Composition of Functions

Definition: For functions f and g, define $f \circ g$, the composition of f and g by,

$$
(f \circ g)(x)=f(g(x))
$$

$\operatorname{Dom}(f \circ g)=\{x \in \operatorname{dom}(g) \mid g(x) \in \operatorname{dom}(f)\}$

Example: Suppose $f(x)=x-2$ and $g(x)=x^{2}$.
(a) Find $(f \circ g)$ and $(g \circ f)$.

$$
\begin{aligned}
& (f \circ g)(x)=f(g(x))=f\left(x^{2}\right)=x^{2}-2 \\
& (g \circ f)(x)=g(f(x))=g(x-2)=(x-2)^{2}=x^{2}-4 x+4
\end{aligned}
$$

***Note: $(f \circ g) \neq(g \circ f)$
(b) Find $(f \circ g)(2)$ and $(g \circ f)(2)$.

$$
\begin{aligned}
& (f \circ g)(2)=f(g(2))=f\left(2^{2}\right)=f(4)=4-2=2 \\
& (g \circ f)(2)=g(f(2))=g(2-2)=g(0)=0^{2}=0
\end{aligned}
$$

Example: For $f(x)=3 x+4$ and $g(x)=5$, find $(f \circ g)$ and $(g \circ f)$.

$$
\begin{aligned}
& (f \circ g)(x)=f(g(x))=f(5)=3(5)+4=19 \\
& (g \circ f)(x)=g(3 x+4)=5
\end{aligned}
$$

Example: For f and g below, note that

$$
f(-3)=1, f(-1)=2, f(2)=3, f(4)=2, \text { and }
$$

$$
g(-2)=-1, g(-1)=-2, g(1)=-1, g(2)=2
$$

Find:

$$
(f \circ g)(2)=f(g(2))=f(2)=3
$$

$$
(g \circ f)(2)=g(f(2))=g(3)=\text { undefined }
$$

Example: $f(x)=x+\frac{1}{x}$. Find $(f \circ f)$.

$$
(f \circ f)(x)=f(f(x))=\left(x+\frac{1}{x}\right)+\left(\frac{1}{x+\frac{1}{x}}\right)=x+\frac{1}{x}+\frac{x}{x^{2}+1}
$$

Next we want to write a function as a composition of 2 simpler functions.
Example: Write $\left(x^{2}+2\right)^{6}$ as a composition $f(g(x))$.
$\left(x^{2}+2\right)^{6}$ has an inner function $g(x)=x^{2}+2$.
Then the outer function $f(x)$ does what remains to be done: $f(x)=x^{6}$. Check: $f(g(x))=f\left(x^{2}+2\right)=\left(x^{2}+2\right)^{6}$.

Example: Write $4 \frac{1}{x}+3$ as a composition $f(g(x))$.
$4\left(\frac{1}{x}\right)+3$ as inner function $g(x)=\frac{1}{x}$.
Then the outer function $f(x)$ does what remains to be done: $f(x)=4 x+3$.
Check: $f(g(x))=f\left(\frac{1}{x}\right)=4\left(\frac{1}{x}\right)+3$.

Example: Write $\sqrt{x+1}$ as a composition $f(g(x))$.
$\sqrt{x+1}$ has inner function $g(x)=x+1$
So $f(x)=\sqrt{x}$.
Check: $f(g(x))=f(x+1)=\sqrt{x+1}$.

Example: Write $x^{4}+x^{2}+1$ as a composition.

$$
x^{4}+x^{2}+1=\left(x^{2}\right)^{2}+x^{2}+1 . \Rightarrow g(x)=x^{2} \Rightarrow f(x)=x^{2}+x+1
$$

Check: $f(g(x))=f\left(x^{2}\right)=\left(x^{2}\right)^{2}+x^{2}+2=x^{4}+x^{2}+1$.

Example: Write $\frac{1}{1+|x|}$ as the composition of 3 functions $h(f(g(x)))$.
$\frac{1}{1+|x|}$ has inner function $g(x)=|x|$
$\frac{1}{(1+x)}$ has inner function $f(x)=1+x$
Thus $h(x)=\frac{1}{x}$.
Check: $h(f(g(x)))=h(f(|x|))=h(1+|x|)=\frac{1}{1+|x|}$

Inverse Functions

Definition: f^{-1}, the inverse of f, is the function, if any, such that

$$
\begin{array}{cr}
\left(f \circ f^{-1}\right)(x)=x & \text { when } f^{-1}(x) \text { is defined and } \\
\left(f^{-1} \circ f\right)(x)=x & \text { when } f(x) \text { is defined }
\end{array}
$$

Example: $f(x)=2 x, g(x)=\frac{x}{2}$
Consider $f(g(x))=f\left(\frac{x}{2}\right)=2\left(\frac{x}{2}\right)=x \quad$ and $\quad g(f(x))=g(2 x)=\frac{2 x}{2}=x$. Thus, $g(x)$ is an inverse function of $f(x)$. I can write $f^{-1}(x)=g(x)=\frac{x}{2}$.

Definition: f is 1-1 ("one-to-one") $\Longleftrightarrow x_{1} \neq x_{2}$ implies $f\left(x_{1}\right) \neq f\left(x_{2}\right)$.
Example: $f(x)=3 x$ is 1-1 but $g(x)=x^{2}$ is not $1-1$ since $1 \neq-1$ but $(-1)^{2}=1^{2}$.

Horizontal Line Test: If every horizontal line intersects the graph of a function f in at most one point, the f is one-to-one.

Example: Which of the following has an inverse?

Answer: The first graph has an inverse and the second graph doesn't.

Theorem: The function f has an inverse if and only if f is $1-1$.

Theorem: $y=f^{-1}(x) \quad \Longleftrightarrow \quad f(y)=x$.

To find $f^{-1}(x)$ for complicated functions:
(1) Switch x and y in $y=f(x)$, i.e. write $x=f(y)$.
(2) Solve for y. After that you can replace y by $f^{-1}(x)$.

Example: $f(x)=x^{3}$, find $f^{-1}(x)$.
$f(y)=x \quad \Longleftrightarrow \quad y^{3}=x \quad \Longleftrightarrow \quad y=x^{\frac{1}{3}} \quad \Longleftrightarrow \quad f^{-1}(x)=x^{\frac{1}{3}}$.
***Note: $f^{-1}(x) \neq(f(x))^{-1}$.
$f^{-1}(x)$ is the inverse of $f(x)$ and $(f(x))^{-1}=\frac{1}{f(x)}$ is the reciprocal of $f(x)$.

Example: $f(x)=\frac{2 x+1}{x-1}$, find $f^{-1}(x)$.

$$
\begin{gathered}
y=\frac{2 x+1}{x-1} \\
x=\frac{2 y+1}{y-1} \\
x(y-1)=2 y+1 \\
x y-x=2 y+1 \\
x y-2 y=x+1 \\
y(x-2)=x+1 \\
y=\frac{x+1}{x-2}
\end{gathered}
$$

Now let's look at how the graph of f is related to the graph of f^{-1}.
Since $y=f^{-1}(x) \Longleftrightarrow f(y)=x$. Thus the graph of $y=f^{-1}(x)$ is the graph of $f(y)=x$ which is just the graph of $f(x)=y$ with x and y interchanged. Interchanging x and y reflects the plane around the major diagonal $y=x$.

Theorem: The graph of $y=f^{-1}(x)$ is the reflection of the graph of $y=f(x)$ across the major diagonal $y=x$.

Theorem: The domain of f^{-1} is the range of f. The range of f^{-1} is the domain of f.

