Mean and Standard Deviation of Grouped Data

- Make a frequency table
- Compute the midpoint (x) for each class.
- Count the number of entries in each class (f).
- Sum the f values to find n, the total number of entries in the distribution.
- Treat each entry of a class as if it falls at the class midpoint.

Sample Mean for a Frequency Distribution

x = class midpoint

Sample Standard Deviation for a Frequency Distribution

$$s = \sqrt{\frac{\sum (x - \overline{x})^2 f}{n - 1}}$$

Computation Formula for Standard Deviation for a Frequency Distribution $s = \sqrt{\frac{SS_x}{n-1}}$ where $SS_x = \sum x^2 f - \frac{(\sum xf)^2}{2}$ n

Calculation of the mean of grouped data

Ages:	${f f}$	X	$\mathbf{x}\mathbf{f}$
30 - 34	4	32	128
35 - 39	5	37	185
40 - 44	2	42	84
45 - 49	9	47	$\boldsymbol{423}$
	$\Sigma f = 20$		$\Sigma x f = 820$

Mean of Grouped Data

$$=\frac{820}{20}=41.0$$

Calculation of the standard deviation of grouped data

Ages:	\mathbf{f}	X	X – mean	$(\mathbf{x} - \text{mean})^2$	$(x - mean)^2$ f	
30 - 34	4	32	- 9	81	324	
35 - 39	5	37	- 4	16	80	
40 - 44	2	42	1	1	2	
45 - 49	9	47	6	36	324	
$\Sigma f = 20$				$\Sigma (\mathbf{x} - \mathbf{mean})^2 \mathbf{f} = 730$		

Mean = 41.0

Computation Formula for Standard Deviation for a Frequency Distribution $s = \sqrt{\frac{SS_x}{n-1}}$ where $SS_x = \sum x^2 f - \frac{(\sum xf)^2}{2}$ n

Computation Formula for Standard Deviation

	$\Sigma f = 20$	$\Sigma x f = 820$	$\Sigma x^2 f = 34350$
47	9	423	19881
42	2	84	3528
37	5	185	6845
32	4	128	4096
X	${f f}$	$\mathbf{x}\mathbf{f}$	$\mathbf{x}^2 \mathbf{f}$

Computation Formula for Standard Deviation for a Frequency Distribution

where $SS_x = \sum x^2 f - \frac{(\sum xf)^2}{n} =$ $34350 - \frac{820^2}{20} = 730$ $s = \sqrt{\frac{SS_x}{n-1}} = \sqrt{\frac{730}{20-1}} \approx 6.20$

Weighted Average

Average calculated where some of the numbers are assigned more importance or weight

Weighted Average

Weighted Average =
$$\frac{\sum xw}{\sum w}$$

where w = the weight of the data value x.

Compute the Weighted Average:

- Midterm grade = 92
- Term Paper grade = 80
- Final exam grade = 88
- Midterm weight = 25%
- Term paper weight = 25%
- Final exam weight = 50%

Compute the Weighted Average:

X W XW • Midterm **92** 23 .25 **80** 20 Term Paper .25 • Final exam 88 44 .50 1.00 87

$$\frac{\sum xw}{\sum w} = \frac{87}{1.00} = 87 = \text{Weighted Average}$$