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About the Tutorial 

Discrete Mathematics is a branch of mathematics involving discrete elements that uses 

algebra and arithmetic. It is increasingly being applied in the practical fields of 

mathematics and computer science. It is a very good tool for improving reasoning and 

problem-solving capabilities. 

This tutorial explains the fundamental concepts of Sets, Relations and Functions, 

Mathematical Logic, Group theory, Counting Theory, Probability, Mathematical Induction 

and Recurrence Relations, Graph Theory, Trees and Boolean Algebra. 

 

Audience 

This tutorial has been prepared for students pursuing a degree in any field of computer 

science and mathematics. It endeavors to help students grasp the essential concepts of 

discrete mathematics.   

 

Prerequisites 

This tutorial has an ample amount of both theory and mathematics. The readers are 

expected to have a reasonably good understanding of elementary algebra and arithmetic.  

 

Copyright & Disclaimer 

 Copyright 2016 by Tutorials Point (I) Pvt. Ltd.  

All the content and graphics published in this e-book are the property of Tutorials Point (I) 

Pvt. Ltd.  The user of this e-book is prohibited to reuse, retain, copy, distribute or republish 

any contents or a part of contents of this e-book in any manner without written consent 

of the publisher.   

We strive to update the contents of our website and tutorials as timely and as precisely as 

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt. 

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our 

website or its contents including this tutorial. If you discover any errors on our website or 

in this tutorial, please notify us at contact@tutorialspoint.com 
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Mathematics can be broadly classified into two categories:  

 

 Continuous Mathematics ─ It is based upon continuous number line or the real 

numbers. It is characterized by the fact that between any two numbers, there 

are almost always an infinite set of numbers. For example, a function in continuous 

mathematics can be plotted in a smooth curve without breaks. 

 

 Discrete Mathematics ─ It involves distinct values; i.e. between any two points, 

there are a countable number of points. For example, if we have a finite set of 

objects, the function can be defined as a list of ordered pairs having these objects, 
and can be presented as a complete list of those pairs. 

Topics in Discrete Mathematics 

Though there cannot be a definite number of branches of Discrete Mathematics, the 

following topics are almost always covered in any study regarding this matter: 

 Sets, Relations and Functions  

 Mathematical Logic  

 Group theory  

 Counting Theory 

 Probability 

 Mathematical Induction and Recurrence Relations  

 Graph Theory 

 Trees 

 Boolean Algebra 

We will discuss each of these concepts in the subsequent chapters of this tutorial. 

 

 

 

 

 

 

  

1.  Discrete Mathematics – Introduction 
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Part 1: Sets, Relations, and Functions 
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German mathematician G. Cantor introduced the concept of sets. He had defined a set as 

a collection of definite and distinguishable objects selected by the means of certain rules 

or description.  

Set theory forms the basis of several other fields of study like counting theory, relations, 

graph theory and finite state machines. In this chapter, we will cover the different aspects 

of Set Theory. 

Set – Definition  

A set is an unordered collection of different elements. A set can be written explicitly by 

listing its elements using set bracket. If the order of the elements is changed or any 

element of a set is repeated, it does not make any changes in the set. 

Some Example of Sets 

 A set of all positive integers 

 A set of all the planets in the solar system 

 A set of all the states in India 

 A set of all the lowercase letters of the alphabet 

Representation of a Set 

Sets can be represented in two ways: 

 Roster or Tabular Form 

 Set Builder Notation 

Roster or Tabular Form 

The set is represented by listing all the elements comprising it. The elements are enclosed 

within braces and separated by commas. 

Example 1: Set of vowels in English alphabet, A = {a,e,i,o,u} 

Example 2: Set of odd numbers less than 10, B = {1,3,5,7,9} 

Set Builder Notation 

The set is defined by specifying a property that elements of the set have in common. The 

set is described as A = { x : p(x)} 

Example 1: The set {a,e,i,o,u} is written as: 

  A = { x : x is a vowel in English alphabet} 

 

Example 2: The set {1,3,5,7,9} is written as: 

2.  Sets 

https://www.google.co.in/search?q=cardinality+of+a+set&spell=1&sa=X&ei=Ld41VemtEaawmAWw6YDwCw&ved=0CBoQvwUoAA&biw=1024&bih=633
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B = { x : 1≤x<10 and (x%2) ≠ 0} 

 
If an element x is a member of any set S, it is denoted by x∈ S and if an element y is not 

a member of set S, it is denoted by y ∉ S. 

Example:  If S = {1, 1.2,1.7,2}, 1∈ S but 1.5 ∉S 

Some Important Sets 

 

N: the set of all natural numbers = {1, 2, 3, 4, .....}  

 

Z: the set of all integers = {....., -3, -2, -1, 0, 1, 2, 3, .....}  

 

Z+: the set of all positive integers  

 

Q: the set of all rational numbers  

 

R: the set of all real numbers  

 

W: the set of all whole numbers 

Cardinality of a Set 

Cardinality of a set S, denoted by |S|, is the number of elements of the set. The number 

is also referred as the cardinal number. If a set has an infinite number of elements, its 

cardinality is ∞. 

Example:     |{1, 4, 3,5}| = 4, |{1, 2, 3,4,5,…}| = ∞ 

If there are two sets X and Y, 

 |X| = |Y| denotes two sets X and Y having same cardinality. It occurs when the 

number of elements in X is exactly equal to the number of elements in Y. In this 

case, there exists a bijective function ‘f’ from X to Y. 

 

 | X| ≤ | Y | denotes that set X’s cardinality is less than or equal to set Y’s cardinality. 

It occurs when number of elements in X is less than or equal to that of Y. Here, 

there exists an injective function ‘f’ from X to Y. 

 

 |X| < |Y| denotes that set X’s cardinality is less than set Y’s cardinality. It occurs 

when number of elements in X is less than that of Y. Here, the function ‘f’ from X 

to Y is injective function but not bijective. 

 

 If |X | ≤ | Y | and | Y | ≤ | X | then | X | = | Y |. The sets X and Y are commonly 

referred as equivalent sets. 

 

 

https://www.google.co.in/search?q=cardinality+of+a+set&spell=1&sa=X&ei=Ld41VemtEaawmAWw6YDwCw&ved=0CBoQvwUoAA&biw=1024&bih=633
http://en.wikipedia.org/wiki/Bijection
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Types of Sets 

Sets can be classified into many types. Some of which are finite, infinite, subset, universal, 

proper, singleton set, etc. 

Finite Set  

A set which contains a definite number of elements is called a finite set.  

Example:  S = {x | x ∈ N and 70 > x > 50} 

Infinite Set  

A set which contains infinite number of elements is called an infinite set.  

Example:  S = {x | x ∈ N and x > 10} 

Subset 

A set X is a subset of set Y (Written as X ⊆ Y) if every element of X is an element of set Y.  

Example 1:  Let, X = { 1, 2, 3, 4, 5, 6 } and Y = { 1, 2 }. Here set Y is a subset of 
set X as all the elements of set Y is in set X. Hence, we can write Y ⊆ X. 

Example 2:  Let, X = {1, 2, 3} and Y = {1, 2, 3}. Here set Y is a subset (Not a proper 

subset) of set X as all the elements of set Y is in set X. Hence, we can write Y ⊆ X. 

Proper Subset  

The term “proper subset” can be defined as “subset of but not equal to”. A Set X is a 

proper subset of set Y (Written as X ⊂ Y) if every element of X is an element of set Y and 

| X| < | Y |. 

Example:  Let, X = {1, 2, 3, 4, 5, 6} and Y = {1, 2}. Here set Y ⊂  X since all elements 

in Y are contained in X too and X has at least one element is more than set Y. 

Universal Set  

It is a collection of all elements in a particular context or application. All the sets in that 

context or application are essentially subsets of this universal set. Universal sets are 

represented as U. 

Example: We may define U as the set of all animals on earth. In this case, set of all 

mammals is a subset of U, set of all fishes is a subset of U, set of all insects is a subset 

of U, and so on. 

Empty Set or Null Set  

An empty set contains no elements. It is denoted by ∅. As the number of elements in an 

empty set is finite, empty set is a finite set. The cardinality of empty set or null set is zero. 
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Example:  S = {x | x ∈ N and 7 < x < 8} = ∅ 

Singleton Set or Unit Set  

Singleton set or unit set contains only one element. A singleton set is denoted by {s}. 

Example:  S = {x | x ∈ N, 7 < x < 9} = { 8 } 

Equal Set  

If two sets contain the same elements they are said to be equal.  

Example:  If A = {1, 2, 6} and B = {6, 1, 2}, they are equal as every element of set 
A is an element of set B and every element of set B is an element of set A. 

Equivalent Set  

If the cardinalities of two sets are same, they are called equivalent sets.  

Example:  If A = {1, 2, 6} and B = {16, 17, 22}, they are equivalent as cardinality of A 
is equal to the cardinality of B. i.e. |A|=|B|=3 

Overlapping Set 

Two sets that have at least one common element are called overlapping sets. 

In case of overlapping sets: 

 n(A ∪ B) = n(A) + n(B) - n(A ∩ B)  

 

 n(A ∪ B) = n(A - B) + n(B - A) + n(A ∩ B)  

 

 n(A) = n(A - B) + n(A ∩ B)  

 

 n(B) = n(B - A) + n(A ∩ B) 

Example: Let, A = {1, 2, 6} and B = {6, 12, 42}. There is a common element ‘6’, hence 

these sets are overlapping sets. 

Disjoint Set 

Two sets A and B are called disjoint sets if they do not have even one element in common. 

Therefore, disjoint sets have the following properties: 

 n(A ∩ B) = ∅  

 n(A ∪ B) = n(A) + n(B) 

Example: Let, A = {1, 2, 6} and B = {7, 9, 14}; there is not a single common element, 

hence these sets are overlapping sets. 
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Venn Diagrams 

Venn diagram, invented in1880 by John Venn, is a schematic diagram that shows all 

possible logical relations between different mathematical sets.  

Examples 

 

Set Operations 

Set Operations include Set Union, Set Intersection, Set Difference, Complement of Set, 

and Cartesian Product.  

Set Union 

The union of sets A and B (denoted by A ∪ B) is the set of elements which are in A, in B, 

or in both A and B. Hence, A∪B = {x | x ∈A OR x ∈B}. 

Example:  If A = {10, 11, 12, 13} and B = {13, 14, 15}, then A ∪ B = {10, 11, 12, 13, 

14, 15}. (The common element occurs only once) 

 

Figure: Venn Diagram of A ∪ B 

Set Intersection 

The intersection of sets A and B (denoted by A ∩ B) is the set of elements which are in 

both A and B. Hence, A∩B = {x | x ∈A AND x ∈B}.  

Example: If A = {11, 12, 13} and B = {13, 14, 15}, then A∩B = {13}.  

 

A 
 

 

B 
 

http://en.wikipedia.org/wiki/John_Venn
http://en.wikipedia.org/wiki/Diagram
http://en.wikipedia.org/wiki/Logic
http://en.wikipedia.org/wiki/Set_%28mathematics%29
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Figure: Venn Diagram of A ∩ B 

Set Difference/ Relative Complement 

The set difference of sets A and B (denoted by A–B) is the set of elements which are only 

in A but not in B. Hence, A−B = {x | x ∈A AND x ∉B}.  

Example: If A = {10, 11, 12, 13} and B = {13, 14, 15}, then (A−B) = {10, 11, 12} and 

(B−A) = {14,15}.  Here, we can see (A−B) ≠ (B−A) 

 

  

Figure: Venn Diagram of A – B and B – A 

Complement of a Set 

The complement of a set A (denoted by A’) is the set of elements which are not in set A. 

Hence, A' = {x | x ∉A}.  

More specifically, A'= (U–A) where U is a universal set which contains all objects. 

Example: If A ={x | x belongs to set of odd integers} then A' ={y | y does not belong 

to set of odd integers} 

 

 

 

 

 

 Figure: Venn Diagram of A' 

Cartesian Product / Cross Product 

The Cartesian product of n number of sets A1, A2.....An, denoted as  A1 × A2 ×..... × An, 

can be defined as all possible ordered pairs (x1,x2,....xn) where x1∈ A1 , x2∈ A2 , ...... xn ∈ An 

A 

 B 

A 

 B 

 

A – B  

A 

 B 

 

B – A  

U 
A 
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Example: If we take two sets A= {a, b} and B= {1, 2},  

The Cartesian product of A and B is written as: A×B= {(a, 1), (a, 2), (b, 1), (b, 2)} 

The Cartesian product of B and A is written as: B×A= {(1, a), (1, b), (2, a), (2, b)} 

Power Set 

Power set of a set S is the set of all subsets of S including the empty set. The cardinality 

of a power set of a set S of cardinality n is 2n. Power set is denoted as P(S). 

Example: 

For a set S = {a, b, c, d} let us calculate the subsets:  

 Subsets with 0 elements: {∅} (the empty set)  

 Subsets with 1 element: {a}, {b}, {c}, {d} 

 Subsets with 2 elements: {a,b}, {a,c}, {a,d}, {b,c}, {b,d},{c,d} 

 Subsets with 3 elements: {a,b,c},{a,b,d},{a,c,d},{b,c,d} 

 Subsets with 4 elements: {a,b,c,d} 

Hence, P(S) =  

{   {∅},{a}, {b}, {c}, {d},{a,b}, {a,c}, {a,d}, {b,c},    

  {b,d},{c,d},{a,b,c},{a,b,d},{a,c,d},{b,c,d},{a,b,c,d}    } 

| P(S) | = 24 =16 

Note: The power set of an empty set is also an empty set.  

| P ({∅}) | = 20
 = 1 

Partitioning of a Set 

Partition of a set, say S, is a collection of n disjoint subsets, say P1, P2,...… Pn, that satisfies 

the following three conditions: 

 Pi does not contain the empty set.  

[ Pi ≠ {∅} for all 0 < i ≤ n] 

 

 The union of the subsets must equal the entire original set.  

[P1 ∪ P2 ∪ .....∪ Pn = S] 

 

 The intersection of any two distinct sets is empty.  

[Pa ∩ Pb ={∅}, for a ≠ b where n ≥ a, b ≥ 0 ] 

 

 

Example 

Let S = {a, b, c, d, e, f, g, h} 

One probable partitioning is {a}, {b, c, d}, {e, f, g,h} 

http://mathworld.wolfram.com/Set.html
http://mathworld.wolfram.com/Subset.html
http://www.mathwords.com/d/disjoint_sets.htm
http://www.mathwords.com/s/subset.htm
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Another probable partitioning is {a,b}, { c, d}, {e, f, g,h} 

Bell Numbers 

Bell numbers give the count of the number of ways to partition a set. They are denoted 

by Bn where n is the cardinality of the set. 

Example: 

Let S = { 1, 2, 3}, n = |S| = 3 

The alternate partitions are: 

1. ∅, {1, 2, 3} 

2. {1}, {2, 3} 

3. {1, 2}, {3} 

4. {1, 3}, {2} 

5. {1}, {2},{3} 

Hence B3 = 5 
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Whenever sets are being discussed, the relationship between the elements of the sets is 

the next thing that comes up. Relations may exist between objects of the same set or 

between objects of two or more sets.  

Definition and Properties  

A binary relation R from set x to y (written as xRy or R(x,y)) is a subset of the Cartesian 

product x × y.  If the ordered pair of G is reversed, the relation also changes.  

Generally an n-ary relation R between sets A1, ... , and An is a subset of the n-ary product 

A1×...×An. The minimum cardinality of a relation R is Zero and maximum is n2 in this case. 

A binary relation R on a single set A is a subset of A × A. 

For two distinct sets, A and B, having cardinalities m and n respectively, the maximum 

cardinality of a relation R from A to B is mn. 

Domain and Range  

If there are two sets A and B, and relation R have order pair (x, y), then:  

 The domain of R, Dom(R), is the set { x | (x, y) ∈ R for some y in B } 

 The range of R, Ran(R), is the set { y | (x, y) ∈ R for some x in A } 

Examples 

Let, A = {1,2,9} and B = {1,3,7}  

 Case 1: If relation R is ‘equal to’ then R = {(1, 1), (3, 3)} 

  Dom(R) = { 1, 3}, Ran(R) = { 1, 3} 

 Case 2: If relation R is ‘less than’ then R = {(1, 3), (1, 7), (2, 3), (2, 7)} 

  Dom(R) = { 1, 2}, Ran(R) = { 3, 7} 

 Case 3: If relation R is ‘greater than’ then R = {(2, 1), (9, 1), (9, 3), (9, 7)} 

  Dom(R) = { 2, 9}, Ran(R) = { 1, 3, 7} 

Representation of Relations using Graph 

A relation can be represented using a directed graph.  

The number of vertices in the graph is equal to the number of elements in the set from 

which the relation has been defined. For each ordered pair (x, y) in the relation R, there 

will be a directed edge from the vertex ‘x’ to vertex ‘y’. If there is an ordered pair (x, x), 

there will be self- loop on vertex ‘x’. 

Suppose, there is a relation R = {(1, 1), (1,2), (3, 2)} on set S = {1,2,3}, it can be 

represented by the following graph: 

3.  Relations 

http://www.ics.uci.edu/~alspaugh/cls/shr/set.html#n-ary-product
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Figure: Representation of relation by directed graph 

Types of Relations 

1.  The Empty Relation between sets X and Y, or on E, is the empty set ∅  

2.  The Full Relation between sets X and Y is the set X×Y 

3.  The Identity Relation on set X is the set {(x,x) | x ∈ X} 

4.  The Inverse Relation R' of a relation R is defined as: R’= {(b,a) | (a,b) ∈R} 

Example: If R = {(1, 2), (2,3)} then R’ will be {(2,1), (3,2)} 

 

5.  A relation R on set A is called Reflexive if ∀a∈A is related to a (aRa holds). 

 Example: The relation R = {(a,a), (b,b)} on set X={a,b}  is reflexive  

6.  A relation R on set A is called Irreflexive if no a∈A is related to a (aRa does not 

hold). 

 Example: The relation R = {(a,b), (b,a)} on set X={a,b}  is irreflexive  

7.  A relation R on set A is called Symmetric if xRy implies yRx, ∀x∈A and ∀y∈A. 

 Example: The relation R = {(1, 2), (2, 1), (3, 2), (2, 3)} on set A={1, 2, 3} is 
symmetric.   

8.  A relation R on set A is called Anti-Symmetric if xRy and yRx implies  

x=y  ∀x ∈ A and ∀y ∈ A. 

 Example: The relation R = { (x,y) ∈ N | x ≤ y } is anti-symmetric since    x ≤ y 

and y ≤ x implies x = y. 

9.  A relation R on set A is called Transitive if xRy and yRz implies xRz, ∀x,y,z ∈ A. 

 Example: The relation R = {(1, 2), (2, 3), (1, 3)} on set A= {1, 2, 3} is transitive. 

 

10.  A relation is an Equivalence Relation if it is reflexive, symmetric, and 

transitive.  

 

  
1 

  

2 

  
3 

http://www.ics.uci.edu/~alspaugh/cls/shr/relation.html#reflexive
http://www.ics.uci.edu/~alspaugh/cls/shr/relation.html#symmetric
http://www.ics.uci.edu/~alspaugh/cls/shr/relation.html#transitive
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 Example: The relation R = {(1, 1), (2, 2), (3, 3), (1, 2),(2,1), (2,3), (3,2), (1,3), 

(3,1)} on set A= {1, 2, 3} is an equivalence relation since it is reflexive, symmetric, 

and transitive. 

http://www.ics.uci.edu/~alspaugh/cls/shr/relation.html#reflexive
http://www.ics.uci.edu/~alspaugh/cls/shr/relation.html#symmetric
http://www.ics.uci.edu/~alspaugh/cls/shr/relation.html#transitive
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A Function assigns to each element of a set, exactly one element of a related set. 

Functions find their application in various fields like representation of the computational 

complexity of algorithms, counting objects, study of sequences and strings, to name a 

few. The third and final chapter of this part highlights the important aspects of functions. 

Function – Definition   

A function or mapping (Defined as f: X→Y) is a relationship from elements of one set X to 

elements of another set Y (X and Y are non-empty sets). X is called Domain and Y is called 

Codomain of function ‘f’. 

Function ‘f’ is a relation on X and Y such that for each x ∈ X, there exists a unique y ∈ Y 

such that (x,y) ∈ R. ‘x’ is called pre-image and ‘y’ is called image of function f. 

A function can be one to one or many to one but not one to many.  

Injective / One-to-one function 

A function f: A→B is injective or one-to-one function if for every b ∈ B, there exists at most 

one a ∈ A such that f(s) = t.  

This means a function f is injective if a1 ≠ a2 implies f(a1) ≠ f(a2). 

Example 

1.  f: N →N, f(x) = 5x is injective. 

2.  f: N→N, f(x) = x2 is injective. 

3.  f: R→R, f(x) = x2 is not injective as (-x)2 = x2 

Surjective / Onto function 

A function f: A →B is surjective (onto) if the image of f equals its range. Equivalently, for 

every b ∈ B, there exists some a ∈ A such that f(a) = b. This means that for any y in B, 

there exists some x in A such that y = f(x). 

Example 

1. f : N→N, f(x) = x + 2  is surjective. 

2. f : R→R, f(x) = x2 is not surjective since we cannot find a real number whose square 

is negative. 

 

Bijective / One-to-one Correspondent 

A function f: A →B is bijective or one-to-one correspondent if and only if f is both injective 

and surjective. 

4.  Functions  
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Problem: 

Prove that a function f: R→R defined by f(x) = 2x – 3 is a bijective function. 

 

Explanation: We have to prove this function is both injective and surjective. 

If  f(x1) = f(x2), then 2x1 – 3 = 2x2 – 3 and it implies that x1 = x2.  

Hence, f is injective. 

Here, 2x – 3= y  

So, x = (y+5)/3 which belongs to R and f(x) = y.  

Hence, f is surjective.  

Since f is both surjective and injective, we can say f is bijective. 

Inverse of a Function 

The inverse of a one-to-one corresponding function f : A  B, is the function g : B  A, 

holding the following property: 

f(x) = y  g(y) = x 

The function f is called invertible, if its inverse function g exists. 

Example: 

 

 A function f : Z  Z, f(x) = x + 5, is invertible since it has the inverse function g : 

Z  Z, g(x) = x – 5  

 A function f : ZZ, f(x) = x2 is not invertible since this is not one-to-one as (-x)2 

= x2. 

Composition of Functions 

Two functions f: A→B and g: B→C can be composed to give a composition g o f. This is a 

function from A to C defined by (gof)(x) = g(f(x))  

Example 

Let f(x) = x + 2 and g(x) = 2x + 1, find ( f o g)(x)  and ( g o f)(x) 

Solution 

(f o g)(x) = f (g(x)) = f(2x + 1) = 2x + 1 + 2 = 2x + 3 

(g o f)(x) = g (f(x)) = g(x + 2) = 2 (x+2) + 1 = 2x + 5 

Hence, (f o g)(x) ≠ (g o f)(x) 

Some Facts about Composition 

 If f and g are one-to-one then the function (g o f) is also one-to-one. 

 If f and g are onto then the function (g o f) is also onto. 
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 Composition always holds associative property but does not hold commutative 

property. 
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Part 2: Mathematical Logic 
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The rules of mathematical logic specify methods of reasoning mathematical statements. 

Greek philosopher, Aristotle, was the pioneer of logical reasoning. Logical reasoning 

provides the theoretical base for many areas of mathematics and consequently computer 

science. It has many practical applications in computer science like design of computing 

machines, artificial intelligence, definition of data structures for programming languages 

etc. 

 

Propositional Logic is concerned with statements to which the truth values, “true” and 

“false”, can be assigned. The purpose is to analyze these statements either individually or 

in a composite manner. 

Prepositional Logic – Definition  

A proposition is a collection of declarative statements that has either a truth value "true” 

or a truth value "false". A propositional consists of propositional variables and connectives. 

We denote the propositional variables by capital letters (A, B, etc). The connectives 

connect the propositional variables.  

Some examples of Propositions are given below: 

 "Man is Mortal", it returns truth value “TRUE” 

 "12 + 9 = 3 – 2", it returns truth value “FALSE” 

The following is not a Proposition: 

 "A is less than 2". It is because unless we give a specific value of A, we cannot say 

whether the statement is true or false. 

Connectives 

In propositional logic generally we use five connectives which are:   

 OR (V)  

 AND (Λ)  

 Negation/ NOT (¬)  

 Implication / if-then (→)  

 If and only if (⇔).  

OR (V): The OR operation of two propositions A and B (written as A V B) is true if at least 

any of the propositional variable A or B is true. 

The truth table is as follows: 

A B A V B 

True True True 

True False True 

False True True 

False False False 

5.  Propositional Logic 
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AND (Λ): The AND operation of two propositions A and B (written as A Λ B) is true if both 

the propositional variable A and B is true. 

The truth table is as follows: 

A B A Λ B 

True True True 

True False False 

False True False 

False False False 

 

Negation (¬): The negation of a proposition A (written as ¬A) is false when A is true and 

is true when A is false. 

The truth table is as follows: 

A ¬A 

True False 

False True 

 

Implication / if-then (→): An implication A →B is the proposition “if A, then B”. It is 

false if A is true and B is false. The rest cases are true. 

The truth table is as follows: 

A B A → B 

True True True 

True False False 

False True True 

False False True 

 

If and only if (⇔): A ⇔B is bi-conditional logical connective which is true when p and q 

are same, i.e. both are false or both are true. 

 

 

 

 

The truth table is as follows: 

https://en.wikipedia.org/wiki/Biconditional
https://en.wikipedia.org/wiki/Logical_connective
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A B A ⇔ B 

True True True 

True False False 

False True False 

False False True 

Tautologies  

A Tautology is a formula which is always true for every value of its propositional variables.  

Example:  Prove [(A → B) Λ A] →B is a tautology 

The truth table is as follows: 

A B A → B (A → B) Λ A [(A → B) Λ A] →B 

True True True True True 

True False False False True 

False True True False True 

False False True False True 

 
As we can see every value of [(A → B) Λ A] →B is “True”, it is a tautology. 

Contradictions 

A Contradiction is a formula which is always false for every value of its propositional 

variables.  

Example: Prove (A V B) Λ [(¬A) Λ (¬B)] is a contradiction 

The truth table is as follows: 

A B A V B ¬A ¬B 
(¬A) Λ 

(¬B) 
(A V B) Λ [(¬A) Λ (¬B)] 

True True True False False False False 

True False True False True False False 

False True True True False False False 

False False False True True True False 

 

As we can see every value of (A V B) Λ [(¬A) Λ (¬B)] is “False”, it is a contradiction. 

Contingency 

A Contingency is a formula which has both some true and some false values for every 

value of its propositional variables.  

Example: Prove (A V B) Λ (¬A) a contingency 
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The truth table is as follows: 

A B A V B ¬A (A V B) Λ (¬A) 

True True True False False 

True False True False False 

False True True True True 

False False False True False 

 

As we can see every value of (A V B) Λ (¬A) has both “True” and “False”, it is a 

contingency. 

Propositional Equivalences 

Two statements X and Y are logically equivalent if any of the following two conditions hold: 

 

 The truth tables of each statement have the same truth values. 

 

 The bi-conditional statement X ⇔ Y is a tautology. 

Example: Prove ¬ (A V B) and [(¬A) Λ (¬B)] are equivalent 

Testing by 1st method (Matching truth table): 

A B A V B ¬ (A V B) ¬A ¬B [(¬A) Λ (¬B)] 

True True True False False False False 

True False True False False True False 

False True True False True False False 

False False False True True True True 

 

Here, we can see the truth values of ¬ (A V B) and [(¬A) Λ (¬B)] are same, hence the 

statements are equivalent. 

 

 

 

 

Testing by 2nd method (Bi-conditionality): 

A B ¬ (A V B) [(¬A) Λ (¬B)] [¬ (A V B)] ⇔[(¬A) Λ (¬B)] 

True True False False True 

True False False False True 

False True False False True 

False False True True True 
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As [¬ (A V B)] ⇔ [(¬A) Λ (¬B)] is a tautology, the statements are equivalent. 

Inverse, Converse, and Contra-positive 

Implication / if-then (→) is also called a conditional statement. It has two parts- 

 Hypothesis , p 

 Conclusion , q 

As mentioned earlier, it is denoted as p  q. 
 

Example of Conditional Statement: “If you do your homework, you will not be 

punished.” Here, "you do your homework" is the hypothesis, p, and "you will not be 

punished" is the conclusion, q.  

 

Inverse: An inverse of the conditional statement is the negation of both the hypothesis 

and the conclusion. If the statement is “If p, then q”, the inverse will be “If not p, then 

not q”. Thus the inverse of pq is ¬p¬q. 

Example : The inverse of “If you do your homework, you will not be punished” is 

“If you do not do your homework, you will be punished.”  

Converse: The converse of the conditional statement is computed by interchanging the 

hypothesis and the conclusion. If the statement is “If p, then q”, the converse will be “If 

q, then p”. The converse of pq is qp. 

Example : The converse of "If you do your homework, you will not be punished" 

is "If you will not be punished, you do not do your homework”.  

Contra-positive: The contra-positive of the conditional is computed by interchanging the 

hypothesis and the conclusion of the inverse statement. If the statement is “If p, then q”, 

the contra-positive will be “If not q, then not p”. The contra-positive of pq is ¬q¬p. 

Example : The Contra-positive of " If you do your homework, you will not be 

punished” is "If you are not punished, then you do not do your homework”. 

 

Duality Principle 

Duality principle states that for any true statement, the dual statement obtained by 

interchanging unions into intersections (and vice versa) and  interchanging Universal set 

into Null set (and vice versa) is also true. If dual of any statement is the statement itself, 

it is said self-dual statement. 

Example: The dual of (A ∩ B) ∪ C is (A∪ B) ∩ C 

Normal Forms 

We can convert any proposition in two normal forms:  

 Conjunctive normal form 
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 Disjunctive normal form 

Conjunctive Normal Form 

A compound statement is in conjunctive normal form if it is obtained by operating AND 

among variables (negation of variables included) connected with ORs. In terms of set 

operations, it is a compound statement obtained by Intersection among variables 

connected with Unions. 

 
Examples   

 (A V B) Λ (A V C) Λ (B V C V D) 

 (P ∪Q) ∩ (Q ∪ R)  

Disjunctive Normal Form 

A compound statement is in conjunctive normal form if it is obtained by operating OR 

among variables (negation of variables included) connected with ANDs. In terms of set 

operations, it is a compound statement obtained by Union among variables connected with 

Intersections. 

 
Examples   

 (A Λ B) V (A Λ C) V (B Λ C Λ D) 

 (P ∩ Q) ∪ (Q ∩ R)  
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Predicate Logic deals with predicates, which are propositions containing variables. 

Predicate Logic – Definition  

A predicate is an expression of one or more variables defined on some specific domain. A 

predicate with variables can be made a proposition by either assigning a value to the 

variable or by quantifying the variable. 

The following are some examples of predicates: 

 Let E(x, y) denote "x = y" 

 Let X(a , b, c) denote "a + b + c = 0" 

 Let M(x, y) denote "x is married to y" 

Well Formed Formula 

Well Formed Formula (wff) is a predicate holding any of the following - 

 All propositional constants and propositional variables are wffs  

 If x is a variable and Y is a wff, ∀x Y and ∃x Y are also wff 

 Truth value and false values are wffs 

 Each atomic formula is a wff  

 All connectives connecting wffs are wffs 

Quantifiers 

The variable of predicates is quantified by quantifiers. There are two types of quantifier in 

predicate logic: Universal Quantifier and Existential Quantifier. 

Universal Quantifier  

Universal quantifier states that the statements within its scope are true for every value of 

the specific variable. It is denoted by the symbol ∀. 

∀x P(x) is read as for every value of x, P(x) is true. 

 
Example: "Man is mortal" can be transformed into the propositional form ∀x P(x) where 

P(x) is the predicate which denotes x is mortal and the universe of discourse is all men. 

Existential Quantifier  

Existential quantifier states that the statements within its scope are true for some values 

of the specific variable. It is denoted by the symbol ∃.   

∃x P(x) is read as for some values of x, P(x) is true. 

 

6.  Predicate Logic 
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Example: "Some people are dishonest" can be transformed into the propositional form ∃x 

P(x) where P(x) is the predicate which denotes x is dishonest and the universe of discourse 

is some people. 

Nested Quantifiers 

If we use a quantifier that appears within the scope of another quantifier, it is called nested 

quantifier. 

Examples 

 ∀a ∃b P (x, y) where P (a, b) denotes a + b=0 

 ∀a ∀b ∀c P (a, b, c) where P (a, b) denotes a + (b+c) = (a+b) +c 

 

Note: ∀a ∃b P (x, y) ≠ ∃a ∀b P (x, y) 
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To deduce new statements from the statements whose truth that we already know, Rules 

of Inference are used.  

What are Rules of Inference for?  

Mathematical logic is often used for logical proofs. Proofs are valid arguments that 

determine the truth values of mathematical statements.  

An argument is a sequence of statements. The last statement is the conclusion and all its 

preceding statements are called premises (or hypothesis). The symbol “∴”, (read 

therefore) is placed before the conclusion. A valid argument is one where the conclusion 

follows from the truth values of the premises.  

Rules of Inference provide the templates or guidelines for constructing valid arguments 

from the statements that we already have. 

Table of Rules of Inference 

Rule of Inference Name 
Rule of 

Inference 
Name 

P 

---------- 

∴ P V Q 

Addition 

P V Q 

¬P 

---------- 

       ∴ Q 

Disjunctive 

Syllogism 

P 

Q 

---------- 

∴ P Λ Q 

Conjunction 

P → Q  

Q → R  

---------- 
 ∴  P → R 

Hypothetical 

Syllogism 

P Λ Q  

---------- 
∴  P 

Simplification 

(P → Q) Λ (R → S)   

P V R  

---------- 
  ∴  Q V S 

Constructive 

Dilemma 

P→Q 

P 

---------- 
∴  Q 

Modus ponens 

(P → Q) Λ (R → S)   

¬Q V ¬S  

---------- 

∴ ¬P V ¬R 

Destructive 

Dilemma 

P→Q 

¬Q  

---------- 
∴  ¬P 

Modus Tollens   

 

 

7.  Rules of Inference 
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Addition  

If P is a premise, we can use Addiction rule to derive P V Q. 

P 

---------- 

∴ P V Q 

Example 

Let P be the proposition, “He studies very hard” is true 

Therefore: "Either he studies very hard Or he is a very bad student." Here Q is the 

proposition “he is a very bad student”. 

Conjunction 

 If P and Q are two premises, we can use Conjunction rule to derive P Λ Q. 

P 

Q 

---------- 

∴ P Λ Q 

 

Example 

Let P: “He studies very hard” 

Let Q: “He is the best boy in the class” 

Therefore: "He studies very hard and he is the best boy in the class" 

Simplification 

 If P Λ Q is a premise, we can use Simplification rule to derive P. 

P Λ Q  

---------- 

∴ P  

Example 

"He studies very hard and he is the best boy in the class", P Λ Q 

Therefore:  "He studies very hard" 

 

Modus Ponens 

 If P and P→Q are two premises, we can use Modus Ponens to derive Q. 
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P→Q 

P 

---------- 

∴ Q 

Example 

"If you have a password, then you can log on to facebook", PQ 

"You have a password", P 

 
Therefore: "You can log on to facebook" 

Modus Tollens 

 If P→Q and ¬Q are two premises, we can use Modus Tollens to derive ¬P. 

 

P→Q 

¬Q  

---------- 

∴ ¬P  

Example 

"If you have a password, then you can log on to facebook", PQ 

"You cannot log on to facebook", ¬Q 

 

Therefore:  "You do not have a password " 

Disjunctive Syllogism 

 If ¬P and P V Q are two premises, we can use Disjunctive Syllogism to derive Q. 

¬P  

P V Q  

---------- 

∴ Q 

Example 

"The ice cream is not vanilla flavored", ¬P 

"The ice cream is either vanilla flavored or chocolate flavored", P V Q 

Therefore:   "The ice cream is chocolate flavored” 

Hypothetical Syllogism 

If P → Q and Q → R are two premises, we can use Hypothetical Syllogism to derive P → R 

P → Q  

Q → R  
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---------- 

∴ P → R 

Example 

"If it rains, I shall not go to school”, P → Q 

"If I don't go to school, I won't need to do homework", Q → R 

Therefore: "If it rains, I won't need to do homework" 

Constructive Dilemma 

If ( P → Q ) Λ (R → S)  and P V R are two premises, we can use constructive dilemma to 

derive Q V S. 

 

( P → Q ) Λ (R → S)   

P V R  

---------- 

∴ Q V S 

Example 

“If it rains, I will take a leave”, ( P → Q )  

“If it is hot outside, I will go for a shower”, (R → S) 

“Either it will rain or it is hot outside”, P V R 

Therefore:  "I will take a leave or I will go for a shower" 

Destructive Dilemma 

 If (P → Q) Λ (R → S) and ¬Q V ¬S are two premises, we can use destructive dilemma to 

derive P V R. 

(P → Q ) Λ (R → S)   

¬Q V ¬S  

---------- 

∴ ¬P V ¬R 

Example 

“If it rains, I will take a leave”, (P → Q ) 

“If it is hot outside, I will go for a shower”, (R → S) 

“Either I will not take a leave or I will not go for a shower”, ¬Q V ¬S 

Therefore: "Either it rains or it is hot outside" 
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Part 3: Group Theory 
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Group Theory is a branch of mathematics and abstract algebra that defines an algebraic 

structure named as group. Generally, a group comprises of a set of elements and an 

operation over any two elements on that set to form a third element also in that set. 

In 1854, Arthur Cayley, the British Mathematician, gave the modern definition of group 

for the first time:  

“A set of symbols all of them different, and such that the product of any two of 

them (no matter in what order), or the product of any one of them into itself, 

belongs to the set, is said to be a group. These symbols are not in general 

convertible [commutative], but are associative.” 

 

In this chapter, we will know about operators and postulates that form the basics of set 

theory, group theory and Boolean algebra.  

Any set of elements in a mathematical system may be defined with a set of operators and 

a number of postulates.  

A binary operator defined on a set of elements is a rule that assigns to each pair of 

elements a unique element from that set. For example, given the set A={1,2,3,4,5}, we 

can say ⊗ is a binary operator for the operation 𝑐 = 𝑎 ⊗  𝑏, if it specifies a rule for finding 

c for the pair of (a,b), such that a,b,c ∈ A. 

The postulates of a mathematical system form the basic assumptions from which rules 

can be deduced. The postulates are: 

Closure   

A set is closed with respect to a binary operator if for every pair of elements in the set, 

the operator finds a unique element from that set. 

Example: Let A = { 0, 1, 2, 3, 4, 5, …………. } 

This set is closed under binary operator into (*), because for the operation c = a * b, for 

any a, b ∈ A, the product c  ∈ A. 

The set is not closed under binary operator divide (÷), because, for the operation c = a ÷ 

b, for any a, b ∈ A, the product c may not be in the set A. If a = 7, b = 2, then c = 3.5. 

Here a,b ∈ A but c ∉ A. 

Associative Laws 

A binary operator ⊗ on a set A is associative when it holds the following property: 

  ( 𝑥 ⊗  𝑦) ⊗ 𝑧 = 𝑥 ⊗ ( 𝑦 ⊗  𝑧 ), where x, y, z ∈ A 

Example: Let A = { 1, 2, 3, 4 } 

The operator plus ( + ) is associative because for any three elements, x,y,z ∈ A, the 

property (x + y) + z = x + ( y + z ) holds. 

8.  Operators and Postulates 

https://www.google.co.in/search?q=cardinality+of+a+set&spell=1&sa=X&ei=Ld41VemtEaawmAWw6YDwCw&ved=0CBoQvwUoAA&biw=1024&bih=633
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The operator minus ( - ) is not associative since  

( x – y ) – z ≠ x – ( y – z )       

Commutative Laws 

A binary operator ⊗ on a set A is commutative when it holds the following property: 

𝑥 ⊗  𝑦 = 𝑦 ⊗  𝑥, where x, y ∈ A 

Example: Let A = { 1, 2, 3, 4 } 

The operator plus ( + ) is commutative because for any two elements, x,y  ∈ A, the 

property x + y = y + x holds. 

The operator minus ( - ) is not associative since  

x – y  ≠  y – x 

Distributive Laws 

Two binary operators ⊗ and ⊛ on a set A, are distributive over operator ⊛ when the 

following property holds: 

  𝑥 ⊗ ( 𝑦 ⊛  𝑧 ) = ( 𝑥 ⊗  𝑦) ⊛ ( 𝑥 ⊗ 𝑧 ) , where x, y, z ∈ A 

Example: Let A = { 1, 2, 3, 4 } 

The operators into ( * ) and plus ( + ) are distributive over operator + because for any 

three elements, x,y,z  ∈ A, the property x * ( y + z ) = ( x * y ) + ( x * z ) holds. 

However, these operators are not distributive over * since 

x + ( y * z ) ≠ ( x + y ) * ( x + z ) 

Identity Element 

A set A has an identity element with respect to a binary operation ⊗ on A, if there exists 

an element 𝑒 ∈ A, such that the following property holds: 

𝑒 ⊗  𝑥 = 𝑥 ⊗ 𝑒, where x ∈ A 

Example: Let Z = { 0, 1, 2, 3, 4, 5, ……………….. } 

The element 1 is an identity element with respect to operation * since for any element 

x ∈ Z, 

1 * x = x * 1 

On the other hand, there is no identity element for the operation minus ( - )  
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Inverse 

If a set A has an identity element 𝑒 with respect to a binary operator ⊗, it is said to have 

an inverse whenever for every element x ∈ A, there exists another element y ∈ A, such 

that the following property holds: 

𝑥 ⊗  𝑦 = 𝑒 

Example: Let A = { ………….. -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, ………….. } 

Given the operation plus ( + ) and 𝑒 = 0, the inverse of any element x is (-x) since x + (-

x) = 0 

De Morgan’s Law 

De Morgan’s Laws gives a pair of transformations between union and intersection of two 

(or more) sets in terms of their complements. The laws are: 

(A⋃B)′  = A′⋂ B′  

(A⋂B)′  = A′⋃ B′  

 

Example: Let  A = { 1, 2, 3, 4}, B = {1, 3, 5, 7}, and  

Universal set U = { 1, 2, 3, ………, 9, 10 } 

A′ = { 5, 6, 7, 8, 9, 10} 

B′ = { 2, 4,6,8,9,10} 

A ⋃ B = {1, 2, 3,4, 5, 7} 

A⋂B = { 1,3} 

(A ⋃ B)′ = { 6, 8,9,10} 

A′⋂B′ = { 6, 8,9,10} 

Thus, we see that (A⋃B)′  = A′⋂ B′ 

(A ∩  B)′ = { 2,4, 5,6,7,8,9,10} 

A′ ∪  B′ = { 2,4, 5,6,7,8,9,10} 

Thus, we see that (A⋂B)′  = A′⋃ B′ 
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Semigroup 

A finite or infinite set ‘S’ with a binary operation ‘0’ (Composition) is called semigroup if it 

holds following two conditions simultaneously: 

 Closure: For every pair (a, b) ∈ S, (a 0 b) has to be present in the set S. 

 Associative: For every element a, b, c ∈ S, (a 0 b) 0 c = a 0 (b 0 c) must hold. 

Example: 

The set of positive integers (excluding zero) with addition operation is a semigroup. For 

example, S = {1, 2, 3,...} 

Here closure property holds as for every pair (a, b) ∈ S, (a + b) is present in the set S. 

For example, 1 +2 =3 ∈ S] 

Associative property also holds for every element a, b, c ∈S, (a + b) + c = a + (b + c). 

For example, (1 +2) +3=1+ (2+3)=5 

Monoid 

A monoid is a semigroup with an identity element. The identity element (denoted by e or 

E) of a set S is an element such that (a 0 e) = a, for every element a ∈ S. An identity 

element is also called a unit element. So, a monoid holds three properties 

simultaneously: Closure, Associative, Identity element. 

Example 

The set of positive integers (excluding zero) with multiplication operation is a monoid. 

S = {1, 2, 3,...} 

Here closure property holds as for every pair (a, b) ∈ S, (a × b) is present in the set S. 

[For example, 1 × 2 = 2 ∈ S and so on] 

Associative property also holds for every element a, b, c ∈S, (a × b) × c = a × (b × c) 

[For example, (1 × 2) × 3 = 1 × (2 × 3) = 6 and so on] 

Identity property also holds for every element a ∈ S, (a × e) = a [For example, (2 ×1) 

= 2, (3 ×1) =3 and so on]. Here identity element is 1. 

Group  

A group is a monoid with an inverse element. The inverse element (denoted by I) of a set 

S is an element such that (a 0 I) = (I 0 a) =a, for each element a ∈ S. So, a group holds 

four properties simultaneously - i) Closure, ii) Associative, iii) Identity element, iv) Inverse 

element. The order of a group G is the number of elements in G and the order of an 

9.  Group Theory 

http://mathworld.wolfram.com/BinaryOperation.html
http://planetmath.org/node/31635
http://planetmath.org/node/30403
http://planetmath.org/node/30388
http://planetmath.org/node/31635
http://planetmath.org/node/30403
http://planetmath.org/node/38789
http://planetmath.org/node/30388
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element in a group is the least positive integer n such that an  is the identity element of 

that group G. 

Examples 

The set of N×N non-singular matrices form a group under matrix multiplication operation. 

The product of two N×N non-singular matrices is also an N×N non-singular matrix which 

holds closure property. 

Matrix multiplication itself is associative. Hence, associative property holds. 

The set of N×N non-singular matrices contains the identity matrix holding the identity 

element property. 

As all the matrices are non-singular they all have inverse elements which are also non-

singular matrices. Hence, inverse property also holds. 

Abelian Group 

An abelian group G is a group for which the element pair (a,b) ∈ G always holds 

commutative law. So, a group holds five properties simultaneously - i) Closure, ii) 

Associative, iii) Identity element, iv) Inverse element, v) Commutative. 

Example 

The set of positive integers (including zero) with addition operation is an abelian group. 

G = {0, 1, 2, 3,…} 

Here closure property holds as for every pair (a, b) ∈ S, (a + b) is present in the set S. 

[For example, 1 +2 =2 ∈ S and so on] 

Associative property also holds for every element a, b, c ∈S, (a + b) + c = a + (b + c) 

[For example, (1 +2) +3=1 + (2 +3) =6 and so on] 

Identity property also holds for every element a ∈ S, (a × e) = a [For example, (2 ×1) =2, 

(3 ×1) =3 and so on]. Here, identity element is 1. 

Commutative property also holds for every element a ∈S, (a × b) = (b × a) [For example, 

(2 ×3) = (3 ×2) =3 and so on]  

Cyclic Group and Subgroup 

A cyclic group is a group that can be generated by a single element. Every element of a 

cyclic group is a power of some specific element which is called a generator. A cyclic group 

can be generated by a generator ‘g’, such that every other element of the group can be 

written as a power of the generator ‘g’. 

 

 

 

http://mathworld.wolfram.com/Group.html
http://planetmath.org/node/31635
http://planetmath.org/node/30403
http://planetmath.org/node/38789
http://planetmath.org/node/30388
http://mathworld.wolfram.com/Group.html
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Example 

The set of complex numbers {1,-1, i, -i} under multiplication operation is a cyclic group. 

There are two generators: i and –i as i1=i, i2=-1, i3=-i, i4=1 and also (–i)1=-i, (–i)2=-1,   

(–i)3=i, (–i)4=1 which covers all the elements of the group. Hence, it is a cyclic group. 

Note: A cyclic group is always an abelian group but not every abelian group is a cyclic 

group. The rational numbers under addition is not cyclic but is abelian. 

A subgroup H is a subset of a group G (denoted by H ≤ G) if it satisfies the four properties 

simultaneously: Closure, Associative, Identity element, and Inverse.  

A subgroup H of a group G that does not include the whole group G is called a proper 

subgroup (Denoted by H<G). A subgroup of a cyclic group is cyclic and a abelian subgroup 

is also abelian. 

Example 

Let a group G = {1, i, -1, -i} 

Then some subgroups are H1= {1}, H2= {1,-1},  

This is not a subgroup: H3= {1, i} because that (i) -1 = -i is not in H3 

Partially Ordered Set (POSET) 

A partially ordered set consists of a set with a binary relation which is reflexive, anti-

symmetric and transitive. "Partially ordered set" is abbreviated as POSET. 

Examples 

1.  The set of real numbers under binary operation less than or equal to (≤) is a poset. 

Let the set S = {1, 2, 3} and the operation is ≤ 

The relations will be {(1, 1), (2, 2), (3, 3), (1, 2), (1, 3), (2, 3)} 

This relation R is reflexive as {(1, 1), (2, 2), (3, 3)} ∈ R  

This relation R is anti-symmetric, as  

{(1, 2), (1, 3), (2, 3)} ∈ R and {(2,1), (3,1), (3,2)} ∉ R 

This relation R is also transitive as {(1,2), (2,3), (1,3)} ∈ R. 

 Hence, it is a poset. 

 

2.  The vertex set of a directed acyclic graph under the operation ‘reachability’ is a 

poset. 

 

http://mathworld.wolfram.com/ProperSubgroup.html
http://mathworld.wolfram.com/ProperSubgroup.html
https://en.wikipedia.org/wiki/Relation_%28mathematics%29
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Directed_acyclic_graph
https://en.wikipedia.org/wiki/Reachability
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Hasse Diagram 

The Hasse diagram of a poset is the directed graph whose vertices are the element of that 

poset and the arcs covers the pairs (x, y) in the poset. If in the poset x<y, then the point 

x appears lower than the point y in the Hasse diagram.  If x<y<z in the poset, then the 

arrow is not shown between x and z as it is implicit. 

Example 

The poset of subsets of {1, 2, 3} = {ϕ, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}} 

is shown by the following Hasse diagram: 

 

Linearly Ordered Set 

A Linearly ordered set or Total ordered set is a partial order set in which every pair of 

element is comparable. The elements a, b ∈S are said to be comparable if either a ≤ b or 

b ≤ a holds. Trichotomy law defines this total ordered set. A totally ordered set can be 

defined as a distributive lattice having the property {a ∨ b, a ∧ b} = {a, b} for all values 

of a and b in set S.  

Example 

The powerset of {a, b} ordered by ⊆ is a totally ordered set as all the elements of the 

power set P= {ϕ, {a}, {b}, {a, b}} are comparable. 

Example of non-total order set 

A set S= {1, 2, 3, 4, 5, 6} under operation x divides y is not a total ordered set. 

Here, for all (x, y) ∈ S, x | y have to hold but it is not true that 2 | 3, as 2 does not divide 

3 or 3 does not divide 2. Hence, it is not a total ordered set. 

 

{1, 2, 3} 

{2, 3} 

{3} 

{1, 3} {1, 2} 

{1} 
{ 2} 

{ ϕ } 

http://mathworld.wolfram.com/TrichotomyLaw.html
https://en.wikipedia.org/wiki/Distributive_lattice
https://en.wikipedia.org/wiki/Distributive_lattice
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Lattice 

A lattice is a poset (L, ≤) for which every pair {a, b} ∈ L has a least upper bound (denoted 

by a ∨ b) and a greatest lower bound (denoted by a ∧ b). LUB ({a,b}) is called the join of 

a and b. GLB ({a,b}) is called the meet of a and b. 

 

Example 

 

This above figure is a lattice because for every pair {a, b} ∈ L, a GLB and a LUB exists. 

 

This above figure is a not a lattice because GLB (a, b) and LUB (e, f) does not exist. 

 

Some other lattices are discussed below: 

b a 

a∨b 

a ∧b 

a 

b c 

d e 

f 

b a 

e 

d 

c 

f 
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Bounded Lattice 

A lattice L becomes a bounded lattice if it has a greatest element 1 and a least element 0. 

Complemented Lattice 

A lattice L becomes a complemented lattice if it is a bounded lattice and if every element 

in the lattice has a complement. An element x has a complement x’ if Ǝx(x ∧x’=0 and 

x ∨ x’ = 1) 

Distributive Lattice 

If a lattice satisfies the following two distribute properties, it is called a distributive lattice. 

 a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) 

 a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) 

Modular Lattice 

If a lattice satisfies the following property, it is called modular lattice. 

a ∧( b ∨ (a ∧ d)) = (a ∧ b) ∨ (a ∧ d)  

Properties of Lattices 

Idempotent Properties 

 a v a = a 

 a ∧ a = a 

Absorption Properties 

 a v (a ∧ b) = a 

 a ∧ (a v b) = a 

Commutative Properties 

 a v b = b v a 

 a ∧ b = b ∧ a 

Associative Properties 

 a v (b v c)= (a v b) v c 

 a ∧ (b ∧ c)= (a ∧ b) ∧ c 

Dual of a Lattice 

The dual of a lattice is obtained by interchanging the ‘v’ and ‘∧’ operations. 

Example 

The dual of [a v (b ∧ c)] is [a ∧ (b v c)] 
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Part 4: Counting & Probability 
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In daily lives, many a times one needs to find out the number of all possible outcomes for 

a series of events. For instance, in how many ways can a panel of judges comprising of 6 

men and 4 women be chosen from among 50 men and 38 women? How many different 

10 lettered PAN numbers can be generated such that the first five letters are capital 

alphabets, the next four are digits and the last is again a capital letter. For solving these 

problems, mathematical theory of counting are used. Counting mainly encompasses 

fundamental counting rule, the permutation rule, and the combination rule.  

The Rules of Sum and Product 

The Rule of Sum and Rule of Product are used to decompose difficult counting problems 

into simple problems.  

 The Rule of Sum: If a sequence of tasks T1, T2, …, Tm can be done in w1, w2,… wm 

ways respectively (the condition is that no tasks can be performed simultaneously), 

then the number of ways to do one of these tasks is w1 + w2 +… +wm. If we consider 

two tasks A and B which are disjoint (i.e.  A ∩ B = Ø), then mathematically |A ∪ 

B| = |A| + |B| 

 

 The Rule of Product: If a sequence of tasks T1, T2, …, Tm can be done in w1, w2,… 

wm ways respectively and every task arrives after the occurrence of the previous 

task, then there are w1 × w2 ×...× wm ways to perform the tasks. Mathematically, 

if a task B arrives after a task A, then |A×B| = |A|×|B| 

Example 

Question: A boy lives at X and wants to go to School at Z. From his home X he has to 

first reach Y and then Y to Z. He may go X to Y by either 3 bus routes or 2 train routes. 

From there, he can either choose 4 bus routes or 5 train routes to reach Z. How many 

ways are there to go from X to Z? 

Solution: From X to Y, he can go in 3+2=5 ways (Rule of Sum). Thereafter, he can go Y 

to Z in 4+5 = 9 ways (Rule of Sum). Hence from X to Z he can go in 5×9 =45 ways (Rule 

of Product). 

Permutations 

A permutation is an arrangement of some elements in which order matters. In other 

words a Permutation is an ordered Combination of elements. 

Examples 

 From a set S ={x, y, z} by taking two at a time, all permutations are:  

xy, yx, xz, zx, yz, zy. 

 

 We have to form a permutation of three digit numbers from a set of numbers S= 

{1, 2, 3}. Different three digit numbers will be formed when we arrange the digits. 

The permutation will be = 123, 132, 213, 231, 312, 321 

10.  Counting Theory 
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Number of Permutations 

The number of permutations of ‘n’ different things taken ‘r’ at a time is denoted by nPr   

𝑃𝑟 
𝑛 =  

𝑛!

(𝑛 − 𝑟)!
 

where 𝑛!  =  1.2.3. … . . (𝑛 − 1). 𝑛 

 

Proof: Let there be ‘n’ different elements. 

There are n number of ways to fill up the first place. After filling the first place (n-1) 

number of elements is left. Hence, there are (n-1) ways to fill up the second place. After 

filling the first and second place, (n-2) number of elements is left. Hence, there are (n-2) 

ways to fill up the third place. We can now generalize the number of ways to fill up r-th 

place as [n – (r–1)] = n–r+1 

 

So, the total no. of ways to fill up from first place up to r-th-place: 
 nPr = n (n–1) (n–2)..... (n–r+1) 

= [n(n–1)(n–2) ... (n–r+1)] [(n–r)(n–r–1)-----3.2.1] / [(n–r)(n–r–1) .. 3.2.1] 

Hence,  

nPr = n!/(n-r)! 

Some important formulas of permutation 

1.  If there are n elements of which a1 are alike of some kind, a2 are alike of another 

kind; a3 are alike of third kind and so on and ar are of rth kind, where (a1 + a2 + ... 

ar) = n. 

Then, number of permutations of these n objects is = n! / [ (a1!) (a2!)..... (ar!)]. 

2.  Number of permutations of n distinct elements taking n elements at a time = 
nPn = n! 

 

3.  The number of permutations of n dissimilar elements taking r elements at a time, 

when x particular things always occupy definite places = n-xpr-x 

 

4.  The number of permutations of n dissimilar elements when r specified things always 

come together is: r! (n−r+1)! 

 

5.  The number of permutations of n dissimilar elements when r specified things never 

come together is: n!–[r! (n−r+1)!] 

 

6.  The number of circular permutations of n different elements taken x elements at 

time = nPx /x 

 

7.  The number of circular permutations of n different things = nPn /n 

Some Problems 

Problem 1: From a bunch of 6 different cards, how many ways we can permute it? 
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Solution: As we are taking 6 cards at a time from a deck of 6 cards, the permutation will 
be 6P6 = 6! = 720 

 

Problem 2: In how many ways can the letters of the word 'READER' be arranged? 

Solution: There are 6 letters word (2 E, 1 A, 1D and 2R.) in the word 'READER'.  

The permutation will be = 6! / [(2!) (1!)(1!)(2!)] = 180. 

 

Problem 3: In how ways can the letters of the word 'ORANGE' be arranged so that the 

consonants occupy only the even positions? 

Solution: There are 3 vowels and 3 consonants in the word 'ORANGE'. Number of ways 

of arranging the consonants among themselves= 3P3 = 3! = 6. The remaining 3 vacant 

places will be filled up by 3 vowels in 3P3 = 3! = 6 ways. Hence, the total number of 

permutation is 6×6=36 

Combinations 

A combination is selection of some given elements in which order does not matter. 

The number of all combinations of n things, taken r at a time is: 

𝐶𝑟 
𝑛 =  

𝑛!

𝑟!  (𝑛 − 𝑟)!
 

Problem 1 

Find the number of subsets of the set {1, 2, 3, 4, 5, 6} having 3 elements. 

Solution 

The cardinality of the set is 6 and we have to choose 3 elements from the set. Here, the 

ordering does not matter. Hence, the number of subsets will be 6C3=20. 

 

Problem 2  

There are 6 men and 5 women in a room. In how many ways we can choose 3 men and 2 

women from the room?  

 

Solution 

The number of ways to choose 3 men from 6 men is 6C3 and the number of ways to choose 

2 women from 5 women is 5C2 

Hence, the total number of ways is: 6C3 ×5C2=20×10=200 

 

 

Problem 3 

How many ways can you choose 3 distinct groups of 3 students from total 9 students? 

Solution 
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Let us number the groups as 1, 2 and 3 

For choosing 3 students for 1st group, the number of ways: 9C3 

The number of ways for choosing 3 students for 2nd group after choosing 1st group: 6C3 

The number of ways for choosing 3 students for 3rd group after choosing 1st and 2nd group: 

3C3 

Hence, the total number of ways = 9C3 ×6C3 × 3C3 = 84×20×1 =1680 

Pascal's Identity 

Pascal's identity, first derived by Blaise Pascal in 19th century, states that the number 

of ways to choose k elements from n elements is equal to the summation of number of 

ways to choose (k-1) elements from (n-1) elements and the number of ways to choose  

elements from n-1 elements. 

Mathematically, for any positive integers k and n:  nCk = n-1Ck-1 + n-1Ck  

Proof: 

 𝐶𝑘−1 
𝑛−1 + 𝐶𝑘 

𝑛−1  

=  
(𝑛 − 1 )!

( 𝑘 − 1)! (𝑛 − 𝑘)!
+ 

(𝑛 − 1)!

𝑘!  (𝑛 − 𝑘 − 1)!
 

= (𝑛 − 1 )!  (
𝑘

𝑘! ( 𝑛 − 𝑘 )!
+  

𝑛 − 𝑘

𝑘! ( 𝑛 − 𝑘 )!
) 

= ( 𝑛 − 1 )!  ∙  
𝑛

𝑘! (𝑛 − 𝑘)!
 

=  
𝑛!

𝑘! ( 𝑛 − 𝑘 )!
 

= 𝐶𝑘 
𝑛  

 

Pigeonhole Principle 

In 1834, German mathematician, Peter Gustav Lejeune Dirichlet, stated a principle which 

he called the drawer principle. Now, it is known as the pigeonhole principle. 

 

Pigeonhole Principle states that if there are fewer pigeon holes than total number of 

pigeons and each pigeon is put in a pigeon hole, then there must be at least one pigeon 

hole with more than one pigeon. If n pigeons are put into m pigeonholes where n>m, 

there's a hole with more than one pigeon. 

Examples 

1.  Ten men are in a room and they are taking part in handshakes. If each person 

shakes hands at least once and no man shakes the same man’s hand more than 

once then two men took part in the same number of handshakes. 
 

2.  There must be at least two people in a class of 30 whose names start with the same 

alphabet. 

http://www.artofproblemsolving.com/wiki/index.php?title=Blaise_Pascal&action=edit&redlink=1
http://www.artofproblemsolving.com/wiki/index.php/Positive_integer
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The Inclusion-Exclusion principle 

The Inclusion-exclusion principle computes the cardinal number of the union of 

multiple non-disjoint sets. For two sets A and B, the principle states:   

|A ∪B| = |A| + |B| – |A∩B|  

For three sets A, B and C, the principle states:  |A∪B∪C | = |A| + |B| + |C| – |A∩B| – 

|A∩C| – |B∩C| + |A∩B∩C | 

The generalized formula: 

|⋃ 𝐴𝑖

𝑛

𝑖=1

| =  ∑ |𝐴𝑖 ∩ 𝐴𝑗|

1≤𝑖<𝑗≤𝑛

 +  ∑ |𝐴𝑖 ∩  𝐴𝑗 ∩ 𝐴𝑘| − … … + (−1)𝑛−1|𝐴1 ∩ … ∩ 𝐴2|

1≤𝑖<𝑗<𝑘≤𝑛

 

Problem 1  

How many integers from 1 to 50 are multiples of 2 or 3 but not both? 

Solution 

From 1 to 100, there are 50/2=25 numbers which are multiples of 2. 

There are 50/3=16 numbers which are multiples of 3.  

There are 50/6=8 numbers which are multiples of both 2 and 3. 

So, |A|=25, |B|=16 and |A∩B|= 8.  

|A ∪ B| = |A| + |B| – |A∩B| =25 + 16 – 8 = 33 

Problem 2 

In a group of 50 students 24 like cold drinks and 36 like hot drinks and each student likes 

at least one of the two drinks. How many like both coffee and tea? 

Solution 

Let X be the set of students who like cold drinks and Y be the set of people who like hot 

drinks.  

So, | X ∪ Y | = 50, |X| = 24, |Y| = 36  

|X∩Y| = |X| + |Y| – |X∪Y| = 24 + 36 – 50 = 60 – 50 = 10  

Hence, there are 10 students who like both tea and coffee.  
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Closely related to the concepts of counting is Probability. We often try to guess the results 

of games of chance, like card games, slot machines, and lotteries; i.e. we try to find the 

likelihood or probability that a particular result with be obtained.  

Probability can be conceptualized as finding the chance of occurrence of an event. 

Mathematically, it is the study of random processes and their outcomes. The laws of 

probability have a wide applicability in a variety of fields like genetics, weather forecasting, 

opinion polls, stock markets etc. 

Basic Concepts 

Probability theory was invented in the 17th century by two French mathematicians, Blaise 

Pascal and Pierre de Fermat, who were dealing with mathematical problems regarding of 

chance. 

Before proceeding to details of probability, let us get the concept of some definitions. 

Random Experiment: An experiment in which all possible outcomes are known and the 

exact output cannot be predicted in advance is called a random experiment. Tossing a fair 

coin is an example of random experiment. 

Sample Space: When we perform an experiment, then the set S of all possible outcomes 
is called the sample space. If we toss a coin, the sample space S = {H, T} 

Event: Any subset of a sample space is called an event. After tossing a coin, getting Head 
on the top is an event. 

The word "probability" means the chance of occurrence of a particular event. The best we 
can say is how likely they are to happen, using the idea of probability. 

Probability of occurence of an event =
Total number of favourable outcome

Total number of Outcomes
 

As the occurrence of any event varies between 0% and 100%, the probability varies 
between 0 and 1.  

Steps to find the probability: 

Step 1: Calculate all possible outcomes of the experiment. 

Step 2: Calculate the number of favorable outcomes of the experiment. 

Step 3: Apply the corresponding probability formula. 

 

 

 

11.  Probability 
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Tossing a Coin  

If a coin is tossed, there are two possible outcomes: Heads (H) or Tails (T) 

So, Total number of outcomes = 2 

Hence, the probability of getting a Head (H) on top is ½ and the probability of getting a 
Tails (T) on top is ½  

Throwing a Dice  

When a dice is thrown, six possible outcomes can be on the top: 1, 2, 3, 4, 5, 6.  

The probability of any one of the numbers is 1/6 

The probability of getting even numbers is 3/6=1/3 

The probability of getting odd numbers is 3/6=1/3 

Taking Cards From a Deck 

From a deck of 52 cards, if one card is picked find the probability of an ace being drawn 

and also find the probability of a diamond being drawn. 

Total number of possible outcomes: 52 

Outcomes of being an ace: 4 

Probability of being an ace = 4/52 =1/13 

Probability of being a diamond = 13/52 =1/4 

Probability Axioms 

 The probability of an event always varies from 0 to 1. [0 ≤ P(x) ≤ 1] 

 

 For an impossible event the probability is 0 and for a certain event the probability 

is 1. 

 

 If the occurrence of one event is not influenced by another event, they are called 

mutually exclusive or disjoint. 

If A1, A2....An are mutually exclusive/disjoint events, then  

P(Ai ∩ Aj) = ϕ for i≠j  and   P(A1 ∪ A2 ∪.... An) = P(A1) + P(A2)+..... P(An)   

 

 

https://www.mathsisfun.com/geometry/fair-dice.html
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Properties of Probability 

1.  If there are two events x and x̅ which are complementary, then the probability of 

the complementary event is:  

P(x̅) = 1– P(x) 

2.  For two non-disjoint events A and B, the probability of the union of two events:  

P(A∪ B) = P(A) + P(B) 

3.  If an event A is a subset of another event B (i.e. A ⊂ B), then the probability of A 

is less than or equal to the probability of B. Hence, A ⊂ B implies P(A) ≤ p(B) 

Conditional Probability 

The conditional probability of an event B is the probability that the event will occur given 

an event A has already occurred. This is written as P(B|A).  

Mathematically:  P(B|A) = P(A ∩ B) / P(A) 

If event A and B are mutually exclusive, then the conditional probability of event B after 

the event A will be the probability of event B that is P(B). 

Problem 1  

In a country 50% of all teenagers own a cycle and 30% of all teenagers own a bike and 

cycle. What is the probability that a teenager owns bike given that the teenager owns a 

cycle? 

Solution 

Let us assume A is the event of teenagers owning only a cycle and B is the event of 

teenagers owning only a bike. 

So, P(A) = 50/100 = 0.5 and P(A ∩ B) = 30/100= 0.3 from the given problem. 

P(B|A) = P(A ∩ B) / P(A) = 0.3/0.5 = 0.6 

Hence, the probability that a teenager owns bike given that the teenager owns a cycle is 

60%. 

Problem 2  

In a class, 50% of all students play cricket and 25% of all students play cricket and 

volleyball. What is the probability that a student plays volleyball given that the student 

plays cricket? 

Solution  

Let us assume A is the event of students playing only cricket and B is the event of students 

playing only volleyball. 

So, P(A) = 50/100=0.5 and P(A ∩ B) = 25/100=0.25 from the given problem. 
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P(B|A) = P(A ∩ B) / P(A) =0.25/0.5 =0.5 

Hence, the probability that a student plays volleyball given that the student plays cricket 

is 50%. 

Problem 3 

Six good laptops and three defective laptops are mixed up. To find the defective laptops 

all of them are tested one-by-one at random. What is the probability to find both of the 

defective laptops in the first two pick? 

Solution 

Let A be the event that we find a defective laptop in the first test and B be the event that 

we find a defective laptop in the second test.  

Hence, P(A ∩ B) = P(A)P(B|A) =3/9 × 2/8 = 1/21 

Bayes' Theorem 

Theorem: If A and B are two mutually exclusive events, where P(A) is the probability of 

A and P(B) is the probability of B, P(A | B) is the probability of A given that B is true. 

P(B | A) is the probability of B given that A is true, then Bayes’ Theorem states: 

P(A | B) =
P(B | A) P(A)

∑ P(B | Ai)P(Ai)n
i=1

 

Application of Bayes’ Theorem 

 In situations where all the events of sample space are mutually exclusive events. 

 
 In situations where either P( Ai ∩ B ) for each Ai  or P( Ai ) and P(B|Ai ) for each Ai 

is known. 

Problem 

Consider three pen-stands. The first pen-stand contains 2 red pens and 3 blue pens; the 

second one has 3 red pens and 2 blue pens; and the third one has 4 red pens and 1 blue 

pen. There is equal probability of each pen-stand to be selected. If one pen is drawn at 

random, what is the probability that it is a red pen? 

Solution 

Let Ai be the event that ith pen-stand is selected.  

Here, i = 1,2,3. 

Since probability for choosing a pen-stand is equal, P(Ai) = 1/3 

Let B be the event that a red pen is drawn. 

The probability that a red pen is chosen among the five pens of the first pen-stand,  

P(B|A1) = 2/5 

 

https://en.wikipedia.org/wiki/Event_%28probability_theory%29
https://en.wikipedia.org/wiki/Marginal_probability
https://en.wikipedia.org/wiki/Marginal_probability
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The probability that a red pen is chosen among the five pens of the second pen-stand,  

 P(B|A2) = 3/5 

The probability that a red pen is chosen among the five pens of the third pen-stand,  

 P(B|A3) = 4/5 

According to Bayes’ Theorem, 

P(B)  = P(A1).P(B|A1) + P(A2).P(B|A2) + P(A3).P(B|A3) 

          = 1/3 ∙ 2/5  +  1/3 ∙ 3/5  +  1/3 ∙ 4/5 

       = 3/5 

 



Discrete Mathematics 

51 

  
 

Part 5: Mathematical Induction & Recurrence 
Relations 
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Mathematical induction, is a technique for proving results or establishing statements 

for natural numbers. This part illustrates the method through a variety of examples. 

Definition 

Mathematical Induction is a mathematical technique which is used to prove a 

statement, a formula or a theorem is true for every natural number. 

The technique involves two steps to prove a statement, as stated below: 

Step 1(Base step): It proves that a statement is true for the initial value. 

Step 2(Inductive step): It proves that if the statement is true for the nth iteration (or 

number n), then it is also true for (n+1)th iteration ( or number n+1). 

How to Do It 

Step 1: Consider an initial value for which the statement is true. It is to be shown that 

the statement is true for n=initial value. 

Step 2: Assume the statement is true for any value of n=k. Then prove the statement is 

true for n=k+1. We actually break n=k+1 into two parts, one part is n=k (which is already 

proved) and try to prove the other part. 

Problem 1 

3n-1 is a multiple of 2 for n=1, 2, ... 

Solution 

Step 1: For n=1, 31-1 = 3-1 = 2 which is a multiple of 2 

Step 2: Let us assume 3n-1 is true for n=k, Hence, 3k -1 is true (It is an assumption) 

We have to prove that 3k+1-1 is also a multiple of 2 

3k+1 – 1 = 3 × 3k – 1 = (2 × 3k) + (3k –1) 

The first part (2×3k) is certain to be a multiple of 2 and the second part (3k -1) is also true 

as our previous assumption. 

Hence, 3k+1 – 1 is a multiple of 2. 

So, it is proved that 3n – 1 is a multiple of 2. 

 

 

 

 

12.  Mathematical Induction 
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Problem 2 

1 + 3 + 5 + ... + (2n-1) = n2 for n=1, 2, ... 

Solution 

Step 1: For n=1, 1 = 12, Hence, step 1 is satisfied. 

Step 2: Let us assume the statement is true for n=k. 

Hence, 1 + 3 + 5 + ... + (2k-1) = k2 is true (It is an assumption) 

We have to prove that 1 + 3 + 5 + ... + (2(k+1)-1) = (k+1)2 also holds 

 1 + 3 + 5 + ... + (2(k+1) – 1)  

= 1 + 3 + 5 + ... + (2k+2 – 1)  

= 1 + 3 + 5 + ... + (2k + 1) 

= 1 + 3 + 5 + ... + (2k – 1) + (2k + 1) 

= k2 + (2k + 1) 

= (k + 1)2 

So, 1 + 3 + 5 + ... + (2(k+1) – 1) = (k+1)2 hold which satisfies the step 2. 

Hence, 1 + 3 + 5 + ... + (2n – 1) = n2 is proved. 

Problem 3 

Prove that (ab)n = anbn is true for every natural number n 

Solution 

Step 1: For n=1, (ab)1 = a1b1 = ab, Hence, step 1 is satisfied. 

Step 2: Let us assume the statement is true for n=k, Hence, (ab)k = akbk is true (It is an 

assumption).  

We have to prove that (ab)k+1 = ak+1bk+1 also hold 

Given,   (ab)k = akbk 

Or,   (ab)k (ab)= (akbk) (ab) [Multiplying both side by ‘ab’] 

Or,   (ab)k+1 = (aak) ( bbk)  

Or,   (ab)k+1 = (ak+1bk+1) 

Hence, step 2 is proved. 

So, (ab)n = anbn is true for every natural number n. 
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Strong Induction 

Strong Induction is another form of mathematical induction. Through this induction 

technique, we can prove that a propositional function, P(n) is true for all positive integers, 

n, using the following steps: 

 Step 1(Base step): It proves that the initial proposition P(1) true. 

 Step 2(Inductive step): It proves that the conditional statement 

[𝑃(1) ⋀  𝑃(2) ⋀ 𝑃(3) ⋀ … … … … ⋀ 𝑃(𝑘)]  →  𝑃(𝑘 + 1) is true for positive integers k.   
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In this chapter, we will discuss how recursive techniques can derive sequences and be 

used for solving counting problems. The procedure for finding the terms of a sequence in 

a recursive manner is called recurrence relation. We study the theory of linear 

recurrence relations and their solutions. Finally, we introduce generating functions for 

solving recurrence relations. 

Definition  

A recurrence relation is an equation that recursively defines a sequence where the next 

term is a function of the previous terms (Expressing Fn as some combination of Fi with 

i<n). 

Example: Fibonacci series: Fn = Fn-1 + Fn-2, Tower of Hanoi: Fn = 2Fn-1 + 1 

Linear Recurrence Relations 

A linear recurrence equation of degree k or order k is a recurrence equation which is in 

the format xn= A1 xn-1+ A2 xn-1+ A3 xn-1+... Ak xn-k (An is a constant and Ak≠0) on a 
sequence of numbers as a first-degree polynomial. 

These are some examples of linear recurrence equations: 

Recurrence 

relations 
Initial values Solutions 

Fn = Fn-1 + Fn-2 a1=a2=1 Fibonacci number 

Fn = Fn-1 + Fn-2 a1=1, a2=3 Lucas number 

Fn = Fn-2 + Fn-3 a1=a2=a3=1 Padovan sequence 

Fn = 2Fn-1 + Fn-2 a1=0, a2=1 Pell number 

How to solve linear recurrence relation 

Suppose, a two ordered linear recurrence relation is: Fn = AFn-1 +BFn-2 where A and B are 

real numbers.  

The characteristic equation for the above recurrence relation is:  

x2 − Ax − B = 0 

Three cases may occur while finding the roots: 

Case 1: If this equation factors as (x- x1)(x- x1) = 0 and it produces two distinct real roots 

x1 and x2, then Fn = ax1
n+ bx2

n is the solution. [Here, a and b are constants] 

Case 2: If this equation factors as (x- x1)2 = 0 and it produces single real root x1, then 

Fn = a x1
n+ bn x1

n is the solution. 

Case 3: If the equation produces two distinct complex roots, x1 and x2 in polar form x1 = 

r ∠ θ and x2 = r ∠(- θ), then Fn = rn (a cos(nθ)+ b sin(nθ)) is the solution. 

13.  Recurrence Relation 

http://mathworld.wolfram.com/RecurrenceEquation.html
http://mathworld.wolfram.com/Sequence.html
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Problem 1 

Solve the recurrence relation Fn = 5Fn-1 - 6Fn-2 where F0 = 1 and F1 = 4 

Solution 

The characteristic equation of the recurrence relation is: 

x2 – 5x + 6=0,  

So,  (x-3) (x-2) = 0 

 

Hence, the roots are: 

x1 = 3  and  x2= 2 

 

The roots are real and distinct. So, this is in the form of case 1  

Hence, the solution is: 

Fn = ax1
n+ bx2

n 

 

Here, Fn = a3n+ b2n (As x1 = 3 and x2= 2) 

Therefore, 

1=F0 = a30+ b20 = a+b 

4=F1 = a31+ b21 = 3a+2b 

Solving these two equations, we get a = 2 and b = -1 

Hence, the final solution is: 

Fn = 2.3n + (-1) . 2n= 2.3n - 2n 

 

Problem 2 

Solve the recurrence relation Fn = 10Fn-1 - 25Fn-2 where F0 = 3 and F1 = 17 

Solution 

The characteristic equation of the recurrence relation is:  

x2 –10x -25 =0,  

So,  (x – 5)2 = 0 

Hence, there is single real root x1 = 5  

As there is single real valued root, this is in the form of case 2  

Hence, the solution is: 

Fn = ax1
n + bnx1

n  

3 = F0= a.50+ b.0.50 = a 

17 = F1= a.51 + b.1.51 = 5a+5b 

Solving these two equations, we get a = 3 and b = 2/5 
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Hence, the final solution is:  

Fn = 3.5n + (2/5) .n.2n 

Problem 3 

Solve the recurrence relation Fn = 2Fn-1 - 2Fn-2 where F0 = 1 and F1 = 3 

Solution 

The characteristic equation of the recurrence relation is:  

x2 –2x -2 =0 

Hence, the roots are:  

x1 = 1+ i  and  x2= 1- i 

In polar form,  

x1 = r ∠ θ  and  x2 = r ∠(- θ),  where r= √2 and θ= π / 4 

The roots are imaginary. So, this is in the form of case 3.  

Hence, the solution is: 

Fn = (√2 )n (a cos(n. π / 4) + b sin(n. π / 4))  

1 = F0 = (√2 )0 (a cos(0. π / 4) + b sin(0. π / 4) ) = a 

3 = F1 = (√2 )1 (a cos(1. π / 4) + b sin(1. π / 4) ) = √2 ( a/√2 + b/√2) 

Solving these two equations we get a = 1 and b = 2 

Hence, the final solution is: 

Fn = (√2 )n (cos(n. π / 4)+ 2 sin(n. π / 4)) 

Non-Homogeneous Recurrence Relation and Particular Solutions  

A recurrence relation is called non-homogeneous if it is in the form  

Fn = AFn–1 + BFn-2 + f(n)  where f(n) ≠ 0 

Its associated homogeneous recurrence relation is Fn = AFn–1 + BFn-2 

The solution (an) of a non-homogeneous recurrence relation has two parts.  

First part is the solution (ah) of the associated homogeneous recurrence relation and the 

second part is the particular solution (at).  

an= ah + at 

Solution to the first part is done using the procedures discussed in the previous section. 

To find the particular solution, we find an appropriate trial solution. 

Let f(n) = cxn ; let x2 = Ax + B be the characteristic equation of the associated 

homogeneous recurrence relation and let x1 and x2 be its roots.  

 If x ≠ x1 and x ≠ x2, then at = Axn 

 If x = x1, x ≠ x2, then at = Anxn 

 If x= x1 = x2, then at = An2xn 
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Example 

Let a non-homogeneous recurrence relation be Fn = AFn–1 + BFn-2 + f(n) with characteristic 

roots x1 = 2 and x2 = 5. Trial solutions for different possible values of f(n) are as follows: 

f(n) Trial solutions 

4 A 

5.2n An2n 

8.5n An5n 

4n A4n 

2n2 + 3n + 1 An2 + Bn + C 

 

Problem 

Solve the recurrence relation Fn = 3Fn-1 +10Fn-2 +7.5n
 where F0 = 4 and F1 = 3 

Solution 

This is a linear non-homogeneous relation, where the associated homogeneous equation 

is Fn = 3Fn-1 +10Fn-2 and f(n) = 7.5n. 

The characteristic equation of its associated homogeneous relation is:   

x2 –3x -10 =0  

Or,  (x - 5)(x + 2) = 0 

Or,  x1= 5 and x2= -2 

Hence ah = a.5n + b.(-2)n , where a and b are constants. 

Since f(n) = 7.5n, i.e. of the form c.xn, a reasonable trial solution of at will be Anxn 

at = Anxn = An5n 

After putting the solution in the recurrence relation, we get: 

An5n = 3A(n – 1)5n-1 + 10A(n – 2)5n-2 + 7.5n 

Dividing both sides by 5n-2, we get: 

An52 = 3A(n – 1)5 + 10A(n – 2)50 + 7.52 

Or,  25An = 15An – 15A + 10An – 20A + 175 

Or,  35A = 175 

Or, A = 5 

So,  Fn = An5n = 5n5n = n5n+1 

The solution of the recurrence relation can be written as:  

Fn =  ah + at  

               = a.5n + b.(-2)n + n5n+1 

Putting values of F0 = 4 and F1 = 3, in the above equation, we get a = -2 and b = 6 

Hence, the solution is: 

Fn =  n5n+1 + 6.(-2)n  -2.5n 
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Generating Functions 

Generating Functions represents sequences where each term of a sequence is expressed 

as a coefficient of a variable x in a formal power series.  

Mathematically, for an infinite sequence, say 𝑎0, 𝑎1, 𝑎2, … … … … , 𝑎𝑘 , … … …, the generating 

function will be: 

𝐺𝑥 =  𝑎0 + 𝑎1𝑥 +  𝑎2𝑥2 +  … … … +  𝑎𝑘𝑥𝑘 +  … … … =  ∑ 𝑎𝑘𝑥𝑘

∞

𝑘=0

 

Some Areas of Application:  

Generating functions can be used for the following purposes: 

 For solving a variety of counting problems. For example, the number of ways to 

make change for a Rs. 100 note with the notes of denominations Rs.1, Rs.2, Rs.5, 

Rs.10, Rs.20 and Rs.50 

 For solving recurrence relations 

 For proving some of the combinatorial identities 

 For finding asymptotic formulae for terms of sequences 

Problem 1 

What are the generating functions for the sequences {𝑎𝑘} with 𝑎𝑘 = 2 and 𝑎𝑘 = 3𝑘? 

Solution 

When 𝑎𝑘 = 2, generating function, G(x) = ∑ 2𝑥𝑘∞
𝑘=0  = 2 + 2𝑥 + 2𝑥2 +  2𝑥3 + … … … 

 
When 𝑎𝑘 = 3𝑘, G(x) = ∑ 3𝑘𝑥𝑘∞

𝑘=0  = 0 + 3𝑥 + 6𝑥2 +  9𝑥3 +  … … … 

 

Problem 2 

What is the generating function of the infinite series; 1, 1, 1, 1, ……….? 

Solution 

Here, 𝑎𝑘 = 1, 𝑓𝑜𝑟 0 ≤ 𝑘 ≤ ∞. 

Hence,   G(x) = 1 + 𝑥 +  𝑥2 +  𝑥3 + … … … =  
1

(1−𝑥)
 

Some Useful Generating Functions 

 For 𝑎𝑘 =  𝑎𝑘, G(x) = ∑ 𝑎𝑘𝑥𝑘 = 1 + 𝑎𝑥 + 𝑎2𝑥2 +  … … … =  1
(1 − 𝑎𝑥)⁄  ∞

𝑘=0  

 For 𝑎𝑘 = (𝑘 + 1), G(x) = ∑ (𝑘 + 1)𝑥𝑘 = 1 + 2𝑥 + 3𝑥2 + … … … =  
1

(1−𝑥)2 ∞
𝑘=0  

 For 𝑎𝑘 =  𝐶𝑘
𝑛, G(x) = ∑  𝐶𝑘

𝑛𝑥𝑘 = 1 + 𝐶1
𝑛𝑥 + 𝐶2

𝑛𝑥2 + … … … +  𝑥2 =   (1 + 𝑥)𝑛∞
𝑘=0  

 For 𝑎𝑘 =  
1

𝑘!
 ,  G(x) = ∑  

𝑥𝑘

𝑘!
= 1 +  𝑥 +  

𝑥2

2!
+  

𝑥3

3!
… … …  =   𝑒𝑥∞

𝑘=0  
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Part 6: Discrete Structures 
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The previous part brought forth the different tools for reasoning, proofing and problem 

solving. In this part, we will study the discrete structures that form the basis of formulating 

many a real-life problem. 

The two discrete structures that we will cover are graphs and trees. A graph is a set of 

points, called nodes or vertices, which are interconnected by a set of lines called edges. 

The study of graphs, or graph theory is an important part of a number of disciplines in 

the fields of mathematics, engineering and computer science.  

What is a Graph? 

Definition: A graph (denoted as G = (V, E)) consists of a non-empty set of vertices or 

nodes V and a set of edges E.  

Example: Let us consider, a Graph is G = (V, E) where V = {a, b, c, d} and E = {{a, b}, 

{a, c}, {b, c},{c, d}} 

 

Figure: A graph with four vertices and four edges 

Degree of a Vertex: The degree of a vertex V of a graph G (denoted by deg (V)) is the 

number of edges incident with the vertex V. 

Vertex Degree Even / Odd 

a 2 even 

b 2 even 

c 3 odd 

d 1 odd 
 

Even and Odd Vertex: If the degree of a vertex is even, the vertex is called an even 

vertex and if the degree of a vertex is odd, the vertex is called an odd vertex. 

Degree of a Graph: The degree of a graph is the largest vertex degree of that graph. For 

the above graph the degree of the graph is 3. 

The Handshaking Lemma: In a graph, the sum of all the degrees of all the vertices is 

equal to twice the number of edges. 

14.  Graph and Graph Models 

d 

c 

b 

a 

http://www.geom.uiuc.edu/~doty/glossary.html#Degree%20of%20a%20graph
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Types of Graphs 

There are different types of graphs, which we will learn in the following section. 

Null Graph  

A null graph has no edges. The null graph of n vertices is denoted by Nn 

 
Null graph of 3 vertices 

Simple Graph  

A graph is called simple graph/strict graph if the graph is undirected and does not contain 

any loops or multiple edges.  

 
Simple graph 

Multi-Graph  

If in a graph multiple edges between the same set of vertices are allowed, it is called Multi-

graph. In other words, it is a graph having at least one loop or multiple edges. 

 
Multi-graph 

 

 

 

c 

b 

a 

c 

b 

a 

c 

b 

a 
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Directed and Undirected Graph  

A graph G = (V, E) is called a directed graph if the edge set is made of ordered vertex pair 

and a graph is called undirected if the edge set is made of unordered vertex pair. 

 
  Undirected graph 

 
  Directed graph 

Connected and Disconnected Graph  

A graph is connected if any two vertices of the graph are connected by a path; while a 

graph is disconnected if at least two vertices of the graph are not connected by a path. If 

a graph G is disconnected, then every maximal connected subgraph of G is called a 

connected component of the graph G. 

 

 
  Connected graph 

c 

b 

a 

c 

b 

a 

d 

c 

b 

a 
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  Unconnected graph 

Regular Graph  

A graph is regular if all the vertices of the graph have the same degree. In a regular graph 

G of degree r, the degree of each vertex of G is r. 

 
  Regular graph of degree 3 

Complete Graph  

A graph is called complete graph if every two vertices pair are joined by exactly 

one edge. The complete graph with n vertices is denoted by Kn 

 
  Complete graph K3 

Cycle Graph  

If a graph consists of a single cycle, it is called cycle graph. The cycle graph with n vertices 

is denoted by Cn 

d 

c 

b 

a 

c 

c 

a 

d 

c 

b 

a 
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Cyclic graph C3 

Bipartite Graph  

If the vertex-set of a graph G can be split into two disjoint sets, 𝑉1 and 𝑉2, in such a way 

that each edge in the graph joins a vertex in 𝑉1 to a vertex in 𝑉2, and there are no edges 

in G that connect two vertices in 𝑉1 or two vertices in 𝑉2, then the graph G is called a 

bipartite graph.  

 
  Bipartite graph 

Complete Bipartite Graph  

A complete bipartite graph is a bipartite graph in which each vertex in the first set is joined 

to every single vertex in the second set. The complete bipartite graph is denoted by 𝐾𝑥,𝑦 

where the graph G contains x vertices in the first set and y vertices in the second set. 

 
  Complete bipartite graph K2,2 
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b 
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b 
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Representation of Graphs 

There are mainly two ways to represent a graph: 

 Adjacency Matrix 

 Adjacency List 

Adjacency Matrix 

An Adjacency Matrix A[V][V] is a 2D array of size V×V where V is the number of vertices 

in a undirected graph. If there is an edge between Vx to Vy then the value of A[Vx][ Vy]=1 

and A[Vy][ Vx]=1, otherwise the value will be zero. And for a directed graph, if there is an 

edge between Vx to Vy, then the value of A[Vx][ Vy]=1, otherwise the value will be zero. 

Adjacency Matrix of an Undirected Graph 

Let us consider the following undirected graph and construct the adjacency matrix: 

 
An undirected graph 

Adjacency matrix of the above undirected graph will be: 

 a b c d 

a 0 1 1 0 

b 1 0 1 0 

c 1 1 0 1 

d 0 0 1 0 

 

 

 

 

 

 

 

d 

c 
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Adjacency Matrix of a Directed Graph 

Let us consider the following directed graph and construct its adjacency matrix: 

 
A directed graph 

Adjacency matrix of the above directed graph will be: 

 a b c d 

a 0 1 1 0 

b 0 0 1 0 

c 0 0 0 1 

d 0 0 0 0 

Adjacency List 

In adjacency list, an array (A[V]) of linked lists is used to represent the graph G with V 

number of vertices. An entry A[Vx] represents the linked list of vertices adjacent to the 

Vx-th vertex. The adjacency list of the undirected graph is as shown in the figure below: 

 

 

 

 

d 
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a 
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a 
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Planar vs. Non-planar Graph 

Planar graph: A graph G is called a planar graph if it can be drawn in a plane without any 

edges crossed. If we draw graph in the plane without edge crossing, it is called embedding 

the graph in the plane. 

 
Planar graph 

Non-planar graph: A graph is non-planar if it cannot be drawn in a plane without graph 

edges crossing.  

 
Non-planar graph 

Isomorphism  

If two graphs G and H contain the same number of vertices connected in the same way, 

they are called isomorphic graphs (denoted by G≅H).  

It is easier to check non-isomorphism than isomorphism. If any of these following 

conditions occurs, then two graphs are non-isomorphic: 

 The number of connected components are different 

 Vertex-set cardinalities are different 

 Edge-set cardinalities are different 

 Degree sequences are different 

 

 

 

 

d 

c 

b 

a 

d 

c b 

a 

http://mathworld.wolfram.com/Graph.html
http://mathworld.wolfram.com/Plane.html
http://mathworld.wolfram.com/GraphEdge.html
http://mathworld.wolfram.com/GraphEdge.html
http://mathworld.wolfram.com/Graph.html
http://mathworld.wolfram.com/Plane.html
http://mathworld.wolfram.com/GraphEdge.html
http://mathworld.wolfram.com/GraphEdge.html
http://mathworld.wolfram.com/Graph.html
http://en.wikipedia.org/wiki/Degree_%28graph_theory%29#Degree_sequence
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Example 

The following graphs are isomorphic: 

 
Three isomorphic graphs 

Homomorphism 

A homomorphism from a graph G to a graph H is a mapping (May not be a bijective 

mapping) h: GH such that: (x, y) ∈ E(G)  (h(x), h(y)) ∈ E(H) . It maps adjacent vertices 

of graph G to the adjacent vertices of the graph H.  

Properties of Homomorphisms: 

 A homomorphism is an isomorphism if it is a bijective mapping.  

 Homomorphism always preserves edges and connectedness of a graph.  

 The compositions of homomorphisms are also homomorphisms.  

 To find out if there exists any homomorphic graph of another graph is a NP-
complete problem. 

Euler Graphs 

A connected graph G is called an Euler graph, if there is a closed trail which includes every 

edge of the graph G. An Euler path is a path that uses every edge of a graph exactly once. 

An Euler path starts and ends at different vertices.  

An Euler circuit is a circuit that uses every edge of a graph exactly once. An Euler circuit 

always starts and ends at the same vertex. A connected graph G is an Euler graph if and 

only if all vertices of G are of even degree, and a connected graph G is Eulerian if and only 

if its edge set can be decomposed into cycles. 

 
Euler graph 
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https://en.wikipedia.org/wiki/Vertex_%28graph_theory%29
https://en.wikipedia.org/wiki/NP-complete
https://en.wikipedia.org/wiki/NP-complete
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The above graph is an Euler graph as “a 1 b 2 c 3 d 4 e 5 c 6 f 7 g” covers all the edges 

of the graph. 

 
Non-Euler graph 

Hamiltonian Graphs 

A connected graph G is called Hamiltonian graph if there is a cycle which includes every 

vertex of G and the cycle is called Hamiltonian cycle. Hamiltonian walk in graph G is a 

walk that passes through each vertex exactly once. 

If G is a simple graph with n vertices, where n ≥ 3 If deg(v) ≥ n/2  for each vertex v, then 

the graph G is Hamiltonian graph. This is called Dirac's Theorem. 

If G is a simple graph with n vertices, where n ≥ 2 if deg(x) + deg(y) ≥ n for each pair of 

non-adjacent vertices x and y, then the graph G is Hamiltonian graph. This is called Ore's 

theorem. 

 
Hamiltonian graph 

 

 
Non-Hamiltonian graph 
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Graph Coloring 

Graph coloring is the procedure of assignment of colors to each vertex of a graph G such 

that no adjacent vertices get same color. The objective is to minimize the number of colors 

while coloring a graph. The smallest number of colors required to color a graph G is called 

its chromatic number of that graph. Graph coloring problem is a NP Complete problem. 

Method to Color a Graph 

The steps required to color a graph G with n number of vertices are as follows: 

Step 1.  Arrange the vertices of the graph in some order. 

Step 2.  Choose the first vertex and color it with the first color. 

Step 3.  Choose the next vertex and color it with the lowest numbered color that has not  

been colored on any vertices adjacent to it. If all the adjacent vertices are colored 

with this color, assign a new color to it. Repeat this step until all the vertices are 

colored. 

Example 

 
Graph coloring 

In the above figure, at first vertex a is colored red. As the adjacent vertices of vertex a 

are again adjacent, vertex b and vertex d are colored with different color, green and blue 

respectively. Then vertex c is colored as red as no adjacent vertex of c is colored red. 

Hence, we could color the graph by 3 colors. Hence, the chromatic number of the graph 

is 3. 

 

 

 

Applications of Graph Coloring 

Some applications of graph coloring include – 

 

15.  More on Graphs 
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http://www.geeksforgeeks.org/np-completeness-set-1/
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 Register Allocation 

 Map Coloring 

 Bipartite Graph Checking 

 Mobile Radio Frequency Assignment 

 Making time table, etc. 

Graph Traversal 

Graph traversal is the problem of visiting all the vertices of a graph in some systematic 

order. There are mainly two ways to traverse a graph. 

 Breadth First Search 

 Depth First Search 

Breadth First Search 

Breadth First Search (BFS) starts at starting level-0 vertex X of the graph G. Then we visit 

all the vertices that are the neighbors of X. After visiting, we mark the vertices as "visited," 

and place them into level-1. Then we start from the level-1 vertices and apply the same 

method on every level-1 vertex and so on. The BFS traversal terminates when every vertex 

of the graph has been visited. 

BFS Algorithm 

The concept is to visit all the neighbor vertices before visiting other neighbor vertices of 

neighbor vertices.  

 Initialize status of all nodes as “Ready” 

 Put source vertex in a queue and change its status to “Waiting” 

 Repeat the following two steps until queue is empty: 

 Remove the first vertex from the queue and mark it as “Visited” 

 Add to the rear of queue all neighbors of the removed vertex whose status 

is “Ready”. Mark their status as “Waiting”. 

 

 

 

 

 

 

Problem 

Let us take a graph (Source vertex is ‘a’) and apply the BFS algorithm to find out the 

traversal order. 

http://en.wikipedia.org/wiki/Register_allocation
http://www.zib.de/groetschel/teaching/SS2012/GraphCol%20and%20FrequAssignment.pdf
https://en.wikipedia.org/wiki/Graph_%28mathematics%29
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A graph 

Solution: 

 Initialize status of all vertices to “Ready” 

 Put a in queue and change its status to “Waiting” 

 Remove a from queue, mark it as “Visited” 

 Add a’s neighbors in “Ready” state b, d and e to end of queue and mark them as 

“Waiting”  

 

 Remove b from queue, mark it as “Visited”, put its “Ready” neighbor c at end of 

queue and mark c as “Waiting” 
 

 Remove d from queue and mark it as “Visited”. It has no neighbor in “Ready” state. 

 

 Remove e from queue and mark it as “Visited”. It has no neighbor in “Ready” state. 

 

 Remove c from queue and mark it as “Visited”. It has no neighbor in “Ready” state. 

 

 Queue is empty so stop. 

So the traversal order is:  

abdec   

 

The alternate orders of traversal are:  

abedc  

Or, 

adbec  

Or, 

aebdc  

Or,  

abedc  

Or, 

adebc  

Application of BFS 

 Finding the shortest path  

 Minimum spanning tree for un-weighted graph 

 GPS navigation system 
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 Detecting cycles in an undirected graph  

 Finding all nodes within one connected component 

Complexity Analysis 

Let G(V, E) be a graph with |V| number of vertices and |E| number of edges. If breadth 

first search algorithm visits every vertex in the graph and checks every edge, then its 

time complexity would be: 

O(|V| + |E|). O(|E|) 

 It may vary between  O(1)  and O(|V2|)  

Depth First Search 

Depth First Search (DFS) algorithm starts from a vertex v, then it traverses to its 

adjacent vertex (say x) that has not been visited before and mark as "visited" and goes 

on with the adjacent vertex of x and so on.  

If at any vertex, it encounters that all the adjacent vertices are visited, then it backtracks 

until it finds the first vertex having an adjacent vertex that has not been traversed 

before. Then, it traverses that vertex, continues with its adjacent vertices until it 

traverses all visited vertices and has to backtrack again. In this way, it will traverse all 

the vertices reachable from the initial vertex v.  

DFS Algorithm 

The concept is to visit all the neighbor vertices of a neighbor vertex before visiting the 

other neighbor vertices. 

 Initialize status of all nodes as “Ready” 

 Put source vertex in a stack and change its status to “Waiting” 

 Repeat the following two steps until stack is empty: 

 Pop the top vertex from the stack and mark it as “Visited” 

 Push onto the top of the stack all neighbors of the removed vertex whose 

status is “Ready”. Mark their status as “Waiting”. 

 

 

 

Problem 

Let us take a graph (Source vertex is ‘a’) and apply the DFS algorithm to find out the 

traversal order. 
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A graph 

Solution 

 Initialize status of all vertices to “Ready” 

 Push a in stack and change its status to “Waiting” 

 Pop a and mark it as “Visited” 

 Push a’s neighbors in “Ready” state e, d and b to top of stack and mark them as 

“Waiting”  

 

 Pop b from stack, mark it as “Visited”, push its “Ready” neighbor c onto stack. 

 Pop c from stack and mark it as “Visited”. It has no “Ready” neighbor. 

 Pop d from stack and mark it as “Visited”. It has no “Ready” neighbor. 

 Pop e from stack and mark it as “Visited”. It has no “Ready” neighbor. 

 Stack is empty. So stop. 

So the traversal order is:  

abcde 

The alternate orders of traversal are:  

aebcd  

Or, 

abecd  

Or, 

adebc  

Or, 

adceb  

Or, 

adcbe 

 

 

 

Complexity Analysis 

Let G(V, E) be a graph with |V| number of vertices and |E| number of edges. If DFS 

algorithm visits every vertex in the graph and checks every edge, then the time 

complexity is: 
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Θ (|V| + |E|) 

Applications 

 Detecting cycle in a graph  

 To find topological sorting 

 To test if a graph is bipartite 

 Finding connected components 

 Finding the bridges of a graph 

 Finding bi-connectivity in graphs 

 Solving the Knight’s Tour problem 

 Solving puzzles with only one solution 
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Tree is a discrete structure that represents hierarchical relationships between individual 

elements or nodes. A tree in which a parent has no more than two children is called a 

binary tree. 

Tree and its Properties 

Definition: A Tree is a connected acyclic undirected graph. There is a unique path between 

every pair of vertices in G. A tree with N number of vertices contains (N-1) number of 

edges. The vertex which is of 0 degree is called root of the tree. The vertex which is of 1 

degree is called leaf node of the tree and the degree of an internal node is at least 2. 

Example: The following is an example of a tree: 

 

A tree 

Centers and Bi-Centers of a Tree 

The center of a tree is a vertex with minimal eccentricity. The eccentricity of a vertex X in 

a tree G is the maximum distance between the vertex X and any other vertex of the tree. 

The maximum eccentricity is the tree diameter. If a tree has only one center, it is called 

Central Tree and if a tree has only more than one centers, it is called Bi-central Tree. Every 

tree is either central or bi-central. 

Algorithm to find centers and bi-centers of a tree 

Step 1: Remove all the vertices of degree 1 from the given tree and also remove their 

incident edges. 

Step 2: Repeat step 1 until either a single vertex or two vertices joined by an edge is left. 

If a single vertex is left then it is the center of the tree and if two vertices joined by an 

edge is left then it is the bi-center of the tree. 

 

 

Problem 1  

16.  Introduction to Trees  

http://mathworld.wolfram.com/GraphVertex.html
http://mathworld.wolfram.com/ConnectedGraph.html
http://mathworld.wolfram.com/GraphDiameter.html
https://en.wikipedia.org/wiki/Graph_center
https://en.wikipedia.org/wiki/Graph_center
https://proofwiki.org/wiki/Definition:Center_of_Tree
https://proofwiki.org/wiki/Definition:Bicenter
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Find out the center/bi-center of the following tree: 

 

Tree T1 

Solution 

At first, we will remove all vertices of degree 1 and also remove their incident edges and 

get the following tree: 

 

Tree after removing vertices of degree 1 from T1 

 

Again, we will remove all vertices of degree 1 and also remove their incident edges and 

get the following tree: 

 

Tree after again removing vertices of degree 1 

 

Finally we got a single vertex ‘c’ and we stop the algorithm. As there is single vertex, this 

tree has one center ‘c’ and the tree is a central tree. 

 

a b c 

g 

d e 

f 

b c d 

c 
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Problem 2  

Find out the center/bi-center of the following tree: 

 

A tree T2 

Solution 

At first, we will remove all vertices of degree 1 and also remove their incident edges and 

get the following tree: 

 

Tree after removing vertices of degree 1 from T2 

 

Again, we will remove all vertices of degree 1 and also remove their incident edges and 

get the following tree: 

 

Tree after again removing vertices of degree 1 

 

Finally, we got two vertices ‘c’ and ‘d’ left, hence we stop the algorithm. As  two vertices 

joined by an edge is left, this tree has bi-center ‘cd’ and the tree is bi-central. 

a b c 
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Labeled Trees 

Definition: A labeled tree is a tree the vertices of which are assigned unique numbers 

from 1 to n. We can count such trees for small values of n by hand so as to conjecture a 

general formula. The number of labeled trees of n number of vertices is nn-2. Two labeled 

trees are isomorphic if their graphs are isomorphic and the corresponding points of the 

two trees have the same labels. 

Example 

 

A labeled tree with two vertices 

 

                 

 

 

Three possible labeled tree with three vertices 

Unlabeled trees 

Definition: An unlabeled tree is a tree the vertices of which are not assigned any numbers. 

The number of labeled trees of n number of vertices is 
(2𝑛)!

(𝑛+1)!𝑛!
  ( nth Catalan number) 

Example 

 

An unlabeled tree with two vertices 

 

 

1 2 

1 2 3 1 3 2 

2 1 3 

http://en.wikipedia.org/wiki/Tree_%28graph_theory%29#Labeled_trees
http://en.wikipedia.org/wiki/Tree_%28graph_theory%29#Unlabeled_trees
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An unlabeled tree with three vertices 

 

 

 

 
 

 

 
 

 

Two possible unlabeled trees with four vertices 

 

Rooted Tree 

A rooted tree G is a connected acyclic graph with a special node that is called the root of 

the tree and every edge directly or indirectly originates from the root. An ordered rooted 

tree is a rooted tree where the children of each internal vertex are ordered. If every 

internal vertex of a rooted tree has not more than m children, it is called an m-ary tree. 

If every internal vertex of a rooted tree has exactly m children, it is called a full m-ary 

tree. If m = 2, the rooted tree is called a binary tree. 
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A Rooted Tree 

Binary Search Tree 

Binary Search tree is a binary tree which satisfies the following property: 

 X in left sub-tree of vertex V, Value(X)  Value (V) 

 Y in right sub-tree of vertex V, Value(Y)  Value (V) 

So, the value of all the vertices of the left sub-tree of an internal node V are less than or 

equal to V and the value of all the vertices of the right sub-tree of the internal node V are 

greater than or equal to V. The number of links from the root node to the deepest node is 

the height of the Binary Search Tree. 

Example 

 

A Binary Search Tree 

 

 

 

Root Node 

Leaf 

Node 

Leaf 

Node 
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Node 
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Node 
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Node 
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Node 

Internal 
Node Internal 

Node 
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Algorithm to search for a key in BST 

BST_Search(x, k) 

if ( x = NIL or k = Value[x] ) 

return x; 

if ( k < Value[x]) 

return BST_Search (left[x], k); 

else  

return BST_Search (right[x], k) 

Complexity of Binary Search Tree 

 Average 

Case 

Worst 

case 

Space Complexity  O(n) O(n) 

Search Complexity O(log n) O(n) 

Insertion 

Complexity 
O(log n) O(n) 

Deletion 

Complexity 
O(log n) O(n) 
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A spanning tree of a connected undirected graph G is a tree that minimally includes all of 

the vertices of G. A graph may have many spanning trees. 

Example 

    

A Graph G 

               

    A Spanning Tree of Graph G 

 

 

17.  Spanning Trees 
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https://en.wikipedia.org/wiki/Undirected_graph
https://en.wikipedia.org/wiki/Vertex_%28graph_theory%29
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Minimum Spanning Tree 

A spanning tree with assigned weight less than or equal to the weight of every possible 

spanning tree of a weighted, connected and undirected graph G, it is called minimum 

spanning tree (MST). The weight of a spanning tree is the sum of all the weights assigned 

to each edge of the spanning tree. 

Example 

           

      Weighted Graph G            A Minimum Spanning Tree of Graph G 

Kruskal's Algorithm  

Kruskal's algorithm is a greedy algorithm that finds a minimum spanning tree for a 

connected weighted graph. It finds a tree of that graph which includes every vertex and 

the total weight of all the edges in the tree is less than or equal to every possible spanning 

tree. 

Algorithm 

Step 1: Arrange all the edges of the given graph G (V,E) in non-decreasing order as per 

their edge weight. 

 

Step 2: Choose the smallest weighted edge from the graph and check if it forms a cycle 

with the spanning tree formed so far.  

 

Step 3: If there is no cycle, include this edge to the spanning tree else discard it.   

 

Step 4: Repeat Step 2 and Step 3 until (V-1) number of edges are left in the spanning 

tree. 
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Problem 

Suppose we want to find minimum spanning tree for the following graph G using Kruskal’s 

algorithm. 

 

Weighted Graph G 

Solution 

From the above graph we construct the following table: 

 

Edge 

No. 

Vertex 

Pair 

Edge 

Weight 

E1 (a, b) 20 

E2 (a, c) 9 

E3 (a, d) 13 

E4 (b, c) 1 

E5 (b, e) 4 

E6 (b, f) 5 

E7 (c, d) 2 

E8 (d, e) 3 

E9 (d, f) 14 

 
 

 

 

 

 

 

b e 

f 

d 

c 

E4:      

    1 

E8:

3 

E9:

14 

E6

:5 

E7:

2 

E5:
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E2:
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E3:

13 

E1: 

20 
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Now we will rearrange the table in ascending order with respect to Edge weight: 

 

Edge 

No. 

Vertex 

Pair 

Edge 

Weight 

E4 (b, c) 1 

E7 (c, d) 2 

E8 (d, e) 3 

E5 (b, e) 4 

E6 (b, f) 5 

E2 (a, c) 9 

E3 (a, d) 13 

E9 (d, f) 14 

E1 (a, b) 20 

 

 

         

 
 

 
 
 

 
 
 

 
                 After adding vertices              After adding edge E4 
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         After adding edge E7              After adding edge E8 

 

 

 

 

    
 
    After adding edge E6       After adding edge E2 

(don’t add E5 since it forms cycle) 

 
 

Since we got all the 5 edges in the last figure, we stop the algorithm and this is the minimal 

spanning tree and its total weight is (1+2+3+5+9) = 20. 
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Prim's Algorithm 

Prim's algorithm, discovered in 1930 by mathematicians, Vojtech Jarnik and Robert C. 

Prim, is a greedy algorithm that finds a minimum spanning tree for a connected weighted 

graph. It finds a tree of that graph which includes every vertex and the total weight of all 

the edges in the tree is less than or equal to every possible spanning tree. Prim’s algorithm 

is faster on dense graphs. 

Algorithm 
 

1. Initialize the minimal spanning tree with a single vertex, randomly chosen from the 

graph. 

 

2. Repeat steps 3 and 4 until all the vertices are included in the tree. 

 

3. Select an edge that connects the tree with a vertex not yet in the tree, so that the 

weight of the edge is minimal and inclusion of the edge does not form a cycle. 

 

4. Add the selected edge and the vertex that it connects to the tree. 

Problem 

Suppose we want to find minimum spanning tree for the following graph G using Prim’s 

algorithm. 

 

Weighted Graph G 

 

 

b e 

f 

d 

c 

1 

3 

14 
5 

2 

4 

a 

9 

13 20 



Discrete Mathematics 

90 

  
 

Solution 

Here we start with the vertex ‘a’ and proceed. 

                   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

No vertices added               After adding vertex ‘a’ 

 
                             

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After adding vertex ‘c’               After adding vertex ‘b’ 
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 After adding vertex ‘d’   After adding vertex ‘e’ 

 

 

 

 

 

 

 

 

 

 

 

After adding vertex ‘f’ 

 

This is the minimal spanning tree and its total weight is (1+2+3+5+9) = 20. 
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Part 7: Boolean Algebra 
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Boolean algebra is algebra of logic. It deals with variables that can have two discrete 

values, 0 (False) and 1 (True); and operations that have logical significance. The earliest 

method of manipulating symbolic logic was invented by George Boole and subsequently 

came to be known as Boolean Algebra.  

Boolean algebra has now become an indispensable tool in computer science for its wide 

applicability in switching theory, building basic electronic circuits and design of digital 

computers. 

Boolean Functions  

A Boolean function is a special kind of mathematical function f: Xn → X of degree n, 

where X = {0, 1} is a Boolean domain and n is a non-negative integer. It describes the 

way how to derive Boolean output from Boolean inputs. 

Example: Let, F(A, B) = A’B’. This is a function of degree 2 from the set of ordered pairs 

of Boolean variables to the set {0, 1} where F(0, 0) = 1, F(0, 1) = 0, F(1, 0) = 0 and  

F(1, 1) = 0 

Boolean Expressions   

A Boolean expression always produces a Boolean value. A Boolean expression is 

composed of a combination of the Boolean constants (True or False), Boolean variables 

and logical connectives. Each Boolean expression represents a Boolean function. 

Example: AB’C is a Boolean expression. 

Boolean Identities 

Double Complement Law 

~(~A) = A 

Complement Law 

A + ~A = 1   (OR Form) 

A · ~A = 0    (AND Form) 

Idempotent Law 

A + A = A    (OR Form) 

A · A = A     (AND Form) 

Identity Law  

A + 0 = A     (OR Form) 

A · 1 = A      (AND Form) 

 

18.  Boolean Expressions and Functions 

https://en.wikipedia.org/wiki/Function_%28mathematics%29
https://en.wikipedia.org/wiki/Boolean_value
https://en.wikipedia.org/wiki/Boolean_data_type
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Dominance Law 

A + 1 = 1      (OR Form) 

A · 0 = 0       (AND Form) 

Commutative Law 

A + B = B + A    (OR Form) 

A· B = B · A        (AND Form) 

Associative Law 

A + (B + C) = (A + B) + C      (OR Form) 

A· (B · C) = (A · B) · C           (AND Form) 

Absorption Law 

A· (A + B) = A 

A + (A · B) = A 

Simplification Law 

A · (~A + B) = A · B 

A + (~A · B) = A + B 

   

Distributive Law 

A + (B · C) = (A + B) · (A + C)  

A · (B + C) = (A · B) + (A · C) 

De-Morgan's Law 

 ~(A · B) = ~A + ~B 

 ~(A+ B) = ~A · ~B 

Canonical Forms 

For a Boolean expression there are two kinds of canonical forms: 

1.  The sum of minterms (SOM) form 

2.  The product of maxterms (POM) form 

The Sum of Minterms (SOM) or Sum of Products (SOP) form 

A minterm is a product of all variables taken either in their direct or complemented form. 

Any Boolean function can be expressed as a sum of its 1-minterms and the inverse of the 

function can be expressed as a sum of its 0-minterms. Hence,  

F (list of variables) = Σ (list of 1-minterm indices)  

and  

F’ (list of variables) = Σ (list of 0-minterm indices) 
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A B C Term Minterm 

0 0 0 x’y’z’ m0 

0 0 1 x’y’z m1 

0 1 0 x’yz’ m2 

0 1 1 x’yz m3 

1 0 0 xy’z’ m4 

1 0 1 xy’z m5 

1 1 0 xyz’ m6 

1 1 1 xyz m7 

Example 

Let,  F(x, y, z) = x’ y’ z’ + x y’ z + x y z’ + x y z 

Or,  F(x, y, z) = m0 + m5 + m6 + m7 

Hence, 

F(x, y, z) = Σ (0, 5, 6, 7) 

 

Now we will find the complement of F(x, y, z) 

F’ (x, y, z) = x’ y z + x’ y’ z + x’ y z’ + x y’ z’ 

Or,  F’(x, y, z) = m3 + m1 + m2 + m4 

Hence,  

F’(x, y, z) = Σ (3, 1, 2, 4) = Σ (1, 2, 3, 4) 

The Product of Maxterms (POM) or Product of Sums (POS) form 

A maxterm is addition of all variables taken either in their direct or complemented form. 

Any Boolean function can be expressed as a product of its 0-maxterms and the inverse of 

the function can be expressed as a product of its 1-maxterms. Hence,  

F (list of variables) = π (list of 0-maxterm indices)  

and  

F’(list of variables) = π (list of 1-maxterm indices). 

A B C Term Maxterm 

0 0 0 x + y + z M0 

0 0 1 x + y + z’ M1 

0 1 0 x + y’ + z M2 

0 1 1 x + y’ + z’ M3 

1 0 0 x’ + y + z M4 

1 0 1 x’ + y + z’ M5 

1 1 0 x’ + y’ + z M6 

1 1 1 x’ + y’ + z’ M7 
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Example 

Let,  F(x, y, z) = (x+y+z) • (x+y+z’) • (x+y’+z) • (x’+y+z) 

Or,  F(x, y, z) = M0 • M1 • M2 • M4 

Hence,  

F (x, y, z) = π (0, 1, 2, 4) 

 

F’'(x, y, z) = (x+y’+z’) • (x’+y+z’) • (x’+y’+z) • (x’+y’+z’) 

Or,  F(x, y, z) = M3 • M5 • M6 • M7 

Hence,  

F ' (x, y, z) = π (3, 5, 6, 7) 

Logic Gates 

Boolean functions are implemented by using logic gates. The following are the logic gates: 

NOT Gate 

A NOT gate inverts a single bit input to a single bit of output. 

 

A ~A 

0 1 

1 0 

Truth table of NOT Gate 

AND Gate 

An AND gate is a logic gate that gives a high output only if all its inputs are high, otherwise 

it gives low output. A dot (.) is used to show the AND operation. 

A B A.B 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

Truth table of AND Gate 
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OR Gate 

An OR gate is a logic gate that gives high output if at least one of the inputs is high. A plus 

(+) is used to show the OR operation. 

 

A B A+B 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

Truth table of OR Gate 

NAND Gate 

A NAND gate is a logic gate that gives a low output only if all its inputs are high, otherwise 

it gives high output.  

A B ~ (A.B) 

0 0 1 

0 1 1 

1 0 1 

1 1 0 

Truth table of NAND Gate 

NOR Gate 

An NOR gate is a logic gate that gives high output if both the inputs are low, otherwise it 

gives low output.  

A B ~ (A+B) 

0 0 1 

0 1 0 

1 0 0 

1 1 0 

Truth table of NOR Gate 
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XOR (Exclusive OR) Gate 

An XOR gate is a logic gate that gives high output if the inputs are different, otherwise it 

gives low output.  

A B A⊕B 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

Truth table of XOR Gate 

X-NOR (Exclusive NOR) Gate 

An EX-NOR gate is a logic gate that gives high output if the inputs are same, otherwise it 

gives low output.  

A B A X-NOR B 

0 0 1 

0 1 0 

1 0 0 

1 1 1 

Truth table of X-NOR Gate 
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Simplification Using Algebraic Functions 

In this approach, one Boolean expression is minimized into an equivalent expression by 

applying Boolean identities. 

 

Problem 1 

Minimize the following Boolean expression using Boolean identities: 

F (A, B, C) = A’B+ BC’+ BC+ AB’C’ 

Solution 

Given,   F (A, B, C) = A’B+ BC’+ BC+ AB’C’ 

Or,   F (A, B, C) = A’B+ (BC’+ BC’) + BC+ AB’C’  

[By idempotent law, BC’ = BC’ + BC’] 

Or,   F (A, B, C) = A’B+ (BC’+ BC) + (BC’+ AB’C’) 

Or,   F (A, B, C) = A’B+ B(C’+ C) + C’(B+ AB’)  

[By distributive laws] 

Or,   F (A, B, C) = A’B+ B.1+ C’(B+ A)    

[ (C’+ C) =1 and absorption law (B+ AB’)= (B+ A)] 

Or,   F (A, B, C) = A’B+ B+ C’(B+ A)     

[ B.1 =B ] 

Or,   F (A, B, C) = B(A’+ 1)+ C’(B+ A)    

Or,   F (A, B, C) = B.1+ C’(B+ A)      

[ (A’+ 1) =1 ] 

Or,   F (A, B, C) = B+ C’(B+ A)           

[ As, B.1 =B ] 

Or,   F (A, B, C) = B+ BC’ + AC’ 

Or,   F (A, B, C) = B(1+ C’) + AC’ 

Or,   F (A, B, C) = B.1 + AC’       

[As, (1+ C’) =1] 

Or,   F (A, B, C) = B + AC’      

[As, B.1 =B] 

19.  Simplification of Boolean Functions  

http://www.ee.surrey.ac.uk/Projects/CAL/digital-logic/boolalgebra/index.html#booleantheorems
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So,   F (A, B, C) = B + AC’ is the minimized form. 

Problem 2 

Minimize the following Boolean expression using Boolean identities: 

F (A, B, C) = (A+B) (B+ C) 

Solution 

Given,   F (A, B, C) = (A+B) (A+ C) 

Or,   F (A, B, C) = A.A+A.C+B.A+ B.C  [Applying distributive Rule] 

Or,   F (A, B, C) = A+A.C+B.A+ B.C  [Applying Idempotent Law] 

Or,   F (A, B, C) = A(1+C)+B.A+ B.C  [Applying distributive Law] 

Or,   F (A, B, C) = A+B.A+ B.C   [Applying dominance Law] 

Or,   F (A, B, C) = (A+1).A+ B.C   [Applying distributive Law] 

Or,   F (A, B, C) = 1.A+ B.C   [Applying dominance Law] 

Or,   F (A, B, C) = A+ B.C    [Applying dominance Law] 

 

So,   F (A, B, C) = A+ BC is the minimized form. 

Karnaugh Maps  

The Karnaugh map (K–map), introduced by Maurice Karnaughin in 1953, is a grid-like 

representation of a truth table which is used to simplify boolean algebra expressions. A 

Karnaugh map has zero and one entries at different positions. It provides grouping 

together Boolean expressions with common factors and eliminates unwanted variables 

from the expression. In a K-map, crossing a vertical or horizontal cell boundary is always 

a change of only one variable. 

Example 1  

An arbitrary truth table is taken below: 

A B AoperationB 

0 0 w 

0 1 x 

1 0 y 

1 1 z 

Truth table  

 

 

 

 

https://en.wikipedia.org/wiki/Maurice_Karnaugh
https://en.wikipedia.org/wiki/Boolean_algebra
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Now we will make a k-map for the above truth table: 

 

Example 2  

Now we will make a K-map for the expression: AB+ A’B’ 

 

Simplification Using K- map 

K-map uses some rules for the simplification of Boolean expressions by combining together 

adjacent cells into single term. The rules are described below: 

Rule 1: Any cell containing a zero cannot be grouped. 

 

 

 

 

w x 

y z 

0 

1 

0 

1 A 

B 

K-map 

1 0 

0 1 

0 

1 

0 

1 A 

B 

K-map 

1 0 

0 1 

00 

1 

0 

01 A 

BC 

Wrong grouping 

1 0 

1 1 

11 10 

http://www.ee.surrey.ac.uk/Projects/Labview/common/glossary.html#Adj
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Rule 2: Groups must contain 2n cells (n starting from 1). 

 

Rule 3: Grouping must be horizontal or vertical, but must not be diagonal. 

 

 

 

 

 

 

1 0 

0 1 

00 

1 

0 

01 A 

BC 

Wrong grouping 

1 0 

1 1 

11 10 

1 1 

0 0 

00 

1 

0 

01 A 

BC 

Wrong diagonal grouping 

1 0 

1 1 

11 10 

1 1 

0 0 

00 

1 

0 

01 A 

BC 

Proper vertical grouping 

1 0 

1 1 

11 10 

1 1 

0 0 

00 

1 

0 

01 A 

BC 

Proper horizontal grouping 

1 0 

1 1 

11 10 
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Rule 4: Groups must be covered as largely as possible. 

 

Rule 5: If 1 of any cell cannot be grouped with any other cell, it will act as a group itself. 

 

Rule 6: Groups may overlap but there should be as few groups as possible. 

 

 

1 0 

1 1 

00 

1 

0 

01 
A 

BC 

Insufficient grouping 

1 0 

1 1 

11 10 

1 0 

1 1 

00 

1 

0 

01 
A 

BC 

Proper grouping 

1 0 

1 1 

11 10 

1 0 

0 1 

00 

1 

0 

01 
A 

BC 

Proper grouping 

1 0 

0 1 

11 10 

0 0 

1 1 

00 

1 

0 

01 
A 

BC 

Proper grouping 

1 1 

1 1 

11 10 
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Rule 7: The leftmost cell/cells can be grouped with the rightmost cell/cells and the 

topmost cell/cells can be grouped with the bottommost cell/cells. 

 

Problem 

Minimize the following Boolean expression using K-map: 

F (A, B, C) = A’BC+ A’BC’+ AB’C’+ AB’C 

Solution 

Each term is put into k-map and we get the following: 

 

Now we will group the cells of 1 according to the rules stated above: 

 

We have got two groups which are termed as A’B and AB’. Hence, F (A, B, C) = A’B+ AB’= 

A⊕B. It is the minimized form. 

 

1 0 

1 0 

00 

1 

0 

01 
A 

BC 

Proper grouping 

0 1 

0 1 

11 10 

0 0 

1 1 

00 

1 

0 

01 
A 

BC 

K-map for F (A, B, C) 

1 1 

0 0 

11 10 

0 0 

1 1 

00 

1 

0 

01 
A 

BC 

K-map for F (A, B, C) 

1 1 

0 0 

11 10 


