


















−

=



















⋅+⋅−+−⋅

⋅+⋅+−⋅

⋅+⋅−+−⋅

=

















−



















−

−

9

44

0

496)7()3(1

6564)3(0

436)1()3(2

4

6

3

971

540

312

 

 

(b)     











+

+−
=




















−

yx

yx

y

x

83

24

83

24
 

 

38.11 Multiplicative Identity  
For a given positive integer n , the nn ×  matrix  

   


























=

1000

0100

0010

0001











I

 
is called the multiplicative identity matrix. If A  is a matrix of order n n× , then it can be 
verified that 

                                                   AIAAI =⋅=⋅  
 Also, it is readily verified that if X is any 1×n column matrix, then XXI =⋅   

 

38.12 Zero Matrix 
 

A matrix consisting of all zero entries is called a zero matrix or null matrix and is denoted 
by O . For example 

                                              










=

0

0
O ,       











=

00

00
O ,       



















=

0

0

0

0

0

0

O  

and so on. If A and O  are nm × matrices, then 

    AAOOA =+=+  
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38.13 Associative Law  
The matrix multiplication is associative. This means that if BA   ,  and C are pm × , rp ×
and nr ×  matrices, then CABBCA )()( = .The result is a  nm ×  matrix. 

38.14 Distributive Law 
 If B  and C are matrices of order nr ×  and A  is a matrix of order rm × ,  then the 
distributive law states that ACABCBA +=+ )(  

Furthermore, if the product CBA )( +  is defined, then  BCACCBA +=+ )(  

38.15 Determinant of a Matrix 
Associated with every square matrix A of constants, there is a number called the 
determinant of the matrix, which is denoted by )det(A or  A  

Example 6  Find the determinant of the following matrix 

                                   


















−

=

421

152

263

A  

Solution 
The determinant of the matrix A  is given by 

   

421

152

263

)det(

−

=A  

We expand the  )det(A  by cofactors of the first row, we obtain 

                     

421

152

263

)det(

−

=A =3
42
15

-6
41
12

−
+2

21
52

−
 

or                        185)2(41)6(8-2)-3(20)det( =+++=A  

38.16 Transpose of a Matrix 
The transpose of a nm ×  matrix A  is obtained by interchanging rows and columns of the 
matrix and is denoted by trA . In other words, rows of A become the columns of .trA  If  
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

















=

mnmm

n

n

aaa

aaa
aaa

A

....
..

...
...

21

22221

11211







 

Then 

  



























=

mnnn

m

m

tr

aaa

aaa

aaa

A









21

22212

12111

 

Since order of the matrix A  is nm × , the order of the transpose matrix trA  is mn × .  

Example 7 
(a) The transpose of matrix  

    


















−

=

421

152

263

A  

 

  is                                        
















 −

=

412

256

123

  trA  

(b) If X denotes the matrix 

         


















=

3

0

5

X  

 

Then           [ ]305=trX  
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38.17 Multiplicative Inverse of a Matrix  

Suppose that A  is a square matrix of order nn × . If there exists an nn ×  matrix B such 
that 

 IBAAB ==   
Then B is said to be the multiplicative inverse of the matrix A  and is denoted by 

1−= AB . 

38.18 Non-Singular Matrices   

A square matrix A of order nn × is said to be a non-singular matrix if 
     det( ) 0A ≠  

Otherwise the square matrix A  is said to be singular. Thus for a singular A  we must 
have   
    det( ) 0A =  

Theorem    If A  is a square matrix of order nn ×  then the matrix has a multiplicative 
inverse 1−A  if and only if the matrix A  is non-singular. 

Theorem   Let A  be a non singular matrix of order nn ×  and let C ij denote the cofactor 
(signed minor) of the corresponding entry ija in the matrix A  i.e. 

ij
ji

ij MC +−= )1(   

M ij is the determinant of the )1()1( −×− nn  matrix obtained by deleting the ith  row and 
jth  column from A .  Then inverse of the matrix A  is given by 

                                        tr
ijC

A
A )(

)det(
11 =−                

Further Explanation  

1. For further reference we take 2=n so that A  is a 22×  non-singular matrix given by 
 

                                      













=

2221

1211

aa

aa
A  

  Therefore 122121122211   ,  , aCaCaC −=−==  and 1122 aC = . So that  

 

                                     














−

−
=















−

−
=−

1121

1222

1112

21221
)det(

1
)det(

1
aa

aa

Aaa

aa

A
A

tr
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 2. For a 3×3 non-singular matrix 

 

                                    A=
11 12 13

21 22 23

31 32 33

a a a
a a a
a a a

 
 
 
 
 

 

 

3332

2322
11

aa

aa
C = ,

3331

2321
12

aa

aa
C −= ,   C 13 =

3231

2221

aa
aa

 

and so on. Therefore, inverse of the matrix A  is given by  

 

                                    





















=−

332313

322212

312111
1

det
1

CCC

CCC

aCC

A
A . 

 

Example 8  
Find, if possible, the multiplicative inverse for the matrix 











=

102

41
A . 

Solution:  

The matrix A  is non-singular because 

        2=8-10=
102

41
)det( =A  

 Therefore, 1−A exists and is given by 

.                                                

                                         A 1− =











−

−
=












−

−

2/11

25

12

410

2
1  

Check 
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     IAA =










=












+−−

+−−
=












−

−











=−

10

01

541010

2245

2/11

25

102

411  

 

                  IAA =










=












+−+−

−−
=






















−

−
=−

10

01

5411

202045

102

41

2/11

251  

Example 9 
Find, if possible, the multiplicative inverse of the following matrix 

                      










=

33

22
A   

Solution: 
The matrix is singular because  

03232
33

22
)det( =⋅−⋅==A  

Therefore, the multiplicative inverse 1−A of the matrix does not exist.  

Example 10  
Find the multiplicative inverse for the following matrix 

                                                      A=


















−

103

112

022

. 

Solution:  

Since     012)30(0)32(2)01(2

103

112

022

)det( ≠=−+−−−−=−=A  

 Therefore, the given matrix is non singular. So that, the multiplicative inverse 1−A of the 
matrix A  exists. The cofactors corresponding to the entries in each row are 

 

             3
03

12
      ,5

13

12
           ,1

10

11
131211 −=

−
==

−
−=== CCC         
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              6
03

22
          ,2

13

02
     ,2

10

02
232221 =−===−=−= CCC      

               6
12

22
     ,2

12

02
          ,2

11

02
333231 =

−
=−=

−
−=== CCC  

Hence   A 1− =
12
1

















−
−

−

663
225

221
=

















−
−

−

2/12/14/1
6/16/112/5

6/16/112/1
 

Please verify that IAAAA =⋅=⋅ −− 11  

38.19 Derivative of a Matrix of functions 
Suppose that  

( ) ( )ij m n
A t a t

×
 =     

is a matrix whose entries are functions those are differentiable on a common interval, 
then derivative of the matrix )(tA  is a matrix whose entries are derivatives of the 
corresponding entries of the matrix )(tA . Thus                              

   
nm

ij
dt

da
dt
dA

×








=  

The derivative of a matrix is also denoted by ).(tA′  

38.20 Integral of a Matrix of Functions 
Suppose that  ( ) nmij tatA

×
= )()(  is a matrix whose entries are functions those are 

continuous on a common interval containing t , then integral of the matrix )(tA  is a 
matrix whose entries are integrals of the corresponding entries of the matrix )(tA . Thus 

                                
0

0

( ) ( )ij
m n

t tA s ds a s dst
t ×

 =  
 ∫ ∫  

Example 11 
Find the derivative and the integral of the following matrix 

  

3

sin 2

( )
8 1

t

t

X t e
t

 
 

=  
 −        

Solution: 

 
                                                © Copyright Virtual University of Pakistan                                                 343 



Differential Equations (MTH401)                                                                                    VU 
 

The derivative and integral of the given matrix are, respectively, given by  

   


















=























−

=′

8

3

2cos2

)18(

)(

)2(sin

)( 33 tt e

t

t
dt
d

e
dt
d

t
dt
d

tX           

                        


















−

−

+−

=





























−

=∫

∫

∫

∫

tt

e

t
t

dst

dse

tds

dssX t

t

t
t

t

2

3

0

0

3

0

4

3/13/1

2/12cos2/1

0

18

2sin

)(  

38.21 Augmented Matrix 
Consider an algebraic system of n linear equations in n unknowns 

   

nnnnnn

nn

nn

bxaxaxa

bxaxaxa
bxaxaxa

=+++

=+++
=+++









2211

22222121

11212111

                                              
 

 
Suppose that A  denotes the coefficient matrix in the above algebraic system, then 

 

    























=

mnmm

n

n

aaa

aaa

aaa

A









21

22221

11211

 

It is well known that Cramer’s rule can be used to solve the system, whenever det( ) 0A ≠ . 
However, it is also well known that a Herculean effort is required to solve the system if

3>n .  Thus for larger systems the Gaussian and Gauss-Jordon elimination methods are 
preferred and in these methods we apply elementary row operations on augmented 
matrix. 

The augmented matrix of the system of linear equations is the following )1( +× nn  
matrix 
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





















=

nnnnn

n

n

b

baaa

baaa

baaa

A









21

2222211

111211

 

  

If B denotes the column matrix of the ,   1, 2, ,ib i n∀ =   then the augmented matrix of 
the above mentioned system of linear algebraic equations can be written as ( )BA | .  

38.22 Elementary Row Operations 
The elementary row operations consist of the following three operations 

 Multiply a row by a non-zero constant. 
 Interchange any row with another row. 
 Add a non-zero constant multiple of one row to another row. 

These row operations on the augmented matrix of a system are equivalent to, multiplying 
an equation by a non-zero constant, interchanging position of any two equations of the 
system and adding a constant multiple of an equation to another equation. 

38.23 The Gaussian and Gauss-Jordon Methods  
In the Gaussian Elimination method we carry out a succession of elementary row 
operations on the augmented matrix of the system of linear equations to be solved until it 
is transformed into row-echelon form, a matrix that has the following structure:  

 The first non-zero entry in a non-zero row is 1. 
 In consecutive nonzero rows the first entry 1 in the lower row appears to the right 

of the first 1 in the higher row. 
 Rows consisting of all 0’s are at the bottom of the matrix. 

In the Gauss-Jordan method the row operations are continued until the augmented matrix 
is transformed into the reduced row-echelon form.  A reduced row-echelon matrix has the 
structure similar to row-echelon, but with an additional property. 

 The first non-zero entry in a non-zero row is 1. 
 In consecutive nonzero rows the first entry 1 in the lower row appears to the right 

of the first 1 in the higher row. 
 Rows consisting of all 0’s are at the bottom of the matrix. 
 A column containing a first entry 1 has 0’s everywhere else. 

Example 1 
(a) The following two matrices are in row-echelon form. 
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

















−

0

1

2

     

000

010

051

,  









 −

4

2
     

10000

26100
 

Please verify that the three conditions of the structure of the echelon form are satisfied. 

(b) The following two matrices are in reduced row-echelon form. 

                  


















−

0

1

7

     

000

010

001

, 




−





 −

4

6
     

10000

06100
 

Please notice that all remaining entries in the columns containing a leading entry 1 are 0. 

Notation 
To keep track of the row operations on an augmented matrix, we utilized the following 
notation:                               

                                           

             

 
                                                             
 

                                                      

 

 

 
Example 2 
Solve the following system of linear algebraic equations by the (a) Gaussian elimination 
and (b) Gauss-Jordan elimination           

1 2 3

1 1 3

1 2 3

2 6   7
    2 1

5 7 4   9

x x x
x x x

x x x

+ + =

+ − = −

+ − =

   

Solution   
(a) The augmented matrix of the system is 

 

Symbol Meaning 

ijR  
Interchange the rows i  and .j  

 

icR  
Multiply the ith  row by a nonzero constant c . 
 

ji RcR +  Multiply the ith  row by c and then add to the jth  row. 
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














−

−
−

9
1

7

475
121

162
 

 By interchanging first and second row i.e. by 12R , we obtain 

 

  














 −

−

−

9
7
1

475
162
121

 

 

Multiplying first row with 2− and 5−  and then adding to 2nd and 3rd row i.e. by 
21 RR +−  and 315 RR +− , we obtain 

                                     
1 2 1 1
0 2 3 9

3 110 4

 − −
 
 
 − 

 

Multiply the second row with 2/1 , i.e. the operation 22
1

R , yields 

 















 −

−

−

14
2/9
1

130
2/310
121

 

Next add three times the second row to the third row, the operation 323 RR +  gives 

 

                                                














 −−

2/55
2/9
1

2/1100
2/310
121

 

Finally, multiply the third row with 11/2 . This means the operation 111
2 R  

 

                     














 −−

5
2/9
1

100
2/310
121
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The last matrix is in row-echelon form and represents the system 

 

    

5

2/9
2
3

1

3

32

321

=

=+

=−+

x

xx

xxx

 

Now by the backward substitution we obtain the solution set of the given system of linear 
algebraic equations 

    1 2 310,   3,   5x x x= = − =  

(b) W start with the last matrix in part (a). Since the first in the second and third rows are 
1's we must, in turn, making the remaining entries in the second and third columns 0s:  

                                                    














 −−

5
2/9
1

100
2/310
121

 

 Adding 2−  times the 2nd row to first row, this means the operation 122 RR +− , we have 

   














 −−

5
2/9

10

100
2/310
401

 

Finally by 4  times the third row to first and 2/1− times the third row to second row, i.e. 

the operations 134 RR +  and 232
1

RR +
− , yields 



















−

−

5

3

10

 

100

010

001

.                     

The last matrix is now in reduce row-echelon form .Because of what the matrix means in 
terms of equations, it evident that the solution of the system  

1 2 310,   3,   5x x x= = − =  

Example 3 
Use the Gauss-Jordan elimination to solve the following system of linear algebraic 

equations: 
19752

534
723

=+−
=++

−=−+

zyx
zyx
zyx

 

Solution:  
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The augmented matrix is 














 −

−

−

19
5
7

752
314
231

 

214 RR +−  and 312 RR +−   yields 














 −

−
−

−

33
33

7

11110
11110

231
 

211
1

R
−  and 311

1
R

−  produces 
















−
−
−

−
−
−

3
3
7

110
110
231

 

123 RR +  and 32 RR +−  gives















−−
0
3

2

000
110

101
 

In this case the last matrix in reduced row-echelon form implies that the original system 
of three equations in three unknowns. 

3   ,2 −=−=+ zyzx  

We can assign an arbitrarily value to z . If we let Rttz ∈=   , , then we see that the system 
has infinitely many solutions:  

tztytx =+−=−=   ,3  ,2  

Geometrically, these equations are the parametric equations for the line of intersection of 
the planes 

30  ,200 −=−+=++ zyxzyx  

38.24 Exercise 
Write the given sum as a single column matrix 

1. ( )
















−
−
















−
−

−+
















− t

t
tttt

5
4
3

2
3

1
1

1

2
3  

2. 

1 3 4 2
2 5 1 2 1 1 8
0 4 2 4 6

t t
t

t

− −       
       − − + −       
       − − − −       

 

Determine whether the given matrix is singular or non-singular. If singular, find 1A− . 
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3. 
















−−
=

152
014
123

A  

4. 
















−−
−
−

=
212
326
114

A  

Find 
dt
dX

 

5. 














+−

−
=

tt

tt
X

2cos52sin3

2cos42sin
2
1

 

6. If ( )
4

2

cos

2 3 1

te t
A t

t t

π 
=  

 − 
 then find (a) ∫

2

0

)( dttA , (b)  ∫
t

dssA
0

.)(  

7. Find  the integral ∫
2

1

)( dttB   if   ( )
6 2

1/ 4
t

B t
t t

 
=  

 
 

Solve the given system of equations by either Gaussian elimination or by the Gauss-
Jordon elimination. 

 
8. 5 2 4 10x y z− + =  

    9
4 3 3 1
x y z
x y z

+ + =
− + =

 

9. 1 2 3 4       1x + x - x  - x  = -  

1 2 3 4

1 2 3 4

1 2 3 4

       3
       3

4    2  0

x + x + x  + x  =
x - x  + x  - x  =
 x + x - x + x  =

 

10. 1 2 3 43 1x x x x+ − + =  

2 3 4

1 2 3 4

1 2 3

4  0
2 2 6

4 7   7    9

x x x
x x x x
x x x

− − =

+ − − =

+ − =
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39 The Eigenvalue problem 

39.1 Eigenvalues and Eigenvectors 
Let A  be a nn ×  matrix. A number λ is said to be an eigenvalue of A  if there exists a 
nonzero solution vector K of the system of linear differential equations:  

 KAK λ=                                                            

The solution vector K  is said to be an eigenvector corresponding to the eigenvalue λ . 
Using properties of matrix algebra, we can write the above equation in the following 
alternative form 

 ( ) 0=− KIA λ      

where I  is the  identity matrix. 

 If we let   























=

nk

k
k
k

K


3

2

1

 

Then the above system is same as the following system of linear algebraic equations 

 

( )
( )

( )

11 1 12 2 1

21 1 22 2 2

1 2 2

0

0
                             

0

n n

n n

n n n nn n

a k a k a k

a k a k a k

a k a k a k

λ

λ

λ

− + + + =

+ − + + =

+ + + − =





  



    

Clearly, an obvious solution of this system is the trivial solution   
  021 ==== nkkk 

  

However, we are seeking only a non-trivial solution of the system.  

39.2 The Non-trivial solution 
The non-trivial solution of the system exists only when 

 

 ( ) 0det =− IA λ                                                

This equation is called the characteristic equation of the matrix A . Thus the Eigenvalues 
of the matrix A  are given by the roots of the characteristic equation. To find an 
eigenvector corresponding to an eigenvalue λ  we simply solve the system of linear 
algebraic equations  

 ( )det 0A I Kλ− =  
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This system of equations can be solved by applying the Gauss-Jordan elimination to the 
augmented matrix 

 
 ( )0A Iλ−  

Verify that the following column vector is an eigenvector 

 
  1

1
  1

K
 
 = − 
 
 

 

is an eigenvector of the following 3 3×  matrix   

 
















−

−−
=

112
332
310

A

 
Solution: 

By carrying out the multiplication AK , we see that   

 

 ( ) ( )
0 1 3 1 2
2 3 3 1 2 2 2
2 1 1 1 1

AK K
− − −     

     = − = − = −     
     −     

 

Hence the number 2−=λ  is an eigenvalue of the given matrix A . 

Example 5 
Find the eigenvalues and eigenvectors of  

  
















−−−
−=

121
016
121

A  

Solution: 
Eigenvalues 
The characteristic equation of the matrix A  is 

( )
1 2 1

det 6 1 0 0
1 2 1

A I
λ

λ λ
λ

−
− = − − =

− − − −  
Expanding with respect to 3rd column 
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( )

( )( )
( )( )

2

6 1 1 2
0 1 0

1 2 6 1

13 1 13 0

4 3 0
0, 4,3

λ λ
λ

λ

λ λ λ

λ λ λ
λ

− − −
⇒ − + − − =

− − − −

⇒ − − + − − − =

⇒ − + − =

⇒ = −

 

Eigenvectors 

For 01 =λ  we have 

 ( )
1 2 1 0

0 | 0 6 1 0 0
1 2 1 0

A
 
 − = − 
 − − − 

 

By 1 2 1 36 ,  R R R R− + +  

 

  
1 2 1 0
0 13 6 0
0 0 0 0

 
 − − 
 
 

 

By 2
1

13
R−  

  
1 2 1 0

 0 1 6 /13 0  
0 0 0 0

 
 
 
 
 

        

By 2 12R R− +  

 
1 0 1/13 0

 0 1 6 /13 0
0 0 0 0

 
 
 
 
 

      

Thus we have the following equations in 1 2,  k k and 3k . The number 3k can be chosen 
arbitrarily 

 ( )1 31/13k k= − , ( )2 36 /13k k= −  

Choosing 133 −=k , we get  1 1k =  and 2 6k = . Hence, the eigenvector corresponding 01 =λ  
is                                       
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















−
=

13
6
1

1K  

For 42 −=λ , we have 

 ( )
5 2 1 0

4 0 6 3 0 0
1 2 3 0

A
 
 + =  
 − − 

  

By 3 32( 1) ,  R R−  

   
1 2 3 0
6 3 0 0
5 2 1 0

 −
 
 
 
 

 

By 1 2 1 36 , 5R R R R− + − +  

   
1 2 3 0
0 9 18 0
0 8 16 0

 −
 − 
 − 

 

By 2 3
1 1,  
9 8

R R− −  

  
1 2 3 0
0 1 2 0
0 1 2 0

− 
 − 
 − 

 

By 2 1 2 32 ,  R R R R− + − +   
01 0 1

0 1 2 0
0 0 0 0

 
 − 
 
 

 

 

Hence we obtain the following two equations involving 1 2,  k k and 3k .  

 31 kk −= , 32 2kk =  

Choosing 13 =k , we have 1 21,  2k k= − = . Hence we have an eigenvector 

corresponding to the eigenvalue 42 −=λ , 















=

1
2
1

2K  
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Finally, for 33 =λ , we have ( )
02 2 1

3 | 0 6 4 0 0
1 2 4 0

A I
 −
 − = − 
 − − − 

  

By using the Gauss Jordon elimination as used for other values, we obtain (verify!) 

  
01 0 1

0 1 3 / 2 0
0 0 0 0

 
 
 
 
 

 

So that we obtain the equations 1 3 2 3,   ( 3 / 2)k k k k= − = −  

The choice 3 2k = −  leads to 1 22,   3k k= = . Hence, we have the following eigenvector 

  
















−
=

2
3
2

3K   

Note that: 

The component 3k could be chosen as any nonzero number.  Therefore, a nonzero 
constant multiple of an eigenvector is also an eigenvector.   

Example 6 

Find the eigenvalues and eigenvectors of 







−

=
71
43

A     

Solution: 
From the characteristic equation of the given matrix is 

 ( )
3 4

det 0
1 7

A I
λ

λ
λ

−
− = =

− −
 

or  ( )2(3 )(7 ) 4 0 5 0λ λ λ− − + = ⇒ − =  

Therefore, the characteristic equation has repeated real roots. Thus the matrix has an 
eigenvalue of multiplicity two. 521 == λλ   
In the case of a 2×2 matrix there is no need to use Gauss-Jordan elimination. To find the 

eigenvector(s) corresponding to 51 =λ we resort to the system of linear equations 

 ( )5 0A I K− =   
or in its equivalent form 

  1 2

1 2

2 4 0    
2 0

k k
k k

− + =
+ =
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It is apparent from this system that  21 2kk = .  

Thus if we choose 12 =k , we find the single eigenvector 







=

1
2

1K  

Example 7 
Find the eigenvalues and eigenvectors of 

         















=

911
191
119

A

                                              
Solution 
The characteristic equation of the given matrix is 
 

 ( )
9 1 1

det 1 9 1 0
1 1 9

A I
λ

λ λ
λ

−
− = − =

−
 

Or ( ) ( )211 8 0 11,  8,  8λ λ λ− − = ⇒ =  

 

Thus the eigenvalues of the matrix are 1 2 311, 8λ λ λ= = =  

For 111 =λ , we have ( )
02 1 1

11 | 0 1 2 1 0
1 1 2 0

A I
 −
 − = − 
 − 

 

The Gauss-Jordan elimination gives
1 0 1 0
0 1 1 0
0 0   0 0

− 
 − 
 
 

 

Hence, 31 kk = , 32 kk = . If 13 =k , then















=

1
1
1

1K

 

Now for 82 =λ  we have , ( )
01 1 1

8 | 0 1 1 1 0
1 1 1 0

A I
 
 − =  
 
 

 

Again the Gauss-Jordon elimination gives 

01 1 1
0 0 0 0
0 0 0 0

 
 
 
 
   
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Therefore, 0321 =++ kkk  
We are free to select two of the variables arbitrarily. Choosing, on the one hand, 

0 ,1 32 == kk and, on the other, 1 ,0 32 == kk , we obtain two linearly independent 

eigenvectors corresponding to a single eigenvalue 














−
=

0
1

1

2K , 














−
=

1
0

1

3K  

Note that 

Thus we note that when a n n×  matrix A  possesses n  distinct eigenvalues 1 2, , , nλ λ λ

, a set of n  linearly independent eigenvectors 1 2, , , nK K K  can be found.  
However, when the characteristic equation has repeated roots, it may not be possible to 
find n  linearly independent eigenvectors of the matrix. 
 
39.3 Exercise 

Find the eigenvalues and eigenvectors of the given matrix. 

1. 







−
−

87
21

                        

2. 







12
12

 

3. 






 −−
016
18

 

4. 
















−
−
−

015
950
015

 

5. 
















104
020
003

 

6. 
















−
−−

200
041
040

 

Show that the given matrix has complex eigenvalues. 

7.   







−
−

15
21
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8.   














 −

210
425
012

 

 

 

 

 

 

 

40  Matrices and Systems of Linear First-Order Equations  

40.1 Matrix form of a system 
Consider the following system of linear first-order differential equations 

 

   

1
11 1 12 2 1 1

2
21 1 22 2 2 2

1 1 2 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

  

( ) ( ) ( ) ( )

n n

n n

n
n n nn n n

dx a t x a t x a t x f t
dt
dx a t x a t x a t x f t
dt

dx
a t x a t x a t x f t

dt

= + + + +

= + + + +

= + + + +









 

Suppose that ,  ( )X A t  and ( )F t , respectively, denote the following matrices 

 

 

1 11 12 1 1

2 21 22 2 2

1 2

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

,  ( ) ,  F(t)

( ) ( ) ( ) ( ) ( )

n

n

n n n nn n

x t a t a t a t f t
x t a t a t a t f t

X A t

x t a t a t a t f t

     
     
     = = =
     
          
     





     



 

  

Then the system of differential equations can be written as  

 

1 11 12 1 1 1

2 21 22 2 2 2

1 2

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

n

n

n n n nn n n

x t a t a t a t x t f t
x t a t a t a t x t f td

dt
x t a t a t a t x t f t

       
       
       = +
       
              
       





      


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 or simply  

    )()( tFXtA
dt
dX

+=      

If the system of differential equations is homogenous, then ( ) 0F t =  and we can write 

    XtA
dt
dX )(=      

Both the non-homogeneous and the homogeneous systems can also be written as  
/ /,   X AX F X AX= + =   

Example 1 
Write the following non-homogeneous system of differential equations in the matrix form  

tyx
dt
dy

teyx
dt
dx t

1034

252

+−=

−++−=
 

Solution: 
If we suppose that 

   
x

X
y

 
=  

 
 

Then, the given non-homogeneous differential equations can be written as    

   
2 5 2

4 3 10

tdX e tX
dt t

 −  −= +     −   
 

or      / 2 5 1 2
4 3 0 10

tX X e t
− −     

= + +     −     
 

Solution Vector 
Consider a homogeneous system of differential equations 

   
dX AX
dt

=  

A solution vector on an interval I  of the homogeneous system is any column matrix 
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1

2

( )
( )

( )n

x t
x t

X

x t

 
 
 =
 
  
 



 

The entries of the solution vector have to be differentiable functions satisfying each 
equation of the system on the interval .I  

Example 2 
Verify that  

2 61 3 32 6,    1 21 2 5 65

t te et tX e X e
t te e

−      −    = = = =   − −      −   
     

are solution of  the following system of  the homogeneous differential equations 

 

   1 3/
5 3

X X 
=  

 
 

on the interval ( ∞∞− , ) 

Solution 
Since    

2 22/
1 12 22

t te e
X X

t te e

− −   −   = ⇒ =
− −   −   

 

Further 

2 2 21 3 3
1 5 3 2 2 25 3

t t te e e
AX

t t te e e

− − −   −     = =  − − −     − −   
  

or  
22 /

1 122

te
AX X

te

− − = =
− 

 
  

Similarly  

    
6 63 18 /

2 26 65 30 

t te e
X X

t te e

   
   = ⇒ =
   
   
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and   
6 6 61 3 3 3 15 

2 5 3 6 6 65 15 15 

t t te e e
AX

t t te e e

   +    = =      +   

 

 

or  
618 /

2 2630

te
AX X

te

 
 = =
 
 

 

Thus, the vectors 1X  and 2X  satisfy the homogeneous linear system 

 

     1 3/
5 3

X X 
=  

 
 

 

Hence, the given vectors are solutions of the given homogeneous system of differential 
equations. 

Note that 

Much of the theory of the systems of n  linear first-order differential equations is similar 
to that of the linear nth -order differential equations. 

40.2 Initial –Value Problem 
Let 0t  denote any point in some interval denoted by I  and   

( )1 1
( )2 2( ) ,   

( )

x to
x toX t Xo o

x tn o n

γ
γ

γ

   
   
   = =
   
   
   

 

    

 ; 1, 2, ,i i nγ =   are given constants. Then the problem of solving the system of 
differential equations 

)()( tFXtA
dt
dX

+=  

Subject to the initial conditions  

0 0( )X t X=    

is called an initial value problem on the interval I . 
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40.3 Theorem:   Existence of a unique Solution  

Suppose that the entries of the matrices ( )A t  and ( )F t  in the system of differential 

equations
)()( tFXtA

dt
dX

+=
 being considered in the above mentioned initial value 

problem, are continuous functions on a common interval I  that contains the point 0t . 
Then there exist a unique solution of the initial–value problem on the interval I .   

40.4 Superposition Principle  
Suppose that 1 2, , , nX X X  be a set of solution vectors of the homogenous system  

   ( )dX A t X
dt

=  

on an interval I . Then the principle of superposition states that linear combination  

 

   1 1 2 2 k kX c X c X c X= + + +  
; 1, 2, ,ic i k=    being arbitrary constants, is also a solution of the system on the same 

interval I . 

Note that 
An immediate consequence of the principle of superposition is that a constant multiple of 
any solution vector of a homogenous system of first order differential equation is also a 
solution of the system. 

Example 3 
Consider the following homogeneous system of differential equations 

/
1 0 1
1 1 0
2 0 1

X X
 
 =  
 − − 

 

Also consider a solution vector 1X of the system that is given by 

 

1

cos
1 1cos sin
2 2

cos sin

t

X t t

t t

 
 
 = − +
 
 − − 

 

For any constant 1c  the vector 1 1X c X=  is also a solution of the homogeneous system. 
To verify this we differentiae the vector X with respect to t  
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   1 1

sin
1 1cos sin
2 2

cos sin

t
dX dXc c t t
dt dt

t t

− 
 
 = = +
 
 − + 

 

Also 

   1

cos1 0 1
1 11 1 0 cos sin
2 2

2 0 1 cos sin

t

AX c t t

t t

 
   
   = − +    − −    − − 

 

 

   1

sin
1 1cos sin
2 2

cos sin

t

AX c t t

t t

− 
 
 = +
 
 − + 

 

Thus, we have verified that:  

      
dX AX
dt

=  

Hence the vector 1 1c X is also a solution vector of the homogeneous system of differential 
equations. 

Example 4 
Consider the following system considered in the previous example 4 

 

   /
1 0 1
1 1 0
2 0 1

X X
 
 =  
 − − 

 

We know from the previous example that the vector 1X is a solution of the system 

  

   1

cos
1 1cos sin
2 2

cos sin

t

X t t

t t

 
 
 = − +
 
 − − 
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If     















=

0

0
X2

te   

Then    















=

0

0
X 2

/ te  

and          2

0 01 0 1
1 1 0
2 0 1 0 0

t tAX e e

         = =         − −         

 

Therefore   

   /
2 2AX X=  

Hence the vector 2X  is a solution vector of the homogeneous system. We can verify that 
the following vector is also a solution of the homogeneous system.  

 

   1 1 2 2X c X c X= +  

 

or  1 2

cos 0
1 1cos sin
2 2

0cos sin

t

t

X c t t c e

t t

   
   
 = − + +  
     − −   

 

40.5 Linear Dependence of Solution Vectors 
Let 1 2 3, , , , kX X X X  be a set of solution vectors, on an interval I, of the homogenous 
system of differential equations 

  
dX AX
dt

=  

We say that the set is linearly dependent on I if there exist constants 1 2 3, , , kc c c c  not 
all zero such that          

1 1 2 2( ) ( ) ( ) ( ) 0,      k kX t c X t c X t c X t t I= + + + = ∀ ∈  

Note that 

 Any two solution vectors  1X  and 2X  are linearly dependent if and only if one 
of the two vectors is a constant multiple of the other.  
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 For 2k >  if the set of k solution vectors is linearly dependent then we can 
express at least one of the solution vectors as a linear combination of the 
remaining vectors. 

40.6 Linear Independence of Solution Vectors 
Suppose that 1 2, , , kX X X  is a set of solution vectors, on an interval I, of the 
homogenous system of differential equations 

  
dX AX
dt

=  

Then the set of solution vectors is said to be linearly independent if it is not linearly 
dependent on the interval I .  This means that   

1 1 2 2( ) ( ) ( ) ( ) 0k kX t c X t c X t c X t= + + + =  

only when each 0.ic =   

Example 5  
Consider the following two column vectors 

  1 2
3

,   
t t

t t
e e

X X
e e

−

−

   
   = =
   
   

 

 

Since   1 23  
,    

 

t t

t t
e edX dX

dt dte e

−

−

   −
   = =
   −   

 

 

and  12 3 3 6 3 3
1 2 3 2

t t t t

t t t t
e e e e dX

dte e e e

     − −       = = =       −  −     
 

Similarly 

  22 3 2 3  
1 2 2  

t t t t

t t t t
e e e e dX

dte e e e

− − − −

− − − −

     − − −      = = =      −  − −     
  

Hence both the vectors 1X  and 2X are solutions of the homogeneous system 

  XX 







−
−

=
21
32/  

Now suppose that 1 2,  c c are any two arbitrary real constants such that 
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 1 1 2 2 0c X c X+ =  

or  1 2
3 1 0
1 1 0

t tc e c e−     
+ =     

     
 

This means that  

   1 2

1 2

3 0

0

t t

t t
c e c e

c e c e

−

−

+ =

+ =
 

   

The only solution of these equations for the arbitrary constants 1c  and 2c  is 

    1 2 0c c= =  

Hence, the solution vectors 1X  and 2X  are linearly independent on ),( ∞−∞ . 

Example 6 
Again consider the same homogeneous system as considered in the previous example 

   XX 







−
−

=
21
32/  

We have already seen that the vectors 1 2,  X X  i.e. 

   1 2
3

,   
t t

t t
e e

X X
e e

−

−

   
   = =
   
   

 

are solutions of the homogeneous system. We can verify that the following vector 3X   

    3
cosh

cosh

te tX
t

 +=   
 

 

is also a solution of the homogeneous system  However, the set of solutions that consists 
of 1 2,  X X   and 3X  is linearly dependent because 3X  is a linear combination of the 
other two vectors 

    213 2
1

2
1 XXX +=  

40.7 Exercise  
Write the given system in matrix form. 
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1. 1−++−= tzyx
dt
dx

 

2

32

2

2

+−+++=

−−+=

ttzyx
dt
dz

tzyx
dt
dy

 

2. 3 4 sin 2tdx x y e t
dt

−= − + +  

5 9 4 cos 2tdx x y e t
dt

−= + +  

3. 3 4 9dx x y z
dt

= − + −  

6

10 4 3

dy x y
dt
dz x y z
dt

= −

= + +
 

4. 3 4 sin 2tdx x y e t
dt

−= − + +  

5 9 4 cos 2tdy x y e t
dt

−= + +  

Write the given system without of use of matrices 

5. / 5 2
7 5 9 0 8
4 1 1 2 0
0 2 3 1 3

t tX X e e−
−     

     = + −     
     −     

 

6. 43 7 4 4
sin

1 1 8 2 1
tx x td t e

y y tdt
− −         

= + +         +         
 

7. 
1 1 2 1 3
3 4 1 2 1
2 5 6 2 1

t
x x

d y y e t
dt

z z

−
−         

         = − + − −         
         −         

 

Verify that the vector X is the solution of the given system 

8. yx
dt
dx 52 +−=  

yx
dt
dx 42 +−= , 

5 cos
 

3cos sin
tt

X e
t t

 
=  − 
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9. XX 







−

=
01
12/ , 

1 4
3 4

t tX e te   
= +   −   

 

10. 
1 2 1 1
6 1 0 ;   6
1 2 1 13

dX X X
dt

   
   = − =   
   − − − −   
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41 Matrices and Systems of Linear 1st-Order Equations 
(Continued) 

41.1 Theorem 
 A necessary and sufficient condition that the set of solutions, on an interval I., consisting 
of the vectors 

    

11 12 1

21 21 2
1 2

1 2

, , . . . ,

n

n
n

n n nn

x x x
x x x

X X X

x x x

     
     
     = = =
     
          
     

  

 

of the homogenous system /X AX=  to be linearly independent is that the Wronskian of 
these solutions is non-zero for every t I∈ . Thus 

11 12 1

21 22 2
1 2

1 2

( , ,. . . , ) 0,   

n

n
n

n n nn

x x x
x x x

W X X X t I

x x x

= ≠ ∀ ∈





   



    

Note that 

 It can be shown that if 1 2, ,..., nX X X are solution vectors of  the system, then 
either  

   1 2( , ,. . . , ) 0,  nW X X X t I≠ ∀ ∈  

             or    1 2( , ,. . . , ) 0,  nW X X X t I= ∀ ∈  

Thus if we can show that 0≠W  for some 0t I∈ , then 0,  W t I≠ ∀ ∈  and hence 
the solutions are linearly independent on I  

 Unlike our previous definition of the Wronskian, the determinant does not involve 
any differentiation.   

Example 1  
As verified earlier that the vectors 

   2 6
1 2

1 3
,    

1 5
t tX e X e−   

= =   −   
   

are solutions of the following homogeneous system. 

   1 3/
5 3

X X 
=  

 
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Clearly, 1X  and 2X  are linearly independent on ( , )−∞ ∞  as neither of the vectors is a 
constant multiple of the other.  We now compute Wronskian of the solution vectors 1X  
and 2X . 

2 6
4

1 2 2 6
3

( , ) 8 0,   ( , )
5

t t
t

t t
e e

W X X e t
e e

−

−
= = ≠ ∀ ∈ −∞ ∞

−
  

41.2 Fundamental set of solution  
Suppose that { }1 2, ,. . . , nX X X  is a set of n  solution vectors, on an interval I , of a 

homogenous system /X AX= . The set is said to be a fundamental set of solutions of the 
system on the interval I if the solution vectors 1 2, ,. . . , nX X X are linearly independent. 

41.2.1 Theorem (Existence of a Fundamental Set) 

There exist a fundamental set of solution for the homogenous system /X AX=  on an 
interval I  

41.3 General solution 
Suppose that 1 2, ,. . . , nX X X  is a fundamental set of solution of the homogenous system  

/X AX=  on an interval I . Then any linear combination of the solution vectors 
1 2, ,. . . , nX X X  of the form 

   1 1 2 2 n nX c X c X c X= + + +  

; 1, 2, ,ic i n=   being arbitrary constants is said to be the general solution of the system 
on the interval I . 

Note that  

For appropriate choices of the arbitrary constants  1 2, ,. . . , nc c c  any solution, on the 

interval I, of the homogeneous system /X AX=  can be obtained from the general 
solution. 

Example 2 
As discussed in the Example 1, the following vectors are linearly independent solutions 

   2 6
1 2

1 3
,   

1 5
t tX e X e−   

= =   −   
  

 of the following homogeneous system of differential equations on ),( ∞−∞  

 

XX 







=

35
31/  
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Hence 1X  and 2X  form a fundamental set of solution of the system on the interval
),( ∞−∞ .  Hence, the general solution of the system on ),( ∞−∞  is   

   2 6
1 1 2 2 1 2

1 3
1 5

t tX c X c X c e c e−   
= + = +   −   

 

Example 3 

Consider the vectors 1 2,  X X  and 3X  these vectors are given by  

 1 2 3

cos sin0
1 1 1 1cos sin ,  1 ,  sin cos
2 2 2 2

0cos sin sin cos

t

t t

X t t X e X t t

t t t t

   
    
    = − + = = − −     

    − − − +   

 

It has been verified in the last lecture that the vectors 1X and 2X  are solutions of the 
homogeneous system  

   /
1 0 1
1 1 0
2 0 1

X X
 
 =  
 − − 

 

It can be easily verified that the vector 3X  is also a solution of the system. We now 
compute the Wronskian of the solution vectors 1 2,  X X  and 3X  

tttt

ttett
tt

XXXW t

cossin0sincos

cos
2
1sin

2
1sin

2
1cos

2
1

sin0cos
),,( 321

+−−−

−−+−=  

Expand from 2nd column 

or   1 2 3
cos sin

( , , )
cos sin sin cos

t t t
W X X X e

t t t t
=

− − − +
 

or   1 2 3( , , ) 0,    tW X X X e t R= ≠ ∀ ∈  

 Thus, we conclude that 1 2,  X X and 3X  form a fundamental set of solution on ( , )−∞ ∞
. Hence, the general solution of the system on ( , )−∞ ∞ is  

     1 1 2 2 3 3X c X c X c X= + +  

or     
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1 2 3

cos sin0
1 1 1 1cos sin 1 sin cos
2 2 2 2

0cos sin sin cos

t

t t

X c t t c e c t t

t t t t

   
    
    = − + + + − −     

    − − − +   

 

41.4 Non-homogeneous Systems 
As stated earlier in this lecture that a system of differential equations such as 

   ( ) ( )dX A t X F t
dt

= +  

is non-homogeneous if ( ) 0,  F t t≠ ∀ . The general solution of such a system consists of a 
complementary function and a particular integral.  

41.4.1 Particular Integral 

A particular solution, on an interval I , of a non-homogeneous system is any vector pX  
free of arbitrary parameters, whose entries are functions that satisfy each equation of the 
system.     

Example 4 
Show that the vector                                                 

 
3 4
5 6p

t
X

t
− 

=  − + 
 

is a particular solution of the following non-homogeneous system on the interval (- ),∞∞  

                        
1 3 12 11
5 3 3

t
X X

−   ′ = +   −   
 

Solution: 

Differentiating the given vector with respect to t , we obtain 

  
3
5pX  ′ =  − 

 

Further 

  
1 3 12 11 1 3 3 4 12 11
5 3 3 5 3 5 6 3p

t t t
X

t
− − −         

+ = +         − − + −         
   

or  ( )1 3 12 11 12 113 4 3( 5 6)
5 3 3 35(3 4) 3( 5 6)p

t tt t
X

t t
− − − + − +      

+ = +      − −− + − +      
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or  
1 3 12 11 12 14 12 11
5 3 3 2 3p

t t t
X

− − + −       
+ = +       − − −       

 

or  '1 3 12 11 3
5 3 3 5p P

t
X X

−     
+ = =     − −     

 

Thus the given vector pX  satisfies the non-homogeneous system of differential 

equations. Hence, the given vector pX is a particular solution of the non-homogeneous 
system. 

41.5 Theorem 

Let 1 2, ,. . . , kX X X be a set of solution vectors of the homogenous system 'X AX= on 
an interval I and let pX be any solution vector of the non-homogenous system 

' ( )X AX F t= +  on the same interval I . Then ∃  constants 1 2, ,. . . , kc c c  such that 

  1 1 2 2 ...p k k pX c X c X c X X= + + + +   

is also a solution of the non-homogenous system on the interval. 

41.5.1 Complementary function 

Let 1 2, , , nX X X be solution vectors of the homogenous system 'X AX= on an 
interval I , then the general solution  

 

1 1 2 2 ... n nX c X c X c X= + + +  

 

of the homogeneous system is called the complementary function of the non-
homogeneous system ' ( )X AX F t= +  on the same interval I .  

41.5.2 General solution of a Non homogenous systems 

Let pX be a particular integral and cX  the complementary function, on an interval I , of 
the non-homogenous system 

/ ( ) ( )X A t X F t= + .  

The general solution of the non-homogenous system on the interval I  is defined to be  

  c pX X X= +  

Example 5 
In Example 4 it was verified that  
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3 4
5 6p
t

X
t
− 

=  − + 
 

 

is a particular solution, on ( , )−∞ ∞ , of the non-homogenous system    









−

−
+








=

3
1112

35
31/ t

XX  

As we have seen earlier, the general solution of the associated homogeneous system i.e. 
the complementary function of the given non-homogeneous system is 

  2 6
1 2

1 3
1 5

t t
cX c e c e−   

= +   −   
 

Hence the general solution, on ),( ∞∞− , of the non-homogeneous system is 

   c pX X X= +  

  2 6
1 2

1 3 3 4
1 5 5 6

t t t
X c e c e

t
− −     

= + +     − − +     
 

41.6 Fundamental Matrix 
Suppose that the a fundamental set of n  solution vectors of a homogeneous system

/X AX= , on an interval I , consists of the vectors 
 

11 12 1

21 22 2
1 2

1 2

, ,. . . ,

n

n
n

n n nn

x x x
x x x

X X X

x x x

     
     
     = = =
     
     
     

  

 

 Then a fundamental matrix of the system on the interval I is given by 

 

  

11 12 1

21 22 2

1 2

( )

n

n

n n nn

x x x
x x x

t

x x x

φ

 
 
 =
 
  
 





   



 

 

Example 6 
As verified earlier, the following vectors 
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2
2

1 2

6
6

2 6

1
1

3 3
5 5

t
t

t

t
t

t

e
X e

e

e
X e

e

−
−

−

    = =   −  − 
    = =      

  

form a fundamental set of solutions of the system on ( , )−∞ ∞ , XX 







=

35
31/  

So that the general solution of the system is 2 6
1 2

1 3
1 5

t tX c e c e−   
= +   −   

 

Hence, a fundamental matrix of the system on the interval is 
2 6

2 6
3

( )
5

t t

t t
e e

t
e e

φ
−

−

 
 =
 − 

 

Note that 
 The general solution of the system can be written as 

2 6
1

2 6 2

3

5

t t

t t
ce e

X
ce e

−

−

    =     − 
 ( )1 2( ) ,    C= trX t C c cφ=  

 Since ( )X t Cφ=   is a solution of the system XtAX )(/ = . Therefore 

( ) ( ) ( )t C A t t Cφ φ′ = [ ( ) ( ) ( )] 0t A t t Cφ φ′ − =  

Since the last equation is to hold for every t  in the interval I for every possible column 
matrix of constantsC , we must have ( ) ( ) ( ) 0t A t tφ φ′ − = ⇒  ( ) ( ) ( )t A t tφ φ′ =  

Note that 

 The fundamental matrix )(tφ  of a homogenous system XtAX )(/ = is non-
singular because the determinant det( ( ))tφ  coincides with the Wronskian of the 
solution vectors of the system and linear independence of the solution vectors 
guarantees that det( ( )) 0tφ ≠ .  

 Let )(tφ  be a fundamental matrix of the homogenous system XtAX )(/ =  on an 
interval I . Then, in view of the above mentioned observation, the inverse of the 
matrix )(1 t−φ exists for every value of t  in the interval I . 

41.7 Exercise  
The given vectors are the solutions of a system AXX =′ .  Determine whether the vectors 
form a fundamental set on ( )∞∞−  , . 

⇒

⇒
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11. 1 2
1 2 8

,
1 6 8

t t tX e X e te     
= = +     − −     

 

12. 4 3
1 2 3

1 1 2
, ,   6 2 3

13 1 2

t tX X e X e−
     
     = = =−     
     − − −     

 

13. 
2 1 1 1 1

;   
3 4 7 1 1

t t t
pX X e X e te      ′ = − = +       −       

 

Verify that vector pX is a particular solution of the given systems 

14. 4 2 7,   3 2 4 18dx dyx y t x y t
dt dt

= + + − = + − −  

2 5
1 1pX t   

= +   −   
 

15. ;
2
5

11
12/








−
+








−

= XX  1
3pX  

=  
 

 

16. 
11 2 3

4 2 0  4 sin 3
6 1 0  3

X X t
−  

  ′ = − +   
   −   

; 
sin 3
  0
cos 3

p

t
X

t

 
 
 
 
 

 

17. 2 6
1 2

1 1
,   

1 1
t tX e X e− −   

= =   −   
 

18. 1 2 3

1 1 1 3 2
2 2 ,   2 ,   6 4
4 2 4 12 4

X t X X t
         
         = − + = − = − +         
         
         

 

19. Prove that the general solution of the homogeneous system  
 

  XX















=

011
101
060

/  

      on the interval ),( ∞−∞  is  

2 3
1 2 3

6 3 2
1 1 1
5 1 1

t t tX c e c e c e− −
−     

     = − + +     
     −     
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42 Homogeneous Linear Systems 
Most of the theory developed for a single linear differential equation can be extended to a 
system of such differential equations. The extension is not entirely obvious. However, 
using the notation and some ideas of matrix algebra discussed in a previous lecture most 
effectively carry it out. Therefore, in the present and in the next lecture we will learn to 
solve the homogeneous linear systems of linear differential equations with real constant 
coefficients.  

Example 1 
Consider the homogeneous system of differential equations 

  
3

5 3

dx x y
dt
dy x y
dt

= +

= +
 

In matrix form the system can be written as  

  
/ 1 3
/ 5 3

dx dt x
dy dt y

     
=     

     
 

If we suppose that  

  
x

X
y

 
=  

 
 

Then the system can again be re-written as  

 

  
1 3
5 3

X X ′ =  
 

 

Now suppose that 1X  and 2X  denote the vectors 

  
2 6

1 22 6
   3

,   
 5

t t

t t
e e

X X
e e

−

−

   
   = =
   −   

 

Then  

  
2 6

1 22 6
2 18 

,   
    2 30 

t t

t t
e e

X X
e e

−

−

   −
   ′ ′= =
   
   

 

Now  
2 2 2

1 2 2 2
1 3 3
5 3  5 3

t t t

t t t
e e e

AX
e e e

− − −

− − −

   −    = =      − −   
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or  
2

1 12
2

2

t

t
e

AX X
e

−

−

 −
  ′= =
 
 

 

Similarly 

6 6 6
2 6 6 6

1 3 3 3 15
5 3 5 15 15

t t t

t t t
e e e

AX
e e e

   +     = =       +   
 

or  
6

2 26
18 

30 

t

t
e

AX X
e

 
  ′= =
 
 

 

Hence, 1X  and 2X  are solutions of the homogeneous system of differential equations
AXX =/ .  Further 

    
2 6

4
1 2 2 6

3
( , ) 8 ,  

5

t t
t

t t
e e

W X X e o t R
e e

−

−
= = ≠ ∀ ∈

−
    

 

Thus, the solutions vectors 1X  and 2X  are linearly independent. Hence, these vectors 
form a fundamental set of solutions on ),( ∞−∞ . Therefore, the general solution of the 
system on ),( ∞−∞  is  

  1 1 2 2    X c X c X= +  

     2 6
1 2

1 3
1 5

t tX c e c e−   
= +   −   

 

Note that  

 Each of the solution vectors 1X  and 2X  are of the form  

     1

2
tk

X e
k

λ 
=  

 
 

 Where 1k and 2k are constants. 

 The question arises whether we can always find a solution of the homogeneous 
system X AX′ = , A  is n n×  matrix of constants, of the form  
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1

2 t t

n

k
k

X e Ke

k

λ λ

 
 
 = =
 
  
 



 

 for the homogenous linear 1st order system. 

42.1 Eigenvalues and Eigenvectors  
Suppose that  

   

1

2 t t

n

k
k

X e Ke

k

λ λ

 
 
 = =
 
  
 



 

is a solution of the system  

   
dX AX
dt

=  

where A  is an n n×  matrix of constants then  

     tdX K e
dt

λλ=  

Substituting this last equation in the homogeneous system X AX′ = , we have  

    t tK e AKe AK Kλ λλ λ= ⇒ =   

 

or   (   ) 0A I Kλ− =  

This represents a system of linear algebraic equations. The linear 1st order homogenous 
system of differential equations   

   
dX AX
dt

=  

has a non-trivial solution X  if there exist a non-trivial solution K  of the system of 
algebraic equations  

   0)det( =− IA λ  

This equation is called characteristic equation of the matrix A  and represents an nth  
degree polynomial in λ . 
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42.1.1 Case 1 (Distinct real eigenvalues) 
Suppose that the coefficient matrix A  in the homogeneous system of differential 
equations 

      
dX AX
dt

=  

has n  distinct eigenvalues 1 2 3, , ,. . . , nλ λ λ λ  and 1 2, , , nK K K  be the corresponding 
eigenvectors. Then the general solution of the system on ),( ∞−∞  is given by  

 

   31 21 1 2 2 3 3 ... . . . ntt t t
n nX c k e c k e c k e c k eλλ λ λ= + + + +  

Example 2 
Solve the following homogeneous system of differential equations 

   
2 3

2

dx x y
dt
dy x y
dt

= +

= +
 

Solution 
The given system can be written in the matrix form as  

   
2 3
2 1

dx
xdt

dy y
dt

 
     

=     
      
 

 

Therefore, the coefficient matrix  

    
2 3
2 1

A  
=  

 
 

Now we find the eigenvalues and eigenvectors of the coefficient A . The characteristics 
equation is  

   
2 3

det( )
2 1

A I
λ

λ
λ

−
− =

−
  

   2det( ) 3 4A Iλ λ λ− = − −  

Therefore, the characteristic equation is 

     2det( ) 0 3 4A Iλ λ λ− = = − −  

or      ( 1)( 4) 0 1,  4λ λ λ+ − = ⇒ = −  
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Therefore, roots of the characteristic equation are real and distinct and so are the 
eigenvalues. 

For 1λ = − , we have 

    1

2

2 1 3
( )

2 1 1
k

A I K
k

λ
+   

− =   +   
  

or     1 2

1 2

3 3
( )

2 2
k k

A I K
k k

λ
+ 

− =  + 
  

Hence       1 2

1 2

3 3 0
( ) 0

2 2 0
k k

A I K
k k

λ
+ =

− = ⇒  + =
    

These two equations are no different and represent the equation 

       1 2 1 20k k k k+ = ⇒ = −      

Thus we can choose value of the constant 2k  arbitrarily. If we choose 2 1k = −  then 

1 1k = . Hence the corresponding eigenvector is  

  







−

=
1

1
1K   

For   4 λ = we have  

  1

2

2 4 3
( )

2 1 4
k

A I K
k

λ
−   

− =   −   
  

or  1 2

1 2

2 3
( )

2 3
k k

A I K
k k

λ
− + 

− =  − 
  

Hence   1 2

1 2

2 3 0
( ) 0

2 3   0
k k

A I K
k k

λ
− + =

− = ⇒  − =
 

     

Again the above two equations are not different and represent the equation 

  2
1 2 1

32 3 0
2
kk k k− = ⇒ =   

Again, the constant 2k  can be chosen arbitrarily. Let us choose 2 2k =  then 1 3k = . 
Thus the corresponding eigenvector is  

  2
3
2

K  
=  

 
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Therefore, we obtain two linearly independent solution vectors of the given homogeneous 
system. 

  4
1 2

1 3
,   X

1 2
t tX e e−   

= =   −   
  

Hence the general solution of the system is the following  

  1 1 2 2X c X c X= +  

or    4
1 2

1 3
1 2

t tX c e c e−   
= +   −   

 

or  
4

1 2
4

1 2

3( )
( ) 2

t t

t t
c e c ex t

y t c e c e

−

−

 +   =     − + 
 

This means that the solution of the system is 

  
4

1 2
4

1 2

( ) 3

( ) 2

t t

t t
x t c e c e

y t c e c e

−

−

= +

= − +
 

Example 3 
Solve the homogeneous system 

    

zy
dt
dz

zyx
dt
dy

zyx
dt
dx

3

5

4

−=

−+=

++−=

  

Solution:  
The given system can be written as 

 

     
/ 4 1 1
/ 1 5 1
/ 0 1 3

dx dt x
dy dt y
dz dt z

−     
     = −     
     −     

 

Therefore the coefficient matrix of the system of differential equations is 

     
4 1 1

1 5 1
0 1 3

A
− 

 = − 
 − 
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Therefore      
4 1 1
1 5 1
0 1 3

A I
λ

λ λ
λ

− − 
 − = − − 
 − − 

 

Thus the characteristic equation is 

         
4 1 1

det( ) 1 5 1 0
0 1 3

A I
λ

λ λ
λ

− −
− = − − =

− −
 

Expanding the determinant using cofactors of third row, we obtain 

  
    0)5)(4)(3( =−++− λλλ  

       3,  4,  5λ = − −  

Thus the characteristic equation has real and distinct roots and so are the eigenvalues of 
the coefficient matrix A . To find the eigenvectors corresponding to these computed 
eigenvalues, we need to solve the following system of linear algebraic equations for 

1 2,k k  and 3k  when 3,  4,  5λ = − − , successively.   

    
1

2

3

4 1 1 0
det( ) 0 1 5 1 0

0 1 3 0

k
A I K k

k

λ
λ λ

λ

− −     
    − = ⇒ − − =    

    − −    

 

For solving this system we use Gauss-Jordon elimination technique, which consists of 
reducing the augmented matrix to the reduced echelon form by applying the elementary 
row operations. The augmented matrix of the system of linear algebraic equations is  

    
4 1 1 0
1 5 1 0
0 1 3 0

λ
λ

λ

− − 
 − − 
 − − 

  

For 3−=λ , the augmented matrix becomes: 

    
1 1   1 0

1 8 1 0
0 1   0 0

− 
 − 
 
 

  

Appling the row operation 12R , 2 1R R+ , 23R , 3 29R R− , 1 28R R−  in succession 
reduces the augmented matrix in the reduced echelon form. 
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













 −

0000
0010
0101

  

So that we have the following equivalent system   

      















=































 −

0
0
0

000
010
101

3

2

1

k
k
k

 

 

or     1 3,k k=  2 0k =   

Therefore, the constant 3k  can be chosen arbitrarily. If we choose 3 1k = , then 1 1k = , So 
that the corresponding eigenvector is 

    1

1
0
1

K
 
 =  
 
 

    

For 42 −=λ , the augmented matrix becomes 

  
0 1 1 0

((   4 ) |  0) 1 9 1 0
0 1 1 0

A I
 
 + = − 
 
 

  

We apply elementary row operations to transform the matrix to the following reduced 
echelon form: 

              














 −

0000
0110
01001

 

 

Thus    1 3 2 310 ,  k k k k= = −  

Again 3k  can be chosen arbitrarily, therefore choosing 3 1k =  we get 1 210,  1k k= = −  
Hence, the second eigenvector is 

 

      2

10
1

1
K

 
 = − 
 
 
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Finally, when 53 =λ  the augmented matrix becomes  

  
9 1 1 0

((A - 5 I) |  0)  =  1 0 1 0
0 1 8 0

− 
 − 
 − 

  

The application of the elementary row operation transforms the augmented matrix to the 
reduced echelon form 

     















−
−

0000
0810
0101

  

 

Thus      1 3 2 3,   8k k k k= =   

If we choose 3 1k = , then 1 1k =  and 2 8k = . Thus the eigenvector corresponding to 
53 =λ  is     

     3

1
 8

1
K

 
 =  
 
 

    

Thus we obtain three linearly independent solution vectors  

 

  3 4 5
1 2 3

1 10 1
= 0 ,  1 ,  8

1 1 1

t t tX e X e X e− −
     
     = − =     
     
     

   

Hence, the general solution of the given homogeneous system is  

  3 4 5
1 2 3

1 10 1
0 1 8
1 1 1

t t tX c e c e c e− −
     
     = + − +     
     
     

 

 

42.1.2 Case 2 (Complex eigenvalues) 
Suppose that the coefficient matrix A  in the homogeneous system of differential 
equations 

      
dX AX
dt

=  

 
                                                © Copyright Virtual University of Pakistan                                                 385 



Differential Equations (MTH401)                                                                                    VU 
 

has complex eigenvalues.  This means that roots of the characteristic equation   

   det( ) 0A Iλ− =  

are imaginary.  

42.2 Theorem (Solutions corresponding to complex eigenvalues ) 
Suppose that K is an eigenvector corresponding to the complex eigenvalue  

 

   1 ;    ,i Rλ α β α β= + ∈      

of the coefficient matrix A with real entries, then the vectors 1X  and 2X given by 

   11 1 21 1,    t tX K e X K eλ λ= =     

are solution of the homogeneous system. 

   
dX AX
dt

=  

Example 4 
Consider the following homogeneous system of differential equations 

     
6

5 4

dx x y
dt
dy x y
dt

= −

= +
 

The system can be written as 

or    
/ 6 1
/ 5 4

dx dt x
dy dt y

−     
=     

     
  

Therefore the coefficient matrix of the system is 

    
6 1
5 4

A
− 

=  
 

 

So that the characteristic equation is 

   
6 1

det( ) 0
5 4

A I
λ

λ
λ

− −
− = =

−
   

or              2(6 )(4 ) 5 0 10 29λ λ λ λ− − + = = − +  

Now using the quadratic formula we have  

    1 25 2 ,   5 2i iλ λ= + = −  
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For, 1 5 2iλ = + , we must solve the system of linear algebraic equations  

   1 2
1 2

1 2

(1 2 ) 0
(1 2 ) 0

5 (1 2 ) 0
i k k

i k k
k i k
− − = 

⇒ − − =− + = 
  

or    2 1(1 2 )k i k= −  

Therefore, it follows that after we choose 1 1k =  then 2 1 2 .k i= −  So that one 
eigenvector is given by 

    1
1

1 2
K

i
 

=  − 
   

Similarly for 2  5 2iλ = −  we must solve the system of linear algebraic equations 

    1 2
1 2

1 2

(1 2 ) 0
(1 2 ) 0

5 (1 2 ) 0
i k k

i k k
k i k
+ − = 

⇒ + − =− − = 
 

or    2 1(1 2 )k i k= +  

Therefore, it follows that after we choose 1 1k =  then 2 1 2 .k i= +  So that second 
eigenvector is given by 

   2
1

1 2
K

i
 

=  + 
 

Consequently, two solution of the homogeneous system are  

  

   1 2
1 1(5 2 ) (5 2 ),   =  

1 2 1 2
i t i tX e X e

i i
   + −=    − +   

   

By the superposition principle another solution of the system is  

 

   (5 2 )
1 2

1 1(5 2 )
1 2 1 2

i ti tX c e c e
i i

−   += +   − +   
 

Note that  

The entries in 2K  corresponding to λ 2 are the conjugates of the entries in 1K  
corresponding to λ 1. Further, 2λ  is conjugate of 1λ . Therefore, we can write this as  

   112 2,    K Kλ λ= =    
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42.3 Theorem(Real solutions corresponding to a complex eigenvalue) 
Suppose that  

 βαλ i+=1  is a complex eigenvalue of the matrix A  in the system 

          
dX AX
dt

=  

 1K is an eigenvector corresponding to the eigen value 1λ  

 

 1 11 1 1 2 1 1
1 ( ) Re( ), ( ) Im( )
2 2

iB K K K B K K K= + = = − + =     

Then two linearly independent solutions of the system on ( , )−∞ ∞  are given by 

1 1 2

2 2 1

( cos sin )

( cos sin )

t

t
X B t B t e

X B t B t e

α

α
β β

β β

= −

= +
  

   

Example 5 
Solve the system 

   XX 







−−

=
21

82/  

The coefficient matrix of the system is 









−−

=
21

82
A   

Therefore  

   
2 8

1 2
A I

λ
λ

λ
− 

− =  − − − 
 

Thus, the characteristic equation is     

2 8
det( ) 0

1 2
A I

λ
λ

λ
−

− = =
− − −

 

2(2 )(2 ) 8 0 4λ λ λ− − + + = = +  

Thus the Eigenvalues are of the coefficient matrix are 1 2iλ = and 12 2iλ λ= = − . 

For 1λ  we see that the system of linear algebraic equations ( ) 0A I Kλ− =  
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   1 2

1 2

(2 2 ) 8 0
(2 2 )  0
i k k

k i k
− + =

− − + =
 

Solving these equations, we obtain 

      1 2(2 2 )k i k= − +  

Choosing 2 1k = −  gives 1 2(2 2 )k i k= + . Thus the corresponding eigenvector is 

    1
2 2 2 2

1 1 0
i

K i
+     

= = +     − −     
   

So that    1 1 2 1
2 2

Re( ) , Im( )
1 0

B K B K   
= = = =   −   

  

Since 0α = , the general solution of the given system of differential equations is 

1 2
2 2 2 2

cos 2 sin 2 cos 2 sin 2
1 0 0 1

X c t t c t t
          

= − + +          − −          
 

     1 2
2 cos 2 2 sin 2 2 cos 2 2 sin 2

cos 2 sin 2
t t t t

X c c
t t

− +   
= +   − −   

 

Example 6 
Solve the following system of differential equations 

/ 1 2
1/ 2 1

X X 
=  − 

 

Solution:  
The coefficient matrix of the given system is 

   
1 2
1/ 2 1

A  
=  − 

 

Thus      
1 2

1/ 2 1
A I

λ
λ

λ
− 

− =  − − 
 

 So that the characteristic equation is 

        1 2
det( ) 0

1/ 2 1
A I

λ
λ

λ
−

− = =
− −

 

or          2 2 2 0λ λ− + =  

Therefore, by the quadratic formula we obtain 
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     ( )2 4 8 / 2λ = ± −  

Thus the eigenvalues of the coefficient matrix are   

   11 21 ,  1i iλ λ λ= + = = −  

Now an eigenvector associated with the eigenvalue 1λ  is  

   1
2 2 0

0 1
K i

i
     

= = +     
     

 

From     1 2
2 0

,   
0 1

B B   
= =   

   
   

So that we have the following two linearly independent solutions of the system 

  1 2
2 0 0 2

cos sin ,   cos sin
0 1 1 0

t tX t t e X t t e
          

= − = +          
          

   

Hence, the general solution of the system is  

  1 2
2 0 0 2

cos sin cos sin
0 1 1 0

t tX c t t e c t t e
          

= − + +          
          

 

or  1 2
2 cos 2 sin

sin cos
t tt t

X c e c e
t t

   
= +   −   

 

42.4 Exercise 
Find the general solution of the given system 

1. yx
dt
dx 2+=  

yx
dt
dy 34 +=  

2. yx
dt
dx 9

2
1

+=  

yx
dt
dy 2

2
1

+=  

3. XX 







−
−

=′
13
26

 

4. y
dt
dx 2=  

x
dt
dy 8=  
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5. XX















=′

101
010
101

 

6. yx
dt
dx 96 −=  

yx
dt
dy 25 +=  

7. yx
dt
dx

+=  

yx
dt
dy

−−= 2  

8. yx
dt
dx 54 +=  

yx
dt
dy 62 +−=  

9. XX 







−
−

=′
45
54

 

10. XX 







−
−

=′
31
81
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43 Real and Repeated Eigenvalues 
In the previous lecture we tried to learn how to solve a system of linear differential 
equations having a coefficient matrix that has real distinct and complex eigenvalues. In 
this lecture, we consider the systems  

  AXX =′   

in which some of the n  eigenvalue nλλλλ ,,,, 321   of the  nn ×  coefficient matrix 
A  are repeated.  

43.1 Eigenvalue of multiplicity m  

Suppose that m is a positive integer and ( )m1λλ − is a factor of the characteristic 
equation 
  0)det( =− IA λ  

Further, suppose that ( ) 1
1

+− mλλ is not a factor of the characteristic equation. Then the 
number 1λ  is said to be an eigenvalue of the coefficient matrix of multiplicitym . 

43.1.1 Method of solution 

Consider the following system of  n  linear differential equations in n unknowns 

  AXX =′  
Suppose that the coefficient matrix has an eigenvalue of multiplicity of m . There are two 
possibilities of the existence of the eigenvectors corresponding to this repeated 
eigenvalue: 

 For the nn ×  coefficient matrix A , it may be possible to find m linearly 
independent eigenvectors mKKK ,,2,1   corresponding to the eigenvalue 1λ of 
multiplicity nm ≤ . In this case the general solution of the system contains the 
linear combination 

  tenKncteKcteKc 111 2211
λλλ +++   

 If there is only one eigenvector corresponding to the eigenvalue 1λ  of multiplicity
m , then m linearly independent solutions of the form  

 

( ) ( )

1

1 1

1 1 1

1 11

2 21 22

1 2

1 2

  

1 ! 2 !

t

t t

m m
t t t

m m m mm

X K e
X K e K e

t tX K e K e K e
m m

λ

λ λ

λ λ λ
− −

=

= +

= + + +
− −





  

where the column vectors ijK  can always be found. 
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43.1.2 Eigenvalue of Multiplicity Two 
We begin by considering the systems of differential equations AXX =′  in which the 
coefficient matrix A  has an eigenvalue 1λ  of multiplicity two. Then there are two 
possibilities;  

 Whether we can find two linearly independent eigenvectors corresponding to 
eigenvalue 1λ  or  

 We cannot find two linearly independent eigenvectors corresponding to 
eigenvalue 1λ . 

The case of the possibility of us being able to find two linearly independent eigenvectors 
2,1 KK  corresponding to the eigenvalue 1λ  is clear.  In this case the general solution of 

the system contains the linear combination 

 1 1
1 1 2 2

t tc K te c K eλ λ+  

Therefore, we suppose that there is only one eigenvector 1K  associated with this 
eigenvalue and hence only one solution vector 1X . Then, a second solution can be found 
of the following form: 

 tPetKteX 112
λλ +=  

In this expression for a second solution, K  and P  are column vectors   

 



















=



















=

np

p
p

P

nk

k
k

K


2
1

    ,2
1

 

We substitute the expression for 2X  into the system AXX =′ and simplify to obtain 

 

 ( ) ( )1 1
1 1   0t tAK K t e AP P K eλ λλ λ− + − − =  

Since this last equation is to hold for all values of t , we must have: 

 

 ( ) ( ) KPIλAKIλA =−=− 1     ,01       

First equation does not tell anything new and simply states that K must be an eigenvector 
of the coefficient matrix A  associated with the eigenvalue 1λ . Therefore, by solving this 
equation we find one solution 

   1
1

tX Keλ=   

To find the second solution 2X , we only need to solve, for the vector P , the additional 
system  

 
                                                © Copyright Virtual University of Pakistan                                                 393 



Differential Equations (MTH401)                                                                                    VU 
 

   ( ) KPIλA =−  1         

First we solve a homogeneous system of differential equations having coefficient matrix 
for which we can find two distinct eigenvectors corresponding to a double eigenvalue and 
then in the second example we consider the case when cannot find two eigenvectors. 

Example 1 
Find general solution of the following system of linear differential equations 

  XX











−

−
=′

92

183
 

Solution: 
The coefficient matrix of the system is 

  











−

−
=

92

183
A  

Thus  
λ

λ
λ

−−

−−
=−

92

183
)det( IA  

Therefore, the characteristic equation of the coefficient matrix A is 

  
λ

λ
λ

−−

−−
==−

92

183
0)det( IA  

or  036)9)(3( =++−− λλ  

or   ( ) 3 ,3023 −−=⇒=+ λλ       

Therefore, the coefficient matrix A  of the given system has an eigenvalue of multiplicity 
two. This means that 

    321 −== λλ  

 Now  1

2

3 18 0
( ) 0

2 9 0
k

A I K
k

λ
λ

λ
− −     

− = ⇒ =    − −    
 

For 3−=λ , this system of linear algebraic equations becomes 

                                   






=−

=−
⇒











=


























−

−

062

0186

0

0

62

186

21

21

2

1

kk

kk

k

k
 

However 

 
                                                © Copyright Virtual University of Pakistan                                                 394 



Differential Equations (MTH401)                                                                                    VU 
 

  03
062

0186
21

21

21
=−⇒







=−

=−
kk

kk

kk
   

Thus      21 3kk =     

This means that the value of the constant 2k  can be chosen arbitrarily. If we choose 
12 =k , we find the following single eigenvector for the eigenvalue 3−=λ . 

  







=

1
3

K  

The corresponding one solution of the system of differential equations is given by  

  teX 3
1
3

1
−









=       

But since we are interested in forming the general solution of the system, we need to 
pursue the question of finding a second solution. We identify the column vectors K  and
P  as: 

   







=








=

2
1   ,

1
3

p
p

PK  

Then                  ( ) 







=



















−

−
⇒=+

1
3

2
1

62

186
3

p
p

KPIA   

Therefore, we need to solve the following system of linear algebraic equations to find P  

   162
162
3186

21
21

21 =−⇒




=−
=−

pp
pp
pp

 

or      2 1(1 2 ) / 6p p= − −  

Therefore, the number 1p  can be chosen arbitrarily. So we have an infinite number of 
choices for 1p and 2p . However, if we choose 11 =p , we find 6/12 =p . Similarly, if 

we choose the value  of 2/11 =p  then 02 =p .  Hence the column vector P  is given by 

        













=

0
2
1

P  

Consequently, the second solution is given by 

      tetetX  3
0

 3  
1
3

2
1

2
−














+−









=  
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Hence the general solution of the given system of linear differential equations is then 

        2211 XcXcX +=  

        













−














+








+−









= − tetectecX t 3

01
33

1
3

2
1

3
21  

Example 2 
Solve the homogeneous system  

  

 XX
















−
−−

−
=′

122
212

221
 

Solution:  
The coefficient matrix of the system is: 

  
1 2 2
2 1 2

2 2 1
A

− 
 = − − 
 − 

 

To write the characteristic we find the expansion of the determinant: 

                  ( )
1 2 2

det 2 1 2
2 2 1

A I
λ

λ λ
λ

− −
− = − − −

− −
 

The value of the determinant is 

                  ( ) 2 3det 5 9 3A Iλ λ λ λ− = + + −  

Therefore, the characteristic equation is 

 2 35 9 3 0λ λ λ+ + − =  

or ( ) ( ) 051 2 =−+− λλ  

or 1,  1,  5λ = − −  

Therefore, the eigenvalues of the coefficient matrix A  are   

 31 2 1,  5λ λ λ= = − =  

Clearly 1−  is a double root of the coefficient matrix A .  
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Now 
1

2

3

1 2 2 0
( ) 0 2 1 2 0

2 2 1 0

k
A I K k

k

λ
λ λ

λ

− −     
    − = ⇒ − − − =    

    − −    

  

For 11 −=λ , this system of the algebraic equations become 

 
1

2

3

02 2 2
2 2 2 0

2 2 2 0

k
k
k

−     
    − − =    

    −    

 

The augmented matrix of the system is 

                ( )
2 2 2 0

I 0 2 2 2 0
2 2 2 0

A
− 

 + = − − 
 − 

 

By applying the Gauss-Jordon method, the augmented matrix reduces to the reduced 
echelon form 

              
1 1 1 0
0 0 0 0
0 0 0 0

− 
 
 
 
 

 

Thus 1 2 3 1 2 30k k k k k k− + = ⇒ = −   

By choosing 12 =k  and 03 =k  in ,321 kkk −= we obtain 11 =k  and so one 
eigenvector is 

   















=

0
1
1

1K  

But the choice 1 ,1 32 == kk  implies 01 =k . Hence, a second eigenvector is given by  

   















=

1
1
0

2K  

Since neither eigenvector is a constant multiple of the other, we have found, 
corresponding to the same eigenvalue, two linearly independent solutions 
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 1 2

1 0
1 ,   1
0 1

t tX e X e− −
   
   = =   
   
   

         

 

Last for 53 =λ  we obtain the system of algebraic equations 

 

1

2

3

04 2 2
2 4 2 0

2 2 4 0

k
k
k

− −     
    − − − =    

    − −    
 

The augmented matrix of the algebraic system is 

                ( )
4 2 2 0

5I 0 2 4 2 0
2 2 4 0

A
− − 

 − = − − − 
 − − 

 

By the elementary row operation we can transform the augmented matrix to the reduced 
echelon form 

 
1 0 1 0
0 1 1 0
0 0 0 0

− 
 
 
 
 

 

or 1 3 2 3,  k k k k= = −   

Picking 13 =k , we obtain ,11 =k 12 −=k . Thus a third eigenvector is the following 

 















−=
1

1
1

3K  

Hence, we conclude that the general solution of the system is 

                                    1 2 3
5

1 0 1
1 1 1
0 1 1

t t tX c e c e c e− −
     
     = + + −     
     
     

 

 
                                                © Copyright Virtual University of Pakistan                                                 398 



Differential Equations (MTH401)                                                                                    VU 
 

43.1.3 Eigenvalues of Multiplicity Three  

When a matrix A  has only one eigenvector associated with an eigenvalue 1λ of 
multiplicity three of the coefficient matrix A , we can find a second solution 2X  and a 
third solution 3X  of the following forms 

                                 2

1 1

1 1 1

2

3 2

t t

t t t

X Kte Pe

tX K e Pte Qe

λ λ

λ λ λ

= +

= + +
     

The ,K P  and Q  are vectors given by    

 





















=

nk

k
k

K
 

2

1

,    





















=

np

p
p

P
 

2

1

   and   





















=

nq

q
q

Q
 

2

1

 

By substituting 3X into the system ,AXX =′  we find the column vectors   , PK and Q  
must satisfy the equations 

   ( ) 01 =− KIλA       

   ( ) KPIλA =− 1       

   ( ) PQIλA =− 1       

The solutions of first and second equations can be utilized in the formulation of the 
solution 1X  and 2X . 

Example  
Find the general solution of the following homogeneous system 

 XX















=′

400
140
014

 

Solution 
The coefficient matrix of the system is 

 
4 1 0
0 4 1
0 0 4

A
 
 =  
 
 
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Then ( )
4 1 0

det 0 4 1
0 0 4

λ
A λI λ

λ

−
− = −

−
 

Therefore, the characteristic equation is 

 ( )
4 1 0

det 0 0 4 1
0 0 4

λ
A λI λ

λ

−
− = = −

−
 

Expanding the determinant in the last equation w.r.to the 3rd row to obtain 

 ( ) ( ) 0
40

14
41 33 =

−
−

−− +

λ
λ

λ  

or ( ) ( ) ( )4  4 4 0 0λ λ λ−  − − −  =   

or ( )34 0 4,  4,  4λ λ− = ⇒ =  

Thus, 4=λ  is an eigenvalue of the coefficient matrix A  of multiplicity three. For 4=λ , 
we solve the following system of algebraic equations 

( ) 0I =− KλA















=

































−
−

−

0
0
0

400
140
014

3

2

1

k
k
k

λ
λ

λ
 

⇒  















=

































0
0
0

000
100
010

3

2

1

k
k
k

 

0
0

0000
0100
0010

3

2

321

321

321

=
=

⇒








=++

=++

=++

k
k

kkk
kkk
kkk

 

Therefore, the value of 1k  is arbitrary.  If we choose 11 =k , then the eigen vector K  is 

 















=

0
0
1

K  

⇒
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Hence the first solution vector 1
4

1
0
0

t tX Ke eλ
 
 = =  
 
 

 

Now for the second solution we solve the system 

KPIA =− )( λ
1

2

3

10 1 0
0 0 1 0
0 0 0 0

p
p
p

    
     =    

         0
1
1

0000
0100
1010

3

2

1

321

321

321

=

=
=

⇒








=++

=++

=++

p
p
p

ppp
ppp
ppp

 

Hence, the vector P  is given by 















=

0
1
1

P  

Therefore, a second solution is 

2
ttX Kte Peλλ= + 4 4

2

1 1
0 1
0 0

t tX te e
   
   = +   
   
   

4
2

1 1
0 1
0 0

tX t e
    
    = +    
        

 

Finally for the third solution we solve PQIA =− )( λ   

or















=

































0
1
1

000
100
010

3

2

1

q
q
q

1 2 3 1

21 2 3

31 2 3

0 1 0 1 1
10 0 1 0
10 0 0 0

q q q q
qq q q
qq q q

+ + = =
 =+ + = ⇒
 =+ + = 

 

Hence, the vector Q  is given by 















=

1
1
1

Q  

Therefore, third solution vector is 
2

3 2
t t ttX K e Pte Qeλ λ λ= + +  

2
4 4 4

3

1 1 1
0 1 1

2
0 0 1

t t ttX e te e
     
     = + +     
     
     

2
4

3

1 1 1
0 1 1

2
0 0 1

ttX t e
      
      = + +      
            

 

The general solution of the given system is 

⇒ ⇒

⇒ ⇒

⇒

⇒
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 1 1 2 32 3X c X c X c X= + +
 

2

1 2
4 4 4

1 1 1 1 1 1
0 0 1 0 1 1

2
0 0 0 0 0 1

t t ttX c e c t e t e
              
              = + + + + +              

                            

 

Exercise 
Find the general solution of the give systems 

1. yx
dt
dx 56 +−=  

yx
dt
dy 45 +−=  

2. yx
dt
dx 3+−=  

yx
dt
dy 53 +−=  

3. zyx
dt
dx

−−= 3  

zyx
dt
dy

−+=  

zyx
dt
dz

+−=  

4. XX














 −
=′

520
201
045

 

5. XX
















−
=′

110
130
001

 

6. XX















−=′

010
122

001
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44 Non-Homogeneous System 
44.1 Definition 
Consider the system of linear first order differential equations 

          

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1
11 1 12 2 1 1

2
21 1 22 2 2 2

1 1 2 2

n n

n n

n
n n nn n n

dx a t x a t x a t x f t
dt
dx a t x a t x a t x f t
dt

dx a t x a t x a t x f t
dt

= + + + +

= + + +

= + + + +





    



 

where ija are coefficients and if are continuous on common interval I . The system is 

said to be non-homogeneous when ( ) 0, 1,2, ,if t i n≠ ∀ =  . Otherwise it is called a 
homogeneous system. 
44.2 Matrix Notation 
In the matrix notation we can write the above system of differential can be written as 

 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

( )
( )

( )

111 12 11 1

21 22 22 2 2

1 2

...

...

...

n

n

n nn n nn n

f ta t a t a tx x
a t a t a tx x f td

dt
x xa t a t a t f t

     
     
     = +      
              

  
 



  

Or ( )tFAXX +=′  
     
44.3 Method of Solution 
To find general solution of the non-homogeneous system of linear differential equations, we need to find: 

 The complementary function cX , which is general solution of the corresponding homogeneous 

system X AX′ = .        

 Any particular solution pX of the non-homogeneous system ( )tFAXX +=′  by the 

method of undetermined coefficients and the variation of parameters. 

The general solution X of the system is then given by sum of the complementary function and the 
particular solution. 
   c pX X X= +  

44.4 Method of Undetermined Coefficients 
44.4.1 The form of ( )F t  
As mentioned earlier in the analogous case of a single nth order non-homogeneous linear differential 
equations. The entries in the matrix ( )F t  can have one of the following forms: 

 Constant functions.  
 Polynomial functions  
 Exponential functions  
 ) cos(  ), sin( xx ββ   
 Finite sums and products of these functions. 
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Otherwise, we cannot apply the method of undetermined coefficients to find a particular 
solution of the non-homogeneous system.  

44.4.2 Duplication of Terms 

The assumption for the particular solution pX  has to be based on the prior knowledge of 

the complementary function cX to avoid duplication of terms between cX  and pX . 

Example 1 

Solve the system on the interval ( ),−∞ ∞  

  

1 2 8
1 1 3

X X
− −   ′ = +   −     

Solution 

To find cX , we solve the following homogeneous system   

  

1 2
1 1

X X
−

′ =
−

 
 
   

We find the determinant 

  
( )

1 2
det A I

1 1
λ

λ
λ

− −
− =

− −  

  ( ) ( ) ( )det A I 1 1 2λ λ λ− = − − − +  

  ( ) 2 2det A I 1 2 1λ λ λ λ λ− = + − − + = +  
The characteristic equation is 

  ( ) 2det A I 0 1λ λ− = = +  

or  
2 1 iλ λ= − ⇒ = ±  

So that the coefficient matrix of the system has complex eigenvalues i=1λ and i−=2λ  
with 0=α and 1β = ± . 

To find the eigenvector corresponding to 1λ , we must solve the system of linear algebraic 
equations 

  







=
















−−

−−
0
0

11
21

2

1

k
k

i
i

 

or 

  
( )

( )
1 2

1 2

1 2 0
1 0

i k k
k i k

− + + =

− + − =
 

Clearly, the second equation of the system is ( )i+1 times the first equation. So that both 
of the equations can be reduced to the following single equation  

   ( ) 21 1 kik −=  
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Thus, the value of 2k can be chosen arbitrarily. Choosing ,12 =k  we get ik −=11 . 
Hence, the eigenvector corresponding to 1λ  is 

  






−
+








=







 −
=

0
1

1
1

1
1

1 i
i

K  

Now we form the matrices 1B  and 2B  

  ( )1 1
1

Re
1

B k= =
 
 
 

,  ( )2 1
1

I m
0

B k
−

= =
 
 
 

 

Then, we obtain the following two linearly independent solutions from: 
  ( )1 1 2cos sin tX B t B t eαβ β= −  

  2 2 1( cos sin ) tX B t B t eαβ β= +  

Therefore  1
01 1

cos sin
1 0

tX t t e
−

= −
    
    
    

 

  2
01 1

cos sin
0 1

tX t t e
−

=
    

+    
    

 

or  1
cos sin cos sin
cos 0 cos

t t t t
X

t t
+     

= + =     
     

 

  2
cos sin cos sin
0 sin sin

t t t t
X

t t
− − +     

= + =     
     

 

 
Thus the complementary function is given by   

  2111 XcXcX c +=  

or  1 2
cos sin cos sin

cos sinc
t t t t

X c c
t t

+ − +   
= +   

   
 

Now since ( )tF  is a constant vector, we assume a constant particular solution vector 

     1

1
p

a
X

b
 

=  
 

 

Substituting this vector into the original system leads to 

   1

1

1 2 8
1 1 3p

a
X

b
− −    ′ = +    −    

 

Since    







=′

0
0

pX  

Thus   1 1

1 1

20 8
0 3

a b
a b

− + −    
= +    − +    

 

or   1 1

1 1

2 80
30

a b
a b

− + −  
=    − + +   
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This leads to the following pair of linear algebraic equations 

   1 1

1 1

2 8 0
3 0

a b
a b

− + − =
− + + =

 

Subtracting, we have 
  1 111 0 11b b− = ⇒ =  

Substituting this value of 1b into the second equation of the above system of algebraic 
equations yields 
   143111 =+=a  
Thus our particular solution is 
   14

11pX  
=  

 
 

Hence, the general solution of the non-homogeneous system is  

   







+







 +−
+







 +
=

11
14

sin
sincos

cos
sincos

21 t
tt

c
t

tt
cX  

Note that  
 In the above example the entries of the matrix ( )tF  were constants and the 

complementary function cX did not involve any constant vector. Thus there was 
no duplication of terms between cX and pX . 

 However, if ( )tF  were a constant vector and the coefficient matrix had an 
eigenvalue 0=λ .  Then cX contains a constant vector. In such a situation the 
assumption for the particular solution pX  would be 

  







+








=

1

1

2

2

b
a

t
b
a

X p    

      instead of 

  







=

1

1

b
a

X p  

 
Example 2 
Solve the system 

  tyx
dt
dx 66 ++=  

  4 3 10 4dy x y t
dt

= + − +  

Solution 
In the matrix notation  

  







+








−

+







=′

4
0

10
6

34
16

tXX  

 
                                                © Copyright Virtual University of Pakistan                                                 406 



Differential Equations (MTH401)                                                                                    VU 
 

or  ( )tFXX +







=′

34
16

 

Where ( ) 







+








−

=
4
0

10
6

ttF  

We first solve the homogeneous system 

  XX 







=′

34
16

 

Now, we use characteristic equation to find the eigen values 

  ( ) 0
34

16
IAdet =

−
−

=−
λ

λ
λ   

    ( )( ) 0436 =−−−⇒ λλ  

    01492 =+−⇒ λλ  
So    21 =λ  and 72 =λ  
The eigen vector corresponding to eigen value 21 == λλ , is obtained from  

   ( ) ,0IA 1 =− Kλ  Where 







=

2

1
1 k

k
K  

Or   ( ) ,0I2A 1 =− K  
Therefore 
  

 







=
















⇒








=
















−

−
0
0

14
14

0
0

234
126

2

1

2

1

k
k

k
k

 

    







=








+
+

0
0

4
4

21

21

kk
kk

 

or 

    
04

04
04

21
21

21 =+⇒




=+
=+

kk
kk
kk

 
we choose 11 =k arbitrarily then 42 −=k  
Hence the related corresponding eigen vector is  

    
1

1
4

K  
=  −   

Now an eigen vector associated with 72 == λλ is determined from the following 
system 
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( ) 0IA 22 =− Kλ , where 








=

2

1
2 k

k
K

 

or








=
















−

−
0
0

44
11

2

1

k
k

 

or
0

044
0

21
21

21 =+−⇒




=−
=+−

kk
kk
kk

  

Therefore








=

1
1

2K
  

Consequently the complementary function is 

 

tt
c ececX 7

2
2

1 1
1

4
1









+








−

=
 

Since 
( ) 








+








−

=
4
0

10
6

ttF
 

 
Now we find a particular solution of the system having the same form. 

    








+








=

1

1

2

2

b
a

t
b
a

X p
 

where 121 ,, baa and 2b  are constants to be determined. 
in the matrix terms we must have 









+








−

+







=′

4
0

10
6

34
16

tXX pp  









+








−

+















+
















=








4
0

10
6

34
16

1

1

2

2

2

2 t
b
a

t
b
a

b
a

 









+−

+
+








+
+









=








410

06
34
16

12

12

2

2

t
t

btb
ata

b
a

 









+−

+
+








+++
+++

=







410

06
3344

66

1212

1212

2

2

t
t

btbata
btbata

b
a

 









+++−+

++++
=








4341034

666

1122

1122

2

2

battbta
battbta

b
a

 

⇒  
( ) ( )
( ) ( ) 








=








+−++−+

−++++
0
0

4341034
666

21122

21122

bbatba
abatba
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 from this last identity we conclude that 

 
01034
066

22

22

=−+
=++

ba
ba

  And 

 
0434
06

211

211

=+−+
=−+

bba
aba

 

Solving the first two equations simultaneously yields 
  22 −=a  and 62 =b  
Substituting these values into the last two equations and solving for 1a and 1b gives  

    
7
4

1 −=a  

    
7

10
1 =b  

 
It follows therefore that a particular solution vector is 

   






−
+







−
=

7/10
7/4

6
2

tX p  

and so the general solution of the system on ( )∞∞− , is  
   pc XXX +=  
       








−
+







−
+








+








−

=
7/10
7/4

6
2

1
1

4
1 7

2
2

1 tecec tt  

Example 3 
Determine the form of the particular solution vector pX for 

   
75

1235

+−++−=

+−+=

−

−

teyx
dt
dy

eyx
dt
dx

t

t

 

Solution 
First, we write the system in the matrix form 
  

 







+








−

+






−
+
















−

=






 −

7
1

5
0

1
2

11
35

/
/

te
y
x

dtdy
dtdx t  

or   ( )tFXX +







−

=′
11
35
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where   ,
/
/









=








=′

y
x

X
dtdy
dtdx

X and

( )
2 0 1

1 5 7
tF t e t−−     

= + +     −     
 

Now we solve the homogeneous system XX 







−

=′
11
35

to determine the eigen values, 

we use the characteristic equation 
     ( ) 0IAdet =− λ  

or   ( )( ) 0315
11

35
=+−−=

−−
−

λλ
λ

λ
 

    0862 =+−⇒ λλ  
    4,2=⇒ λ  
So the eigen values are 21 =λ and 42 =λ  
For 21 == λλ , an eigen vector corresponding to this eigen value is obtained from 
    ( ) 0I2A 1 =− K  

Where    







=

2

1
1 k

k
K  

   







=
















−−

−
0
0

211
325

2

1

k
k

 

   







=
















−− 0

0
11

33

2

1

k
k

 

   0
0
033

21
21

21 =−−⇒




=−−
=+

kk
kk
kk

 

We choose 12 −=k then 11 =k  

Therefore   







−

=
1

1
1K  

Similarly for 42 == λλ  









=
















−− 0

0
31

31

2

1

k
k

 

03
03
03

21
21

21 =+⇒




=−−
=+

kk
kk
kk
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Choosing 12 −=k , we get 31 =k  

Therefore   2

3
1

K  
=  − 

 

Hence the complementary solution is 

   tt
c ececX 4

2
2

1 1
3

1
1









−

+







−

=  

Now since 

  ( ) 







+








−

+






−
= −

7
1

5
0

1
2

tetF t  

 

We assume a particular solution of the form 

   







+








+








= −

1

1

2

2

3

3

b
a

t
b
a

e
b
a

X t
p  

Note: 

If we replace te− in ( )tF on te2 ( 2=λ an eigen value), then the correct form of the 
particular solution is 

   







+








+








+








=

1

1

2

22

3

32

4

4

b
a

t
b
a

e
b
a

te
b
a

X tt
p  

44.5 Variation of Parameters 
Variation of parameters is more powerful technique than the method of undetermined 
coefficients. 

We now develop a systematic produce for finding a solution of the non-homogeneous 
linear vector differential equation 

   ( )tFAX
dt
dX

+=      (1) 

Assuming that we know the corresponding homogeneous vector differential equation 

   AX
dt
dX

=       (2) 

Let ( )tφ be a fundamental matrix of the homogeneous system (2), then we can express 
the general solution of (2) in the form  
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    ( )cX t Cφ=  

where C is an arbitrary n-rowed constant vector. We replace the constant vectorC by a 
column matrix of functions 

    ( )

( )
( )

( )


















=

tu

tu
tu

tU

n



2

1

 

so that     ( ) ( )tUtX p φ=     (3) 

is particular solution of the non-homogeneous system (1). 

The derivative of (3) by the product rule is 

   ( ) ( ) ( ) ( )tUttUtX p φφ ′+′=′    (4) 

Now we substitute equation (3) and (4) in the equation (1) then we have 

  ( ) ( ) ( ) ( ) ( ) ( ) ( )tFtUtAtUttUt +=′+′ φφφ   (5) 

Since   ( ) ( )tAt φφ =′  

On substituting this value of ( )tφ′ into (5), 

We have 

  ( ) ( ) ( ) ( ) ( ) ( ) ( )tFtUtAtUtAtUt +=+′ φφφ  

Thus, equation (5) become s 

or  ( ) ( ) ( )tFtUt =′φ       (6) 

 

Multiplying ( )t1−φ on both sides of equation (6), we get 

    ( ) ( ) ( ) ( ) ( )tFttUtt 11 −− =′ φφφ  

or    ( ) ( ) ( )tFttU 1−=′ φ  

or    ( ) ( ) ( )dttFttU ∫ −= 1φ  

Hence by equation (3) 

    ( ) ( ) ( )dttFttX p ∫ −= 1φφ    (7) 

is particular solution of the non-homogeneous system (1). 
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To calculate the indefinite integral of the column matrix ( ) ( )tFt1−φ in (7), we integrate 
each entry. Thus the general solution of the system (1) is  

    pc XXX +=  

or 

   ( ) ( ) ( ) ( )dttFttCtX ∫ −+= 1φφφ    (8) 

Example 
Find the general solution of the non-homogeneous system 

    







+








−

−
=′ −te

t
XX

3
42

13
 

on the interval ( )∞∞− ,   

Solution 
We first solve the corresponding homogeneous system 

    
3 1

2 4
X X

− ′ =  − 
 

The characteristic equation of the coefficient matrix is 

   ( ) 0
42
13

IAdet =
−−

−−
=−

λ
λ

λ  

or   ( )( ) 0243 =−−−−− λλ  

        
( ) ( )

( )( )
5,2

025
0525

01025

0107

021234

21

2

2

2

−=−=⇒
=++⇒

=+++⇒
=+++⇒

=++⇒

=−+++⇒

λλ
λλ

λλλ
λλλ

λλ

λλλ

 

So the eigen values are 21 −=λ and 52 −=λ  

 

 

Now we find the eigen vectors corresponding to 1λ and 2λ respectively, 

Therefore 
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   ( ) 0IA 121 =− Kλ  

   ( ) 0I2A 12 =− K  

so   







=
















+−

+−
0
0

242
123

2

1

k
k

 

   







=








−
+−

0
0

22 21

21

kk
kk

 

or 

   21
21

21

022
0

kk
kk
kk

=⇒




=−
=+−

 

We choose 12 =k arbitrarily then 11 =k  

Hence the eigen vector is 

    







=

1
1

1K  

Now an eigen vector associated with 52 −== λλ is determined from the following 
system 

    ( ) 0IA 222 =− Kλ  

or    







=
















+−

+−
0
0

542
153

2

1

k
k

 

    









=








+
+

⇒









=
















⇒

0
0

2
2

0
0

12
12

21

21

2

1

kk
kk

k
k

 

   12
21

21 2
02
02

kk
kk
kk

−=⇒




=+
=+

⇒  

We choose arbitrarily 11 =k then 22 −=k  

Therefore    







−

=
2

1
2K  

The solution vectors of the homogeneous system are 
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    teX 2
1 1

1 −








= And teX 5

2 2
1 −









−

=  

 

1X and 2X can be written as  

    










−
=










=

−

−

−

−

t

t

t

t

e

e
X

e

e
X

5

5

22

2

1
2

,  

The complementary solution  

    1 1 2 2cX c X c X= +  

    










−
+










=

−

−

−

−

t

t

t

t

e

e
c

e

e
c

5

5

22

2

1
2

 

Next, we form the fundamental matrix 

   ( ) 








−
=

−−

−−

tt

tt

ee
eet 52

52

2
φ  

and the inverse of this fundamental matrix is 

   ( ) 












=

−
−

t

t

ete

ete
t

5
3
1

3
1

2
3
1

3
2

1
5

2
φ  

Now we find pX by  

   ( ) ( ) ( )dttFttX p ∫ −= 1φφ  

dt
e

t

ete

ete

ee
eeX tt

t

tt

tt

p 

⌡

⌠






























−
=

−−−−

−− 3
5

2

2 5
3
1

3
1

2
3
1

3
2

52

52

 



















−

+










−
=





⌡

⌠



















−

+










−
=

∫∫

∫∫
−−

−−

−−

−−

dtedtte

dtedtte

ee
eedt

ete

ete

ee
eeX

tt

t
t

tt

tt

tt

tt

tt

tt

p
45

2

52

52

45

2

52

52

3
1
3
12

2
3
1
3
12

2
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

















⌡
⌠ −−

+⌡
⌠−










−
=

−−

−−

t
tt

t
tt

tt

tt

p

edteet

edteet

ee
eeX

4
55

22

52

52

4.3
1

55

3
1

2
2

2
2

2
 



















−−

+−










−
=

−−

−−

t
tt

t
tt

tt

tt

p

eete

eeet

ee
eeX

4
55

22

52

52

12
1

255

3
1

22
2

2
 



















++−+−

−−++−
=

−−

−−

tt

tt

p

etet

etet
X

6
1

25
2

5
2

3
1

2
1

12
1

25
1

53
1

2
1

 

6 27 1
5 50 4
3 21 1
5 50 2

t

p
t

t e
X

t e

−

−

 − + 
=  

 − + 
 

 

Hence the general solution of the non-homogeneous system on the interval ( )∞∞− , is  

   pc XXX +=  

or   

( ) ( ) ( ) ( )1

2 5
1 2

6 27 1
1 1 5 50 4
1 2 3 21 1

5 50 2

t

t t

t

t C t t F t dt

t e
c e c e

t e

φ φ φ −

−

− −

−

= +

 − +    
= + +     −      − + 

 

∫

 

44.6 Exercise 
Use the method of undetermined coefficients to solve the given system on ( )∞∞− ,  

1. 295 ++= yx
dt
dx

 

611 ++−= yx
dt
dy
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2. 223 tyx
dt
dx

−+=  

53 +++= tyx
dt
dy

 

3. tetyx
dt
dx 6944 ++−=  

tetyx
dt
dy 64 +−+=  

4. teXX 






−
+








=′

10
3

69
3/14

 

5. 







−

+







−
−

=′
t

t
XX

cos2
sin

11
51

 

Use variation of parameters to solve the given system 

6. 433 +−= yx
dt
dx

 

122 −−= yx
dt
dy

 

7. te
t
t

XX 2

cos2
2sin

24
12









+







 −
=′  

8. 







+








−

=′ − te
XX 3

2
31
20

 

9. 







+








−−

=′
1
1

12
23

XX  

10. 







+







 −
=′

0
sec

01
10 t

XX  
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