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LECTURE No. 1 
 

INTRODUCTION 
 
– Calculus is the mathematical tool used to analyze changes in physical quantities. 
– Calculus is also Mathematics of Motion and Change. 
– Where there is motion or growth, where variable forces are at work producing 
acceleration, Calculus is right mathematics to apply. 
 
Differential Calculus deals with the Problem of Finding 
(1)  Rate of change  
(2)  Slope of curve 
 
Velocities and acceleration of moving bodies. Firing angles that give cannons their 
maximum range. The times when planets would be closest together or farthest apart. 
 
Integral Calculus deals with the Problem of determining a function from information 
about its rates of Change. 
 
Integral Calculus enables us 
(1) To calculate lengths of curves. 
(2) To find areas of irregular regions in plane. 
(3) To find the volumes and masses of arbitrary solids 
(4) To calculate the future location of a body from its present position and knowledge of 
the forces acting on it. 
 
Reference Axis System 
Before giving the concept of Reference Axis System, we recall you the concept of real 
line and locate some points on the real line as shown in the figure below, also remember 
that the real number system consist of both Rational and Irrational numbers that is we can  
write set of real numbers as union of rational and irrational numbers. 
 

 
 
Here in the above figure, we have located some of the rational as well as irrational 
numbers and also note that there are infinite real numbers between every two real 
numbers. 
 
Now if you are working in two dimensions, then you know that we take the two mutually 
perpendicular lines and call the horizontal line as x-axis and vertical line as y-axis and 
where these lines cut we take that point as origin. Now any point on the x-axis will be 
denoted by an order pair whose first element which is also known as abscissa is a real 
number and other element of the order pair which is also known as ordinate will have 0 
values, i.e.  ,  0x   
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Similarly any point on the y-axis can be representing by an order pair  0,  y . Some 

points are shown in the figure below. Also note that these lines divide the plane into four 
regions: First, Second, Third and Fourth quadrants respectively. We take the positive real 
numbers at the right side of the origin and negative to the left side, in the case of x-axis. 
Similarly for y-axis and also shown in the figure. 
  

 
 
Location of a point  
Now we will illustrate how to locate the point in the plane using x- and y- axes. Draw 
two perpendicular lines from the point whose position is to be determined. These lines 
will intersect at some point on the x-axis and y-axis and we can find out these points. 
Now the distance of the point of intersection of x-axis and perpendicular line from the 
origin is the x-coordinate of the point P and similarly the distance from the origin to the 
point of intersection of y-axis and perpendicular line is the y-coordinate of the point P as 
shown in the figure below. 
 

 
In space, we have three mutually perpendicular lines as reference axes, namely x ,y and z 
axis. Now you can see from the figure below that the planes x = 0 ,y = 0 and z = 0 divide 
the space into eight octants. Also note that in this case we have (0,0,0) as origin and any 
point in the space will have three coordinates. 
Signs of coordinates in different octants 
First of all note that the equation x = 0 represents a plane in the 3d space and in this plane 
every point has its x-coordinate as 0, also that plane passes through the origin as shown in 
the figure above. Similarly y = 0 and z = 0  also define a plane in 3d space and have 
properties similar to that of x = 0 such that these planes also pass through the origin and 
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any point in the plane y = 0 will have y-coordinate as 0 and any point in the plane z = 0 
has z-coordinate as 0.  

 
Also remember that when two planes intersect we get the equation of a line and when two 
lines intersect then we get a plane containing these two lines. Now note that by the 
intersection of the planes x = 0 and z = 0 we get the line which is our y-axis. 
Also by the intersection of x = 0 and y = 0 we get the line which is z-axis, similarly you 
can easily see that by the intersection of z = 0 and y = 0 we get line which is x-axis. 
 
Now these three planes divide the 3d space into eight octants depending on the positive 
and negative direction of axis. The octant in which every coordinate of any point has 
positive sign is known as first octant formed by the positive x, y and z –axes. Similarly in 
second octant every point has x-coordinate as negative and other two coordinates as 
positive correspond to negative x-axis and positive y and z axis. 
 
Now one octant is that in which every point has x and y coordinate negative and z-
coordinate positive, which is known as the third octant. Similarly we have eight octants 
depending on the sign of coordinates of a point. These are summarized below.     
 
First octant   ,  ,       Formed by positive sides of the three axis.  

Second octant   ,  ,        Formed by –ve x-axis and positive y and z-axis. 

Third octant    , ,       Formed by –ve x and y axis with positive z-axis. 

Fourth octant    ,  ,       Formed by +ve x and z axis and –ve y-axis. 

Fifth octant   ,  ,       Formed by +ve x and y axis with -ve z-axis. 

Sixth octant    ,  ,       Formed by –ve x and z axis with positive y-axis. 

Seventh octant    , ,       Formed by –ve sides of three axis. 

Eighth octant    ,  ,       Formed by -ve y and z-axis with +ve x-axis. 

(Remember that we have two sides of any axis one of positive values and the other is of 
negative values)   Now as we told you that in space we have three mutually perpendicular 
lines as reference axis. So far you are familiar with the reference axis for 2d which 
consist of two perpendicular lines namely x-axis and y-axis. For the reference axis of 3d 
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space we need another perpendicular axis which can be obtained by the cross product of 
the two vectors, now the direction of that vector can be obtained by Right Hand rule. This 
is illustrated below with diagram.      

 
 
Concept of a Function 
Historically, the term, function denotes the dependence of one quantity on other quantity.  
The quantity x is called the independent variable and the quantity y is called the 
dependent variable. We write it as   y f x  and we read y is a function of x. 

For example, the equation   2y x  defines y as a function of x because each value 
assigned to x determines unique value of y. 
 
Examples of function 
– The area of a circle depends on its radius r by the equation A= r2 so, we say that 
A is a function of r. 
– The volume of a cube depends on the length of its side x by the equation V= x3 
so, we say that V is a function of x. 
– The velocity V of a ball falling freely in the earth’s gravitational field increases 
with time t until it hits the ground, so we say that V is function of t. 
– In a bacteria culture, the number n of present after one day of growth depends on 
the number N of bacteria present initially, so we say that N is function of n. 
 
Function of Several Variables 
Many functions depend on more than one independent variable.  
Examples 
1) The area of a rectangle depends on its length l and width w by the equation   
 A = l w , so we say that A is a function of l and w. 
2) The volume of a rectangular box depends on the length l, width w and height h by the 
equation  V = l w h so, we say that V is a function of l , w and h. 
3) The area of a triangle depends on its base length l   and height h   by the equation 

  
1

2
A l h   , so we say that A is a function of l  and h . 

4)  The volume V of a right circular cylinder depends on its radius r and height h by the 
equation 2V r h  so, we say that V is a function of r and h.  
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LECTURE No. 2      
   

VALUES OF FUNCTIONS 

     
       
   

22

2 2

2 2

 :Consider the function   2 –1,  then 1   2 1 –1 1

4   2 4 –1 31, 2   2 2 –1  7

4   2 4  –1  2 16   31

These are the values of the function at some points.

f x x f

f f

f t t t t

  

     

     

Example 1

  

         
         
         

2 2

2

2

2

2

23

  : Now we will consider a function of two variables, so consider the function

,  1 then  2,1  2 1 1 5, 1,2  2 1 3,

0,0  0 0 1 1, 1, 3  1 3 1 2,

3 ,  3 1 9  

1

1, , 1

f x y x y f f

f f

f a a a a a f ab a b ab a b

       

        

        

Example 2

3 2 2 3 1

These are values of the function at some points.

a b a b 

  

Example 3:  Now consider the function 3( , )f x y x xy  , then 

(a) 3 3(2, 4) 2 (2)(4) 2 8 2 2 4f         

(b) 2 3 2 3 3( , ) ( )( ) 2f t t t t t t t t t t        

(c) 2 3 2 3 3( , ) ( )( ) 2f x x x x x x x x x x        

(d) 2 2 3 2 2 3 3 2(2 , 4 ) 2 (2 )(4 ) 2 8 2 2f y y y y y y y y y       

Example 4: Now again we take another function of three variables 

2 2 2( , , ) 1f x y z x y z     then  
2 2

1 1 1
1 0

2 2 2

1 1
(0, , )

2 2
f           

   
 

Example 5:  Consider the function   2 3, ,  3,f x y z xy z   then at certain points we have      

             

             

      

2 3 2 3

22 3 36 2 2 8

2 3

2,1, 2  2 1 2 3 19,  0,0,0  0 0 0 3 3,  

, ,  3 3, , ,  3 3,

 3,1,1  3 1 1 3 3 3 0

f f

f a a a a a a a f t t t t t t t

f

     

          

       

       
                

                

2 2 4 3 2

2 22 2 4 43 2 14  

2 22 2 4 43 2

 : Consider the function , ,  where   and 

 , ,    

 

, ,

0 , 0 , 0  0 0 0  0 0 0  0

f x y z x y z x t t y t t z t t

a f x t y t z t x t y t z t t t t t

b f x y z x y z

                 

         



     

  



 

 

 

Example 6

  : Let us consider the function , ,     ,  thenf x y z xyz x Example 7   

                             2, ,       
y y

f xy xz xy xz xy xy z xy
x x

   
   
  

   


  

      2 3 :Let us consider  , ,   ,   , ,  ,   g x y z z Sin xy u x y z x z Example 8      



2-Values of functions                                                                                                                                   VU 
 

 
© Copyright Virtual University of Pakistan 

 
 

6

                                           , ,  , ( , , )
xy

w xv x y z Px y zyz
z

 , then 

                         , , ,  , , ,  , ,   , ,  , ,  , ,g u x y z v x y z w x y z w x y z Sin u x y z v x y z   

Now by putting the values of these functions from the above equations, we get 

                       2 3 3 4, , ,  , , ,  , ,      g u x y z v x y z w x y z Si
xy x

n
y

x z Pxyz Sin P
z z

zyx     

       

           
2 2 3

2

 :Consider the function ,    and , , ,  

then , ,  ,   ,

,

 ,  ,

g x y y Sin x y u x y x y v x y xy

g u x y v x y v x y Sin u x y v x y

 

  





Example 9

 By putting the values of these functions we get 

                     22 3 5 7, ,  ,     g u x y v x y xy Sin x y xy xy Sin x y        

Function of One Variable: A function f  of one real variable x is a rule that assigns a 
unique real number f( x )  to each point x in some set D of the real line. 
Function of two Variables: A function f  in two real variables x and y, is a rule that 

assigns unique real number  ,f x y  to each point (x,y) in some set D of the xy-plane. 

Function of three variables: A function f  in three real  variables x, y and z, is a rule 

that assigns a unique real number  , ,f x y z  to each point (x,y,z) in some  set D of three 

dimensional space. 
Function of  n variables: A function f  in n variable real  variables 1 2 3, ,  , ,  nx x x x  , 

is a rule that assigns a unique real number  1 2 3 ,  ,  , ,  nw f x x x x   to each point (x1, 

x2, x3,……, xn) I n some set D of n dimensional space. 
Circles and Disks: 

 

 
PARABOLA 

 
Parabola y = -x2 
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General equation of the Parabola opening upward or downward is of the form  
      2 . Opening upward if 0, Opening downward if 0y f x ax bx c a a        

The x-coordinate of the vertex is given by 0  
2

b
x

a
   . So the y-coordinate of the vertex 

is  0 0 y f x  The axis of symmetry is 0 x x .     

                          
Sketching of the graph of parabola y = ax2+bx + c 

Finding vertex: x-coordinate of the vertex is given by 0
2

 
b

a
x     

The y-coordinate of the vertex is 2
0 0 0   y a x b x c    . Hence vertex is  0 0,  .V x y   

 

2

4
   

2 2 1
   2

 :  Sketch the parabola      4

:Since   1  0 because parabola is opening downward. Vertex occurs at

Axis of symmetry is the vertical line   2.
b

a
x

y x x

a

x  


 

  
  



Example 10

Solution  

The y-coordinate of the vertex is    2
 2  4 2   4.y      Hence vertex is V(2 , 4 ). The 

zeros of the parabola (i.e. the point where the parabola meets x-axis) are the solutions to 
2 4   0 , so   0 and   4.x x x x      Therefore,    0,0 and 4,0  lie on the parabola. 

Also    1,3  and 3,3   lie on the parabola. 

Graph of 2   4y x x    
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Example 11:  Sketch the parabola  2  4 3y x x     
Solution: Since   1  0a    , parabola is opening upward. Vertex occurs at 

 
 
4

        2.
2 2 1

b
x

a


      Axis of symmetry is the vertical line  2.x   The y co-

ordinate of the vertex is    2
  2  4 2   3  1y       . Hence vertex is  2 ,  1V  . The 

zeros of the parabola (i.e. the point where the parabola meets x-axis) are the solutions to  
2  4   3  0, so   1 and   3x x x x      .Therefore    1,0 and 3,0   lie on the parabola. 

Also    0 ,3  and 4,  3  lie on the parabola.         2 - 4 3Graph of y x x      

 
Ellipse 

 

 
Hyperbola 

 
Home Assignments: 
In this lecture we recall some basic geometrical concepts which are prerequisite for this course 
and you can find all these concepts in the chapter # 12 of your book Calculus By Howard 
Anton. 
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LECTURE No.3 
 

ELEMENTS OF THREE DIMENSIONAL GEOMETRY 
 
Distance formula in three dimensions 
 
Let 1 1 1( , , )P x y z and 2 2 2( , , )Q x y z  be two points such that PQ is not parallel to one of the 

coordinate axis Then 2 2 2
2 1 2 1 2 1( ) ( ) ( )PQ x x y y z z      Which is known as 

Distance fromula between the points P and Q. 
 
Example of distance formula 
Let us consider the points )1,10,6),4,2,3 B(A(  and ),1,4,9(C  then 

749)11()104()69(

749)41()24()39(

2798)41()210()36(

222

222

222







BC

AC

AB

 

 
Mid point of two points 
 Let 1 1 1( , , )P x y z and 2 2 2( , , )Q x y z  be two points.  If ),,( zyxR  is the middle point of the 

line segment PQ , then the coordinates of the middle point ),,( zyxR are given below: 

1 2 1 2 1 2, ,
2 2 2

x + x y + y z + z
x = y =   z =      

Example 2: Let us consider two points )1,10,6 and)4,2,3 B(A( , then the coordinates 

of mid point of AB are 













 

2

3
6

2

9

2

14

2

102

2

63
,, =,

+
,

+
 

Given a point, finding its Direction Cosines 

 
Direction Angles 
The direction angles  ,, of a line is defined as 
                Angle between line and the positive x-axis 
                Angle between line and the positive y-axis 
               Angle between line and the positive z-axis 
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By definition, each of these angles lie between 0 and .  
Direction Ratios:  Cosines of direction angles are called direction cosines. Any multiple 
of direction cosines are called direction numbers or direction ratios of the line L. 
 
Direction angles of a Line  
 
 
 
 
 
 
 
 
 
 
The angles which a line makes with positive x, y and z-axis are known as Direction 
Angles. In the above figure, the blue line has direction angles as  and, which are the 
angles which blue line makes with x, y and z-axes respectively.  
 
Direction Cosines 
Now if we take the cosine of the Direction Angles of a line, then we get the Direction 
cosines of that line. So the Direction Cosines of the above line are given by 

2 2 2 2 2 2 2 2 2
cos , cos , cos

x x y y z z

OP OP OPx y z x y z x y z
       

     

 

Since, by distance formula,       222222 000 zyxzyxOP   

Squaring and adding these equations (1), (2) and (3), we get                               

 

2 2 2

2 2 2

2 2 2 2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2
2 2 2

2 2 2

cos cos cos

1

cos cos cos 1

x y z

x y z x y z x y z

x y z x y z

x y zx y z

  

  

     
         
               

   
  

  

  

 

Direction cosines and direction ratios of a line joining two points 
For a line joining two points  1 1 1P x , y , z and  2 2 2 ,Q x , y , z   
the direction ratios are ,  - xx 12  1212 and  - z z - yy    

and the directions cosines are  2 1 2 1 2 1, and .
x x y y z z

PQ PQ PQ

  

 
Example 3: Find direction cosines and direction ratios for a line joining two points 

 1 3 2P , ,  and  7 2 3 .Q , ,   
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Solution: For a line joining two points  1 3 2P , ,  and  7 2 3Q , ,  , the direction ratios are    

                    2 1 2 1 2 17 1 6, 2 3 5, 3 2 1x  - x   y  - y  z  - z             

and the directions cosines are  

                             2 2 22 2 2 2 2 2

6 5 1

6 5 1 6 5 1 6 5 1

6 5 1
, ,

62 62 62

, ,


        


    

Intersection  of two surfaces 
•Intersection  of two surfaces is a curve in three dimensional space.   
•It is the reason that a curve in three dimensional space is represented by two equations 
representing the intersecting surfaces.  
Intersection  of Cone and Sphere 
 
 
 
 
 
 
 
 
Intersection of Two Planes 
If the two planes are not parallel, then they intersect and their intersection is a straight 
line. Thus, two non-parallel planes represent a straight line given by two simultaneous 
linear equations in x, y and z and are known as non-symmetric form of equations of a 
straight line. 
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Planes parallel to Coordinate Planes 
 
 
 
 
 
 
 
 
 
 
 
General Equation of Plane 

Any equation of the form 0cz + d = ax + by +   represents a plane,  where 
 a, b, c, d are real numbers. 

Sphere 
 
 

x = 0, y = 0 Consists of all points of the form (0, 0, z) z-axis 

 z = 0, x = 0 Consists of all points of the form (0, y, 0) y-axis 

 y = 0, z = 0 Consists of all points of the form (x, 0, 0) x-axis 

 x = 0 Consists of all points of the form (0, y, z) yz-plane 

 y = 0 Consists of all points of the form (x, 0, z) xz-plane 

 z = 0 Consists of all points of the form (x, y, 0) xy-plane 

EQUATIONDESCRIPTION REGION 
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Right Circular Cone 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Horizontal Circular Cylinder 
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Horizontal Elliptic Cylinder 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Overview of Lecture # 3 

 
Chapter # 14  
             Three Dimensional Space   
 Page # 657 
          
            Book  CALCULUS by HOWARD ANTON 
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LECTURE No.4                   
 

POLAR COORDINATES  
Outlines of the lecture: 
 

o Spherical Polar Coordinate 

o Cylindrical Polar Coordinate 

You know that position of any point in the plane can be obtained by the two 
perpendicular lines known as x and y axes and together we call it as Cartesian 
coordinates for plane. Beside this coordinate system, we have another coordinate system 
which can also be used for obtaining the position of any point in the plane. It is called 
Polar coordinate system.  In this coordinate system, we represent position of each particle 
in the plane by r and  where r the distance from a fixed point known as pole is O and   
is the measure of the angle. 

 
Conversion formula from polar to Cartesian coordinates and vice versa 

 
Now we convert the polar coordinates ),( rP  to Cartesian coordinates ),( yxP . 

From above diagram and remembering the trigonometric ratios we can write 

                                        
cos cos (1)

sin sin (2)

x
x = r    

r
x

 y = r  
r

 

 

   

     

The equations (1) and (2) are used to convert the polar coordinates ),( rP  to Cartesian 
coordinates ).,( yxP    Now we convert the Cartesian coordinates ),( yxP  into polar 
coordinates ).,( rP    Squaring equations (1) and (2), and adding them, we get, 

     2 22 2 2 2 2

2 2 2 2 2

cos sin cos sin

or (3)

x  + y  = r   r   r  

x  + y r r x  + y

     

     

 

Dividing equation (2) by equation (1), we get  

     P(x, y) =P(r,  ) 

 

r 

x 

   
y 
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                                                         )4(tan  = 
x

y  

The equations (3) and (4) are used to convert the Cartesian coordinates ),( yxP  to polar 
coordinates ).,( rP   
Rectangular coordinates for three dimensions:  Since you know that the position of 
any point in the three dimensions can be obtained by the three mutually perpendicular 
lines known as  and zx, y – axes and also shown in figure below. These coordinate axes 
are known as Rectangular coordinate system.   

 
Cylindrical Coordinates:  Beside the Rectangular coordinate system, we have another 
coordinate system which is used for getting the position of the any particle in space, 
known as the cylindrical coordinate system as shown in the figure below. 

 
Spherical Coordinates:  Beside the Rectangular and Cylindrical coordinate systems,  we 
have another coordinate system which is used for getting the position of the any particle 
in space, known as the spherical coordinate system as shown in the figure below. 
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Conversion formulas between Rectangular and Cylindrical coordinates 
Now we will find out the relation between the Rectangular coordinate system and 
Cylindrical coordinate system.  
For this, consider any point P in the space and consider the position of this point in both 
the coordinate systems as shown in the figure below: 

 
In the above figure, we have the projection ),( rP  of the point ),,( zyxP in the xy-
plane and write its position in plane polar coordinates and also represent the angle . 
Now from that projection, we draw perpendiculars AP  and BP to both of the axes and 
using the trigonometric ratios‚ find out the following relations: 

                     
cos , sin ,

Therefore,         cos , sin ,

x x
 z z

r r
x r  y r  z z

 

 

  

  
 

These equations convert the polar coordinates ),,( zrP   to Cartesian  coordinates 
).,,( zyxP   

                   zz
x

y
 + yxr  ,tan,22   

These equations convert the Cartesian coordinates ),,( zyxP  to polar coordinates 
),,( zrP  . 

Conversion formulas between cylindrical and spherical coordinates 
Now we will find out the relation between spherical coordinate system and cylindrical 
coordinate system.  
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First we will find the relation between Planes polar to spherical. From the above figure, 
you can easily see that from the two right angled triangles we have the following 
relations: ),,(),,( zr    

In the triangle, 
x

Cos x r Cos
r
y

Sin y r Sin
r

 

 

  

  

In the triangle, ( )

( )

r
Sin r Sin a

z
Cos z Cos b

  


  


   

   
 

Therefore,   CoszSinr  ,,  
 Now from these equations we will solve the first and second equation for  and  . Thus 
we have  ),,(),,(  zr  

Squaring and adding equations (a) and (b), we get 

                                                22 zr   

Divide equation (a) by equation (b),
 z

r
tan  

Therefore,           
z

r
zr   tan,,22                                                       

Conversion formulae between Rectangular and Spherical coordinates (ρ, θ, Φ) → 
(x, y, z) 
Since we know that the relation between Cartesian coordinates and Polar coordinates are 

                            
)(,sin,cos Azz ry rx  

           
 

 We also know that the relation between Spherical and cylindrical coordinates are, 
                                )(,, BCoszSinr    

Now putting this value of r  and z  from (B) in (A), we get  

                            
)(,, CCoszSin SinyCos Sinx    

It is the relation between spherical coordinate system and Cartesian coordinate system.  
Now we will find ),,(),,( zyx  
Squaring and adding the equations in (C),  

     
  

 

222

2

222

22222

222222

zyx

CosSin

Cos Sin CosSin

CosSin SinCos Sinzyx





















 

Also,          
x

y
Tan    And        

222 zyx

zz
Cos





  
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Constant Surfaces in Rectangular Coordinates 
The surfaces represented by equations of the form  

 z = z,  y = y,x = x 000  

where   z, y,x 000 are constants, and are planes parallel to the yz-plane,  xz-plane and xy-

plane, respectively. Also shown in the figure, 

 
Constant Surfaces in Cylindrical Coordinates 
The surface  r = ro is a right cylinder of  radius ro centered on the z-axis. At each point 
(r, θ, z), this surface on this cylinder, r has the value r0, z is unrestricted and 0 ≤ θ < 2π. 
 
The surface θ = θ0 is a half plane attached along the z-axis and making angle θ0 with the 
positive x-axis. At each point (r, θ, z) on the surface, θ has the value θ0, z is unrestricted 
and r ≥ 0.  
The surfaces z = zo is a horizontal plane. At each point (r, θ, z) this surface z has the 

value z0, but r and θ are unrestricted as shown in the figure below. 

 
Constant Surfaces in Spherical Coordinates 
The surface ρ = ρo consists of all points whose distance ρ from origin is ρo. Assuming 

that ρo to be nonnegative, this is a sphere of radius ρo centered at the origin. The surface 

θ = θ0 is a half plane attached along the z-axis and making angle θ0 with the positive x-
axis. The surface Φ = Φ0 consists of all points from which a line segment to the origin 

makes an angle of Φ0 with the positive z-axis. Depending on whether 0 < Φ0 < 
2


  or   
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2


 < Φ0 < π, this will be a cone opening up or opening down. If Φ0 = 

2


, then the cone 

is flat and the surface is the xy-plane.  

 
 
Spherical Coordinates in Navigation 
Spherical coordinates are related to longitude and latitude coordinates used in navigation. 
Let us consider a right handed rectangular coordinate system with origin at earth’s center, 
positive z-axis passing through the North Pole, and x-axis passing through the prime 
meridian. Considering earth to be a perfect sphere of radius ρ = 4000 miles, then each 
point has spherical coordinates of the form (4000, θ, Φ) where Φ and θ determine the 
latitude and longitude of the point. Longitude is specified in degree east or west of prime 
meridian and latitudes is specified in degree north or south of the equator. 
 
Domain of the Function 

• In the above definitions, the set D is the domain of the function.  
• The Set of all values which the function assigns for every element of the domain 

is called the Range of the function. 
• When the range consists of real numbers, the functions are called the real valued 

function. 
Note: 

o If a function is of single variable i.e. ),(xfy   then domain is a subset of real line 

and its graph is a curve. 

o If a function is of two variables i.e. ),,( yxfz   then domain will be from xy-
plane. 

o If a function is of three variables i.e. ),,,( zyxfw  then domain is a subset of 
space. 

NATURAL DOMAIN 
Natural domain consists of all those points at which the formula has no divisions by zero 
and produces only real numbers. 
Example 
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Consider the function 2xy  . Then the domain of the function is 2xy   which can 

be shown in the plane as parabola opening upwards. It includes the shaded area and its 
boundary is 2y x  and the range of the function is 0, . 

 
Example 

Consider the function 
xy

w
1

  

Domain of function 
xy

w
1

  is the whole xy-plane, excluding x-axis and y-axis because at 

x-axis, 0y  and at y-axis, 0x .  
Domain: 0 0, 0xy x y     
Domain is entire xy-plane except x-axis and y-axis. 
Range is     ,00,  
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LECTURE  No. 5 
 

         LIMIT OF MULTIVARIABLE FUNCTION  
Example 1: 

)(),( 1 yxSinyxf    

Domain of f  is the region in which 11  y x +   

 
Domains and Ranges 

 

 

 

2 2 2

2 2 2

1) Entirespace 0,

1
2) Entirespace except origin 0,

( , , ) (0,0,0)

3) ln Half space, z 0 ,

Functions Domain Range

x y z

x y z

x y z

xy z







   

 
 



   

 

Examples of domain of a function 
Example 2: 1),(  yxyyxf  

                   Domain of f consists of the region in xy-plane where .1y                                       
                    (Here we take 1 0 for real values.)y   

 

y-axis
x =1x = -1 

y  = 1 

y = -1

x-axis 

-1 ≤ x +y ≤ 1 

-  
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Example 3: 4),( 22  yxyxf  

                   Domain of f consists of the region in xy-plane where .422  yx  It means 
that the points of the domain lie outside the circle with radius 2. As shown in the figure 
 
 
 
                       
 
 
 
 
 
 
 
Example 4:    xy f(x, y) = ln  

For the real values of logarithmic function‚ 0xy which is possible: When 0‚ 0x y      

(3rd quadrant) and when  0‚0  yx    ( 1st quadrant )   Domain of f consists of region 

lying in first and third quadrants in xy-plane as shown below. 

 
Example 5:   =e f(x, y,z) xyz  
Domain of f consists of the entire region of three dimensional space. 

Example 6:
 

 
y

x
f(x, y) =

3

4
2

2




 

.04  take weHere 2 f(x, y)ofvaluesrealforx   

.22 that implies which 4   whereplane- in region of consists  of Domain 2   x    xxyf
 
 
 
 
 
 
 
 
 

Example 7:
 

 zyxz) =f(x, y, 22225                  
2 2 2 2 2 2 2Here we take 25 0 for real valuesof . So, 5x y z f(x, y) x y z        

 

 

 

y
x = 2x = -2
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Domain of f  consists of region in three dimensional space occupied by sphere centre at 
) , , ( 000 and radius 5.  

 

Example 8:
 

 
yx

yxyyxx
f(x, y) =

2

22 223




 

) , f( 00 is not defined but we see that limit exits. 
 

Approaching to (0,0) 
through 
x-axis 

 
f(x, y)  

Approaching to (0,0) 
through 
y-axis 

 
f(x, y)  

) , ( 05.0   0.25 (0,0.1) -0.1 

) , ( 025.0   0.0625 (0,0.001) -0.001 

(0.1,0)  0.01 (0,0.00001) 0.00001 

(-0.25,0)  0.0625 (0,-0.001) 0.001 

(-0.1,0)  0.01 (0,-0.00001) 0.00001 

 
 
 

Approaching to (0,0) through 
                            xy   

 
f(x, y)  

(0.5,0.5)  -0.25

(0.1,0.1)  -0.09

(0.01,0.01) -0.0099

(-0.5,-0.5) 0.75

(-0.1,-0.1) 0.11

(-0.01,-0.01) 0.0101
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Example 9: 

f (x,y) = xy
 x2+y2  

 
 

) , f( 00 is not defined and we see that limit also does not exist. 
 
Approaching to 
(0,0) through 
x-axis (y = 0) 

 
f (x,y) 

Approaching to 
(0,0) through 

y = x 

 
f (x,y) 

( 0.5,0 )  0  ( 0.5,0.5 ) 0.5

( 0.1,0 )  0  ( 0.25,0.25 ) 0.5

( 0.01,0 )  0  ( 0.1,0.1 ) 0.5

( 0.001,0 )  0  ( 0.05,0.05 ) 0.5

( 0.0001,0 )  0  ( 0.001,0.001 ) 0.5

( -0.5,0 )  0  ( -0.5,-0.5 ) 0.5

( -0.1,0 )  0  ( -0.25,-0.25 ) 0.5

( -0.01,0 )  0  ( -0.1,-0.1 ) 0.5

( -0.001,0 )  0  ( -0.05,-0.05 ) 0.5

( -0.0001,0 )  0  ( -0.001,-0.001 ) 0.5
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lim

(x,y)   (0,0)

 
xy

x2 + y2  = 0 (a long y = 0) 

 
lim

(x,y )   (0,0)

 
xy

x2 + y2  = 0.5 (along y = x) 

 
lim

(x,y )   (0,0)

 
xy

x2 + y2  does no t exist. 

 
 

                   
22)0,0(),(

lim
yx

xy
yx 

 

                     Let ),( yx approach )0,0( along the line .xy   

                    
xylinetheAlong

yx

xy
yxf

x
x

x

xx

xx
xxf

yx

xy
yxf

yxyx













 2

1
lim),(lim

0
2

1

2
),(

),(

22)0,0(),()0,0(),(

2

2

22

22

 

Now let ),( yx approach )0,0( along x-axis. On x-axis,  .0y  

.0lim),(lim

00
0

0

0
)0,(

22)0,0(),()0,0(),(

222

axisxlinetheAlong
yx

xy
yxf

x
xx

x
xf

yxyx













 

|Therefore ),( yxf assumes two different values, as ),( yx  approaches )0,0(  along two 

different paths. So 22)0,0(),(
lim

yx

xy
yx 

does not exist.  

We can approach a point in space through infinite paths some of them are shown in the 
figure below: 
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Rule for Non-Existence of a Limit 
If in ),,(lim

),(),(
yxf

bayx 
 we get two or more different values, as ),( yx  approaches ),( ba  

along two different paths, then ),(lim
),(),(

yxf
bayx 

does not exist. 

The paths along which ),( ba is approached may be straight lines or plane curves through 
),( ba  

Example 10 

                    

 
 

        
  

3 2 2
3 2 2

( , ) (2,1)

( , ) (2,1)
( , ) (2,1)

2 23

lim 2 22 2
lim

2 lim 2

2 2 2 1 2 2 1 8 8 2 2
3

42 2 1

x y

x y
x y

x x y x yx x y x y

x y x y





    


 

     
  



 

Example 11 

                   
22)0,0(),(

lim
yx

xy
yx 

 

                   We set   sin,cos ryrx  , then  

                  

  
   
   

2 2 2 2

2

2 2

cos sin

cos sin

cos sin cos sin

1cos sin

cos sin , 0

r rxy

x y r r

r r

r

r r

 

 

   

 
 


 

 


 

  

                       

2 2

2 2( , ) (0,0) 0

, so 0 as ( , ) (0,0)

lim lim cos sin 0 cos sin 0

that cos sin 1 for all values of .

x y r

Since r x y r x y

xy
r

x y
   

  

 

   

   


Note

 

RULES FOR LIMIT 
If   

0 0 0 0
1 2

( , ) ( , ) ( , ) ( , )
lim ( , ) lim ( , )

x y x y x y x y
f x y L and g x y L

 
  , then 

(a)   
0 0

1
( , ) ( , )

lim ( , )
x y x y

cf x y cL


       (if c is constant) 

(b)    
0 0

1 2
( , ) ( , )

lim { ( , ) ( , )}
x y x y

f x y g x y L L


         

(c)          
0 0

1 2
( , ) ( , )

lim { ( , ) ( , )}
x y x y

f x y g x y L L


    

 (d)           
0 0

1 2
( , ) ( , )

lim { ( , ) ( , )}
x y x y

f x y g x y L L


  

 (e)   
0 0

1

( , ) ( , )
2

( , )
lim

( , )x y x y

Lf x y

g x y L
     (if L2 = 0)  
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0 0( , ) ( , )

lim
x y x y

c c


    (c is a constant), 
0 0

0 0
( , ) ( , )

lim
x y x y

x x


 ,
0 0

0 0
( , ) ( , )

lim
x y x y

y y


                    

  
    Similar rules are for the function of three variables. 
 
Overview of lecture# 5 
 
In this lecture we recall you all the limit concept which are prerequisite for this course 
and you can find all these concepts in the chapter # 16   (topic # 16.2)of your Calculus By 
Howard Anton. 
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LECTURE No. 6    
               

GEOMETRY OF CONTINUOUS FUNCTIONS  
Geometry of continuous functions in one variable or Informal definition of continuity of 
function of one variable 
 
A function is continuous if we draw its graph by a pen such that the pen is not raised so that there 
is no gap in the graph of the function. 
 
Geometry of continuous functions in two variables or Informal definition of continuity of 
function of two variables 

 
The graph of a continuous function of two variables to be constructed from a thin sheet of 
clay that has been hollowed and pinched into  peaks and valleys without  creating tears or 
pinholes. 
 
Continuity of functions of two variables 
A function f of two variables is called continuous at the point  0 0,  x y  if f satisfies the 

following conditions: 
1.    0 0,  f x y  is defined. 

2. 
0 0( , ) ( , )

lim ( , ) exists.
x y x y

f x y


             

      3.  
0 0( , ) ( , )

0 0lim ( , ) ,  
x y x y

y f x yf x


  

The requirement that  0 0,  f x y must be defined at the point  0 0,  x y eliminates the possibility of 

a hole in the surface  0 0,  f xz y  above the point  0 0,  x y . 

Justification of three points involving in the definition of continuity 
(1) Consider the function of two variables 2 2 2 2ln( ).x y x y   Now as we know that the Log 
function is not defined at 0, it means that when  0 and   0x y  , our function 

2 2 2 2ln( )x y x y   is not defined.  Consequently the surface 2 2 2 2ln( )z x y x y   will have a 

hole just above the point (0,0) as shown in the graph of 2 2 2 2ln( )x y x y    

 
(2) The requirement that 

0 0( , ) ( , )
lim ( , )

x y x y
f x y


exists ensures us that the surface   ( , ) z f x y of the 

function  ,  f x y  doesn’t become infinite at  0 0,  x y or doesn’t oscillate widely. 
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Consider the function of two variables
2 2

1
.

x y
 Now as we know that the Natural domain of 

the function is whole the plane except origin. Because at origin, we have  0 and  0.x y    In 

the defining formula of the function, we will have 
1

0
 at that point which is infinity. Thus the 

limit of the function 
2 2

1

x y
 does not exist at origin. Consequently the surface 

2 2

1
z

x y



will approach towards infinity when we approach towards origin as shown in the 

figure above.  

 
 

(3) The requirement that  
0 0( , ) ( , )

0 0lim ( , ) ,
x y x y

y f x yf x


   ensures us that the surface 

  ( , ) z f x y of the function ( , ) f x y doesn’t have a vertical jump or step above the point 

 0 0,  x y . 

 
Consider the function of two variables 

0 0 0
( , )

1

if x and y
f x y

otherwise

 
 


  

Now as we know that the Natural domain of the function is whole the plane. But you should note 
that the function has one value “0” for all the points in the plane for which both x and y have 
nonnegative values. And value “1” for all other points in the plane. Consequently the surface  
 

0 0 0
( , )

1

if x and y
z f x y

otherwise

 
  


     It has a jump as shown in the figure. 
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Example 1: Check whether the limit at  0,  0  exists or not for the function  

                                               
2

2 2( , ) (0,0)
lim ( , )

x y

x
f x y

x y



  

Solution:First we will calculate the Limit of the function along x-axis and we get                                                  

               
2

2( , ) (0,0) ( , ) (0,0) ( , ) (0,0)
lim ( ,0) lim lim 1 1

0x y x y x y

x
f x

x  
  


           (Along x-axis, y = 0) 

 
              Now we will find out the limit of the function along y-axis and we note that the limit is      

            
2

2 2 2( , ) (0,0) ( , ) (0,0) ( , ) (0,0) ( , ) (0,0)

0 0
lim (0, ) lim lim lim 0 0

0x y x y x y x y
f y

y y   
   


    (Along y-axis, x = 0) 

 
               Now we will find out the limit of the function along the line y = x and we note that 

            
2 2

2 2 2( , ) (0,0) ( , ) (0,0) ( , ) (0,0) ( , ) (0,0)

1 1
lim ( , ) lim lim lim

2 2 2x y x y x y x y

x x
f x x

x x x   
   


    (Along y = x) 

 
It means that limit of the function ( , )f x y  at  0,  0  doesn’t exist because it has different values 

along different paths. Thus the function cannot be continuous at  0,  0 . And also note that the 

function is not defined at  0,  0  and hence it doesn’t satisfy two conditions of the continuity. 

 
Example 2: Check the continuity of the function at  0,  0  

2 2

2 2

sin ( )
( , ) (0,0)

( , )

1 ( , ) (0,0)

x y
if x y

f x y x y

if x y

 
 

 

  

Solution: First we will note that the function is defined on the point where we have to check the 
Continuity; that is, the function has value at  0,  0 . Next we will find out the Limit of the 

function at  0,  0 and in evaluating this limit, we use the result 
0

sin
lim 1
x

x

x
  and note that 
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lim

(x,y )
 
 (0,0)

 f(x,y) = lim
(x,y )  (0,0)

 
Sin(x2 + y2)

x2 + y2  

=1 = f(0, 0) 

This shows that f is continuous at (0,0) 
 

CONTINUITY OF FUNCTION OF THREE VARIABLES 
A function f of three variables is called continuous at a point (x0, y0, z0) if  

1.   f (x0,y0,z0) is defined. 

2.  
0 0 0( , , ) ( , , )

lim ( , , )
x y z x y z

f x y z


 exists. 

3
0 0 0( , , ) ( , , )

lim ( , , )
x y z x y z

f x y z


=  f(x0, y0, z0). 

EXAMPLE 3:  Check the continuity of the function 

2 2

1
( , , )

1

y
f x y z

x y




 
 

Solution:  First of all, note that the given function is not defined on the cylinder 2 2 1x y  = 0. 

Thus the function is not continuous on the cylinder 2 2 1 0x y    
However, ( , , )f x y z is continuous at all other points of its domain. 
 
RULES FOR CONTINOUS FUNCTIONS 
1)   If g and h  are continuous functions of one variable, then ( , ) ( ) ( )f x y g x h y  is a continuous 
function of x  and .y  
2)   If g is a continuous function of one variable and h  is a continuous function of two variables, 
then their composition ( , ) ( ( ,  ))f x y g h x y  is a continuous function of x  and .y  
3)   A composition of continuous functions is continuous. 
4)   A sum, difference, or product of continuous functions is continuous. 
5)   A quotient of continuous function is continuous, expect where the denominator is zero.  
 
EXAMPLE OF PRODUCT OF FUNCTIONS TO BE CONTINUED 
          In general, any function of the form ( , ) m nf x y A x x  ( m and n non-negative integers) is 

continuous everywhere in the domain because it is the product of continuous functions mA x and 

.nx  The function of the form 2 5( , ) 3f x y x x  is continuous every where in the domain because it 

is the product of continuous functions 2( ) 3g x x and 5( ) .h y y  
 
CONTINUOUS EVERYWHERE 

A function f that is continuous at each point of a region R in 2-dimensional plane or 3-
dimensional space is said to be continuous on R. A function that is continuous at every point 
in 2-dimensional plane or 3-dimensional space is called continuous everywhere or simply 
continuous.  
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EXAMPLES 
(1)   ( , )  ln(2    1)f x y x y    
The function f is continuous in the whole region where 2  1,  2 1x y y x    . And its region is 
shown in figure below. 

y < 2x+1

 
 

(2)  
1( , ) xyf x y e   

The function f is continuous in the whole region of xy-plane. 
 

(3)  
1( , ) tan ( )f x y y x   

The function f is continuous in the whole region of xy- plane. 
 

(4)  ( , )f x y y x   

The function is continuous where x ≥ y  
y

x ≥ y 

 
Partial Derivative 
Let f  a function of x  and .y  If we hold y  constant, say 0y y  and view x  as a variable, then 

0( ,  ) f x y  is a function of x  alone. If this function is differentiable at 0x x , then the value of 

this derivative is denoted by  0 0( ,  ) xf x y  and is called the Partial derivative of f  with respect of 

x  at the point 0 0( ,  ). x y  

Similarly, if we hold x  constant, say 0x x  and view y  as a variable, then 0( ,  ) f x y  is a 

function of y  alone. If this function is differentiable at 0y y , then the value of this derivative is 

denoted by  0 0( ,  ) yf x y  and is called the Partial derivative of f  with respect of y  at the point 

0 0( ,  ). x y  
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Example 4: Let 3 2( , ) 2 2 4f x y x y y x   be a surface. Find the partial derivatives of f with 
respect to x  and y at point (1, 2). 
Solution: Treating y as a constant and differentiating with respect to x , we obtain 

                         2 2( , ) 6 4xf x y x y   

                 Treating x as a constant and differentiating with respect to y , we obtain 

                         3( , ) 4 2yf x y x y   

                 Substituting x = 1 and y = 2 in these partial-derivative formulas yields. 

                           2 2
(1, 2) 6 1 2 4 28xf     

                           3
(1,2) 4 1 2 2 10yf     

Example 5: Let 2 4 54 2 7z x y x y   be a surface. Find the partial derivatives of z with respect 
to x  and .y  

2 4 5 3 5 4 44 2 7 8 28 , 2 3: 5
z z

z x y x y x x y x y
x y

 
       

 
Solution   

Example 6:  Let 
2 2( , )z f x y x sin y   be a surface. Find the partial derivatives of z with 

respect to x  and .y  

Solution: 
2 2( , )z f x y x sin y   

      Then to find the derivative of f with respect to x, we treat y as a constant.  

      Therefore,   
22 sinx

z
f x y

x


 


 

      Then to find the derivative of f with respect to y, we treat x as a constant.  

                           2 22sin cos sin 2y

z
f x y y x y

y


  


 

Example 7:  Let  
2 2

ln
x y

z
x y

 
   

 be a surface. Find the partial derivatives of z with respect to 

x  and .y  
Solution: By using the properties of the ln, we can write it as 

z = ln(x2 + y2)  ln (x + y) 

z
x

 = 
1

x2 + y2 . 2x  
1

x + y 

    = 
2x2 + 2xy  x2  y2

(x2 + y2)(x + y)   

    = 
x2 + 2xy  y2

(x2 + y2)(x + y)   
            Similarly by symmetry,                                       
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Example 8: Find the partial derivatives of  4 3sinz x xy with respect to x  and .y  

Solution: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Example 9: Find the partial derivatives of 5 4cos ( )z x y with respect to x  and .y  
Solution: 

z = cos(x5y4) 

)()sin( 4545 yx
x

yx
x

z








 

          
)sin(5 4544 yxyx  

)()sin( 4545 yx
y

yx
y

z








 

          
)sin(4 4535 yxyx  

Example 10: Find the partial derivatives of 2 2 23 4w x y z x y z    with respect to ,x y  and .z  
Solution: 

w = x2 +3y2+4z2-xyz  
w
x

 = 2x  – yz 

w
dy  = 6y - xz 

dw
dz = 8z - xy 

 
 

4 3

4 3

4 3 3 4

4 3 3 3 3

4 3 3 3 3

sin( )

sin( )

sin( ) sin( ) ( )

cos( ) sin( ) 4

cos( ) 4 sin( )

z x xy

z
x xy

x x

x xy xy x
x x

x xy y xy x

z
x y xy x xy

x


      

     
 


 



4 3

4 3 3 4

4 3 2 3

5 2 3

sin( )

sin( ) sin( ) ( )

cos( ) 3 sin( ).0

3 cos( )

z
x xy

y y

x xy xy x
y y

x xy xy xy

x y xy

      
     

 


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LECTURE No.7 
 

           GEOMETRIC MEANING OF PARTIAL DERIVATIVE  
 
Geometric meaning of partial derivative 

                                              z = f(x, y) 

Partial derivative of  f with respect to x is denoted by .
x

f
orfor

x

z
x 





 

Partial derivative of  f  with respect to y is denoted by .
y

f
orfor

y

z
y 





 

Partial Derivatives 
Let z = f(x, y) be a function of two variables x and y defined on a certain domain D. 
For a given change ∆x in x, keeping y as constant, the change ∆z in z, is given by 
                           ),(),( yxfyxxfz   

If the ratio  
x

yxfyxxf

x

z






 ),(),(

  approaches to a finite limit as ∆x →0, then this limit is 

called Partial derivative of f  with respect to x. 
Similarly for a given change ∆y in y, keeping x as constant, the change ∆z in z, is given by  
                         ),(),( yxfyyxfz   

If the ratio 
y

yxfyyxf

y

z






 ),(),(

 approaches to a finite limit as ∆y →0, then this limit is 

called Partial derivative of f  with respect to y. 
 
Geometric Meaning of Partial Derivatives 
Suppose z = f(x, y) is a function of two variables x and y. The graph of f  is a surface. Let P be a 
point on the graph with the coordinates )),(,,( 0000 yxfyx .  

 

 
If a point starting from P, changes its position on the surface such that y is constant, then the 
locus of this point is the curve of intersection of  z = f(x, y) and y = constant. On this curve, 

x

z


 is a derivative of z = f(x, y) with respect to x with y constant.    
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Thus, 
x

z


 = slope of the tangent to this curve at P.

 
 Similarly, 

y

z


 is the gradient of the tangent at 

P to this curve of intersection of z = f(x, y) and      x = constant.  As shown in the figure below 
(left).  Also together these tangent lines are shown in figure below (right). 
 

 
Partial Derivatives of Higher Orders  
The partial derivatives xf and yf of a function f of two variables x and y, being functions of x and 

y, may possess derivatives. In such cases, the second order partial derivatives are defined as 
below: 

                         

   

   

   

   

2

2

2

2

2

2

2

2

x x x xx x

x x y xy

y y x yx

y y y yy y

f f
f f f f

x x x x

f f
f f f

y x y x y

f f
f f f

x y x y x

f f
f f f f

y y y y

              
              
    

         
    

         

 

Thus there are four second order partial derivatives for a function z = f(x, y). The partial 
derivatives xyf  and yxf  are called Mixed Second partials and are not equal in general. Partial 

derivatives of order more than two can be defined in a similar manner.  

Example 1: Find 
2z

x y


 

and 
2 z

y x


 

 for sin
x

z arc
y

 
  

 
 

2 2 2 2 2

1

1

: sin

1 1
sin

x

y

x
z arc

y

z x x y
arc

x x y x y yy x y x


 
  

 
        

                     
 
 

Solution
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22 2 2 2 2

1
sin

1

z x x y x x
arc

y y y y y yy x y y xx

y

          
                     

 
 

 

     

   
   

     

32
2 2 2 22

3 3
2 2 2 22 2

2 2 2 2

3 3 32 2
2 2 2 2 2 22 2 2

2 2

1 1
2

2
2

1 1 2

2

Here, you can see that

z z y
y x y x y

y x y x y
y x y x

z z x x y x x y

x y x y yy y x y x y y x y x

z z

y x x y

                     

 
                            

 


   

 

Example 2: 
2 2 2 2

2 2
Find , , and for ( , ) cos .xf f f f

f x y x y y e
x y y x x y

   
 

     
 

 

 

 

 

 

2

2

2

2

2

2

: cos cos

cos sin

cos 0

cos sin

sin sin

x x

x x

x x x

x x

x x

f
x y y e y y e

x x
f

x y y e x y e
y y

f f
y y e y e y e

x x x x

f f
y y e y e

y x y x y

f f
x y e y e

x y x y x

f

y y

 
   

 
 

    
 

              
              

    
           

  


 

Solution

 sin cosxf
x y e x y

y y

  
      

 

 
Laplace’s Equation 
For a function ),,( zyxfw , the equation  

                                    0
2

2

2

2

2

2













z

f

y

f

x

f
 

                                                                          is called Laplace’s equation. 
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Example 3: Show that the function ( , ) sin cos satisfies the Laplace’s equation.x yf x y e y e x    

Solution:  xeyeyxf yx cossin),(   

               

 

 

 

 

2

2

2

2

sin cos sin sin

sin cos cos cos

sin sin sin cos

cos cos sin cos

x y x y

x y x y

x y x y

x y x y

f
e y e x e y e x

x x
f

e y e x e y e x
y y

f f
e y e x e y e x

x x x x

f f
e y e x e y e x

y y y y

 
   

 
 

   
 

             
    

         

 

Adding both partial second order derivatives, we have  

                         
2 2

2 2
sin cos sin cos 0x y x yf f

e y e x e y e x
x y

 
      

 
 

Euler’s Theorem  
The Mixed Derivative Theorem 
If f(x, y) and its partial derivatives , ,  x y xyf f f and yxf  are defined throughout an open region 

containing a point (a, b) and are all continuous at (a, b), then   
                                                    ( ,  )   ( ,  )xy yxf a b f a b  

Advantage of  Euler’s theorem 

                                  
12 


y

e
xyw

y

 

The symbol 
yx

w


 2

 tells us to differentiate first with respect to y and then with respect to x. 

However, if we postpone the differentiation with respect to y and differentiate first with respect 
to x, we get the answer more quickly.  

                   

 

2

2

0
1

and 1

yw e
xy y y

x x y

w w
y

y x y x y

  
        

            

 

                                                              
Overview of lecture# 7 

Chapter # 16   Partial derivatives  
Page #  790   Article # 16.3 
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LECTURE No. 8          
 

MORE ABOUT EULER THEOREM, CHAIN RULE  
 
In general, the order of differentiation in an nth order partial derivative can be changed 
without affecting the final result whenever the function and all of its partial derivatives of 
order less than n are continuous.  
 
For example, if f  and its partial derivatives of the first, second and third orders are 
continuous on an open set, then at each point of the set, 

    3 3 3

2 2
or in another notation,

xyy yxy yyx

f f f

y x y x y x y

f f f

  
 

      

 
 

Order of Differentiation 
 
For a function 2 4( , ) 2xf x y y x e                  

If we are interested to find 
5

3 2

f

y x


 

 , that is,  differentiating in the order firstly w.r.t. x  

and then  w.r.t. y , then the calculation will involve many steps making the job difficult. 
But if we differentiate this function with respect to y  first, and then with respect to x  
secondly then the value of this fifth order derivative can be calculated in a few steps. 

     

     

   

 

2

2

3 2 4 3

3 2 3 3

4

3

2 4 4 2 4 4

4 4 4 4

4

5

2 3

2 0

2 2 2

2 0, 0 0

0 0

2 2 2

2 1

x x x x

x x x x

x

y y y y

y y y y y

y y y y x y x y x

x x y x

f
y x e x e y x e y yx e

f f
yx e x e y x e x e

f f f f
x e

f f
x y

    
   

 
         

   
                   

 
      

    

    

       

   
 

 

 

       

   2 2

 : Let  ( , ) . Find and .

2
:

x y

x

x y
f x y

x y

x y x y x y x yx y yx xf
x x x y x y x y

f f

f






                

 
 

EXAMPLE 1

Solution

  

                

       

   2 2

2
y

x y x y x y x y
x y xy y

f
y y x y x y x y

f
    

            

 
 
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EXAMPLE 2: If 3 3( , ) secyf x y x e y x  , then find the partial derivatives of f(x, y) 
with respect to x and y.   
Solution: 

                  

3 3

2 3

2 3

( , ) sec

3 sec tan

1
3 sec tan

2

y

y

y

x

f x y x e y x

f e x y x x x
x x

x e y x x
x

f







 

       
    
 

 
  

                    3 2 3 2sec 3 3 secy y
y f x e x y x e y x

y
f         




 

EXAMPLE 3:   If 2( , ) xyf x y x y e , then find the partial derivatives of f(x, y) with 
respect to x and y at (1, 1).   

 
     

 
         

2

2 2 2

1 1

: ( , )

( , ) 2

( , ) 2

(1,1) 1 1 2 1 1 3

xy

xy xy xy xy

xy

x

x

x

f x y x y e

x y f y x e x e y x e x e xy
x x x x

x y xye xy

e e

f

f

f



                
 

    

   
Solution

  

               

   

   

        

2

2 2

2 1 1

( , ) ( , )

( , ) 1 1

(1,1) 1 1 1 1 2

xy xy

xy xy xy

y

y

y

x y f x y x y e y e
y y y

x y x e y e xy x e xy
y

e e

f

f

f

 
      

 
       

    

  


 

 
Example 4:  If  2( , )f x y x Cos xy , then find the partial derivatives of f(x, y) with 

respect to x and y at
1

( ,  )
2

 .   

 

         

           

2

2 2 2

2

2 2 2 3

: ( , )

( , ) 2

1 1 1 1 1 1
( , ) 2 0 1
2 2 2 2 2 4 4

Now ( , )

x

x

y

y

f x y x Cos xy

f x y x Cos xy x Cos xy xCos xy x y Sin xy
x x

f Cos Sin

f x y x Cos xy x Cos xy x Sin xy xy x Sin xy
y x y

f

    



 
    
 

                         
         

  
     
  

Solution

3
1 1 1 1

2 2 8 2 8

1
( , )
2

Sin Sin


                     
       
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EXAMPLE 5:    
4

5

2
Let 4 3 2 .Find .

w
w x y z

z y x


  

  
   

 

     

  
     

5

4 4

2
4

3 3

: 4 3 2

5 4 3 2 4 3 2 20 4 3 2

20 4 3 2

20 4 4 3 2 4 3 2 240 4 3 2

w x y z

w
x y z x y z x y z

x x

w w
x y z

y x y x y

x y z x y z x y z
y

  

 
       

 
             


         



Solution

  

  
     

3 2
3

2 2

240 4 3 2

240 3 4 3 2 4 3 2 1440 4 3 2

w w
x y z

z y x z y x z

x y z x y z x y z
z

    
            


          



  

  
     

4 3
2

2
1440 4 3 2

1440 2 4 3 2 4 3 2 5760 4 3 2

w w
x y z

z y x z z y x z

x y z x y z x y z
z

    
             


          



    

Chain Rule 
I   - Chain Rule in function of One Variable 
The function ( )f x  depends on one variable x , and x depends on single variable t . 

   

   

Given that   and   ,  we find as follows:

From   ,  we get , From   ,  we get

Then

dw
w f x x g t

dt
dw dx

w f x x g t
dx dt

dw dw dx
dt dx dt

 

 



  

Example 6:   Let 4,w x x Sin t   . Find
dw

dt
, using the chain rule. 

4,: w x x Sin t  Solution   

 
   

   

4 1 0 1, cos

By Chain Rule,  1 cos cos

dw d dx d
x Sin t t

dx dx dt dx
dw dw dx

t t
dt dx dt

      

  
 

 
 
 
 
 



8-Euler theorem chain rule                                                                                                                           VU 
 

 
© Copyright Virtual University of Pakistan 

 

43

Chain Rule in function of one variable 
is a function of , is a function of ,

is a function of , is a function of ,

is a function of . Ultimately, is a function of .So we can talk about .

By the Chain Rule,

y u u v

v w w z

dy
z x y x

dx
dy dy du dv dw dz
dx du dv dw dz dx



 

 
II  When the function f is a function of two variable x and y.  And x and y  are 
functions of one variable t . 

w = f(x,y),  x  = g(t), y = f(t) 

 
EXAMPLE BY SUBSTITUTION 

Let , , . Find by Substitution method.
dw

w x y x cos t y sin t
dt

     

 

, ,

1 1
2 sin 2

2 2
1

cos 2 2 cos 2
2

: By subtitution, w x y x cos t y sin t

w cos t sin t cos t sin t t

dw
t t

dt

  

   

  

Solution

  

   

     

 

 : Let , cos , and sin . Find by chain rule.

: Given , cos , and sin

cos sin
, , sin , cos

sin cos

sin

dw
w xy x t y t

dt
w xy x t y t

xy xyw w dx d t dy d t
y x t t

x x y y dt dt dt dt

dw w dx w dy
y t x t

dt x dt y dt

sin t

  

  

  
        

   
 

    
 

 

EXAMPLE 7

Solution

     2 2cos cos 2t cos t t sin t cos t t    
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EXAMPLE 8:  2 3 4 2Let  3 , , . Find  .
dz

z x y x t y t
dt

                  

       

     

          

2 3 4 2

2 3 3 3 2 3 2 2 2 2

3

3 3 2 2

3 2 24 2 3 4 2 13 13 13

: Given  3 , ,

3 3 2 6 , 3 3 3 9

4 , 2  

6 4 9 2

6 4 9 2 24 18 42

z x y x t y t

z z
x y x y xy x y x y x y

x x y y

dx dy
t t

dt dt
dz z dx z dy

xy t x y t
dt x dt y dt

t t t t t t t t t

  
   

     
   

 

 
   
 

    

Solution

EXAMPLE 9: 4Let 1 2 , ln , . Find  by the Chain Rule.
dz

z x xy x t y t
dt

       

Solution: 4Given 1 2 , ln ,z x xy x t y t                 

   

   

 

1 4
4 42

4

1 3
4 42

4

4 3

4 4

4
3

4

1 1 2
1 2 1 2

2 2 1 2

1 4
1 2 1 2

2 1 2

ln 1
 =  ,  =1

1 2 1 4
1

2 1 2 1 2

1 1 2
4

21 2

z y
x xy x xy

x x x xy

z xy
x xy x xy

y y x xy

dx d t dy d
t

dt dt t dt dt

dz z dx z dy y xy

dt x dt y dt tx xy x xy

y
xy

tx xy





  
     

   

 
     

   

 

  
     
     

 
   

     
 3 3

4

1 1
4 ln

21 ln 2 ln
t t t

tt t t

   
  

 

EXAMPLE 10:  
2

2 3Let ln ( 2 ), , . Find ,  using Chain Rule.
dz

z x y x t y t
dt

     

     

     

2

2

3

2 2

2 2 2

2 2

2 2 2

2
23 1
3

1

3

: ln ( 2 ) ( , )

, ( ), ( )

ln ( 2 ) 21 1 4
4

2 2 2

ln ( 2 ) 21 1 1
0 1

2 2 2

1 2 2
,

32
3

z x y z F x y

x t y t x g t y f t

x y x yz x
x

x x x y x x y x y

x y x yz

y y x y y x y x y

dx d t dy dt
t

dt dt dt dtt
t



  

   

   
   

     

   
    

     

    

Solution
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   

12 2
3

1

3

2 2 1 2 1 2 1 22 2
3 3 3 3 3 3 3 3

4 1 1 2

2 22
3

4 1 1 2 2 2 6 2

2
2 2 3 2 3 2 3 2

dz z dx z dy x

dt x dt y dt x y x yt
t

t t

t
t t t t t t t t t t t t t

 
                         

 
                                               

III  When the function f is a function of three variable x, y and z. And x, 
y and z  are functions of one variable t . 
 
                       w = f(x,y,z), x  = g(t) ,y = f(t), z = h(t)  
 
 

 
dw w dx w dy w dz
dt x dt y dt z dt

    
  

 

 
 
Overview of Lecture#8 
Book Calculus by Howard Anton  
( Chapter # 16 -  Topic # 16.4,   Page #   799) 
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LECTURE No. 9         
 

 EXAMPLES 
 
First of all, we revise the example which we did in our 8th lecture. 
Consider w = f(x , y, z) , where  x  = g(t),  y = f(t),  z = h(t) , then 
 

                        dt
dz

z
w

dt
dy

y
w

dt
dx

x
w

dt
dw













 

Example 1: Consider a function 2 4, then find .
dw

w x y z
dt

     

Solution: 
w = x2 + y + z + 4 
x = et,          y = cost,       z = t + 4 
w
x

  = 2x,    
w
y

  = 1,       
w
z

  = 1 

dx
dt

  = et ,    
dy
dt

 = Sint,   
dz
dt

  = 1 

dw
dt

  = 
w
x

  
dx
dt

  + 
w
y

  
dy
dt

  + 
w
z

  . 
dz
dt

  

       =  (2x) (et) + (1) . ( Sint) + (1) (1) 
       =  2 (et) (et)  Sint + 1 
       =  2 e2t  Sint + 1  

Consider  w = f(x), where x = g(r, s). Now it is clear from the figure that “x” is 

intermediate variable and we can write  and
w dw x w dw x

r dx r s dx s

   
 

     

 

     

2

2

 : If , 3 4 , then find .

: sin , 3 4

cos 2 , 3, 4

cos 2 3 3cos 6 3cos 3 4 6 3 4

w w
w Sin x x x r s and

r s

w x x x r s

dw x x
x x

dx r s
w dw x

x x x x r s r s
r dx r

 
   

 
   

 
   

 
 

         
 

Example 2

Solution
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 

     

 

3cos 3 4 18 24

cos 2 4 4cos 8 4cos 3 4 8 3 4

4cos 3 4 24 32

r s r s

w dw x
x x x x r s r s

s dx s
r s r s

   

 
         

 
   

 
 

                          
Consider the function w = f(x, y), where x = g(r, s), y = h(r, s)  

 

         

w
 r

 =  
w
x

 
x
 r

 +  
w
y

 
y
 r

  
   

Similarly, if you differentiate the function w  with respect to s  we will get 

 

           

w
s

 = 
w
x

 
x
s

 + 
w
y

 
y
s
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     Consider the function   , , ,  where   ,  ,   , ,    ,  ( )w f x y z x g r s y h r s z k r s      

 
Thus we have 

w
r

 = 
w
x

 
x
r

 + 
w
y

 
y
r

 + 
w
z

 
z
r

  
 

Similarly if we differentiate with respect to s  then we have, 

w
s

 = 
w
x

 
x
s

 + 
w
y

 
y
s

 + 
w
z

 
z
s

  

2 2 : Consider the function 2 , , ln , 2 .
r

w x y z x y r s z r
s

      Example 3   

Solution: 

First we  calculate 
1

 1,  2,  2 ,  ,  2 ,  2
w w w x y z

z r
x y z r s r r

     
     

     
                         

            

Since    

1 1 1
(1) (2)(2 ) (2 )(2) 4 (4 )(2) 12

w w x w y w z

r x r y r z r

w
r z r r r

r s s s




      
  

      

         
 

 

By putting the values from above, we get 
2

1
,  ,  0

x r y z

s s s s s

  
   

  
  

So we can calculate 
 

  
 
 

   
w w x w y w z

s x r y r z r

      
  

      

2 2

1 2
(1) (2) (2 )(0)

r r
z

s s s s
           
   
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Remembering the Different Forms of the Chain Rule: 
The best thing to do is to draw appropriate tree diagram by placing the dependent 
variable on top, the intermediate variables in the middle, and the selected independent 
variable at the bottom.  
 
To find the derivative of dependent variable with respect to the selected independent 
variable, start at the dependent variable and read down each branch of the tree to the 
independent variable, calculating and multiplying the derivatives along  
the branch. Then add the products you found for the different branches.  
 

The Chain Rule for Functions 
of Many Variables  

S up p o se    =  f ( x, y, … .,  ) is  a  
d iffe re nt iab le  fu nc t io n o f t he  
va r iab les x,  y, … ..,    (a  fin ite  
se t) a nd  t he  x, y, … ,   a re  
d iffe re nt iab le  fu n c t io ns o f p , q ,  , t  
(ano the r fin it e  se t ). T he n   is  a  
d iffe re nt iab le  fu nc t io n o f t he  
va r iab les p  t hro u g h t a nd  t he  
p a rt ia l d e r iv a t iv es o f   w ith  
re sp ec t to  t he se  va r iab le s a re  
g iv e n b y eq ua t io ns o f t he  fo r m   
 

 
 
 p

  =  
    x
 x   p

  +  
    y
 y   p

  +  … …  +  
    
    p

 .   
 

The other equations are obtained by 
rep lacing p by q, …, t, one a t a time.  
 One way to remember last equation 
is to think of the right- hand side as 
the dot product o f two vectors with 
components.  

 








x
  

y

 …… 



      and     






x

p
  
y
p

 …… 

p

  

Derivatives of  with
respect to the
intermedaite variables

         
Derivatives of the intermedaite

 
variables with respect to the
selected independent variable

 

       4

 :For the  function ln( ),find where .r s t u
rstu rstu

w
w e e e e w w

u t s r


    

   
Example 4  

 Solution:  ln ( )r s t uw e e e e     

                      
ln ( )

ln

Take anti-log on both sides

(1) since

r s t uw e e e e

w r s t u x

e e

e e e e e e x

  

        
      

        Take derivative with respect to r, 
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( )

( 0 0 0)
w r s t u

re e e e e
e

r r

    
    

 
  

               

(2)

w r
r r

r
r w

r w

w
e w e Since w

r

e
w e

e



 



     
         

 Take derivative with respect to s, 

                     

( )
(0 0 0)

(3)

w r s t u
s

w s
s s

s
s w

s w

e e e e e
e

s s
w

e w e Since w
s

e
w e

e


    
    

 


 


     

 

Similarly, by taking derivative of (1) with respect to u, we get     
                             u w

uw e         -----(4) 

Similarly, by taking derivative of (1) with respect to t, we get     
                             t w

tw e          -----(5) 

Now differentiate equation (2) with respect to s, 

              
2

( )
(0 ) since is kept constant

(3)

r w r w
r wr

r w r w s w
rs s

r w s w r s w
rs

w e e r w w
e r

s s s s

w e w e e by

w e e

 


  

    

    
   

   
   

  

 

Now differentiate it with respect to t,  
2

2

2

2 2 2

3

3
3

3

( 2 )

2
(0 0 ) since is kept constant

( 2 ) 2 2

2 (5)

2 ( 3 )
2

2 (0

r s w
r s wrs

r s w

r s w r s w r s w t w
rst t t

r s t w

r s t w
r s t wrst

r s t w
rstu

w e r s w
e

t t t
w

e r
t

w e w e w e e

e by

w e r s t w
e

u u u

w e

 
 

 

      

  

  
  

  

    
  

  


  


   



     
 

  



3 3

4

3
0 0 )

2 ( 3 ) 6

6 (4)

r s t w r s t w u w
u

r s t u w

w

u

e w e e

e by

      

   


  


  

 
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LECTURE No. 10           
 

INTRODUCTION TO VECTORS  
 

Some of things we measure are determined by their magnitude, but some times we need 
magnitude as well as direction to describe the quantities. For example, to describe a force, we 
need the direction in which that force is acting (Direction) as well as how large it is (Magnitude). 
Another example is the body’s velocity; we have to know where the body is headed as well as 
how fast it is. 
                       Quantities that have direction as well as magnitude are usually represented by 
arrows that point the direction of the action and whose lengths give magnitude of the action in 
term of a suitably chosen unit. 
                        A vector in the plane is a directed line segment.     

B            

                                           v

 

 
                     A 

v AB
 

 
Vectors are usually described by the single bold face Roman letters or letter with an arrow. The 

vector defined by the directed line segment from point A to point B is written as AB


. 
 
Magnitude or Length of  a Vector :   

Magnitude of the vector v


 is denoted by   

                                                   v AB
 

   

which is the length of the line segment AB


 
 
Unit vector: Any vector whose magnitude or length is 1 is a unit vector. 

Unit vector in the direction of vector v


 is denoted by v  and is given by   
v

v
v




                                                    

Addition of Vectors 
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This diagram shows three vectors in two vectors; one vector OA


 is connected with tail of 

vector AB


. The tail of third vector OB


 is connected with the tail of OA


 and head is connected 

with the head of vector AB


.This third vector is called Resultant vector r


. 
 

The resultant vector r


 can be written as r a b 
  

 

Similarly,        r a b c d e f     
      

                    
 

 
Equal Vectors:  Two vectors are equal or same vectors if they have same magnitude and  

direction.   a b
 

 

 

                                               a


 

 
                                           b


 

Opposite Vectors: Two vectors are opposite vectors if they have same magnitude and opposite 
directions. 
 

                                    a

 

 
                                         a


 

 

Parallel Vectors: Two vectors a

 and b


 are parallel if one vector a


 is scalar multiple of the 

otherb


. 

                               where is a non-zero scalar.b a 
    
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r = x i+ y j + z k 

 
Addition and subtraction of two vectors in rectangular component: 
 
 

 
 
 
 
 
The ith component of first vector is added to ( or subtracted from) the ith component of second 
vector, jth component of first vector is added to (or subtracted from) the jth component of second 
vector, similarly kth component of first vector is added to ( or subtracted from) the kth 
component of second vector. 
 
Multiplication of a Vector by a Scalar 
 

 
 
 
 
 
 
 

3a ‐2a

Let   a = a1i + a2j + a3k
and   b = b1i + b2j + b3k 
  a + b = (a1i + a2j + a3k) + (b1i + b2j + b3k) 
           = (a1 + b1 )i +  (a2 + b2 )j + (a3 + b3)k 
   a - b = (a1i + a2j + a3k) - (b1i + b2j + b3k) 
           = (a1  - b1 )i +  (a2 -  b2 )j + (a3 -  b3)k 
 

a 
2a 
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Any vector a


can be written as a a a
 

 

Scalar Product:  Scalar product (dot product) (“ a


 dot b


”) of vector a


 and b


 is the number 
which is given by the formula: 

                              .   | |  | |  cos a b a b 
   

 

                                                                                 where  is the angle between a


and b


. 

In words, .a b
 

is the length of a


times the length of b


 times the cosine of the angle between a


 

andb


. 

Remark: This is known as commutative law.              . .a b b a
   

 

 
Some Results of Scalar Product 
                           

                 .   | |  | |  cos a b a b 
   

 

 1)     If     a b
 

,  then it means that a


 is perpendicular to b


 

         So     
0 0. 0 since 90 , 90 0a b Cos  

 
 

        ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆAlso 0 , 0 , 0i j j i j k k j k i i j             

2)   If  a b
 
�  the it means a


 is parallel to b


. 

  So          . . since 0, 0 1a b a b Cos  
   

                 

      If we replace b


 by a


,  then 
 

                    
2

. .a a a a a 
    

   

            So    
      .   .    .   1i i j j k k       

 
Example 

                  

 

 

   

If 3 and 2 2 , ,
4

then .   | |  | |  cos  | 3 |  | 2 2 |  cos  
4

1 6
3 2 3 2

2 2

a k b i k

a b a b k i k





   

  

    
 

 


   
  



10-Introduction to Vectors                                                                                                                         VU 

 

                                                                                                                                                                                    

 

© Copyright Virtual University of Pakistan 

 

55

 
 
EXPRESSION FOR a . b IN COMPONENT FORM 

          

 
 

       
In dot product, the ith component of vector a


 will multiply with ith component of vector b


, 

jth component of vector a


 will multiply with jth component of vector b


 and 

kth component of vector a


 will multiply with kth component of vector .b


 
 

Angle between Two Vectors 

The angle   between two vectors a


 and b


 is 

                                                      1 .

.

a b
Cos

a b
 

 
 
 
 

 

   

Since the values of arc-cosine lie in  0,  , so the above equation automatically gives the angle 

made between a


 and .b


 

Example : Find the angle between the vectors    2 2 and 6 3 2 .a i j k b i j k     
 

   
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              

           

  

2 2 2 2 2 2

1 1 1

. 2 2 . 6 3 2 1 6 2 3 2 2

6 6 4

:

4

1 2 2 9 3, 6 3 2 49 7

. 4 4
1.76

3 7 21.

a b i j k i j k

a b

a b
Cos Cos Cos radians

a b
   

         

    

           

                  

Solution
 

 

 

 

 

 

Perpendicular ( Orthogonal )Vectors 

The non-zero vectors a


 and b


 are perpendicular if and only if . 0a b 
 

 

This statement has two parts If a


 and b


 are per perpendicular, then . 0a b 
 

. And 

if . 0a b 
 

, then  a


 and b


 are per perpendicular. 
 
Vector Projection 
Consider the Projection of a vector b


 on a vector a


 making an angle  with each other 

 

                                                    

From right angle triangle ,

.

OCB

OCbase
Cos

hypotenuse b

OC b Cos

a b a
b Cos

a a







 



 





 

  

 

 

O  C 

B 

a 

b 

 
A
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Projection of along . where is the unit vector along . 

. .

.

a a a
b a b a

a a a

b a b a
a a

a aa a

   
   
   
   

 

  
   

  

   
 

  

 

The number b Cos


 is called the scalar component of b


 in the direction of a


 because 

.b Cos b a 
 

 

Example :    Find the vector projection of 6 3 2 onto 2 2 .b i j k a i j k     
 

   
Solution: 

.
Projection of onto

.

b a
b a a

a a

 

  
   

 

         
           

Here, . 6 3 2 . 2 2 6 1 3 2 2 2 6 6 4 4

. 2 2 . 2 2 1 1 2 2 2 2 1 4 4 9

b a i j k i j k

a a i j k i j k

              

                

 
 

 
 

 

                . 4 4 8 8
Projection of onto 2 2

9 9 9 9.

b a
b a a i j k i j k

a a


       
 

  
    

The scalar component of b


 in the direction of a


 is .b Cos


 

   
     

     
   

2 2 2

6 3 2 . 2 2 6 1 3 2 2 2. 6 6 4 4

3 391 2 2

i j k i j kb a
b Cos

a


           
    

   

   
  

 
The Cross Product of Two Vectors in Space 

Consider two non-zero vectors anda b
 

in space. The vector product (" ")a b a cross b
   

 to be 

the vector a b a b Sin n 
   

  where n  is the unit vector determined by the Right Hand rule. 
 
Right-hand rule 
 
We start with two nonzero nonparallel vectors A and B .We select a unit vector n perpendicular 
to the plane by the right handed rule. This means we choose n to be the unit vector that points 
the way your right thumb points when your fingers curl through the angle 0 from A to B. 
The vector A B is orthogonal to both A and B. 
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Some Results of Cross Product a b

 
 

As we know that       a b a b Sin n 
   

                       

   



   

    

   

0

0

1) If , then 0 since 0 0

Similarly, 0 and 0

2) If , then since 90 1

, ,

,

,

a b a b Sin

a a i i j j k k

a b a b a b n Sin

Similarly i j k j i k

j k i k j i

k i j i k j

  

       

   

    

    

   

    
�

   
 

     

 



 

 

 
Note that the vector product is not commutative. 
The Area of a Parallelogram 



 

Because is a unit vector and magnitude of is

1

n a b

a b a b Sin n a b Sin Since n 



   

 

       
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 This is the area of parallelogram which is determined by anda b

 
 where a


is the base and 

b Sin


 is the height of the parallelogram. 

a  b from the components of a and b 
   

     
          
      

    

1 2 3 1 2 3

1 2 3 1 2 3

1 1 2 3 2 1 2 3 3 1 2 3

1 1 1 2 1 3 2 1 2 2 2 3

3 1 3 2 3 3

1 1

and

0

a a i a j a k b b i b j b k

a b a i a j a k b i b j b k

a i b i b j b k a j b i b j b k a k b i b j b k

a b i i a b i j a b i k a b j i a b j j a b j k

a b k i a b k j a b k k

a b

     

      

           

           

    

 

 
 

 
 

   

    



      
    

1 2 1 3 2 1 2 2 2 3

3 1 3 2 3 3

0

0

a b k a b j a b k a b a b i

a b j a b i a b

      

  





 

               

       
 

2 3 3 2 1 3 3 1 1 2 2 1

1 2 3

1 2 3

a b a b i a b a b j a b a b k

i j k

a a a

b b b

     






 

Example:     Let 2 and 4 3 , then find .a i j k b i j k a b      
   

   
Solution: 

                    

 

         2 1 1 1 3 2 4 6 4 2 6 10

4 3 1

i j k

a b i j k i j k           



 

   

Over view of Lecture # 10 
Chapter# 14: Article # 14.3, 14.4    Page # 679 
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LECTURE No. 11           
 

THE TRIPLE SCALAR OR BOX PRODUCT 

The product  a b c 
 

 is called the triple scalar product of , anda b c
 

( in that order). 

As     a b cosa b c c   
  

 

So the absolute value of the product is the volume of the parallelepiped (parallelogram-

sided box) determined by , and .a b c
 

 

 
By treating the planes of andb c

 
 and of and ac 

 as the base planes of the 

parallelepiped determined by , and .a b c
 

 

We see that        a ba b b c c ac      
    

 

Since the dot product is commutative,    a b c a b c   
    

   

 

    2 3 1 3 1 2

1 2 3

2 3 1 3 1 2

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

ˆ ˆˆ ˆ ˆ ˆ

   Show that     

ˆˆ ˆConsider

ˆˆ ˆ

ˆˆ ˆ

ˆˆ ˆ
b b b b b b

a i a j a k i j k
c c c c c c

a a a

a b c b b b

c c c

a a i a j a k

b b i b j b k

c c i c j c k

i j k

a b c a b b b

c c c



        

 

  

  

  

   

Example :

Proof :

 







  

 

2 3 1 3 1 2

1 2 3

2 3 1 3 1 2

1 1 1

1 2 3

1 2 3

So,

b b b b b b
a a a

c c c c c c

a a a

a b c b b b

c c c

  

  



   
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Example :  2 2 3 7 4 .ˆ ˆ ˆˆ ˆ ˆ ˆLet , , . Finda i j k b i k c j k a b c        
    

  

Solution: 

                 

   

     

1 2 1
0 3 2 3 2 0

2 0 3 1 2 1
7 4 0 4 0 7

0 7 4

1 0 21 2 8 0 14 0

21 16 14 23

a b c


 
    

 


      

   

  
 

  

When we solve  a b c 
 

, then answer is 23.  If we get negative value, then Absolute 

value makes it positive and also volume is always positive. 
Gradient of a Scalar Function 

                                            ˆˆ ˆ
x y z

i j k  
 

  
    

                                                                          where   is called “del” operator. 
Gradient   is a vector operator defined as  

                                     
grad 

=

ˆˆ ˆ
x y z

i j k 



   
     


 
  

  “del operator” is a vector quantity. Grad means gradient. Gradient is also vector 
quantity.  is vector and   is scalar quantity. 
Directional Derivative 
 
If ( , )f x y  is differentiable at  0 0,x y  and if 

 1 2,u u u


 is a unit vector, then the 

directional derivative of ( , )f x y  at 

 0 0,x y in the direction of u


 is defined by 

 

     0 0 0 0 1 0 0 2, , ,u x yD f x y f x y u f x y u 
 
It should be kept in mind that there are 
infinitely many directional derivatives of  

( , )z f x y  at a point  0 0,x y , one for each 

possible choice of the direction vector u


. 

 
 

 

Remarks ( Geometrical Interpretation ) 
The directional derivative  0 0,uD f x y can be interpreted algebraically as the 

instantaneous rate of change in the direction of u


 at  0 0,x y of ( , )z f x y  with respect 
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to the distance parameters described above, or geometrically as the rise over the run of 
the tangent line to the curve C at the point 0Q  . 

 
NOTE : Formula for the directional derivative can be written in the following compact 

form, using gradient notation:     ˆ, ,uD f x y f x y u    

                     The dot product of the gradient of f  with the unit vector û produces the 

directional derivative of f  in the direction of u


 . 

Example : Find the directional derivative of 2( , ) 3f x y x y  at  1, 2 in the direction of 

ˆ ˆ3 4 .a i j 


 

 
  
 

     

 

2

22

2 2

Given    ( , ) 3 , 1,2 ,

( , ) 6 , (1,2) 6 1 2 12

( , ) 3 , (1,2) 3 1 3

5 5253 4

(1,2) (1,2)
5 5

12 3
5

: ˆ ˆ3 4

ˆ ˆ ˆ ˆ3 4 3 4 3 4ˆ ˆˆ

3 4ˆ ˆ ˆ ˆˆ

3ˆ ˆ ˆ

, 1,2

x x

y y

x ya

f x y x y

f x y xy f

f x y x f

f f

a i j

a i j i ja i j
a

a i j i j

i j i

D f x y f



  

  

 


  
 



 

   

 



   



Solution





12 3
5 5 5 5

4 3 4 48ĵ           
     

 

 

Example : Find the directional derivative of 2 2( , ) 2f x y x y   at  0P 1,1 in the 

direction of ˆ ˆ3 4 .u i j 
 

 
 
 

2 2
0Given    ( , ) 2 , P 1,1 ,

( , ) 4 , ( 1,1) 4 1 4

( , ) 2 , ( 1,1) 2 1

:

2

ˆ ˆ3 4 .

x x

y y

f x y x y

f x y x f

f x y y f

u i j  

    

   

 Solution


  

                    
2 2 5 5253 4

4 2
5 5

4 2 4
5 5 5

ˆ ˆ ˆ ˆ3 4 3 4 3 4ˆ ˆˆ

3 4ˆ ˆ ˆ ˆˆ

3 4 20

, 1,1a

u i j i ju i j
u

u i j i jD f x y f

 


   
 

          
   

   

 



    






 

Remarks: 

If  1 2
ˆ ˆu u i u j 

 is a unit vector making an angle   with the positive x-axis, then 

1 cosu   and 2 sinu  .  So      0 0 0 0 1 0 0 2, , ,u x yD f x y f x y u f x y u   can be written 

in the form      0 0 0 0 0 0cos, , , sinu x yD f x y f x y f x y    
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Example:  Find the directional derivative of xye  at  2,0 in the direction of the unit 

vector u


 that makes an angle of 
3


 with the positive x-axis. 

Solution:   Given    ( , ) , 2,0 ,
3 3

ˆ ˆˆ cos sin .xyf x y e u i j 
      

               

    

    

     

 

2 0

2 0

( , ) , ( 2,0) 0 0

( , ) , ( 2,0) 2 2

2,0 0 2
3 3

1 3 1 3
0 2 0 2

2 2 2 2

3

ˆ ˆ ˆ ˆˆ cos sin

ˆ ˆ ˆ ˆ

,

x x

y y

xy

xy

u

f x y y f

f x y x f

e e

e e

u i j i j

i j i j

D f x y f  





   

     

    
 

                 

 





   

 

 

Gradient of Function 
If f  is a function of x and y , then gradient of f is defined as 

                      ( , ) ( , ) ( , )x yf x y f x y f x y  i j   

 
Directional Derivative 
Formula for the directional derivative can be written in the following compact form using 
the gradient 
                          ˆ( , ) ( , ) uuD f x y f x y    

                   
The dot product of the gradient f  with the unit vector û  produces the directional 
derivative of f  in the direction of û . 

Example: Find the directional derivative of 2( , ) 2 3f x y xy y   at  0P 5,5 in the 

direction of ˆ ˆ4 3 .u i j 
 

Solution: 

               

 
   

     

     

2
0

2 2

Given    ( , ) 2 3 , P 5,5 ,

( , ) 2 , 5,5 2 5 10

( , ) 2 6 , 5,5 2 6 2 5 6 5 20

5 5254 3

5,5 10 20
5 5

10 20
5 5

ˆ ˆ4 3

ˆ ˆ ˆ ˆ4 3 4 3 4 3ˆ ˆˆ

4 3ˆ ˆ ˆ ˆˆ

4 3

,

x x

y y

u

f x y xy y

f x y y f

f x y x y f x y

u i j

i j i juu i j
u

u i j i jD f x y f  
 
 

   
   
   

 

  

       

 


 



 

   

   








4
5
20  
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Example: Find the directional derivative of  ( , ) cosyf x y xe xy   at the point 

 2,0 in the direction of ˆ ˆ3 4 .a i j 
 

Solution: 

            

   
       
       

0

0

Given    ( , ) , 2,0 ,

( , ) sin , 2,0 0 sin 1 0 1

( , ) sin , 2,0 2 2 sin 2 0 2

cos

2 0

2 0

ˆ ˆ3 4

x x

y y

y

y

y

f x y

f x y y f

f x y x f

xe xy

e xy e

xe xy e

a i j

      

      







 

  

       
   

 

2 2 5 5253 4

2,0

2
5 5

1 2 1
5 5 5

ˆ ˆ ˆ ˆ3 4 3 4 3 4ˆ ˆˆ

ˆ

3 4ˆ ˆ ˆ ˆ

3 4 5

,a

a i j i ja i j
a

a

i j i j

D f x y f

 


   
 

         
   

   





  








 

 
 
 
Properties of Directional Derivatives 
 

cosˆu fuD f f      

 
1.       The function f  increases most rapidly when cos 1 or 0    or when û  is in 

the direction of f . That is, at each point P in its domain, f increases most rapidly in 

the direction of gradient vector f  at P. The derivative in this direction is 

 

cos 0ˆu uD f f f f       

 
2.       The function f  decreases most rapidly when cos 1 or     or when û  is in 

the opposite direction of f . That is, at each point P in its domain, f decreases most 

rapidly in the direction of gradient vector f  at P. The derivative in this direction is 

 

cosˆu uD f f f f         
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3.        Any direction of û  which is orthogonal to the gradient vector f is the direction 

of zero change in f  because 
2

   and cos 0
2


   

                            cos .0 0
2

ˆu uD f f f f
        

 
 
Example: Find the directions of rapid increase, rapid decrease and no change for the 

function 
2 2

( , ) .
2 2

x y
f x y    

 
2 2

2 2

2 2 2 2

: ( , )
2 2

( , )
2 2

2 2 2 2

ˆ ˆ

ˆ ˆ

x y
f x y

x y
x y

x y

x y x y

x y

i j

i j

f

 

   
     

    
        





 



Solution

  

 
2 2

0 0
2 2

(1,1)

ˆ ˆ

ˆ ˆ

ˆ ˆ

x yi j

i yj

i j

x
f

       
   










 

  

(a)     Its direction of rapid increase is  
2 2

1 1
ˆ

2 21 1

ˆ ˆ ˆ ˆu
i j i j



             

         
(b)     The function f decreases most rapidly in the direction of gradient vector f  at 

(1,1)  which is 
1 1

ˆ
2 2

ˆ ˆu i j              

 
(c )     The direction of zero change of the function f is orthogonal to gradient vector 

f  at (1,1)  which is 
1 1 1 1

ˆ ˆ
2 2 2 2

ˆ ˆ ˆ ˆ,u ui j i j     
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LECTURE No. 12  
 

TANGENT PLANES TO THE SURFACES 
 
Normal line to the surfaces 
 
If C is a smooth parametric curve in three dimensions, then tangent line to C at the point 
P0 is the line through P0 along the unit tangent vector to the C at the P0. The concept of a 
tangent plane builds on this definition. 
 
 If P0(x0,y0,z0) is a point on the Surface S, and if the tangent lines at P0 to all the 
smooth curves that pass through P0 and lies on the surface S all lie in a common plane, 
then we shall regard that plane to be the tangent plane to the surface S at  P0. 
 
Its normal (the straight line through P0 and perpendicular to the tangent) is called the 
surface normal of S at P0. 
 
 Different forms of equation of straight line in two dimensional space 
 

1. Slope intercept form of the Equation of a line 
 

                                              y mx c                
                                                                 where m is the slope and c is y intercept 

2.    Point-Slope Form 
       Let m be the slope and 0 0 0( , )P x y be the point of required line, then 

     0 0 –      –  y y m x x   

                                         
 0 0

Rise b
slopeof line

Run a
b

a

m

y y x x

  

  
 

 
 

      3.   General Equation of straight line 
 

                                 0Ax By C     
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Parametric equation of a line 
Parametric equation of a line in two dimensional space passing through the point  0 0,  x y  

and parallel to the vector  a bi j  is given by  

                              0 0    ,           x x at y y bt      

 
Eliminating t from both equations, we get 

                                

 

0 0

0 0

0 0

  
  ,         

  
  

  

x x y y
t t

a b
x x y y

a b
b

y y x x
a

 
 

 


  

 

Parametric vector form: 
       0 0     t x at y bt   r i j  
 
Equation of line in three dimensional 
Parametric equation of a line in three dimensional space passing through the point 

 0 0 0,  ,  x y z   and parallel to the vector  a b c i j k  is given by  

              0 0 0    ,           ,               x x at y y bt z z ct        
 
Eliminating t from these equations we get 

                        

0 0 0

0 0 0

   
  ,         ,   

   
  

x x y y z z
t t t

a b c
x x y y z z

a b c

  
  

  
 

 

 
Example: Find Parametric equations for the straight line through the point A (2,4,3) and 
parallel to the vector  v = 4i + 0j – 7k. 
Solution: 

 0 0 0  2,    4,    3x y z     

               and    4,    0,     7a b c      
The required parametric equations of the straight line are 

                           
  2  4 ,

  4  0 ,

  3 –  7

x t

y t

z t

 
 


  

 
Different forms of the equation of curve 
Curves in the plane are defined in different ways 
 
(1) Explicit form:    y f x  
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        Example:  2 3 9 3y x x     
                         
(2) Implicit form:   ,    0F x y       
   

  Example:   22 9 3 3 3 , 0x xy y       
                    

(3) Parametric form:         and   x f t y g t   
 
      Example: 

                         

2 2 2 2

2 2

2 2

3cos , 3sin 0

9cos 9sin

9 cos sin 9 1

9

x y

x y

x y

   

 

 

   

  

  

 

  

 
(4) Parametric vector form:       ,         .t f t g t a t b   r i j  

      
       Example:   3cos 3 i s 0n tt tt    r i j  

                           
Equation of a plane 
 
A plane can be completely determined if we know its one point and direction of 
perpendicular (normal) to it. 
 
Let a plane passing through the point  0 0 0 0,  ,  P x y z  and the direction of  

normal to it is along the vector   a b c  n i j k   
                                   
Let P (x, y, z) be any point on the plane, then the line lies on it so that 0P Pn   

                   (  means “perpendicular to” ) 
 

         

     

        
     

0 0 0

0 0 0

0 0 0

0

0

     

Therefore, 

  .      0

  b   0

. 0

x x y y z z

a b c x x y y z z

a x x y y c z z

P P

P P

    

     





 

     

i j k

i j i j

n

k k
 

                                                           which is the required equation of the plane. 
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0 0

 Here we use the theorem:  

             Let  and  be two vectors.If  and  are perpendicular,

 then 0 

Since and are perpendicu .lar vector,  so 0

a b a b

P P P P

a b 



NOTE :

n n

   

    

 
REMARKS 
Point normal form of equation of plane is  
                      0 0 0   b   0a x x y y c z z        

 
We can write this equation as  

                

0 0 0

0 0 0

0 0 0

     0

   0

   0

where

ax ax by by cz cz

ax by cz ax by cz

ax by cz d

d ax by cz

     
     
   

  

 

,which is the equation of plane 

 
Example:  An equation of the plane passing through the point (3, - 1, 7) and 
perpendicular to the vector n = 4i + 2j - 5k. 

 
A point-normal form of the equation is 

4(x – 3) + 2 (y + 1) – 5 (z – 7) = 0 
4x + 2y – 5z + 25 = 0 

Which is the same form of the equation of plane ax + by + cz + d = 0 

 
 
    
 
 
 
 
 
 

 

v = (x2  x1)i + (y2  y1)j  
is a vector in the direction of line 
(x, y)  = ax + by 
x = a,        y = b 
 = ai + bj  = n 
 . r = 0 
Then n and v are perpendicular  

The general equation of straight line
is   ax + by + c = 0    
Let (x1 , y 1 ) and (x2 , y 2 ) be two points 
on this line then   
ax1  + by1  + c = 0   
ax2  + by2  + c = 0     
Subtracting above equation  
a(x2    x1 ) + b (y2   y 1 ) = 0  
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Here we use the definition of dot product of two vectors. 
 
 
 
 
 
 
 
 
 
 
 
Gradients and Tangents to Surfaces 
 

( , )

( , ), z

If a differentiable function ( , )  has a constant value  along a smooth curve,

having parametric equations:

( ), ( ), ( ) ( )

Differentiating both sides of ( , ) with re

f x y c

z f x y c

f x y c

x g t y h t g t h t

f x y c


 

   



r i j

    

spect to t,

, ( )

0

d d
f g t h t c

dt dt
f dg f dh

x dt y dt



 
 

 

  

 

The general equation of plane is 
ax + by + cz + d = 0 
For any two points (x1, y1, z1) and 
(x2, y2, z2) lying on this plane we 
have 
ax1 + by1 + cz1 + d = 0 (1) 
a x2 + by2 + cz2 + d = 0 (2) 

Subtracting equation (1) from (2) 
have 

  

a (x 2  x 1 )+b (y 2  y1 ) + c (z2 
   z 1 ) = 0 

 

(a i  + b j  + c k ) . [ (X2-X1) i+(Y2-Y1) j +(Z2-Z1) k       

  

]      

 = ax + by + cz   

x  = a, y   = b, z  = c
 = ai + bj + ck  

Where v = (x2   x1 )i    
  

  +(y2 y1)j + (z 2  z 1)k

  is always normal to the plane.
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 0 0

0

0

is normal to the tangent vector . So it is normal to the curve through , .

f dh dg f

x dt dt y

d
f

dt
d

f x y
dt

            

  



i j i j

r

r

  

 
Tangent Plane and Normal Line 
Consider all the curves through the point P0(x0, y0, z0) on a surface f(x, y, z) = 0. The 
plane containing all the tangents to these curves at the point P0(x0, y0, z0) is called the 
tangent plane to the surface at the point P0. 
 
The straight lines perpendicular to all these tangent lines at P0 is called the normal line to 
the surface at P0 if fx, fy, fz are all continuous at P0 and not all of them are zero, then 
gradient f  (i.e fxi + fyj + fzk) at P0 gives the direction of this normal vector to the surface 
at P0. 
 

 
Tangent plane 
 
 
 
 
 
Example: Find the equation of tangent plane to the surface 

2 2 29 4 36 at point (2,3,6).x y z P    
Solution: 
 
 
 
 
 
 

 

Let P0 (x0 , y 0 , z 0) be any point on  the  Surface   
f(x,y,z) = 0. If f(x,y,z) is differentiable  

at po(x0 ,y 0,z0)  then the tangents plane at the  
point P0  (x0,y 0,z0 ) has the equation  

9x
2 
 + 4y 

2   z
2
 = 36  P (2,3,6).

f(x,y,z) = 9x 
  2 + 4y 

2  z 
2  36 

f x  =  18x,  fy = 8y, fz =  2z

fx  (P) = 36,    fy (P) = 24, fz (P) = -12 
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Equations of Tangent Plane to the surface through P is 
 
36(x – 2) + 24(y – 3) –12(z – 6) = 0 
3x + 2y – z – 6 = 0 
 
Example: Find the equation of tangent plane to the surface 

cos at point (0,0,0).xz x y y e    
Solution: 
 

                                                                                
 
 
 
 
 
 

 
 
 

  z = x cos y    ye 
x       (0,0,0).  

  cos y    ye 
x  – z = 0   

  f (x,y,z) = cos y   ye 
x  – z   

f x (0,0, 0) = (cos y    ye 
x ) (0,0)  = 1    0.1 = 1  

f y (0,0, 0) = (   x sin y    e 
x ) (0,0)  = 0    1 =    1.  

    f z(0,0, 0) =  - 1   

The tangent plane is 
h f

  

f x (0,0,0)(x      0)+f y  (0,0,0)(y      0)   +   f z (0,0,0)(z 0)=0  

  1 (x  0)  1 (y  0)  1 (z  0) = 0,   

    x    y    z = 0.   
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LECTURE No. 13            
  

ORTHOGONAL SURFACE  
 
In this Lecture we will study the following topics 

 Normal line 
 Orthogonal Surface 
 Total differential for function of one variable  
 Total differential for function of  two variables 

 
 
 
 
 
 
 
Here fx means that the function f(x,y,z) is partially differentiable with respect to x And 
fx(P0) means that the function f(x,y,z) is partially differentiable with respect to x at the 
point P0(x0,y0,z0) 
 
fy means that the function f(x,y,z) is partially differentiable with respect to y And fy(P0) 
means that the function f(x,y,z) is partially differentiable with respect to y at the point 
P0(x0,y0,z0) 
 
Similarly,  fz means that the function f(x,y,z) is partially differentiable with respect to z 
And fz(P0) means that the function f(x,y,z) is partially differentiable with respect to z at 
the point P0(x0,y0,z0) 
 
Example:  Find the Equation of the tangent plane and normal of the surface f(x,y,z)= 
x2+y2+z2-4 at the point P(1,-2,3)  
Solution: 

                 

     

     

2 2 2

0 0 0

( , , ) 14, (1, 2,3)

2 , 2 , 2

2, 4, 6

Equation of the tangent plane to the surface at P is 

2 1 4 2 6 3 0

2 3 14 0

Equation of the normal line of the surface through 

x y z

x y z

f x y z x y z P

f x f y f z

f P f P f P

x y z

x y z

    
  

  

     

   

     

     

P is 

1 2 3

2 4 6
1 2 3

1 2 3

x y z

x y z

  
 


  

 


  

Normal line

Let P0  (x0 ,y0 ,z 0 ) be any point on the surface

o   P  (x 0 ,y0 ,z 0 ) 
f(x,y,z)=0 If f(x,y,z) is differentiable at

then the normal line at the point P (x
o

,y0 0
,z )

0
has the equation

x   =   x 0 +f x (P 0 )t,       y  =  y0+fy(P 0)t,  z = z0+fz(P 0)t   
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 Example :  Find the equation of the tangent plane and normal plane 
 Solution:  
 
 
 
 
 
 
 
Equations of Tangent Plane to the surface through P is 
 
 
 
 
 
 
 
 
 
 
Example 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4x 
2y

2
 + 3z 

2
 = 10   P (2,  3,1) 

f(x,y,z) = 4x 
2  y 

2 + 3z 
2  10 

fx = 8x,           fy =  2y,       fz = 6z 

fx (P) = 16,  fy (P) = 6,  fz (P) = 6 

 
16(x  2) + 6 (y+3) + 6 (z  1) = 0 

8x + 3y + 3z = 10 

Equations of the normal line to the  

surface through P are 

x  2
16 

  = 
y + 3

6
  = 

z  1
6

  

x  2
8 

  = 
y + 3

3
  = 

z  1
3

  

z = 
1 

2 
   x 7 y -2  

f(x,y,z) =
1 

2 
   x 7 y-2 –  z 

f x = 
7 

2 
   x 6.y -2,

   fy  = - x 7.y -3,       fz = -1 

f x (2, 4, 4) =
7 

2 
   (2)6  (4)-2 = 14

fy  (2, 4, 4) =  (2)7 (4)-3 =  2
fz (2, 4, 4) =-1   

Equation of Tangent at (2, 4, 4) is given by  

fx (2,4,4)(x 2)+ f y  (2,4,4)(y 4)+ f z (2,4,4)(z 4) = 0  

14 (x   2) + (   2) (y   4)   (z   4) = 0  

14x   2y   z   16 = 0  

The normal line has equation s 

x = 2 +f x(2,4,4)  t,    y = 4 +f y (2,4,4)   t,    z = 4+fz(2,4,4) t    

x = 2 + 14t,     y = 4   2t,  z = 4   t  
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Example 
Show that given two surfaces  are orthogonal or not 

      
2 2

2 2

( , , ) 16

( , , ) 63

f x y z x y z

g x y z x y z

   

  
  

    

2 2

2 2

2 2

( , , ) 16 (1)

( , , ) 63 (2)

63 1
Adding (1) and (2), , (3)

4 4

f x y z x y z

g x y z x y z

x y z

       

      

      

  

    2 2

2 , 2 , 1

2 , 2 , 63

63
4 63 4 63 using (3)

4

0

Since they satisfy the condition of orthogonality, so they are orthogonal.

x y z

x y z

x x y y z z

f x f y f

g x g y g

f g f g f g x y

  

  

        
 



  

 
Differentials of a functions 
 
 
 
 
 

SURFACES ORTHOGONAL

l  
 
  

Said

 
 

common to them.

They are to intersect orthogonally 

at every point 

CONDITION FOR ORTHOGONAL SURFACES

Two surfaces are said to be orthogonal at a point of their intersection if their normals 

at that point are orthogonal. if they are orthogonal 

Let  (x, y, z) be any point of  intersection  of 
 

f  (x, y, z) = 0---- (1) 
and  g (x, y, z) = 0 -----(2) 

Direction ratios of a line  normal to (1) are f x
, f

y
, f

z
 

 
 x, g y , g z   

The two normal lines are  orthogonal if and only if

 
f x g x  + f y gy  + fzgz = 0 

Similarly, direction rations of a line normal to (2)

are g

For a function y = f(x) 

dy = f 

/

(x)  d x 
is called the differential of functions f(x)
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EXAMPLE 
 
 
 
 
 
 
 
 
 
 

d x the differential  of x is the same as 
  

i.e. dx = x where as dy the

differential of y is the approximate change in the
 

value of the functions 
 

w hich 
is different from the actual change y in the value of the functions.

 

the actual change in x

Distinction between the incrementns y and the differential dy

Approximation to the curve

If f  is differentiable at x , then the 

at x  is a reasonably good approximation
 near x

0 . Since the tangent line passes 

 

0

tangent line to the curve y = f(x) 

0  to the curve y = f(x) for value of x

through  the point (x0, f(x0)) and has  

its equation is 
y    f/(x0) = f(x0)(x  x0)  or 

y = f(x 0) + f/(x0) (x  x0) 

slope f/(x0), the point-slope form of  

 

f(x) =  x     
x = 4 and dx = x = 3  y = 3   

 y = x + x        x    
=  7         4       .65 

If y =  x   , then 
dy 
dx    = 

1

2 x 
    so  dy = 

1

2 x
  dx  

= 
1 

2 x 
   (3) =

3 
4    = .75 
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Example 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Example 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
TOTAL DIFFERENTIAL 
 
 
 
 
 

  

Using differentials approximation 

for the value of cos 61 .
Let y = cosx and x = 6 0
then dx = 61  60 = 1

 y   dy  =    sinx dx =  sin60 (1)

= 
3

2 

 






1

180


Now y = cos x 
y+ y  =  cos (x+x) = cos (x+dx)  

=  cos (60+1)=cos61 
cos61  =  y+ y = cosx + y  

 cos60    
3

2
  






1

180
    

cos61   
1 
2 

     
3

2
  






1

180
    

= 0.5  0.01511 = 0.48489  
cos61   0.48489 

 

of the box is 8.5 inches with 


 
0.3 inches

. 
  

Let x and h be the width and the height  
of the box respectively, then its volume  

V is given by 
V = x2h 

a possible error of 

A box with a square base has its hei ght twice is width.  If the  
 width 

Since h = 2x, so (1) take the form 
V = 2x3 

dV = 6x2 dx 

Since x = 8.5, dx = 0.3, so 
putting these values in (2), we have 

    dV = 6 (8.5)2 (0.3) =  130.05 

This shows that the possible error in the  

volume of the box is 130.05. 

If we move from (x0 , y0 ) to a point 
resulting differential in f is

 df = fx (x 0 , y 0) dx + fy (x0, y0) dy 

This change in the linearization of 

 

(x0  + dx, y0  + dy) nearby, the  
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Example 
 
 
 
 
 
 
 
 
 
 
 
 
                                          Which is an exact change. 
Example 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Area = xy
x = 10, y = 8  Area = 80 
x = 10.03 y = 8.02   Area = 80.4406 
Exact Change in area = 80.4406  80 
   = 0.4406 

EXACT CHANGE 

f is called the total differential of f. 

 
 

 
 

proximately

. 
V = xyz

 
dV = V xd  x + Vydy + Vzdx 

dV = yzdx + xzdy + zydz   (1)
 

The volume of a rectangular parallelepiped is given by the formula V = xyz. If this solid

is compressed from above so that z is decreased by 2% while x and y each is
increased by 0.75% ap

d x =
0.75 
100 

  x, dy = 
0.75
100

 y, dz=  
2

100
  z 

Putting these values in (1), we have 

dV = 
0.75 
100 

  xyz+
0.75
100

 xyz  
2

100
  xyz  

=   
0.5 
100 

 xyz =  
0.5
100

 V 

This shows that there is 0.5 %  
decrease in the volume. 

A rectangular plate expands in such  
 

10 to 10.03 and its breadth 
 

changes from 8 to 8.02.

 
Let x and y the length and  
breadth of the rectangle  

respectively, th en its area is 
A = xy 

dA = A x  dx + A y dy = ydx + xdy 
By the given conditions  

x = 10,   dx = 0.03,   y = 8, dy = 0.02. 

dA = 8(0.03) + 10(0.02) = 0.44 

a way that its length changes from
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Example 

 

 

 

   

   

0 0 01 1 1
4sin 30 0.1 9sin 30 0.08 36cos30

2 2 2 3600

1 9 1 3 3.14
2 0.1 0.08 18 0.293

2 2 2 2 3600

0.293 0.293
%agechange in area = 100 100 3.25%

9

d
      

 
                      

   


  

 

By the given conditions 
a = 9, b = 4, C = 30, 

da = 9.1  9 = 0.1,  
db = 4.08  4 = 0.08 

dC = 303  3 = 






3

60


  

= 
3

60
   


180

  radians 

Putting these values in (1), we have 

 = 
1
2
  ab sin C 

d = 

a

  






1

2
 ab sin C  da + 


b

  






1

2
 ab sin C  db 

+ 

C

  






1

2
 ab sin C  dC 

d = 
1
2
  b sin Cda + 

1
2
  a sin C db  

+ 
1
2
  ab cos CdC 

A formula for the area  of a triangle is  

 = 
1
2

  ab sin C. Approximately what error is  

made in computing  if a is taken to be 9.1  
instead of 9, b is taken to be 4.08 instead of  
4 and C is taken to be 303/ instead of 30. 
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LECTURE No.14             
 

EXTREMEA OF FUNCTIONS OF TWO VARIABLES  
 
In this lecture, we shall find the techniques for finding the highest and lowest points on 
the graph of a function or, equivalently, the largest and smallest values of the function. 
  
The graphs of many functions form hills and valleys. The tops of the hills are relative 
maxima and the bottoms of the valleys are called relative minima. Just as the top of a hill 
on the earth’s terrain need not be the highest point on the earth , so a relative maximum 
need not be the highest point on the entire graph . 
 
Absolute maximum 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
              
    The function f  is said to have a relative (local ) maximum at some point (x0,y0) of its 
domain D if there exists an open disc K centered at (x0,y0) and of radius r  
 
 
                                                      With                such that 
 
 

 f  of two variables on a subset  

 

of  R 
2

 value on  D  if there is some point  

f  ( x 0 ,  y 0 )    f  ( x ,  y ) for all ( x ,  y )    D 

f  ( x 0 ,  y 0 ) is the  absolute  maximum  

x ( 0,  y ) of  
0

 such that D value of  f  on  D 

A function   is said to have an  D absolute (global)  
maximum 

In such a case  

Relative extremum and absolute extremum

If f has a relative maximum or a relative

relative extremum at (x 0 ,y 0), and if f has an

(x0 ,y 0 ), then we say that f has an absolute

minimum at (x0
, y 0), then we say that f has a

absolute maximum or absolute minimum at 

extremum at (x 0,y0).

Absolute minimum 

A function f  of two variables on a subset D of R
2

minimum  value on D  if there is some point

 ( )  ( ) for all ( ) 
In such a case  ( ) is the absolute minimum value of f  on D .f x0 , y 0 

 is said to have an absolute (global) 

(x0, y 0 D  ) of  such that

f x 0, y0  f x, y x, y  D.

Relative (local) maximum

K ={( x, y)  R
2
 : (x  x0)

2
 + ( y  y0)

2
 < r

2
}

K  D

f(x0, y0)  f (x, y)  for all (x, y ) 
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Relative ( Local ) Minimum 
 
The function f  is said to have a relative ( local ) minimum at some point  0 0,x y  of D 

if there exists an open disc K centered at  0 0,x y  and of radius r   with K D  such that   

                        0 0, , for all ,f x y f x y x y K   

 
 
Extreme Value Theorem 
If f (x, y) is continuous on a closed and bounded set R, then f has both 
an absolute maximum and on absolute minimum on R . 
 
Remarks  
If any of the conditions the Extreme Value Theorem fail to hold, then there is no 
guarantee that an absolute maximum or absolute minimum exists on the region R. 
Thus, a discontinuous function on a closed and bounded set need not have any absolute 
extrema, and a continuous function on a set that is not closed and bounded also need not 
have any absolute extrema. 
 
Extreme values or extrema of f 
 
The maximum and minimum values of f are referred to as extreme values of extrema of f 
.Let a function f of two variables be defined on an open disc  
 
 
 
 
                            Suppose 
 
If  f has relative extrema at (x0,y0),then  
                                           
 
  

     

K x, y x  x0)
2

y  y0)
2

r
2

 = {( ): (  + (  < }. 

f x
(x0, y

0
f
y

( x 0 , y0) and ) both exist on K 

f x (x 0, y0)  = 0 = fy(x0, y0).
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Saddle Point 

 
A differentiable function f(x, y) has a saddle point (a, b) if in every open disk 

centered at (a, b) there are domain points  (x, y) where f (x, y) > f (a, b) and domain 
points (x, y) where f (x, y) < f (a, b). The corresponding point (a, b, f (a, b)) on the 
surface z = f (x, y) is called a saddle point of the surface 

 
Remarks 
 
Thus, the only points where a function f(x,y) can assume extreme values are critical 
points and boundary points. As with differentiable functions if a single variable, not 
every critical point gives rise to o a  local extremum. A differentiable function of a single 
variable might have a point of inflection. A differentiable function of two variable might 
have a saddle point. 
 
EXAMPLE 
 
Fine the critical points of the given function 

 

 

Substituting the value of x from (2) into (1),
we have 

y4

a2  ay =  0 

y(y3  a3) = 0 

y=  0,           y= a 

and so 

x  = 0,   x= a. 
The critical points are (0, 0) and (a, a).

f (x, y) = x3 + y3  3axy, a > 0. 

fx, f y exist at all points of the domain of f. 

fx  = 3x2  3ay, fy  = 3y2  3ax 

For critical points fx = fy  = 0. 

Therefore,  x2  ay = 0 (1) 
and   ax  y2 = 0  (2) 
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Overview of lecture # 14 
 
Topic                                                                         Article #                         page # 
 
Extrema of Functions of Two Variables                    16.9                                 833    
 
Absolute maximum                                                     16.9.1                             833    

 
Absolute manimum                                                     16.9.2                             833  
 
Extreme Value Theorem                                            16.9.3                            834 
 
 
Exercise set    Q#1,3,5,7,9,11,13,15,17                          841     
 
   
Book 
 
                           CALCULUS  by HOWARD ANTON 
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LECTURE No. 15  
 

EXAMPLES  
 

Example: Find the critical point of 2 2( , ) .f x y x y    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Example : Find the critical point of 2 2( , ) .f x y x y   
 
 
 
 
 
 
 

f ( x , y) = x 
2  + y2

f x ( x , y )  = 
x 

x 2 + y 2
   

f y(x , y) = 
y

x2  + y2
   

The partial derivatives exist at all points of
in the domain of f . Thus (0, 0) is a critical

  

the domain of except at the origin which isf

point of f 

Now   f x(x , y) = 0 only if x = 0 and

  

f y( x, y )  = 0 only if y = 0

The only critical point is (0,0) and f(0,0)=0   

Since f  (x , y)  0 for all (x, y), f (0, 0) = 0 is the absolute minimum value of f .

z = f(x, y) = x 
2 + y2  (Paraboloid)

fx   (x, y) = 2x,  f y (x, y) = 2y
when fx  (x, y) = 0,  fy (x, y) = 0
we ha ve   (0, 0) as critical point.
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Example:  Find the critical point of 2 2( , ) 1 .z g x y x y     
 
 
 
 
 
 

 
Example:   Find the critical point of 2 2( , ) .z h x y y x    
 
 
 
 
 
 

 

z  = g(x, y) = 1   x2    y2 (Paraboloid)
gx  (x, y) =   2x,  gy  (x, y) = 2y
when gx  (x, y) = 0 ,  gy  (x, y) = 0
we h ave (0, 0) as critical point.

z   = h(x,y)= y
2 x

2
  (Hyperbolic paraboloid)

hx   (x, y) =   2x,   h y  (x, y) = 2y
when hx  (x, y) = 0,   h y  (x, y) = 0
we ha ve  (0, 0) as critical point.
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Example:

 
The point (0,0) is critical point of  f  because the partial derivatives   do not both exist.  It 
is evident geometrically that   fx(0,.0) does not exist because the trace of the cone in the 
plane y=0 has a corner at the origin. 
 
 
 
 
 
 
 
 
 
 
 
The Second Partial Derivative Test 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
REMARKS 
If a function f of two variables has an  absolute extremum (either an absolute maximum 
or an absolute minimum) at an interior point of its domain, then this extremum occurs at 
a critical  point. 
Example: 

                

2 2

2

( , ) 2 4 1

( , ) 4 4 , ( , ) 4

( , ) 2 , ( , ) 2 , ( , ) ( , ) 2
x xx

y yy xy yx

f x y x x xy

f x y x y f x y

f x y xy f x y x f x y f x y y

   

   

   

  

f(x, y) = x2 + y2  
fx = 

x

 x2 + y2  
  fy = 

y

 x2 + y2  
  

The fact that fx  (0,0) does not exist canalso be seen algebraically by noting

that fx(0,0) can be interpreted as thederivative with respect to x of the function 

f (x, 0) = x2 + 0  = |x|  at x = 0.

But |x| is not differentiable at x = 0, so f x(0,0) does not exist. Similarly,

(0,0) does not exist. The function ffy has a relative minimum at the critical 
point (0,0).

Let f  be a function of two variables with continuous second order partial derivatives 

in some circle centered  at a critical point (x0, y0), and let  

D = f xx (x0 , y0) fyy(x0, y0)   f 2
xy(x0, y0)

 fxx 0,y0(a) If D > 0  and (x ) > 0 , then f has a 
0,y0  relative minimum at (x ).

(b)  If D > 0 and fxx(x0,y0) < 0 , then f has a 
relative maximumat (x0,y0).

(c)   If D < 0 , then f has a saddle point at 
(x0,y 0 ).  

(d)  If D = 0 , then no conclusion can be
drawn.  
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 

2

2 2

2

For the critical points, we set the first partial derivatives equal to zero. Then

( , ) 0 4 4 0 (1)

( , ) 0 2 0 (2)

0 or 0

0, (1), 4 0 4 0 4 2

0, (1), 4 4 0 0 4 4

x

y

f x y x y

f x y xy

x y

When x then by y y y

When y then by x x

    
  

  

        

      

     
1

So the critical points are 1, 0 , 0, 2 and 0, 2 .

x 



  

                  
 
 

2 2

Now wecheck the nature of each point:

(1,0), (1,0) 4

(1,0) 2 1 2

(1,0) 2 0 0

(1,0) (1,0) (1,0) 4 2 0 8

Since D > 0 and (1,0) is positive, so  has a relative minimum at (1,0).

xx

yy

xy

xx yy xy

xx

At f

f

f

D f f f

f f



 

 

       

  

 

                   

 
 

 2 2

At (0, 2), (0, 2) 4

(0, 2) 2 0 0

(0, 2) 2 2 4

(0, 2) (0, 2) (0, 2) 4 0 4 0 16 16

Since D < 0 ,  so  has a saddle point at (0, 2).

xx

yy

xy

xx yy xy

f

f

f

D f f f

f

  

  

    

              


 

                    
   

 2 2

At (0,2), (0, 2) 4, (0,2) 2 0 0, (0,2) 2 2 4

(0,2) (0,2) (0,2) 4 0 4 0 16 16

Since D < 0 ,  so  has a saddle point at (0, 2).

xx yy xy

xx yy xy

f f f

D f f f

f

    

            

Example: 
                          

   

 

 

2 2

2 2 2 2

2 2 2 2

2 2

( 2 )

2( 2 ) ( 2 )

( 2 ) 2 ( 2 )

( 2 )

( , )

( , ) 2 1 , ( , ) 2 2 2

( , ) 2 , ( , ) 4 2

( , ) 2 2 2

For critical points,

put ( , ) 0 2 1

x y x

x y x x y x
x xx

x y x x y x
y yy

x y x
xy

x

f x y e

f x y x e f x y x e

f x y ye f x y y e

f x y y x e

f x y x e

  

     

     

  



        

     

   

   
2 2

2 2

( 2 )

( 2 )

0

2 0, 1 0 1

x y x

x y xe x x

  

  



      
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 

       

   

      

 

2 2

2 2

2 2

2 2

2 2

( 2 )

( 2 )

1 0 2 12

1 2 1

1 0 2 12

( 2 )

put ( , ) 0 2 0

2 0, 0

The critical point is 1,0 .

( 1,0) 2 1 2 2

0 2 2 2

( 1,0) 4 0 2 2

( 1,0) 2 2 2 2

x y x
y

x y x

xx

yy

x y x
xy

f x y ye

e y

f e

e e e

f e e

f y x e

  

  

    

 

    

  

   

   



       

     

      

                

     

2 21 0 2 1

2

2 2

0 2 1 2 0 0

( 1,0) ( 1,0) ( 1,0)

2 2 0 4

Since D > 0 ,  so ( 1,0) has a maximum point at ( 1,0).

xx yy xy

xx

e e

D f f f

e e e

f

    
    

      

    

 

  

 
EXAMPLE 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    
2

2

1 1 1
,1 4, ,1 2, ,1 0

2 2 2

1 1 1
,1 ,1 ,1 4 2 0 8 0

2 2 2

1 1
Since ,1 4 0, so is minimum at ,1 .

2 2

xx yy xy

xx yy xy

xx

f f f

D f f f

f f

            
     

                       
       
   

  

f(x,y) = 2x4 + y2  x2  2y
f x(x, y) = 8x

3
   2x,  fy(x, y) = 2y  2 

f xx (x, y) = 24x
2 
   2,         f yy(x,y) = 2,   

  fxy (x, y) = 0  
For critical points  

f x(x, y) = 0,  
2x (4x

2
   1) = 0,  x = 0,1/2,-1/2 

f y (x, y) = 0,  
2y   2 = 0,   y = 1 

Solving above equation we have the critical

points (0,1),
 
 
 





 
1
2
  1







1

2
 1 .

fxx (0,1) =  2,  fyy (0, 1) = 2,
fxy  (0, 1) = 0  
D = fx(0, 1) fyy (0, 1)  f

2
xy (0, 1)

= ( 2)(2)  0 = 4 < 0
This shows that (0, 1) is a saddle point.



15-Examples                                                                                                                                                 VU 
 

 
© Copyright Virtual University of Pakistan 

 

90

 
Example 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Overview of lecture #15   Book (Calculus  by HOWARD ANTON) 
    Topic #        Article #                        Page # 
Example         3                                     836 
Graph of  f(x,y)        16.9.4          836 
The Second Partial Derivative Test         16.9.5          836 
Example         5                                     837 

Locate all relative extrema and
saddle points of 

f (x, y) = 4xy  x4  y4. 
fx(x, y) = 4y  4x3,     fy (x, y) = 4x  4y3 
For critical points 

fx (x, y) = 0 
 4y  4x3 = 0  (1) 
 y = x3 

fy (x, y) = 0 
 4x  4y3 = 0  (2) 
 x = y3 

Solving ( 1 ) 
  and (2 ), we have the  

critical points (0,0), (1, 1),( 1,   1).  
 

Now f xx  (x, y) =    12x 
2 
, 
  f xx (0, 0) = 0 

 

f yy  (x, y) =    12y 
2 
, 
     
f yy  (0,0) = 0 

 

f xy  (x, y) = 4,  
    f xy (0, 0) = 4 

 

D = f xx  (0,0) f y  (0,0)    f 
2 
xy (0,0)   

 

  =  (0) (0)    (4) 
2 
=    - 16  <  0

This shows that (0,0) is the saddle point. 
 

f xx (x, y) =  12x
2 
,         f xx  (1,1) =  12 < 0

f yy  (x,y) =  12y
2 
,         f y  (1,1) =  12

f xy  (x, y) = 4,    fxy  (1,1) = 4
D = fxx (1,1) fyy (1,1)  f 

2 
xy (1, 1) 

  = (  12) ( 12)   (4) 
2
 = 128 > 0

This shows that f has relative maximum at 
(1,1).  

f xx  (x,y) =   12x 
2 
,   f xx  (  1,   1)  =    12 < 0 

 

f y  (x, y) =    2y 
2 
,   f y  (  1,   1) =    12 

 

f xy  (x, y) = 4,   f xy  (   1,    1) = 4 
 

D=f xx  (  1,  1) f yy  (  1,  1)  f 
2

xy(  1,  1)   

  = (   12) (   12)    (4) 
2
 = 128 > 0 

 

This shows that f has relative maximum 
(  1,    1).    
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LECTURE No.16            
 

EXTREME VALUED THEOREM  
 
EXTREME VALUED THEOREM 
If the function f is continuous on the closed interval [a, b], then f has an absolute 
maximum value and an absolute minimum value on [a, b] 
 
Remarks 
An absolute extremum of a function on a closed interval must be either a relative 
extremum or a function value at an end point of the interval. Since a necessary condition 
for a function to have a relative extremum at a point C is that C be a critical point, we 
may determine the absolute maximum value and the absolute minimum value of a 
continuous function f on a closed interval [a, b] by the following procedure: 
 
1.  Find the critical points of f on [a, b] and the function values at these critical points. 
2.  Find the values of f (a) and f (b). 
3. The largest and the smallest of the above calculated values are the absolute maximum                
value and the absolute minimum value respectively 
   
Example: Find the absolute extrema of f(x)= x3+  x2-x+1         on     [-2,1/2] 
Solution: Since f is continuous on [-2,1/2],  the extreme value  theorem is applicable.  
For this  
               f /(x) =3 x2+2x-1  

This shows that f(x) exists for all real numbers, and so the only critical numbers of f will 
be the values of x for which f (x)=0.          . 

               

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Setting f 
/ 
(x) = 0, we have   

(3x  1) (x + 1) = 0 
from which we obtain  

x =  1   and     x = 
1 
3     

The critical points of f are   1 and  
1
3 ,  

 closed interval ( -2, 
1 
2   )

 We find the function 

 

points of the interval, which are given below.

 

and each of these points is in the given 

values at the critical points and at the end

f(   2) =    1,  f (   1) = 2,      

f 
 

 

 
 
 1 

3 
   =  

22 

27 
  ,  f  

 
 
 

 
 
 1 

2 
   =  

7 

8 
    

The  ab solute maximum value of f on (-2, 
1
2

 ) is therefore 

2, which occurs at    1, and the absolute min. value of f on  

( - 2,  
1 
2 

  )  is    1, which occurs at the left end point 2.  
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Example:  
 
 
 
 
 
 
 
 
 
 
 
 
so that the absolute extrema occur either at 2 or at one of the end points of the interval. The 
function values at these points are given below. 
  
f(1) = 1  ,   f(2) = 0,           f(5)= 
From these values we conclude that the absolute minimum value of  f on  [1,5] is 0, 
occurring at 2, and the absolute maximum value of f on [1, 5] is 3      9  ,occurring at 5.    
   
Example: 
 
 
 
 
 
 
 
 
 
 
 
                                          
The absolute maximum value is 9   assumed at x = 3; the absolute minimum is 0, assumed at  
x = 0. 
 
How to Find the Absolute Extrema of a Continuous Function f of Two Variables on 
a Closed and Bounded Region R.  
Step 1. 
            Find the critical points of f that lie in the interior of R. 
Setp 2. 
 Find all boundary points at which the absolute extrema can occur, 
Step 3. 
 Evaluate f(x,y) at the points obtained in the previous steps. The largest of these 
values is the absolute maximum and the smallest the absolute minimum. 
 

Find the absolute extrema of 
    f (x) = (x    2) 2/3   

on [1, 5].  

Since f is continuous on [1. 5],  the extreme- value  t heorem is applicable.   

Differentiating f with respect to x, we get 

   f 
/ 
(x) =  

2 

3  ( x    2 ) 
1/3 

 

There is no value of x for which f  (x) = 0.  
/

However, since f (x) does not  
/

exist at 2,  

we conclude that 2 is a critical point of f, 

3

9 
  

  Find the absolute extrema of 
    h(x) = x 2/3 on [   2, 3].   

  h 
/
(x) = 

2 
3   x 

- 1/3
 = 

2 
3x

1/3    

    h 
/
(x) has no zeros but is undefined at x = 0. 

    The values of h at this one critical point 
    and at   the endpoints x = 2 and x = 3 are 
    h(0) = 0 
    h (  2) = (  2)

2/3
 = 4 

1/3
  

  h(3) = (3)
2/3

 = 9
1/3

.  
1/3
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Example: 
Find the absolute maximum and minimum value of 

f(x,y) = 2 + 2x +2y-x2-y2  
On the triangular plate in the first quadrant bounded by the lines x=0,y=0,y=9-x  
Since f is a differentiable, the only places where f  can assume these values are points 
inside the triangle having vertices at O(0,0), A(9,0)and B(0,9) where fx = fy=0 and points 
of boundary. 
 
 
 
 
 
 
 
 
 
 
                   O 
                    
 
For interior points: 
   
 We have fx=2-2x=0  and   fy=2-2y=0  
yielding the single point (1,1) 
  
For boundary points we take take the triangle one side at time :  

1. On the segment OA, y=0 
            U(x) = f(x, 0)=2+2x-x2 

may be regarded as function of x defined  on the closed interval 0xIts extreme 
values may occur at the endpoints x=0 and x=9 which corresponds to points (0, 0) and   
(9, 0) and U(x) has critical point where  
  

U/(x) = 2-2x=0  Then x=1 
On the segment OB, x=0 and  

V(y)=f(0,y)= 2+2y-y2 

Using symmetry of function f, possible points are (0,0 ),(0,9) and (0,1) 
 
 
 
 
 
 
 
 

B ( 0, 9) 

.(9/2,9/2) 

A( 9,0)  

x = 0 

.(1,1) 
y = 9 - x 

y = 0 

3. T he interior points of AB. 
With y = 9  - x, we have   
f (x,  y) = 2+2x+2(9 - x)–x2–(9- x)2

W(x) = f(x, 9 - x)  = -  61 +18x – 2x2

Setting w(x)= 18 -4x = 0, x = 9/2.
At this value of x,  y =  9 – 9/2

Therefore we have (
9
2,   

9 
2 
  ) as a critical point.
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 ,x y   0, 0   9, 0   1, 0  9 9
,

2 2
 
 
 

 

 ,f x y  2 61  3 41

2


 

 

 ,x y   0, 9   0, 1   1, 1  

 ,f x y  61  3 4 

 
The absolute maximum is 4 which f assumes at the point (1,1) The absolute minimum is  
-61 which f assumes at the points (0, 9) and (9,0)  
 
EXAMPLE 
Find the absolute maximum and the  absolute minimum values of  
  f(x,y)=3xy-6x-3y+7  
on the closed triangular region r with the vertices (0,0), (3,0) and (0,5) . 
  

 
 
Thus, (1, 2) is the only critical point in the interior of R. Next, we want to determine the 
location of the points on the boundary of R at which the absolute extrema might occur. 
The boundary extrema might occur. The boundary each of which we shall treat 
separately. 
 
(i)   The line segment between (0, 0) and (3, 0):  
On this line segment we have y=0 so (1) simplifies to a function of the single variable x, 
 
 
 

This function has no critical points because u/(6)=-6 is non zero for all x . Thus, the 
extreme values of u(x) occur at the endpoints x = 0 and x=3 , which corresponds to the  
points (0, 0) and (3,0) on R 

 
(ii)   The line segment between the (0,0)  and (0,5) 
On this line segment we have x=0 ,so single variable y,  
 

f(x, y) = 3xy  6x  3y + 7
fx(x, y) = 3y  6,    fy(x, y) = 3x3 
For critical points 
fx (x, y) = 0 
3y  6 = 0 
y = 2 
fy(x, y) = 0 
3x  3 = 0 
x = 1 

 

u(x)=f(x, 0) =    6x + 7, 0 < x < 3
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                                                                                    5                                    
 

This function has no critical points because v/(y)=-3 is non zero for all y.Thus ,the 
extreme values of v(y) occur at the endpoints y = 0 and y=5 which correspond to the 
point (0,0) and (0,5) or R 
 
(iii)     The line segment between (3,0) and (0,5) 

In the xy-plane, an equation for the line segment  

                       
5

5, 0 3
3

y x x      

So (1) simplifies to a function of the single variable x, 
 
   
 
 
          
 
 
 
 

This shows that 
7

 
5

x   is the only critical point of w. Thus, the extreme values of w 

occur either at the critical point 
7

 
5

x  or at the endpoints x=0 and x=3.The endpoints 

correspond to  the points (0, 5) and (3, 0) of R, and from (6) the critical point corresponds 

to  
7 8

,
5 3
 
  

 

                       
Finally, table list the values of  ,f x y  at the interior critical point and at the points on 

the boundary where an absolute extremum can occur. From the table we conclude that the 
absolute maximum value of f is  0,0 7f   and the absolute minimum values 

is  3,0 11f    . 

 
OVER VIEW: 
Maxima and Minima of functions of two variables.  
Page # 833 
Exercise: 16.9  
Q #26,27,28,29. 
 

 
(x, y) 

 
 (0, 0) 

 
 (3, 0) 

 
 (0, 5) 






7

5
  

8
3

  
 
 (1, 2) 

 
f(x,y) 

 
7 

 
 11 

 
 8 

 
9
5

  
 

1 
 

 
   

 

   
 

v(y) = f (0, y) =    3y + 7,  0 <  y <

   

w(x)  =  f  (x,  
   5 

3
  x + 5)  

  

  =    5x 
2 
+ 14x    8,   0  <  x  <  3 

 

w  (x) =    10 x + 14 
  

w  (x) = 0 
  

10x + 14 = 0 
  

x =  

7 

5 
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LECTURE No. 17                
 

EXAMPLES 
 
EXAMPLE 
Find the absolute maximum and minimum values of f(x,y)=xy-x-3y on the closed 
triangular region R with vertices (0, 0), (0, 4), and (5, 0). 
 
 
 
 
 
 
 
 
Thus, (3, 1) is the only critical point in the interior of R. Next, we want to determine the 
location of the points on the boundary of R at which the absolute extrema might occur. 
The boundary of R consists of three line segments, each of which we shall treat 
separately. 
(i)  The line segment between (0, 0) and (5,0) 
On this line segment we have y = 0, so (1) simplifies to a function of the single variable 
x, 
 
  
The function has no critical points because the u/(x)=-1 is non zero for all x. Thus, the 
extreme values of u(x) occur at the endpoints x=0 and x=5 , which corresponds to the 
points (0,0) and (5,0) of R. 
 
ii) The line segment between (0,0) and (0,4) 
 On this line segment we have x = 0, so (1) simplifies to a function of the single variable 
y,  
 
 
This function has no critical points because v/ (y)= -3 is nonzero for all y. Thus, the 
extreme values of v(y) occur at the endpoints y =0 and y=4 ,which correspond to the 
point (0,0) and (0,4) or R. 
 
iii) The line segment between (5,0) and (0,4) 
In the xy-plan, an equation is  
 
                                      
so (1) simplifies to a function of the single variable x, 
 

  f (x,y) = xy    x    3y 
  (1) 

 

f x  (x, y) = y    1, 
  f y  (x, y) = x    3 

 

For critical points 
  

f x  (x, y) = 0, 
  y 

    1 = 0 
  

    y = 1 
      (2) 

 

f y  (x, y) = 0, 
  3x    3 = 0 

  

    x = 3 
      (3) 

 

 
u (x) = f (x, 0) =   - x,   0 < x < 5 (4)

v(y) = f (0, y) =    3y, 0 < y < 4. 
      (5) 

 

=    4 

5 
x+ 4, 0 < x < 5 

    (6) 
 y 
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2

4
( ) ( , 4)

5
4 4

( 4) 3( 4)
5 5

4 27
12

5 5

w x f x x

x x x x

x x

  

      

  

 

8 27
( )

5 5
27

( ) 0
8

w x x

by w x we get x

  

     
 

 

This shows that 
27

8
x   is the only critical point of w. Thus, the extreme values of w 

occur either at the critical point 
27

8
x   or at the endpoints x = 0 and x = 5. The 

endpoints correspond to the points (0, 4) and (5, 0) of R, and from (6) the critical point 

corresponds to 
27 13

,
8 10

 
  

 

 
( , )x y  (0, 0) (5, 0) (0, 4) (27/8, 13/10) (3, 1) 

( , )f x y  0 -5 -12 -231/80 -3 

 
Finally, from the table below, we conclude that the absolute maximum value of f is 
 f (0,0) = 0 and the absolute minimum value is  (0, 4)f  =-12 
 
Example 
Find three positive numbers whose sum is 48 and such that their product is as large as 
possible 
Let x,y and z be the required numbers, then we have to maximize the product 
                             f(x,y)=xy(48-x-y) 
Since 
  fx=48y-2xy-y2

    ,  fy=48x-2xy-x2 
solving   fx =0    ,                 fy=0 
we get   x=16, y=16, z=16   
Since    x+y+z=48 
 
 
 
 
 
 

f xx (x,y ) =  -  2y,        f xx (16, 16 ) =  - 32 < 0  

f xy (x, y ) = 48 - 2x - 2y,        f xy (16, 16 ) =  - 16  

f yy (x, y ) =  - 2x,         f yy (16, 16 ) =  - 32  

D=f xx (16,16 )f y7y(16,16 )  f 
2 

xy (16,16 )   
  = (   32) (   32)    (16) 

2 
 = 768 > 0  
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For x = 16, y = 16 we have z = 16 since x + y + z = 48 
Thus, the required numbers are 16, 16, 16. 
 
Example 
Find three positive numbers whose sum is 27 and such that the sum of their squares is as 
small as possible 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Example 

Find the dimensions of the rectangular box of maximum volume that can be 
inscribed in a sphere of radius 4. 
Solution: 

The volume of the parallelepiped with dimensions x, y, z is  
V = xyz 

Since the box is inscribed in the sphere of radius 4, so equation of sphere is 

 x2+ y2+ z2= 42  from this equation we can write 2 216z x y   and putting this value of 

“z” in above equation we get 2 216V xy x y   .Now we want to find out the 

maximum value of this volume, for this we will calculate the extreme values of the 
function “V”. For extreme values we will find out the critical points and for critical points 
we will solve the equations Vx=0 and Vy=0 .Now we have 

2 2

2 2

2 2 2 2

2 2 2 2

2 2 2 2

( 2 )
16

2 16

2 16 2 16
0 0

16 16

2 16 0 2 16......................( )

x

x x

xy x
V y x y

x y

x y x y
V y Now V y

x y x y

x y x y a


   

 

                  
         

       

 

Similarly we have   

Let x, y, z be the required numbers, then 

we have to   

f(x,y) = x 
2  + y 

2  + z 
2     

     = x 
2 
 + y 

2 
 + (27    x    y) 

2  

              
 Since x+y+z             = 27  

f x  = 4x+2y  54,       f y  = 2x+4y  54,    

f xx  = 4,    f yy  = 4,    f xy  = 2   

Solving  
  f x  = 0, 

        f y  = 0 
  

W e  get  
  x = 9,  y = 9, 

   z = 9 
  

Since   x + y + z  =  27 
  

D =  f xx  (9, 9) f yy  (9, 9)  [f xy  (9, 9)] 

2
  

  = (4) (4)    2 
2 
=12 > 0 

  

This shows that f is minimum  

 x = 9, y = 9, z = 9, so the required   

numbers are  
  9, 9, 9. 
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2 2

2 2

2 2 2 2

2 2 2 2

2 2 2 2

( 2 )
16

2 16

2 16 2 16
0 0

16 16

2 16 0 2 16......................( )

y

y y

xy y
V x x y

x y

x y x y
V x Now V x

x y x y

x y x y b


   

 

                  
         

       

 

Solving equations (a) and (b) we get the 
4 4

3 3
x and y   

Now 
2 2

3
2 2 2

(2 3 48)

(16 )
xx

xy x y
V

x y

 


 
(We obtain this by using quotient rule of differentiation) 

4 4 16
( , ) 0

3 3 3
xxV     

Also we have to calculate 
2 2

3
2 2 2

(3 2 48)

(16 )
yy

xy x y
V

x y

 


 
and 

4 4 16
( , ) 0

3 3 3
yyV    Also 

note that 
4 4 8

( , )
3 3 3

xyV   Now as we have the formula for the second order partial 

derivative is 2. ( )xx yy xyf f f and putting the values which we calculated above we note 

that 24 4 4 4 4 4 320
( , ). ( , ) ( ( , )) 0

33 3 3 3 3 3
xx yy xyf f f    Which shows that the 

function V has maximum value when 
4 4

3 3
x and y  . So the dimension of the 

rectangular box are 
4 4 4

,
3 3 3

x y and z   . 

Example: A closed rectangular box with volume of 16 ft3 is made from two kinds of 
materials. The top and bottom are made of material costing Rs. 10 per square foot and the 
sides from material costing Rs.5 per square foot. Find the dimensions of the box so that 
the cost of materials is minimized 
Let x, y, z, and C be the length, width, height, and cost of the box respectively. Then it is 
clear form that 
  C=10(xy+xy)+5(xz+xz)+5(yz+yz)---------------(1) 
  C=20xy+10(x+y)z 
The volume of the box is given by  
  xyz=16----------------------------------(2) 
 
 
 
 
 
  
 

Putting the value of z from (2) in 
(1), we have 

  

C = 20xy + 10 (x + y)  
16 

xy 

    

C = 20 xy +  
160 

y 

   +  
160 

x 

    

C x =20y - 
160 

x 
2 

  ,  C y  = 20x   
  160 

y 
2 
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Cxx(2,2) Cyy(2,2) – C2

xy(2,2) =(40)(40)-(20)2=1200>0 
 
This shows that S has relative minimum at x = 2 and y = 2. Putting these values in (2), we 
have z = 4, so when its dimensions are 2 2 
Example 
 

Find the dimensions of the rectangular box of maximum volume that can be 
inscribed in a sphere of radius a. 
Solution: 

The volume of the parallelepiped with dimensions x, y, z is  
V = xyz 

Since the box is inscribed in the sphere of radius 4, so equation of sphere is 

 x2+ y2+ z2= 42  from this equation we can write 2 2 2z a x y   and putting this value of 

“z” in above equation we get 2 2 2V xy a x y   .Now we want to find out the 

maximum value of this volume, for this we will calculate the extreme values of the 
function “V”. For extreme values we will find out the critical points and for critical points 
we will solve the equations Vx=0 and Vy=0 .Now we have 

2 2 2

2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2

( 2 )

2

2 2
0 0

2 16 0 2 ......................( )

x

x x

xy x
V y a x y

a x y

x y a x y a
V y Now V y

a x y a x y

x y x y a a


   

 

                  
         

       

 

Cxx (x, y) = 
320
x3   

Cxx (2, 2) = 
320
8  = 40 > 0 

Cyy (x, y) = 
320
y3   

Cyy (2, 2) = 
320
8   = 40 

Cxy (x, y) = 20 
Cxy (2, 2) = 20 

For critical points 
Cx = 0 

20y  
160
x2  = 0  and  Cy = 0 

20x  
160
y2   = 0 

Solving these equations, we have  
x = 2, y = 2. Thus the critical point 
is (2, 2). 
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Similarly we have   
2 2 2

2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

( 2 )

2

2 2
0 0

2 0 2 ......................( )

y

y y

xy y
V x a x y

a x y

x y a x y a
V x Now V x

a x y a x y

x y a x y a b


   

 

                  
         

       

 

Solving equations (a) and (b) we get the 
3 3

a a
x and y   

Now 
2 2 2

3
2 2 2 2

(2 3 3 )

( )
xx

xy x y a
V

a x y

 


 
(We obtain this by using quotient rule of differentiation) 

2

( , ) 0
3 3 3

xx

a a a
V     

Also we have to calculate 
2 2 2

3
2 2 2 2

(3 2 3 )

( )
yy

xy x y a
V

a x y

 


 
and 

2

( , )
3 3 3

yy

a a a
V   Also note 

that 
2

( , )
3 3 3

xy

a a a
V   Now as we have the formula for the second order partial 

derivative is 2. ( )xx yy xyf f f and putting the values which we calculated above we note 

that 
2

2 20
( , ). ( , ) ( ( , )) 0

33 3 3 3 3 3
xx yy xy

a a a a a a a
f f f    Which shows that the 

function V has maximum value when 
3 3

a a
x and y  . So the dimension of the 

rectangular box are ,
3 3 3

a a a
x y and z   . 

 
Example: Find the points of the plane x + y + z = 5 in the first octant at which  
f(x,y,z) = xy2z2 has maximum value. 
Solution:  Since we have f(x,y,z) = xy2z2 and we are given the plane x + y + z = 5 from 
this equation we can write x = 5 – y – z . Thus our function “f’ becomes 
f((5 – y – z),y,z) = (5 – y – z )y2z2 Say this function u(y,z) That is u(y,z) = (5 – y – z )y2z2 

Now we have to find out extrema of this function. On simplification we get  
u(y,z) = 5 y2z2 – y3z2 – y2z3  

 

u y =  10yz23 y2z22 yz3 
    =  yz2(10    3 y   2 z) 
u z =  10 y2z   2 y3z    3 y2 z2 
     =   y2 z (10    2 y   3 z) 
u y =  0 ,        u z =  0  
 y =  0  ,         z =  0  
   10    3y   2 z = 0  
     10    2y   3 z = 0  
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On solving above equations we get    – 10 + 5z = 0 z = 2 and 10 –  3y – 4 = 0 y = 2 

 

 
 
Example: Find all points of the plane x+y+z=5 in the first octant at which f(x,y,z)=xy2z2 
has a maximum value. 
Solution: 
 
   
 
 
  
 
 
  
 

 
Hence “f” has maximum value when x = 1 and y = 2. Thus the points where the function 
has maximum value is x = 1,y = 2 and z = 2. 
 

fxx=y2 (53xy)  3y2 (5x5) 
fxy=2y (5xy)(53xy)y2 (53xy) 
   y2 (5  x  y) 
fyy=2x(5xy)(5x2y)2xy(5x2y)  
  4xy (5  x  y) 
fxx (1, 2, 2) =  24 < 0 
fyy (1, 2, 2) =  16  
fxy (1, 2, 2) =  8 
fxx fyy  (fxy)2 = (24)(16)(8)2  
  = 320 > 0 

D = uyy uzz  (uyz)2 
=  ( 24) ( 24)  ( 16)2 
=  576  256 
=  320 > 0 
For y = 2 and z = 2  
We have x = 5  2  2 = 1 

uyy = 10z2  6yz2  2z3 
uzz = 10y2  2y3  6y2z 
uyz = 20yz  6y2z  6yz2 
at 
y = 2,   z = 2 
uyy (2,2) = 40  48  16 =  24 < 0 
yzz(2,2) = 40  16  48 =  24 
uyz (2,2) = 80  48  48 =  16 

f (x,y,z) = xy 
2 
z 

2 
 = xy 

2 
 (5    x    y) 

2     

    Since  x+y+z = 5 
  

f x  = y 
2 
(5  3x  y)(5  x  y),  

f y  = 2xy(5  x  2y) (5  x  y) 
  

Solving  f x  = 0, f y  = 0 , we get 
  

x = 1, y = 2, z = 2 
     x + y + z = 5 
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LECTURE No. 18             
 

REVISON OF INTEGRATION  
 

Example 1: Consider the following integral
1

2

0

( )xy y dx  

                   Integrating with respect to x , keeping y  constant, we get 

                              

1 1 1
2 2

0 0 0

12
12 2

0
0

1
2 2

0

( ) 1

1
( 0) 1 0

2 2

( )
2

xy y dx y xdx y dx

x
y y x y y

y
xy y dx y

  

     

  

  



  

Example 2:   Consider the following integral
1

2

0

( )xy y dy  

                   Integrating with respect to y , keeping x  constant, we get 

                                        

1 1 1
2 2

0 0 0

1 12 3
2 2 3 3

0 0

1
2

0

( )

1
(1 0 ) 1 0

2 3 2 3

1
( )

2 3

xy y dy x ydy y dy

y y x
x

x
xy y dy

  

     

   

  



 

Double Integral 
Symbolically, the double integral of two variables x and y over the certain region R of the 

xy  plane is denoted by ( , )
R

f x y dxdy .    

Example: Use a double integral to find out the solid bounded above by the plane  
  4 –   –  z x y  and below by the rectangle  ( , ) : 0 1,0 2R x y x y      

Solution:   We have to find the region “R”out the volume “V” over that is,  

                                            (4 )
R

V x y dA    

  And the solid is shown in the figure below. 
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12 1 2 2

0 0 0 0

22 2

0 0

(4 ) (4 ) 4
2

7 7
5

2 2 2

x

R x

x
V x y dA x y dxdy x xy dy

y
y dy y





        

      
 

   


 

Example 3: Evaluate the double integral 
1 1

2

0 0

( )xy y dxdy    

   

11 1 1 12
12 2 2

0
0 0 0 00

12 3
2 2 3 3

0

( )
2 2

1 1 1 1 7
1 0 1

:

0
4 3 4 3 4 3 12

x y
xy y dxdy y y x dy y dy

y y

             

        

   Solution

 

Example 4:  Evaluate the double integral 
1 1

2

0 0

( )xy y dydx   

Solution:  First we will integrate the given function with respect to y  and our integral 
becomes 

            

   

1 11 1 1 2 3
2

0 0 0 0 0

1 1
2 2 3 3

0 0

11 1 2
2 2 2

0 0 0

( )
2 3

1 1
1 0 1 0

2 3 2 3

1 1 1 1 7
( ) 1 0 1 0

4 3 4 3 4 3 12

y y
xy y dydx x dx

x x
dx dx

x x
xy y dydx

 
   
 
 

           
   

         

  

 

 

 

Remarks: The example 3 and example 4 show that      

                                        
1 1 1 1

2 2

0 0 0 0

7
( ) ( )

12
xy y dxdy xy y dydx        

Iterated or Repeated Integral 

The expression ( , )
d b

c a

f x y dx dy
 
 
 
  is called iterated or repeated integral. Often the brackets 

are omitted and this expression is written as  ( , ) ( , )
d b d b

c a c a

f x y dxdy f x y dx dy
 

  
 

      in 

which ( , )
b

a

f x y dx yields a function of y  , which is then integrated over the 

intervalc y d  .   
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Similarly ( , ) ( , )
b d b d

a c a c

f x y dydx f x y dy dx
 

  
 

     in which ( , )
d

c

f x y dy yields a function of x  

which is then integrated over the interval a x b  . 

Example:  Evaluate the integral
1 2

0 0

( 3)x dydx  . 

Solution:  Here we will first integrate with respect to y  and get a function of x  then we 
will integrate that function with respect to x  to get the required answer. So 

 

                

   

1 2 1
2

0
0 0 0

11 1 2

0 0 0

2 2

( 3) ( 3)

( 3) 2 0 2( 3) 2 3
2

1 1
2 1 0 3 1 0 2 3 7

2 2

x dydx x y dx

x
x dx x dx x

  

      

            
   

  

   

Now if we change the order of integration, so we get 
2 1

0 0

( 3)x dxdy  , then we  have 

     

12 1 2 2

0 0 0 0

2 2 2
22 2

0
0 0 0

( 3) ( 3 )
2

1 1 7 7 7
1 0 3 1 0 3 2 0 7

2 2 2 2 2

x
x dxdy x dy

dy dy dy y

  

                
   

  

  
. 

Now you note that the values of the integral remain same if we change the order of 
integration. Actually we have a stronger result which we state as a theorem. 
Theorem: Let R be the rectangle defined by the inequalities a < x < b and c < y < d. If 
 ,  f x y  is continuous on this rectangle, then 

                                ( , ) ( , ) ( , )
d b b d

R c a a c

f x y dA f x y dxdy f x y dydx      . 

Remark:  This powerful theorem enables us to evaluate a double integral over a 
rectangle by calculating an iterated integral. Moreover, the theorem tells us that the 
“order of integration in the iterated integral does not matter”.  

Example:  Evaluate the integral
ln 2 ln3

0 0

x ye dxdy   

Solution: First we will integrate the function with respect to x  . Note that we can write 
x ye  as .x ye e   

So we have,       
ln3ln 2 ln 2 ln 2 ln 2

ln3 0

0 0 0 00

( ) (3 1) 2y x y y ye e dy e e e dy e dy e dy         
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Here we use the fact that “e” and “ln” are inverse function of each other. So we have 

ln3 3e  .Thus we get       
ln3ln 2 ln 2

ln 2

0
0 00

2 2 2(2 1) 2y x y ye e dy e dy e       

Example:  Evaluate the integral
ln3 ln 2

0 0

x ye dydx   

Solution: First we will integrate the function with respect to y . Note that we can write 

x ye  as .x ye e  So we have,
ln 2ln3 ln3 ln3 ln3

ln 2 0

0 0 0 00

( ) (2 1)x y x x xe e dx e e e dx e dx e dx         

Since “e” and “ln” are inverse function of each other. So we have ln 2 2e  . 
ln 2ln3 ln3

ln3 ln3 0

0
0 00

( ) (3 1)Thus w t 2e ge x y x xe e dx e dx e e e         

Note that in both cases our integral has the same value. 
 
 
Overview: 
  Double integrals  Page # 854-857 
  Exercise Set 17.1 (page 857): 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 
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LECTURE No. 19 
 

USE OF INTEGRALS  
 
 
Area as anti-derivatives 
 

44 2
42

0
0 0

2 2

2 2
2

4 0 16

1
Area of triangle = base× altitude

2
1

= 4×8 16
2

x
x dx x 

  

 



  

Volume as anti-derivatives 

   
2 3 2 2 2

3 2

0 0
0 0 0 0 0

Volume = 5 5 5 3 0 15 15 15 2 0 3

Geometrically, 0 2,  0 3,  0 5

Volume  2  3  

0

5  30

x

dydx y dx dx

y

x

z

dx    

     
  





     
 

The following results are analogous to the result of the definite integrals of a function of 
single variable. 
THEOREM 

 

 

1) ( , ) ( , ) where  is a constant.

2) ( , ) ( , ) ( , ) ( , )

3) ( , ) ( , ) ( , ) ( , )

R R

R R R

R R R

c f x y dx dy c f x y dx dy c

f x y g x y dx dy f x y dx dy g x y dx dy

f x y g x y dx dy f x y dx dy g x y dx dy



  

  

 

  

  

  

Example: Use double integral to find the volume under the surface 3 2  3 3z x x y   and 

the rectangle   , :1 3,  0 2 .x y x y     

Solution:          

     

     

4 3

2

4 4 3 3

3

2 3 2 2
3 2

0 1 0 0
1

2 2

0 0

3

1

2

0

3 3

4 3

26
60

2

3
Volume = 3 3 3 1 3 1

4

3
60 2681 1 27 1

4

x x y

y
y

x x y dx dy dy dyy

dy y dyy





     

     

   

 

  

   
2

0

2 2 17260 2 0 13 2 0 120 52        
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Example: Use double integral to find the volume of solid in the first octant enclosed by 
the surface 2  z x  and the planes  2,   0,    3 and   0.x y y z      

 

 

3

0

2

0

2 3 2 2
2

0 0 0 0

2
2 3

2

3

0

2

3

: 3Volume =

3 3 2

0 

0 8
3

dy dxx x x

x

dx dx

dx
x

y  

    

   



Solution

 

SOME RESULTS: 

1) ( , ) 0 ( , ) 0 on .

2) ( , ) ( , ) ( , ) ( , )

R

R R

f x y dA if f x y R

f x y dA c g x y dA if f x y g x y

 

 



 
  

If  ,f x y  is nonnegative on a region R , then subdividing R  into two regions 1R  and 2R    

has the effect to subdividing the solid between R and  ,z f x y  into two solids, the 

sum of whose volumes is the volume of the entire solid.  

                  
1 2

( , ) ( , ) ( , )
R R R

f x y dA f x y dA f x y dA      

The volume of the solid S  can also be obtained, using cross sections perpendicular to 

.-axisy                      ( ) ( ) (1)
d

c

Vol S A y dy                       

Where ( )A y  represents the area of the cross section perpendicular to axisy  , taken at 
the point .y   

 
How to compute cross sectional area 
For each fixed y  in the interval ,c y d   the function  ,f x y  is a function of x alone , 

and  A y  may be viewed as the area under the graph of this function along the 

interval ,a x b      

Thus          ( ) ( , )
b

a

A y f x y dx    

Substituting this expression in (1), we get 

 

 
 



19-Use of integrals                                                                                                                                        VU 
 

 
© Copyright Virtual University of Pakistan 

 

109

                Vol (S) ( , ) ( , ) (2)
d b d b

c a c a

f x y dx dy f x y dx dy
 

          
 

     

 
 
 
 
 
 
 
 
Similarly, the volume of the solid S  can also be obtained, using cross sections 
perpendicular to axis.x    

               Vol (S) ( ) (3)
b

a

A x dx                      

Where ( )A x  represents the area of the cross section perpendicular to axisx  , taken at 
the point .x  
 
 
 
 
 
 
 
 
 
For each fixed x  in the interval ,a x b   the function  ,f x y  is a function of y alone, 

and  A x is given by ( ) ( , )
d

c

A x f x y dy      Substituting this expression in (3), we get 

            ( ) ( , ) ( , ) (4)
b d b d

a c a c

Vol S f x y dy dx f x y dy dx
 

          
 

     

By equations (2) and (4),    ( , ) ( , ) ( , )
d b b d

R c a a c

f x y dA f x y dx dy f x y dy dx       

Double integral for non-rectangular region 
Type I region is bounded the left and right by the vertical lines x a  and x b  and is 
bounded below and above by continuous curves 1( )y g x  and 2( )y g x , where  

                                   21( ) ( ) forx xg g a x b    

If R  is a type I region on which  ,  f x y  is continuous, then  

                           
1

2 ( )

( )

( , ) ( , )
g

g

xb

R a x

f x y dA f x y dy dx    
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By the method of cross section, the volume of S is also given by 

                                           Vol (S) ( ) (5)
b

a

A x dx           

          where  A x  is the area of the cross section at the fixed point x  and this cross 

section area extends from 21( ) to ( )g gx x  in the y  direction, 

So                      
2

1

( )

( )

( ) ( , )
x

x

g

g

A x f x y dy   

Using it in equation (5), we get
2

1 1

2( ) ( )

( ) ( )

Vol (S) ( , ) ( , )
x xb b

a x a x

g g

g g

f x y dy dx f x y dy dx
 

  
  

     

The volume of S  is also given by
1

2 ( )

( )

( , ) ( , )
g

g

xb

R a x

f x y dA f x y dy dx    

Type II region is bounded below and above by horizontal lines y c  and y d  and is 

bounded in the left and right by continuous curves  1x h y  and  2x h y  satisfying  

                                          1 2 for    .h y h y c y d    

 If R  is a type II region on which  ,  f x y  is continuous, 

then
2

1

(y)

(y)

( , ) ( , )
hd

R c h

f x y dA f x y dx dy     

Similarly, the partial definite integral ( , )
d

c

f x y dy with respect to y  is evaluated by 

holding x  fixed and integrating with respect to .y  The integral of the form                     

( , )
d

c

f x y dy  produces a function of .x  
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LECTURE No.20       
 

DOUBLE INTEGRAL FOR NON-RECTANGULAR REGION   
 
Double Integral for Non-rectangular Region 
Type I region is bounded the left and right by vertical lines x a  and x b  and is 
bounded below and above by curves   
                         1 2 1 2 and  where      for  ,y g x y g x g x g x a x b       

                  
1

2 ( )

( )

( , ) ( , )
g

g

xb

R a x

f x y dA f x y dy dx    

 
Type II region is bounded below and above by the horizontal lines y c  and y d  and 

is bounded on the left and right by the continuous curves    1 2  and x h y x h y   

satisfying      1 2     for  h y h y c y d     

                           
2

1

( )

( )

( , ) ( , )
d

R c

h x

h x

f x y dx dy f x y dx dy    

 
Write double integral of the function f(x,y)on the region whose sketch is given 
 
 

 

ln8 ln

1 0

ln ln8 ln8

0

( , )

( , )
x

y

e

f x y dx dy

f x y dy dx

 

 
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Solution: 

             
 

 

ln8 ln

1 0

I ( , )

Here, limits of  are      0 ln (1)

limits of  are      1 ln8 (2)

Take logrithm of each sides of (2), 0 ln ln ln8 (3) ln1 0

Compare (1) (3), 0 ln ln ln8 (4)

From

y

f x y dx dy

x x y

y y

y

and x y



      
      

     

       

 



   

 ln ln8 ln8

0

 (4), 0 ln ln8 and ln ln ln8

ln8

So, I ( , )
x

x

e

x x y

e y

f x y dy dx

   

 

  

 

Write double integral of the function f(x,y)on the region whose sketch is given 
21

0 0

1 1

0

( , )

( , )

y

x

f x y dx dy

f x y dy dx

 

 
       

 

 

21

0 0

2

2
2

Solution : I ( , )

Here, limits of  are      0 0 (1) by taking square root

limits of  are      0 1 (2)

Compare (1) and (2), 0 1 (3)

From (3),           0 1 and 1

0 1

y

f x y dx dy

x x y x y

y y

x y

x x y

x



       
      

       

   

 

 

2 and 1

0 1 and 1

x y

x x y

 

   

 

EXAMPLE:  Draw the region and evaluate an equivalent integral with the order of 

integration reversed.   
2

2 2

0

4 2
x

x

x dy dx    
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The region of integration is given by the inequalities  2 2 and 0 2.x y x x      

                 

2

2

2

limits of  are 2 (1)

limits of  are 0 2 0 2 4 (2)

Compare (1) and (2), 0 2 4 (3)

From (3), 0 4 and , 2

,
2 2

y x y x

x x or x

x y x

y x y y x

y y
x y x or x y

     
       

       

   

   

  

                   

   

 

2

2 2 4 4 2

0 0 0
22

4 42 2

0 0

4 2 4 2 4 2
2

2 2 2
2 2

yyx

yyx

x
x dy dx x dx dy x dy

y y
y y y dy y y dy

    

   
         

   

    

 

 

                       

4
3

432 3 2 32
2

0

0

1 4 4 1 1
2 8 16 64 8

3 2 2 3 3 2 6 3 2 6
2

y y y y y
y            

EXAMPLE 
4 2

5

0

Evaluate I cos . The integral is over the region 0 4, 2.
y

y x dx dy y x y and x       

 
 
 
 
 
 
 
 

    
2

2

Solution : For reversing the limits of the integral,

limits of  are 2 4 (1)

limits of  are 0 4 (2)

By (1) and (2), 0 4 (3)

x y x or y x

y y

y x

       

     

      

  

      
 

22

2 2

2 2 22
25 5 2 2 5

0 0 0 00

2 2 2
4 5 5 4

00 0

5

By (3), 0 and 0 4

0 2

1
I cos cos 0 cos

2 2

1 1 1 1
cos cos 5 sin 32

2 2 5 10 10
sin

xx

y x x

x

y
y x dy dx x dx x x dx

x x dx x x dx x

   
 

   

   


   

 

  

 

 

x = 2 

y = 4 (2,4) 

x = y

O

x = 2

y = 4 (2,4)

x = 2

y = 4 (2,4)y = 4 (2,4)

y =x2

O
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EXAMPLE:  
2

1
12

0 2

Evaluate I .y

x

e dydx    

Solution: The integral cannot be evaluated in the given order, since 
2ye  has mo anti-

derivative.  So we shall change the order of integration. The region R  in which 

integration is performed is given by   
1

0 , 2 and 1.
2

x y x y     

The region is enclosed by 0, and 0 1
2

y
x x y     

 

2 2

2 2

1 12
2

0
0 0 0

1 1

0 0

1

0

2

I

1
2

2 2 2

1 1
1

4 4

y
y

y y

y y

y

e dx dy e dy

y
e dy y e dy

ee

x 

 


  

  

   

EXAMPLE:  
3 ln

1 0

Evaluate I .
x

x dydx    

Solution: The region R  in which integration is performed is given by  

Limits of  are    1 3

ln1 ln ln 3

0 ln ln 3 (1)

Limits of  are 0 ln (2)

By (1) and (2), 0 ln ln 3 (3)

From (3), ln ln 3 and 0 ln 3

3 and 0 ln 3y

x x

x

x

y y x

y x

y x y

e x y

 
 
    

    
     

   

   

 

       
 

   2

33 2
2

0 0 0

ln32
ln3 0

0

ln3 ln3 ln31
 I 9

2 2

1 1 1 1 9
9 9 ln 3 9 ln 3 4 ln 3 2

2 2 2 2 2 2

y

y

y e

y

e

x
x dx dy dy e dy

e
y e e

   

          
 

   
 

 
Over view of Lecture # 20 
     Book Calculus by Howard Anton 
             Chapter # 17   Article # 17.2    
             Page (858-863)  Exercise set 17.2 (21, 22, 23, 25, 27, 35, 37, 38 )        

 

 

1/2

1 y = 2x Or  x = y/2

O
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LECTURE No. 21                   
 

EXAMPLES 
 
Example 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Example :Calculate 
sin

R

x
dA

x  , where R is the triangle in xy-plane bounded by the    

x-axis, the line y = x and the line x=1. 
 

 

 

1 1 1

0
0 0 0 0

1 1

0
0

sin sin sin
0

sin cos1 cos 0 0.46cos

x xx x x
dy dx dx x dx

x x x

x dx

y

x

            
    

      

   



Solution :

 

 

=   
  1 

8 

   
4 

0 
 e 

- y 2 
 (   2y) dy 

 

=      
1 

8 

   | |e 
- y 2  

4 

0 

  =      
1 

8 

   | |e 
- 16     c 

0  

   
 

         =   
1 

8 

    




1    

1 

e 
16 

  

4 (1,4)

y = 4x

y = 4

x = y/4

 


1

0


4

4x
e - y 

2 
 dy dx  

Reversing the order of
integration  


4

0


y/4 

0
e- y 2 dx dy    

= 
4 

| | x e- y 2   
y/4 

0 
  dy  = 

4

0 

y
4 

   e - y 
2 
 dy
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 Example 
 
 
 
 
 
 
 
 
 
 
 
To evaluate this integral , we express is as an equivalent iterated integral with the order if 
integration reversed . For the inside integration, y is fixed and x varies from he line 
 x = y/2 to the line x = 1. For the outside integration, y varies from 0 to 2, so the given 
iterated integral is equal to a double integral over the triangular region R. 
 
To reverse the order of integration, we treat R as a  
type I region, which enables us to write the given  
integral  as 

           
2

2 1

0
2

x

y

e dxdy   

By changing the order of integration we get, 

                            
2

2 1

0
2

x

y

e dxdy    
2

1 2

0 0

x
xe dydx    

 
 
Example 
Use a double integral to find the volume of the solid that is bounded above by the palne 
z = 4-x-y and below by the rectangle  

   

2 2

2 1

0 0

1 2
2 2

0 0
0 0

4 4

77
54

22 2 2

R

V x y dA x y dx dy

x
dy y dyx xy

y
y

     

        
 

  

 
  

 

 = 
1

0 [ex2
y]

2x

y=0
 dx 

 =  
1

0  2xe x2
 dx 

 = ex2 
|
1

0
 = e  1 

 
2 

0 

1   

 y/2
 e x2 

 dxdy 

  
Since there is no elementary

 y/2

cannot be evaluated by performing 

2
antiderivative of e

x2

, the integral


0


1

 e
x2

dxdy

the x-integration first.

 

R = {(x,y):0< x < 1, 0 < y < 2}
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Example  
Use a double integral to find the volume of the tetrahedron bounded by the coordinate 
planes and the plane z=4-4x-2y The tetrahedron is bounded above by  the plane. 

z=4-4x-2y  ------------------(1) 
and below by the triangular region R  

 
 

 
Example : Find the volume of the solid bounded by the cylinder x2+y2 = 4 and the planes 
y + z = 4 and z = 0.      
                           

 
 
 
 
 
 
 
 
 
 

The solid is bounded above by the
plane z = 4  y and below by the
region R within the circle x2 + y2 = 4. 
The volume is given by 
V  =   

R
 (4  y) dA 

Treating R as a type I region we obtain

    V =  
R
 (44x2y) dA  

 = 
1

0 
2-2x

0  (4  4x  2y) dy dx 

     = 
1

0 [4y4xyy2]
2-2x

y=0
 dx  

 = 
1

0  (48x+4x2)dx  

  = 
4
3  

 Thus, the volume is given by 
 V  =   

R
 (4  4x  2y) dA 

The region R is bounded by the x-axis, 
the y-axis, and the line y = 2  2x [set 
z = 0 in (1)], so that treating R as a
type I region yields. 

V =   

2 

- 2 

   

 4 - x 2 

-  4 - x 2 
 (4    y) dy dx  

  

=   

2 

- 2  
 
 
 

 
 
 
 

4y     
1 

2 
 y 

2 

 4 - x 2 

y= -  4 - x 2 
 dx 

  

=   

2 

- 2 
8  4    x 

2    dx    
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Example 
Use double integral to find the volume of the solid that is bounded above by the 
paraboiled z=9x2 + y2 ,below by the plane z=0 and laterally by the planes  
 x = 0,    y = 0,     x = 3,    y = 2 

 

 
 

 
 
 

 =  
3

0
 




18x2 + 

8
3  dx 

 =  




6x3 + 

8
3 x

3

0
  

 =  6 (27) + 8 

 =  170 

Volume =  
3

0


2

0
 (9x2 + y2) dy dx 

   =  
3

0
 








9x2y + 
y3

3

2

0
  dx 

=  8








 
x 4-x2

2   + 
4
2 sin-1 

x
2

2

-2

  

 =  8| | 2sin-1(1) -2sin-1(-1)   

 = 8[2(

 2 ) + 2(


 2 )] 

 =8(2) = 16  
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LECTURE No. 22                 
 

EXAMPLES 
 

       

 Evaluate , where is the region bounded by the trapezium with the 

vertices 1, 3 , 5, 3 , 2, 1 and 4, 1 .
R

xy dA RExample :

Solution: 
3 1 2

Slope of AD = 2
1 2 1


  

 
                  2 1

2 1

Since Slope   
y y

m
x x


 


  

 
               Equation of line AD 

                         

 
 

1 1

1 2 2

1 2 4

5 2

5

2

y y m x x

y x

y x

y x

y
x

  

   

   
  


 

  

                

 

2 2Equation of line :

3 1 2
Slope of BC = 2

5 4 1

7
1 2 4 or 7 2

2

yBC y m x x

y
y x y x x


 


  


      

                                    

   
2 2

7
7

2
3 3 32

51 1 15
2

2

3 32 2

1 1

3

1

2
7 5

2 2

5 7
Limits of  are from to  .

2 2
Limits of  are from 1 to 3.

1

2

1 49 14 25 10 1 24 24

2 4 4 2 4

3 3

2

y
y

yR y

y y

y y
x x x

y

xy dA xy dx dy y dy y dy

y y y y y
y dy y dy

y y

x





 



 
 

 
  

  

           
  

 

    

 

  
2 3

3

2

1

3 3
2 3

12 26 38
y y

dy    

EXAMPLE: Use double integral to find the volume of the wedge cut from the cylinder 
2 24 9x y   by the plane 0z   and 3z y    

Solution: Since we can write 94 22  yx as 
 

2 2

2
3 / 2

1
9

x y
    This is eq of ellipse. 

A(2,1) B(4,1)

C(5,3)D(1,3)
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Now the Lower and upper limits for x   are 
2 29 9

2 2

y y
x and x

  
   

And upper and lower limits for y  are 3  and 3  respectively. So the required volume is 
given by   

         

 

   

 

2

2 2

2 2

2

3

2
2

9
9 93 32

2 2

9 9
3 39 2 2

2

3 2 2 2 2

3

3 3 3
2 2 2 2

3 3 3

3 3

33

3 3

9 9 9 9
3

2 2 2 2

1
9 3 9 9 2 3 9

2

1 2
3 99

2 3 2

y
y y

y y
y

y dx dy dy

y y y y
y dy

y y y dy y y dy y dy

yy
y

y x x


 

   
  



  



     
  

                         


        


   

  



  

 
   

12

3

3

1 1

3

9
sin

2

9 27
0 3

2 2

3 3
0 0

2 2
sin 1 sin 1

y







 

 
  
  

 
     
  

 

  

EXAMPLE:  Use double integral to find the volume of solid common to the cylinders 
2 2 25x y   and 2 2 25.x z    

Solution:   From 2 2 2 2 2 25 or  2 or5 25x y y x y x        

                  Radius of cylinder is 5, so limits of x  is from 0 to 5. 
2 2 2 Only +ve value takeFrom  25  2 n in first octant5 .x z z x      

 

   

2
225

25
2 2

0

2 2

5 5

0 0

5
2

0

5

0 0

Volume 8 Area of cylinder in first Octant

8 8 8

8 8

25 25

25 25 0 25

x
x

R

z d xA dy dx dx

dx dx

x

x x x

y
 

 



 

  

   

   

 
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              
3

3

5

0

31 2000
25 5 0 5 028 85

3 3
3

x
x     

  
  

AREA CALCUALTED AS A DOUBLE INTEGRAL 

                           V =  1 (1)
R R

dA dA      

However, the solid has congruent cross sections taken parallel to the xy -plan so that 
                     V area of base height area of R 1 area of R   

Combining this with (1) yields the area formula   

                             Area of (2)
R

R dA    

EXAMPLE:  Use a double integral to find the area of the region R enclosed between the 

parabola 
2

 and the line 2 .
2

x
y y x    

Solution:  The required area is between the parabola 
2

2

x
y       -------(1) 

                                                                   and the line 2y x     -------(2) 

       
2

2By 1  and 2 , 2 4 0, 4
2

x
x x x x x       

    

   

2

2

24 4 4 22

0 0 02

2

4

2 2 3 3

0

2 3

Area of 2
2

1 16
4 0 4 0

6 3

1
2

2 2 3

y x y x

x
y

R x
y

x
R dA dy dx dx x dx

x x

y
 




 
     

 

      

    

 

EXAMPLE:  Find the area of the region R enclosed by the parabola 2y x  and the line 
2.y x    

Solution:    The required area is between the parabola 2y x      -------(1) 
                                                                 and the line 2y x      -------(2) 

By (1) and (2),   2 2x x    

                          
2 2 0

2, 1

x x

x x

  
  

        

 

   

          

2
2

2 2

1 1

2 3

22 2 2

1 1

2
2

2

1
1

1 1 9
2 4 1 2 2 1 8 1

2 3 2
2 3

2

y x y x

y x
y x

dy dx dx

x x
x x dx x

y

 

   


 






            

  


 

    

   

  

  

y = x+2

y = x2
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LECTURE No. 23            
 

POLAR COORDINATE SYSTEMS  

 
POLAR COORDIANTE SYSTEMS 

 
 

 
 
THE POLAR COORDINATES OF A  
POINT ARE NOT UNIQUE.  
 

 
In general, if a point P has polar coordinate 
(r,  ), then for any integer n=0,1,2,3,……. 
(r, +n 3600)  and (r, +n 3600) 
are also polar coordinates of p 
In the case where P is the origin, the line  
segment OP reduces to a point, since r = 0.  
Because there is no clearly defined polar angle  
in this case, we will agree that an arbitrary  
Polar angle may be used. Thus, for every may be used.  
Thus , for every , the point (0, ) is the origin. 
 
NEGATIVE VALUES OF R 
When we start graphing curves in polar coordinates, it will be desirable to allow negative 
values for r. This will require a special definition. For motivation, consider the point P 

For example, the polar coordinates
(1, 315),      (1,  45),  and  (1, 675) 
all represent the same point  

The number r is called the  
radial distance of P and   
is called a polar angle of P. In  
the points (6, 45), (3, 225),  
(5, 120), and (4, 330)  
are plotted in polar coordinate  
systems. 

To form a polar coordinate system in a
plane, we pick a fixed point O, called the
origin or pole, and using the origin as an
endpoint we construct a ray, called the polar
axis. After selecting a unit of measurement,
we may associate with any point P in the
plane a pair of polar coordinates (r, ), 
where r is the distance from P to the origin
and  measures the angle from the polar axis
to the line segment OP. 

 P(r, ) 

O Origin Polar Axis 

                           P(6, 450) 

P(3, 2250) 

(5, 1200) 

(4, 3300) 

 
 
     1 
 
 
 

    1 
 
 
 
 

 (1, 3150) 

(1, 6750) 

(1, -450) 

1
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with polar coordinates (3, 2250) We can reach this point by rotating the polar axis 2250 
and then moving forward from the origin 3 units along the terminal side of the angle. On 
the other hand, we can also reach the point P by rotating the polar axis 450   and then 
moving backward 3 units from the origin along the extension of the terminal side of the 
angle  
 
This suggests that the point  

0(3, 225 )  might also be denoted by 
0( 3, 45 ) with the minus sign  

serving to indicate that the point is 
on the extension of angle’s terminal 
side rather than on terminal side  
  itself. 
 
 
Since the terminal side of the angle 0180  is the  
extension of the terminal side other angle  ,We shall define. 
(-r,  ) and (r, 0180  )  to be polar coordinates for the same point . 
With  r = 3 and    = 450 in (2) if  follows that (-3, 450)  and ( 3, 2250) represent the same 
point. 
 
RELATION BETWEEN POLAR AND RECTANGULAR COORDINATES 
 
 
   
 
     
 
 
 
CONVERSION FORMULA FROM POLAR TO CARTESIAN COORDINATES 
AND VICE VERSA 
 
 
 
 
 
   
 
        
 
 
 
Example :   
Find the rectangular coordinates of the point P whose polar coordinates are  (6, 1350) 

P(3,2250) 
Polar Axis 

    Terminal 
        Sides 

P(-3,2250) 

Polar Axis 

o
x= rcos θ

r

θ
x

y
P(x,y)
P(r,θ)

y = r sinθ

o x

yr

P(x, y) =P(r, θ)

θ

x = r cos θ

y = r sin θ

x2 + y2 = r2

y/x =tanθ

x
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Solution:  
Substituting the polar coordinates,  
   r = 6 and   =1350   in x = r cos  and y = r sin  yields 
  
   
 
Thus, the rectangular coordinates of the point P are ( 
Example: Find polar coordinates of the point P whose rectangular coordinates are 

( 2,2 3)  
Solution: We will find polar coordinates (r,  ) of P such that r >0 and 0 2   . 

              2 2 2 2( 2) (2 3) 4 12 16 4r x y          

              12 3 2
tan 3 tan ( 3)

2 3

y

x

         


 

From this we have (-2, 2 3 ) lies in the second quadrant of P. All other Polar coordinates 
of P have the form           

                               
2 5

(4, 2 ) or ( 4, 2 ) , where is integer
3 3

n n n
      

LINES IN POLAR COORDIANTES 
A line perpendicular to the x-axis and passing through the point with xy coordinates with 
(a, 0) has the equation x = a . To express this equation in polar coordinates we substitute 
x = r cos    a = r cos    --------(1)  

 

 

 

For Any constant 0, the equation
 = 0    (3) 
is satisfied by the coordinates of all 
points of the form P (r, 0), 
regardless of the value of r. Thus, the 
equation represents the line through 
the origin making an angle of 0 
(radians) with the polar axis. 

A line parallel to the x-axis that 
meets the y-axis it the point with  
xy-coordinates (0, b)  has the 
equation y = b.  
Substituting y = r sin  yields. 
r sin  = b  (2) 
as the polar equation of this line. 
This makes sense geometrically 
since each point P (r, ) on this line 
will yield the value b for r sin  

This result makes sense 
geometrically since each 
point P (r, ) on this line will 
yield the value a for r cos . 

x = 6 cos 135 = 6 ( 2/2)  =  3 2  

y = 6 sin 135  = 6 ( 2/2)     = 3 2  

 3 2 , 3 2 )  

P

r = 6 135
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By substitution x = r cosθ and y = r sinθ in the  
equation Ax +By +C = 0. We obtain the general polar form of the line,  
 
 
CIRCLES IN POLAR COORDINATES 

 
 
 
SOME SPECIAL CASES OF EQUATION OF CIRCLE IN POLAR 
COORDINATES  
 
 
 
 
 

  
 
 
 
 
 
 
 

   
 
 

If a circle of radius a has its center 
on the x-axis and passes through the 
origin, then the polar coordinates of 
the center are either 
(a, 0)   or  (a, ) 
depending on whether the center is to 
the right or left of the origin 

This equation makes sense 
geometrically since the circle 
of radius a, centered at the 
origin, consists of all points  
P (r, ) for which r = a, 
regardless of the value of   

Let us try to find the polar equation 
of a circle whose radius is a and 
whose center has polar coordinates 
(r0, 0). If we let P(r, ) be an 
arbitrary point on the circle, and if 
we apply the law of cosines to the 
triangle OCP we obtain 

r2  2rr0 cos (  0) + r2
0
  = a2       (1) 

r (Acosθ + B sinθ) + C = 0  

A circle of radius a, centered at the
origin, has an especially simple polar
equation. If we let r0 = 0 in (1), we 
obtain r2 = a2 or, since a > 0, r = a 
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LECTURE No. 24                 
 

SKETCHING  
 
Draw graph of the curve having the equation r = sin  
By substituting values for at increments of 0(30 )

6


 and calculating r, we can construct 

The following table: 
                             
 
 
 
 
 
 
 
 
 
 

 
This is indeed the case may be seen by expressing the given equation in terms of x and y. 
We first multiply the given equation through by r to obtain r2 = r sin which can be 
rewritten as 
 
 

or on completing the square                                . This is a circle of radius 
1

2
 centered at 

the point (0, 
1

2
) in the xy-plane. 

 
 
Sketching of Curves in Polar Coordinates 
 
1. SYMMETRY 
(i) Symmetry about the Initial Line 

   If the equation of a curve remains unchanged when (r,  ) 
   is replaced by either (r, - ) in its equation ,then the curve  
   is symmetric about initial line.  
 

 Note that there are 13 pairs listed in 
Table, but only 6 points plotted in 
This is because the pairs from  =  
on yield duplicates of the preceding 
points. For example, ( ½, 7/6) and 
(1/2, /6) represent the same point. 
The points appear to lie on a circle.  

   
(radians)   

0   
6   


3  

2  2
3  5

6  

r  = sin    0  1 
2     

3
2   

1  3
2   

1
2   

 
 
 
 
 
 
    

(radians)   
  7  

6   4
3  3

2  5
3  11 

6  2    

r  = sin    0   1 
2      3

2   
 1  

 3
2     12   0   

 

x2 + y2 = y   or  x 2 + y2  y = 0  

x2 + 




y  

1
2

2

  = 
1
4

  

(r, θ )

(r,-θ)
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(ii) Symmetry about the y-axis 
  If when (r,  ) is replaced by either (r,  ) in 
  The equation of a curve and an equivalent equation  
  is obtained ,then the curve is symmetric about the 
  line perpendicular to the initial i.e, the y-axis  
 
 
 
 
(ii) Symmetry about the Pole 
If the equation of a curve remains unchanged  
when either (-r,  ) or is substituted for (r,  ) 
in its equation ,then the curve is symmetric  
about the pole. In such a case, the center of  
the curve. 
 

 
 
2. Position of the Pole Relative to the Curve 
 
See whether the pole on the curve by putting r = 0 in the equation of the curve and 
solving for . 
 
3. Table Of Values 
 
Construct a sufficiently complete table of values. This can be of great help in sketching 
the graph of a curve. 
 
II Position Of The Pole Relative To The Curve. 
 
When r = 0,   = 0. Hence the curve passes through the pole.  
 

 
 
 
 

III. Table of Values 
 0 /3 /2 2/3  

r=a (1cos) 0 a/2 a 3a/2 2a 
As  varies from 0 to , cos  decreases 
steadily from 1 to  1, and 1  cos  
increases steadily from 0 to 2. Thus, as  
varies from 0 to , the value of  
r = a (1  cos ) will increase steadily from 
an initial value of r = 0 to a final value of  
r = 2a. 

(r, θ )(r,-θ)

(r, θ )

(- r, θ )  
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On reflecting the curve in about the x-axis, we obtain the curve. 
 
 
 
 
 
 

 
 
 
 
 
 
 
CARDIDOIDS AND  LIMACONS 
 
r=a+b sin ,  r = absin  
r=a+b cos ,  r = abcos  
 
The equations of above form produce polar curves called limacons. Because of the heart-
shaped appearance of the curve in the case a = b, limacons of this type are called 
cardioids. The position of the limacon relative to the polar axis depends on whether sin  
or cos  appears in the equation and whether the + or  occurs.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
LEMNISCATE 
 
If a > 0, then equation of the form 
                                  r2 = a2 cos2,    r2 =  a2 cos 2 
                                  r2 = a2 sin 2,    r2 =  a2 sin 2 

r = a (1 – cos θ) r = a (1 + cos θ)

r = a (1 + sin θ)r = a (1 – sin θ)

CARDIOIDS

θ = 

r = 2a

C (2a, - /2)

θ = 

r = 0
θ =0, r=0

O

O

O

O

(0 , /2)

A

D

(0, - /2)
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represent propeller-shaped curves, called lemniscates (from the Greek word “lemnicos” 
for a looped ribbon resembling the Fig 8. The lemniscates are centered at the origin, but 
the position relative to the polar axis depends on the sign preceding the a2 and whether 
sin 2 or cos 2 appears in the equation. 

 
 
 
 
 
 
 
 
 
 
 

Example 
r2 = 4 cos 2  

The equation represents a lemniscate. The graph is symmetric about the  
x-axis and the y-axis. Therefore, we can obtain each graph by first sketching the portion 
of the graph in the range 0 <  < /2 and then reflecting 
 that portion about the x- and y-axes. The curve passes 
 through the origin when  = /4, so the line  = /4 is  
tangent to the curve at the origin. As  varies from 0 to /4, 
 the value of cos2 decreases steadily from 1 to 0, 
 so that r decreases steadily from 2 to 0.For  in the 
 range /4 <  < /2, the quantity cos2 is negative,  
so there are no real values of r satisfying first equation.  
Thus, there are no points on the graph for such .  
The entire graph is obtained by reflecting the curve  
about the x-axis and then reflecting the resulting curve 
 about the y-axis. 
 
ROSE CURVES 
Equations of the form 
               r = a sin n and  r = a cos n  
represent flower-shaped curves called roses. The rose has n equally spaced petals or 
loops if n is odd and 2n equally spaced petals if n is even  
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The orientation of the rose relative to the polar axis depends on the sign of the constant a 
and whether sin or cos appears in the equation.  
 
SPIRAL 
A curve that “winds around the origin” infinitely many times in such a way that r 
increases (or decreases) steadily as  increases is called a spiral. The most common 
example is the spiral of Archimedes, which has an equation of the form. 
 r = a   ( > 0)    or    r = a    ( < 0) 
In these equations,  is in radians and a is positive. 
EXAMPLE 
Sketch the curve  r =   ( > 0)  in polar coordinates. 
This is an equation of spiral with a = 1; thus, it represents an Archimedean spiral.  
Since r = 0 when  = 0, the origin is on the curve and the polar axis is tangent to the 
spiral. 
A reasonably accurate sketch may be obtained by plotting the intersections of the spiral 
with the x and y axes and noting that r increases steadily as  increases. The intersections 
with the x-axis occur when 
  =  0,   ,  2,  3, ……. 
at which points r has the values 
r = 0,  ,  2,  3,….. 
and the intersections with the y-axis occur when 

  =  

2  , 

3
2  , 

5
2  , 

7
2   , …… 

at which points r has the values 

r  =  

2  , 

3
2  , 

5
2  , 

7
2   , …… 

Starting from the origin, the Archimedean spirals r =  ( > 0) loops counterclockwise 
around the origin. 
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LECTURE No. 25               
 

DOUBLE INTEGRALS IN POLAR COORDINATES 
 

Double integrals in which the integrand and the region of integration are expressed in 
polar coordinates are important for two reasons: First, they arise naturally in many 
applications, and second, many double integrals in rectangular coordinates are more 
easily evaluated if they are converted to polar coordinates. The function ( ) ,z f r   to 
be integrated over the region R  as shown in the figure. 

 

 

 

 

 

INTEGRALS IN POLAR COORDIATES 

When we define the double integral of a function over a region R in the xy-plane, we 
begin by cutting R into rectangles whose sides are parallel to the coordinate axes. These 
are the natural shapes to use because their sides have either constant x -values or constant 
y -values. In polar coordinates, the natural shape is a “polar rectangle” whose sides have 
constant r  and   - values. 

Suppose that a function  ,( )f r   is defined over a region R  that is bounded by the ray  = 

 and  =  and by the continuous curves r = r1 () and r = r2(). Suppose also that 
0 < r1() < r2() < a   for every value of  between  and . Then R lies in a fan-shaped 
region Q defined by the inequalities 0 <  r < a  and  <  < . 

Then the double integral in polar coordinates is given as 

 

                                       
R
 f (r,) dA = 

2

1

( )

( )

( , )
r r

r r

f r drd
 

  

 


 
   

 

How to find limits of integration from sketch  

   Step 1. Since  is held fixed for the first integration, draw a radial line from the origin 
through the region R at a fixed angle . This line crosses the boundary of R at most twice. 
The innermost point of intersection is one the curve r = r1() and the outermost point is 
on the curve r = r2(). These intersections determine the r-limits of integration. 

   Step 2. Imagine rotating a ray along the positive x -axis one revolution 
counterclockwise about the origin. The smallest angle at which this ray intersects the 
region R is  =  and the largest angle is  = . This yields the -limits of the integration. 
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EXAMPLE 

Find the limits of integration for integrating ,( )f r   over the region R  that lies inside the  

cardioids   1  r cos   and outside the circle  1r  . 

 

 

 

 

 

Solution:  

Step 1. We sketch the region and label the bounding curves.                     

Step 2. The r-limits of integration. A typical ray from the origin enters R where r =1 and 
leaves where    1  r cos  . 

Step 3. The -limits of integration. The rays from the  

origin that intersect R run from  = 

2  to  = 


2. 

The integral is    

/2

-/2


1+cos

1
 f (r, ) r dr d  =  2 

/2

0


1+cos

1
 f(r, )  rdr d 

 

EXAMPLE : Evaluate   
R
 sin  dA     where R is the region in the first quadrant that is 

outside the circle 2r   and inside the cardioids 1 )2(r cos  . 

Solution:  

 
R
 sin  dA=

/2

0

2

2(1+cos)

(sin ) r dr d 

=  

/2

0
 
1
2 r2 sin ]

2(1+cos)

r=2
  d 

= 2

/2

0
[(1+cos)2sin sin]d 

=  2 



 

1
3 (1 + cos)3 + cos

/2

0

= 2 



 

1
3  



 

5
3   = 

8
3  

EXAMPLE : Use a double polar integral to find the area enclosed by the three-petaled 
rose r = sin 3. 

Solution: We calculate the area of the petal R in the first quadrant and multiply by three. 
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A = 3  
R
 dA = 3 

/3

0

0

sin3

r dr d = 3 

/3

0

r2

2 |
sin3

0
 dr d 

= 
3
2  

/3

0
 sin2 3 d   = 

3
4  

/3

0
 (1cos 6) d 

=  
3
4  



  

sin 6
6

/3

0
 =  



3

4   
3
24 sin 6

/3

0

  = 
1
4   

EXAMPLE : Find the area enclosed by the lemniscate r2 = 4 cos2. The total area is four 
times the first-quadrant portion. 

Solution:  

A = 
4 24

0 0

4
Cos

r dr d




   = 

4 2

4

0

0

2

4
2

Cos

d
r




 

  
 

 

    = 4 

/4

0
2cos 2 d = 4 sin 2]

/4

0
 = 4. 

CHANGING CARTESIAN INTEGRALS INTO POLAR INTEGRALS 

The procedure for changing a Cartesian integral  
R
f(x, y) dx dy into a polar integral has 

two steps. 

Step 1. Substitute  and   ,x r cos y r sin    and replace dx dy  by   r dr d  in the 
Cartesian integral. 

Step 2. Supply polar limits of integration for the boundary of R. The Cartesian integral 
then becomes 

                        
R
 f(x,y) dx dy= 

G
 f(rcos, rsin)r dr d 

                where G denotes the region of integration in polar coordinates. 

Notice that dx dy is not replaced by dr d  but by r dr d. 

EXAMPLE: Evaluate the double integral 

21 1
2 2

0 0

( )
x

x y dy dx


  by changing to polar 

coordinates. 

Solution: The region of integration is bounded by 

                                             0 < y < 1  x2  and 0 < x < 1 
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                  y = 1  x2  is the circle, which gives   x2 + y2 = 1,    r = 1 

On changing into the polar coordinates, the given integral is  

               

/2

0


1

 0
 r3 dr d  = 

/2

0 



r4

4

1

0
 d =  

/2

0

1
4  d =  





4

/2

0
 =  


8  

EXAMPLE 

Evaluate  I =  
D
 

dx dy
x2 + y2  by changing to polar coordinates,  

where D is the region in the first quadrant between the circles. 

Solution:  

           Two circles are x2 + y2=a2 and x2 + y2 = b2,  0 < a < b 

            I  =  

/2

0


b

a
 
r dr d

r2  =  

/2

0
 [ln r]

b

a  d 

               =  

/2

0
 ln 



b

a   d=  



 ln 



b

a

/2

0

  = 

2  ln 



b

a  . 

EXAMPLE 

Evaluate the double integral 

21 1
2 2

0 0

( )
x

x y dy dx


  by changing to polar coordinates. 

The region of integration is bounded by  0 < y < 21 x  and 0x

y = 21 x  is the circle 2 2x y =1, r = 1 
On changing into the polar coordinates, the given integral is  
 

 
1/ 2 1 / 2 / 24

/ 23

0
0 0 0 00

1 1 1
( / 2) / 8

4 4 4 4

r
r drd d d

  
              

 
 
 

 
 

0
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LECTURE No. 26                      

 
EXAMPLES 

 

Example 1 : Evaluate I=
4

0

4y-y2

0
(x2+y2)dx dy by changing into polar coordinates. 

Solution: The region of integration is bounded by 0<x< 4y  y2  and 0 < y < 4 

Now x = 4y  y2  is the circle x2+y24y=0x2 + y2 = 4y.In polar coordinates this 
takes the form   r2 = 4r sin ,       r = 4 sin  
On changing the integral into polar coordinates, we have 

I = 
/2

0


4sin

0
 r2 . r dr d =  

/2

0
 64 sin4  d=  64.

3.1
4.2  . 


2 = 12   (using Walli’s formula) 

Example 2 : Evaluate 
R
 ex2+y2 dy dx.,where R is the semicircular region bounded by the 

x-axis and the curve y = 1  x2   
Solution: In Cartesian coordinates, the integral in question is a non-elementary integral 
and there is no direct way to integrate ex2+y2 with respect to either x or y.  

Substituting x = r cos , y = r sin, and replacing dy dx by r dr d enables us to evaluate 
the integral as 

                 
R
ex2+y2

dy dx = 



0


1

0
er2 r dr d = 



0
 



1

2 er2

1

0

 d = 



0
 
1
2 (e1)d = 


2  (e  1). 

Example 3 :  Let Ra be the region bounded by the circle x2 + y2 = a2. Define  






 




e-(x2+y2)dxdy = lim

a
  

R
e-(x2+y2)dx dy 

Solution: To evaluate this improper integral, 

l=




 




  2 2 x y
e

 
  dx dy = lim

a
  

Da

 2 2x y
e

 
dx dy 

=  lim
a

 

2

0


a

0
 

2re r dr d =  lim
a

 

2

0

1
2 (1  

2ae )d =  lim
a

 
1
2 (1  

2ae ) |
2

0
 

 2

2 2lim 1 lim lima

a aa a a
e

ee e

      
  

 
           

 
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Example 4 : Prove that   
2

0 2
xe dx


    

2 2 2 2 2 2

2 2

2 2

( )

22

0

: To prove it, we take  

is a dummy variable, so we can change  to .

= 2

T

x y x y y x

x x

x x

I e dx dy e e dx dy e e dx dy

e dx e dx y y x

e dx e dx

     
     

     

 
 

 

 
 



  



  
   

   

     

 

 

Solution

2 2 2

2

2

2

( )

0

2

0

0

herefore, 4 by Example3

4

By taking square root on both sides,      
2

x x y

x

x

e dx e dx dy

e dx

e dx







  
  

 







 
  

 

 
 

 



  



   

THEOREM : Let G be the rectangular box defined by the inequalities  
                                 a < x < b,    c < y < d,          k < z <  

If f is continuous on the region G, then ( , , ) ( , , )
b d l

G a c k

f x y z dv f x y z dz dy dx     

Moreover, the iterated integral on the right can be replaced with any of the five other 
iterated integrals that result by altering the order of integration. 

( , , ) ( , , ) ( , , )

( , , ) ( , , )

b l d l b d l d b

a c a c c ak k k

d l b d b l

c a c ak k

f x y z dy dz dx f x y z dy dx dz f x y z dx dy dz

f x y z dx dz dy f x y z dz dx dy

  

 

        

     
 

Example 5:  Evaluate the triple integral  
G
 12xy2z3 dV  over the rectangular box G 

defined by the inequalities  1 < x < 2, 0 < y < 3, 0 < z < 2. 
Solution: We first integrate with respect to z, holding x and y fixed, then with respect to 
y holding x fixed, and finally with respect to x. 

 
G
12xy2z3 dV= 

2

-1
 

3

0
 

2

0
 12xy2z3dzdydx = 

2

-1
 

3

0
 [3xy2z4]

2

z=0
  dy dx = 

2

-1
 

3

0
  48xy2 dy dx 

= 

2

-1
[16xy3]

3

y=0
dx=

2

-1
 432x dx =  216x2 ]

2

-1
  = 648 
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Example 6 :Evaluate R (x  2y + z) dx dy dz    Region R :  0 < x , 1,  0 < y < x2, 
 0 < z < x + y 

Solution:    = 
1

0


x2

0


x+y

0
(x  2y + z) dz dy dx=  

1

0


x2

0
 



(x  2y + z)2

2

x+y

0
  dy dx 

=
1

0


x2

0 
 

(x2y+x+y)2

2   
(x2y)2

2 dy dx = 
1
2  

1

0


x2

0
 (3x2  3y2) dy dx=  

3
2  

1

0
 



x2y  

y3

3

x2

0
  dx 

=
3
2 

1

0

6
4

3

x
x

 
 

 
dx = 

3
2  



x5

5   
x7

21

1

0
 = 

3
2  



1

5  
1
21  = 

8
35  

Example 7 : Evaluate 
S
 x y z d x dy dz  Where S = {(x,y,z) : x2+y2+z2 < 1,  x > 0, y > 0, 

z > 0}  
Solution: S is the sphere x2 + y2 + z2 = 1 .Since x, y, z are all +ve so we have to consider 
only the +ve octant of the sphere.  Now x2 + y2 + z2 = 1  . So that   z = 1  x2  y2  
The Projection of the sphere on xy plan is the circle x2 + y2 = 1. 
This circle is covered as y-varies from 0 to 1  x2  and x varies from 0 to 1. 


R
    x y z dx dy dz  =  

1

0

1-x2

0

1-x2-y2

0
  x y z dz dy dx  =  

1

0

1-x2

0
 

2

0

2 21

2
 

x y

xy d
z

dy x

 

  

= 
1

0

1-x2

0
x y 



1  x2  y2

2   dy dx = 
1
2 

1

0

1-x2

0
x (y  x2y  y3) dy dx 

= 
1
2  

1

0
 x 



y2

2   
x2y2

2   
y4

4  |
1-x2

0

 dx= 
1
4  

1

0
x 







1x2x2 (1x2)
(1x2)

2

2  dx 

= 
1
8  

1

0
(x  2x3 + x5) dx= 

1
8  



x2

2   
x4

2  + 
x6

6

1

0
 = 

1
8  



1

2  
1
2 + 

1
6  = 

1
48  
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LECTURE No. 27         
 

VECTOR VALUED FUNCTIONS 
 
Recall that a function is a rule that assigns to each element in its domain one and only one 
element in its range. Thus far, we have considered only functions for which the domain 
and range are sets of real numbers; such functions are called real-valued functions of a 
real variable or sometimes simply real-valued functions. In this section we shall consider 
functions for which the domain consists of real numbers and the range consists of vectors 
in 2-space or 3-space; such functions are called vector-valued functions of a real variable 
or more simply vector-valued functions. In 2-space such functions can be expressed in 
the form. 
                r (t) = (x (t), y (t)) = x (t) i + y (t) j 
and in 3-space in the form 
                r (t) = (x (t), y (t), z (t)) = x (t) i + y(t)j + z (t)k 
          where x(t), y(t), and z(t) are real-valued functions of the real variable t. These real-
valued functions are called the component functions or components of r. As a matter of 
notation, we shall denote vector-valued functions with boldface type f(t), g(t) and r(t) and 
real-valued functions, as usual, with lightface italic type  f(t), g(t) and r(t). 
 
EXAMPLE:   r (t) = (ln t) i + t2 + 2 j + (cos t)k 
Then the component functions are  x(t) = lnt,   y(t) = t2 + 2, and   z (t) = cost 
The vector that r(t) associates with t = 1 is  r(1)=(ln 1) i+ 3j +(cos ) k= 3j k 
The function r is undefined if t < 0 because ln t is undefined for such t. 
 
     If the domain of a vector-valued function is not stated explicitly, then it is understood 
to consist of all real numbers for which every component is defined and yields a real 
value. This is called the natural domain of the function. Thus the natural domain of a 
vector-valued function is the intersection of the natural domains of its components. 
 
PARAMETRIC EQUATIONS IN VECTOR FORM 
Vector-valued functions can be used to express parametric equations in  
2-space or 3-space in a compact form. 
 
For example, consider the parametric equations x = x(t),  y = y (t) 
Because two vectors are equivalent if and only if their corresponding components are 
equal, this pair of equations can be replaced by the single vector equation. 
                                           x = x(t),  y = y (t)               ---------(1) 
                                           x i + y j  = x (t)i + y (t) j    ---------(2) 
Similarly, in 3-space the three parametric equations 
                        x = x(t),  y = y (t),  z = z (t)                 ---------(3) 
can be replaced by the single vector equation 
                       xi + yj + zk = x(t)i + y(t)j + z(t)k        ---------(4) 
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if we let r = x i +y j     and     r(t) = x(t) i + y(t) j  in 2-sapce  
and let  r = xi + yj + zk  and  r(t) = x(t) i + y(t)j + z(t)k  in 3-space, then both (2) and (4) 
can be written as  r = r(t)  ---------(5) which is the vector form of the parametric equations 
in (1) and (3). Conversely, every vector equation of form (5) can be rewritten as 
parametric equations by equating components on the two sides. 
EXAMPLE: Express the given parametric equations as a single vector equation. 
                            (a) x = t2,   y = 3t  
                            (b) x = cost,  y = sint,  z = t 
Solution: (a)  Using the two sides of the equations as components of a vector yields. 

                 x i + y j = t2 i + 3t j  
                (b)  Proceeding as in part (a) yields 

                 xi + yj + zk = (cos t)i + (sin t)j + tk 
EXAMPLE: Find parametric equations that correspond to the vector equation 
                                 x i + y j + z k = (t3 + l) i + 3 j + et k 
            Equating corresponding components yields. 
                                    x = t3 + 1,    y = 3,   z = et 
GRAPHS OF VECOR-VALUED FUNCTOINS 
One method for interpreting a vector-valued function r(t)  
in 2-space or 3-space geometrically is to position the vector 
 r = r (t) with its initial point at the origin, and  
let C be the curve generated by the tip of the vector r 
 as the parameter t varies  
The vector r, when positioned in this way, is called  
the radius vector or position vector of C, and C is called the 
graph of the function r(t) or, equivalently, the graph of the 
equation r = r(t). The vector equation r = r (t) is equivalent to a set of parametric 
equations, so C is also called the graph of these parametric equations. 
 
EXAMPLE:  Sketch the graph of the vector-valued function r(t) = (cos t)i + (sin t)j,  
0 < t < 2 
The graph of r(t) is the graph of the vector equation 
                                  xi+yj = (cos t)i + (sin t)j,     0 < t < 2 
or equivalently, it is the graph of the parametric equations 
                                   x = cos t,   y = sin t            (0 < t < 2) 
This is a circle of radius 1 that is centered at the origin with the direction of increasing t 
counterclockwise. The graph and a radius vector are shown in Fig. 
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EXAMPLE: Sketch the graph of the vector-valued function r(t) = (cos t)i+(sin 
t)j+2k,  0 < t < 2 
The graph of r(t) is the graph of the vector equation 
                                   xi + yj + zk = (cost)i + (sint)j + 2k,  0 < t < 2 
or, equivalently, it is the graph o the parametric equations 
                                   x=cos t,    y = sin t,   z=2        (0 < t < 2) 
From the last equation, the tip o the radius vecor traces a curve in the plane z = 2, and 
from the first two equations and the preceding example, the curve is a circle of radius 1 
centered on the z-axis and traced counterclockwise looking down the z-axis. The graph 
and a radius vector are shown in Fig. 
 
 
 
 
 
 
 
 
 
EXAMPLE: Sketch the graph of the vector-valued function r(t) = (a cos t)i + (a sin 
t)j + (ct)k  ,where a and c are positive constant. 
 
The graph of r(t) is the graph of the parametric equations. 
                        x = a cos t,   y = a   sin t,   z = ct 
As the parameter t increases, the value of z = ct also increases, so the point (x, y, z) 
moves upward. However, as t increases, the point (x, y, z) also moves in a path directly 
over the circle. x = a  cos t, y = a  sin t  in the xy-plane. The combination of these 
upward and circular motions produces a corkscrew-shaped curve that wraps around a 
right-circular cylinder of radius a centered on the z-axis.  
This curve is called a circular helix. 
 

 
 
 
 
 
 
 
 
 
 
 
 

EXAMPLE: Describe the graph of the vector equation r = ( 2 + t) i + 3tj + (5  4t)k 
The corresponding parametric equations are x =  2 + t,  y = 3t,   z = 5  4t 
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The graph is the line in 3-space that passes through the point ( 2, 0, 5) and is parallel to 
the vector i + 3j  4k. 
EXAMPLE 
The graph of the vector-valued function  r (t) = t i + t2 j + t3 k is called a twisted cubic.  
Show that this curve lies o the parabolic cylinder y = x2, and sketch the graph for t > 0 
 
The corresponding parametric equations are  x = t,      y = t2,     z = t3 
Eliminating the parameter t in the equations for x and y yields y = x2, so the curve lies on 
the parabolic cylinder with this equation. The curve starts at the origin for t = 0; as t 
increases, so do x, y, and z, so the curve is traced in the upward direction, moving away 
from the origin along the cylinder. 
 
 
 
 
 
 
 
 
 
GRAPHS OF CONSTANT VECOR-VALUED FUNCTIONS 
If c is a constant vector in the sense that it does not depend on a parameter, then the graph 
of r = c is a single point since the radius vector remains fixed with its tip at c. 
If c = x0i + y0j (in 2-space), then the graph is the point (x0, y0), and if  
c = x0i + y0j + z0k (in 3-space), then the graph is the point (x0, y0, z0). 
EXAMPLE: The graph of the equation r = 2i + 3j  k is the point (2, 3,  1) in 3-space. 
Remark: If r(t) is a vector-valued function, then for each value of the parameter t, the 
expression ||r(t)|| is a real-valued function of t because the norm (or length of r(t) is a real 
number. 
             For example, if  r(t) = t i + (t  1) j   Then  ||r(t)|| = t2 + (t  1)2   which is a real-
valued function of t. 
EXAMPLE: The graph of  r (t) = (cos t)i + (sin t)j + 2k,  0 < t < 2  is a circle of 
radius 1 centered on the z-axis and lying in the plane  z = 2.  This circle lies on the 
surface of a sphere of radius 5  because for each value of t  

||r(t)|| = 2 2 22cos t sin t    = 1 + 4 = 5  

          which shows that each point on the circle is a distance of 5  units from the origin. 
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LECTURE No. 28 
 

LIMITS OF VECTOR VALUED FUNCTIONS  
 
The limit of a vector-valued function is defined to be the vector that results by taking the 
limit of each component. Thus, for a function r(t) = x (t)i + y (t)j in 2-space we define. 
lim
t

 r(t) = (lim
t

 x(t))i + (lim
t

 y(t))j 

and for a function r(t) = x(t)i + y(t)j + z(t)k  
in 3-space we define. 
lim
t

 r(t) = (lim
t

x(t))i + (lim
t

y(t))j + (lim
t

z(t))k 

 
If the limit of any component does not exist,  
then we shall agree that the limit of r (t) does not exist. 
These definitions are also applicable to the one-sided limits lim

t 
 , lim

t 
 and infinite 

limits, lim
t+

, and lim
t

. It follows from (1) and (2) that 

                                    lim
t 

r(t) = L 

if and only if the components of r(t) approach the components of L as  
t  . Geometrically, this is equivalent to stating that the length and direction of r (t) 
approach the length and direction of L as t    
 
CONTINUITY OF VECTOR-VALUED FUNCTIONS 
The definition of continuity for vector-valued functions is similar to that for real-valued 
functions. We shall say that r is continuous at t0 if  

1. r (t0) is defined; 
2. lim

tt0
r(t) exists; 

3. lim
tt0

r(t) = r (t0). 

It can be shown that r is continuous at t0 if and only if each component of r is continuous. 
As with real-valued functions, we shall call r continuous everywhere or simply 
continuous if r is continuous at all real values of t. geometrically, the graph of a 
continuous vector-valued function is an unbroken curve. 
 
DERIVATIVES OF VECOR-VALUED FUNCTIONS 
The definition of a derivative for vector-valued functions is analogous to the definition 
for real-valued functions. 
 
DEFINITION 

The derivative r/(t) of a vector-valued function r(t) is defined by 
 

                                r/(t) = lim
h0

 
r (t+h)  r (t)

h   

                                                                        Provided this limit exists. 
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For computational purposes the following theorem is extremely useful; it states that the 
derivative of a vector-valued function can be computed by differentiating each 
components. 
 
THEOREM 
(a)  If r(t) = x(t)i + y(t)j is a vector-valued function in 2-space, and if x(t) and y(t) are 

differentiable, then r/(t) = x/(t)i + y/(t)j 
    
(b) If r(t) = x(t)i + y(t)j + z(t)k is a vector-valued function in 3-space, and if x(t), y(t), 

and z(t) are differentiable, then 

  r/(t) = x/(t)i + y/(t)j + z/(t)k 
We shall prove part (a). The proof of (b) is similar. 
Proof (a):  

r/(t) =  lim
h0

r(t + h)  r (t)
h   = lim

h0
 
[x(t+h)x(t)]

h i  + lim
h0

  
[y(t+h)  y(t)]

h  j 

       =  x/(t)i + y/(t)j 
 
As with real-valued functions, there are various notations for the derivative of a vector-

valued function. If r = r (t), then some possibilities are  
d
dt [r(t)], 

dr
dt  , r

/(t), and r/ 

EXAMPLE 

Let r(t) = t2i +t3j. Find r/(t) and r/(1) 

       r/(t) =  
d
dt [t

2] i +  
d
dt [t

3] j  

   = 2t i + 3t2 j 
Substituting t=1 yields 

             r/(1) = 2i+3j. 
 
TAGENT VECTORS AND TANGENT LINES 
GEOMETRIC INTERPRETATIONS OF THE DERIVATIVE. 
Suppose that C is the graph of a vector-valued  

function r(t) and that r/(t) exists and is nonzero 

 for a given value of t. If the vector r/(t) is  
positioned with its initial point at the terminal 
point of the radius vector 
 
DEFINITION 
Let P be a point on the graph of a vector-valued 
 function r(t), and let r(t0) be the radius vector from  
the origin to P 

If r/(t0) exists and r/(t0)  0, then we call r/(t0) 
 the tangent vector to the graph of r at r(t0) 
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REMARKS 
Observe that the graph of a vector-valued function can fail to have a tangent vector at a 
point either because the derivative in (4) does not exist or because the derivative is zero at 

the point. If a vector-valued function r(t) has a tangent vector r/(t0) at a point on its graph, 

then the line that is parallel to r/(t0) and passes through the tip of the radius vector r(t0)  
is called the tangent line of the graph of r(t) at r(t0). Vector equation of the tangent line is 

r = r (t0) + t r/(t0) 
EXAMPLE 
Find parametric equation of the tangent line to the circular helix 
x = cost,   y = sint,         z = 1       at the point where t = /6 
Solution: 
To find a vector equation of the tangent line, then we shall equate components to obtain 
the parametric equations. A vector equation r = r(t) of the helix is 
 
          xi + yj + zk = (cost)i + (sin t)j + tk 
 
Thus,  r(t) = (cos t)i + (sin t)j + tk   

r/(t) = ( sin t)i + (cos t)j + k 
 
At the point where t = /6, these vectors are  

    r 




6   = 
3

2  i + 
1
2 j + 


6 k        and     

   r/






6   =  
1
2 i + 

3
2  j + k 

so from (5) with t0 = /6 a vector equation of the tangent line is 

r 




6   + t r/






6   =  





3

2  i + 
1
2j + 


6k  + t 








 
1
2 i + 

3
2 j + k   

Simplifying, then equating the resulting components with the corresponding components 
of  r = xi + yj + zk yields the parametric equation. 

                       x = 
3

2    
1
2 t ,   y = 

1
2  + 

3
2  t  ,z = 


6 + t 

 
EXAMPLE 
The graph of r(t) = t2i + t3j is called a  semi-cubical parabola 
Find a vector equation of the tangent line to the graph of r(t) at  
   (a)  the point (0,0)         (b)  the point  (1,1) 
 
The derivative of r(t) is  

                               r/(t) = 2ti + 3t2j 
 

(a)  The point (0, 0) on the graph of r corresponds to t = 0. As this point we have r/(0)= 0, 
so there is no tangent vector at the point and consequently a tangent line does not exist at 
this point. 
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(b)  The point (1, 1) on the graph of r corresponds to t = 1, so from (5) a vector equation 

of the tangent line at this point is  r  = r(1) + t r/(1) 

From the formulas for r (t) and r/(t) with t = 1, this equation becomes  
                               r = (i + j) + t (2i + 3j) 
If r is a vector-valued function in 2-space or 3-space, then we say that r(t) is smoothly 
parameterized or that r is a smooth function of t if the components of r have continuous 

derivatives with respect to t and r/(t)  0 for any value of t. Thus, in  

3-space  r (t) = x(t)i + y (t)j + z(t)k  is a smooth function of t if x/(t), y/(t), and z/(t) are 
continuous and there is no value of t at which al three derivatives are zero. A parametric 
curve C in 2-space or 3-space will be called smooth if it is the graph of some smooth 
vector-valued function. 
 
It can be shown that a smooth vector-valued function has a tangent line at every point on 
its graph.  
 
PROPERTIES OF DERIVATIVES 
(Rules of Differentiation).  
In either 2-space or 3-space let r(t), r1(t), and r2(t) be vector-valued functions, f(t) a real-
valued function, k a scalar, and c a fixed (constant) vector. Then the following rules of 
differentiation hold: 
 

1. 
d
dt  [c] = 0 

2. 
d
dt [k r(t)] = k 

d
dt [r(t)] 

3. 
d
dt  [r1(t) + r2(t)] = 

d
dt [r1(t)]+

d
dt [r2 (t)] 

4. 
d
dt [r1(t)r2(t)] =  

d
dt [r1(t)]  

d
dt [r2(t)] 

5. 
d
dt [f(t)r(t)] = f(t)

d
dt [r(t)]+r(t)

d
dt [f (t)] 

 
In addition to the rules listed in the foregoing theorem, we have the following rules for 
differentiating dot products in 2-space or 3-space and cross products in 3-space: 

6.                         2 1
1 2 1 2(t) (t)

d dd

dt dt dt
    

r r
r r r r          

7.                         2 1
1 2 1 2(t) (t)

d dd

dt dt dt
    

r r
r r r r       

 
REMARKS: 
In (6), the order of the factors in each term on the right does not matter, but in (7) it does. 
 
In plane geometry one learns that a tangent line to a circle is perpendicular to the radius 
at the point of tangency. Consequently, if a point moves along a circular arc in 2-space, 
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one would expect the radius vector and the tangent vector at any point on the arc to be 
perpendicular. This is the motivation for the following useful theorem, which is 
applicable in both 2-space and 3-space. 
 

THEOREM: 
If r (t) is a vector-valued function in 2-space or 3-space and ||r(t)|| is constant for all t, 

then  r(t) . r/(t) = 0 

Proof: That is, r(t) and r/(t) are orthogonal vectors for all t. It follows from (6) with  
r1(t) = r2(t) =  r (t)   that 
 
d
dt [r(t).r(t)] = r(t).

dr
dt  + 

dr
dt  . r(t) 

or, equivalently, 
d
dt  [||r(t)||]2 = 2r(t) . 

dr
dt  

But ||r(t)||2 is constant, so its derivative is zero. Thus 2r(t).
dr
dt  = 0 that is r(t) . 

dr
dt = 0 

That is the r(t) is perpendicular 
dr
dt  

 
EXAMPLE 
Just as a tangent line to a circular arc in 2-space is perpendicular to the radius at the point 
of tangency, so a tangent line to a curve on the surface of a sphere in 3-space is 
perpendicular to the radius at the point of tangency. 
 
To see that  this is so, suppose that the graph of r(t) lies  
on the surface of the sphere of radius k > 0 centered 
 at the origin. For each value of t we have ||r(t)||=k,  

r(t). r/(t) = 0 
which implies that the radius vector r(t) and the 

 tangent vector r/(t) are perpendicular. This completes the argument because the tangent 
line, where it exists, is parallel to the tangent vector. 
 
INTEGRALS OF VECTOR VALUED FUNCTION 
 
(a) If r(t)=x(t) i +y(t) j is a vector-valued function in 2-space ,then we define. 
 

         

( ) ( ( ) ) ( ( ) ) (1 )

( ) ( ( ) ) ( ( ) ) (1 )
b b b

a a a

t dt x t dt y t dt a

t dt x t dt y t dt b

 

 

  

  

r i j

r i j
 

 
(a) If r(t)=x(t) i +y(t) j + z(t) k is a vector-valued function in 3-space ,then we define. 
 



28-Limits of vector valued functions                                                                                                           VU 
 

 
© Copyright Virtual University of Pakistan 

 

147

         

( ) ( ( ) ) ( ( ) ) ( ( ) ) (2 )

( ) ( ( ) ) ( ( ) ) ( ( ) ) (2 )
b b b b

a a a a

t dt x t dt y t dt z t dt a

t dt x t dt y t dt z t dt b

  

  

   

   

r i j k

r i j k
 

 
Example: 

2

2

0

2 2

2 3 2 3
1 2 1 2

2 3
1 2

2 3

1 2

Let ( ) 2 3 find

( ) ( ) ( ) ( )

( ) (2 3 ) ( 2 ) ( 3 )

( ) ( )

isanarbitrary vector constant of integration

( )

t t t ,

a t dt b t dt

t dt t t dt tdt t dt

t C t C t C t C

t t C C

t t C

WhereC C C

b

 

   

      

  

  
 

 

   

r i j

r r

r i j i j

i j i i j j

= i j i j

i j

i j

r
2 2 2 2

2 22 2 2 3 2 3

0 0
0 0 0 0

( ) (2 3 ) ( 2 ) ( 3 ) (2 0) (2 0) 4 8t dt t t dt tdt t dt t t                    i j i j i j i j i j

PROPERTEIS OF INTEGRALS 

 cr(t) dt = c  r (t) dt                           (3) 

 [r1(t)+r2(t)] dt =  r1(t)dt +  r2(t) dt           (4)     

 [r1(t)r2(t)]dt = r1(t) dtr2(t) dt                (5) 
     
These properties also hold for definite integrals of vector-valued functions. In addition, 
we leave it for the reader to show that if r is a vector-valued function in 2-space or 3-

space, then   
d
dt  [r(t) dt] = r (t)  (6) 

This shows that an indefinite integrals of r(t) is, in fact, the set of anti-derivatives of r(t), 
just as for real-valued functions. 
 
If r(t) is any anti-derivative or r(t) in the sense that R/(t) = r(t), then  

                  r(t) dt = R(t) + C  (7) 
                                             where C is an arbitrary vector constant of integration.  
Moreover, 

                   
b

a
 r(t) dt = R(t) ]

b

a
  =  R(b)  R(a) 
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LECTURE No.29      
 

CHANGE OF PARAMETER  

 
It is possible for different vector-valued functions to have the same graph.  
For example, the graph of the function 
r = (3 cos t)i + (3 sin t)j, 0 < t < 2    -----(1) 
is the circle of radius 3 centered at the origin  
with counterclockwise orientation. The parameter  
t can be interpreted geometrically as the positive 
 angle in radians from the x-axis to the radius vector. 
 For each value of t, let s be the length of the arc  
subtended by this angle on the circle 
 
The parameters s and t are related by 

 
3

s
t   ,   0 < s < 6 

If we substitute this in equation (1), we obtain a vector-valued function of the parameter 
s, namely 
                    r = 3 cos (s/3)i + 3 sin (s/3)j,  0 < s < 6 
whose graph is also the circle of radius 3 centered at the origin with counterclockwise 
orientation .In various problems it is helpful to change the parameter in a vector-valued 
function by making an appropriate substitution. For example, we changed the parameter 

above from t to s by substituting 
3

s
t  in equation(1).  

In general, if g is a real-valued function, then substituting t = g(u)  in r(t) changes the 
parameter from t to u.  
 
SMOOTH FUNCTION 
When making such a change of parameter, it is important to ensure that the new vector-
valued function of u is smooth if the original vector-valued function of t is smooth. It can 
be proved that this will be so if g satisfies the following conditions: 

1. g is differentiable. 

2. g/ is continuous. 

3. g/(u)  0 for any u in the domain of g. 
4. The range of g is the domain of r. 

If g satisfies these conditions, then we call t = g(u) a smooth change of parameter. 
Henceforth, we shall assume that all changes of parameter are smooth, even if it is not 
stated explicitly. 
 
ARC LENGTH 
Because derivatives of vector-valued functions are calculated by differentiating 
components, it is natural to define integrals of vector-functions in terms of components. 
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EXAMPLE: If x
/
(t) and y

/
(t) are continuous for a < t < b, then the curve given by the 

parametric equations 
                x = x(t),  y = y(t)   (a < t < b)                            (9) 
has arc length 

                L = 
b

a
   



dx

dt

2

 + 



dy

dt

2

 dt                           (10) 

This result generalizes to curves in 3-spaces exactly as one would expect:  

If x
/
(t), y

/
(t), and z

/
(t) are continuous for a < t < b, then the curve given by the parametric 

equations 
x = x(t),  y = y(t),  z = z(t)  (a < t < b) 
has arc length 

L = 
b

a
   



dx

dt

2

 + 



dy

dt

2

 + 



dz

dt

2

 dt    (12) 

 
EXAMPLE : Find the arc length of that portion of the circular helix  
                          x = cos t,  y = sin t,   z = t 
From t = 0 to t =  
The arc length is 

L = 


0
   



dx

dt

2

 + 



dy

dt

2

 + 



dz

dt

2

 dt    =  


0
 ( sin t)2 + (cos t)2 + 1 dt  

    =  


0
 2   dt  =   2    

ARC LENTH AS A PARAMETER 
 
For many purposes the best parameter to use  
for representing a curve in 2-space or  
3-space parametrically is the length of  
arc measured along the curve from some 
 fixed reference point. This can be done as follows: 
 
Step 1: Select an arbitrary point on the curve C to serve as a reference point. 
Step 2: Starting from the reference point, choose one direction along the curve to be the 

positive direction and the other to be the negative direction. 
Step 3: If P is a point on the curve, let s be the “signed” arc length along C from the 

reference point to P, where s is positive if P is in the positive direction from the 
reference point, and s is negative if P is in the negative direction. 

 
By this procedure, a unique point P on the curve is determined when a value for s is 
given. For example, s = 2 determines the point that is 2 units along the curve in the 

positive direction from the reference point, and s =  
3
2  determines the point that is 

3
2  

units along the curve in the negative direction from the reference point. 
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Let us now treat s as a variable. As the value of s changes, the corresponding point P 
moves along C and the coordinates of P become functions of s. Thus, in 2-space the 
coordinates of P are (x(s), y(s)),  and in 3-space they are (x(s), y(s), z(s)). Therefore, in 2-
space the curve C is given by the parametric equations x = x(s),   y = y (s)  
and in 3-space by x = x(s),    y = y(s),  z = z (s) 
REMARKS 
When defining the parameter s, the choice of positive and negative directions is arbitrary. 
However, it may be that the curve C is already specified in terms of some other parameter 
t, in which case we shall agree always to take the direction of increasing t as the positive 
direction for the parameter s. By so doing, s will increase as t increases and vice versa. 
The following theorem gives a formula for computing an arc-length parameter s when the 
curve C is expressed in terms of some other parameter t. This result will be used when we 
want to change the parameterization for C from t to s. 
 
THEOREM 
(a)  Let C be a curve in 2-space given parametrically by 
                    x = x(t) ,   y = y (t) 
where x/(t) and y/(t) are continuous functions. If an arc-length parameter s is introduced 
with its reference point at (x(t0), y (t0)), then the parameters s and t are related by 

                      s = 
t

 
t0
   



dx

du

2

 + 



dy

du

2

 du   (13a) 

(b)  Let C be a curve in 3-space given parametrically by 
                   x = x(t),  y = y(t),  z = z(t) 
where x/(t),  y/(t), and z/(t) are continuous functions. If an arc-length parameter s is 
introduced with its reference point at (x(t0), y(t0), z(t0)), then the parameters s and t are 
related by 

                       s = 
t

 
t0
   



dx

du

2

 + 



dy

du

2

 + 



dz

du

2

 du  (13b) 

Proof 
If t > t0, then from (10) (with u as the variable of integration rather than t) it follows that 

                   
t

 
t0
   



dx

du

2

 + 



dy

du

2

 du   (14) 

represents the arc length of that portion of the curve C that lies between (x(t0), y(t0)) and 
(x (t), y(t)). If t < t0, then (14) is the negative of this arc length. In either case, integral 
(14) represents the “signed” arc length s between these points, which proves (13a). 
It follows from Formulas (13a) and (13b) and the Second Fundamental Theorem of 
Calculus (Theorem 5.9.3) that in 2-space. 

                             
ds
dt = 

d
dt Error!     =  Error! 

and in 3-space 

                             
ds
dt = 

d
dt Error! =  Error! 

Thus, in 2-space and 3-space, respectively, 
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ds
dt   =   



dx

dt

2

 + 



dy

dt

2

   (15a) 

                                 
ds
dt   =   



dx

dt

2

 + 



dy

dt

2

+ 



dz

dt

2

  (15b) 

 
 
REMARKS: 

Formulas (15a) and (15b) reveal two facts worth noting. First, 
ds

dt
 does not depend on t0; 

that is, the value of 
ds

dt
is independent of where the reference point for the parameter s is 

located. This is to be expected since changing the position of the reference point shifts 
each value of s by a constant (the arc length between the reference points), and this 
constant drops out when we differentiate. The second fact to be noted from (15a) and 

(15b) is that 
ds

dt
 > 0 for all t. This is also to be expected since s increases with t by the 

remark preceding Theorem 15.3.2. If the curve C is smooth, then it follows from (15a) 

and (15b) that 
ds

dt
 > 0 for all t . 

 
EXAMPLE 
                         x = 2t + 1,  y = 3t  2  (16) 
using arc length s as a parameter, where the reference point for s is the point (1,  2). 
In formula (13a) we used u as the variable of integration because t was needed as a limit 
of integration. To apply (13a), we first rewrite the given parametric equations with u in 
place of t; this gives 
from which we obtain 
                        x = 2u + 1,     y = 3u  2 

                        
dx
du  =  2,    

dy
du  = 3 

we see that the reference point (1,2) corresponds to t = t0 = 0 

s = 
t

 
t0
   



dx

du

2

 + 



dy

du

2

 du = 
t

 
t0

 13  du =  13u  ]
u=t

u=0
  = 13t  

Therefore,  t = 
1
13

  s  

Substituting this expression in the given parametric equations yields. 

                          x = 2 






1

13
s   + 1 = 

2
13

 s + 1 

                          y = 3 






1

13
s    2  = 

3
13

 s  2 
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EXAMPLE: Find parametric equations for the circle x = a cos t, y = a sin t  (0 < t < 2) 
using arc length s as a parameter, with the reference point for s being (a, 0), where a > 0. 
Solution: We first replace t by u in the given equations so that   x = a cos u, y = a sin u 

                 And   
dx
du  =  a sin u,   

dy
du  = a cos u 

Since the reference point (a, 0) corresponds to t = 0, we obtain  

s = 
t

 
t0
   



dx

du

2

 + 



dy

du

2

 du  = 
t

 
t0

 ( a sin u)2 + (a cos u)2  du  = 
t

 
0
a du = au ]

u=t

u=0
  = at 

Solving for t in terms of s yields  
s

t
a

  

Substituting this in the given parametric equations and using the fact that s = at ranges 
from 0 to 2a as t ranges from 0 to 2, we obtain 

x=acos (
s

a
),  y=a sin (

s

a
) (0<s<2a) 

 
EXAMPLE 
Find Arc length of the curve r (t) = t3i + tj + ½ 6 t2 k, 1 < t < 3 
Here x = t3, y = t, z = ½ 6 t2 
dx
dt  =3t2,  

dy
dt  = 1,  

dz
dt  = 6 t 

Arc length=
3

1 



dx

dt
 2
+



dy

dt
 2
+



dz

dt
2
 dt = 

3

1
 9t4 + 1 + 6t2  dt = 

3

1
  (3t2 + 1)2  dt 

 =  |t3 + t|
3

1
=  (3)3 + 3  (1)3  1 = 27 + 3  1  1 = 28 

 

EXAMPLE:   Calculate 
dr
du by chain Rule, where r = eti + 4e-tj and t = u2 

Solution: 
dr
dt  = eti  4e-tj 

dt
du  = 2u 

dr
du  = 

dr
dt  . 

dt
du   =  (eti  4etj).(2u)  = 2u eu2i 8ue-u2j 

By expressing r in terms of u 

r = eui + 4e-u2
j 

dr
du  = 2u eu2i  8ue-u2j 
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LECTURE No. 30             
 

EXACT DIFFERENTIAL 
 

If z = f (x, y), then dz = 
z
x

 dx + 
z
y

 dy 

The result can be extended to functions of more than two independent variables. 

If z = f(x, y, w), dz= 
z
x

 dx+
z
y

dy+
z
w

 dw 

Make a note of these results in differential form as shown. 
 
Exercise  
Determine the differential dz for each of the following functions. 
1.   z = x2 + y2  
2.   z = x3 sin 2y 
3.   z = (2x  1) e3y   
4.   z = x2 + 2y2 + 3w2 
5.   z = x3y2 w. 
 
Finish all five and then check the result. 
1. dz = 2 (x dx + y dy) 
2. dz = x2 (3 sin 2y dx + 2x cos 2y dy) 
3. dz = e3y {2dx + (6x  3) dy} 
4. dz = 2 (xdx + 2ydy + 3wdw) 
5. dz = x2y (3ywdx + 2xwdy + xydw) 
 
Exact Differential 
We have just established that if z = f(x, y) 

                                  dz = 
z
x

 dx + 
z
y

 dy 

We now work in reverse. 
Any expression dz = Pdx + Qdy, where P and Q are functions of x and y, is an exact 
differential if it can be integrated to determine z. 

  P = 
z
x

  and Q = 
z
y

  

Now 
P
y

 =
2z
yx

 and 
Q
x

 = 
2z
xy

 and we know that 
2z
yx

  = 
2z
xy

  

Therefore, for dz to be an exact differential 
P
y

  = 
Q
x

  and this is the test we apply. 

EXAMPLE  
                      dz = (3x2 + 4y2) dx + 8xy dy. 
If we compare the right-hand side with Pdx + Qdy, then 

                       P = 3x2+4y2     
P
y

  = 8y 
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                        Q = 8xy          
Q
x

  = 8y 

                        
P
y

 = 
Q
x

        dz is an exact differential 

 
Similarly, we can test this one. 
 
EXAMPLE 
                         dz = (1 + 8xy) dx + 5x2 dy. 
From this we find dz is not an exact differential 
for dz = (1 + 8xy) dx + 5x2 dy 

                  P = 1 + 8xy     
P
y

  = 8x 

                     Q = 5x2     
Q
x

  = 10x 

                     
P
y

 
Q
x

  dz is not an exact differential 

 
EXERCISE  
Determine whether each of the following is an exact differential. 
1. dz = 4x3y3dx + 3x4y2 dy 
2. dz = (4x3y+2xy3) dx+(x4+3x2y2) dy 
3. dz=(15y2e3x+2xy2)dx+(10ye3x+x2y)dy 
4. dz=(3x2e2y2y2e3x)dx+(2x3e2y2ye3x)dy 
5.  dz=(4y3cos4x+3x2cos2y)dx+(3y2sin4x2x3 sin 2y) dy. 
1. Yes 2. Yes  3. No 4. No 5. Yes 
 
We have just tested whether certain expressions are, in fact, exact differentialsand we 
said previously that, by definition, an exact differential can be integrated. But how 
exactly do we go about it? The following examples will show. 
 
Integration Of Exact Differentials 

dz = Pdx+Qdy  where  P=
z
x

  and Q=
z
y

  

   z =  Pdx    and also    z =   Qdy 
 
Example 
                       dz = (2xy + 6x) dx + (x2 + 2y3) dy. 

                       P = 
z
x

  = 2xy + 6x      z= (2xy+6x)dx 

  z = x2y + 3x2 + f (y) where f(y) is an arbitrary function of y only, and is akin to the 
constant of integration in a normal integral. 
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Also                Q = 
z
y

  = x2 + 2y3     z =  (x2+2y3) dy 

  z = x2y + 
y4

2  + F(x) where F(x) is an arbitrary function of x only. 

       z = x2y + 3x2 + f(y) (i) 

and       z = x2y + 
y4

2  +F(x) (ii) 

 
For these two expressions to represent the same function, then 

          f(y) in (i) must be 
y4

2   already in  (i) 

and             F(x) in (ii) must be 3x2 already in (i) 

           z = x2y + 3x2 + 
y4

2   

 
EXAMPLE  
Integrate dz = (8e4x + 2xy2) dx + (4 cos 4y + 2x2y) dy. 
 
                  dz = (8e4x + 2xy2) dx+(4 cos4y+2x2y) dy 

             P = 
x

z


  = 8e4x + 2xy2 

          z =  (8e4x + 2xy2) dx 
          z = 2e4x + x2y2 + f(y) (i) 

            Q = 
z
y

  = 4 cos 4y + 2x2y 

          z =  (4cos 4y + 2x2y) dy 
          z = sin 4y + x2y2 + F(x) (ii) 
 
For (i) and (ii) to agree, f (y) = sin 4y and F(x) = 2e4x 
          z = 2e4x + x2y2 + sin 4y 
 
Area enclosed by the closed curve 
 
One of the earliest applications of integration is finding  
the area of a plane figure bounded by the x-axis, the curve  
y = f (x) and ordinates at x=x1 and x=x2. 

                       A1=
x2

x1
ydx=

x2

x1
f(x)dx 

 
If points A and B are joined by another curve, y = F(x) 

                       A2 = 
x2

x1
 f(x)dx 
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Combining the two figures, we have 

                                   A=A1A2         A=
x2

x1
 F(x)dx

x2

x1
f(x)dx 

The final result above can be written in the form 

                             A y dx    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
EXAMPLE 
Determine the area enclosed by the graph of y = x3 and  
y = 4x for x > 0. 
First we need to know the points of intersection. These are 
x = 0 and x = 2 
We integrate in a an anticlockwise manner 
c1: y = x3,  limits x = 0 to x = 2 
c2: y = 4x,  limits x = 2 to x = 0. 

A =   O y dx = A = 4 square units 

For A =   O ydx = Error!  = Error!= 4 

Where the symbol     O    indicates that the integral is to be evaluated round the  
 closed bound ary in the positive 
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EXAMPLE  
Find the area of the triangle with vertices   (0, 0), (5, 3) and (2, 6). 
 
 
 
 
 
 
 
 

The equation of  OA is y = 
3
5  x,BA is  y = 8  x, OB is y = 3x 

Then A =   O y dx 
Write down the component integrals with appropriate limits. 

------------ 

A=  O ydx= Error! 
The limits chosen must progress the integration round the boundary of the figure in an 
anticlockwise manner. Finishing off the integration, we have 
A = 12 square units 
The actual integration is easy enough. The work we have just done leads us on to 
consider line integrals, so let us make a fresh start in the next frame. 
 
Line Integrals 
If a field exists in the xy-plane, producing a force F on a particle at K, then F can be 
resolved into two components.F1 along the tangent to the curve AB at K. F2 along the 
normal to the curve AB at K. 

 
 
The work done in moving the particle through a small distance s from K to L along the 
curve is then approximately F1 s. So the total work done in moving a particle along the 
curve from A to B is given by 

Lim
0

  Ft s = Ft ds from A to B 

This is normally written 
AB 

 Ft ds where A and B are the end points of the curve,  
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or as 
C
 Ft ds where the curve c connecting A and B is defined. 

Such an integral thus formed, is called a line integral since integration is carried out along 
the path of the particular curve c joining   A and B. 

  I = 
AB

  Ft dx = 
C
 Ft ds 

where c is the curve y = f(x) between A(x1, y2) and B (x2, y2). 
There is in fact an alternative form of the integral which is often useful, so let us also 
consider that. 
 
Alternative form of a line integral 
It is often more convenient to integrate with respect to x or y than to take arc length as the 
variable. 
If Ft has a component 
P in the x-direction    
Q in the y-direction 
then the work done from K to L can be stated as Px + Qy 
 
 
 
 
 
 
 
 
 
 

  AB Ft ds = AB (P dx + Qdy) 
                                                 where P and Q are functions of x and y. 
In general then, the line integral can be expressed as 

                   I = 
C
 Ft ds = 

C
 (P dx + Qdy) 

                            where c is the prescribed curve and F, or P and Q, are functions of x and y. 
 
Make a note of these results then we will apply them to one or two examples. 
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LECTURE No.31                   
 

LINE INTEGRAL  
 
The work done in moving the particle through a  
small distance s from K to L along the curve  
is then approximately F1 s. So the total work  
done in moving a particle along the curve from 
 A to B is given by 

Lim
0

  Ft s = Ft ds from A to B 

This is normally written 
AB 

 Ft ds where A and B are the end points of the curve, or as 
C
 Ft 

ds where the curve c connecting A and B is defined.Such an integral thus formed, is 
called a line integral since integration is carried out along the path of the particular curve 
c joining   A and B. 

  I = 
AB

  Ft dx = 
C
 Ft ds 

where c is the curve y = f(x) between A(x1, y1) and B (x2, y2). 
There is in fact an alternative form of the integral which is often useful, so let us also 
consider that. 
 
Alternative form of a line integral 
It is often more convenient to integrate with respect to x or y than to take arc length as the 
variable. 
If Ft has a component ,P in the x-direction ,Q in the y-direction 
then the work done from K to L can be stated as Px + Qy 
 
Example 1:  

Evaluate 
C
 (x + 3y) dx from A (0, 1) to B (2, 5)  

along the curve y = 1 + x2. 
Solution: The line integral is of the form 


C
 (P dx + Qdy) where, in this case, Q = 0 and c  

is the curve   y = 1 + x2. 
 
It can be converted at once into an ordinary 
 integral by substituting for y and applying  
the appropriate limits of x. 

I = 
C
 (Pdx+Qdy) = 

C
 (x+3y)dx =

0

2

  (x+3+3x2)dx 

   =



x2

2 +3x+x3
2

0
=16 
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Example 2 

Evaluate I = 
C
 (x2 + y) dx + (x  y2)dy from A (0, 2) to B (3, 5) along the curve y = 2 + x. 

Solution: I = 
C
 (Pdx + Qdy) 

P = x2 +  y = x2 + 2 + x = x2 + x + 2 
Q = xy2 = x(4+4x+x2) =  (x2+3x+4) 
Also y = 2 + x   

 dy = dx and the limits are x=0 to x=3 
 

 I = 
0

3

 {(x2+x+2) dx  (x2+3x+4) dx} = 
0

3

 (2x+2) dx =
0

3
2 2x x   =  9  6 =  15 

Example 3 

Evaluate I = 
C
 {(x2+2y)dx + xydy} from O(0, 0) to B(1, 4) along the curve y=4x2. 

Solution: In this case, c is the curve y = 4x2. 
  dy = 8x dx 
Substitute for y in the integral and apply the limits. 

  I = 
C
 {(x2+2y) dx+xydy} 

 
also x2 + 2y = x2 + 8x2 = 9x2;      xy = 4x3 

  I =    
1

2 2

0

9 4 8x dx x x xdx  =
1

0
 {9x2dx+32x4dx}= 

47

5
 = 9.4 

They are all done in very much the same way.  
 
Example 4 

Evaluate I = 
C
  {(x2 + 2y) dx + xydy} from O(0, 0) to A (1, 0) along the line  

y = 0 and then from A (1, 0) to B (1, 4) along the line x = 1. 
 
Solution: (i)  OA : c1 is the line y = 0      dy = 0.  
Substituting y = 0 and dy = 0 in the given integral gives. 

IOA = 
1

0
 x2 dx = 



x3

3

1

0
 = 

1
3  

(ii)  AB: Here c2 is the line x = 1  dx=0 
  IAB = 8 

For IAB = 
4

0
 {(1 + 2y) (0) + ydy} = 

4

0
  ydy = 



y2

2

4

0
 = 8 

Then I = IOA+IAB = 
1
3 +8 = 8

1
3      I=

25

3
= 8

1
3  
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If we now look back to Example 3 and 4 just completed, we find that we have evaluated 
the same integral between the same two end points, but along different paths of 
integration. If we combine the two diagrams, we have 
where c is the curve y = 4x2 and c1 + c2 are the lines 
 y = 0 and x = 1. The result obtained were 

Ic = 9
2
3  and Ic1+c2 = 8

1
3  

Remark:  The integration along two distinct  
paths joining the same two end points does not  
necessarily give the same results. 
 
Properties of line integrals 

1. 
C
 F ds = 

C
  {P dx + Q dy} 

2. 
AB

 F ds =  
BA

 F ds and 
AB

 {P dx+Q dy} = 
BA

  {P dx+Q dy} 

i.e. the sign of a line integral is reversed when the direction of the integration along the 
path is reversed. 
3.   (a) For a path of integration parallel to the y-axis, i.e. x = k, dx = 0   

                  
C
  P dx = 0      IC = 

C
  Q dy. 

    (b)   For a path of integration parallel to the x-axis, i.e. y = k,        dy = 0. 

                     
C
  Q dy=0  IC=

C
 P dx. 

4.  If the path of integration c joining A to B is divided into two parts AK and KB, then 
 Ic = IAB = IAK + IKB. 

5 .If the path of integration c is not single 
   valued for part of its extent, the path is 
   divided into two sections. 
y = f1(x) from A to K, y = f2 (x) from K to B. 

 
6. In all cases, the actual path of integration involved must be continuous and single-
valued.  
Example 5 

Evaluate I = 
C
 (x + y) dx from A(0, 1) to B (0,  1) along the semi-circle x2+y2=1  

for x > 0. 
Solution: The first thing we notice is that 
the path of integration c is not single-valued 
For any value of x, y =   1  x2. Therefore, 
 we divided c into two parts 

(i) y =  1  x2 from A to K ( x=0 to x=1) 
(ii) y =   1  x2 from K to B ( x=1 to x=0) 
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As usual, I = 
C
  (Pdx + Qdy) and in this particular case, Q = 0 

 

  I = 
C
 Pdx = 

1

0
 (x+  1  x2) dx + 

0

1
 (x   1  x2 ) dx 

      =  
1

0
 (x +  1  x2  x+  1  x2 dx   =  2 

1

0
   1  x2 dx 

 
Now by trigonometric substitution, put x = sin   

                    dx = cos  d    2 2 2and 1 1 sin cos cosx           

Limits : x = 0,    = 0;  x = 1,   = 

2  

 

            I = 2 
1

0
  1  x2dx   

               =  2
/2

0
 cos cos d = 2

/2

0
 cos2d = 

/2

0
 (1+cos2)d=  



 + 

 sin 2
2

/2

0
 = 

2  

Now let us extend this line of development a stage further. 
 
Example 6 
Evaluate the line integral  

I =  O  (x2dx  2xy dy) where c comprises the three sides of the triangle joining O(0, 0), A (1, 0) 
and B (0, 1). 
Solution:First draw the diagram and mark in c1, c2 and c3,  
the proposed directions of integration. Do just that. The three sections  
of the path of integration must be arranged in an  
anticlockwise manner round the figure. 
 Now we deal with each pat separately. 
(a) OA : c1 is the line y = 0  
Therefore,  dy = 0. 

Then I =  O (x2dx  2xy dy) for this part becomes 

I1 = 
1

0
 x2dx = 



x3

3

1

0
 = 

1
3   

(b)  AB : for c2 is the line y = 1  x  
 dy =  dx. 

I2 = 
0

1
 {x2dx+2x(1x)dx}=

0

1
  (x2+2x2x2)dx = 

0

1
 (2xx2) dx= 

0

1

3
2

3

x
x   =  

2
3  

 I2 =  
2
3  
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Note that anticlockwise progression is obtained by arranging the limits in the appropriate 
order. Now we have to determine I3 for BO. 
(c) BO:  c3 is the line x = 0 

  dx = 0    I3 =  0dy = 0     I3 = 0 

Finally, I = I1+I2+I3 = 
1
3   

2
3  + 0 =  

1
3         I =  

1
3  

Example 7  

Evaluate  O
c

 y dx when c is the circle x2+y2 = 4. 

Solution:  x2 + y2 = 4         y =  4  x2   
y is thus not single-valued. Therefore use  
y = 4  x2  for ALB between  
x = 2 and x =  2 and  
y =  4  x2  for BMA between 
x =  2 and x = 2. 

  I = 
-2

2
 4  x2 dx+

2

-2
 { 4  x2 } dx 

        = 2
2

-2
 4  x2 dx   =  4 

2

0
 4  x2 dx. 

      

2
2

0

2 2
2 2

0 0

2 2 2
2

0 0 0

2

0

I 4 4

Put 2sin 2cos 2cos

When 0, 0 2sin 0 sin 0

When 2, 2 2sin 1 sin
2

I 4 4 4sin 2cos 16 cos cos

1 2
16 cos cos 16 cos 8

2

8 1

x dx

dx
x dx d

d
x

x

d d

Cos
d d d

C

 

  



   

  

  

     

     

 

    

     

     

   


     

  



 

  

    
2

0

sin 2 1
2 8 0 0 0

2 22
4

8os d



   



            




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LECTURE No. 32  
 

EXAMPLES  
 

Example 1: Evaluate I =  O  {xydx+(1+y2)dy} where c is the boundary of the rectangle 
joining A(1,0), B (3, 0), C(3, 2), D (1, 2). 
Solution: First draw the diagram and insert c1,c2,c3,c4. 
That give 
Now evaluate I1 for AB; I2 for BC; I3 for CD; 
 I4 for DA; and finally I. 
 

I =  O {xydx + (1 + y2) dy} 
(a) AB: c1 is y = 0   dy = 0               I1 = 0 
(b) BC: c2 is x = 3    dx = 0 

I2 = 
2

0
 (1+y2)dy = 



y + 

y3

3

2

0
 = 4

2
3 I2 = 4

2
3  

(c) CD : c3 is y = 2   dy = 0 

 I3 = 
1

3
 2xdx = [x2]

1

3
 =  8     I3 =  8 

(d) DA : c4 is x = 1    dx = 0 

  I4=
0

2
(1+y2) dy=



y + 

y3

3

0

2
= 4

2
3  

Finally I = I1 + I2 + I3 + I4 =  0 + 4
2
3   8  4

2
3  =  8I =  8 

 
Remember that, unless we are directed otherwise, we always proceed round the closed 
boundary in an anticlockwise manner. 
 
Line integral with respect to arc length 
We have already established that 

                         I = 
AB

 Ftds = 
AB

 {Pdx+Qdy} 

            where Ft denoted the tangential force along the curve c at the sample point K(x,y). 
The same kind of integral can, of course, relate to any function f(x,y) which is a function 
of the position of a point on the stated curve, so that 

                         I = 
C
f(x, y) ds. 

This can readily be converted into an integral in terms of x: 

                         I = 
C
f(x,y)dx = 

C
f(x,y) 

ds
dx dx 

                                                where 
ds
dx  = 1 + 



dy

dx

2
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 
C
f(x,y) dx=

x2

x1

f(x,y) 1+



dy

dx

2

 dx------------------  (1) 

 
Example 2 

Evaluate I = 
C
(4x+3xy)ds where c is the straight line joining O(0,0) to A (1,2). 

Solution: c is the line y = 2x    
dy
dx  = 2 

  
ds
dx  = 1 + 



dy

dx

2

 =  5   

  I = 
x=1

x=0
(4x+3xy)ds = 

1

0
(4x+3xy)(  5) dx.    But y = 2x 

for  I = 
1

0
(4x+6x2)( 5) dx = 2 5 

1

0
(2x+3x2) dx = 4 5  

 
Parametric Equations 
When x and y are expressed in parametric form, e.g. x = y (t), y = g(t), then 
 

                    
ds
dt  = 



dx

dt

2

 + 



dy

dt

2

          ds = 



dx

dt

2

 + 



dy

dt

2

 dt 

 

                    I= 
C
f(x,y) ds=

t2

t1

f(x,y) 



dx

dt

2

 + 



dy

dt

2

 dt----------------(2) 

 

Example 3 : Evaluate I =  O 4xyds where c is defined as the curve x = sin t, y = cos t 

between t=0 and t=

4 . 

Solution: We have x = sin t   
dx
dt   = cos t ,   

                              y  =  cos t   
dy
dt   =  sin t 

  

               
ds
dt = 



dx

dt

2

+



dy

dt

2

 = cos2t+sin2t =1           ds = dt 

             I = 
C
f(x,y)ds  =   

t2

t1

f(x,y) 



dx

dt

2

+



dy

dt

2

 dt 

                   = 
/4

0
4 sin t cos t dt  =   2 

/4

0
sin 2t dt  =  2 



cos 2t

2

/4

0

      = 1 
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Dependence of the line integral on the path of integration 
We know that integration along two separate paths joining the same two end points does 
not necessarily give identical results. With this in mind, let us investigate the following 
problem. 

Example 4 :  Evaluate I =  O
C

 {3x2 y2 dx + 2x3y dy} between O (0, 0) and A (2, 4) 

(a) along c1 i.e. y = x2 
(b) along c2 i.e. y = 2x 
(c) along c3 i.e. x = 0 from (0,0) to (0,4) and y = 4 from (0,4) to (2,4). 
Solution: 
 (a).First we draw the figure and insert relevant information. 

I = 
C
{3x2y2dx + 2x3ydy} 

The path c1 is y = x2  dy = 2x dx 

 I1 = 
2

0
{3x2x4dx+2x3x22xdx}= 

2

0
(3x6 + 4x6) dx  

 =  [x7]
2

0
 = 128    I1 = 128 

 
(b) Here the path of integration is c2, i.e. y = 2x 
So, in this case, for with  c2, y = 2x   dy = 2dx 

 I2 = 
2

0
(3x2 4x2 dx + 2x3 2x 2dx} 

        = 
2

0
(12x4 dx + 8 x4 dx} 

 = 
2

0
 20 x4 dx=  4[x5]

2

0
 = 128        I2 = 128 

 
(c)  In the third case, the path c3 is split 
x = 0 from (0,0) to (0, 4),  
y = 4 from (0, 4) to (2, 4) 
Sketch the diagram and determine I3.   
     from (0,0) to (0,4)  x=0    dx=0  I3a=0 
     from (0,4) to (2,4)  y=4   dy=0  

        I3b=
2

0
48x2 dx = 128    

      I3 = 0+128 = 128 
 
 
In the example we have just worked through, we took three different paths and in each 
case, the line integral produced the same result. It appears, therefore, that in this case, the 
value of the integral is independent of the path of integration taken. 
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We have been dealing with I = 
C
 {3x2y2dx+2x3ydy} 

On reflection, we see that the integrand 3x2 y2 dx + 2x3y dy is of the form P dx+Q dy 
which we have met before and that it is, in fact, an exact differential of the function  

z = x3y2, for 
z
x

  = 3x2 y2 and 
z
y

  = 2x3 y 

This always happens. If the integrand of the given integral is seen to be an exact 
differential, then the value of the line integral is independent of the path taken and 
depends only on the coordinates of the two end points. 
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LECTURE No.33          
 

EXAMPLES  
 

Example 1: Evaluate I = 
C
{3ydx + (3x+2y)dy} from A(1, 2) to B (3, 5). 

Solution: No path is given, so the integrand is doubtless an exact differential of some 

function z = f (x,y). In fact 
P
y

 = 3 = 
Q
x

. We have already dealt with the integration of 

exact differentials, so there is no difficulty. Compare with I = 
C
{P dx + Q dy}. 

                     P = 
z
x

  = 3y                z =  3ydz=3xy+f(y)                 -------- (i) 

                     Q = 
z
y

  = 3x + 2y      z = (3x+2y) dy = 3xy + y2+F(x)    ----(ii) 

For (i) and (ii) to agree   f(y) = y2  ;     F(x) = 0 
Hence z = 3xy + y2 

I = 
C
{3ydx + (3x+2y)dy}=  

(3,5)

(1,2)
d(3xy+y2)=[3xy+y2]

 (3,5)

(1,2)
   = (45+25)  (6+4) = 60 

Example2: Evaluate I = 
C
{(x2+yex)dx+(ex+y)dy} between A (0, 1) and B (1, 2). 

Solution: As before, compare with 
C
 {Pdx+Q dy}. 

                   P = 
z
x

 =x2+yex     z =
x3

3  + yex+f (y) 

                   Q = 
z
y

 =ex+y       z = yex + 
y2

2  + F(x) 

For these expressions to agree, 

f(y)  =  
y2

2  ;  F(x) = 
x3

3      Then I  = 



x3

3  + yex + 
y2

2

(1,2)

(0,1)
 = 

5
6  + 2e 

REMARKS: The main points are that, if (Pdx+Qdy) is an exact differential  

       (a)  I = 
C
(Pdx + Qdy) is independent of the path of integration 

       (b)  I =  O
C

 (P dx + Q dy) is zero. 

If I = 
C
{P dx + Q dy} and (Pdx + Qdy) is an exact differential, 

 Then   Ic1 = -  Ic2 

            Ic1 + Ic2 = 0 

Hence, the integration taken round a closed curve is zero, 
 provided (Pdx+Q dy) is an exact differential. 
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 If (P dx + Q dy) is an exact differential,  O (P dx + Q dy) = 0 

Exact differentials in three independent variables 
A line integral in space naturally involves three independent variables, but the method is 
very much like that for two independent variables. 
           dz = Pdx + Q dy + R dw is an exact differential of z = f(x, y, w) 

                if  
P
y

  = 
Q
x

 ;  
P
w

  = 
R
x

  ; 
R
y

  = 
Q
w

  

If the test is successful, then 

(a) 
C
 (P dx + Q dy + R dw) is independent of the path of integration. 

(b)   O
C

 (P dx + Q dy + R dw) is zero. 

Example 3: Verify that dz = ( 3x2yw + 6x) dx + ( x3w  8y) dy + (x3y + 1 ) dw is an exact 

differential and hence evaluate 
C
 dz from A (1, 2, 4) to B (2, 1 3). 

Solution: First check that dz is an exact differential by finding the partial derivatives 
above, when 
                  P = 3x2yw + 6x;    Q = x3w  8y; and     R = x3y + 1 

                  
P
y

  = 3x2w ; 
Q
x

  = 3x2w   
P
y

  = 
Q
x

  

                 
P
w

  = 3x2y ; 
R
x

  = 3x2y   
P
w

  = 
R
x

  

                 
R
y

  = x3; 
Q
w

  = x3   
R
y

  = 
Q
w

  

 dz is an exact differential 

Now to find z. P = 
z
x

  ; Q = 
z
y

 ; R = 
z
w

  

                     
z
x

 =3x2yw+6x   z=(3x2yw+6x)dx   = x3yw+3x2+f(y)+F(w) 

                     
z
y

 =x3w8x   z = (x3w8y)dy   = x3yw4y2+g(x)+F(w) 

                        
z
w

 =x3y+1   z = (x3y+1)dw    = y3yw+w+f(y)+g(x) 

For these three expressions for z to agree 
          f(y) =  4y2;       F(w) = w;         g(x) = 3x2 
              z = x3yw + 3x2  4y2 + w 

          I = [x3yw + 3x24y2+w]
(2,1,3)

(1,2,4)
            

for I = [x3yw + 3x24y2+w]
(2,1,3)

(1,2,4)
  = (24+124+3)(8+316+4)=36 

The extension to line integrals in space is thus quite straightforward. 



33-Examples                                                                                                                                                 VU 
 

 
© Copyright Virtual University of Pakistan 

 

170

Finally, we have a theorem that can be very helpful on occasions and which links up with 
the work we have been doing. It is important, so let us start a new section. 
Green’s Thorem 
Let P and Q be two function of x and y that are finite 
 and continuous inside and the boundary c of a region 
 R in the xy-plane.If the first partial derivatives are 
 continuous within the region and on the boundary,  
then Green’s theorem states that. 

               
R







P

y
  
Q
x

  dx dy =   O
C

 (P dx+ Q dy) 

That is, a double integral over the plane region R can be transformed into a line integral 
over the boundary c of the region and the action is reversible. 
Let us see how it works. 
EXAMPLE 4 

Evaluate I =  O
C

 {(2x  y)dx + (2y+x)dy} around the boundary c of the ellipse  

x2 + 9y2 = 16. 
Solution: The integral is of the form  

I =  O
C

 {P dx + Q dy)  where P = 2x  y    
P
y

  =  1 and Q = 2y + x    
Q
x

  = 1. 

 I =
R







P

y

Q
x

dxdy=
R
(11)dx dy= 2 

R
dx dy = 2A 

But 
R
dx dy over any closed region give the area of the figure. 

In this case, then, I = 24 where A is the area of the ellipse  A ab   

x2+9y2 = 16 i.e. 
x2

16 +
9y2

16  = 1 

  a = 4;  b = 
4
3       A ab = 

16
3          I = 2A = 

32
3   

To demonstrate the advantage of Green’s theorem, let us work through the next example 
(a) by the previous method, and (b) by applying Green’s theorem. 

Example 5: Evaluate I =  O
C

 {(2x+y) dx+(3x2y) dy} taken in anticlockwise manner 

round the triangle with vertices at O (0,0) A (1, 0) B (1, 2). 

Solution: I =  O
C

 {(2x + y) dx + (3x  2y) dy} 
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(a) By the previous method 
There are clearly three stages with c1,c2,c3. Work through the complete evaluation to 
determine the value of I. It will be good revision. When you have finished, check the 
result with the solution in the next frame.   I  =  2 
 (a)  (i) c1 is y = 0   dy = 0 

  I1 = 
1

0
2x dx = [x2]

1

0
 = 1   I1 = 1 

(ii)  c2 is x = 1    dx = 0 

  I2=
2

0
(32y) dy=[3yy2]

0

1
 =2  I2=2 

(iii) c3 is y = 2x     dy = 2 dx 

 I3 = 
0

1
{4x dx + (3x  4x) 2 dx} 

       =  
0

1
2x dx = [x2]

0

1
 =  1    I3 =  1 

    I = I1+I2+I3 = 1+2+( 1) = 2     I = 2 
Now we will do the same problem by applying Green’s theorem, so more 
(b)  By Green’s theorem 

I =  O
C

 {(2x + y) dx + (3x  2y) dy} 

                P = 2x + y      
P
y

 =1;   

                Q = 3x  2y  
Q
x

  = 3 

I  =   
R







P

y
  
Q
x

  dx dy 

   =  
R
(13) dx dy=2 

R
dx dy = 2A 

        = 2  the area of the triangle = 2  
1

1 2
2

   
 

  = 2 

 I = 2 
Remark: Application of Green’s theorem is not always the quickest method. It is useful, 
however, to have both methods available. 
                  If you have not already done so, make a note of Green’s theorem. 

                                       
R







P

y
  
Q
x

  dx dy =   O
C

  (P dx + Q dy) 

 
Note: Green’s theorem can, in fact, be applied to a region that is not simply connected 
by arranging a link between outer and inner boundaries, provided the path of integration 
is such that the region is kept on the left-hand side. 



34-Examples                                                                                                                                                 VU 
 

 
© Copyright Virtual University of Pakistan 

 

172

 LECTURE No.34 
 

EXAMPLES  
 

Example 1: Evaluate the line integral I =  O
C

 {xy dx + (2x  y) dy} round the region 

bounded by the curves y = x2 and x = y2 by Green’s theorem. 
Solution: Points of intersection are O(0, 0) and A(1, 1).  
 

                 I =   O
C

 {xy dx + (2x  y) dy} 

                    =  O
C

 {Pdx+ Qdy}= 
R







P

y
  
Q
x

 dx dy 

            P = xy   
P
y

  = x;     Q = 2x  y   
Q
x

 =2 

                I =  
R
 (x  2) dx dy =   

1

0


y=x

y=x2
(x  2) dy dx 

                  =  
1

0
 (x  2) [ y ]

x

x2
 dx 

           I  =   
1

0
(x  2) ( ) x   x2   dx =  

1

0
(x3/2  x3  2x1/2 + 2x2) dx 

                  =  



2

5 x5/2
1
4x4  

4
3x3/2+

2
3x3

1

0
  = 

31
60  

In this special case when P=y and Q=  x   so   
P
y

  = 1   and  
Q
x

  =  1 

Green’s theorem then states 
R
{1  (1)} dx dy = O

C
 (P dx+Q dy) 

    i.e. 2 
R
dx dy =   O

C
 (y dx  x dy)     =  O

C
  (x dy  y dx) 

Therefore, the area of the closed region  A = 
R
dx dy = 

1
2  O

C
  (x dy  y dx) 

Example 2: Determine the area of the figure enclosed by y = 3x2 and y = 6x. 
Solution: Points of intersection: 3x2 = 6x   x = 0  or 2 

 Area A = 
1
2   O

C
  (x dy  y dx) 

 
We evaluate the integral in two parts, i.e. 
OA along c1 and  AO along c2 
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2A=
c1

 
(xdyydx)
(along OA)

 +
c2

 
(xdyydx)
(along OA)

 = I1+I2 

I1: c1 is y = 3x2     dy = 6x dx 

   I1  = 
2

0
(6x2dx  3x2dx) = 

2

0
 3x2 dx = [ x3 ]

2

0
 = 8   I1 = 8 

 
Similarly, for c2 is y = 6x       dy = 6 dx 

    I2  =  
0

2
(6x dx  6x dx) = 0 

    I2 = 0 
    I = I1 + I2 = 8 + 0 = 8    
  A = 4 square units 
 
Example 3: Determine the area bounded by the curves y = 2x3, y = x3 + 1 and the axis  
x = 0 for x > 0. 
Solution:  Here it is y = 2x3;  y = x3 + 1;   x = 0 
Point of intersection 2x3 = x3 + 1     x3 = 1    x = 1 

Area A = 
1
2  O

C
 (x dy  y dx)  2A =  O

C
  (x dy  y dx) 

(a)  OA : c1 is y = 2x3   dy = 6x2 dx 

I1=
c1

 (xdy ydx)=
1

0
(6x3dx2x3 dx)        = 

1

0
4x3 dx = [ x4 ]

1

0
  = 1  

   I1 = 1 
(b)    AB: c2 is y = x3 + 1    dy = 3x2 dx 

  I2 = 
0

1
 {3x3 dx  (x3 + 1) dx} = 

0

1
(2x3  1) dx  = 



x4

2   x
0

1
 =  



1

2  1  = 
1
2    

  I2 = 
1
2  

(c)   BO:  c3 is x = 0   dx = 0 

I3 =
y=0

y=1
(xdy  ydx)=0    I3 = 0 

  2A = I = I1 + I2 + I3 = 1 + 
1
2  + 0 = 1

1
2      A = 

3
4  square units 

 
Revision Summary         
Properties of line integrals 

 Sign of line integral is reversed when the direction of integration along the path 
is reversed. 

 Path of integration parallel to y-axis, dx = 0    Ic  =  
c
 Q dy. 
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 Path of integration parallel to x-axis, dy = 0     Ic = 
c
  P dx. 

 Path of integration must be continuous and single-valued.                                                                   
 Dependence of line integral on path of integration. 
 In general, the value of the line integral depends on the particular path of 

integration. 
 

 Exact differential 
  If P dx + Q dy is an exact differential, then  

        (a)     
P
y

  = 
Q
x

  

         (b) I = 
c
  (P dx + Q dy) is independent of the path of integration 

        (c)  I =  O
C

 (P dx + Q dy) is zero. 

 Exact differential in three variables. 
 If P dx + Q dy + R dw is an  exact differential 

 (a) 
P
y

  = 
Q
x

  ;     
P
w

  = 
R
x

 ;     
R
y

  = 
Q
w

  

 (b) 
c
 (P dx + Q dy + R dw) is independent of the path of integration. 

 (c)   O
C

 (P dx + Q dy + R dw)  is zero. 

 Green’s theorem 

                 O
C

  (P dx+Q dy)= 
R







P

y
  
Q
x

dx dy    and, for a simple closed curve, 

                 O
C

  (x dy  y dx) = 2 
R
dx dy = 2A  

                                                 where A is the area of the enclosed figure. 
Gradient of a scalar function 

Del operator is given by    = 








i 

x

 + j

y

+ k

z

   

 = grad  = 








i 

x

 + j

y

+ k

z

   = i 

x

  + j 

y

  + k 

z

  

         grad  =  = 

x

 i +  

y

  j + 

z

 k 

Div (Divergence of a vector function) 
 
If A = a1i + a2j + a3k , then 

                    div A = .A = 








i 

x

 + j

y

+ k

z

.(a1i + a2j + a3k) 

                 div A = .A = 
a1

x
 +
a2

y
 +
a3

z
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Note that  
(a)  the grad operator  acts on a scalar and gives a vector 
(b) the div operator  acts on a vector and gives a scalar. 
 
Example 4:   If A = x2yi  xyzj + yz2k, then find Div A. 
Solution:              

               Div A = .A = 2 4( ) ( ) ( )x y xyz yz
x y z

  
 

  
= 2xy  xz + 2yz 

 
Example 5:  If A = 2x2yi  2(xy2+ y3z)j+3y2z2k, determine .A i.e. div A. 
Solution: A= 2x2yi  2(xy2 + y3z)j + 3y2z2k 

            .A= 
ax

x
 + 
ay

y
 + 
az

z
 = 4xy  2(2xy+3y2 z) + 6y2z =  4xy  4xy  6y2z+6y2z = 0 

Such a vector A for which .A = 0 at all points, i.e. for all values of x, y, z, is called a 
solenoid vector. It is rather a special case. 
 
Curl (Curl of a Vector Function) 
The curl operator denoted by   A, acts on a vector and gives another vector as a result. 
If A= a1i + a2j + a3k then curl A=A.  

     i.e. curl A=A= 








i 

x

 + j

y

+ k

z

 (a1i + a2j + a3k) 

                    = 







  i            j            k


x

          

y

          

z

 a1          a2          a3

  

                   A= i 






a3

y
  
a2

z
 +j 







a1

z
  
a3

x
 + k 







a2

x
  
a1

y
  

Curl A is thus a vector function.  
 
Example 6: If A=(y4x2z2)i+(x2+y2)jx2yzk, determine curl A at the point (1,3, 2). 

Solution:  Curl A =   A =  







  i                 j             k

 

x

              

y

          

z

 y4x2z2    x2+y2     x2yz

  

Now we expand the determinant 

              A= i 








y
 ( x2yz)  


z

 (x2+y2)   j 








x
 ( x2yz)  


z

 (y4  x2z2)   

                    + k 








x
 (x2 + y2)  


y

 (y4  x2z2)   

               A= i{x2z}j{2xyz+2x2z}+k(2x4y3}.    At (1, 3,  2), 
            A = i (2) j (12  4) + k (2  108)    = 2i  8j  106k 
 
Example 7:  
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Determine curl F at the point (2,0,3) given that  F = z e2xyi + 2 x z cos yj+(x+2y)k. 
Solution:  In determinant form, curl F =   F 
 

                                   F =  







  i                 j             k

 

x

              

y

          

z

 ze2xy    2xzcosy     x+2y

  

 
Now expand the determinant and substitute the values for x, y and z, finally obtaining 
curl 
          F = i{2  2x cos y} j{1  e2xy}+ k ({2z cos y  2xze2xy} 
          At (2, 0, 3)        F =  i(24)j(11) + k (612)  = 2i6k = 2 (i + 3k) 
 
Summary of grad, div and curl 
 
(a) Grad operator acts on a scalar field to give a vector field. 
(b) Div operator acts o a vector field to give a scalar field. 
(c) Curl operator acts on a vector field to give a vector field. 
(d) With a scalar function  (x,y,z) 

                     Grad  =  = 

x

i+

y

 j+

z

k  

(e)    With a vector function A =  ax i + ay j + az k 

     (i) div A = . A= 
ax

x
 + 
ay

y
 + 
az

z
  

     

    (ii) Curl A =   A =  







i           j          k


x

       

y

       

z

ax         ay       az

 

 
Multiple Operations 
We can combine the operators grad, div and curl in multiple operations, as in the 
examples that follow. 
 
EXAMPLE 8: If A = x2yi + yz3j  zx3k, then find grad div A. 

Solution:    div A =.A = 








i 

x

 + j

y

+ k

z

.(x2yi + yz3j  zx3k) 

                 = 2xy + z3 -- x3 =    (say) 
 

Now grad (div A) = (.A)   = 

x

 i + 

y

 j + 

z

k = (2y -- 3x2)i+(2x)j+(3z2)k 

 
    i.e., grad (div A) = (. A)= (2y--3x2)i + 2xj + 3z2k 
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Example 9:  If  = xyz  2y2z + x2z2 determine div grad  at the point (2, 4, 1). 
 
Solution: First find grad  and then the div of the result. 
                        div grad  = .()  
   We have    = xyz  2y2z + x2z2 

               grad  =  = 

x

 i + 

y

 j + 

z

 k =(yz+2xz2)i + (xz4yz)j + (xy2y2+2x2z) k 

   div grad =.() = 2z2  4z+2x2 
   
 At (2,4,1),   div grad  = .() = 2  4 + 8 = 6 
 

REMARK:   Let   grad  = 

x

 i + 

y

 j + 

z

 k  

Then div grad  = .() = 



i 


x

 + j

y

+ k

z

.





x
 i+

y

 j+

z

 k  =  
2
x2 + 

2
z2 + 

2
z2 

                      div grad  = .() = 
2
x2+

2
y2+

2
z2 

 
Example 10: If F = x2yzi + xyz2j + y2zk determine curl F at the point (2, 1, 1). 
Determine an expression for curl F in the usual way, which will be a vector, and then the 
curl of the result. Finally substitute values.  
Solution:  Curl curl  F=(F) = i+2j+6k 

               curl F =







  i             j             k

 

x

          

y

          

z

 x2yz      xyz2        y2z

 = (2yz2xyz)i+x2yj+(yz2x2z)k 

       Curl Curl F = 







  i                   j             k

 

x

                

y

          

z

2yz2xyz    x2y     yz2x2z

 = z2i(2xz 2y+2xy)j+(2xy2z+2xz)k 

 
 At (2, 1, 1),   curl cul F=(  F) = i + 2j + 6k 
 
Two interesting general results  
(a) Curl grad  where  is a scalar 

                     grad  = 

x

 i + 

y

 j + 

z

 k  

           curl grad  = 







i          j           k


x

        

y

        

z


x

        

y

        

z
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                      = i 
2 2

y z z y

   
     

  j 






2

zx
  

2
xz

 + k 






2

xy
  

2
yx

  

                      = i 0  j 0+ k 0=  0                          
 curl grad  =   () = 0 
 
(b) Div curl A where A is a vector. 
         A = axi + ayj + azk 

curl A =   A=  







i           j          k


x

       

y

       

z

ax         ay       az

= i






az

y
  
ay

z
  j 







az

x
  
ax

z
  + k  







ay

x
  
ax

y
  

Then div curl A = .(A) = 








i 

x

 + j

y

+ k

z

 . (  A) 

          = 
2az

xy
  

2ay

zx
  

2az

xy
  + 

22
yx

aa

y z z x




   
  

2ax

yz
  = 0 

 
          div curl A =  . (  A) = 0 
 
(c)  Div grad  where  is a scalar. 

                           grad  = 

x

 i + 

y

 j + 

z

 k  

            Then div grad  = .()= 



i 


x

 + j

y

+ k

z

.





x
 i+

y

 j+

z

 k =  
2
x2 + 

2
z2 + 

2
z2 

                   div grad =.() = 
2
x2+

2
y2+

2
z2 

 
This result is sometimes denoted by 2. 
 
So these general results are 
 
               (a) curl grad  = () = 0 
               (b) div curl A = .(A) = 0 

               (c) div grad =.()=
2
x2+

2
y2+

2
z2 
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LECTURE No. 35        
     

DEFINITE INTEGRALS  
Definite Integral for sinnx and cosnx ,    0 x  
 
 
 
 
 
 
 
 

 
 
 
 
 
 

------------------------------------------------- 
 
 
 
 
 
 
 
 
 
 
 
 
 

------------------------------------------------- 
 
 
 
 
 
 
 
 
 
 

2 2
4 4

0 0

1 3 3 1
sin   sin  

4 2 2 4 2 2
xdx so xdx

 

 
  

      

2 2
2

2

00 0

2
2

0

1 1 sin 2 1 sin
(1) sin (1 cos 2 )

2 2 2 2 2 2 4

1
sin

2 2

x
xdx x dx x

xdx

  



  



     



 



2 2
2

2

00 0

2
2

0

1 1 sin 2 1 sin
(2) cos (1 cos 2 )

2 2 2 2 2 2 4

1
cos

2 2

x
xdx x dx x

xdx

  



  



      



 



2 2 2 2 2
3 2 2 2

0 0 0 0 0

3 2
3 3

2
0

0

2 2 2
3 2 2 2

0 0 0

sin sin sin (1 cos ) sin sin cos ( sin )

cos 1 1 2
cos cos cos 0 cos cos 0 1

3 2 3 2 3 3

cos cos cos (1 sin ) cos cos sin (co

xdx x xdx x xdx xdx x x dx

x
x

xdx x xdx x xdx xdx x

    




  

 

     

          

    

 
  

    

  
2 2

0 0

3 2
3 3

2
0

0

s )

sin 1 1 2
sin sin sin 0 sin sin 0 1

3 2 3 2 3 3

x dx

x
x

 


  

         
  

 

22 2 2 2
4 2 2 2

0 0 0 0

2 2

0 0

2

0

1 cos 2 1
sin (sin ) (1 2cos 2 cos 2 )

2 4

1 1 cos 4 1 3 os 4
(1 2cos 2 ) ( 2 cos 2 )

4 2 4 2 2

1 3 sin 4 1 3 sin 2
sin 2 sin  

4 2 8 4 2 2 8

x
xdx x dx dx x x dx

x c x
x dx x dx

x
x x

   

 



 



    


     

     

 
  

 
  

   

 
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2 2
5 5

0 0

4 2 4 2
sin  and cos

5 3 5 3
xdx xdx

 

    

2 2
6 6

0 0

5 3 1 5 3 1
sin  and cos

6 4 2 2 6 4 2 2
xdx xdx

 

 
    

2 2
7 7

0 0

6 4 2 6 4 2
sin  and cos

7 5 3 7 5 3
xdx xdx

 

    

2 2
8 8

0 0

7 5 3 1 7 5 3 1
sin  and cos

8 6 4 2 2 8 6 4 2 2
xdx xdx

 

 
    

2 2
9 9

0 0

8 6 4 2 8 6 4 2
sin  and cos

9 7 5 3 9 7 5 3
xdx xdx

 

    

2 2
10 8

0 0

9 7 5 3 1 9 7 5 3 1
sin  and cos

10 8 6 4 2 2 10 8 6 4 2 2
xdx xdx

 

 
    

Wallis Sine Formula 
When n is even 
 
 
 
When n is odd 

          
2 2

11 11

0 0

10.8.6.4.2 10.8.6.4.2
sin  and cos

11.9.7.5.3 11.9.7.5.3
xdx xdx

 

    

          
2 2

12 12

0 0

11.9.7.5.3.1 11.9.7.5.3.1
sin  and cos

10.8.6.4.2 2 10.8.6.4.2 2
xdx xdx

 

 
    

22 2 2 2
4 2 2 2

0 0 0 0

2 2

0 0

2

0

2
4

0

1 cos 2 1
cos (cos ) (1 2 cos 2 cos 2 )

2 4

1 1 cos 4 1 3 os 4
(1 2 cos 2 ) ( 2cos 2 )

4 2 4 2 2

1 3 sin 4 1 3 sin 2
sin 2 sin

4 2 8 4 2 2 8

1 3
cos

4 2 2

x
xdx x dx dx x x dx

x c x
x dx x dx

x
x x

xdx

   

 





 





    


     

     



 
  

 
  

 
  

   

 


2

4

0

3 1
 So     cos   

4 2 2
xdx






2

0

1 3 5 7 5 3 1
sin . . . . . . .

2 4 6 6 4 2 2
n n n n n

xdx
n n n n



   
        

  
2

0

1 3 5 7 6 4 2
sin . . . . . . .

2 4 6 7 5 3
n n n n n

xdx
n n n n



   
        

  
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Integration By Parts 

.
dU

UVdx U V dx Vdx dx
dx

          

Example:  x lnx dx Evaluate   

 x lnx dx = lnx  xdx –  [  x dx.
d

dx
(ln x)] dx       (Using integrating by parts) 

         = ln x(
2

2

x
) -  (

2

2

x
)(

1

x
)dx = (

2

2

x
) ln x-  (

2

x
)d x = (

2

2

x
) ln x-

1

2
 (

2

2

x
) 

Example:  x sinx dx Evaluate   

  x sinx dx =x  sin xdx –   [  sinx dx.
d

dx
(x)] dx    (We are integrating by parts) 

                           = x(-cosx)-  (-cosx)(1)dx= -x(cosx ) +  cosx d x = -x(cosx)+sin x 

Line Integrals 
Let a point p on the curve c joining A and B be denoted 
 by the position vector r with respect to origin O. If  q  
is a neighboring point  on the curve with position vector  

r + dr, then PQ  = r 
The curve c can be divided up into many n such small  
arcs, approximating to dr1 , dr2 , dr3 ,………. drp ,…… 

so that 
1

n

p
p

AB dr

 where drp is a vector representing the element of the arc in both 

magnitude and direction. If drthen the length of the curve  AB=
c

dr   . 

Scalar Field 
If a scalar field V(r) exists for all points on the curve , 

 the 
1

( )
n

p
p

V r dr

  with drdefines the line integral 

 of V i.e line integral = ( ) .
c

V r dr  

We can illustrate this integral by erecting a continuous  

Ordinate to V(r) at each point of the curve ( )
c

V r dr is then represented by the area of the 

curved surface between the ends A and B the curve c. To evaluate a line integral, the 
integrand is expressed in terms of x, y, z with  dr = dx i + dy j + dz k  
 
In practice, x, y and z are often expressed in terms of parametric equation of  a fourth 
variable (say u), i.e. x = x(u) ; y = y(u) ; z = z(u) . From these, dx, dy and dz can be 
written in terms of u and the integral evaluate in terms of this parameter u. 
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LECTURE No.36           
SCALAR FIELD  

 
Scalar Field 
If a scalar field V(r) exists for all points on the curve, 

 then 
1

( )
n

p
p

V r dr

  with drdefines the line integral 

 of V i.e. line integral = ( ) .
c

V r dr  

We can illustrate this integral by erecting a continuous  

Ordinate to V(r) at each point of the curve ( )
c

V r dr is then represented by the area of the 

curved surface between the ends A and B the curve c. To evaluate a line integral, the 
integrand is expressed in terms of x, y, z with  dr =dx i  + dy j + dz k  
 
In practice, x, y and z are often expressed in terms of parametric equation of a fourth 
variable (say u), i.e. x = x(u) ; y = y(u) ; z = z(u) . From these, dx, dy and dz can be 
written in terms of u and the integral evaluate in terms of this parameter u.  

Example: If  V=xy2z, evaluate ( )
c

V r dr along the curve c having parametric equations  

x = 3u; y=2u2 ;z=u3 between A(0,0,0) and  B(3,2,1)    
Solution: V=  xy2z = (3u)(4u4)(u3)=12u8 
dr= dxi+ dy j+ dz k  dr= 3du i +4udu j +3u2du k 
for x = 3u ; dx = 3du ; y = 2u2     dy = 4u du  ; z = u3     dz =3u2dz 
 
Limiting: A(0,0,0) corresponds to B(3,2,1) corresponds to u   
A(0,0,0)    u=0 ;   B(3,2,1)    u = 1 

11 9 10 11
8 2

0 0

u 24 36
( ) 12u (3  +4u  +3u  )du= 36 48 36 4

9 10 11 5 11c

u u
V r dr        i j k i j k i j k  

Example : If V = xy + y2z Evaluate ( )
c

V r dr along the curve c defined by  x= t2; y = 2t ; 

z= t+5 between A(0,0,5)  and B(4,4,7) . As before, expressing V and dr  in term of  the 
parameter t . 
Solution: 
 
 
 
 
 
 
 
 
 
 

since V=xy+y 2z   
  = (t2 )(2t)+(4t2)(t+5)  
  = 6t3  + 20t2.   

  

x  =  t2  dx = 2t dt
y = 2t    dy = 2 dt 
z = t+5   dz = dt 

} 
  

   dr = dxi + dy j + dzk 
      = 2t dt   i + 2 dt  j + dtk 
 

C
  Vdr = 

C 
  (6t3 + 20t2)(  2t  i  + 2j+k) dt 
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Limits: A (0, 0, 5)   t = 0; 
B (4, 4, 7)   t = 2 

 
C
 Vdr = 

2

0
 (6t3+20t2)( 2t i +2 j +k) dt 


C

 Vdr = 2 
2

0

 {6t4+20t3)i+(6t3+20t2)j 

 +(3t3+10t2)k}dt. 

=  
8
15  (444i + 290j + 145k) 

 
Vector Field 
If a vector field F(r) exists for all points of the curve c, then for each element of arc we 
can form the scalar product dF r  . Summing these products for all elements of arc, we 

have 
1

.
n

p
p

F dr

  

 
 
 
 
 
 
 
 
F= F1 i + F2 j +F3 k 
And   dr = dx i +dy j +dz k 

Then F.dr = (F1 i + F2 j +F3 k).( dx i +dy j +dz k) = 1 2 3(Fdx + F dy +F dz )
c
  

Now for an example to show it in operation. 
Example 
If F(r) = x2y i + xz j + 2yz k , Evaluate .

c

F dr  between A(0,0,0) and B(4,2,1) along the 

curve c having parametric equations x=4t ; y =2t2; z = t3 
 
Solution: Expressing everything in terms of the parameter t, we have  
dx = 4 dt ; dy = 4t dt ; dz = 3t2 dt 
x2y = (16t2)(2t2) = 32 t 4 
x = 4t   dx = 4 dt 
xz = (4t)(t3) = 4 t4 
y = 2 t 2 dy = 4t dt 
2yz = (4 t 2)(  t 3) = 4 t 5 
z =  t 3                dz = 3t2 dt 
F = 32 t 4 i + 4 t4 j – 4  t5 k 
 
 
 

 

T he line integral of F(r) fr om A to B 
along the stated curve = 

C
  F.dr.  

In this case, since F.d r is a scalar
product, then the line integral is a scalar.  
To evaluate the line integral, F and d r 
are expressed in terms of x,y,z, and the 
curve in parametric form. We have 
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dr = 4dt i  + 4t dt j + 3t2 k 
 
 
 
 
 
 
 
 
 
Example 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Then   F.d r =   (32t4 i+4t4j 4t5 k). 
    (4dt i + 4t dt j  + 3t2 dt k) 

          =   (128t4+16t5 + 12t7) dt 

Limits: A(0,0,0)  t = 0;   
  B (4, 2, 1)   t =  1   

C
  F. d r = (128t4  + 16t 5   + 12t7)dt  = 

128
5   t5 + 

16
6   t6 + 

12
8   t8  = 

128
5   + 

8
3  +  

3 
2    = 29.76   

  

If F(r) = x2y i + 2yzj + 3z2x k 
Evaluate 

C
  F. d r between A(0,0,0) and  B(1,2,3) 

B (1, 2, 3)  
(a) along the straight line  
  c1 from (0, 0, 0) to (1, 0, 0)  
then  c2 from (1, 0, 0) to (1, 2, 0) 
and  c3 from (1, 2 , 0) to (1, 2, 3) 

 

(b) along the straight line c 4 joining  
(0, 0, 0) to (1, 2, 3).   
W e first obtain an expression for F.dr 
which is  
F. d r  = (x2y i + 2yzj + 3z2xk). 

(dx i+ dy j + dz  k) 
F. d r  = x2y dx + 2yz dy + 3z 2x dz 

 F.d r =  x 2ydx +  2yzdy+3z 2xdz 
Here the integration is made in three
sections, along c1 , c 2  and c3 .   
 (i)  c1 :  y = 0, z = 0,  dy = 0, dz = 0 
       

C 1 
  F. d r=0+0+0 = 0 

(ii)  c2:  The conditions along c 2 are 
c 2: x = 1, z = 0, dx = 0, dz = 0 

  
C2

   F.dr = 0 + 0 + 0 = 0  

(iii)  c3: x = 1,  y = 2,  dx = 0,  dy = 0 


C3

 F. dr = 0 + 0 + 
3

0 
 3z 2dz = 27  

Summing the three partial results 


( 1 , 2, 3) 

( 0, 0 , 0 ) 
 F.d r = 0 + 0 + 27 = 27   

   
c 1+c 2+ c 3

 F. d r = 27  
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Example 
Evaluate 

v

F dv  where V is the region bounded by the planes x = 0, y = 0, z = 0 and  

2x  + y = 2 , and F = 2z  i +y k. To sketch the surface 2x + y + z = 2, note that 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

If t taken as the parameter, the parametric equation of c are
  

x = t; y = 2t; z = 3t

   
(0, 0, 0)   t = 0, (1, 2, 3)   t = 1 and the limits of t are 

  
t = 0 and t = 1 

F = 2t 3 i  +   12t2 j  +   27t3 k  
d r  =  dxi +dyj +kdz   = dt   i  + 2dt j +3dt k 

1
C4 

  F. d r  = 
0
 (2t3+24t2+81t3)dt  

= 
0
  (83t3 + 24t 2 ) dt  =   

  

83 

t
4 

4  + 8t3
1

0

 = 
115
4   = 28.75 

  = 
1

0
 (2t3i+12t3j+27t3k).(i+2j+3k) dt 

1

So the value of the line integral depends on the path taken between the two end 

points A and B 
  

(a)  F.d r via c1, c2 and c 3  = 27 

(b)  F.d r via c4             = 28.75 

when  z = 0,  2x+y=2  i.e. y = 2  2x 
when  y = 0,  2x+z=2  i.e. z = 2  2x 
when  x = 0,    y+z=2  i.e. z = 2  y 
Inserting these in the planes   
x = 0, y = 0, z = 0 will help.  
The diagram is therefore.  

So 2x + y + z = 2 cuts the axes at
A(1,0,0); B (0, 2, 0); C (0, 0, 2). 
Also F = 2zi + yk;  
  z = 2  2x  y = 2 (1   x)   y   

vFdV= 
1

0 0

2( 1- x) 


0 

2( 1- x) - y 

(2xi+yk)dzdydx 

      =  

1

0
 
0 

2 ( 1- x) 

[z2 i +yzk ]
z=2( 1 - x) - y 

  z=0 
 dydx

     =  

1

0
 

2 ( 1 - x) 

0 {[4(1 x)2 4(1 x)y+y2]i

    

     v FdV =3
   (2i  + k )  

+[2(1x)yy2]k}dydx

1
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LECTURE No. 37       
   

EXAMPLES  
 

Example: Evaluate v FdV where F=2i+2zj+yk and V is the region bounded by the 
planes z = 0, z = 4 and the surface x2+y2 = 9. 
 
Solution: It will be convenient to use cylindrical polar  
coordinates (r, , z) so the relevant transformations are 
x = rcos; y = r sin;  z = z; dV=rdrd dz 

Then vFdV= v(2i+2zj+yk)dxdydz 
Changing into cylindrical polar coordinates with  
appropriate change of limits this becomes 

v FdV=

2

=0


3

 r=0


4

 z=0
(2 i +2zj+rsink)rdzdrd=

2

=0


3

 r=0
[2zi+z2j+rsinzk]

z=0

4
 rdrd 

= 

2

0


3

0
(8i+16j+4rsink)rdrd = 4 

2

0


3

0
(2ri+4rj+r2 sin k) drd= 4

2

0
Error! d 

 = 4 

2

0
(9i+18j + 9 sin k) d = 36 

2

0
(i+2j+sink)d = 36 [i + 2j  cosk]

2

0
 

= 36 {(2i + 4j  k)( k)}=  72 (i + 2j) 
 
Scalar Fields 
A scalar field F = xyz exists over the curved surface S defined by x2+y2= 4 between the 
planes z = 0 and z = 3 in the first octant.  

Example: Evaluate S F dS over this surface. 
Solution:We have F = xyz       S: x2+y24 = 0,      z = 0 to z = 3  

dS = ^n dS  where n̂  = 
S
|S|

  

Now S = 
S
x

 i+
S
y

 j+
S
z

 k = 2xi+2yj 

|S| = 4x2+4y2 =2 x2+y2 =2 4 = 4 

 ^n  =   
S
|S|

  = 
xi + yj

2    

 dS = ^ndS  = 
xi+yj

2  dS 

SFdS=SF ^n dS= 
1
2 S xyz(xi+yj)dS = 

1
2 S (x2yzi+xy2zj)dS  (1) 

We have to evaluate this integral over the prescribed surface. 
Changing to cylindrical coordinates with r = 2 
          x = 2 cos ; y = 2 sin z = z;   dS = 2ddz 
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         x2yz = (4cos2)(2sin)(z)= 8 z cos2 sin 
            xy2z = (2cos) (4sin2) (z)=8 z cossin2 
 

Then result SFdS = 
1
2 S (x2yzi+xy2zj)dS  becomes. 

SFdS =  
8
2 

/2

0
 

3

0
 (cos2sini+cos sin2 j)2zdzd = 4

/2

0

3

0
(cos2 sini+cos sin2j)2zdz d 

           = 4
/2

0
 (cos2sini+cossin2j)z2|30 d = 4

/2

0
 (cos2sini+cossin2j)9d 

          = 36 



 

cos3
3 i + 

sin3
3 j

/2

0
 = 12 (i + j) 

 
Vector Field 
A vector field F=yi+2j+k exists over a surface S defined by x2+y2 + z2 = 9 bounded by 
 x = 0, y = 0, z = 0 in the first octant, 
  

Example: Evaluate S F.dS over the surface indicated. 

dS = ^ndS ;  ^n = 
S
|S|

   

S : x2 + y2 + z2  9 = 0 

Solution: S = 
S
x

 i + 
S
y

 j+
S
z

 k=2xi+2yj+2zk 

|S|= 4x2+4y2+4z2 =2 x2+y2+z2  = 2 9 = 6 

  ^n  = 
1
6  (2xi + 2yj + 2zk)  = 

1
3  (xi + yj + zk) 

S F.dS=S F. ^ndS=S(yi+2j+k).
1
3 (xi+yj+zk)dS= 

1
3  S (xy + 2y + z) dS 

Before integrating over the surface, we convert to spherical polar coordinates. 
x = 3 sin  cos ; y=3 sin  sin    z = 3 cos ;  dS=9sindd 

Limits of  and  are   = 0 to 

2 ;   = 0 to 


2  

S F.dS = 
1
3  S (xy + 2y + z) dS 

           xy = 3 sin cos . 3 sin sin    = 9 sin2 cos 
           2y = 2 . 3 sin sin   =  6 sin sin 
           z   =  3 cos 
           dS = 9 sin d d 
Putting these values we get 

           S F.dS = 
1
3 

/2

0
 
/2

0
 (9sin2sincos+6sinsin+3cos)9sindd 
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                              = 9
/2

0
 
/2

0
 (3sin3 sincos+2sin2sin+sincos)d d 

 
As we know that  

                                 
/2

0
 sin3 d = 

2
3   by Wallis Formula 

                       Also  
/2

0
 sin2  d = 

1
2  

2  

So we get 

SF.dS = 9
/2

0
 



2sincos +


2 sin+

1
2 d  

             =9
2

0

sin 2 cos
2 2



 
    

  
= 9





(1  0 + 

4)  (0  


2 + 0)   

          =  9  





1 + 

4 + 


2  = 9 





1 + 
3
4   

Example : Evaluate S F.dS where F = 2yj + zk and S is the surface x2 + y2 = 4 in the 
first two octants bounded by the planes z = 0, z = 5 and y = 0. 
 
Solution: S : x2 + y2  4 = 0  
 

                 n̂ = 
S
|S|

  

 

              S = 
S
x

 i + 
S
y

 j + 
S
z

 k = 2xi + 2yi 

 
        |S|  =  4x2 + 4y2 = 2 x2 + y2  = 2  4   = 4 

            n̂  = 
S
|S|

  = 
2xi + 2yj

4   = 
1
2  (xi + yj) 

S F.dS = S F. n̂  dS  
 

S F. n̂ dS = 
1
2  S (2y2) dS= S y2 dS 

 
This is clearly a case for using cylindrical polar coordinates. 
 x = 2 cos ;   y = 2 sin ;   z = z; dS = 2d dz 

   S F.dS  = S y2dS = 
S

 4sin22ddz    = 8  
S

 sin2 d dz 

 
Limits:  = 0 to  = ;  z = 0 to z = 5 
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S F.dS=4 
5

z=0
 



=0
(1cos 2) ddz   =  4 

5

0
  



  

sin 2
2



0
 dz= 4 

5

0
   dz= 4 [z]5

0
= 20 

 
 
 
Conservative Vector Fields 

In general, the value of the integral C F.dr between 
 two stated points A and B depends on the particular 
 path of integration followed. If, however, the line 
 integral between A and B is independent of the path 
 of integration between the two end points, then the 
 vector field F is said to be conservative. 
 
 
It follows that, for a closed path in a conservative  
 

field, O
C

 F.dr = 0. 

For, if the field is conservative, 

        C1(AB) F.dr = c2(AB) F.dr 

But          c2(BA) F.dr =  c2(AB) F.dr 

 
Hence, for the closed path ABc1

 + BAc2
,  

          O F.dr =  C1(AB) F.dr + c2(AB) F.dr  

                      = C1(AB) F.dr  c2(BA) F.dr 

                      = C1(AB) F.dr  c1(AB) F.dr = 0 
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LECTURE No. 38           
 

VECTOR FIELD  
 
Conservative Vector Fields 

In general, the value of the integral C F.dr  
between two stated points A and B depends  
on the particular path of integration followed.  
If, however, the line integral between A and 
 B is independent of the path of integration 
 between the two end points, then the vector field  
F is said to be conservative. 

It follows that, for a closed path in a conservative field, O
C

 F.dr = 0. 

For, if the field is conservative, 

  C1(AB) F.dr = c2(AB) F.dr   But c2(BA) F.dr =  c2(AB) F.dr 

Hence, for the closed path ABc1
 + BAc2

, O F.dr 

=  C1(AB) F.dr + c2(AB) F.dr 

= C1(AB) F.dr  c2(BA) F.dr= C1(AB) F.dr  c1(AB) F.dr = 0 

 
Note that this result holds good only for a closed curve 
 and when the vector field is a conservative field.  
Now for some examples 
 
Example 

If F = 2xyzi + x2zj + x2yk, evaluate the line integral F.dr between A(0,0,0) and B(2,4,6) 
(a) along the curve c whose parametric equations are x = u, y = u2, z = 3u 
(b) along the three straight lines c1:(0,0,0) to (2, 0, 0); c2 : (2, 0, 0) to  
(2, 4, 0); c3: (2, 4, 0) to (2, 4, 6). 
Hence determine whether or not F is a conservative field. 
First draw the diagram. 
 
(a) F = 2xyzi + x2zj + x2yk 
 x = u; y = u2; z = 3u 
 dx = du;   dy = 2udu; dz = 3du. 
F.dr = (2xyzi+x2zj+x2yk).(dxi+dyj+dzk) 
        = 2xyz dx + x2z dy + x2y dz 
Using the transformation shown above, we can now express F.dr in terms of u. 
 for   2xyz dx = (2u)(u2)(3u)du  =  6u4du 
                x2z dy = (u2)(3u)(2u)du  = 6u4du 
                  x2ydz = (u2)(u2)3du       = 3u4du 
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 F.dr = 15u4du 
The limits of integration in u are  u = 0 to u = 2 

 C F.dr = 
2

0
 15u4du = [3u5]

2

0
 = 96 

  
(b) The diagram for (b) is as shown. We consider each straight line section in turn. 

 F.dr = (2xyz dx + x2zdy+x2ydz) 
c1: (0,0,0) to (2,0,0); y = 0, z = 0, dy = 0,      dz = 0 

          C1
 F.dr = 0 + 0 + 0 = 0 

In the same way, we evaluate the line integral along c2 and c3. 

        C1 F.dr = 0; 

F.dr=(2xyzdx+x2zdy+x2ydz) 
 
c2: (2,0,0) to (2,4,0);  x = 2,  z = 0, dx=0, dz = 0 

 C2
 F.dr = 0+0+0 = 0             C2 F.dr = 0 

 
c3: (2,4,0) to (2,4,6);  x = 2,  y = 4, dx=0,  dy = 0 

  C3
 F.dr = 0+0+ 

6

0
 16dz=[16z]

6

0
 = 96   C3

 F.dr = 96 

 
Collecting the three results together 

 c1+c2+c3 F.dr = 0 + 0 + 96      c1+c2+c3 F.dr = 96 

In this particular example, the value of the line integral is independent of the two paths 
we have used joining the same two end points and indicates that F is a conservative field. 
It follows that 

curl F = 







i             j            k


x

         

y

         

z

2xyz     x2z        x2y

 

          = (x2x2)i(2xy2xy)j+(2xz2xz)k = 0 
  curl F = 0 
 
REMARK: So three tests can be applied to determine whether or not a vector field is 
conservative. They are 

 (a) O F.dr = 0 
 (b) curl F = 0 
 (c) F = grad V 
Any one of these conditions can be applied as is convenient.  
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Divergence Theorem (Gauss’ theorem) 
For a closed surface S, enclosing a region V in a vector field F 

 V div F dV = S F.dS 
 
In general, this means that the volume integral  
(triple integral) on the left-hand side can be expressed  
as a surface integral (double integral) on the right-hand side. 
 
Example 
Verify the divergence theorem for the vector field  
F = x2i + zj + yk taken over the region bonded by the 
 planes z = 0, z = 2, x = 0, x = 1, y = 0, y = 3. 
dV = dx dy dz 

we have to show that V div F dV = S F.dS 

(a) To find V div F dV      

 div F = .F = 








x
i + 


y

j + 

z

k  . (x2i + zj + yk) 

= 

x

 (x2)+

y

 (z)+

z

  (y)=2x+0+0=2x 

  V div F dV=V 2x dv=V 2xdzdydx 

V div F dV = 
1

0


3

0


2

0
2xdzdydx = 

1

0


3

0
[ 2xz]

2

0
dy dx= 

1

0
[4xy]

3

0
dx = 

1

0
12x dx=[6x2]

1

0
 = 6 

 (b) to find S F.dS i.e.  S  F. n̂ dS 
The enclosing surface S consists of six separate  
plane faces denoted as  
S1, S2, ….. S6 as shown. We consider each face in turn. 
F = x2i + zj + yk 
(i)  S1 (base): z = 0; n̂ =  k (outwards and downwards) 
 F = x2i + yk dS1 = dx dy 

 S1
 F. n̂dS = S1

 (x2i+yk).(k)dydx =  
1

0


3

0
(y) dydx = 

1

0
 



 

y2

2

3

0

dx =  
9
2  

(ii) S2 (top): z = 2:  n̂=k   dS2=dx dy 

S2
 F.n̂dS=S2

 (x2i+zj+yk).(k)dydx    = 
1

0


3

0
y dy dx = 

9
2  

 (iii)     S3 (right-hand end): y = 3; 
  n̂=j     dS3 = dxdzj 
  F = x2i + zj + yk 
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  S3
 F. n̂ dS=S3

 (x2i+zj+3k).(j)dzdx   = 
1

0


2

0
z dz dx = 

1

0
 

2
2

0
2

z 
  

  dx = 
1

0
 2 dx = 2 

(iv)  S4 (left-hand end):  y = 0,  n̂ =  j, dS4 = dx dz 

  S4
 F.n̂dS =  2 

for S4
 F. n̂dS=S4

 (x2i+zj+yk).(j)dzdx= 
1

0


2

0
( z) dz dx= 

1

0
 



 

z2

2

2

0

 dx  

= 
1

0
 ( 2) dx =  2 

 
Now for the remaining two sides S5 and S6 . Evaluate these in the same manner, obtaining 

    S5
 F.n̂ dS = 6;         S5

 F.n̂ dS  = 0 

Check: 
(v) S5 (front): x = 1; n̂ = i    dS5 = dy dz 

 S5 F. n̂dS = S5
 (i+zj+yk).(i)dy dz= S5 1 dy dz = 6 

(vi) S6 (back):  x = 0;  n̂ = i   dS6=dy dz 

 S6 F. n̂dS = S6
 (zj+yk).(i)dy dz = S6 0 dy dz = 0 

For the whole surface S we therefore have S F.dS =  
9
2 + 

9
2+2  2+6+0 = 6  

and from our previous work in section (a) V div F dV = 6 

We have therefore verified as required that, in this exampleV div F dV = S F.dS 
 
Stokes Theorem 
 
If F is a vector field existing over an open surface S and around its boundary closed curve  
 

C, then S curl F.dS = O
C

 F.dr 

This means that we can express a surface integral  
in terms of a line integral round the boundary curve. 
The proof of this theorem is rather lengthy and is  
to be found in the Appendix. Let us demonstrate its application in the following 
examples. 
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Example: A hemisphere S is defined by x2 + y2 + z2 = 4 (z > 0). A vector field  
F = 2yi  xj+xzk exists over the surface and around its boundary c. Verify Stoke’s 
theorem that 

S curl F.dS = O
C

 F.dr. 

S : x2 + y2 + z2  4 = 0 
F = 2yi  xj + xzk   c is the circle x2 + y2 = 4. 

(a) O
C

 F.dr=  C (2yi  xj + xzk) . (idx + jdy + kdz) 

  = C (2ydx  x dy+xz dz) 
Converting to polar coordintes.x = 2 cos ; y = 2 sin ; z = 0 
dx =  2 sin  d;  dy = 2 cos  d;  Limits  = 0 to 2 

O
C

 F.dr = 
2/

0
 (4sin[(2sind]2 cos2cosd =  4 

2/

0
(2 sin2 + cos2) d 

 =  4 
2/

0
 (1 + sin2) d =  2 

2/

0
 (3  cos 2) d=  2 





3  
sin 2

2

2

0
 =12     (1) 

(b)    Now we determine S curl F.dS 

  curl F.dS =  curl F. n̂ dS   
 F = 2yi  xj + xzk 

curl F = 







i             j            k

x

         

y

         

z

2y       x           xz

 = i(00)j (z0)+k (12)  =  zj  3k 

Now n̂= 
S
|S|

 = 
2xi+2yj+2zk
4x2+4y2+4z2  = 

xi+yj+zk
2  

Then S curl F. n̂dS = S (zk3k).



xi + yj + zk

2  dS    = 
1
2  S ( yz  3z) dS 

x = 2 sin cos; y = 2 sin sin; z = 2cos   , dS = 4 sin  d d 

 S curlF.n̂dS=
1
2 

S
(2 sin sin 2cos 6 cos) 4 sin d d 

=  
2

0

/2

0
(2sin2  cos  sin  +3sincos)dd=4 

2

0 



2 sin3 sin

3  + 
3 sin2

2

/2

0

 d 

       =  4
2

0 



2

3 sin + 
3
2   d =  12  (2) 

So we have from our two results (1) and (2) 

 S curl F.dS = O
C

 F.dr 
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LECTURE No. 39           
 

PERIODIC FUNCTIONS  
 
Periodic functions 
A function f(x) is said to be periodic if its function values repeat at regular intervals of 
the independent variable. The regular interval between repetitions is the period of the 
oscillations.    f(x + p) = f(x) 
Graphs of y = A sin nx 

(a) y = sin x The obvious example of a periodic 
function is  y = sin x, which goes through its complete  
range of values while x increases from 0 to 360. 
 The period is therefore 360 or 2 radians and the amplitude, 
 the maximum displacement from the position of rest. 
 
Example: 
             y = 5sin 2x 
The amplitude is 5. The period is 180 and there 
 are thus 2 complete cycles in 360. 
 
Thinking along the same lines, the function y = A sin nx  

has amplitude = A; period = 
360

n   = 
2
n  ; n cycles in 360. 

Graphs of y = A cos nx have the same characteristics  
 
Example 
 

Functions Amplitude Period 
y = 3 sin 5x 3 72 
y = 2 cos 3x 2 120 

y = sin 
x
2  1 720 

y = 4 sin 2x 4 180 
 
y = A sin nx 
 
Example 
 
 
 
 
 
 
         period = 8 ms   period = 6 ms   period = 5 cm 
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Analytical description of a periodic function 
A periodic function can be defined analytically in many cases. 
Example 
(a)  Between x = 0 and x = 4,  y = 3,   
        i.e.      f(x) = 3   0 < x < 4 
(b)  Between x = 4 and x = 6,  y = 0, 
        i.e.       f(x) = 0   4 < x < 6. 
So we could define the function by 

 f(x) = 3 0 < x < 4 
f (x) = 0 4 < x < 6 
f (x) = f (x + 6) 
the last line indicating that the function is periodic  
with period 6 units 
f(x) = 2  x   0 < x < 3 
f(x) =  1 3 < x < 5 
f(x) = f(x+5) 

f(x) = 
3x
4   0 < x < 4 

f(x) = 7  x  4 < x < 10 
f(x) =  3 10 < x < 13 
f(x) = f (x + 13) 
 
Example 
Sketch the graphs of the following inserting relevant values. 
1. f(x) = 4 0 < x < 5 
 f(x) = 0 5 < x < 8 
 f(x) = f (x + 8) 
 
 f(x) = 3x  x2  0 < x < 3 
 f(x) = f (x + 3) 
 
 f(x) = 2 sin x 0 < x <  
 f(x) = 0  < x < 2 
 f(x) = f (x + 2). 

 f(x) = 
x2

4   0 < x < 4 

 f(x) = 4 4 < x < 6 
 f(x) = 0 6 < x < 8 
 f(x) = f(x + 8). 
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Useful integrals 
 
The following integrals appear frequently in our work on Fourier series, so it will help if 
we obtain the result in readiness. In each case, m and n are integers other than zero. 

(a)  




sin nx dx = 



 cos nx

n




 = 

1
n { cos n + cos n}= 0 

(b) 




cos nx dx = 



sin nx

n




 = 

1
n {sinn + sin n} = 0 

(c)  




 sin2nx dx = 

1
2  




(1cos2nx) dx = 

1
2 



x  

sin 2nx
2n




 =  (n  0) 

(d) 




cos2nx dx = 

1
2 




 (1 + cos 2nx) dx = 

1
2 



x + 

sin 2nx
2n




 =   (n  0) 

(e)  




 sin nx cos mx dx = 

1
2 




{sin(n+m)x+sin(nm)x}dx= 

1
2 {0 + 0}= 0  

                                from result (a) with n  m  

(f)  




 cos nx cos mx dx = 

1
2 




{cos(n+m)x+cos(nm)x}dx= 

1
2 {0 + 0}= 0  

                                 from result (b) with n  m  
 
                 If n = m, then 

                  




 cos nx cos mx dx  becomes  




cos2 nx dx =      from (d) above. 

(g) 




 sin nx sin mx dx =  ½ 




( 2) sin nx sin mxdx= ½




 cos(n+m)xcos(nm)xdx 

                          = 
1
2 




{0  0)= 0 from result (b) with n  m  

 
               If n = m, then 

                        




 sin nx sin mx dx  becomes  




 sin2 nx dx =     from (c) above 

 
Summary of integrals 

 (a) 




sin nx dx = 0 , (b) 




cos nx dx = 0 ,   (c) 




sin2 nx dx =  ( 0) 
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(d) 




cos2 nx dx =  (n  0)      (e) 




sin nx cos mx dx = 0 

(f) 




cos nx cos mx dx = 0  (n  m)   (g) 




sin nx sin mx dx = 0  (n  m) 

     




cos nx cos mx dx =   (n = m)       




sin nx sin mx dx  =    (n = m) 

 
Note 
 We have evaluated the integrals between   and , but, provided integration is carried 
out over a complete periodic interval of 2, the results are the same.  Thus, the limits 
could just as well be   to , 0 to 2,  /2 to 3/2, etc. We can therefore choose the 
limits to suit the particular problems. 
 
Fourier series  
Periodic functions of period 2 
The basis of a Fourier series is to represent a periodic function by a trigonometrical series 
of the form. 
     f(x) = A0+c1 sin (x+1) + c2 sin (2x+2) +c3 sin (3x+3)+…+cn sin (nx+n)+ … 
                                                                  where A0 is a constant term 
c1, c2, c3….cn denote the amplitudes of the compound sine terms 1, 2, 3….. are 
constant auxiliary angles. 
 
Each sine term, cn sin (nx + n) can be expanded thus: 
cn sin (nx + n) = cn{sin nx cosn+cos n x sinn}= (cnsinn) cos nx + (cncosn) sin nx 
= ancos nx + bnsin nx 
 
The whole series becomes. 

f(x) = A0 +  


  
n=1

 {an cos nx + bn sin nx} 
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LECTURE No.40             
 

FOURIER SERIES  

As we know that  A0 +  


  
n=1

 {ancosnx + bnsinnx}; which can be written as in the expanded 

from 
             A0+(a1cosx+b1sinx)+(a2cos2x+b2sin2x)+     + (ancos nx+bnsin nx)+     
       =  A0+a1cosx+a2cos2x+   +ancos nx+     +b1sinx+b2sin2x+     bnsin nx+     
 
   f(x) = A0+a1cosx+a2cos2x+   +ancos nx+   +b1sinx+b2sin2x+     bnsin nx+     
 
Fourier coefficients 
We have defined Fourier series in the form    

               f(x) =A0 +  


  
n=1

 {ancosnx + bnsinnx};  n a positive integer 

 (a) To find A0, we integrate f(x) with respect to x from   to . 






f(x)dx = 




A0 dx + 



  
n=1

 Error!= [A0x]Error!+  Error!{ 0 + 0 } = 2A0     

   2A0  =  




 f(x) dx  

        A0 = 
1

2  




 f(x) dx =

1

2
  a0  ;                       Where a0 = 

1
  




 f(x) dx  

(b) To find an we multiply f(x) by     cos mx and integrate from   to . 






f(x)cos mx dx = 




A0 cos mx dx+ 



  
n=1

 Error! 






f(x)cos mx dx = A0 {0} +  



  
n=1

 {an (0) + bn (0)}= 0             for n  m 

                          = 0 + an + 0 = an                             for n = m     

  an = 
1
  




 f(x) cos nx dx 

(c)  To find bn we multiply f(x) by sin mx and integrate from   to . 






f(x)sin mx dx = 




A0 sin mx dx +



  
n=1

 Error! 






f(x)sin mx dx = A0 {0} +  



  
n=1

 {an (0) + bn (0)}= 0                for n  m 

                         = 0 + 0 + bn = bn                                         for n = m   
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             bn = 
1
  




 f(x) sin nx dx 

Result For Fourier Series 

f(x)=
1
2 a0+



  
n=1

 {ancosnx+bnsinnx}; 

(a)  a0 = 
1
 




 f(x) dx = 2mean value of f(x) over a period  

(b)  an = 
1
 




 f(x) cos nx dx = 2mean value of f(x) cosnx over a period. 

(c)    bn = 
1
 




 f(x) sin nx dx = 2  mean value of f(x) sin nx over a period. 

                                 In each case, n = 1, 2, 3, …… 
 
Example  
Determine the Fourier series to represent the periodic 
function shown. 
 
It is more convenient here to take the limits as 0 to 2. 
The function can be defined as  

            f(x) = 
x
2   0 < x < 2 

            f(x) = f(x + 2)   period = 2. 
 
Now to find the coefficients 

(a) a0 = 
1
  

2

0
 f(x) dx= 

1
  

2

0 


x

2  dx = 
1

4  [x2]
2

0
 =  

            a0 =  

(b) an = 
1
  

2

0
 f(x) cos nx dx  

 = 
1
  

2

0 


x

2  cos nx dx  

       an = 
1

2  

2

0
 x cos nx dx = 

1
2  Error!=  Error!Error! 

    an = 0 

(a)  bn = 
1
  

2

0
f(x) sin nx dx     So we now have 
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bn = 
1
  

2

0

x
2  sin nx dx= 

1
2  Error!=  Error! [2  0]=   Error! 

 a0 = ;   an = 0; bn =  
1
n  

Now the general expression for a Fourier series is  

              f(x) = 
1
2  a0 + 



  
n=1

 {an cos nx + bn sin nx}  Therefore in this case 

              f(x) = 

2  +  



  
n=1

 {bn sin nx} =  

2 +{

1
1 sinx

1
2 sin2x

1
3  sin3x...}    since an = 0 

              f(x) = 

2 {sinx+

1
2 sin2x+

1
3  sin3x+.......} 

Dirichlet Conditions 
If the Fourier series is to represent a function f(x), then putting x = x1 will give an infinite 
series in x1 and the value of this should converge to the value of f(x1) as more and more 
terms of the series are evaluated. For this to happen, the following conditions must be 
fulfilled. 
        (a) The function f(x) must be defined and single-valued. 
        (b) f(x) must be continuous or have a finite number of finite discontinuities within a 
periodic interval. 

        (c)  f(x) and f 

(x) must be piecewise continuous in the periodic interval. 

 
If these Dirichlet conditions are satisfied, the Fourier series converges to f(x1), if  
x = x1 is a point of continuity 
Example 
Find the Fourier series for the function shown. 
 
Consider one cycle between x=0 and x=. 
The function can be defined by  

 f(x) = 0   < x <  

2  

 f(x) = 4  

2  < x <  


2  

 f(x) = 0    

2  < x <   

 f(x) = f (x + 2) 

  f(x) = 
1
2  a0 +   



  
n=1

 {an cos nx+bn sin nx}    

The expression for a0 is a0 = 
1
  




 f(x) dx   This gives 

    a0   = 
1
 Error!  = Error! [4x]Error!=4 
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 a0 = 4 

(b)  an = 
1
  




 f(x) cos nx dx =   

1
 Error! 

           = 
1
 Error!= Error!  sin nx |Error!=  Error!        

       an = 
8
n

 sin 
n
2   

Then considering different integer values of n, we have 
       If n is even  an = 0 

       If n = 1.5, 9….  an = 
8

n  

       If n = 3, 7, 11, ….             an =  
8

n  

  
(c) To find bn 

 bn = 
1
  




f(x) sin nx dx = 

1
 Error! 

bn = 
4
  

/2

/2
sin nx dx    = 

4
  



 cos nx

n

/2

/2
   =  

4
n  









cos 
n
2   cos 



 n

2   = 0   

bn = 0 
So with a0 = 4: an as stated above; bn = 0;  
The Fourier series is  

f(x) = 2 + 
8
  {cosx  

1
3  cos 3x +

1
5  cos5x  

1
7  cos 7x + …..} 

In this particular example, there are, in fact, no sine terms. 
 
Effect Of Harmonics 
It is interesting to see just how accurately the Fourier series represents the function with 
which it is associated. The complete representation requires an infinite number of terms, 
but we can, at least, see the effect of including the first few terms of the series. 
Let us consider the waveform shown. We established earlier that the function 

f(x) = 0   < x <  

2  

f(x) = 4   

2 < x < 


2  

f(x) = 0 

2  < x <  

f(x) = f (x + 2) 
gives the Fourier series 

f(x) = 2 + 
8
 {cos x

1
3 cos3x + 

1
3  cos 5x  

1
7 cos 7x + ….} 



40-Fourier series                                                                                                                                           VU 
 

 
© Copyright Virtual University of Pakistan 

 

203

If we start with just one cosine term, we can then see the effect o including subsequent 
harmonics. Let us restrict our attention to just the right-hand half of the symmetrical 
waveform. Detailed plotting of points gives the following development. 

(1)  f(x) = 2 + 
8
  cos x 

 

(2)  f(x) = 2 + 
8
  {cosx  

1
3 cos 3x} 

 

(3)  f(x)=2+
8
 {cos x

1
3 cos3x + 

1
3 cos5x) 

 

(4) f(x) = 2 + 
8
 {cosx

1
3 cos3x+ 

1
3 cos5x  

1
7 cos 7x} 

 
 
As the number of terms is increased, the graph gradually approaches the shape of the 
original square waveform. The ripples increase in number and decrease in amplitude, but 
a perfectly square waveform is unattainable in practice. For practical purpose, the first 
few terms normally suffice to give an accuracy of acceptable level. 
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LECTURE No.41        
 

EXAMPLES 
 
Example 1 
Find the Fourier series for the function defined by 
f(x) =  x   < x < 0 
f(x) = 0 0 < x <  
f(x) = f (x + 2) 
Solution: 
The general expressions for a0, an, bn are 

a0 = 
1
 




 f(x) dx ,    an = 

1
 




 f(x) cos nx dx ,      bn = 

1
 




 f(x) sin nx dx 

a0 = 
1
 




 f(x) dx   = 

1
 

0


( x) dx + 

1
 



0
0 dx   = 

1
 

0


( x) dx  = 

1
 



 

x2

2

0


  = 


2  

(b)  To find an 

an = 
1
 




 f(x) cos nx dx = 

1
  

0


(x) cosnxdx + 

1
 



0
0 dx =  

1
  




x cos nx dx 

 =  
1
  Error!=  Error! Error! 

=  
1
  







1

n



 cos nx

n

0


 =  

1
n2  













 cos nx

n

0


 =  

1
n2  [cos 0  cos n] 

=  
1
n2  {1  cos n} 

But cos n = 1 (n even) and  cos n  =  1  (n odd) 

an      =   
2
n2  (n odd)   and    an  = 0  (n even) 

(c)   Now to find bn  

bn = 
1
 




 f(x)sinnxdx  = 

1
 

0


(x) sin nx dx =  

1
  

0


x sin nx dx  

= 
1
  Error!=Error!Error!=Error! 

  bn =  
1
n   (n even)   and   bn=  

1
n   (n odd) 

So we have   a0 = 

2 ;  an = 0 (n even)  and an  =  

2
n2   (n odd) 

          bn =  
1
n  (n even)  and bn    = 

1
n   (n odd) 

 f(x)=

4 

2
  



cosx+

1
9 cos3x+

1
25 cos 5x+...  + 



sin x  

1
2 sin 2x + 

1
3 sin 3x  

1
4 sin 4x+….   

It is just a case of substituting n = 1, 2, 3, etc. 
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In this particular example, we have a constant term and both sine and cosine terms. 
Odd And Even Functions 
(a)  Even functions 
A function f(x) is said to be even if   f( x) = f(x)  i.e. the function value for a particular 
negative value of x is the same as that for the corresponding positive value of x. The 
graph of an even function is therefore symmetrical about the y-axis. 
 
       y = f(x) = x2 is an even function  
since 
      f( 2) = 4 = f(2) 
      f ( 3) = 9 = f(3)  etc. 
 
 
       y = f(x) = cos x is an even function 
since  cos ( x) = cos x 
          f( a) = cos a = f(a) 
 
(b)  Odd functions  
A function f(x) is said to be odd if  f ( x) =  f(x) 
i.e. the function value for a particular negative value of x is numerically equal to that for 
the corresponding positive value of x but opposite in sign. The graph of an odd function 
is thus symmetrical about the origin. 
 
y = f(x) = x3 is an odd function since 
f( 2) =  8 =  f(2) 
f ( 5) =  125 =  f(5)  etc. 
 
y = f(x) = sin x is an odd function  
Since  sin ( x) =  sin x 
 f ( a) =  f(a). 
Remarks:  
(1)  An even function f ( x) = f(x) is symmetrical about 
the y-axis 
(2)    An odd function f( x) =  f (x)   symmetrical about 
the origin. 

                                                       
odd.      Odd 
 

 



41-Examples                                                                                                                                                 VU 
 

 
© Copyright Virtual University of Pakistan 

 

206

 
                       Even   
   neither 
 

 
Even                                                               

Odd                                                                      
     
  

Products Of Odd And Even Functions 
 
(a) Two even functions 
      Let F(x) = f(x) g(x) where f(x) and g(x) are even functions. 
      Then F( x) = f( x) g ( x) = f(x) g(x) since f(x) and g(x) are even. 
        F( x) = F(x)  
            F(x) is even 
(b) Two odd functions 
      Let F(x) = f(x) g(x) ,  where f(x) and g(x) are odd functions. 
      Then F( x) = f( x) g( x)   = { f (x)} { g(x)}  
      since f(x) and g(x) are odd. 
 = f(x) g(x) = F (x) 
           F( x) = F(x) 
              F (x) is even 
(c)  One odd and one even function 
      Let F(x) = f(x) g(x) where f(x) is odd and g(x) even. 
      Then F ( x) = f ( x) g( x)  =  f(x) g(x) =  F (x) 
         F ( x) =  F (x) 
    F (x) is odd 
So if f(x) and g(x) are both even, then f(x) g(x) is even and if f(x) and g(x) are both 
odd, then f(x) g(x) is even but if either f(x) or g(x) is even and the other odd. Then   
f(x) g(x) is odd. 
 
Example 2 
State whether each of the following products is odd, even, or neither. 
1.  x2 sin 2x          odd     (E) (O) = (O) 
2.  x3 cos x          odd     (O) (E) = (O) 
3.  cos 2x cos 3x      even     (E) (E) = (E) 
4.  x sin nx         even    (O) (O) = (E) 
5.  3 sin x cos 4x      odd     (O) (E) = (O) 
6.  (2x + 3) sin 4x   neither (N) (O) = (N) 
7.  sin2 x cos 3 x       even    (E) (E) = (E) 
8. x3ex                          neither  (O) (N) = (N) 
9. (x4 + 4) sin 2x      odd     (E) (O) = (O) 
 
Two useful facts emerge from odd and even functions.  
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(a) For an even function 
 

            
a

a
 f(x)dx=2

a

0
 f(x) dx  

 
 
 
(b) For an odd function 
 

             
a

a
 f (x) dx = 0 

 
 
THEOREM 1 
If f(x) is defined over the interval   < x <  and f(x) is even, then the Fourier series for 
f(x) contains cosine terms only. Included in this is a0 which maybe regarded as an cos nx 
with n = 0. 
Proof: 

(a)  a0 = 
1
 




 f(x)dx   = 

2
 



0
 f(x)dx              a0 = 

2
  



0
 f(x) dx 

(b) an = 
1
 




 f(x) cos nx dx.  

       But f(x) cos nx is the product of two even functions and therefore itself even.  

            an = 
1
  




 f(x) cos nx dx   = 

2
 



0
 f(x) cos nx dx      an = 

2
  



0
 f(x) cos nx dx 

 (c)  bn = 
1
  




  f(x) sin nx dx 

Since f(x) sin nx is the product of an even function and an odd function, it is itself odd. 

       bn = 
1
  




 f(x) sin nx dx = 0. 

       bn = 0 
Therefore, there are no sine terms in the Fourier series for f(x).  
 
Example 3 
The waveform shown is symmetrical about the y-axis. The function is therefore even and 
there will be no sine terms in the series. 
 

 f(x) = 
1
2 a0 + 



  
n=1

 an cos nx 
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(a)  a0  = 
1
 




 f(x) dx  = 

2
 



0
 f(x) dx.=  

2
 

/2

0
  4 dx  

 = 
2
  [4x]

/2

0
 = 4 

(b) an = 
1
 




 f(x)cos nx dx  = 

2
 



0
 f(x) cos nx dx= 

2
 

/2

0
 4cosnx dx= 

8
  



sin nx

n

/2

0
 

           = 
8
n

  sin 
n
2   

                 But sin 
n
2   = 0       for n even 

                         = 1       for n  1, 5, 9, ….. 
                         =  1    for n = 3, 7, 11, ….  
              an = 0   (n even);   

              an = 
8
n

  (n = 1, 5, 9, ….); 

              an =  
8
n

  (n = 3, 7, 11 ……) 

(c)  bn = 0, since f(x) is an even function. Therefore, the required series is 

f(x) = 2 + 

8 {cos x  

1
3  cos 3x + 

1
3  cos 5x  

1
7  cos 7x + ….}  

Theorem 2:  
If f(x) is an odd function defined over the interval   < x < , then the Fourier series for 
f(x) contains sine terms only. 
Proof: 
Since f(x) is an odd function 

 
0


 f(x) dx =  



0
 f(x) dx. 

a0 = 
1
 




 f(x) dx.    

 But f(x) is odd 
 a0 = 0 

      an = 
1
 




 f(x) cos nx dx 

           Remembering that f(x) is odd and cosnx is even, the product f(x) cosnx is odd. 

            an = 
1
 




 f(x) cosnx dx = 

1
 




  (odd function) dx 

              an = 0 

bn = 
1
 




 f(x) sin nx dx  

and since f(x) and sin nx are each odd, the product f(x) sin nx is even. 
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       Then bn = 
1
 




  (even function) dx =  

2
 



0
 f(x) sin nx dx 

  bn = 
2
 



0
 f(x) sin nx dx 

So,  
      If f(x) is odd function then  a0 = 0;  an = 0;  

              bn = 
2
 



0
 f(x) sin nx dx i.e. the Fourier series contains sine terms only. 

Example 4 
f(x) =  6   < x < 0 
f(x) = 6 0 < x <  
f(x) = f(x + 2) 

 
We can see that this is an odd function;  
           a0 = 0 and an = 0 

           bn = 
1
 




 f(x) sin nx dx. 

f(x) sin nx is a product of two odd functions and is therefore even. 

           bn = 
2
  



0
  f(x) sin nx dx  

     bn = 
2
  



0
 6 sin nx dx  = 

12
   



 cos nx

n



0

= 
12
   



cos nx

n

0


= 

12
   [cos 0  cos n] 

                            =  
12
n

  (1  cos n). 

                      bn   = 0  (n even)     bn   = 
24
n

   (n odd) 

                      So the series is f(x) = 
24
  {sinx + 

1
3 sin3x + 

1
5 sin5x +….} 

 
Remark: If f(x) is neither an odd nor an even function, then we must obtain expressions 
for a0, an and bn in full. 
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LECTURE No.42           
 

EXAMPLES  
 
Example  
Determine the Fourier series for the function 
 shown. 
Solution: This is neither odd nor even.  
Therefore we must find a0, an and bn. 

f(x) = 
1
2  a0 + 




n = 1
 {an cos nx + bn sin nx} 

f(x) = 
2
 x  0 < x <  

      =  2 ,    < x < 2 

(a) a0 = 
1
 

2

0
 f(x)dx = 

1
  Error!= Error! Error!= Error! { + 4  2}  

  a0 = 3 

(b) an = 
1
 

2

0
 f(x) cos nx dx = 

1
  Error! 

= 
1
  Error!= Error! Error! 

=
2
 Error!= Error!Error! 

= 
2
 






1

n 



cos nx

n



0
 =  

2
2n2  {cos n  cos 0}=  

2
2n2  {cos n  1} 

 an=  0   (n even);  an= 
 4
2n2  (n odd) 

(c)  To find bn, we proceed in the same general manner  

bn = 
1
 

2

0
 f(x) sin nx dx= 

1
  Error! 

= 
2
  Error!   =  Error! Error! 

  =  
2
  










1
n cosn+(00)

1
n (cos 2ncosn)  =  

2
  










1
n cosn+(00)

1
n cos 2n+

1
n cosn  

   = 
2
  









 
1
n cos 2n  =  

2
n

  cos 2n 

But cos 2n  =  1. 

  bn =  
2
n

  

 
So the required series is  
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f(x) =
3
2 

4
2 








cosx+
1
9cos3x+

1
25cos5x+…    

2
 








sinx+
1
2sin2x+

1
3sin3x+

1
4 sin4x…   

 
Sum of a Fourier series at a point of discontinuity 

f(x) = 
1
2 a0 +  



  
n=1

 {an cos nx + bn sin nx} 

At x = x1, the series converges to the value f(x1) 
 as the number of terms including increases to 
infinity. 
 A particular point of interest occurs at a point of 
finite discontinuity or `jump’ of the function y = f(x). 
At x = x1, the function appears to have two  
distinct values, y1 and y2. 
 
If we approach x = x1 from below that value, 
 the limiting value of f(x) is y1. 
 
If we approach x = x1 from above that value, the 
limiting value of f(x) is y2. 
 
To distinguish between these two values we write 
 y1 = f(x1  0) denoting immediately before x = x1 
y2 = f(x1 + 0) 
denoting immediately after x = x1. 
In fact, if we substitute x = x1 in the Fourier series for  
f(x), it can be shown that the series converges to the 
value  
1
2  {f(x1  0) + f(x1 + 0)} = 

1
2  (y1 + y2), the average of y1 and y2. 

Example 
Consider the function  
f(x) = 0   < x < 0 
f(x) = a 0 < x <  
f(x) = f (x + 2) 

(a) a0 =  
1
  




f(x) dx= 

1
 



0
a dx 

 = 
1
 [ax]



0
= a 

 a0 = a 

(b) an = 
1
 




f(x)cos nx dx   = 

1
 



0
a cosnx dx = 

a
  



sin nx

n



0
 = 0 

   an = 0 
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  bn = 
1
 




f(x)sin nxdx  = 

1
 



0
a sin nx dx0= 

a
  



 cos nx

n



0
 = 

a
n  (1  cos n) 

  
But cos n = 1  (n even)  and cos n = -1 (n odd) 

  bn = 0 (n even)  and    bn    =  
2a
n   (n odd) 

 f (x) = 
1
2  a0 + 



n=1

  bn sin nx 

f(x) = 
a
2 + 

2a
  {sinx + 

1
3 sin3x  + 

1
5  sin5x +....} 

A finite discontinuity, or `jump’, occurs at x = 0. If we substitute x = 0 in the series 
obtained, all the sine terms vanish and we get  
f(x) = a/2, which is, in fact, the average of the 
two function values at x = 0. 
Note also that at x = , another finite  
discontinuity occurs and substituting  
x =  in the series gives the same result. 
Because of this ambiguity, the function is said 
to be `undefined’ at x = 0, x = , etc. 
Half-Range Series 
Sometime a function of period 2 is defined over the 
 range 0 to , instead of the normal   to , or 0 to 2.  
We then have a choice of how to proceed. 
For example, if we are told between  
x = 0 and x = , f(x) = 2x,  
then, since the period is 2, we have no evidence  
of how the function behave between x =   and 
 x = 0. 
If the waveform were as shown in (a), the  
function would be an even function, symmetrical 
 about the y-axis and the series would have only cosine 
terms (including possibly a0). 
 
 
 
On the other hand, if the waveform were as shown in 
 (b), the function would be odd, being symmetrical  
about the origin and the series would have only sine terms. 
Example 
A function f(x) is defined by  
f(x) = 2x    0 < x <   
f(x) = f(x + 2) 
Obtain a half-range cosine series to represents the 
 function. 
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To obtain a cosine series, i.e. a series with no sine  
terms, we need an even function. 
Therefore, we assume the waveform between  
x =   and x = 0 to be as shown, making the total graph symmetrical about the y-axis. 

 
Now we can find expressions for the Fourier 
 coefficients as usual. 

       a0 = 
2
 



0
 f(x)dx  = 

2
 



0
 2xdx = 

2
 [x2]



0

  = 2   

  a0 = 2 

an = 
1
  




 f(x) cos nx dx   = 

2
  



0
 f(x) cos nx dx 

an = 
2
 



0
 2x cos nx dx     = 

4
 



0
 x cos nx dx    = 

4
  Error!  

=  
4
  









(00)  
1
n 



 cos nx

n



0

 = (
4
n2) (cos n 1)  

 cos n = 1  (n even) and       cos n   = 1   (n odd) 

 an = 0    (n even)     and  an =  
8
n2   (n odd) 

All that now remains is bn which is zero, since f(x) is an even function, i.e. bn = 0 

So a0 = 2,  an = 0  (n even) and an   = 
8
n2   (n odd),  

bn = 0.  Therefore 

f(x)=
8
 








cosx+
1
9 cos3x+

1
25 cos5x+….   

Example  
Determine a half-range sine series to represent the function f(x) defined by 
f(x) = 1 + x 0 < x <  
f(x) = f(x + 2) 
 
We choose the waveform between  
x =   and x = 0 so that the graph is symmetrical 
about the origin. The function is then an odd 
function and the series will contain only sine 
terms. 

 
   a0 = 0 and an = 0 

bn = 
1
  




 f(x) sin nx dx 
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bn = 
2
  



0
 f(x) sin nx dx 

bn = 
2
 



0
 (1+x)sin nx dx = 

2
 Error! 

  =  
2
 








 
1 + 

n  cos n + 
1
n+

1
n 



sin nx

n



0

  = 
2
 






1

n  
1 + 

n  cos n = 
2
n

 {1  (1 + ) cos n} 

 cos n = 1 (n even)   and       cos n =   1  (n odd) 

 bn=  
2
n     (n even)  

     = 
4+2
n

   (n odd) 

Substituting in the general expression f(x) = 



x = 1
 bn sin nx   we have 

f(x)=
4 + 2
  {sinx +

1
3  sin3x+

1
5 sin5x+...} 2 {

1
2 sin 2x+

1
4  sin 4x+

1
6  sin 6x+ ....) 

and the required series obtained 

f(x)=




4

+2  {sin x+
1
3 sin 3x+

1
5  sin 5x+..} 2{

1
2 sin 2x+

1
4  sin 4x+

1
6  sin 6x+ .....} 

So knowledge of odd and even functions and of half-range series saves a deal of 
unnecessary work on occasions. 
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LECTURE No. 43             
 

FUNCTIONS WITH PERIODS OTHER THAN 2 
 
So far, we have considered functions f(x) with period 2. In practice, we often encounter 

functions defined over periodic intervals other than 2, e.g. from 0 to T,  
T
2  to 

T
2  etc. 

Functions with Period T 

If y = f(x) is defined in the range  
T
2  to 

T
2 , i.e. has a period T, we can convert this to an 

interval of 2 by changing the units of the independent  variable. 
In many practical cases involving physical oscillations, 
the independent variable is time (t) and the periodic 
interval is normally denoted by T, i.e. 
 f(t) = f(t + T) 
Each cycle is therefore completed in T seconds and the 
 frequency f hertz (oscillations per second) of the 

periodic function is therefore given by f = 
1
T . If the 

angular velocity,  radians per seconds, is defined by  = 2f, then 

  = 
2
T   and T = 

2
   

The angle, x radians, at any time t is therefore x = t and the Fourier series to represent 
the function can be expressed as   

                   f(t) = 
1
2 a0 + 



x=1

  {anCos nt +bnSin nt} 

which can also be written in the form 

                    f(t) = 
1
2  A0+



x=1

  Bn sin (nt + n)   n = 1, 2, 3, ..... 

Fourier Coefficients 
With the new variable, the Fourier coefficients become: 

f(t) = 
1
2 a0 + 



x=1

  {an cosnt + bn sinnt} 

a0 = 
2
T 

T

0
f(t) dt   = 


 

2/

0
f(t) dt 

an = 
2
T 

T

0
f(t) cos nt dt = 


 

2/

0
f(t) cos nt dt 

bn = 
2
T 

T

0
f(t) sin nt dt= 


 

2/

0
f(t) sin nt dt 

We can see that there is very little difference between these expressions and those that 

have gone before. The limits can, of course, be 0 to T,  
T
2 to 

T
2 ,  


  to 


 , 0 to 

2
   etc. 

as is convenient, so long as they cover a complete period. 
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Example 1 
Determine the Fourier series for a periodic function defined by 
 f(t) = 2 (1 + t)   1 < t < 0 
 f(t) = 0      0 < t < 1 
 f(t) = f (t + 2)   
The first step is to sketch the wave which is. 

 
f(t) = 

1
2  a0+



x=1

  {an cos nt+bn sin nt}) 

  T = 2 

a0 = 
2
T 

T/2

T/2
f(t) dt = 

2
2 

1

1
f(t) dt = 

0

1
 2 (1 + t) dt + 

1

0
 (0) dt= [2t + t2]

0

1
 = 1 

 a0 = 1 

an = 
2
T 

T/2

T/2
f(t)cosntdt = 

2
2 

1

1
f(t)cosnt dt= 

0

1
 2 (1 + t) cosnt dt 

an=2 Error!= 2 Error! 

= 
2

n22  (1  cos n) 

Now T = 
2
    

   = 
2
T   = 

2
2   =     an = 

2
n22  (1  cos n) 

   an = 0 (n even)   

      =  
4

n22  (n odd) 

Now for bn ,          bn = 
2
T 

T/2

T/2
f(t) sin nt dt  

bn = 
2
2  

0

1
2(1+t) sin nt dt =2 Error! 

= 2 








  
1

n + 
1

n 






sin nt

n

0

1
 = 2 









 
1

n + 
1

n22 (sin n)   

As before  =           bn =  
2

n  

So the first few terms of the series give 

f(t)=
1
2 +

4
2 








cos t+
1
9cos3t+

1
25cos5t+..  

2
 









sin t+
1
2sin2t+

1
3sin3t+

1
4sin4t..  

Half-Range Series 
The theory behind the half-range sine and cosine series still applies with the new 
variable. 
(a)   Even function 
       Half-range cosine series 



43-Functions with periods other than 2                                                                                                      VU 
 

 
© Copyright Virtual University of Pakistan 

 

217

y = f(t)  0 < t < 
T
2  

f(t) = f(t + T) 
symmetrical about the y-axis. 
With an even function, we know that bn = 0 

   f(t) = 
1
2 a0 + 



n=1

 an cos nt 

where  a0 =  
4
T 

T/2

0
f(t) dt    and an = 

4
T 

T/2

0
 f(t) cos nt dt 

(b)  Odd function 
Half-range sine series 

y = f(t)  0 < t < 
T
2  

f(t) = f(t + T) 
symmetrical about the origin. 
 a0 = 0 and an = 0 

 f(t) = 


x=1

 bn sin nt;   

 bn = 
4
T 

T/2

0
f(t) sin nt dt 

Example 2 
A function f(t) is defined by  
f(t) = 4  t,    0 < t < 4. 
We have to form a half-range cosine series to represent 
the function in this interval. 
First we form an even function, i.e. symmetrical about 
the y-axis. 

a0 = 
4
T 

T/2

0
f1(t) dt = 

4
8  

4

0
(4  t) dt= 

1
2  

4

0
(4  t) dt = 

1
2  



4t  

t2

2

4

0
 = 

1
2  



4 (4)  

(4)2

2   

= 
1
2  [16  8]= 

1
2  (8)=  4 

an = 
4
T 

T/2

0
f1(t)cos nt dt = 

4
8  

4

0
(4  t) cos nt dt 

Simple integration by parts gives 

an=
1
2 








 
2 sin 4n

n   
1

n22 (cos 4n  1)  

But  = 
2
T   = 

2
8   = 


4  

 an = 
1
2 








 
2sinn

n   
1

n22 (cos n  1)  

  n = 1, 2, 3, …….. 
sin n = 0;   
cos n = 1  (n even);             cos n =  1  (n odd) 
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  an = 0  (n even)                   an = 
1

n22   (n odd) 

 f(t)=2+
1
2 








cos t+
1
9cos3t+

1
25cos5t+…     where   = 


4 . 

Example 3 
A function f(t) is defined by 
f(t) = 3 + t 0 < t < 2 
f(t) = f(t + 4) 
Obtain the half-range sine series for the 
function in this range. 
Sine series required. Therefore, we form an odd 
function, symmetrical about the origin. 

a0 = 0;    an = 0;    T = 4 

f(t) = 


n=1

  bn sin nt 

 bn = 
4
T 

T/2

0
f(t) sin nt dt= 

2

0
 (3 + t) sin nt dt 


2

0
 (3 + t) sin nt dt = 







(3+t)cosnt

 n 

2

0

  
2

0
 

cos nt
 n   dt 

= 
(3 + 2) cos n2

 n    
3

 n  + 
1

n  






sin nt

 n 

2

0

= 
3

n   
5

n  cos 2 n+ 
1

n22 





sin 2n

n   0   

But  T = 
2
             = 

2
T   = 


2  

= 
3

n   
5

n  cos n+ 
1

n22 





sin n

n   

bn = 
1

n (3  5 cos2n) + 
1

n22 (sin 2n) 

  bn = 
1

n  (3  5cosn)+
1

n22 (sin n) =  
2

n  (n even) 

           = 
8

n   (n odd) 

 f(t)=
2




4sint 

1
2sin2t+

4
3sin3t  

1
4sin4t..  

Half-Wave Rectifier 
A sinusoidal voltage E sin t, where t is time, is passed through a half-wave rectifier that 
clips the negative portion of the wave 
Find the Fourier series of the resulting periodic 
functions. 
u(t) = 0 if   T/2 < t < 0 
       = E sin t  0 < t < T/2            here
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 T = 
2
   

a0 = 
2
T  

T/2

T/2
 u(t) dt = 

2
T  

0

T/2
 0 dt + 

2
T  

T/2

0
 E sin t dt= 

2
T  

T/2

0
 E sin t dt= 


 

/

0
 E sin t dt 

=  

  E 







 cos  t



/

0

 = 
2E
   

an = 
2
T  

T/2

T/2
 u(t) cos n t dt = 

2
T  

T/2

 0
 E sin t cos n t dt = 

E
2   

/

 0
 2 sin t cos n t dt 

= 
E
2   

/

 0
 [sin (1+n) t+sin (1n) t] dt 

If n = 1 then integral on the right is zero  and if n = 2, 3, …… then we obtain. 

an=
E
2   







 

cos (1+n) t
(1+n)   

cos (1n) t
(1n)

/

0

 = 
E
2   







cos (1+n)  + 1

(1+n)  + 
 cos (1n) +1

(1n)   

= 
E
2  







cos (1+n)  + 1

(1+n)  + 
 cos (1n) +1

(1n)
  

if n is odd then an = 0 

if n is even then an = 
E
2  





2

1+n + 
2

1n
 = 

E
2  







2  2n + 2+2n

(1+n)(1n)
  = 

2E
(1n)(1+n)  

       = 
2E

(1n2)  

bn = 
2
T  

T/2

T/2
 u(t) sin nt dt = 

2
T  

T/2

 0
 E sin t sin nt dt=  

E
2   

/

 0
  2 sin t sin nt dt 

=  
E
2   

/

 0
 [cos(1+n)tcos(1n)t] dt 

If  n = 1 

bn =  
E
2   

/

 0
 [cos 2t1] dt=  

E
2   







sin 2t

2   t
/

0

 =  
E
2   ( /) = E/2 

if n  1 

bn =
E
2  

/

 0
[cos(1+n)tcos(1n)t] dt=  

E
2   







sin(1+n) t

(1+n)   
sin (1n) t

(1n)

/

0

  

=  
E
2   







sin(1+n) 

(1+n)   
sin (1n) 

(1n)  = 0   for  n = 2, 3, 4, ........ 

u (t) = 
1
2  a0 + 



n=2

 an cos nt 

u(t) = 
E
  + 

E
2  sin t  

2E
                       



1

1.3 cos 2t + 
1

3.5 cos 4t + ...   
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LECTURE No. 44         
 

LAPLACE TRANSFORMS 
 
Laplace Transform 
The Laplace Transform of a function  F t  is denoted by   L F t  and is defined as the 

integral of   stF t e  between the limits 0 and  .t t     

                                                  
0

( ) .ste F t dt tL F


   

In all cases, the constant parameter s  is assumed to be positive and large enough to 
ensure that the product   stF t e converges to 0  as t    , whatever the function  .F t  

 
In determining the Laplace Transform of any function, you will appreciate that the limits 
are substituted for t  so that the result will be a function of s .  
Example 1: 
Laplace Transform of      , where  is constant.F t a a   

 

 

 

0 0
00

0

L =

1 1 1 1
0 1

1

L

:
1

st st

st

st

a
a ae dt a e dt a

s

a a a a

s e e s s s

a
a

s

e

s e

 
 

 






  


        







   
   
   

 Solution

 

Example 2:  Show that 3
4

3!
{ }L t

s
    

 
00

3 3 2 2

0 0 0

3

3 1 3
3:

st
st st

st

st

e
L t t e dt t dt t e dt

s s s

e t
t

s e


  

 




    


  Solution  

     

3

3

0 0
0

0

2

As  approaches to  more rapidly as compared to , when  approaches .

Therefore,  becomes 0 at .

1 3 3 1 2
0 0 2 0 0 0

3 2 3.

st

st
st

st

st

st

t t

t
t

e

e
t dt t e dt

s s s s s s

t e dt
s s

e

e
t

s


 








 

 

 
                

 

 


 

    2 2
0 0

0

2 3.2 1 1
1 0 0

st
st

st
e

dt e dt
s s s s s

e
t

s


 



 
  

         
 


 
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 

3 4 4 40
0

13.2 3.2.1 3.2.1 3!
( ) (0 1)st ste s dt e

s s s s s


   

       

So     3
4

3!
{ }L t

s
  

Example 3 
Find the Laplace transform of the form ate , that is F(t)= ate  where a is a constant.  

 

 

( )

0 0
00

( )

( )

1
=   , s > a

1 1
=    0  1

:

=  

1
{ }

1

( )

at at st s a t

at

s a t

s a t
L e e e dt e dt

s a

s a s a

L
s a

e

e

s a e

 
 

  

 


   



 
 




 
 Solution

Remark: We already have two standard transforms: 

            
 

4 2

4 5
L{4} L{ 5}

1 1 1
L{ }  L{ } L{ }

4

1

(2
2

( ) L

) at t t

a

s s s

e e e
a s s

a

s



  


 



 


    

Remark:  Laplace transform is always a function of s.  
                                                   ( ) ( )L F t f s                        

Complex Numbers Power of i  
Every time a factor 4i occurs, it can be replaced by the factor 1, so that the power of i  is 
reduced to one of the four results above. 

   

   

     7 730 4 7 2 4 2

2 29 4 2 1 4 2 4

5 520 4 5 4

1 1 1

1

1 1

i i i i

i i i i i i i i

i i i

 

  



     

    

      

     3
3 315 4 3 3 4 1 ii i i i i         

Complex Numbers  
  3  5  z i  is called a complex number where 3 is real part and 5 is imaginary 

part of the complex number z . 
In general,     z a b i   is called a complex number, where a  is the real part and 

b  is an imaginary part of the complex number z .  
                   Complex Number = (Real Part ) + i (Imaginary Part) 

Conjugate complex numbers 
For a complex number a i b , the complex number a i b is called the conjugate of 
 a i b . Conjugate complex numbers are identical except the signs in the middle for the 
brackets. 

 4  5  and 4  5 i i   are conjugate complex numbers 
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 6  2   2  6 i and i   are not conjugate complex numbers 
 5  3  and 5 3 i i    are  not conjugate complex numbers 

Remember 
The product of complex number by its conjugate is always entirely real. 

         
   

2

2 2

2
3  4  3  4   3   4 9  16   9+16=25

     

i i i

a bi i ab ba

      

  




  

Euler Formula 
As we know that the series expansion of  and sin,x coe s x x   are given as 

2 3 4

1
2! 3! 4!

x x x x
e x        

2 4 6

cos 1
2! 4! 6!

x x x
x        

3 5 7

sin
3! 5! 7!

x x x
x x       

Replace x by  ( i t )   , we get 
2 3 4

( ) ( ) ( ) ( )
1 ( )

2! 3! 4!
it it it it

e it        

2 3 4 5 6 7
( ) ( ) ( ) ( ) ( ) ( ) ( )

1 ( )
2! 3! 4! 5! 6! 7!

it t i t t i t t i t
e it           

2 4 6 3 5 7
( ) ( ) ( ) ( ) ( ) ( ) ( )

1
2! 4! 6! 3! 5! 7!

it t t t t t t
e i t

   
              
   

  

 2 4 6 3 5 7

cos sin

( ) ( ) ( ) ( ) ( ) ( )
1 and

2! 4! 6! 3! 5
where  

! !
 

7
  

i t

cos t sin

e t i t

t t t t t
t

t
t

 

         
 

     R( i te ) = cost           and    I( i te ) = sin t 
Example 4: Find the Laplace Transform of   .F t sin at  

       
0 0

( )

0

2 2 2 2

( )L Sin at  = L I  I I

1 1
(0 1)

( ) ( ) ( )

1

( ) ( )

:

s ia t

iat iat iat st s ia te L e e e dt I e dt

e
I I I

s ia s ia s ia

s ia s ia a
I I

s ia s ia s a s a

 

 

     
     

   
                          
              

 Solution

  

               
2 2

{sin }
a

L at
s a




  

Similarly, we can use the same method to determine  .L cos at  

Example 5: Find the Laplace Transform of   cos  .F t at  
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Solution: Since  cos at  is the real part of iate , written as R( iate ) 


2 2 2 2 2 2 2 2

{cos }
s ia s a s

L at R R i
s a s a s a s a

               
 

Example 6: The Laplace Transform of F(t) = tn , where n is a positive integer. 

 

 

 

n

0

n 1

0 00

1 1

0
0 0

1

0

: By the definition,   

Integrating 

L t  = 

L by part  = 

1

ts,

1
0 0

{ }

n st

st st
n st n n

n st n st n st

n n st

t e dt

e e
t e dt t n t dt

s s

n n
t e t e dt t e dt

s s s s

n
L t t e dt

s




  
 

 
    


 

 
    

        

     



 

 



Solution

(1)   

 

Notice that 1

0

n stt e dt


   is identical to 
0

n stt e dt


  except that n  is replaced by 1.n    

1
1

0 0

If I , then In st n st
n nt e dt t e dt

 
  

    

So the result (1) becomes 1 (2)n n

n
I I

s          

This is reduction formula and, if we now replace by 1,n n   we get  1 2

1
n n

n
I I

s 


  

Use it in equation (2), we get     2

1
(3)n n

n n
I I

s s 


                                                 

If we replace  by 2n n   again in the result (2), we have 2 3

2
n n

n
I I

s 


        

  3

4

Use it in equation 3 , w
1 2

. . .

1 2 3
. . .

e get n n

n

n n n
I I

s s s
n n n n

I
s s s s





 


  


 

So finally, we have  0

1 2 3 4 2 1
. . . . .n

n n n n n
I I

s s s s s s s

   
   

                                       0
0

1
But { } {1}I L t L

s
    

                 
1

1 2 3 4 2 1 !
So ...............n n

n n n n n n
I

s s s s s s s s 

   
   

                        
1

!
{ }n

n

n
L t

s   
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2
2 3

3
4 4

1 2!
{ } for 1 { } for 2

3! 6
{ } for 

:

3

L t n L t n
s s

L t n
s s

   

  

Remark
 

Example 7: Find Laplace Transform of      .F t sinh at   

Solution: By the exponential definitions of sinh at ,    1
sinh ( )

2
at ate eat      

         
0 0 0

1 1
sin sin ( )

2 2

s a ts a tst at at stL at e dt e e e dt et e dta
 

  
         

      

       

( ) ( )

0 0

2 2

1 1 1 1
(0 1) (0 1)

2 ( ) ( ) 2 ( ) ( )

1 11 1
2 2 ( )( )( ) ( )

s a t s a te e

s a s a s a s a

s a s a a

s a s a s as a s a

                                   
                     

  

            2 2
sin

a
L

s
a

a
t

    
  

Example 8: Find Laplace Transform of       .F t cosh at   

Solution: By the exponential definitions of cosh at ,   1
cosh ( )

2
at ate eat                             

    

   ( ) ( )

0 0 0

( ) ( )

0 0

1 1 1
L cosh   = L ( + )  ( )

2 2 2

1 1 1 1
(0 1) (0 1)

2 ( ) ( ) 2 ( ) ( )

1 1 1
2 ( ) ( )

at at at at st s a t s a t

s a t s a t

e e e e e dt e dt e dt

e e

s a s a s a s a

at

s a s a

  
      

    

         
   

                               


 

 

  

2 2 2 2

1 1 2

2 ( )( ) 2

s a s a s s

s a s a s a s a

                        

 

                 2 2
L cosh  at

s

s a



  

Remark: We can combine these transforms by adding or subtracting as necessary, but 
they must not be multiplied together to form the transform of a product. 
Example 9 

    2 2 2

3 6
( ) {2sin 3 cos3 } 2 sin 3 cos3 2.

9 9 9

s s
a L t t L t L t

s s s


     

  
 

   
 

2 2

2 2

2 2 2

( ) {4 3cosh 4 } 4 3cosh 4

4 16 3 ( 2)1 7 6 64
4. 3.

2 16 ( 2)( 16) ( 2)( 16)

t tb L e t L e L t

s s ss s s

s s s s s s

  

    
   

     
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LECTURE No. 45 
 

THEOREMS 
 
Theorem 1:   ( The First Shift Theorem ) 

The first Shift theorem states that        ( )-f  L then  ( ), .L ati F t f s e F t f s a      

The transform   -( )L ate F t  is thus the same as   L F t  with s  everywhere in the result 

replaced by  .s a   

Example 1: 

                   If 
2

2
L{sin 2t}= 

s 4
,  then    -3t

2 2

2 2
L{e  sin 2t}= 

(s+3) 4 6 13s s


  
 

Example 2: 

                   2 2 4
3

2
{ } , then { }tL t L t e

s
 is the same with s  replaced by  4 .s    

                    So  2 4
3

2
{ }

( 4)
tL t e

s



 

Theorem 2: (Multiplying F(t) by t) 

                         L{If     , then ( )} { ( )}
d

t F t f s
ds

L F t f s   

Example 3:   Since 
2

2
L{sin 2t}= 

s 4
 

                      So    
2 2 2

2 4
L{  sin  2 }   

( 4) ( 4)

d s
t t

ds s s

 
     

   

 

Example 4: 
 2 2 2 2

2 2 2 2 2 2 2

( 9) 2 9 2 9
{ cos3 }

9 ( 9) ( 9) ( 9)

s s sd s s s s
L t t

ds s s s s

                
 

We could, if necessary, take this a stage further and find 
2 2

2 2 2 3

9 2 ( 27)
{ cos3 }

( 9) ( 9)

d s s s
L t t

ds s s

  
     

 

Theorem Obviously extends the  range of function that we can deal with. So, in general 

 If   L{F(t)}= f(s)  then { ( ( )} ( 1) { ( )}
n

n n
n

d
L t F t f s

ds
   

Theorem  (Dividing by t) 

If   L{F(t)}= f(s)  then     
( )

{ } ( )
s

F t
L f s ds

t



    

Example 5 : Determine 
sin

{ }
at

L
t

 

  
2 2

{sin }
a

As L at
s a




 

1 1 1
2 2

sin
{ } tan ( ) tan ( ) tan ( )

2ss

at a s s a
L ds

t s a a a s


             
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Example 6 :    Determine   
1-cos 2t

L{ }
t

 

As 
2

1
L{1-cos 2t}=

4

s

s s



 

Then by Theorem 3, 

2 2
2

s

2
2 2 2

2

1-cos 2t 1 1 1 1
L{ } = ( ) ln ln( 4) .2 ln ln( 4)

t 4 2 2 2

1 1 1 1
ln ln( 4) ln ln( 4) ln

2 2 2 2 ( 4)

s s

s
s s

s
ds s s s s

s s

s
s s s s

s

 




                

                  


 

2

2
ln ln1 0

( 4)

s
When s then

s
  


 

1
2 2 22

2 2 2 2
s

1-cos 2t 1 1 4
L{ } = ( ) ln ln ln

t 4 2 ( 4) ( 4)

s s s s
ds

s s s s s

     
            

  

Standard Forms 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Theorem 1   The First Shift Theorem 
 
        If  L{F(t)}= f(s) then  L{e(-at) F(t)}= f(s+a) 
 
Theorem 2  Multiplying by t 

        If   L{F(t)}= f(s)  then { ( ( )} { ( )}
d

L t F t f s
ds

  

Theorem 3   Dividing by t 
 

   If   L{F(t)}= f(s)  then     
( )

{ } ( )
s

F t
L f s ds

t



    ,provided 
0

( )
.

t

F t
Lim exists

t

 
 
 

 

 

 
  F(t) L {F(t)} = f(s)  

  a  a
s 

 

  eat
  1

s  a  
 

  sin at a
s2 + a2  

 

  cos at a
s2 + a2  

 

  sinh at a
s2

  a2  
 

  cosh at s
s2

  a2  
 

  tn 
 n!

sn+1  
 

(n a positive integer) 
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Inverse Transforms 
Here we have the reverse process i.e. given a Laplace transform, we have to find the 

function of t to which it belongs. For example, we know that 
2 2

a

s a
 is the Laplace 

Transform of sin at , so we can now write 1
2 2

sin
a

L at
s a

     
 , the symbol L-1 

indicating the inverse transform and not a reciprocal. 

1 2

1
2

1
( )

2

( ) cos5
25

ta L e
s

s
b L t

s

 



    
    

 

1

1
2

4
( ) 4

12
( ) 4sinh 3

9

c L
s

d L t
s





   
 
    

 

But what about 1
2

3

6

s
L

s s
  
   

 , it happens that we can write 
2

3

6

s

s s 
 as the sum of 

two simpler functions  
1 1

2 3s s


 
 which , of course , makes all the difference , since we 

can now proceed. 1 1 1 2 3
2

3 1 1
2

6 2 3
t ts

L L L e e
s s s s

                        
 

Rules of Partial Fractions 
 

1. The numerator must be of lower degree than denominator. If it is not , then we 
first divide out. 

2. Factorise the denominator into its prime factors. These determine the shapes of the 
partial fraction.  

3. A linear factor (s+a) gives a partial fraction 
A

s a
 is a constant to be determined. 

4. A repeated factor   (s+a)2 gives 
2( )

A B

s a s a


 
 

5. Similarly   (s+a)3 gives 
2 3( ) ( )

A B C

s a s a s a
 

  
 

6. A quadratic Factor ( 2s ps q  ) gives  
2

Ps Q

s ps q


 

 

7. Repeated quadratic Factor 2 2( )s ps q   gives  
2 2 2( )

Ps Q Rs T

s ps q s ps q

 


   
 

So 
19

( 2)( 5)

s

s s


 

 has partial fraction of the form 
( 2) ( 5)

A B

s s


 
 and 

2

2

3 4 11

( 3)( 2)

s s

s s

 
 

 

has partial fraction
2( 3) ( 2) ( 2)

A B C

s s s
 

  
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Example 7 

  To determine 1
2

5 1

12

s
L

s s
  
   

 

a) First we check that the numerator is of lower degree than the denominator. In fact 
this is so. 

b) Factories the denominator 

 
2

5 1 5 1

12 ( 4)( 3) ( 4) ( 3)

s s A B

s s s s s s

 
  

     
 

 
We therefore have an identity  

2

5 1

12 ( 4) ( 3)

s A B

s s s s


 

   
  

 
which is true for any value of s we care to substitute  
If we multiply through by the denominator ( 2 12s s  ) we have 
 
5s + 1  A(s + 3) + B(s  - 4)    
We now substitute covenant values for s  
 
i) Let (s -4) =0  that is s = 4 therefore 21 = A(7)  + B(0)    A= 3 
ii) Let (s + 3) =0  that is s = -3 therefore B = 2 
 

So    
2

5 1 3 2

12 ( 4) ( 3)

s

s s s s


 

   
 

1 4 3
2

5 1
3 2

12
t ts

L e e
s s

       
  

Example 8    Determined  1
2

9 8

2

s
L

s s
  
  

 

2

9 8
{ ( )}

2

s
L F t

s s





 

a) Numerator of first degree ; denominator of second degree. 

b) 
2

9 8

2 2

s A B

s s s s


 

 
 

c) Multiply by s(s – 2 )   
s -8  A(s - 2) + B (s) 
d)    Put s = 0 
  -8  A( - 2) + B (0)   
ePut s – 2 , i.e. s = 2 
  

B = 5 
 

     -1 2t4 5
F(t) = L = 4 + 5e  

s s-2
  
 
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

 
 
Transforms Of Derivatives 
 
Let F/(t) denote the first derivative of  F(t) with respect to t , F//(t) denote the second 
derivative of  F(t) with respect to t, etc. 

Then / -st /

0

L{ F (t)}= e F (t)dt


       by definition 

Integrating by Parts 

                      / -st

0
0

L{ F (t)}= ( ) ( )( e )dtste F t F t s


       

 when  t 0, ( ) 0ste F t   

                      / -st

0

L{ F (t)}=- (0) e ( )dtF s F t


   

                      /L{ F (t)}=- (0) L{ F (t)}F s  
 

                      // / / /L{ F (t)}=- (0) L{ F (t)}=- (0) - (0) L{ F (t)}F s F s F s      

                      // 2 /L{ F (t)}= L{ F(t)}- (0) (0)s sF F  
 

/// 3 2 / //L{ F (t)}= L{ F(t)}- (0) (0) (0)s s F sF F   
 

iv 4 3 2 / // ///L{ F (t)}= L{ F(t)}- (0) (0) (0) (0)s s F s F sF F    
 

T a b le  o f  in v e r s e  
t r a n s f o r m s  
S ta n d a r d  t r a n s f o r m s  
 f ( s )  F ( t )   
 a

s   
a   

 1
s  +  a   

e - a t   

 n !
s n + 1   

t n  

( n  a  p o s i t i v e  
i n t e g e r )  

 

 1
s n   

t n - 1

( n    1 ) !   

( n  a  p o s i t i v e  
i n t e g e r )  

 

 a
s 2  +  a 2   

s i n  a t   

 s
s 2  +  a 2   

C o s  a t   

 a
s 2    a 2   

S in h  a t   

 s
s 2    a 2   

C o s  a x   
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Differential Equation And Its Solution 

2 4
dx

x
dt

  -----------------(1) 

Its Solution is 2tx = -2 + 3e   , To verify it we find 
dx

dt
 

26 tdx
e

dt
   then 

2 2

2 2

2 6 2( 2 3 )

6 4 6 4

t t

t t

dx
x e e

dt

e e

    

   
 

So equation (1) is satisfied. Hence 2tx = -2 + 3e  is solution of 2 4
dx

x
dt

   

Example 9: Solve the differential equation 2 4
dx

x
dt

   given that at t = 0 , x = 1 

Taking Laplace transform as  
4

( ( )) 2 ( ( )) (4) ( ( )) 2 ( ( )) (4) ( ( )) (0) 2 ( ( ))
d d

L x t L x t L L x t L x t L sL x t x L x t
dt dt s
                 

4 4 4 4
( 2) ( ( )) (0) ( 2) ( ( )) 1 ( 2) ( ( )) 1 ( 2) ( ( ))

s
s L x t x s L x t s L x t s L x t

s s s s


             

14 4
( ( )) ( )

( 2) ( 2)

s s
L x t x t L

s s s s
   

       
-----------------------(1) 

First we do the partial fraction of 
4

( 2)

s

s s




 

4

( 2) ( 2)

s A B

s s s s


 

 
 

 
4 ( 2) ( )s A s B s     -----------------(2) 

 
Put s = 0  in equation (2)  ; 4 = -2A ;  A = -2 
 
Put s = 2  in equation (2)  ; 6 = B(2) ;   B = 3 

4 2 3

( 2) 2

s
So

s s s s

 
 

 
 

Equation # (1)  becomes 

1 1 1 24 2 3
( ) 2 3

( 2) 2
ts

x t L L L e
s s s s

                      
 

 
Solution of differential equation by laplace transforms 
 
To solve a differential equation by Laplace transforms, we go through Laplace 
transforms, we go through four distinct stages. 

(a) Re- write the equation in term of Laplace transforms. 
(b) Insert the given initial  conditions. 
(c) Rearrange the equation algebraically to give the transform of  the solution. 
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(d) Determine the inverse transform to obtain the particular solution.   
Solve the equation  

2
3

2
3 2 2 td x d x

x e
dt dt

    given that at t = 0 , x = 5 and 7
dx

dt
  

// / 3( ) 3 ( ) 2 ( ) 2 tx t x t x t e    
Given  x ( 0 ) = 5 , x/ ( 0 ) = 7 

 // / 3( ) 3 ( ( )) 2 ( ( )) 2 ( )tL x t L x t L x t L e    

2 / 2
{ ( )} (0) (0) 3{ ( ( )) (0)} 2 ( )

3
s L x t s x x s L x t x L x t

s
     


 

We rewrite the equation in term of its transforms. 

 
2

3
2

3 2 2 td x d x
L L L x L e

dt dt

   
        

   
 

2 / 3[ ( ( )) (0) (0)] 3[ ( ( )) (0) ] 2 ( )ts L x t s x x s L x t x L e        

At   t = 0 , x = 5 , 7
dx

dt
  

So x ( 0 ) = 5 , x /( 0 ) = 7 
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Making Partial fraction of R.H.S ,  We have 

( ( ))
( 1) ( 2) ( 3)

A B C
L x t

s s s
  
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After solving these we get A= 3 , B = 2 and C = 0 

So 
3 2 0
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