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xiv

PREFACE

My purpose in writing this book was to provide a clear, accessible treatment of discrete
mathematics for students majoring or minoring in computer science, mathematics, math-
ematics education, and engineering. The goal of the book is to lay the mathematical
foundation for computer science courses such as data structures, algorithms, relational
database theory, automata theory and formal languages, compiler design, and cryptog-
raphy, and for mathematics courses such as linear and abstract algebra, combinatorics,
probability, logic and set theory, and number theory. By combining discussion of theory
and practice, I have tried to show that mathematics has engaging and important applica-
tions as well as being interesting and beautiful in its own right.

A good background in algebra is the only prerequisite; the course may be taken by
students either before or after a course in calculus. Previous editions of the book have
been used successfully by students at hundreds of institutions in North and South Amer-
ica, Europe, the Middle East, Asia, and Australia.

Recent curricular recommendations from the Institute for Electrical and Electronic
Engineers Computer Society (IEEE-CS) and the Association for Computing Machinery
(ACM) include discrete mathematics as the largest portion of “core knowledge” for com-
puter science students and state that students should take at least a one-semester course in
the subject as part of their first-year studies, with a two-semester course preferred when
possible. This book includes the topics recommended by those organizations and can be
used effectively for either a one-semester or a two-semester course.

At one time, most of the topics in discrete mathematics were taught only to upper-
level undergraduates. Discovering how to present these topics in ways that can be under-
stood by first- and second-year students was the major and most interesting challenge of
writing this book. The presentation was developed over a long period of experimentation
during which my students were in many ways my teachers. Their questions, comments,
and written work showed me what concepts and techniques caused them difficulty, and
their reaction to my exposition showed me what worked to build their understanding and
to encourage their interest. Many of the changes in this edition have resulted from con-
tinuing interaction with students.

Themes of a Discrete Mathematics Course
Discrete mathematics describes processes that consist of a sequence of individual steps.
This contrasts with calculus, which describes processes that change in a continuous fash-
ion. Whereas the ideas of calculus were fundamental to the science and technology of the
industrial revolution, the ideas of discrete mathematics underlie the science and technol-
ogy of the computer age. The main themes of a first course in discrete mathematics are
logic and proof, induction and recursion, discrete structures, combinatorics and discrete
probability, algorithms and their analysis, and applications and modeling.

Logic and Proof Probably the most important goal of a first course in discrete math-
ematics is to help students develop the ability to think abstractly. This means learning
to use logically valid forms of argument and avoid common logical errors, appreciating
what it means to reason from definitions, knowing how to use both direct and indirect
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argument to derive new results from those already known to be true, and being able to
work with symbolic representations as if they were concrete objects.

Induction and Recursion An exciting development of recent years has been the
increased appreciation for the power and beauty of “recursive thinking.” To think recur-
sively means to address a problem by assuming that similar problems of a smaller nature
have already been solved and figuring out how to put those solutions together to solve
the larger problem. Such thinking is widely used in the analysis of algorithms, where
recurrence relations that result from recursive thinking often give rise to formulas that are
verified by mathematical induction.

Discrete Structures Discrete mathematical structures are the abstract structures that
describe, categorize, and reveal the underlying relationships among discrete mathemat-
ical objects. Those studied in this book are the sets of integers and rational numbers,
general sets, Boolean algebras, functions, relations, graphs and trees, formal languages
and regular expressions, and finite-state automata.

Combinatorics and Discrete Probability Combinatorics is the mathematics of count-
ing and arranging objects, and probability is the study of laws concerning the measure-
ment of random or chance events. Discrete probability focuses on situations involving
discrete sets of objects, such as finding the likelihood of obtaining a certain number of
heads when an unbiased coin is tossed a certain number of times. Skill in using combina-
torics and probability is needed in almost every discipline where mathematics is applied,
from economics to biology, to computer science, to chemistry and physics, to business
management.

Algorithms and Their Analysis The word algorithm was largely unknown in the mid-
dle of the twentieth century, yet now it is one of the first words encountered in the study
of computer science. To solve a problem on a computer, it is necessary to find an algo-
rithm or step-by-step sequence of instructions for the computer to follow. Designing an
algorithm requires an understanding of the mathematics underlying the problem to be
solved. Determining whether or not an algorithm is correct requires a sophisticated use
of mathematical induction. Calculating the amount of time or memory space the algo-
rithm will need in order to compare it to other algorithms that produce the same output
requires knowledge of combinatorics, recurrence relations, functions, and O-, �-, and
�-notations.

Applications and Modeling Mathematical topics are best understood when they are
seen in a variety of contexts and used to solve problems in a broad range of applied
situations. One of the profound lessons of mathematics is that the same mathematical
model can be used to solve problems in situations that appear superficially to be totally
dissimilar. A goal of this book is to show students the extraordinary practical utility of
some very abstract mathematical ideas.

Special Features of This Book
Mathematical Reasoning The feature that most distinguishes this book from other
discrete mathematics texts is that it teaches—explicitly but in a way that is accessible to
first- and second-year college and university students—the unspoken logic and reasoning
that underlie mathematical thought. For many years I taught an intensively interactive
transition-to-abstract-mathematics course to mathematics and computer science majors.
This experience showed me that while it is possible to teach the majority of students to
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understand and construct straightforward mathematical arguments, the obstacles to doing
so cannot be passed over lightly. To be successful, a text for such a course must address
students’ difficulties with logic and language directly and at some length. It must also
include enough concrete examples and exercises to enable students to develop the mental
models needed to conceptualize more abstract problems. The treatment of logic and proof
in this book blends common sense and rigor in a way that explains the essentials, yet
avoids overloading students with formal detail.

Spiral Approach to Concept Development A number of concepts in this book appear
in increasingly more sophisticated forms in successive chapters to help students develop
the ability to deal effectively with increasing levels of abstraction. For example, by the
time students encounter the relatively advanced mathematics of Fermat’s little theorem
in Section 8.4, they have been introduced to the logic of mathematical discourse in
Chapters 1, 2, and 3, learned the basic methods of proof and the concepts of mod and
div in Chapter 4, explored mod and div as functions in Chapter 7, and become familiar
with equivalence relations in Sections 8.2 and 8.3. This approach builds in useful review
and develops mathematical maturity in natural stages.

Support for the Student Students at colleges and universities inevitably have to learn
a great deal on their own. Though it is often frustrating, learning to learn through self-
study is a crucial step toward eventual success in a professional career. This book has a
number of features to facilitate students’ transition to independent learning.

Worked Examples
The book contains over 500 worked examples, which are written using a problem-
solution format and are keyed in type and in difficulty to the exercises. Many solutions
for the proof problems are developed in two stages: first a discussion of how one
might come to think of the proof or disproof and then a summary of the solution,
which is enclosed in a box. This format allows students to read the problem and skip
immediately to the summary, if they wish, only going back to the discussion if they
have trouble understanding the summary. The format also saves time for students who
are rereading the text in preparation for an examination.

Marginal Notes and Test Yourself Questions
Notes about issues of particular importance and cautionary comments to help students
avoid common mistakes are included in the margins throughout the book. Questions
designed to focus attention on the main ideas of each section are located between the
text and the exercises. For convenience, the questions use a fill-in-the-blank format,
and the answers are found immediately after the exercises.

Exercises
The book contains almost 2600 exercises. The sets at the end of each section have
been designed so that students with widely varying backgrounds and ability levels
will find some exercises they can be sure to do successfully and also some exercises
that will challenge them.

Solutions for Exercises
To provide adequate feedback for students between class sessions, Appendix B con-
tains a large number of complete solutions to exercises. Students are strongly urged
not to consult solutions until they have tried their best to answer the questions on
their own. Once they have done so, however, comparing their answers with those
given can lead to significantly improved understanding. In addition, many problems,
including some of the most challenging, have partial solutions or hints so that students
can determine whether they are on the right track and make adjustments if necessary.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Preface xvii

There are also plenty of exercises without solutions to help students learn to grapple
with mathematical problems in a realistic environment.

Reference Features
Many students have written me to say that the book helped them succeed in their
advanced courses. One even wrote that he had used one edition so extensively that
it had fallen apart, and he actually went out and bought a copy of the next edition,
which he was continuing to use in a master’s program. Figures and tables are included
where doing so would help readers to a better understanding. In most, a second color
is used to highlight meaning. My rationale for screening statements of definitions and
theorems, for putting titles on exercises, and for giving the meanings of symbols and
a list of reference formulas in the endpapers is to make it easier for students to use
this book for review in a current course and as a reference in later ones.

Support for the Instructor I have received a great deal of valuable feedback from
instructors who have used previous editions of this book. Many aspects of the book have
been improved through their suggestions. In addition to the following items, there is
additional instructor support on the book’s website, described later in the preface.

Exercises
The large variety of exercises at all levels of difficulty allows instructors great free-
dom to tailor a course to the abilities of their students. Exercises with solutions in
the back of the book have numbers in blue, and those whose solutions are given in a
separate Student Solutions Manual and Study Guide have numbers that are a multi-
ple of three. There are exercises of every type that are represented in this book that
have no answer in either location to enable instructors to assign whatever mixture
they prefer of exercises with and without answers. The ample number of exercises of
all kinds gives instructors a significant choice of problems to use for review assign-
ments and exams. Instructors are invited to use the many exercises stated as questions
rather than in “prove that” form to stimulate class discussion on the role of proof and
counterexample in problem solving.

Flexible Sections
Most sections are divided into subsections so that an instructor who is pressed for time
can choose to cover certain subsections only and either omit the rest or leave them for
the students to study on their own. The division into subsections also makes it easier
for instructors to break up sections if they wish to spend more then one day on them.

Presentation of Proof Methods
It is inevitable that the proofs and disproofs in this book will seem easy to instructors.
Many students, however, find them difficult. In showing students how to discover and
construct proofs and disproofs, I have tried to describe the kinds of approaches that
mathematicians use when confronting challenging problems in their own research.

Instructor Solutions
Complete instructor solutions to all exercises are available to anyone teaching a course
from this book via Cengage’s Solution Builder service. Instructors can sign up for
access at www.cengage.com/solutionbuilder.

Highlights of the Fourth Edition
The changes made for this edition are based on suggestions from colleagues and other
long-time users of previous editions, on continuing interactions with my students, and on
developments within the evolving fields of computer science and mathematics.
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Reorganization
A new Chapter 1 introduces students to some of the precise language that is a foun-
dation for much mathematical thought: the language of variables, sets, relations, and
functions. In response to requests from some instructors, core material is now placed
together in Chapter 1–8, with the chapter on recursion now joined to the chapter on
induction. Chapters 9–12 were placed together at the end because, although many
instructors cover one or more of them, there is considerable diversity in their choices,
with some of the topics from these chapters being included in other courses.

Improved Pedagogy

• The number of exercises has been increased to almost 2600. Approximately 300
new exercises have been added.

• Exercises have been added for topics where students seemed to need additional
practice, and they have been modified, as needed, to address student difficulties.

• Additional full answers have been incorporated into Appendix B to give students
more help for difficult topics.

• The exposition has been reexamined throughout and revised where needed.
• Discussion of historical background and recent results has been expanded and the
number of photographs of mathematicians and computer scientists whose contribu-
tions are discussed in the book has been increased.

Logic and Set theory

• The definition of sound argument is now included, and there is additional clarifica-
tion of the difference between a valid argument and a true conclusion.

• Examples and exercises about trailing quantifiers have been added.
• Definitions for infinite unions and intersections have been incorporated.

Introduction to Proof

• The directions for writing proofs and the discussion of common mistakes have been
expanded.

• The descriptions of methods of proof have been made clearer.
• Exercises have been revised and/or relocated to promote the development of student
understanding.

Induction and Recursion

• The format for outlining proofs by mathematical induction has been improved.
• The subsections in the section on sequences have been reorganized.
• The sets of exercises for the sections on strong mathematical induction and the
well-ordering principle and on recursive definitions have been expanded.

• Increased attention has been given to structural induction.

Number Theory

• A subsection on open problems in number theory has been expanded and includes
additional discussion of recent mathematical discoveries in number theory.

• The presentation in the section on modular arithmetic and cryptography has been
streamlined.

• The discussion of testing for primality has been clarified.
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Combinatorics and Discrete Probability

• The discussion of the pigeonhole principle has been moved to this chapter.

Functions

• There is increased coverage of functions of more than one variable and of functions
acting on sets.

Graph Theory

• The terminology about traveling in a graph has been updated.
• Dijkstra’s shortest path algorithm is now included.
• Exercises were added to introduce students to graph coloring.

Companion Website
www.cengage.com/math/epp

A website has been developed for this book that contains information and materials for
both students and instructors. It includes:

• descriptions and links to many sites on the Internet with accessible information
about discrete mathematical topics,

• links to applets that illustrate or provide practice in the concepts of discrete mathe-
matics,

• additional examples and exercises with solutions,
• review guides for the chapters of the book.

A special section for instructors contains:

• suggestions about how to approach the material of each chapter,
• solutions for all exercises not fully solved in Appendix B,
• ideas for projects and writing assignments,
• PowerPoint slides,
• review sheets and additional exercises for quizzes and exams.

Student Solutions Manual and Study Guide
(ISBN-10: 0-495-82613-8; ISBN-13: 978-0-495-82613-2)

In writing this book, I strove to give sufficient help to students through the exposition in
the text, the worked examples, and the exercise solutions, so that the book itself would
provide all that a student would need to successfully master the material of the course. I
believe that students who finish the study of this book with the ability to solve, on their
own, all the exercises with full solutions in Appendix B will have developed an excellent
command of the subject. Nonetheless, I became aware that some students wanted the
opportunity to obtain additional helpful materials. In response, I developed a Student
Solutions Manual and Study Guide, available separately from this book, which contains
complete solutions to every exercise that is not completely answered in Appendix B and
whose number is divisible by 3. The guide also includes alternative explanations for some
of the concepts and review questions for each chapter.
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Organization
This book may be used effectively for a one- or two-semester course. Chapters contain
core sections, sections covering optional mathematical material, and sections covering
optional applications. Instructors have the flexibility to choose whatever mixture will best
serve the needs of their students. The following table shows a division of the sections into
categories.

Sections Containing Optional Sections Containing Optional
Chapter Core Sections Mathematical Material Computer Science Applications

1 1.1–1.3

2 2.1–2.3 2.5 2.4, 2.5

3 3.1–3.4 3.3 3.3

4 4.1–4.4, 4.6 4.5, 4.7 4.8

5 5.1, 5.2, 5.6, 5.7 5.3, 5.4, 5.8 5.1, 5.5, 5.9

6 6.1 6.2–6.4 6.1, 6.4

7 7.1, 7.2 7.3, 7.4 7.1, 7.2, 7.4

8 8.1–8.3 8.4, 8.5 8.4, 8.5

9 9.1–9.4 9.5–9.9 9.3

10 10.1, 10.5 10.2–10.4, 10.6 10.1, 10.2, 10.5–10.7

11 11.1, 11.2 11.4 11.3, 11.5

12 12.1, 12.2 12.3 12.1–12.3

The following tree diagram shows, approximately, how the chapters of this book
depend on each other. Chapters on different branches of the tree are sufficiently inde-
pendent that instructors need to make at most minor adjustments if they skip chapters but
follow paths along branches of the tree.

In most cases, covering only the core sections of the chapters is adequate preparation
for moving down the tree.

34

1

2

33

5

10 12*

6

8

11

7 9

∗Section 8.3 is needed for Section 12.3 but not for Sections 12.1 and 12.2.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Preface xxi

Acknowledgments
I owe a debt of gratitude to many people at DePaul University for their support and
encouragement throughout the years I worked on editions of this book. A number of
my colleagues used early versions and previous editions and provided many excellent
suggestions for improvement. For this, I am thankful to Louis Aquila, J. Marshall Ash,
Allan Berele, Jeffrey Bergen, William Chin, Barbara Cortzen, Constantine Georgakis,
Sigrun Goes, Jerry Goldman, Lawrence Gluck, Leonid Krop, Carolyn Narasimhan, Wal-
ter Pranger, Eric Rieders, Ayse Sahin, Yuen-Fat Wong, and, most especially, Jeanne
LaDuke. The thousands of students to whom I have taught discrete mathematics have
had a profound influence on the book’s form. By sharing their thoughts and thought pro-
cesses with me, they taught me how to teach them better. I am very grateful for their
help. I owe the DePaul University administration, especially my dean, Charles Suchar,
and my former deans, Michael Mezey and Richard Meister, a special word of thanks for
considering the writing of this book a worthwhile scholarly endeavor.

My thanks to the reviewers for their valuable suggestions for this edition of the book:
David Addis, Texas Christian University; Rachel Esselstein, California State University-
Monterrey Bay; William Marion, Valparaiso University; Michael McClendon, Univer-
sity of Central Oklahoma; and Steven Miller, Brown University. For their help with
previous editions of the book, I am grateful to Itshak Borosh, Texas A & M Univer-
sity; Douglas M. Campbell, Brigham Young University; David G. Cantor, University of
California at Los Angeles; C. Patrick Collier, University of Wisconsin-Oshkosh; Kevan
H. Croteau, Francis Marion University; Irinel Drogan, University of Texas at Arling-
ton; Pablo Echeverria, Camden County College; Henry A. Etlinger, Rochester Insti-
tute of Technology; Melvin J. Friske, Wisconsin Lutheran College; William Gasarch,
University of Maryland; Ladnor Geissinger, University of North Carolina; Jerrold R.
Griggs, University of South Carolina; Nancy Baxter Hastings, Dickinson College; Lillian
Hupert, Loyola University Chicago; Joseph Kolibal, University of Southern Mississippi;
Benny Lo, International Technological University; George Luger, University of New
Mexico; Leonard T. Malinowski, Finger Lakes Community College; John F. Morrison,
Towson State Unviersity; Paul Pederson, University of Denver; George Peck, Arizona
State University; Roxy Peck, California Polytechnic State University, San Luis Obispo;
Dix Pettey, University of Missouri; Anthony Ralston, State University of New York at
Buffalo; Norman Richert, University of Houston–Clear Lake; John Roberts, University
of Louisville; and George Schultz, St. Petersburg Junior College, Clearwater. Special
thanks are due John Carroll, San Diego State University; Dr. Joseph S. Fulda; and Porter
G. Webster, University of Southern Mississippi; Peter Williams, California State Uni-
versity at San Bernardino; and Jay Zimmerman, Towson University for their unusual
thoroughness and their encouragement.

I have also benefitted greatly from the suggestions of the many instructors who have
generously offered me their ideas for improvement based on their experiences with pre-
vious editions of the book, especially Jonathan Goldstine, Pennsylvania State University;
David Hecker, St. Joseph’s University; Edward Huff, Northern Virginia Community Col-
lege; Robert Messer, Albion College; Sophie Quigley, Ryerson University; Piotr Rud-
nicki, University of Alberta; Anwar Shiek, Diné College; Norton Starr, Amherst College;
and Eng Wee, National University of Singapore. Production of the third edition received
valuable assistance from Christopher Novak, University of Michigan, Dearborn, and Ian
Crewe, Ascension Collegiate School. For the third and fourth editions I am especially
grateful for the many excellent suggestions for improvement made by Tom Jenkyns,
Brock University, whose assistance throughout the production process was invaluable.

I owe many thanks to the Brooks/Cole staff, especially my editor, Dan Seibert, for
his thoughtful advice and reassuringly calm direction of the production process, and my

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



xxii Preface

previous editors, Stacy Green, Robert Pirtle, Barbara Holland, and Heather Bennett, for
their encouragement and enthusiasm.

The older I get the more I realize the profound debt I owe my own mathematics teach-
ers for shaping the way I perceive the subject. My first thanks must go to my husband,
Helmut Epp, who, on a high school date (!), introduced me to the power and beauty of the
field axioms and the view that mathematics is a subject with ideas as well as formulas and
techniques. In my formal education, I am most grateful to Daniel Zelinsky and Ky Fan at
Northwestern University and Izaak Wirszup, I. N. Herstein, and Irving Kaplansky at the
University of Chicago, all of whom, in their own ways, helped lead me to appreciate the
elegance, rigor, and excitement of mathematics.

To my family, I owe thanks beyond measure. I am grateful to my mother, whose keen
interest in the workings of the human intellect started me many years ago on the track
that led ultimately to this book, and to my late father, whose devotion to the written word
has been a constant source of inspiration. I thank my children and grandchildren for their
affection and cheerful acceptance of the demands this book has placed on my life. And,
most of all, I am grateful to my husband, who for many years has encouraged me with
his faith in the value of this project and supported me with his love and his wise advice.

Susanna Epp

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1

CHAPTER 1

SPEAKING MATHEMATICALLY

Therefore O students study mathematics and do not build without
foundations. —Leonardo da Vinci (1452–1519)

The aim of this book is to introduce you to a mathematical way of thinking that can
serve you in a wide variety of situations. Often when you start work on a mathematical
problem, you may have only a vague sense of how to proceed. You may begin by looking
at examples, drawing pictures, playing around with notation, rereading the problem to
focus on more of its details, and so forth. The closer you get to a solution, however, the
more your thinking has to crystallize. And the more you need to understand, the more you
need language that expresses mathematical ideas clearly, precisely, and unambiguously.

This chapter will introduce you to some of the special language that is a foundation
for much mathematical thought, the language of variables, sets, relations, and functions.
Think of the chapter like the exercises you would do before an important sporting event.
Its goal is to warm up your mental muscles so that you can do your best.

1.1 Variables

A variable is sometimes thought of as a mathematical “John Doe” because you can use it
as a placeholder when you want to talk about something but either (1) you imagine that it
has one or more values but you don’t know what they are, or (2) you want whatever you
say about it to be equally true for all elements in a given set, and so you don’t want to be
restricted to considering only a particular, concrete value for it. To illustrate the first use,
consider asking

Is there a number with the following property: doubling it and adding 3
gives the same result as squaring it?

In this sentence you can introduce a variable to replace the potentially ambiguous word “it”:

Is there a number x with the property that 2x + 3 = x2?

The advantage of using a variable is that it allows you to give a temporary name to what
you are seeking so that you can perform concrete computations with it to help discover its
possible values. To emphasize the role of the variable as a placeholder, you might write
the following:

Is there a number � with the property that 2 ·�+ 3 = �2?

The emptiness of the box can help you imagine filling it in with a variety of different
values, some of which might make the two sides equal and others of which might not.
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To illustrate the second use of variables, consider the statement:

No matter what number might be chosen, if it is greater than 2,
then its square is greater than 4.

In this case introducing a variable to give a temporary name to the (arbitrary) number you
might choose enables you to maintain the generality of the statement, and replacing all
instances of the word “it” by the name of the variable ensures that possible ambiguity is
avoided:

No matter what number n might be chosen, if n is greater than 2,
then n2 is greater than 4.

Example 1.1.1 Writing Sentences Using Variables

Use variables to rewrite the following sentences more formally.

a. Are there numbers with the property that the sum of their squares equals the square of
their sum?

b. Given any real number, its square is nonnegative.

Solution

a. Are there numbers a and b with the property that a2 + b2 = (a + b)2?
Or: Are there numbers a and b such that a2 + b2 = (a + b)2?
Or: Do there exist any numbers a and b such that a2 + b2 = (a + b)2?

Note In part (a) the
answer is yes. For
instance, a = 1 and b = 0
would work. Can you
think of other numbers
that would also work?

b. Given any real number r, r2 is nonnegative.
Or: For any real number r, r2 ≥ 0.
Or: For all real numbers r, r2 ≥ 0. ■

Some Important Kinds of Mathematical Statements
Three of the most important kinds of sentences in mathematics are universal statements,
conditional statements, and existential statements:

A universal statement says that a certain property is true for all elements in a set.
(For example: All positive numbers are greater than zero.)

A conditional statement says that if one thing is true then some other thing also has
to be true. (For example: If 378 is divisible by 18, then 378 is divisible by 6.)

Given a property that may or may not be true, an existential statement says that
there is at least one thing for which the property is true. (For example: There is a
prime number that is even.)

In later sections we will define each kind of statement carefully and discuss all of them
in detail. The aim here is for you to realize that combinations of these statements can be
expressed in a variety of different ways. One way uses ordinary, everyday language and
another expresses the statement using one or more variables. The exercises are designed
to help you start becoming comfortable in translating from one way to another.
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Universal Conditional Statements
Universal statements contain some variation of the words “for all” and conditional state-
ments contain versions of the words “if-then.” A universal conditional statement is a
statement that is both universal and conditional. Here is an example:

For all animals a, if a is a dog, then a is a mammal.

One of the most important facts about universal conditional statements is that they can
be rewritten in ways that make them appear to be purely universal or purely conditional.
For example, the previous statement can be rewritten in a way that makes its conditional
nature explicit but its universal nature implicit:

If a is a dog, then a is a mammal.
Or : If an animal is a dog, then the animal is a mammal.

The statement can also be expressed so as to make its universal nature explicit and its
conditional nature implicit:

For all dogs a, a is a mammal.
Or : All dogs are mammals.

The crucial point is that the ability to translate among various ways of expressing univer-
sal conditional statements is enormously useful for doing mathematics and many parts of
computer science.

Example 1.1.2 Rewriting a Universal Conditional Statement

Fill in the blanks to rewrite the following statement:

For all real numbers x , if x is nonzero then x2 is positive.

a. If a real number is nonzero, then its square .

Note If you introduce x
in the first part of the
sentence, be sure to
include it in the second
part of the sentence.

b. For all nonzero real numbers x , .

c. If x , then .

d. The square of any nonzero real number is .

e. All nonzero real numbers have .

Solution

a. is positive

b. x2 is positive

c. is a nonzero real number; x2 is positive

d. positive

e. positive squares (or: squares that are positive) ■

Universal Existential Statements
A universal existential statement is a statement that is universal because its first part says
that a certain property is true for all objects of a given type, and it is existential because
its second part asserts the existence of something. For example:Note For a number b to

be an additive inverse for
a number a means that
a + b = 0. Every real number has an additive inverse.
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4 Chapter 1 Speaking Mathematically

In this statement the property “has an additive inverse” applies universally to all real num-
bers. “Has an additive inverse” asserts the existence of something—an additive inverse—
for each real number. However, the nature of the additive inverse depends on the real
number; different real numbers have different additive inverses. Knowing that an additive
inverse is a real number, you can rewrite this statement in several ways, some less formal
and some more formal∗:

All real numbers have additive inverses.
Or : For all real numbers r , there is an additive inverse for r .
Or : For all real numbers r, there is a real number s such that s is an additive inverse

for r.

Introducing names for the variables simplifies references in further discussion. For
instance, after the third version of the statement you might go on to write: When r is
positive, s is negative, when r is negative, s is positive, and when r is zero, s is also zero.

One of the most important reasons for using variables in mathematics is that it gives
you the ability to refer to quantities unambiguously throughout a lengthy mathematical
argument, while not restricting you to consider only specific values for them.

Example 1.1.3 Rewriting a Universal Existential Statement

Fill in the blanks to rewrite the following statement: Every pot has a lid.

a. All pots .

b. For all pots P , there is .

c. For all pots P , there is a lid L such that .

Solution

a. have lids

b. a lid for P

c. L is a lid for P ■

Existential Universal Statements
An existential universal statement is a statement that is existential because its first part
asserts that a certain object exists and is universal because its second part says that the
object satisfies a certain property for all things of a certain kind. For example:

There is a positive integer that is less than or equal to every positive integer:

This statement is true because the number one is a positive integer, and it satisfies the
property of being less than or equal to every positive integer. We can rewrite the statement
in several ways, some less formal and some more formal:

Some positive integer is less than or equal to every positive integer.
Or : There is a positive integer m that is less than or equal to every positive integer.
Or : There is a positive integer m such that every positive integer is greater than or

equal to m.
Or : There is a positive integer m with the property that for all positive integers

n,m ≤ n.

∗A conditional could be used to help express this statement, but we postpone the additional com-
plexity to a later chapter.
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1.1 Variables 5

Example 1.1.4 Rewriting an Existential Universal Statement

Fill in the blanks to rewrite the following statement in three different ways:

There is a person in my class who is at least as old as every person in my class.

a. Some is at least as old as .

b. There is a person p in my class such that p is .

c. There is a person p in my class with the property that for every person q in my class,
p is .

Solution
a. person in my class; every person in my class

b. at least as old as every person in my class

c. at least as old as q ■

Some of the most important mathematical concepts, such as the definition of limit of
a sequence, can only be defined using phrases that are universal, existential, and condi-
tional, and they require the use of all three phrases “for all,” “there is,” and “if-then.” For
example, if a1, a2, a3, . . . is a sequence of real numbers, saying that

the limit of an as n approaches infinity is L

means that

for all positive real numbers ε, there is an integer N such that
for all integers n, if n > N then −ε < an − L < ε.

Test Yourself
Answers to Test Yourself questions are located at the end of each section.

1. A universal statement asserts that a certain property is
for .

2. A conditional statement asserts that if one thing then
some other thing .

3. Given a property that may or may not be true, an existential
statement asserts that for which the property is true.

Exercise Set 1.1
Appendix B contains either full or partial solutions to all exercises with blue numbers. When the solution is not complete, the exercise
number has an H next to it. A ✶ next to an exercise number signals that the exercise is more challenging than usual. Be careful not
to get into the habit of turning to the solutions too quickly. Make every effort to work exercises on your own before checking your
answers. See the Preface for additional sources of assistance and further study.

In each of 1–6, fill in the blanks using a variable or variables to
rewrite the given statement.

1. Is there a real number whose square is −1?
a. Is there a real number x such that ?
b. Does there exist such that x2 = −1?

2. Is there an integer that has a remainder of 2 when it is divided
by 5 and a remainder of 3 when it is divided by 6?
a. Is there an integer n such that n has ?
b. Does there exist such that if n is divided by 5 the

remainder is 2 and if ?
Note: There are integers with this property. Can you think of one?
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6 Chapter 1 Speaking Mathematically

3. Given any two real numbers, there is a real number in
between.
a. Given any two real numbers a and b, there is a real num-

ber c such that c is .

b. For any two , such that a < c < b.

4. Given any real number, there is a real number that is greater.
a. Given any real number r , there is s such that s is

.
b. For any , such that s > r .

5. The reciprocal of any positive real number is positive.
a. Given any positive real number r , the reciprocal of .
b. For any real number r , if r is , then .
c. If a real number r , then .

6. The cube root of any negative real number is negative.
a. Given any negative real number s, the cube root of .
b. For any real number s, if s is , then .
c. If a real number s , then .

7. Rewrite the following statements less formally, without
using variables. Determine, as best as you can, whether the
statements are true or false.

a. There are real numbers u and v with the property that
u + v < u − v.

b. There is a real number x such that x2 < x .
c. For all positive integers n, n2 ≥ n.
d. For all real numbers a and b, |a + b| ≤ |a| + |b|.

In each of 8–13, fill in the blanks to rewrite the given statement.

8. For all objects J , if J is a square then J has four sides.
a. All squares .
b. Every square .
c. If an object is a square, then it .

d. If J , then J .
e. For all squares J , .

9. For all equations E , if E is quadratic then E has at most two
real solutions.
a. All quadratic equations .
b. Every quadratic equation .
c. If an equation is quadratic, then it .
d. If E , then E .
e. For all quadratic equations E , .

10. Every nonzero real number has a reciprocal.
a. All nonzero real numbers .
b. For all nonzero real numbers r , there is for r .
c. For all nonzero real numbers r , there is a real number s

such that .

11. Every positive number has a positive square root.
a. All positive numbers .
b. For any positive number e, there is for e.
c. For all positive numbers e, there is a positive number r

such that .

12. There is a real number whose product with every number
leaves the number unchanged.
a. Some has the property that its .
b. There is a real number r such that the product of r .
c. There is a real number r with the property that for every

real number s, .

13. There is a real number whose product with every real number
equals zero.
a. Some has the property that its .
b. There is a real number a such that the product of a .
c. There is a real number a with the property that for every

real number b, .

Answers for Test Yourself
1. true; all elements of a set 2. is true; also has to be true 3. there is at least one thing

1.2 The Language of Sets
. . . when we attempt to express in mathematical symbols a condition proposed in words.
First, we must understand thoroughly the condition. Second, we must be familiar with
the forms of mathematical expression. —George Polyá (1887–1985)

Use of the word set as a formal mathematical term was introduced in 1879 by Georg
Cantor (1845–1918). For most mathematical purposes we can think of a set intuitively, as
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1.2 The Language of Sets 7

Cantor did, simply as a collection of elements. For instance, if C is the set of all countries
that are currently in the United Nations, then the United States is an element of C , and if
I is the set of all integers from 1 to 100, then the number 57 is an element of I .

• Notation

If S is a set, the notation x ∈ S means that x is an element of S. The notation x /∈ S
means that x is not an element of S. A set may be specified using the set-roster
notation by writing all of its elements between braces. For example, {1, 2, 3} denotes
the set whose elements are 1, 2, and 3. A variation of the notation is sometimes used
to describe a very large set, as when we write {1, 2, 3, . . . , 100} to refer to the set
of all integers from 1 to 100. A similar notation can also describe an infinite set, as
when we write {1, 2, 3, . . .} to refer to the set of all positive integers. (The symbol
. . . is called an ellipsis and is read “and so forth.”)

The axiom of extension says that a set is completely determined by what its elements
are—not the order in which they might be listed or the fact that some elements might be
listed more than once.

Example 1.2.1 Using the Set-Roster Notation

a. Let A = {1, 2, 3}, B = {3, 1, 2}, and C = {1, 1, 2, 3, 3, 3}. What are the elements of
A, B, and C? How are A, B, and C related?

b. Is {0} = 0?

c. How many elements are in the set {1, {1}}?

d. For each nonnegative integer n, let Un = {n,−n}. Find U1, U2, and U0.

Solution

a. A, B, and C have exactly the same three elements: 1, 2, and 3. Therefore, A, B, and
C are simply different ways to represent the same set.

b. {0} �= 0 because {0} is a set with one element, namely 0, whereas 0 is just the symbol
that represents the number zero.

c. The set {1, {1}} has two elements: 1 and the set whose only element is 1.

d. U1 = {1,−1}, U2 = {2,−2}, U0 = {0,−0} = {0, 0} = {0}.

Certain sets of numbers are so frequently referred to that they are given special
symbolic names. These are summarized in the table on the next page.
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8 Chapter 1 Speaking Mathematically

Symbol Set

R set of all real numbers

Z set of all integers

Q set of all rational numbers, or quotients of integers

Note The Z is the first
letter of the German word
for integers, Zahlen. It
stands for the set of all
integers and should not be
used as a shorthand for
the word integer. Addition of a superscript + or − or the letters nonneg indicates that only the positive

or negative or nonnegative elements of the set, respectively, are to be included. Thus
R+ denotes the set of positive real numbers, and Znonneg refers to the set of nonnegative
integers: 0, 1, 2, 3, 4, and so forth. Some authors refer to the set of nonnegative integers
as the set of natural numbers and denote it as N. Other authors call only the positive
integers natural numbers. To prevent confusion, we simply avoid using the phrase natural
numbers in this book.

The set of real numbers is usually pictured as the set of all points on a line, as shown
below. The number 0 corresponds to a middle point, called the origin. A unit of dis-
tance is marked off, and each point to the right of the origin corresponds to a positive
real number found by computing its distance from the origin. Each point to the left of
the origin corresponds to a negative real number, which is denoted by computing its dis-
tance from the origin and putting a minus sign in front of the resulting number. The set
of real numbers is therefore divided into three parts: the set of positive real numbers, the
set of negative real numbers, and the number 0. Note that 0 is neither positive nor neg-
ative Labels are given for a few real numbers corresponding to points on the line shown
below.

–3 –2 –1 0 1 2 3

13
4

1
3

2.6–0.8–√35
2

– √2

The real number line is called continuous because it is imagined to have no holes.
The set of integers corresponds to a collection of points located at fixed intervals along
the real number line. Thus every integer is a real number, and because the integers are
all separated from each other, the set of integers is called discrete. The name discrete
mathematics comes from the distinction between continuous and discrete mathematical
objects.

Another way to specify a set uses what is called the set-builder notation.
Note We read the
left-hand brace as “the set
of all” and the vertical
line as “such that.” In all
other mathematical
contexts, however, we do
not use a vertical line to
denote the words “such
that”; we abbreviate
“such that” as “s. t.” or
“s. th.” or “ · � · .”

• Set-Builder Notation

Let S denote a set and let P(x) be a property that elements of S may or may not
satisfy. We may define a new set to be the set of all elements x in S such that P(x)
is true. We denote this set as follows:

{x ∈ S | P(x)}↗ ↖
the set of all such that

Occasionally we will write {x | P(x)} without being specific about where the ele-
ment x comes from. It turns out that unrestricted use of this notation can lead to genuine
contradictions in set theory. We will discuss one of these in Section 6.4 and will be careful
to use this notation purely as a convenience in cases where the set S could be specified if
necessary.
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1.2 The Language of Sets 9

Example 1.2.2 Using the Set-Builder Notation

Given that R denotes the set of all real numbers, Z the set of all integers, and Z+ the set
of all positive integers, describe each of the following sets.

a. {x ∈ R | −2 < x < 5}
b. {x ∈ Z | −2 < x < 5}
c. {x ∈ Z+ |−2 < x < 5}

Solution

a. {x ∈ R | −2 < x < 5} is the open interval of real numbers (strictly) between −2 and
5. It is pictured as follows:

–2–3 –1 0 1 2 3 4 5 6 7 8

b. {x ∈ Z | −2 < x < 5} is the set of all integers (strictly) between −2 and 5. It is equal
to the set {−1, 0, 1, 2, 3, 4}.

c. Since all the integers in Z+ are positive, {x ∈ Z+|−2 < x < 5} = {1, 2, 3, 4}. ■

Subsets

A basic relation between sets is that of subset.

• Definition

If A and B are sets, then A is called a subset of B, written A ⊆ B, if, and only if,
every element of A is also an element of B.

Symbolically:

A ⊆ B means that For all elements x , if x ∈ A then x ∈ B.

The phrases A is contained in B and B contains A are alternative ways of saying that
A is a subset of B.

It follows from the definition of subset that for a set A not to be a subset of a set B
means that there is at least one element of A that is not an element of B.
Symbolically:

A � B means that There is at least one element x such that x ∈ A and x /∈ B.

• Definition

Let A and B be sets. A is a proper subset of B if, and only if, every element of A is
in B but there is at least one element of B that is not in A.
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10 Chapter 1 Speaking Mathematically

Example 1.2.3 Subsets

Let A = Z+, B = {n ∈ Z | 0 ≤ n ≤ 100}, and C = {100, 200, 300, 400, 500}. Evaluate
the truth and falsity of each of the following statements.

a. B ⊆ A
b. C is a proper subset of A
c. C and B have at least one element in common
d. C ⊆ B e. C ⊆ C

Solution

a. False. Zero is not a positive integer. Thus zero is in B but zero is not in A, and so
B � A.

b. True. Each element in C is a positive integer and, hence, is in A, but there are elements
in A that are not in C . For instance, 1 is in A and not in C .

c. True. For example, 100 is in both C and B.

d. False. For example, 200 is in C but not in B.

e. True. Every element in C is in C . In general, the definition of subset implies that all
sets are subsets of themselves.

Example 1.2.4 Distinction between ∈ and ⊆
Which of the following are true statements?

a. 2 ∈ {1, 2, 3} b. {2} ∈ {1, 2, 3} c. 2 ⊆ {1, 2, 3}
d. {2} ⊆ {1, 2, 3} e. {2} ⊆ {{1}, {2}} f. {2} ∈ {{1}, {2}}

Solution Only (a), (d), and (f) are true.
For (b) to be true, the set {1, 2, 3} would have to contain the element {2}. But the only

elements of {1, 2, 3} are 1, 2, and 3, and 2 is not equal to {2}. Hence (b) is false.
For (c) to be true, the number 2 would have to be a set and every element in the set 2

would have to be an element of {1, 2, 3}. This is not the case, so (c) is false.
For (e) to be true, every element in the set containing only the number 2 would have

to be an element of the set whose elements are {1} and {2}. But 2 is not equal to either
{1} or {2}, and so (e) is false. ■

Cartesian Products
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Kazimierz Kuratowski
(1896–1980)

With the introduction of Georg Cantor’s set theory in the late nineteenth century, it began
to seem possible to put mathematics on a firm logical foundation by developing all of
its various branches from set theory and logic alone. A major stumbling block was
how to use sets to define an ordered pair because the definition of a set is unaffected
by the order in which its elements are listed. For example, {a, b} and {b, a} represent
the same set, whereas in an ordered pair we want to be able to indicate which element
comes first.

In 1914 crucial breakthroughs were made by Norbert Wiener (1894–1964), a young
American who had recently received his Ph.D. from Harvard and the German mathe-
matician Felix Hausdorff (1868–1942). Both gave definitions showing that an ordered
pair can be defined as a certain type of set, but both definitions were somewhat awkward.
Finally, in 1921, the Polish mathematician Kazimierz Kuratowski (1896–1980) published
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1.2 The Language of Sets 11

the following definition, which has since become standard. It says that an ordered pair is
a set of the form

{{a}, {a, b}}.
This set has elements, {a} and {a, b}. If a �= b, then the two sets are distinct and a is
in both sets whereas b is not. This allows us to distinguish between a and b and say
that a is the first element of the ordered pair and b is the second element of the pair.
If a = b, then we can simply say that a is both the first and the second element of
the pair. In this case the set that defines the ordered pair becomes {{a}, {a, a}}, which
equals {{a}}.

However, it was only long after ordered pairs had been used extensively in mathemat-
ics that mathematicians realized that it was possible to define them entirely in terms of
sets, and, in any case, the set notation would be cumbersome to use on a regular basis.
The usual notation for ordered pairs refers to {{a}, {a, b}} more simply as (a, b).

• Notation

Given elements a and b, the symbol (a, b) denotes the ordered pair consisting of a
and b together with the specification that a is the first element of the pair and b is the
second element. Two ordered pairs (a, b) and (c, d) are equal if, and only if, a = c
and b = d. Symbolically:

(a, b) = (c, d) means that a = c and b = d.

Example 1.2.5 Ordered Pairs

a. Is (1, 2) = (2, 1)?

b. Is
(
3, 5

10

)
=

(√
9, 1

2

)
?

c. What is the first element of (1, 1)?

Solution

a. No. By definition of equality of ordered pairs,

(1, 2) = (2.1) if, and only if, 1 = 2 and 2 = 1.

But 1 �= 2, and so the ordered pairs are not equal.

b. Yes. By definition of equality of ordered pairs,(
3, 5

10

)
=

(√
9, 1

2

)
if, and only if, 3 = √9 and 5

10 = 1
2 .

Because these equations are both true, the ordered pairs are equal.

c. In the ordered pair (1, 1), the first and the second elements are both 1.

• Definition

Given sets A and B, the Cartesian product of A and B, denoted A× B and read
“A cross B,” is the set of all ordered pairs (a, b), where a is in A and b is in B.
Symbolically:

A× B = {(a, b) | a ∈ A and b ∈ B} .
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12 Chapter 1 Speaking Mathematically

Example 1.2.6 Cartesian Products

Let A = {1, 2, 3} and B = {u, v}.
a. Find A × B

b. Find B × A

c. Find B × B

d. How many elements are in A × B, B × A, and B × B?

e. Let R denote the set of all real numbers. Describe R× R.

Solution

a. A × B = {(1, u), (2, u), (3, u), (1, v), (2, v), (3, v)}
b. B × A = {(u, 1), (u, 2), (u, 3), (v, 1), (v, 2), (v, 3)}
c. B × B = {(u, u), (u, v), (v, u), (v, v)}
d. A × B has six elements. Note that this is the number of elements in A times the num-

ber of elements in B. B × A has six elements, the number of elements in B times
the number of elements in A. B × B has four elements, the number of elements in B
times the number of elements in B.

e. R× R is the set of all ordered pairs (x, y) where both x and y are real numbers. If
horizontal and vertical axes are drawn on a plane and a unit length is marked off, then
each ordered pair in R× R corresponds to a unique point in the plane, with the first
and second elements of the pair indicating, respectively, the horizontal and vertical
positions of the point. The term Cartesian plane is often used to refer to a plane with
this coordinate system, as illustrated in Figure 1.2.1.

Note This is why it
makes sense to call a
Cartesian product a
product!

x

y

1

1

2

3

–2–3–4 –1
–1

–2

–3

2

(1, –2)(–2, –2)

(–3, 2)

(2, 1)

3 4

Figure 1.2.1: A Cartesian Plane

Test Yourself
1. When the elements of a set are given using the set-roster

notation, the order in which they are listed .

2. The symbol R denotes .

3. The symbol Z denotes .

4. The symbol Q denotes .

5. The notation {x | P(x)} is read .

6. For a set A to be a subset of a set B means that,
.

7. Given sets A and B, the Cartesian product A × B is .
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Exercise Set 1.2
1. Which of the following sets are equal?

A = {a, b, c, d} B = {d, e, a, c}
C = {d, b, a, c} D = {a, a, d, e, c, e}

2. Write in words how to read each of the following out loud.
a. {x ∈ R+ | 0 < x < 1}
b. {x ∈ R | x ≤ 0 or x ≥ 1}
c. {n ∈ Z | n is a factor of 6}
d. {n ∈ Z+ | n is a factor of 6}

3. a. Is 4 = {4}?
b. How many elements are in the set {3, 4, 3, 5}?
c. How many elements are in the set {1, {1}, {1, {1}}}?

4. a. Is 2 ∈ {2}?
b. How many elements are in the set {2, 2, 2, 2}?
c. How many elements are in the set {0, {0}}?
d. Is {0} ∈ {{0}, {1}}?
e. Is 0 ∈ {{0}, {1}}?

5.H Which of the following sets are equal?

A = {0, 1, 2}
B = {x ∈ R | −1 ≤ x < 3}
C = {x ∈ R | −1 < x < 3}
D = {x ∈ Z | −1 < x < 3}
E = {x ∈ Z+ |−1 < x < 3}

6.H For each integer n, let Tn = {n, n2}. How many elements
are in each of T2, T−3, T1 and T0? Justify your answers.

7. Use the set-roster notation to indicate the elements in each
of the following sets.
a. S = {n ∈ Z | n = (−1)k , for some integer k}.
b. T = {m ∈ Z |m = 1+ (−1)i, for some integer i}.

c. U = {r ∈ Z | 2 ≤ r ≤ −2}
d. V = {s ∈ Z | s > 2 or s < 3}
e. W = {t ∈ Z | 1 < t < −3}
f. X = {u ∈ Z | u ≤ 4 or u ≥ 1}

8. Let A = {c, d, f, g}, B = { f, j}, and C = {d, g}.
Answer each of the following questions. Give reasons
for your answers.
a. Is B ⊆ A? b. Is C ⊆ A?
b. Is C ⊆ C? d. Is C a proper subset of A?

9. a. Is 3 ∈ {1, 2, 3}? b. Is 1 ⊆ {1}?
c. Is {2} ∈ {1, 2}? d. Is {3} ∈ {1, {2}, {3}}?
e. Is 1 ∈ {1}? f. Is {2} ⊆ {1, {2}, {3}}?
g. Is {1} ⊆ {1, 2}? h. Is 1 ∈ {{1}, 2}?
i. Is {1} ⊆ {1, {2}}? j. Is {1} ⊆ {1}?

10. a. Is ((−2)2,−22) = (−22, (−2)2)?
b. Is (5,−5) = (−5, 5)?
c. Is

(
8− 9, 3

√−1) = (−1,−1)?
d. Is

(−2
−4 , (−2)3

)
=

(
3
6 ,−8

)
?

11. Let A = {w, x, y, z} and B = {a, b}. Use the set-roster
notation to write each of the following sets, and indicate
the number of elements that are in each set:
a. A × B b. B × A
c. A × A d. B × B

12. Let S = {2, 4, 6} and T = {1, 3, 5}. Use the set-roster
notation to write each of the following sets, and indicate
the number of elements that are in each set:
a. S × T b. T × S
c. S × S d. T × T

Answers for Test Yourself
1. does not matter 2. the set of all real numbers 3. the set of all integers 4. the set of all rational numbers 5. the set of all x such
that P(x) 6. every element in A is an element in B 7. the set of all ordered pairs (a, b) where a is in A and b is in B

1.3 The Language of Relations and Functions
Mathematics is a language. — Josiah Willard Gibbs (1839–1903)

There are many kinds of relationships in the world. For instance, we say that two people
are related by blood if they share a common ancestor and that they are related by marriage
if one shares a common ancestor with the spouse of the other. We also speak of the rela-
tionship between student and teacher, between people who work for the same employer,
and between people who share a common ethnic background.

Similarly, the objects of mathematics may be related in various ways. A set A may
be said to be related to a set B if A is a subset of B, or if A is not a subset of B, or if A
and B have at least one element in common. A number x may be said to be related to a
number y if x < y, or if x is a factor of y, or if x2 + y2 = 1. Two identifiers in a computer
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14 Chapter 1 Speaking Mathematically

program may be said to be related if they have the same first eight characters, or if the
same memory location is used to store their values when the program is executed. And
the list could go on!

Let A = {0, 1, 2} and B = {1, 2, 3} and let us say that an element x in A is related to an
element y in B if, and only if, x is less than y. Let us use the notation x R y as a shorthand
for the sentence “x is related to y.” Then

0 R 1 since 0 < 1,
0 R 2 since 0 < 2,
0 R 3 since 0 < 3,
1 R 2 since 1 < 2,
1 R 3 since 1 < 3, and
2 R 3 since 2 < 3.

On the other hand, if the notation x �R y represents the sentence “x is not related to y,”
then

1 �R 1 since 1 �< 1,
2 �R 1 since 2 �< 1, and
2 �R 2 since 2 �< 2.

Recall that the Cartesian product of A and B, A × B, consists of all ordered pairs
whose first element is in A and whose second element is in B:

A × B = {
(x, y) | x ∈ A and y ∈ B

}
.

In this case,

A × B = {
(0, 1) , (0, 2), (0, 3), (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3)

}
.

The elements of some ordered pairs in A × B are related, whereas the elements of other
ordered pairs are not. Consider the set of all ordered pairs in A × B whose elements are
related {

(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)
}
.

Observe that knowing which ordered pairs lie in this set is equivalent to knowing which
elements are related to which. The relation itself can therefore be thought of as the totality
of ordered pairs whose elements are related by the given condition. The formal mathe-
matical definition of relation, based on this idea, was introduced by the American math-
ematician and logician C. S. Peirce in the nineteenth century.

• Definition

Let A and B be sets. A relation R from A to B is a subset of A × B. Given an
ordered pair (x, y) in A × B, x is related to y by R, written x R y, if, and only
if, (x, y) is in R. The set A is called the domain of R and the set B is called its
co-domain.

The notation for a relation R may be written symbolically as follows:

x R y means that (x, y) ∈ R.

The notation x �R y means that x is not related to y by R:

x �R y means that (x, y) /∈ R.
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1.3 The Language of Relations and Functions 15

Example 1.3.1 A Relation as a Subset

Let A = {1, 2} and B = {1, 2, 3} and define a relation R from A to B as follows: Given
any (x, y) ∈ A × B,

(x, y) ∈ R means that
x − y

2
is an integer.

a. State explicitly which ordered pairs are in A × B and which are in R.

b. Is 1 R 3? Is 2 R 3? Is 2 R 2?

c. What are the domain and co-domain of R?

Solution

a. A × B = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3)}. To determine explicitly the com-
position of R, examine each ordered pair in A × B to see whether its elements satisfy
the defining condition for R.

(1, 1) ∈ R because 1−1
2 = 0

2 = 0, which is an integer.

(1, 2) /∈ R because 1−2
2 = −12 , which is not an integer.

(1, 3) ∈ R because 1−3
2 = −22 = −1, which is an integer.

(2, 1) /∈ R because 2−1
2 = 1

2 , which is not an integer.

(2, 2) ∈ R because 2−2
2 = 0

2 = 0, which is an integer.

(2, 3) /∈ R because 2−3
2 = −12 , which is an integer.

Thus

R = {(1, 1), (1, 3), (2, 2)}
b. Yes, 1 R 3 because (1, 3) ∈ R.

No, 2 �R 3 because (2, 3) /∈ R.
Yes, 2 R 2 because (2, 2) ∈ R.

c. The domain of R is {1, 2} and the co-domain is {1, 2, 3}. ■

Example 1.3.2 The Circle Relation

Define a relation C from R to R as follows: For any (x, y) ∈ R× R,

(x, y) ∈ C means that x2 + y2 = 1.

a. Is (1, 0) ∈ C? Is (0, 0) ∈ C? Is
(
−1

2 ,

√
3
2

)
∈ C? Is −2 C 0? Is 0 C (−1)? Is 1 C 1?

b. What are the domain and co-domain of C?

c. Draw a graph for C by plotting the points of C in the Cartesian plane.

Solution

a. Yes, (1, 0) ∈ C because 12 + 02 = 1.
No, (0, 0) /∈ C because 02 + 02 = 0 �= 1.

Yes,
(
−1

2 ,

√
3
2

)
∈ C because

(
−1

2

)2 + (√
3
2

)2
= 1

4 + 3
4 = 1.

No, −2 C/ 0 because (−2)2 + 02 = 4 �= 1.
Yes, 0C (−1) because 02 + (−1)2 = 1.
No, 1 C/ 1 because 12 + 12 = 2 �= 1.

b. The domain and co-domain of C are both R, the set of all real numbers.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



16 Chapter 1 Speaking Mathematically

c.

x

y

x2 + y2 = 1

1–1

■

Arrow Diagram of a Relation
Suppose R is a relation from a set A to a set B. The arrow diagram for R is obtained as
follows:

1. Represent the elements of A as points in one region and the elements of B as points
in another region.

2. For each x in A and y in B, draw an arrow from x to y if, and only if, x is related to y
by R. Symbolically:

Draw an arrow from x to y

if, and only if, x R y

if, and only if, (x, y) ∈ R.

Example 1.3.3 Arrow Diagrams of Relations

Let A = {1, 2, 3} and B = {1, 3, 5} and define relations S and T from A to B as follows:
For all (x, y) ∈ A × B,

(x, y) ∈ S means that x < y S is a “less than” relation.

T = {(2, 1), (2, 5)}.
Draw arrow diagrams for S and T .

Solution

1

2

3

S
1

3

5

1

2

3

T
1

3

5

These example relations illustrate that it is possible to have several arrows coming
out of the same element of A pointing in different directions. Also, it is quite possible to
have an element of A that does not have an arrow coming out of it. ■

Functions
In Section 1.2 we showed that ordered pairs can be defined in terms of sets and we defined
Cartesian products in terms of ordered pairs. In this section we introduced relations as
subsets of Cartesian products. Thus we can now define functions in a way that depends
only on the concept of set. Although this definition is not obviously related to the way
we usually work with functions in mathematics, it is satisfying from a theoretical point
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1.3 The Language of Relations and Functions 17

of view and computer scientists like it because it is particularly well suited for operating
with functions on a computer.

• Definition

A function F from a set A to a set B is a relation with domain A and co-domain B
that satisfies the following two properties:

1. For every element x in A, there is an element y in B such that (x, y) ∈ F .

2. For all elements x in A and y and z in B,

if (x, y) ∈ F and (x, z) ∈ F, then y = z.

Properties (1) and (2) can be stated less formally as follows: A relation F from A to
B is a function if, and only if:

1. Every element of A is the first element of an ordered pair of F .

2. No two distinct ordered pairs in F have the same first element.

In most mathematical situations we think of a function as sending elements from one
set, the domain, to elements of another set, the co-domain. Because of the definition of
function, each element in the domain corresponds to one and only one element of the
co-domain.

More precisely, if F is a function from a set A to a set B, then given any element x in
A, property (1) from the function definition guarantees that there is at least one element
of B that is related to x by F and property (2) guarantees that there is at most one such
element. This makes it possible to give the element that corresponds to x a special name.

• Notation

If A and B are sets and F is a function from A to B, then given any element x in
A, the unique element in B that is related to x by F is denoted F(x), which is read
“F of x.”

Example 1.3.4 Functions and Relations on Finite Sets

Let A = {2, 4, 6} and B = {1, 3, 5}. Which of the relations R, S, and T defined below
are functions from A to B?

a. R = {(2, 5), (4, 1), (4, 3), (6, 5)}
b. For all (x, y) ∈ A × B, (x, y) ∈ S means that y = x + 1.

c. T is defined by the arrow diagram

B

1

3

5

A

2

4

6
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18 Chapter 1 Speaking Mathematically

Solution

a. R is not a function because it does not satisfy property (2). The ordered pairs (4, 1)
and (4, 3) have the same first element but different second elements. You can see this
graphically if you draw the arrow diagram for R. There are two arrows coming out of
4: One points to 1 and the other points to 3.

BR

1

3

5

A

2

4

6

b. S is not a function because it does not satisfy property (1). It is not true that every
element of A is the first element of an ordered pair in S. For example, 6 ∈ A but there
is no y in B such that y = 6+ 1 = 7. You can also see this graphically by drawing
the arrow diagram for S.

BS

1

3

5

A

2

4

6

c. T is a function: Each element in {2, 4, 6} is related to some element in {1, 3, 5}
and no element in {2, 4, 6} is related to more than one element in {1, 3, 5}. When
these properties are stated in terms of the arrow diagram, they become (1) there is an
arrow coming out of each element of the domain, and (2) no element of the domain
has more than one arrow coming out of it. So you can write T (2) = 5, T (4) = 1,
and T (6) = 1. ■

Note In part (c),
T (4) = T (6). This
illustrates the fact that
although no element of
the domain of a function
can be related to more
than one element of the
co-domain, several
elements in the domain
can be related to the same
element in the co-domain.

Example 1.3.5 Functions and Relations on Sets of Real Numbers

a. In Example 1.3.2 the circle relation C was defined as follows:

For all (x, y) ∈ R× R, (x, y) ∈ C means that x2 + y2 = 1.

Is C a function? If it is, find C(0) and C(1).

b. Define a relation from R to R as follows:

For all (x, y) ∈ R× R, (x, y) ∈ L means that y = x − 1.

Is L a function? If it is, find L(0) and L(1).

Solution

a. The graph of C , shown on the next page, indicates that C does not satisfy either func-
tion property. To see why C does not satisfy property (1), observe that there are many
real numbers x such that (x, y) /∈ C for any y.
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1.3 The Language of Relations and Functions 19

x = 2

Graph of C

x2 + y2 = 1 1
2 2

,(     )

1
2

√3
2

, –(      )
x = 1

2

√3

For instance, when x = 2, there is no real number y so that

x2 + y2 = 22 + y2 = 4+ y2 = 1

because if there were, then it would have to be true that

y2 = −3.
which is not the case for any real number y.
To see why C does not satisfy property (2), note that for some values of x there

are two distinct values of y so that (x, y) ∈ C . One way to see this graphically is to
observe that there are vertical lines, such as x = 1

2 , that intersect the graph of C at two

separate points:
(
1
2 ,

√
3
2

)
and

(
1
2 , −

√
3
2

)
.

b. L is a function. For each real number x, y = x − 1 is a real number, and so there is a
real number y with (x, y) ∈ L . Also if (x, y) ∈ L and (x, z) ∈ L , then y = x − 1 and
z = x − 1, and so y = z. In particular, L(0) = 0− 1 = −1 and L(1) = 1− 1 = 0.

You can also check these results by inspecting the graph of L , shown below. Note
that for every real number x , the vertical line through (x , 0) passes through the graph
of L exactly once. This indicates both that every real number x is the first element of
an ordered pair in L and also that no two distinct ordered pairs in L have the same first
element.

(x, 0)

y = x – 1

Graph of L

■

Function Machines
Another useful way to think of a function is as a machine. Suppose f is a function from X
to Y and an input x of X is given. Imagine f to be a machine that processes x in a certain
way to produce the output f (x). This is illustrated in Figure 1.3.1 on the next page.
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20 Chapter 1 Speaking Mathematically

function machine

Input
x

f (x) Output

Figure 1.3.1

Example 1.3.6 Functions Defined by Formulas

The squaring function f from R to R is defined by the formula f (x) = x2 for all real
numbers x . This means that no matter what real number input is substituted for x , the
output of f will be the square of that number. This idea can be represented by writing
f (�) = �2. In other words, f sends each real number x to x2, or, symbolically,
f : x → x2. Note that the variable x is a dummy variable; any other symbol could replace
it, as long as the replacement is made everywhere the x appears.

The successor function g from Z to Z is defined by the formula g(n) = n + 1. Thus,
no matter what integer is substituted for n, the output of g will be that number plus
one: g(�) = �+ 1. In other words, g sends each integer n to n + 1, or, symbolically,
g: n→ n + 1.

An example of a constant function is the function h from Q to Z defined by the
formula h(r) = 2 for all rational numbers r . This function sends each rational number
r to 2. In other words, no matter what the input, the output is always 2: h(�) = 2 or
h: r → 2.

The functions f, g, and h are represented by the function machines in Figure 1.3.2.

squaring
function

x

f (x) = x2

(a)

successor
function

n

g(n) = n + 1

(b)

constant
function

r

h(r) = 2

(c)

Figure 1.3.2 ■

A function is an entity in its own right. It can be thought of as a certain relationship
between sets or as an input/output machine that operates according to a certain rule. This
is the reason why a function is generally denoted by a single symbol or string of symbols,
such as f, G, of log, or sin.

A relation is a subset of a Cartesian product and a function is a special kind of relation.
Specifically, if f and g are functions from a set A to a set B, then

f = {(x, y) ∈ A × B | y = f (x)} and g = {(x, y) ∈ A × B | y = g(x)}.
It follows that

f equals g, written f = g, if, and only if, f (x) = g(x) for all x in A.
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1.3 The Language of Relations and Functions 21

Example 1.3.7 Equality of Functions

Define f : R→ R and g: R→ R by the following formulas:

f (x) = |x | for all x ∈ R.

g(x) = √x2 for all x ∈ R.

Does f = g?

Solution

Yes. Because the absolute value of any real number equals the square root of its square,
|x | = √x2 for all x ∈ R. Hence f = g. ■

Test Yourself
1. Given sets A and B, a relation from A to B is .

2. A function F from A to B is a relation from A to B that
satisfies the following two properties:

a. for every element x of A, there is .

b. for all elements x in A and y and z in B, if
then .

3. If F is a function from A to B and x is an element of A, then
F(x) is .

Exercise Set 1.3
1. Let A = {2, 3, 4} and B = {6, 8, 10} and define a relation

R from A to B as follows: For all (x, y) ∈ A × B,

(x, y) ∈ R means that
y

x
is an integer.

a. Is 4 R 6? Is 4 R 8? Is (3, 8) ∈ R? Is (2, 10) ∈ R?
b. Write R as a set of ordered pairs.
c. Write the domain and co-domain of R.
d. Draw an arrow diagram for R.

2. Let C = D = {−3,−2,−1, 1, 2, 3} and define a relation S
from C to D as follows: For all (x, y) ∈ C × D,

(x, y) ∈ S means that
1

x
− 1

y
is an integer.

a. Is 2 S 2? Is −1S − 1? Is (3, 3) ∈ S? Is (3,−3) ∈ S?
b. Write S as a set of ordered pairs.
c. Write the domain and co-domain of S.
d. Draw an arrow diagram for S.

3. Let E = {1, 2, 3} and F = {−2,−1, 0} and define a rela-
tion T from E to F as follows: For all (x, y) ∈ E × F ,

(x, y) ∈ T means that
x − y

3
is an integer.

a. Is 3 T 0? Is 1T (−1)? Is (2,−1) ∈ T ? Is (3,−2) ∈ T ?
b. Write T as a set of ordered pairs.
c. Write the domain and co-domain of T .
d. Draw an arrow diagram for T .

4. Let G = {−2, 0, 2} and H = {4, 6, 8} and define a relation
V from G to H as follows: For all (x, y) ∈ G × H ,

(x, y) ∈ V means that
x − y

4
is an integer.

a. Is 2 V 6? Is (−2)V (−6)? Is (0, 6) ∈ V ? Is (2, 4) ∈ V ?

b. Write V as a set of ordered pairs.
c. Write the domain and co-domain of V .
d. Draw an arrow diagram for V .

5. Define a relation S from R to R as follows:
For all (x, y) ∈ R× R,

(x, y) ∈ S means that x ≥ y.

a. Is (2, 1) ∈ S? Is (2, 2) ∈ S? Is 2 S 3? Is (−1) S (−2)?
b. Draw the graph of S in the Cartesian plane.

6. Define a relation R from R to R as follows:
For all (x, y) ∈ R× R,

(x, y) ∈ R means that y = x2.

a. Is (2, 4) ∈ R? Is (4, 2) ∈ R? Is (−3) R 9? Is 9 R (−3)?
b. Draw the graph of R in the Cartesian plane.

7. Let A = {4, 5, 6} and B = {5, 6, 7} and define relations R,
S, and T from A to B as follows:
For all (x, y) ∈ A × B,

(x, y) ∈ R means that x ≥ y.

(x, y) ∈ S means that
x − y

2
is an integer.

T = {(4, 7), (6, 5), (6, 7)}.
a. Draw arrow diagrams for R, S, and T .
b. Indicate whether any of the relations R, S, and T are

functions.

8. Let A = {2, 4} and B = {1, 3, 5} and define relations
U, V, and W from A to B as follows: For all (x, y)
∈ A × B,

(x, y) ∈ U means that y − x > 2.

(x, y) ∈ V means that y − 1 = x

2
.

W = {(2, 5), (4, 1), (2, 3)}.
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a. Draw arrow diagrams for U, V, and W .
b. Indicate whether any of the relations U, V, and W are

functions.

9. a. Find all relations from {0,1} to {1}.
b. Find all functions from {0,1} to {1}.
c. What fraction of the relations from {0,1} to {1} are

functions?

10. Find four relations from {a, b} to {x, y} that are not func-
tions from {a, b} to {x, y}.

11. Define a relation P from R+ to R as follows: For all real
numbers x and y with x > 0,

(x, y) ∈ P means that x = y2.

Is P a function? Explain.

12. Define a relation T from R to R as follows: For all real
numbers x and y,

(x, y) ∈ T means that y2 − x2 = 1.

Is T a function? Explain.

13. Let A = {−1, 0, 1} and B = {t, u, v, w}. Define a function
F : A→ B by the following arrow diagram:

B

t

u

v

w

A

–1

0

1

a. Write the domain and co-domain of F .
b. Find F(−1), F(0), and F(1).

14. Let C = {1, 2, 3, 4} and D = {a, b, c, d}. Define a function
G: C → D by the following arrow diagram:

a

b

c

d

1

2

3

4

a. Write the domain and co-domain of G.
b. Find G(1), G(2), G(3), and G(4).

15. Let X = {2, 4, 5} and Y = {1, 2, 4, 6}. Which of the fol-
lowing arrow diagrams determine functions from X to Y ?

a. Y

6

X

2

2

1

4
4

5

b. Y

6

X

2

2

1

4
4

5

c. Y

1

2

4

6

X

2

4

5

d.

2

1

4

6

2

4

5

YX

e.

2

1

4

6

2

4

5

YX

16. Let f be the squaring function defined in Example 1.3.6.

Find f (−1), f (0), and f
(
1
2

)
.

17. Let g be the successor function defined in Example 1.3.6.
Find g(−1000), g(0), and g(999).

18. Let h be the constant function defined in Example 1.3.6.

Find h
(
− 12

5

)
, h

(
0
1

)
, and h

(
9
17

)
.

19. Define functions f and g from R to R by the following
formulas: For all x ∈ R,

f (x) = 2x and g(x) = 2x3 + 2x

x2 + 1
.

Does f = g? Explain.

20. Define functions H and K from R to R by the following
formulas: For all x ∈ R,

H(x) = (x − 2)2 and K (x) = (x − 1)(x − 3)+ 1.

Does H = K ? Explain.

Answers for Test Yourself
1. a subset of the Cartesian product A × B 2. a. an element y of B such that (x, y) ∈ F (i.e., such that x is related to y
by F) b. (x, y) ∈ F and (x, z) ∈ F; y = z 3. the unique element of B that is related to x by F
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CHAPTER 2

THE LOGIC OF COMPOUND
STATEMENTS

The first great treatises on logic were written by the Greek philosopher Aristotle. They

B
et

tm
an

n/
C

O
R

B
IS

Aristotle
(384 B.C.–322 B.C.)

were a collection of rules for deductive reasoning that were intended to serve as a basis
for the study of every branch of knowledge. In the seventeenth century, the German
philosopher and mathematician Gottfried Leibniz conceived the idea of using symbols
to mechanize the process of deductive reasoning in much the same way that algebraic
notation had mechanized the process of reasoning about numbers and their relationships.
Leibniz’s idea was realized in the nineteenth century by the English mathematicians
George Boole and Augustus De Morgan, who founded the modern subject of symbolic
logic. With research continuing to the present day, symbolic logic has provided, among
other things, the theoretical basis for many areas of computer science such as digital logic
circuit design (see Sections 2.4 and 2.5), relational database theory (see Section 8.1),
automata theory and computability (see Section 7.4 and Chapter 12), and artificial intel-
ligence (see Sections 3.3, 10.1, and 10.5).

2.1 Logical Form and Logical Equivalence
Logic is a science of the necessary laws of thought, without which no employment of the
understanding and the reason takes place. —Immanuel Kant, 1785

The central concept of deductive logic is the concept of argument form. An argument is a
sequence of statements aimed at demonstrating the truth of an assertion. The assertion at
the end of the sequence is called the conclusion, and the preceding statements are called
premises. To have confidence in the conclusion that you draw from an argument, you
must be sure that the premises are acceptable on their own merits or follow from other
statements that are known to be true.

In logic, the form of an argument is distinguished from its content. Logical analysis
won’t help you determine the intrinsic merit of an argument’s content, but it will help
you analyze an argument’s form to determine whether the truth of the conclusion follows
necessarily from the truth of the premises. For this reason logic is sometimes defined as
the science of necessary inference or the science of reasoning.

Consider the following two arguments, for example. Although their content is very
different, their logical form is the same. Both arguments are valid in the sense that if their
premises are true, then their conclusions must also be true. (In Section 2.3 you will learn
how to test whether an argument is valid.)

Argument 1 If the program syntax is faulty or if program execution results in division by
zero, then the computer will generate an error message. Therefore, if the computer does
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24 Chapter 2 The Logic of Compound Statements

not generate an error message, then the program syntax is correct and program execution
does not result in division by zero.

Argument 2 If x is a real number such that x < −2 or x > 2, then x2 > 4. Therefore, if
x2 ≯ 4, then x ≮ −2 and x ≯ 2.

To illustrate the logical form of these arguments, we use letters of the alphabet (such
as p, q, and r ) to represent the component sentences and the expression “not p” to refer
to the sentence “It is not the case that p.” Then the common logical form of both the
previous arguments is as follows:

If p or q, then r .

Therefore, if not r , then not p and not q.

Example 2.1.1 Identifying Logical Form

Fill in the blanks below so that argument (b) has the same form as argument (a). Then
represent the common form of the arguments using letters to stand for component
sentences.

a. If Jane is a math major or Jane is a computer science major, then Jane will take
Math 150.
Jane is a computer science major.
Therefore, Jane will take Math 150.

b. If logic is easy or (1) , then (2) .
I will study hard.
Therefore, I will get an A in this course.

Solution

1. I (will) study hard.

2. I will get an A in this course.

Common form: If p or q, then r .

q.

Therefore, r . ■

Statements
Most of the definitions of formal logic have been developed so that they agree with the
natural or intuitive logic used by people who have been educated to think clearly and
use language carefully. The differences that exist between formal and intuitive logic are
necessary to avoid ambiguity and obtain consistency.

In any mathematical theory, new terms are defined by using those that have been
previously defined. However, this process has to start somewhere. A few initial terms
necessarily remain undefined. In logic, the words sentence, true, and false are the initial
undefined terms.

• Definition

A statement (or proposition) is a sentence that is true or false but not both.

For example, “Two plus two equals four” and “Two plus two equals five” are both
statements, the first because it is true and the second because it is false. On the other
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2.1 Logical Form and Logical Equivalence 25

hand, the truth or falsity of “He is a college student” depends on the reference for the
pronoun he. For some values of he the sentence is true; for others it is false. If the sen-
tence were preceded by other sentences that made the pronoun’s reference clear, then the
sentence would be a statement. Considered on its own, however, the sentence is neither
true nor false, and so it is not a statement. We will discuss ways of transforming sentences
of this form into statements in Section 3.1.

Similarly, “x + y > 0” is not a statement because for some values of x and y the
sentence is true, whereas for others it is false. For instance, if x = 1 and y = 2, the
sentence is true; if x = −1 and y = 0, the sentence is false.

Compound Statements
We now introduce three symbols that are used to build more complicated logical
expressions out of simpler ones. The symbol∼denotes not,∧ denotes and, and∨ denotes
or. Given a statement p, the sentence “∼p” is read “not p” or “It is not the case that p”
and is called the negation of p. In some computer languages the symbol � is used in
place of ∼. Given another statement q, the sentence “p ∧ q” is read “p and q” and is
called the conjunction of p and q. The sentence “p ∨ q” is read “p or q” and is called
the disjunction of p and q.

In expressions that include the symbol ∼as well as ∧ or ∨, the order of operations
specifies that ∼ is performed first. For instance, ∼p ∧ q = (∼p) ∧ q. In logical expres-
sions, as in ordinary algebraic expressions, the order of operations can be overridden
through the use of parentheses. Thus∼(p ∧ q) represents the negation of the conjunction
of p and q. In this, as in most treatments of logic, the symbols ∧ and ∨ are considered
coequal in order of operation, and an expression such as p ∧ q ∨ r is considered ambigu-
ous. This expressionmust be written as either (p ∧ q) ∨ r or p ∧ (q ∨ r) to havemeaning.

A variety of English words translate into logic as ∧,∨, or ∼. For instance, the word
but translates the same as and when it links two independent clauses, as in “Jim is tall
but he is not heavy.” Generally, the word but is used in place of and when the part of the
sentence that follows is, in some way, unexpected. Another example involves the words
neither-nor. When Shakespeare wrote, “Neither a borrower nor a lender be,” he meant,
“Do not be a borrower and do not be a lender.” So if p and q are statements, then

p but q means p and q

neither p nor q means ∼p and ∼q.

Example 2.1.2 Translating from English to Symbols: But and Neither-Nor

Write each of the following sentences symbolically, letting h = “It is hot” and s = “It is
sunny.”

a. It is not hot but it is sunny.

b. It is neither hot nor sunny.

Solution

a. The given sentence is equivalent to “It is not hot and it is sunny,” which can be written
symbolically as ∼h ∧ s.

b. To say it is neither hot nor sunny means that it is not hot and it is not sunny. Therefore,
the given sentence can be written symbolically as ∼h ∧ ∼s. ■
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26 Chapter 2 The Logic of Compound Statements

The notation for inequalities involves and and or statements. For instance, if x, a, and b
are particular real numbers, then

x ≤ a means x < a or x = a

a ≤ x ≤ b means a ≤ x and x ≤ b.

Note that the inequality 2 ≤ x ≤ 1 is not satisfied by any real numbers because

2 ≤ x ≤ 1 means 2 ≤ x and x ≤ 1,

and this is false no matter what number x happens to be. By the way, the point of specify-
ing x, a, and b to be particular real numbers is to ensure that sentences such as “x < a”
and “x ≥ b” are either true or false and hence that they are statements.

Example 2.1.3 And, Or, and Inequalities

Suppose x is a particular real number. Let p, q, and r symbolize “0 < x ,” “x < 3,” and
“x = 3,” respectively. Write the following inequalities symbolically:

a. x ≤ 3 b. 0 < x < 3 c. 0 < x ≤ 3

Solution

a. q ∨ r b. p ∧ q c. p ∧ (q ∨ r) ■

Truth Values
In Examples 2.1.2 and 2.1.3 we built compound sentences out of component statements
and the terms not, and, and or. If such sentences are to be statements, however, they
must have well-defined truth values—they must be either true or false. We now define
such compound sentences as statements by specifying their truth values in terms of the
statements that compose them.

The negation of a statement is a statement that exactly expresses what it would mean
for the statement to be false.

• Definition

If p is a statement variable, the negation of p is “not p” or “It is not the case that
p” and is denoted ∼p. It has opposite truth value from p: if p is true, ∼p is false;
if p is false, ∼p is true.

The truth values for negation are summarized in a truth table.

Truth Table for ∼p

p ∼p

T F

F T
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2.1 Logical Form and Logical Equivalence 27

In ordinary language the sentence “It is hot and it is sunny” is understood to be true
when both conditions—being hot and being sunny—are satisfied. If it is hot but not
sunny, or sunny but not hot, or neither hot nor sunny, the sentence is understood to be
false. The formal definition of truth values for an and statement agrees with this general
understanding.

• Definition

If p and q are statement variables, the conjunction of p and q is “p and q,” denoted
p ∧ q. It is true when, and only when, both p and q are true. If either p or q is false,
or if both are false, p ∧ q is false.

The truth values for conjunction can also be summarized in a truth table. The table is
obtained by considering the four possible combinations of truth values for p and q. Each
combination is displayed in one row of the table; the corresponding truth value for the
whole statement is placed in the right-most column of that row. Note that the only row
containing a T is the first one since the only way for an and statement to be true is for
both component statements to be true.

Truth Table for p ∧ q

p q p ∧ q

T T T

T F F

F T F

F F F

By the way, the order of truth values for p and q in the table above is TT, TF, FT,
FF. It is not absolutely necessary to write the truth values in this order, although it is
customary to do so. We will use this order for all truth tables involving two statement
variables. In Example 2.1.5 we will show the standard order for truth tables that involve
three statement variables.

In the case of disjunction—statements of the form “p or q”—intuitive logic offers
two alternative interpretations. In ordinary language or is sometimes used in an exclusive
sense (p or q but not both) and sometimes in an inclusive sense (p or q or both). A waiter
who says you may have “coffee, tea, or milk” uses the word or in an exclusive sense:
Extra payment is generally required if you want more than one beverage. On the other
hand, a waiter who offers “cream or sugar” uses the word or in an inclusive sense: You
are entitled to both cream and sugar if you wish to have them.

Mathematicians and logicians avoid possible ambiguity about the meaning of the
word or by understanding it to mean the inclusive “and/or.” The symbol ∨ comes from
the Latin word vel, which means or in its inclusive sense. To express the exclusive or, the
phrase p or q but not both is used.
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28 Chapter 2 The Logic of Compound Statements

• Definition

If p and q are statement variables, the disjunction of p and q is “p or q,” denoted
p ∨ q. It is true when either p is true, or q is true, or both p and q are true; it is false
only when both p and q are false.

Here is the truth table for disjunction:

Truth Table for p ∨ q

p q p ∨ q

T T T

T F T

F T T

F F F

Note The statement
“2 ≤ 2” means that 2 is
less than 2 or 2 equals 2.
It is true because 2 = 2.

Evaluating the Truth of More General
Compound Statements

Now that truth values have been assigned to ∼p, p ∧ q, and p ∨ q, consider the question
of assigning truth values to more complicated expressions such as ∼p ∨ q,
(p ∨ q) ∧ ∼(p ∧ q), and (p ∧ q) ∨ r . Such expressions are called statement forms
(or propositional forms). The close relationship between statement forms and Boolean
expressions is discussed in Section 2.4.

• Definition

A statement form (or propositional form) is an expression made up of statement
variables (such as p, q, and r ) and logical connectives (such as ∼,∧, and ∨) that
becomes a statement when actual statements are substituted for the component state-
ment variables. The truth table for a given statement form displays the truth values
that correspond to all possible combinations of truth values for its component state-
ment variables.

To compute the truth values for a statement form, follow rules similar to those used
to evaluate algebraic expressions. For each combination of truth values for the statement
variables, first evaluate the expressions within the innermost parentheses, then evaluate
the expressions within the next innermost set of parentheses, and so forth until you have
the truth values for the complete expression.

Example 2.1.4 Truth Table for Exclusive Or

Construct the truth table for the statement form (p ∨ q) ∧ ∼(p ∧ q). Note that when or
is used in its exclusive sense, the statement “p or q” means “p or q but not both” or “p
or q and not both p and q,” which translates into symbols as (p ∨ q) ∧ ∼(p ∧ q). This
is sometimes abbreviated p ⊕ q or p XOR q.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



2.1 Logical Form and Logical Equivalence 29

Solution Set up columns labeled p, q, p ∨ q, p ∧ q,∼(p ∧ q), and (p ∨ q) ∧ ∼(p ∧ q).
Fill in the p and q columns with all the logically possible combinations of T’s and
F’s. Then use the truth tables for ∨ and ∧ to fill in the p ∨ q and p ∧ q columns with the
appropriate truth values. Next fill in the ∼(p ∧ q) column by taking the opposites of the
truth values for p ∧ q. For example, the entry for ∼(p ∧ q) in the first row is F because
in the first row the truth value of p ∧ q is T. Finally, fill in the (p ∨ q) ∧ ∼(p ∧ q) col-
umn by considering the truth table for an and statement together with the computed truth
values for p ∨ q and ∼(p ∧ q). For example, the entry in the first row is F because the
entry for p ∨ q is T, the entry for∼(p ∧ q) is F, and an and statement is false unless both
components are true. The entry in the second row is T because both components are true
in this row.

Truth Table for Exclusive Or: ( p ∨ q) ∧ ∼( p ∧ q)

p q p ∨ q p ∧ q ∼( p ∧ q) ( p ∨ q)∧ ∼( p ∧ q)

T T T T F F

T F T F T T

F T T F T T

F F F F T F ■

Example 2.1.5 Truth Table for ( p ∧ q) ∨ ∼r

Construct a truth table for the statement form (p ∧ q) ∨ ∼r .
Solution Make columns headed p, q, r, p ∧ q, ∼r, and (p ∧ q) ∨ ∼r . Enter the eight

logically possible combinations of truth values for p, q, and r in the three left-most
columns. Then fill in the truth values for p ∧ q and for ∼r . Complete the table by con-
sidering the truth values for (p ∧ q) and for ∼r and the definition of an or statement.
Since an or statement is false only when both components are false, the only rows in
which the entry is F are the third, fifth, and seventh rows because those are the only
rows in which the expressions p ∧ q and ∼r are both false. The entry for all the other
rows is T.

p q r p ∧ q ∼r ( p ∧ q)∨ ∼r

T T T T F T

T T F T T T

T F T F F F

T F F F T T

F T T F F F

F T F F T T

F F T F F F

F F F F T T ■

The essential point about assigning truth values to compound statements is that it
allows you—using logic alone—to judge the truth of a compound statement on the basis
of your knowledge of the truth of its component parts. Logic does not help you determine
the truth or falsity of the component statements. Rather, logic helps link these separate
pieces of information together into a coherent whole.
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30 Chapter 2 The Logic of Compound Statements

Logical Equivalence
The statements

6 is greater than 2 and 2 is less than 6

are two different ways of saying the same thing. Why? Because of the definition of the
phrases greater than and less than. By contrast, although the statements

(1) Dogs bark and cats meow and (2) Cats meow and dogs bark

are also two different ways of saying the same thing, the reason has nothing to do with
the definition of the words. It has to do with the logical form of the statements. Any
two statements whose logical forms are related in the same way as (1) and (2) would
either both be true or both be false. You can see this by examining the following truth
table, where the statement variables p and q are substituted for the component statements
“Dogs bark” and “Cats meow,” respectively. The table shows that for each combination
of truth values for p and q, p ∧ q is true when, and only when, q ∧ p is true. In such a
case, the statement forms are called logically equivalent, and we say that (1) and (2) are
logically equivalent statements.

p q p ∧ q q ∧ p

T T T T

T F F F

F T F F

F F F F

↑ ↑
p ∧ q and q ∧ p always
have the same truth
values, so they are
logically equivalent

• Definition

Two statement forms are called logically equivalent if, and only if, they have identical
truth values for each possible substitution of statements for their statement variables.
The logical equivalence of statement forms P and Q is denoted by writing P ≡ Q.

Two statements are called logically equivalent if, and only if, they have logically
equivalent forms when identical component statement variables are used to replace
identical component statements.

Testing Whether Two Statement Forms P and Q Are Logically Equivalent

1. Construct a truth table with one column for the truth values of P and another
column for the truth values of Q.

2. Check each combination of truth values of the statement variables to see whether
the truth value of P is the same as the truth value of Q.

a. If in each row the truth value of P is the same as the truth value of Q, then P
and Q are logically equivalent.

b. If in some row P has a different truth value from Q, then P and Q are not
logically equivalent.
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Example 2.1.6 Double Negative Property: ∼(∼p) ≡ p

Construct a truth table to show that the negation of the negation of a statement is logically
equivalent to the statement, annotating the table with a sentence of explanation.

Solution p ∼p ∼(∼p)

T F T

F T F

↑ ↑
p and∼(∼p) always have
the same truth values, so they
are logically equivalent ■

There are two ways to show that statement forms P and Q are not logically equiva-
lent. As indicated previously, one is to use a truth table to find rows for which their truth
values differ. The other way is to find concrete statements for each of the two forms, one
of which is true and the other of which is false. The next example illustrates both of these
ways.

Example 2.1.7 Showing Nonequivalence

Show that the statement forms ∼(p ∧ q) and ∼p ∧ ∼q are not logically equivalent.

Solution

a. This method uses a truth table annotated with a sentence of explanation.

p q ∼p ∼q p ∧ q ∼( p ∧ q) ∼p ∧ ∼q

T T F F T F F

T F F T F T �= F

F T T F F T �= F

F F T T F T T

↑ ↑
∼(p ∧ q) and∼p ∧ ∼q have
different truth values in rows 2 and 3,
so they are not logically equivalent

b. This method uses an example to show that ∼(p ∧ q) and ∼p ∧ ∼q are not logically
equivalent. Let p be the statement “0 < 1” and let q be the statement “1 < 0.” Then

∼(p ∧ q) is “It is not the case that both 0 < 1 and 1 < 0, ”

which is true. On the other hand,

∼p ∧ ∼q is “0 ≮ 1 and 1 ≮ 0, ”

which is false. This example shows that there are concrete statements you can substi-
tute for p and q to make one of the statement forms true and the other false. Therefore,
the statement forms are not logically equivalent. ■
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Example 2.1.8 Negations of And and Or: De Morgan’s Laws

For the statement “John is tall and Jim is redheaded” to be true, both components must
be true. So for the statement to be false, one or both components must be false. Thus
the negation can be written as “John is not tall or Jim is not redheaded.” In general, the
negation of the conjunction of two statements is logically equivalent to the disjunction
of their negations. That is, statements of the forms ∼(p ∧ q) and ∼p ∨ ∼q are logically
equivalent. Check this using truth tables.

Solution p q ∼p ∼q p ∧ q ∼( p ∧ q) ∼p ∨ ∼q

T T F F T F F

T F F T F T T

F T T F F T T

F F T T F T T

↑ ↑
∼(p ∧ q) and∼p ∨ ∼q always
have the same truth values, so they
are logically equivalent

C
ul
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Augustus De Morgan
(1806–1871)

Symbolically,

∼(p ∧ q) ≡ ∼p ∨ ∼q.

In the exercises at the end of this section you are asked to show the analogous law that
the negation of the disjunction of two statements is logically equivalent to the conjunction
of their negations:

∼(p ∨ q) ≡ ∼p ∧ ∼q.
■

The two logical equivalences of Example 2.1.8 are known as De Morgan’s laws
of logic in honor of Augustus De Morgan, who was the first to state them in formal
mathematical terms.

De Morgan’s Laws

The negation of an and statement is logically equivalent to the or statement in which
each component is negated.

The negation of an or statement is logically equivalent to the and statement in which
each component is negated.

Example 2.1.9 Applying De Morgan’s Laws

Write negations for each of the following statements:

a. John is 6 feet tall and he weighs at least 200 pounds.

b. The bus was late or Tom’s watch was slow.
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Solution

a. John is not 6 feet tall or he weighs less than 200 pounds.

b. The bus was not late and Tom’s watch was not slow.

Since the statement “neither p nor q” means the same as “∼p and ∼q,” an alternative
answer for (b) is “Neither was the bus late nor was Tom’s watch slow.” ■

If x is a particular real number, saying that x is not less than 2 (x ≮ 2) means that x
does not lie to the left of 2 on the number line. This is equivalent to saying that either
x = 2 or x lies to the right of 2 on the number line (x = 2 or x > 2). Hence,

x ≮ 2 is equivalent to x ≥ 2.

Pictorially,

–2 –1 0 1 2 3 4 5

If x � 2, then x lies in here.

Similarly,

x ≯ 2 is equivalent to x ≤ 2,

x � 2 is equivalent to x > 2, and

x � 2 is equivalent to x < 2.

Example 2.1.10 Inequalities and De Morgan’s Laws

Use De Morgan’s laws to write the negation of −1 < x ≤ 4.

Solution The given statement is equivalent to

−1 < x and x ≤ 4.

By De Morgan’s laws, the negation is

−1 ≮ x or x � 4,

which is equivalent to

−1 ≥ x or x > 4.

!
Caution! The negation
of −1 < x ≤ 4 is not
−1 ≮ x � 4. It is also not
−1 ≥ x > 4.

Pictorially, if −1 ≥ x or x > 4, then x lies in the shaded region of the number line,
as shown below.

–2 –1 0 1 2 3 4 5 6

■

De Morgan’s laws are frequently used in writing computer programs. For instance,
suppose you want your program to delete all files modified outside a certain range of
dates, say from date 1 through date 2 inclusive. You would use the fact that

∼(date1 ≤ file_modification_date ≤ date2)
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is equivalent to

( file_modification_date < date1) or (date2 < file_modification_date).

Example 2.1.11 A Cautionary Example

According to De Morgan’s laws, the negation of

p: Jim is tall and Jim is thin

is ∼p: Jim is not tall or Jim is not thin

because the negation of an and statement is the or statement in which the two components
are negated.

Unfortunately, a potentially confusing aspect of the English language can arise when
you are taking negations of this kind. Note that statement p can be written more com-
pactly as

p′: Jim is tall and thin.

When it is so written, another way to negate it is

∼(p′): Jim is not tall and thin.

But in this form the negation looks like an and statement. Doesn’t that violate
De Morgan’s laws?

Actually no violation occurs. The reason is that in formal logic the words and and or
are allowed only between complete statements, not between sentence fragments.

One lesson to be learned from this example is that when you apply De Morgan’s
laws, you must have complete statements on either side of each and and on either side of
each or.

!
Caution! Although the
laws of logic are
extremely useful, they
should be used as an aid
to thinking, not as a
mechanical substitute for
it.

■

Tautologies and Contradictions
It has been said that all of mathematics reduces to tautologies. Although this is formally
true, most working mathematicians think of their subject as having substance as well as
form. Nonetheless, an intuitive grasp of basic logical tautologies is part of the equipment
of anyone who reasons with mathematics.

• Definition

A tautology is a statement form that is always true regardless of the truth values of
the individual statements substituted for its statement variables. A statement whose
form is a tautology is a tautological statement.

A contradication is a statement form that is always false regardless of the truth val-
ues of the individual statements substituted for its statement variables. A statement
whose form is a contradication is a contradictory statement.

According to this definition, the truth of a tautological statement and the falsity of a
contradictory statement are due to the logical structure of the statements themselves and
are independent of the meanings of the statements.
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Example 2.1.12 Tautologies and Contradictions

Show that the statement form p ∨ ∼p is a tautology and that the statement form p ∧ ∼p
is a contradiction.

Solution p ∼p p ∨ ∼p p ∧ ∼p

T F T F

F T T F

↑ ↑
all T’s so all F’s so
p ∨ ∼p is p ∧ ∼p is a
a tautology contradiction

■

Example 2.1.13 Logical Equivalence Involving Tautologies and Contradictions

If t is a tautology and c is a contradiction, show that p∧ t ≡ p and p∧ c ≡ c.

Solution p t p ∧ t p c p ∧ c

T T T T F F

F T F F F F

↑ ↑ ↑ ↑
same truth same truth
values, so values, so
p ∧ t ≡ p p ∧ c ≡ c ■

Summary of Logical Equivalences
Knowledge of logically equivalent statements is very useful for constructing arguments.
It often happens that it is difficult to see how a conclusion follows from one form of a
statement, whereas it is easy to see how it follows from a logically equivalent form of the
statement. A number of logical equivalences are summarized in Theorem 2.1.1 for future
reference.

Theorem 2.1.1 Logical Equivalences

Given any statement variables p, q, and r , a tautology t and a contradiction c, the following logical equivalences
hold.

1. Commutative laws: p ∧ q ≡ q ∧ p p ∨ q ≡ q ∨ p

2. Associative laws: (p ∧ q) ∧ r ≡ p ∧ (q ∧ r) (p ∨ q) ∨ r ≡ p ∨ (q ∨ r)

3. Distributive laws: p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r) p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)

4. Identity laws: p ∧ t ≡ p p ∨ c ≡ p

5. Negation laws: p ∨ ∼p ≡ t p ∧ ∼p ≡ c

6. Double negative law: ∼(∼p) ≡ p

7. Idempotent laws: p ∧ p ≡ p p ∨ p ≡ p

8. Universal bound laws: p ∨ t ≡ t p ∧ c ≡ c

9. De Morgan’s laws: ∼(p ∧ q) ≡ ∼p ∨ ∼q ∼(p ∨ q) ≡ ∼p ∧ ∼q
10. Absorption laws: p ∨ (p ∧ q) ≡ p p ∧ (p ∨ q) ≡ p

11. Negations of t and c: ∼t ≡ c ∼c ≡ t
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The proofs of laws 4 and 6, the first parts of laws 1 and 5, and the second part of law 9
have already been given as examples in the text. Proofs of the other parts of the theorem
are left as exercises. In fact, it can be shown that the first five laws of Theorem 2.1.1 form
a core from which the other laws can be derived. The first five laws are the axioms for a
mathematical structure known as a Boolean algebra, which is discussed in Section 6.4.

The equivalences of Theorem 2.1.1 are general laws of thought that occur in all areas
of human endeavor. They can also be used in a formal way to rewrite complicated state-
ment forms more simply.

Example 2.1.14 Simplifying Statement Forms

Use Theorem 2.1.1 to verify the logical equivalence

∼(∼p ∧ q) ∧ (p ∨ q) ≡ p.

Solution Use the laws of Theorem 2.1.1 to replace sections of the statement form on the
left by logically equivalent expressions. Each time you do this, you obtain a logically
equivalent statement form. Continue making replacements until you obtain the statement
form on the right.

∼(∼p ∧ q) ∧ (p ∨ q) ≡ (∼(∼p)∨ ∼q) ∧ (p ∨ q) by De Morgan’s laws

≡ (p∨ ∼q) ∧ (p ∨ q) by the double negative law

≡ p ∨ (∼q ∧ q) by the distributive law

≡ p ∨ (q ∧ ∼q) by the commutative law for ∧
≡ p ∨ c by the negation law

≡ p by the identity law. ■

Skill in simplifying statement forms is useful in constructing logically efficient computer
programs and in designing digital logic circuits.

Although the properties in Theorem 2.1.1 can be used to prove the logical
equivalence of two statement forms, they cannot be used to prove that statement forms are
not logically equivalent. On the other hand, truth tables can always be used to determine
both equivalence and nonequivalence, and truth tables are easy to program on a computer.
When truth tables are used, however, checking for equivalence always requires 2n steps,
where n is the number of variables. Sometimes you can quickly see that two statement
forms are equivalent by Theorem 2.1.1, whereas it would take quite a bit of calculating
to show their equivalence using truth tables. For instance, it follows immediately from
the associative law for ∧ that p ∧ (∼q ∧ ∼r) ≡ (p∧ ∼q)∧ ∼r , whereas a truth table
verification requires constructing a table with eight rows.

Test Yourself
Answers to Test Yourself questions are located at the end of each section.

1. An and statement is true if, and only if, both components are
.

2. An or statement is false if, and only if, both components are
.

3. Two statement forms are logically equivalent if, and only if,
they always have .

4. De Morgan’s laws say (1) that the negation of an and state-
ment is logically equivalent to the statement in which

each component is , and (2) that the negation of an or
statement is logically equivalent to the statement in
which each component is .

5. A tautology is a statement that is always .

6. A contradiction is a statement that is always .
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Exercise Set 2.1 *

In each of 1–4 represent the common form of each argument
using letters to stand for component sentences, and fill in the
blanks so that the argument in part (b) has the same logical form
as the argument in part (a).

1. a. If all integers are rational, then the number 1 is rational.
All integers are rational.
Therefore, the number 1 is rational.

b. If all algebraic expressions can be written in prefix
notation, then .

.

Therefore, (a + 2b)(a2 − b) can be written in prefix
notation.

2. a. If all computer programs contain errors, then this
program contains an error.
This program does not contain an error.
Therefore, it is not the case that all computer programs
contain errors.

b. If , then .
2 is not odd.
Therefore, it is not the case that all prime numbers are
odd.

3. a. This number is even or this number is odd.
This number is not even.
Therefore, this number is odd.

b. or logic is confusing.
My mind is not shot.
Therefore, .

4. a. If n is divisible by 6, then n is divisible by 3.
If n is divisible by 3, then the sum of the digits of n is
divisible by 3.
Therefore, if n is divisible by 6, then the sum of the dig-
its of n is divisible by 3.
(Assume that n is a particular, fixed integer.)

b. If this function is then this function is differen-
tiable.

If this function is then this function is continuous.

Therefore, if this function is a polynomial, then this
function .

5. Indicate which of the following sentences are statements.
a. 1,024 is the smallest four-digit number that is a perfect

square.
b. She is a mathematics major.
c. 128 = 26 d. x = 26

Write the statements in 6–9 in symbolic form using the symbols
∼,∨, and ∧ and the indicated letters to represent component
statements.

6. Let s = “stocks are increasing” and i = “interest rates are
steady.”

a. Stocks are increasing but interest rates are steady.
b. Neither are stocks increasing nor are interest rates

steady.

7. Juan is a math major but not a computer science major.
(m = “Juan is a math major,” c = “Juan is a computer
science major”)

8. Let h = “John is healthy,” w = “John is wealthy,” and s =
“John is wise.”
a. John is healthy and wealthy but not wise.
b. John is not wealthy but he is healthy and wise.
c. John is neither healthy, wealthy, nor wise.
d. John is neither wealthy nor wise, but he is healthy.
e. John is wealthy, but he is not both healthy and wise.

9. Either this polynomial has degree 2 or it has degree 3 but
not both. (n = “This polynomial has degree 2,” k = “This
polynomial has degree 3”)

10. Let p be the statement “DATAENDFLAG is off,” q the
statement “ERROR equals 0,” and r the statement “SUM is
less than 1,000.” Express the following sentences in sym-
bolic notation.
a. DATAENDFLAG is off, ERROR equals 0, and SUM is

less than 1,000.
b. DATAENDFLAG is off but ERROR is not equal to 0.
c. DATAENDFLAG is off; however, ERROR is not 0 or

SUM is greater than or equal to 1,000.
d. DATAENDFLAG is on and ERROR equals 0 but SUM

is greater than or equal to 1,000.
e. Either DATAENDFLAG is on or it is the case that both

ERROR equals 0 and SUM is less than 1,000.

11. In the following sentence, is the word or used in its inclu-
sive or exclusive sense? A team wins the playoffs if it wins
two games in a row or a total of three games.

Write truth tables for the statement forms in 12–15.

12. ∼p ∧ q 13. ∼(p ∧ q) ∨ (p ∨ q)

14. p ∧ (q ∧ r) 15. p ∧ (∼q ∨ r)

Determine whether the statement forms in 16–24 are logically
equivalent. In each case, construct a truth table and include a
sentence justifying your answer. Your sentence should show that
you understand the meaning of logical equivalence.

16. p ∨ (p ∧ q) and p 17. ∼(p ∧ q) and ∼p ∧ ∼q
18. p ∨ t and t 19. p ∧ t and p

20. p ∧ c and p ∨ c

21. (p ∧ q) ∧ r and p ∧ (q ∧ r)

*For exercises with blue numbers or letters, solutions are given in Appendix B. The symbol H indicates that only a hint or a partial
solution is given. The symbol ✶ signals that an exercise is more challenging than usual.
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22. p ∧ (q ∨ r) and (p ∧ q) ∨ (p ∧ r)

23. (p ∧ q) ∨ r and p ∧ (q ∨ r)

24. (p ∨ q) ∨ (p ∧ r) and (p ∨ q) ∧ r

Use De Morgan’s laws to write negations for the statements in
25–31.

25. Hal is a math major and Hal’s sister is a computer science
major.

26. Sam is an orange belt and Kate is a red belt.

27. The connector is loose or the machine is unplugged.

28. The units digit of 467 is 4 or it is 6.

29. This computer program has a logical error in the first ten
lines or it is being run with an incomplete data set.

30. The dollar is at an all-time high and the stock market is at a
record low.

31. The train is late or my watch is fast.

Assume x is a particular real number and use De Morgan’s laws
to write negations for the statements in 32–37.

32. −2 < x < 7 33. −10 < x < 2

34. x < 2 or x > 5 35. x ≤ −1 or x > 1

36. 1 > x ≥ −3 37. 0 > x ≥ −7

In 38 and 39, imagine that num_orders and num_instock are par-
ticular values, such as might occur during execution of a com-
puter program. Write negations for the following statements.

38. (num_orders > 100 and num_instock ≤ 500) or
num_instock < 200

39. (num_orders < 50 and num_instock > 300) or
(50 ≤ num_orders < 75 and num_instock > 500)

Use truth tables to establish which of the statement forms in
40–43 are tautologies and which are contradictions.

40. (p ∧ q) ∨ (∼p ∨ (p ∧ ∼q))
41. (p ∧ ∼q) ∧ (∼p ∨ q)

42. ((∼p ∧ q) ∧ (q ∧ r))∧ ∼q
43. (∼p ∨ q) ∨ (p ∧ ∼q)
In 44 and 45, determine whether the statements in (a) and (b)
are logically equivalent.

44. Assume x is a particular real number.

a. x < 2 or it is not the case that 1 < x < 3.

b. x ≤ 1 or either x < 2 or x ≥ 3.

45. a. Bob is a double math and computer science major
and Ann is a math major, but Ann is not a double
math and computer science major.

b. It is not the case that both Bob and Ann are dou-
ble math and computer science majors, but it is the
case that Ann is a math major and Bob is a double
math and computer science major.

46.✶ In Example 2.1.4, the symbol ⊕ was introduced to denote
exclusive or, so p ⊕ q ≡ (p ∨ q)∧ ∼(p ∧ q). Hence the
truth table for exclusive or is as follows:

p q p ⊕ q

T T F

T F T

F T T

F F F

a. Find simpler statement forms that are logically equiva-
lent to p ⊕ p and (p ⊕ p)⊕ p.

b. Is (p ⊕ q)⊕ r ≡ p ⊕ (q ⊕ r)? Justify your answer.
c. Is (p ⊕ q) ∧ r ≡ (p ∧ r)⊕ (q ∧ r)? Justify your

answer.

47.✶ In logic and in standard English, a double negative is equiv-
alent to a positive. There is one fairly common English
usage in which a “double positive” is equivalent to a nega-
tive. What is it? Can you think of others?

In 48 and 49 below, a logical equivalence is derived from Theo-
rem 2.1.1. Supply a reason for each step.

48. (p ∧ ∼q) ∨ (p ∧ q) ≡ p ∧ (∼q ∨ q) by (a)

≡ p ∧ (q ∨ ∼q) by (b)

≡ p ∧ t by (c)

≡ p by (d)

Therefore, (p ∧ ∼q) ∨ (p ∧ q) ≡ p.

49. (p ∨ ∼q) ∧ (∼p ∨ ∼q)
≡ (∼q ∨ p) ∧ (∼q ∨ ∼p) by (a)

≡ ∼q ∨ (p ∧ ∼p) by (b)

≡ ∼q ∨ c by (c)

≡ ∼q by (d)

Therefore, (p ∨ ∼q) ∧ (∼p ∨ ∼q) ≡ ∼q.
Use Theorem 2.1.1 to verify the logical equivalences in 50–54.
Supply a reason for each step.

50. (p ∧ ∼q) ∨ p ≡ p 51. p ∧ (∼q ∨ p) ≡ p

52. ∼(p ∨ ∼q) ∨ (∼p ∧ ∼q) ≡ ∼p
53. ∼((∼p ∧ q) ∨ (∼p ∧ ∼q)) ∨ (p ∧ q) ≡ p

54. (p ∧ (∼(∼p ∨ q))) ∨ (p ∧ q) ≡ p
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Answers for Test Yourself
1. true 2. false 3. the same truth values 4. or; negated; and; negated 5. true 6. false

2.2 Conditional Statements
. . . hypothetical reasoning implies the subordination of the real to the realm of the
possible . . . — Jean Piaget, 1972

When you make a logical inference or deduction, you reason from a hypothesis to a
conclusion. Your aim is to be able to say, “If such and such is known, then something or
other must be the case.”

Let p and q be statements. A sentence of the form “If p then q” is denoted symboli-
cally by “p→ q”; p is called the hypothesis and q is called the conclusion. For instance,
consider the following statement:

If 4,686 is divisible by 6︸ ︷︷ ︸, then 4,686 is divisible by 3︸ ︷︷ ︸
hypothesis conclusion

Such a sentence is called conditional because the truth of statement q is conditioned on
the truth of statement p.

The notation p→ q indicates that→ is a connective, like ∧ or ∨, that can be used to
join statements to create new statements. To define p→ q as a statement, therefore, we
must specify the truth values for p→ q as we specified truth values for p ∧ q and for
p ∨ q. As is the case with the other connectives, the formal definition of truth values for
→ (if-then) is based on its everyday, intuitive meaning. Consider an example.

Suppose you go to interview for a job at a store and the owner of the store makes you
the following promise:

If you show up for work Monday morning, then you will get the job.

Under what circumstances are you justified in saying the owner spoke falsely? That
is, under what circumstances is the above sentence false? The answer is: You do show
up for work Monday morning and you do not get the job.

After all, the owner’s promise only says you will get the job if a certain condition
(showing up for work Monday morning) is met; it says nothing about what will hap-
pen if the condition is not met. So if the condition is not met, you cannot in fairness
say the promise is false regardless of whether or not you get the job.

The above example was intended to convince you that the only combination of circum-
stances in which you would call a conditional sentence false occurs when the hypothesis
is true and the conclusion is false. In all other cases, you would not call the sentence
false. This implies that the only row of the truth table for p→ q that should be filled in
with an F is the row where p is T and q is F. No other row should contain an F. But each
row of a truth table must be filled in with either a T or an F. Thus all other rows of the
truth table for p→ q must be filled in with T’s.

Truth Table for p → q

p q p → q

T T T

T F F

F T T

F F T
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• Definition

If p and q are statement variables, the conditional of q by p is “If p then q” or
“p implies q” and is denoted p→ q. It is false when p is true and q is false;
otherwise it is true. We call p the hypothesis (or antecedent) of the conditional
and q the conclusion (or consequent).

A conditional statement that is true by virtue of the fact that its hypothesis is false is
often called vacuously true or true by default. Thus the statement “If you show up for
work Monday morning, then you will get the job” is vacuously true if you do not show up
for work Monday morning. In general, when the “if” part of an if-then statement is false,
the statement as a whole is said to be true, regardless of whether the conclusion is true or
false.

Example 2.2.1 A Conditional Statement with a False Hypothesis

Consider the statement:

If 0 = 1 then 1 = 2.

As strange as it may seem, since the hypothesis of this statement is false, the statement
as a whole is true. ■

The philosopherWillard Van Orman Quine advises against using the phrase “p implies
q” to mean “p→ q” because the word implies suggests that q can be logically deduced
from p and this is often not the case. Nonetheless, the phrase is used by many people,
probably because it is a convenient replacement for the → symbol. And, of course, in
many cases a conclusion can be deduced from a hypothesis, even when the hypothesis is
false.

Note For example, if
0 = 1, then, by adding
1 to both sides of the
equation, you can deduce
that 1 = 2.

In expressions that include→ as well as other logical operators such as ∧,∨, and ∼,
the order of operations is that→ is performed last. Thus, according to the specification
of order of operations in Section 2.1, ∼ is performed first, then ∧ and ∨, and finally→.

Example 2.2.2 Truth Table for p ∨ ∼q →∼p

Construct a truth table for the statement form p ∨ ∼q →∼p.
Solution By the order of operations given above, the following two expressions are equiv-

alent: p ∨ ∼q →∼p and (p ∨ (∼q))→ (∼p), and this order governs the construction
of the truth table. First fill in the four possible combinations of truth values for p and q,
and then enter the truth values for∼p and∼q using the definition of negation. Next fill in
the p ∨ ∼q column using the definition of ∨. Finally, fill in the p ∨ ∼q →∼p column
using the definition of→. The only rows in which the hypothesis p ∨ ∼q is true and the
conclusion ∼p is false are the first and second rows. So you put F’s in those two rows
and T’s in the other two rows.

conclusion︷ ︸︸ ︷ hypothesis︷ ︸︸ ︷
p q ∼p ∼q p ∨ ∼q p ∨ ∼q → ∼p

T T F F T F

T F F T T F

F T T F F T

F F T T T T ■
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Logical Equivalences Involving →
Imagine that you are trying to solve a problem involving three statements: p, q, and r .
Suppose you know that the truth of r follows from the truth of p and also that the truth
of r follows from the truth of q. Then no matter whether p or q is the case, the truth of r
must follow. The division-into-cases method of analysis is based on this idea.

Example 2.2.3 Division into Cases: Showing that p ∨ q → r ≡ ( p → r) ∧ (q → r)

Use truth tables to show the logical equivalence of the statement forms p ∨ q → r and
(p→ r) ∧ (q → r). Annotate the table with a sentence of explanation.

Solution First fill in the eight possible combinations of truth values for p, q, and r . Then
fill in the columns for p ∨ q, p→ r , and q → r using the definitions of or and if-then.
For instance, the p→ r column has F’s in the second and fourth rows because these are
the rows in which p is true and q is false. Next fill in the p ∨ q → r column using the
definition of if-then. The rows in which the hypothesis p ∨ q is true and the conclusion r
is false are the second, fourth, and sixth. So F’s go in these rows and T’s in all the others.
The complete table shows that p ∨ q → r and (p→ r) ∧ (q → r) have the same truth
values for each combination of truth values of p, q, and r . Hence the two statement forms
are logically equivalent.

p q r p ∨ q p → r q → r p ∨ q → r ( p → r) ∧ (q → r)

T T T T T T T T

T T F T F F F F

T F T T T T T T

T F F T F T F F

F T T T T T T T

F T F T T F F F

F F T F T T T T

F F F F T T T T

↑ ↑
p ∨ q → r and (p→ r) ∧ (q → r)
always have the same truth values,
so they are logically equivalent ■

Representation of If-Then As Or
In exercise 13(a) at the end of this section you are asked to use truth tables to show that

p→ q ≡ ∼p ∨ q.

The logical equivalence of “if p then q” and “not p or q” is occasionally used in everyday
speech. Here is one instance.

Example 2.2.4 Application of the Equivalence between ∼p ∨ q and p → q

Rewrite the following statement in if-then form.

Either you get to work on time or you are fired.

Solution Let ∼p be
You get to work on time.
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and q be

You are fired.

Then the given statement is ∼p ∨ q. Also p is

You do not get to work on time.

So the equivalent if-then version, p→ q, is

If you do not get to work on time, then you are fired. ■

The Negation of a Conditional Statement
By definition, p→ q is false if, and only if, its hypothesis, p, is true and its conclusion,
q, is false. It follows that

The negation of “if p then q” is logically equivalent to “p and not q.”

This can be restated symbolically as follows:

∼(p→ q) ≡ p ∧ ∼q

You can also obtain this result by starting from the logical equivalence p→ q ≡ ∼
p ∨ q. Take the negation of both sides to obtain

∼(p→ q) ≡ ∼(∼p ∨ q)

≡ ∼(∼p) ∧ (∼q) by De Morgan’s laws

≡ p ∧ ∼q by the double negative law.

Yet another way to derive this result is to construct truth tables for ∼(p→ q) and for
p ∧ ∼q and to check that they have the same truth values. (See exercise 13(b) at the end
of this section.)

Example 2.2.5 Negations of If-Then Statements

Write negations for each of the following statements:

a. If my car is in the repair shop, then I cannot get to class.

b. If Sara lives in Athens, then she lives in Greece.

Solution

a. My car is in the repair shop and I can get to class.

b. Sara lives in Athens and she does not live in Greece. (Sara might live in Athens,
Georgia; Athens, Ohio; or Athens, Wisconsin.) ■

It is tempting to write the negation of an if-then statement as another if-then statement.
Please resist that temptation!

!
Caution! Remember
that the negation of an
if-then statement does
not start with the
word if.
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The Contrapositive of a Conditional Statement
One of the most fundamental laws of logic is the equivalence between a conditional
statement and its contrapositive.

• Definition

The contrapositive of a conditional statement of the form “If p then q” is

If ∼q then ∼p.
Symbolically,

The contrapositive of p→ q is ∼q →∼p.

The fact is that

A conditional statement is logically equivalent to its contrapositive.

You are asked to establish this equivalence in exercise 26 at the end of this section.

Example 2.2.6 Writing the Contrapositive

Write each of the following statements in its equivalent contrapositive form:

a. If Howard can swim across the lake, then Howard can swim to the island.

b. If today is Easter, then tomorrow is Monday.

Solution

a. If Howard cannot swim to the island, then Howard cannot swim across the lake.

b. If tomorrow is not Monday, then today is not Easter. ■

When you are trying to solve certain problems, you may find that the contrapositive
form of a conditional statement is easier to work with than the original statement. Replac-
ing a statement by its contrapositive may give the extra push that helps you over the top
in your search for a solution. This logical equivalence is also the basis for one of the most
important laws of deduction, modus tollens (to be explained in Section 2.3), and for the
contrapositive method of proof (to be explained in Section 4.6).

The Converse and Inverse of a Conditional Statement
The fact that a conditional statement and its contrapositive are logically equivalent is very
important and has wide application. Two other variants of a conditional statement are not
logically equivalent to the statement.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



44 Chapter 2 The Logic of Compound Statements

• Definition

Suppose a conditional statement of the form “If p then q” is given.

1. The converse is “If q then p.”

2. The inverse is “If ∼p then ∼q.”
Symbolically,

The converse of p→ q is q → p,

and

The inverse of p→ q is ∼p→∼q.

Example 2.2.7 Writing the Converse and the Inverse

Write the converse and inverse of each of the following statements:

a. If Howard can swim across the lake, then Howard can swim to the island.

b. If today is Easter, then tomorrow is Monday.

Solution

a. Converse: If Howard can swim to the island, then Howard can swim across the lake.

Inverse: If Howard cannot swim across the lake, then Howard cannot swim to the
island.

b. Converse: If tomorrow is Monday, then today is Easter.

Inverse: If today is not Easter, then tomorrow is not Monday. ■

Note that while the statement “If today is Easter, then tomorrow is Monday” is always
true, both its converse and inverse are false on every Sunday except Easter.

1. A conditional statement and its converse are not logically equivalent.

2. A conditional statement and its inverse are not logically equivalent.

3. The converse and the inverse of a conditional statement are logically equivalent
to each other.

!
Caution! Many people
believe that if a
conditional statement is
true, then its converse and
inverse must also be true.
This is not correct!

In exercises 24, 25, and 27 at the end of this section, you are asked to use truth tables
to verify the statements in the box above. Note that the truth of statement 3 also follows
from the observation that the inverse of a conditional statement is the contrapositive of its
converse.

Only If and the Biconditional
To say “p only if q” means that p can take place only if q takes place also. That is,
if q does not take place, then p cannot take place. Another way to say this is that if p
occurs, then q must also occur (by the logical equivalence between a statement and its
contrapositive).
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• Definition

It p and q are statements,

p only if q means “if not q then not p,”

or, equivalently,

“if p then q.”

Example 2.2.8 Converting Only If to If-Then

Rewrite the following statement in if-then form in two ways, one of which is the contra-
positive of the other.

John will break the world’s record for the mile run only if
he runs the mile in under four minutes.

Solution Version 1: If John does not run the mile in under four minutes, then he will
not break the world’s record.

Version 2: If John breaks the world’s record, then he will have run the mile in
under four minutes. ■

!
Caution! “p only if q”
does not mean “p if q.”

Note that it is possible for “p only if q” to be true at the some time that “p if q” is
false. For instance, to say that John will break the world’s record only if he runs the mile
in under four minutes does not mean that John will break the world’s record if he runs
the mile in under four minutes. His time could be under four minutes but still not be fast
enough to break the record.

• Definition

Given statement variables p and q, the biconditional of p and q is “p if, and only
if, q” and is denoted p↔ q. It is true if both p and q have the same truth values and
is false if p and q have opposite truth values. The words if and only if are sometimes
abbreviated iff.

The biconditional has the following truth table:

Truth Table for p ↔ q

p q p ↔ q

T T T

T F F

F T F

F F T

In order of operations↔ is coequal with→. As with ∧ and ∨, the only way to indicate
precedence between them is to use parentheses. The full hierarchy of operations for the
five logical operators is on the next page.
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Order of Operations for Logical Operators

1. ∼ Evaluate negations first.

2. ∧,∨ Evaluate ∧ and ∨ second. When both are present, parentheses may be
needed.

3. →,↔ Evaluate → and ↔ third. When both are present, parentheses may
be needed.

According to the separate definitions of if and only if, saying “p if, and only if, q”
should mean the same as saying both “p if q” and “p only if q.” The following annotated
truth table shows that this is the case:

Truth Table Showing that p ↔ q ≡ ( p → q) ∧ (q → p)

p q p → q q → p p ↔ q ( p → q) ∧ (q → p)

T T T T T T

T F F T F F

F T T F F F

F F T T T T

↑ ↑
p↔ q and (p→ q) ∧ (q → p)
always have the same truth values,
so they are logically equivalent

Example 2.2.9 If and Only If

Rewrite the following statement as a conjunction of two if-then statements:

This computer program is correct if, and only if, it produces
correct answers for all possible sets of input data.

Solution If this program is correct, then it produces the correct answes for all possible sets
of input data; and if this program produces the correct answers for all possible sets of
input data, then it is correct. ■

Necessary and Sufficient Conditions
The phrases necessary condition and sufficient condition, as used in formal English, cor-
respond exactly to their definitions in logic.

• Definition

If r and s are statements:

r is a sufficient condition for s means “if r then s.”

r is a necessary condition for s means “if not r then not s.”

In other words, to say “r is a sufficient condition for s” means that the occurrence
of r is sufficient to guarantee the occurrence of s. On the other hand, to say “r is a
necessary condition for s” means that if r does not occur, then s cannot occur either:
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The occurrence of r is necessary to obtain the occurrence of s. Note that because of the
equivalence between a statement and its contrapositive,

r is a necessary condition for s also means “if s then r.”

Consequently,

r is a necessary and sufficient condition for s means “r if, and only if, s.”

Example 2.2.10 Interpreting Necessary and Sufficient Conditions

Consider the statement “If John is eligible to vote, then he is at least 18 years old.” The
truth of the condition “John is eligible to vote” is sufficient to ensure the truth of the
condition “John is at least 18 years old.” In addition, the condition “John is at least 18
years old” is necessary for the condition “John is eligible to vote” to be true. If John were
younger than 18, then he would not be eligible to vote. ■

Example 2.2.11 Converting a Sufficient Condition to If-Then Form

Rewrite the following statement in the form “If A then B”:

Pia’s birth on U.S soil is a sufficient condition
for her to be a U.S. citizen.

Solution If Pia was born on U.S. soil, then she is a U.S. citizen. ■

Example 2.2.12 Converting a Necessary Condition to If-Then Form

Use the contrapositive to rewrite the following statement in two ways:

George’s attaining age 35 is a necessary condition
for his being president of the United States.

Solution Version 1: If George has not attained the age of 35, then he cannot be presi-
dent of the United States.

Version 2: If George can be president of the United States, then he has
attained the age of 35. ■

Remarks
1. In logic, a hypothesis and conclusion are not required to have related subject matters.

In ordinary speech we never say things like “If computers are machines, then Babe
Ruth was a baseball player” or “If 2+ 2 = 5, then Mickey Mouse is president of
the United States.” We formulate a sentence like “If p then q” only if there is some
connection of content between p and q.

In logic, however, the two parts of a conditional statement need not have related
meanings. The reason? If there were such a requirement, who would enforce it? What
one person perceives as two unrelated clauses may seem related to someone else.
There would have to be a central arbiter to check each conditional sentence before
anyone could use it, to be sure its clauses were in proper relation. This is impractical,
to say the least!
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Thus a statement like “if computers are machines, then Babe Ruth was a baseball
player” is allowed, and it is even called true because both its hypothesis and its conclu-
sion are true. Similarly, the statement “If 2+ 2 = 5, then Mickey Mouse is president
of the United States” is allowed and is called true because its hypothesis is false, even
though doing so may seem ridiculous.

In mathematics it often happens that a carefully formulated definition that suc-
cessfully covers the situations for which it was primarily intended is later seen to be
satisfied by some extreme cases that the formulator did not have in mind. But those
are the breaks, and it is important to get into the habit of exploring definitions fully to
seek out and understand all their instances, even the unusual ones.

2. In informal language, simple conditionals are often used to mean biconditionals.
The formal statement “p if, and only if, q” is seldom used in ordinary language.

Frequently, when people intend the biconditional they leave out either the and only if
or the if and. That is, they say either “p if q” or “p only if q” when they really mean
“p if, and only if, q.” For example, consider the statement “You will get dessert if,
and only if, you eat your dinner.” Logically, this is equivalent to the conjunction of the
following two statements.

Statement 1: If you eat your dinner, then you will get dessert.

Statement 2: You will get dessert only if you eat your dinner.

or

If you do not eat your dinner, then you will not get dessert.

Now how many parents in the history of the world have said to their children “You
will get dessert if, and only if, you eat your dinner”? Not many! Most say either “If you
eat your dinner, you will get dessert” (these take the positive approach—they emphasize
the reward) or “You will get dessert only if you eat your dinner” (these take the negative
approach—they emphasize the punishment). Yet the parents who promise the reward
intend to suggest the punishment as well, and those who threaten the punishment will
certainly give the reward if it is earned. Both sets of parents expect that their conditional
statements will be interpreted as biconditionals.

Since we often (correctly) interpret conditional statements as biconditionals, it is
not surprising that we may come to believe (mistakenly) that conditional statements are
always logically equivalent to their inverses and converses. In formal settings, however,
statements must have unambiguous interpretations. If-then statements can’t sometimes
mean “if-then” and other times mean “if and only if.” When using language in mathe-
matics, science, or other situations where precision is important, it is essential to interpret
if-then statements according to the formal definition and not to confuse them with their
converses and inverses.

Test Yourself
1. An if-then statement is false if, and only if, the hypothesis is

and the conclusion is .

2. The negation of “if p then q” is .

3. The converse of “if p then q” is .

4. The contrapositive of “if p then q” is .

5. The inverse of “if p then q” is .

6. A conditional statement and its contrapositive are .

7. A conditional statement and its converse are not .

8. “R is a sufficient condition for S” means “if then .”

9. “R is a necessary condition for S” means “if then
.”

10. “R only if S” means “if then .”
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Exercise Set 2.2
Rewrite the statements in 1–4 in if-then form.

1. This loop will repeat exactly N times if it does not contain
a stop or a go to.

2. I am on time for work if I catch the 8:05 bus.

3. Freeze or I’ll shoot.

4. Fix my ceiling or I won’t pay my rent.

Construct truth tables for the statement forms in 5–11.

5. ∼p ∨ q →∼q 6. (p ∨ q) ∨ (∼p ∧ q)→ q

7. p ∧ ∼q → r 8. ∼p ∨ q → r

9. p ∧ ∼r ↔ q ∨ r 10. (p→ r)↔ (q → r)

11. (p→ (q → r))↔ ((p ∧ q)→ r)

12. Use the logical equivalence established in Example 2.2.3,
p ∨ q → r ≡ (p→ r) ∧ (q → r), to rewrite the follow-
ing statement. (Assume that x represents a fixed real
number.)

If x > 2 or x < −2, then x2 > 4.

13. Use truth tables to verify the following logical equiv-
alences. Include a few words of explanation with your
answers.

a. p→ q ≡ ∼p ∨ q b. ∼(p→ q) ≡ p ∧ ∼q.
14.H a. Show that the following statement forms are all logically

equivalent.

p→ q ∨ r, p ∧ ∼q → r, and p ∧ ∼r → q

b. Use the logical equivalences established in part (a) to
rewrite the following sentence in two different ways.
(Assume that n represents a fixed integer.)

If n is prime, then n is odd or n is 2.

15. Determine whether the following statement forms are logi-
cally equivalent:

p→ (q → r) and (p→ q)→ r

In 16 and 17, write each of the two statements in symbolic form
and determine whether they are logically equivalent. Include a
truth table and a few words of explanation.

16. If you paid full price, you didn’t buy it at Crown Books.
You didn’t buy it at Crown Books or you paid full price.

17. If 2 is a factor of n and 3 is a factor of n, then 6 is a factor
of n. 2 is not a factor of n or 3 is not a factor of n or 6 is a
factor of n.

18. Write each of the following three statements in symbolic
form and determine which pairs are logically equivalent.
Include truth tables and a few words of explanation.

If it walks like a duck and it talks like a duck, then it is
a duck.

Either it does not walk like a duck or it does not talk
like a duck, or it is a duck.

If it does not walk like a duck and it does not talk like
a duck, then it is not a duck.

19. True or false? The negation of “If Sue is Luiz’s mother, then
Ali is his cousin” is “If Sue is Luiz’s mother, then Ali is not
his cousin.”

20. Write negations for each of the following statements.
(Assume that all variables represent fixed quantities or enti-
ties, as appropriate.)

a. If P is a square, then P is a rectangle.
b. If today is New Year’s Eve, then tomorrow is January.
c. If the decimal expansion of r is terminating, then r is

rational.
d. If n is prime, then n is odd or n is 2.
e. If x is nonnegative, then x is positive or x is 0.
f. If Tom is Ann’s father, then Jim is her uncle and Sue is

her aunt.
g. If n is divisible by 6, then n is divisible by 2 and n is

divisible by 3.

21. Suppose that p and q are statements so that p→ q is false.
Find the truth values of each of the following:

a. ∼p→ q b. p ∨ q c. q → p

22.H Write contrapositives for the statements of exercise 20.

23.H Write the converse and inverse for each statement of
exercise 20.

Use truth tables to establish the truth of each statement in 24–27.

24. A conditional statement is not logically equivalent to its
converse.

25. A conditional statement is not logically equivalent to its
inverse.

26. A conditional statement and its contrapositive are logically
equivalent to each other.

27. The converse and inverse of a conditional statement are log-
ically equivalent to each other.

28.H “Do you mean that you think you can find out the answer
to it?” said the March Hare.

“Exactly so,” said Alice.
“Then you should say what you mean,” the March Hare

went on.
“I do,” Alice hastily replied; “at least—at least I mean

what I say—that’s the same thing, you know.”
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“Not the same thing a bit!” said the Hatter. “Why, you
might just as well say that ‘I see what I eat’ is the same
thing as ‘I eat what I see’!”

—from “A Mad Tea-Party” in Alice in Wonderland,
by Lewis Carroll

The Hatter is right. “I say what I mean” is not the same
thing as “I mean what I say.” Rewrite each of these two
sentences in if-then form and explain the logical relation
between them. (This exercise is referred to in the introduc-
tion to Chapter 4.)

If statement forms P and Q are logically equivalent, then
P ↔ Q is a tautology. Conversely, if P ↔ Q is a tautology,
then P and Q are logically equivalent. Use↔ to convert each
of the logical equivalences in 29–31 to a tautology. Then use a
truth table to verify each tautology.

29. p→ (q ∨ r) ≡ (p ∧ ∼q)→ r

30. p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)

31. p→ (q → r) ≡ (p ∧ q)→ r

Rewrite each of the statements in 32 and 33 as a conjunction of
two if-then statements.

32. This quadratic equation has two distinct real roots if, and
only if, its discriminant is greater than zero.

33. This integer is even if, and only if, it equals twice some
integer.

Rewrite the statements in 34 and 35 in if-then form in two ways,
one of which is the contrapositive of the other.

34. The Cubs will win the pennant only if they win tomorrow’s
game.

35. Sam will be allowed on Signe’s racing boat only if he is an
expert sailor.

36. Taking the long view on your education, you go to the Pres-
tige Corporation and ask what you should do in college to
be hired when you graduate. The personnel director replies
that you will be hired only if you major in mathematics
or computer science, get a B average or better, and take
accounting. You do, in fact, become a math major, get a B+

average, and take accounting. You return to Prestige Cor-
poration, make a formal application, and are turned down.
Did the personnel director lie to you?

Some programming languages use statements of the form
“r unless sn” to mean that as long as s does not happen, then
r will happen. More formally:

Definition: If r and s are statements,

r unless s means if ∼s then r.

In 37–39, rewrite the statements in if-then form.

37. Payment will be made on the fifth unless a new hearing is
granted.

38. Ann will go unless it rains.

39. This door will not open unless a security code is entered.

Rewrite the statements in 40 and 41 in if-then form.

40. Catching the 8:05 bus is a sufficient condition for my being
on time for work.

41. Having two 45◦ angles is a sufficient condition for this tri-
angle to be a right triangle.

Use the contrapositive to rewrite the statements in 42 and 43 in
if-then form in two ways.

42. Being divisible by 3 is a necessary condition for this num-
ber to be divisible by 9.

43. Doing homework regularly is a necessary condition for Jim
to pass the course.

Note that “a sufficient condition for s is r” means r is a suffi-
cient condition for s and that “a necessary condition for s is r”
means r is a necessary condition for s. Rewrite the statements
in 44 and 45 in if-then form.

44. A sufficient condition for Jon’s team to win the champi-
onship is that it win the rest of its games.

45. A necessary condition for this computer program to be cor-
rect is that it not produce error messages during translation.

46. “If compound X is boiling, then its temperature must be at
least 150◦C.” Assuming that this statement is true, which of
the following must also be true?
a. If the temperature of compound X is at least 150◦C, then

compound X is boiling.
b. If the temperature of compound X is less than 150◦C,

then compound X is not boiling.
c. Compound X will boil only if its temperature is at least

150◦C.
d. If compound X is not boiling, then its temperature is less

than 150◦C.
e. A necessary condition for compound X to boil is that its

temperature be at least 150◦C.
f. A sufficient condition for compound X to boil is that its

temperature be at least 150◦C.

In 47–50 (a) use the logical equivalences p→ q ≡∼p ∨ q and
p↔ q ≡ (∼p ∨ q) ∧ (∼q ∨ p) to rewrite the given statement
forms without using the symbol→ or↔, and (b) use the logi-
cal equivalence p ∨ q ≡∼(∼p∧ ∼q) to rewrite each statement
form using only ∧ and ∼.

47. p ∧ ∼q → r 48. p ∨ ∼q → r ∨ q

49. (p→ r)↔ (q → r)

50. (p→ (q → r))↔ ((p ∧ q)→ r)

51. Given any statement form, is it possible to find a logi-
cally equivalent form that uses only ∼ and ∧? Justify your
answer.
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Answers for Test Yourself
1. true; false 2. p∧ ∼q 3. if q then p 4. if ∼q then ∼p 5. if ∼p then ∼q 6. logically equivalent 7. logically
equivalent 8. R; S 9. S; R 10. R; S

2.3 Valid and Invalid Arguments
“Contrariwise,” continued Tweedledee, “if it was so, it might be; and if it were so, it
would be; but as it isn’t, it ain’t. That’s logic.” — Lewis Carroll, Through the Looking Glass

In mathematics and logic an argument is not a dispute. It is a sequence of statements
ending in a conclusion. In this section we show how to determine whether an argument is
valid—that is, whether the conclusion follows necessarily from the preceding statements.
We will show that this determination depends only on the form of an argument, not on its
content.

It was shown in Section 2.1 that the logical form of an argument can be abstracted
from its content. For example, the argument

If Socrates is a man, then Socrates is mortal.

Socrates is a man.

∴ Socrates is mortal.

has the abstract form

If p then q
p

∴ q

When considering the abstract form of an argument, think of p and q as variables
for which statements may be substituted. An argument form is called valid if, and only
if, whenever statements are substituted that make all the premises true, the conclusion is
also true.

• Definition

An argument is a sequence of statements, and an argument form is a sequence
of statement forms. All statements in an argument and all statement forms in an
argument form, except for the final one, are called premises (or assumptions or
hypotheses). The final statement or statement form is called the conclusion. The
symbol ∴ , which is read “therefore,” is normally placed just before the conclusion.

To say that an argument form is validmeans that no matter what particular state-
ments are substituted for the statement variables in its premises, if the resulting
premises are all true, then the conclusion is also true. To say that an argument is
valid means that its form is valid.

The crucial fact about a valid argument is that the truth of its conclusion follows
necessarily or inescapably or by logical form alone from the truth of its premises. It is
impossible to have a valid argument with true premises and a false conclusion. When
an argument is valid and its premises are true, the truth of the conclusion is said to be
inferred or deduced from the truth of the premises. If a conclusion “ain’t necessarily so,”
then it isn’t a valid deduction.
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Testing an Argument Form for Validity

1. Identify the premises and conclusion of the argument form.

2. Construct a truth table showing the truth values of all the premises and the con-
clusion.

3. A row of the truth table in which all the premises are true is called a critical row.
If there is a critical row in which the conclusion is false, then it is possible for an
argument of the given form to have true premises and a false conclusion, and so
the argument form is invalid. If the conclusion in every critical row is true, then
the argument form is valid.

Example 2.3.1 Determining Validity or Invalidity

Determine whether the following argument form is valid or invalid by drawing a truth
table, indicating which columns represent the premises and which represent the conclu-
sion, and annotating the table with a sentence of explanation. When you fill in the table,
you only need to indicate the truth values for the conclusion in the rows where all the
premises are true (the critical rows) because the truth values of the conclusion in the
other rows are irrelevant to the validity or invalidity of the argument.

p→ q ∨ ∼r
q → p ∧ r

∴ p→ r

Solution The truth table shows that even though there are several situations in which the
premises and the conclusion are all true (rows 1, 7, and 8), there is one situation (row 4)
where the premises are true and the conclusion is false.

premises︷ ︸︸ ︷ conclusion

p q r ∼r q ∨ ∼r p ∧ r p → q ∨ ∼r q → p ∧ r p → r

T T T F T T T T T

T T F T T F T F

T F T F F T F T

T F F T T F T T F

→

This row shows that an
argument of this form can
have true premises and a false
conclusion. Hence this form
of argument is invalid.F T T F T F T F

F T F T T F T F

F F T F F F T T T

F F F T T F T T T ■

Modus Ponens and Modus Tollens
An argument form consisting of two premises and a conclusion is called a syllogism. The
first and second premises are called themajor premise andminor premise, respectively.
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The most famous form of syllogism in logic is calledmodus ponens. It has the following
form:

If p then q.

p

∴ q

Here is an argument of this form:

If the sum of the digits of 371,487 is divisible by 3,
then 371,487 is divisible by 3.

The sum of the digits of 371,487 is divisible by 3.

∴ 371,487 is divisible by 3.

The term modus ponens is Latin meaning “method of affirming” (the conclusion is an
affirmation). Long before you saw your first truth table, you were undoubtedly being
convinced by arguments of this form. Nevertheless, it is instructive to prove that modus
ponens is a valid form of argument, if for no other reason than to confirm the agreement
between the formal definition of validity and the intuitive concept. To do so, we construct
a truth table for the premises and conclusion.

premises︷ ︸︸ ︷ conclusion

p q p → q p q

T T T T T ←− critical row

T F F T

F T T F

F F T F

The first row is the only one in which both premises are true, and the conclusion in that
row is also true. Hence the argument form is valid.

Now consider another valid argument form calledmodus tollens. It has the following
form:

If p then q.

∼q
∴ ∼p

Here is an example of modus tollens:

If Zeus is human, then Zeus is mortal.

Zeus is not mortal.

∴ Zeus is not human.

An intuitive explanation for the validity of modus tollens uses proof by contradiction.
It goes like this:

Suppose

(1) If Zeus is human, then Zeus is mortal; and

(2) Zeus is not mortal.

Must Zeus necessarily be nonhuman?

Yes!
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Because, if Zeus were human, then by (1) he would be mortal.

But by (2) he is not mortal.

Hence, Zeus cannot be human.

Modus tollens is Latin meaning “method of denying” (the conclusion is a denial). The
validity of modus tollens can be shown to follow from modus ponens together with the
fact that a conditional statement is logically equivalent to its contrapositive. Or it can be
established formally by using a truth table. (See exercise 13.)

Studies by cognitive psychologists have shown that although nearly 100% of college
students have a solid, intuitive understanding of modus ponens, less than 60% are able
to apply modus tollens correctly.∗ Yet in mathematical reasoning, modus tollens is used
almost as often as modus ponens. Thus it is important to study the form of modus tollens
carefully to learn to use it effectively.

Example 2.3.2 Recognizing Modus Ponens and Modus Tollens

Use modus ponens or modus tollens to fill in the blanks of the following arguments so
that they become valid inferences.

a. If there are more pigeons than there are pigeonholes, then at least two pigeons roost in
the same hole.
There are more pigeons than there are pigeonholes.
∴ .

b. If 870,232 is divisible by 6, then it is divisible by 3.
870,232 is not divisible by 3.
∴ .

Solution

a. At least two pigeons roost in the same hole. by modus ponens

b. 870,232 is not divisible by 6. by modus tollens ■

Additional Valid Argument Forms: Rules of Inference
A rule of inference is a form of argument that is valid. Thus modus ponens and modus
tollens are both rules of inference. The following are additional examples of rules of
inference that are frequently used in deductive reasoning.

Example 2.3.3 Generalization

The following argument forms are valid:
a. p
∴ p ∨ q

b. q
∴ p ∨ q

These argument forms are used for making generalizations. For instance, according
to the first, if p is true, then, more generally, “p or q” is true for any other statement q.
As an example, suppose you are given the job of counting the upperclassmen at your
school. You ask what class Anton is in and are told he is a junior.

∗Cognitive Psychology and Its Implications, 3d ed. by John R. Anderson (New York: Freeman, 1990), pp. 292–297.
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You reason as follows:

Anton is a junior.

∴ (more generally) Anton is a junior or Anton is a senior.

Knowing that upperclassman means junior or senior, you add Anton to your list. ■

Example 2.3.4 Specialization

The following argument forms are valid:
a. p ∧ q
∴ p

b. p ∧ q
∴ q

These argument forms are used for specializing. When classifying objects according to
some property, you often know much more about them than whether they do or do not
have that property. When this happens, you discard extraneous information as you con-
centrate on the particular property of interest.

For instance, suppose you are looking for a person who knows graph algorithms to
work with you on a project. You discover that Ana knows both numerical analysis and
graph algorithms. You reason as follows:

Ana knows numerical analysis and Ana knows graph algorithms.

∴ (in particular) Ana knows graph algorithms.

Accordingly, you invite her to work with you on your project. ■

Both generalization and specialization are used frequently in mathematics to tailor
facts to fit into hypotheses of known theorems in order to draw further conclusions. Elim-
ination, transitivity, and proof by division into cases are also widely used tools.

Example 2.3.5 Elimination

The following argument forms are valid:

a. p ∨ q
∼q

∴ p

b. p ∨ q
∼p

∴ q

These argument forms say that when you have only two possibilities and you can rule
one out, the other must be the case. For instance, suppose you know that for a particular
number x ,

x − 3 = 0 or x + 2 = 0.

If you also know that x is not negative, then x �= −2, so
x + 2 �= 0.

By elimination, you can then conclude that

∴ x − 3 = 0. ■

Example 2.3.6 Transitivity

The following argument form is valid:

p→ q

q → r

∴ p→ r
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Many arguments in mathematics contain chains of if-then statements. From the fact that
one statement implies a second and the second implies a third, you can conclude that the
first statement implies the third. Here is an example:

If 18,486 is divisible by 18, then 18,486 is divisible by 9.

If 18,486 is divisible by 9, then the sum of the digits of 18,486 is divisible by 9.

∴ If 18,486 is divisible by 18, then the sum of the digits of 18,486 is divisible by 9.
■

Example 2.3.7 Proof by Division into Cases

The following argument form is valid:

p ∨ q

p→ r

q → r

∴ r

It often happens that you know one thing or another is true. If you can show that in either
case a certain conclusion follows, then this conclusion must also be true. For instance,
suppose you know that x is a particular nonzero real number. The trichotomy property of
the real numbers says that any number is positive, negative, or zero. Thus (by elimination)
you know that x is positive or x is negative. You can deduce that x2 > 0 by arguing as
follows:

x is positive or x is negative.

If x is positive, then x2 > 0.

If x is negative, then x2 > 0.

∴ x2 > 0. ■

The rules of valid inference are used constantly in problem solving. Here is an
example from everyday life.

Example 2.3.8 Application: A More Complex Deduction

You are about to leave for school in the morning and discover that you don’t have your
glasses. You know the following statements are true:

a. If I was reading the newspaper in the kitchen, then my glasses are on the kitchen table.

b. If my glasses are on the kitchen table, then I saw them at breakfast.

c. I did not see my glasses at breakfast.

d. I was reading the newspaper in the living room or I was reading the newspaper in the
kitchen.

e. If I was reading the newspaper in the living room then my glasses are on the coffee
table.

Where are the glasses?

Solution Let RK = I was reading the newspaper in the kitchen.

GK = My glasses are on the kitchen table.

SB = I saw my glasses at breakfast.

RL = I was reading the newspaper in the living room.

GC = My glasses are on the coffee table.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



2.3 Valid and Invalid Arguments 57

Here is a sequence of steps you might use to reach the answer, together with the rules of
inference that allow you to draw the conclusion of each step:

1. RK → GK by (a)

GK → SB by (d)

∴ RK → SB by transitivity

2. RK → SB by the conclusion of (1)

∼SB by (c)

∴ ∼RK by modus tollens

3. RL ∨ RK by (d)

∼RK by the conclusion of (2)

∴ RL by elimination

4. RL→ GC by (e)

RL by the conclusion of (3)

∴ GC by modus ponens

Thus the glasses are on the coffee table. ■

Fallacies
A fallacy is an error in reasoning that results in an invalid argument. Three common
fallacies are using ambiguous premises, and treating them as if they were unambiguous,
circular reasoning (assuming what is to be proved without having derived it from the
premises), and jumping to a conclusion (without adequate grounds). In this section we
discuss two other fallacies, called converse error and inverse error, which give rise to
arguments that superficially resemble those that are valid by modus ponens and modus
tollens but are not, in fact, valid.

As in previous examples, you can show that an argument is invalid by constructing
a truth table for the argument form and finding at least one critical row in which all the
premises are true but the conclusion is false. Another way is to find an argument of the
same form with true premises and a false conclusion.

For an argument to be valid, every argument of the same form whose premises
are all true must have a true conclusion. It follows that for an argument to be invalid
means that there is an argument of that form whose premises are all true and whose
conclusion is false.

Example 2.3.9 Converse Error

Show that the following argument is invalid:

If Zeke is a cheater, then Zeke sits in the back row.

Zeke sits in the back row.

∴ Zeke is a cheater.

Solution Many people recognize the invalidity of the above argument intuitively, reasoning
something like this: The first premise gives information about Zeke if it is known he is a
cheater. It doesn’t give any information about him if it is not already known that he is a
cheater. One can certainly imagine a person who is not a cheater but happens to sit in the
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58 Chapter 2 The Logic of Compound Statements

back row. Then if that person’s name is substituted for Zeke, the first premise is true by
default and the second premise is also true but the conclusion is false.

The general form of the previous argument is as follows:

p→ q

q

∴ p

In exercise 12(a) at the end of this section you are asked to use a truth table to show that
this form of argument is invalid. ■

The fallacy underlying this invalid argument form is called the converse error
because the conclusion of the argument would follow from the premises if the premise
p→ q were replaced by its converse. Such a replacement is not allowed, however,
because a conditional statement is not logically equivalent to its converse. Converse error
is also known as the fallacy of affirming the consequent.

Another common error in reasoning is called the inverse error.

Example 2.3.10 Inverse Error

Consider the following argument:

If interest rates are going up, stock market prices will go down.

Interest rates are not going up.

∴ Stock market prices will not go down.

Note that this argument has the following form:

p→ q

∼p
∴ ∼q

You are asked to give a truth table verification of the invalidity of this argument form in
exercise 12(b) at the end of this section.

The fallacy underlying this invalid argument form is called the inverse error because
the conclusion of the argument would follow from the premises if the premise p→ q
were replaced by its inverse. Such a replacement is not allowed, however, because a
conditional statement is not logically equivalent to its inverse. Inverse error is also known
as the fallacy of denying the antecedent. ■

!
Caution! In logic, the
words true and valid have
very different meanings.
A valid argument may
have a false conclusion,
and an invalid argument
may have a true
conclusion.

Sometimes people lump together the ideas of validity and truth. If an argument seems
valid, they accept the conclusion as true. And if an argument seems fishy (really a slang
expression for invalid), they think the conclusion must be false. This is not correct!

Example 2.3.11 A Valid Argument with a False Premise and a False Conclusion

The argument below is valid by modus ponens. But its major premise is false, and so is
its conclusion.

If John Lennon was a rock star, then John Lennon had red hair.

John Lennon was a rock star.

∴ John Lennon had red hair. ■
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Example 2.3.12 An Invalid Argument with True Premises and a True Conclusion

The argument below is invalid by the converse error, but it has a true conclusion.

If New York is a big city, then New York has tall buildings.

New York has tall buildings.

∴ New York is a big city. ■

• Definition

An argument is called sound if, and only if, it is valid and all its premises are true.
An argument that is not sound is called unsound.

The important thing to note is that validity is a property of argument forms: If an
argument is valid, then so is every other argument that has the same form. Similarly, if
an argument is invalid, then so is every other argument that has the same form. What
characterizes a valid argument is that no argument whose form is valid can have all true
premises and a false conclusion. For each valid argument, there are arguments of that
form with all true premises and a true conclusion, with at least one false premise and a
true conclusion, and with at least one false premise and a false conclusion. On the other
hand, for each invalid argument, there are arguments of that form with every combination
of truth values for the premises and conclusion, including all true premises and a false
conclusion. The bottom line is that we can only be sure that the conclusion of an argument
is true when we know that the argument is sound, that is, when we know both that the
argument is valid and that it has all true premises.

Contradictions and Valid Arguments
The concept of logical contradiction can be used to make inferences through a technique
of reasoning called the contradiction rule. Suppose p is some statement whose truth you
wish to deduce.

Contradiction Rule

If you can show that the supposition that statement p is false leads logically to a
contradiction, then you can conclude that p is true.

Example 2.3.13 Contradiction Rule

Show that the following argument form is valid:

∼p→ c, where c is a contradiction

∴ p

Solution Construct a truth table for the premise and the conclusion of this argument.
premises conclusion

p ∼p c ∼p → c p

T F F T T

→

There is only one critical row
in which the premise is true,
and in this row the conclusion
is also true. Hence this form
of argument is valid.F T F F ■
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60 Chapter 2 The Logic of Compound Statements

The contradiction rule is the logical heart of the method of proof by contradiction. A
slight variation also provides the basis for solving many logical puzzles by eliminating
contradictory answers: If an assumption leads to a contradiction, then that assumption
must be false.

Example 2.3.14 Knights and Knaves

The logician Raymond Smullyan describes an island containing two types of people:
knights who always tell the truth and knaves who always lie.∗ You visit the island and are
approached by two natives who speak to you as follows:

A says: B is a knight.

B says: A and I are of opposite type.

What are A and B?

Solution A and B are both knaves. To see this, reason as follows:
Suppose A is a knight.

∴ What A says is true. by definition of knight
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Raymond Smullyan
(born 1919)

∴ B is also a knight. That’s what A said.

∴ What B says is true. by definition of knight

∴ A and B are of opposite types. That’s what B said.

∴ We have arrived at the following contradiction: A and B
are both knights and A and B are of opposite type.

∴ The supposition is false. by the contradiction rule

∴ A is not a knight. negation of supposition

∴ A is a knave. by elimination: It’s given that all inhabitants
are knights or knaves, so since A is not a
knight, A is a knave.

∴ What A says is false.

∴ B is not a knight.

∴ B is also a knave. by elimination

This reasoning shows that if the problem has a solution at all, then A and B must both
be knaves. It is conceivable, however, that the problem has no solution. The problem
statement could be inherently contradictory. If you look back at the solution, though, you
can see that it does work out for both A and B to be knaves. ■

Summary of Rules of Inference
Table 2.3.1 summarizes some of the most important rules of inference.

∗Raymond Smullyan has written a delightful series of whimsical yet profound books of logical puzzles starting withWhat Is the Name
of This Book? (Englewood Cliffs, New Jersey: Prentice-Hall, 1978). Other good sources of logical puzzles are the many excellent
books of Martin Gardner, such as Aha! Insight and Aha! Gotcha (New York: W. H. Freeman, 1978, 1982).
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Table 2.3.1 Valid Argument Forms

Modus Ponens p→ q Elimination a. p ∨ q b. p ∨ q

p ∼q ∼p
∴ q ∴ p ∴ q

Modus Tollens p→ q Transitivity p→ q

∼q q → r

∴ ∼p ∴ p→ r

Generalization a. p b. q Proof by p ∨ q

∴ p ∨ q ∴ p ∨ q Division into Cases p→ r

Specialization a. p ∧ q b. p ∧ q q → r

∴ p ∴ q ∴ r

Conjunction p Contradiction Rule ∼p→ c

q ∴ p

∴ p ∧ q

Test Yourself
1. For an argument to be valid means that every argument of

the same form whose premises has a conclusion.

2. For an argument to be invalid means that there is an argument
of the same form whose premises and whose conclu-
sion .

3. For an argument to be sound means that it is and its
premises . In this case we can be sure that its conclu-
sion .

Exercise Set 2.3
Use modus ponens or modus tollens to fill in the blanks in the
arguments of 1–5 so as to produce valid inferences.

1. If
√
2 is rational, then

√
2 = a/b for some integers a

and b.
It is not true that

√
2 = a/b for some integers a and b.

∴ .

2. If 1− 0.99999 . . . is less than every positive real number,
then it equals zero.

.
∴ The number 1− 0.99999 . . . equals zero.

3. If logic is easy, then I am a monkey’s uncle.
I am not a monkey’s uncle.

∴ .

4. If this figure is a quadrilateral, then the sum of its interior
angles is 360◦.
The sum of the interior angles of this figure is not 360◦.

∴ .

5. If they were unsure of the address, then they would have
telephoned.

.
∴ They were sure of the address.

Use truth tables to determine whether the argument forms in 6–
11 are valid. Indicate which columns represent the premises and
which represent the conclusion, and include a sentence explain-
ing how the truth table supports your answer. Your explanation
should show that you understand what it means for a form of
argument to be valid or invalid.

6. p→ q
q → p

∴ p ∨ q

7. p
p→ q
∼q ∨ r

∴ r

8. p ∨ q
p→∼q
p→ r

∴ r

9. p ∧ q →∼r
p ∨ ∼q
∼q → p

∴ ∼r
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10. p→ r
q → r

∴ p ∨ q → r

11. p→ q ∨ r
∼q ∨ ∼r

∴ ∼p ∨ ∼r
12. Use truth tables to show that the following forms of argu-

ment are invalid.
a. p→ q

q
∴ p
(converse error)

b. p→ q
∼p

∴ ∼q
(inverse error)

Use truth tables to show that the argument forms referred
to in 13–21 are valid. Indicate which columns represent the
premises and which represent the conclusion, and include a sen-
tence explaining how the truth table supports your answer. Your
explanation should show that you understand what it means for
a form of argument to be valid.

13. Modus tollens:
p→ q

∼q
∴ ∼p

14. Example 2.3.3(a) 15. Example 2.3.3(b)

16. Example 2.3.4(a) 17. Example 2.3.4(b)

18. Example 2.3.5(a) 19. Example 2.3.5(b)

20. Example 2.3.6 21. Example 2.3.7

Use symbols to write the logical form of each argument in 22
and 23, and then use a truth table to test the argument for valid-
ity. Indicate which columns represent the premises and which
represent the conclusion, and include a few words of explana-
tion showing that you understand the meaning of validity.

22. If Tom is not on team A, then Hua is on team B.
If Hua is not on team B, then Tom is on team A.

∴ Tom is not on team A or Hua is not on team B.

23. Oleg is a math major or Oleg is an economics major.
If Oleg is a math major, then Oleg is required to take
Math 362.

∴ Oleg is an economics major or Oleg is not required to
take Math 362.

Some of the arguments in 24–32 are valid, whereas others
exhibit the converse or the inverse error. Use symbols to write
the logical form of each argument. If the argument is valid, iden-
tify the rule of inference that guarantees its validity. Otherwise,
state whether the converse or the inverse error is made.

24. If Jules solved this problem correctly, then Jules obtained
the answer 2.
Jules obtained the answer 2.

∴ Jules solved this problem correctly.

25. This real number is rational or it is irrational.
This real number is not rational.

∴ This real number is irrational.

26. If I go to the movies, I won’t finish my homework. If
I don’t finish my homework, I won’t do well on the

exam tomorrow.
∴ If I go to the movies, I won’t do well on the exam

tomorrow.

27. If this number is larger than 2, then its square is larger
than 4.
This number is not larger than 2.

∴ The square of this number is not larger than 4.

28. If there are as many rational numbers as there are
irrational numbers, then the set of all irrational numbers
is infinite.
The set of all irrational numbers is infinite.

∴ There are as many rational numbers as there are irrational
numbers.

29. If at least one of these two numbers is divisible by 6, then
the product of these two numbers is divisible by 6.
Neither of these two numbers is divisible by 6.

∴ The product of these two numbers is not divisible by 6.

30. If this computer program is correct, then it produces the
correct output when run with the test data my teacher
gave me.
This computer program produces the correct output
when run with the test data my teacher gave me.
∴ This computer program is correct.

31. Sandra knows Java and Sandra knows C++.
∴ Sandra knows C++.

32. If I get a Christmas bonus, I’ll buy a stereo.
If I sell my motorcycle, I’ll buy a stereo.

∴ If I get a Christmas bonus or I sell my motorcycle, then
I’ll buy a stereo.

33. Give an example (other than Example 2.3.11) of a valid
argument with a false conclusion.

34. Give an example (other than Example 2.3.12) of an invalid
argument with a true conclusion.

35. Explain in your own words what distinguishes a valid form
of argument from an invalid one.

36. Given the following information about a computer pro-
gram, find the mistake in the program.
a. There is an undeclared variable or there is a syntax error

in the first five lines.
b. If there is a syntax error in the first five lines, then there

is a missing semicolon or a variable name is misspelled.
c. There is not a missing semicolon.
d. There is not a misspelled variable name.
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37. In the back of an old cupboard you discover a note signed
by a pirate famous for his bizarre sense of humor and
love of logical puzzles. In the note he wrote that he had
hidden treasure somewhere on the property. He listed
five true statements (a–e below) and challenged the
reader to use them to figure out the location of the
treasure.
a. If this house is next to a lake, then the treasure is not in

the kitchen.
b. If the tree in the front yard is an elm, then the treasure is

in the kitchen.
c. This house is next to a lake.
d. The tree in the front yard is an elm or the treasure is

buried under the flagpole.
e. If the tree in the back yard is an oak, then the treasure is

in the garage.
Where is the treasure hidden?

38. You are visiting the island described in Example 2.3.14 and
have the following encounters with natives.
a. Two natives A and B address you as follows:

A says: Both of us are knights.
B says: A is a knave.
What are A and B?

b. Another two natives C and D approach you but only C
speaks.
C says: Both of us are knaves.
What are C and D?

c. You then encounter natives E and F .
E says: F is a knave.
F says: E is a knave.
How many knaves are there?

d.H Finally, you meet a group of six natives, U, V,W, X,

Y , and Z , who speak to you as follows:
U says: None of us is a knight.
V says: At least three of us are knights.
W says: At most three of us are knights.
X says: Exactly five of us are knights.
Y says: Exactly two of us are knights.
Z says: Exactly one of us is a knight.
Which are knights and which are knaves?

39. The famous detective Percule Hoirot was called in to solve
a baffling murder mystery. He determined the following
facts:
a. Lord Hazelton, the murdered man, was killed by a blow

on the head with a brass candlestick.
b. Either Lady Hazelton or a maid, Sara, was in the dining

room at the time of the murder.

c. If the cook was in the kitchen at the time of the murder,
then the butler killed Lord Hazelton with a fatal dose of
strychnine.

d. If Lady Hazelton was in the dining room at the time of
the murder, then the chauffeur killed Lord Hazelton.

e. If the cook was not in the kitchen at the time of the mur-
der, then Sara was not in the dining room when the mur-
der was committed.

f. If Sara was in the dining room at the time the murder was
committed, then the wine steward killed Lord Hazelton.

Is it possible for the detective to deduce the identity of
the murderer from these facts? If so, who did murder Lord
Hazelton? (Assume there was only one cause of death.)

40. Sharky, a leader of the underworld, was killed by one of his
own band of four henchmen. Detective Sharp interviewed
the men and determined that all were lying except for one.
He deduced who killed Sharky on the basis of the following
statements:
a. Socko: Lefty killed Sharky.
b. Fats: Muscles didn’t kill Sharky.
c. Lefty: Muscles was shooting craps with Socko when

Sharky was knocked off.
d. Muscles: Lefty didn’t kill Sharky.
Who did kill Sharky?

In 41–44 a set of premises and a conclusion are given. Use the
valid argument forms listed in Table 2.3.1 to deduce the con-
clusion from the premises, giving a reason for each step as in
Example 2.3.8. Assume all variables are statement variables.

41. a. ∼p ∨ q → r

b. s ∨ ∼q
c. ∼t
d. p→ t

e. ∼p ∧ r →∼s
f. ∴ ∼q

42. a. p ∨ q

b. q → r

c. p ∧ s → t

d. ∼r
e. ∼q → u ∧ s

f. ∴ t
43. a. ∼p→ r ∧ ∼s

b. t → s

c. u →∼p
d. ∼w

e. u ∨ w

f. ∴ ∼t

44. a. p→ q

b. r ∨ s

c. ∼s →∼t
d. ∼q ∨ s

e. ∼s
f. ∼p ∧ r → u

g. w ∨ t

h. ∴ u ∧ w

Answers for Test Yourself
1. are all true; true 2. are all true; is false 3. valid; are all true; is true
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2.4 Application: Digital Logic Circuits
Only connect! — E. M. Forster, Howards End

In the late 1930s, a young M.I.T. graduate student named Claude Shannon noticed an
M

IT
M

us
eu

m

Claude Shannon
(1916–2001)

analogy between the operations of switching devices, such as telephone switching
circuits, and the operations of logical connectives. He used this analogy with striking
success to solve problems of circuit design and wrote up his results in his master’s thesis,
which was published in 1938.

The drawing in Figure 2.4.1(a) shows the appearance of the two positions of a simple
switch. When the switch is closed, current can flow from one terminal to the other; when
it is open, current cannot flow. Imagine that such a switch is part of the circuit shown in
Figure 2.4.1(b). The light bulb turns on if, and only if, current flows through it. And this
happens if, and only if, the switch is closed.

Open Closed

The symbol
denotes a battery and
the symbol

denotes a light bulb.

(a) (b)

Figure 2.4.1

Now consider the more complicated circuits of Figures 2.4.2(a) and 2.4.2(b).

P Q
Q

P

Switches “in series” Switches “in parallel”

(a) (b)

Figure 2.4.2

In the circuit of Figure 2.4.2(a) current flows and the light bulb turns on if, and only
if, both switches P and Q are closed. The switches in this circuit are said to be in series.
In the circuit of Figure 2.4.2(b) current flows and the light bulb turns on if, and only if, at
least one of the switches P or Q is closed. The switches in this circuit are said to be in
parallel. All possible behaviors of these circuits are described by Table 2.4.1.

Table 2.4.1

(a) Switches in Series (b) Switches in Parallel

Switches Light Bulb

P Q State

closed closed on

closed open off

open closed off

open open off

Switches Light Bulb

P Q State

closed closed on

closed open on

open closed on

open open off
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2.4 Application: Digital Logic Circuits 65

Observe that if the words closed and on are replaced by T and open and off are replaced
by F, Table 2.4.1(a) becomes the truth table for and and Table 2.4.1(b) becomes the
truth table for or. Consequently, the switching circuit of Figure 2.4.2(a) is said to cor-
respond to the logical expression P ∧ Q, and that of Figure 2.4.2(b) is said to correspond
to P ∨ Q.

More complicated circuits correspond to more complicated logical expressions. This
correspondence has been used extensively in the design and study of circuits.

In the 1940s and 1950s, switches were replaced by electronic devices, with the
physical states of closed and open corresponding to electronic states such as high and
low voltages. The new electronic technology led to the development of modern digi-
tal systems such as electronic computers, electronic telephone switching systems, traffic
light controls, electronic calculators, and the control mechanisms used in hundreds of
other types of electronic equipment. The basic electronic components of a digital system
are called digital logic circuits. The word logic indicates the important role of logic in the
design of such circuits, and the word digital indicates that the circuits process discrete, or
separate, signals as opposed to continuous ones.

C
ou

rt
es

y
of

IB
M

John W. Tukey
(1915–2000)

The Intel 4004, introduced in
1971, is generally considered to
be the first commercially viable
microprocessor or central pro-
cessing unit (CPU) contained
on a chip about the size of a
fingernail. It consisted of 2,300
transistors and could execute
70,000 instructions per second,
essentially the same computing
power as the first electronic
computer, the ENIAC, built in
1946, which filled an entire
room. Modern microprocessors
consist of several CPUs on one
chip, contain close to a billion
transistors and many hundreds
of millions of logic circuits,
and can compute hundreds of
millions of instructions per
second. In

te
l

Electrical engineers continue to use the language of logic when they refer to values
of signals produced by an electronic switch as being “true” or “false.” But they generally
use the symbols 1 and 0 rather than T and F to denote these values. The symbols 0 and
1 are called bits, short for binary digits. This terminology was introduced in 1946 by the
statistician John Tukey.

Black Boxes and Gates
Combinations of signal bits (1’s and 0’s) can be transformed into other combinations
of signal bits (1’s and 0’s) by means of various circuits. Because a variety of different
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66 Chapter 2 The Logic of Compound Statements

technologies are used in circuit construction, computer engineers and digital system
designers find it useful to think of certain basic circuits as black boxes. The inside of
a black box contains the detailed implementation of the circuit and is often ignored while
attention is focused on the relation between the input and the output signals.

P
Q
R

S
Input

signals Output signalblack box

The operation of a black box is completely specified by constructing an input/output
table that lists all its possible input signals together with their corresponding output
signals. For example, the black box pictured above has three input signals. Since each
of these signals can take the value 1 or 0, there are eight possible combinations of input
signals. One possible correspondence of input to output signals is as follows:

An Input/Output Table

Input Output

P Q R S

1 1 1 1

1 1 0 0

1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 1

0 0 1 1

0 0 0 0

The third row, for instance, indicates that for inputs P = 1, Q = 0, and R = 1, the output
S is 0.

An efficient method for designing more complicated circuits is to build them by con-
necting less complicated black box circuits. Three such circuits are known as NOT-,
AND-, and OR-gates.

A NOT-gate (or inverter) is a circuit with one input signal and one output signal. If
the input signal is 1, the output signal is 0. Conversely, if the input signal is 0, then the
output signal is 1. An AND-gate is a circuit with two input signals and one output signal.
If both input signals are 1, then the output signal is 1. Otherwise, the output signal is 0.
An OR-gate also has two input signals and one output signal. If both input signals are 0,
then the output signal is 0. Otherwise, the output signal is 1.

The actions of NOT-, AND-, and OR-gates are summarized in Figure 2.4.3, where P
and Q represent input signals and R represents the output signal. It should be clear from
Figure 2.4.3 that the actions of the NOT-, AND-, and OR-gates on signals correspond
exactly to those of the logical connectives ∼,∧, and ∨ on statements, if the symbol 1 is
identified with T and the symbol 0 is identified with F.

Gates can be combined into circuits in a variety of ways. If the rules shown on the
next page are obeyed, the result is a combinational circuit, one whose output at any time
is determined entirely by its input at that time without regard to previous inputs.
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Type of Symbolic
Gate Representation Action

NOT P RNOT

Input Output

P R

1 0

0 1

AND
P

Q
RAND

Input Output

P Q R

1 1 1

1 0 0

0 1 0

0 0 0

OR
P

Q
ROR

Input Output

P Q R

1 1 1

1 0 1

0 1 1

0 0 0

Figure 2.4.3

Rules for a Combinational Circuit

Never combine two input wires. 2.4.1

A single input wire can be split partway and used as input
for two separate gates. 2.4.2

An output wire can be used as input. 2.4.3

No output of a gate can eventually feed back into that gate. 2.4.4

Rule (2.4.4) is violated in more complex circuits, called sequential circuits, whose
output at any given time depends both on the input at that time and also on previous
inputs. These circuits are discussed in Section 12.2.

The Input/Output Table for a Circuit
If you are given a set of input signals for a circuit, you can find its output by tracing
through the circuit gate by gate.
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Example 2.4.1 Determining Output for a Given Input

Indicate the output of the circuits shown below for the given input signals.

a.

P

Q

RAND
NOT

Input signals: P = 0 and Q = 1

b.

P

Q

R
SAND

OR NOT

Input signals: P = 1, Q = 0, R = 1

Solution

a. Move from left to right through the diagram, tracing the action of each gate on the
input signals. The NOT-gate changes P = 0 to a 1, so both inputs to the AND-gate
are 1; hence the output R is 1. This is illustrated by annotating the diagram as shown
below.

P

Q

NOT
RAND

0 1
1

1

b. The output of the OR-gate is 1 since one of the input signals, P , is 1. The NOT-gate
changes this 1 into a 0, so the two inputs to the AND-gate are 0 and R = 1. Hence the
output S is 0. The trace is shown below.

P

Q

R
SAND

OR NOT

1

1

1 0

0

0

■

To construct the entire input/output table for a circuit, trace through the circuit to find
the corresponding output signals for each possible combination of input signals.

Example 2.4.2 Constructing the Input/Output Table for a Circuit

Construct the input/output table for the following circuit.

P

Q

ROR

NOT
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Solution List the four possible combinations of input signals, and find the output for each
by tracing through the circuit.

C
O

R
B

IS

George Boole
(1815–1864)

Input Output

P Q R

1 1 1

1 0 1

0 1 0

0 0 1 ■

The Boolean Expression Corresponding to a Circuit
In logic, variables such as p, q and r represent statements, and a statement can have one
of only two truth values: T (true) or F (false). A statement form is an expression, such as
p ∧ (∼q ∨ r), composed of statement variables and logical connectives.

As noted earlier, one of the founders of symbolic logic was the English mathemati-
cian George Boole. In his honor, any variable, such as a statement variable or an input
signal, that can take one of only two values is called a Boolean variable. An expres-
sion composed of Boolean variables and the connectives ∼,∧, and ∨ is called a Boolean
expression.

Note Strictly speaking,
only meaningful
expressions such as
(∼p ∧ q) ∨ (p ∧ r) and
∼(∼(p ∧ q) ∨ r) are
allowed as Boolean, not
meaningless ones like
p ∼q((rs ∨ ∧ q ∼. We
use recursion to give a
careful definition of
Boolean expressions in
Section 5.9.

Given a circuit consisting of combined NOT-, AND-, and OR-gates, a correspond-
ing Boolean expression can be obtained by tracing the actions of the gates on the input
variables.

Example 2.4.3 Finding a Boolean Expression for a Circuit

Find the Boolean expressions that correspond to the circuits shown below. A dot indicates
a soldering of two wires; wires that cross without a dot are assumed not to touch.

P

Q

R

P

Q AND
OR

NOTAND NOT

AND

(a) (b)

AND

Solution

a. Trace through the circuit from left to right, indicating the output of each gate symbol-
ically, as shown below.

P

Q

P ∧ Q

P ∨ Q

~(P ∧ Q)

(P ∨ Q) ∧ ~(P ∧ Q)

NOT

AND

AND

OR

The final expression obtained, (P ∨ Q)∧ ∼(P ∧ Q), is the expression for exclusive
or: P or Q but not both.
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b. The Boolean expression corresponding to the circuit is (P ∧ Q)∧ ∼R, as shown
below.

P

Q

R

P ∧ Q

~R
(P ∧ Q) ∧~RAND

AND

NOT

■

Observe that the output of the circuit shown in Example 2.4.3(b) is 1 for exactly one
combination of inputs (P = 1, Q = 1, and R = 0) and is 0 for all other combinations of
inputs. For this reason, the circuit can be said to “recognize” one particular combination
of inputs. The output column of the input/output table has a 1 in exactly one row and 0’s
in all other rows.

• Definition

A recognizer is a circuit that outputs a 1 for exactly one particular combination of
input signals and outputs 0’s for all other combinations.

Input/Output Table for a Recognizer

P Q R (P ∧ Q)∧ ∼R

1 1 1 0

1 1 0 1

1 0 1 0

1 0 0 0

0 1 1 0

0 1 0 0

0 0 1 0

0 0 0 0

The Circuit Corresponding to a Boolean Expression
The preceding examples showed how to find a Boolean expression corresponding to a cir-
cuit. The following example shows how to construct a circuit corresponding to a Boolean
expression.

Example 2.4.4 Constructing Circuits for Boolean Expressions

Construct circuits for the following Boolean expressions.

a. (∼P ∧ Q)∨ ∼Q b. ((P ∧ Q) ∧ (R ∧ S)) ∧ T

Solution

a. Write the input variables in a column on the left side of the diagram. Then go from
the right side of the diagram to the left, working from the outermost part of the
expression to the innermost part. Since the last operation executed when evaluating
(∼P ∧ Q)∨ ∼Q is ∨, put an OR-gate at the extreme right of the diagram. One input
to this gate is ∼P ∧ Q, so draw an AND-gate to the left of the OR-gate and show its
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output coming into the OR-gate. Since one input to the AND-gate is ∼P , draw a line
from P to a NOT-gate and from there to the AND-gate. Since the other input to the
AND-gate is Q, draw a line from Q directly to the AND-gate. The other input to the
OR-gate is ∼Q, so draw a line from Q to a NOT-gate and from the NOT-gate to the
OR-gate. The circuit you obtain is shown below.

P

Q
AND

NOT

OR

NOT

b. To start constructing this circuit, put one AND-gate at the extreme right for the ∧
between ((P ∧ Q) ∧ (R ∧ S)) and T . To the left of that put the AND-gate corre-
sponding to the ∧ between P ∧ Q and R ∧ S. To the left of that put the AND-gates
corresponding to the ∧’s between P and Q and between R and S. The circuit is shown
in Figure 2.4.4.

P

Q

R

S

T

AND
AND

AND

AND

Figure 2.4.4 ■

It follows from Theorem 2.1.1 that all the ways of adding parentheses to
P ∧ Q ∧ R ∧ S ∧ T are logically equivalent. Thus, for example,

((P ∧ Q) ∧ (R ∧ S)) ∧ T ≡ (P ∧ (Q ∧ R)) ∧ (S ∧ T ).

It also follows that the circuit in Figure 2.4.5, which corresponds to
(P ∧ (Q ∧ R)) ∧ (S ∧ T ), has the same input/output table as the circuit in Figure 2.4.4,
which corresponds to ((P ∧ Q) ∧ (R ∧ S)) ∧ T .

P

Q

R

S

T

AND AND
AND

AND

Figure 2.4.5

Each of the circuits in Figures 2.4.4 and 2.4.5 is, therefore, an implementation of
the expression P ∧ Q ∧ R ∧ S ∧ T . Such a circuit is called amultiple-input AND-gate
and is represented by the diagram shown in Figure 2.4.6. Multiple-input OR-gates are
constructed similarly.
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P

Q

R

S

T

AND

Figure 2.4.6

Finding a Circuit That Corresponds to a Given
Input/Output Table

To this point, we have discussed how to construct the input/output table for a circuit, how
to find the Boolean expression corresponding to a given circuit, and how to construct the
circuit corresponding to a given Boolean expression. Now we address the question of how
to design a circuit (or find a Boolean expression) corresponding to a given input/output
table. The way to do this is to put several recognizers together in parallel.

Example 2.4.5 Designing a Circuit for a Given Input/Output Table

Design a circuit for the following input/output table:

Input Output

P Q R S

1 1 1 1

1 1 0 0

1 0 1 1

1 0 0 1

0 1 1 0

0 1 0 0

0 0 1 0

0 0 0 0

Solution First construct a Boolean expression with this table as its truth table. To do this,
identify each row for which the output is 1—in this case, the first, third, and fourth rows.
For each such row, construct an and expression that produces a 1 (or true) for the exact
combination of input values for that row and a 0 (or false) for all other combinations of
input values. For example, the expression for the first row is P ∧ Q ∧ R because
P ∧ Q ∧ R is 1 if P = 1 and Q = 1 and R = 1, and it is 0 for all other values of P, Q,
and R. The expression for the third row is P ∧ ∼Q ∧ R because P ∧ ∼Q ∧ R is 1 if
P = 1 and Q = 0 and R = 1, and it is 0 for all other values of P, Q, and R. Similarly,
the expression for the fourth row is P ∧ ∼Q ∧ ∼R.

Now any Boolean expression with the given table as its truth table has the value 1 in
case P ∧ Q ∧ R = 1, or in case P ∧ ∼Q ∧ R = 1, or in case P ∧ ∼Q ∧ ∼R = 1, and
in no other cases. It follows that a Boolean expression with the given truth table is

(P ∧ Q ∧ R) ∨ (P ∧ ∼Q ∧ R) ∨ (P ∧ ∼Q ∧ ∼R). 2.4.5

The circuit corresponding to this expression has the diagram shown in Figure 2.4.7.
Observe that expression (2.4.5) is a disjunction of terms that are themselves conjunc-
tions in which one of P or ∼P , one of Q or ∼Q, and one of R or ∼R all appear. Such
expressions are said to be in disjunctive normal form or sum-of-products form.
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AND
P
Q
R

AND

NOT

NOT

ANDNOT

OR

Figure 2.4.7 ■

Simplifying Combinational Circuits
Consider the two combinational circuits shown in Figure 2.4.8.

R

AND
P

Q NOT
OR

AND

AND

R

P

Q

(a)

(b)

AND

Figure 2.4.8

If you trace through circuit (a), you will find that its input/output table is

Input Output

P Q R

1 1 1

1 0 0

0 1 0

0 0 0

which is the same as the input/output table for circuit (b). Thus these two circuits do
the same job in the sense that they transform the same combinations of input signals
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into the same output signals. Yet circuit (b) is simpler than circuit (a) in that it contains
many fewer logic gates. Thus, as part of an integrated circuit, it would take less space and
require less power.

• Definition

Two digital logic circuits are equivalent if, and only if, their input/output tables are
identical.

Since logically equivalent statement forms have identical truth tables, you can
determine that two circuits are equivalent by finding the Boolean expressions
corresponding to the circuits and showing that these expressions, regarded as statement
forms, are logically equivalent. Example 2.4.6 shows how this procedure works for cir-
cuits (a) and (b) in Figure 2.4.8.

Example 2.4.6 Showing That Two Circuits Are Equivalent

Find the Boolean expressions for each circuit in Figure 2.4.8. Use Theorem 2.1.1 to show
that these expressions are logically equivalent when regarded as statement forms.

Solution The Boolean expressions that correspond to circuits (a) and (b) are
((P ∧ ∼Q) ∨ (P ∧ Q)) ∧ Q and P ∧ Q, respectively. By Theorem 2.1.1,

((P ∧ ∼Q) ∨ (P ∧ Q)) ∧ Q

≡ (P ∧ (∼Q ∨ Q)) ∧ Q by the distributive law

≡ (P ∧ (Q ∨ ∼Q)) ∧ Q by the commutative law for ∨
≡ (P ∧ t) ∧ Q by the negation law

≡ P ∧ Q by the identity law.

It follows that the truth tables for ((P ∧ ∼Q) ∨ (P ∧ Q)) ∧ Q and P ∧ Q are the same.
Hence the input/output tables for the circuits corresponding to these expressions are also
the same, and so the circuits are equivalent. ■

In general, you can simplify a combinational circuit by finding the corresponding
Boolean expression, using the properties listed in Theorem 2.1.1 to find a Boolean expres-
sion that is shorter and logically equivalent to it (when both are regarded as statement
forms), and constructing the circuit corresponding to this shorter Boolean expression.

NAND and NOR Gates
Another way to simplify a circuit is to find an equivalent circuit that uses the least number
of different kinds of logic gates. Two gates not previously introduced are particularly
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H. M. Sheffer
(1882–1964)

useful for this: NAND-gates and NOR-gates. A NAND-gate is a single gate that acts like
an AND-gate followed by a NOT-gate. A NOR-gate acts like an OR-gate followed by a
NOT-gate. Thus the output signal of a NAND-gate is 0 when, and only when, both input
signals are 1, and the output signal for a NOR-gate is 1 when, and only when, both input
signals are 0. The logical symbols corresponding to these gates are | (for NAND) and ↓
(for NOR), where | is called a Sheffer stroke (after H. M. Sheffer, 1882–1964) and ↓ is
called a Peirce arrow (after C. S. Peirce, 1839–1914; see page 101). Thus

P | Q ≡ ∼(P ∧ Q) and P ↓ Q ≡ ∼(P ∨ Q).
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The table below summarizes the actions of NAND and NOR gates.

Type of Gate Symbolic Representation Action

NAND
P

Q
NAND R

Input Output

P Q R = P | Q

1 1 0

1 0 1

0 1 1

0 0 1

NOR
P

Q
RNOR

Input Output

P Q R = P ↓ Q

1 1 0

1 0 0

0 1 0

0 0 1

It can be shown that any Boolean expression is equivalent to one written entirely with
Sheffer strokes or entirely with Peirce arrows. Thus any digital logic circuit is equivalent
to one that uses only NAND-gates or only NOR-gates. Example 2.4.7 develops part of
the derivation of this result; the rest is left for the exercises.

Example 2.4.7 Rewriting Expressions Using the Sheffer Stroke

Use Theorem 2.1.1 and the definition of Sheffer stroke to show that

a. ∼P ≡ P | P and b. P ∨ Q ≡ (P | P) | (Q | Q).

Solution

a. ∼P ≡ ∼(P ∧ P) by the idempotent law for ∧
≡ P | P by definition of |.

b. P ∨ Q ≡ ∼(∼(P ∨ Q)) by the double negative law

≡ ∼(∼P ∧ ∼Q) by De Morgan’s laws

≡ ∼((P | P) ∧ (Q | Q)) by part (a)

≡ (P | P) | (Q | Q) by definition of |. ■

Test Yourself
1. The input/output table for a digital logic circuit is a table that

shows .

2. The Boolean expression that corresponds to a digital logic
circuit is .

3. A recognizer is a digital logic circuit that .

4. Two digital logic circuits are equivalent if, and only
if, .

5. A NAND-gate is constructed by placing a gate imme-
diately following an gate.

6. A NOR-gate is constructed by placing a gate immedi-
ately following an gate.
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Exercise Set 2.4
Give the output signals for the circuits in 1–4 if the input signals
are as indicated.

1. P

Q

ROR

NOT

input signals: P = 1 and Q = 1

2.
OR

NOT

P

RQ AND

input signals: P = 1 and Q = 0

3. P

Q

R

ORNOT
AND

S

input signals: P = 1, Q = 0, R = 0

4. P

Q

R
NOT

OR
OR

AND

S

input signals: P = 0, Q = 0, R = 0

In 5–8, write an input/output table for the circuit in the refer-
enced exercise.

5. Exercise 1 6. Exercise 2

7. Exercise 3 8. Exercise 4

In 9–12, find the Boolean expression that corresponds to the cir-
cuit in the referenced exercise.

9. Exercise 1 10. Exercise 2

11. Exercise 3 12. Exercise 4

Construct circuits for the Boolean expressions in 13–17.

13. ∼P ∨ Q 14. ∼(P ∨ Q)

15. P ∨ (∼P ∧ ∼Q) 16. (P ∧ Q)∨ ∼R
17. (P ∧ ∼Q) ∨ (∼P ∧ R)

For each of the tables in 18–21, construct (a) a Boolean expres-
sion having the given table as its truth table and (b) a circuit
having the given table as its input/output table.

18.
P Q R S

1 1 1 0

1 1 0 1

1 0 1 0

1 0 0 0

0 1 1 1

0 1 0 0

0 0 1 0

0 0 0 0

19.
P Q R S

1 1 1 0

1 1 0 1

1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 1

0 0 1 0

0 0 0 0

20.
P Q R S

1 1 1 1

1 1 0 0

1 0 1 1

1 0 0 0

0 1 1 0

0 1 0 0

0 0 1 0

0 0 0 1

21.
P Q R S

1 1 1 0

1 1 0 1

1 0 1 0

1 0 0 0

0 1 1 1

0 1 0 1

0 0 1 0

0 0 0 0
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22. Design a circuit to take input signals P, Q, and R and out-
put a 1 if, and only if, P and Q have the same value and Q
and R have opposite values.

23. Design a circuit to take input signals P , Q, and R and out-
put a 1 if, and only if, all three of P, Q, and R have the
same value.

24. The lights in a classroom are controlled by two switches:
one at the back and one at the front of the room. Moving
either switch to the opposite position turns the lights off if
they are on and on if they are off. Assume the lights have
been installed so that when both switches are in the down
position, the lights are off. Design a circuit to control the
switches.

25. An alarm system has three different control panels in three
different locations. To enable the system, switches in at
least two of the panels must be in the on position. If fewer
than two are in the on position, the system is disabled.
Design a circuit to control the switches.

Use the properties listed in Theorem 2.1.1 to show that each
pair of circuits in 26–29 have the same input/output table. (Find
the Boolean expressions for the circuits and show that they are
logically equivalent when regarded as statement forms.)

26. a. P

Q OR
AND

b. P

Q
OR

AND

27. a. P

Q

AND

AND

NOT

NOT

b. P

Q
NOTOR

28. a. P

Q

NOT

NOT

NOT

AND

AND

AND

OR

b. P

Q NOT
OR

29. a. P

Q
AND

AND OR
NOT

AND
NOT

b. P

Q
OR

For the circuits corresponding to the Boolean expressions in
each of 30 and 31 there is an equivalent circuit with at most
two logic gates. Find such a circuit.

30. (P ∧ Q) ∨ (∼P ∧ Q) ∨ (∼P ∧ ∼Q)

31. (∼P ∧ ∼Q) ∨ (∼P ∧ Q) ∨ (P ∧ ∼Q)

32. The Boolean expression for the circuit in Example 2.4.5 is

(P ∧ Q ∧ R) ∨ (P ∧ ∼Q ∧ R) ∨ (P ∧ ∼Q ∧ ∼R)

(a disjunctive normal form). Find a circuit with at most
three logic gates that is equivalent to this circuit.

33. a. Show that for the Sheffer stroke |,
P ∧ Q ≡ (P | Q) | (P | Q).

b. Use the results of Example 2.4.7 and part (a) above to
write P ∧ (∼Q ∨ R) using only Sheffer strokes.

34. Show that the following logical equivalences hold for the
Peirce arrow ↓, where P ↓ Q ≡ ∼(P ∨ Q).

a. ∼P ≡ P ↓ P
b. P ∨ Q ≡ (P ↓ Q) ↓ (P ↓ Q)

c. P ∧ Q ≡ (P ↓ P) ↓ (Q ↓ Q)

d.H Write P → Q using Peirce arrows only.
e. Write P ↔ Q using Peirce arrows only.
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78 Chapter 2 The Logic of Compound Statements

Answers for Test Yourself
1. the output signal(s) that correspond to all possible combinations of input signals to the circuit 2. a Boolean expression that
represents the input signals as variables and indicates the successive actions of the logic gates on the input signals 3. outputs a 1 for
exactly one particular combination of input signals and outputs 0’s for all other combinations 4. they have the same input/output
table 5. NOT; AND 6. NOT; OR

2.5 Application: Number Systems and Circuits
for Addition
Counting in binary is just like counting in decimal if you are all thumbs. —Glaser and Way

In elementary school, you learned the meaning of decimal notation: that to interpret a
string of decimal digits as a number, you mentally multiply each digit by its place value.
For instance, 5,049 has a 5 in the thousands place, a 0 in the hundreds place, a 4 in the
tens place, and a 9 in the ones place. Thus

5,049 = 5 ·(1,000)+ 0 ·(100)+ 4 ·(10)+ 9 ·(1).
Using exponential notation, this equation can be rewritten as

5,049 = 5 ·103 + 0 ·102 + 4 ·101 + 9 ·100.
More generally, decimal notation is based on the fact that any positive integer can be
written uniquely as a sum of products of the form

d ·10n,
where each n is a nonnegative integer and each d is one of the decimal digits 0, 1, 2, 3, 4,
5, 6, 7, 8, or 9. The word decimal comes from the Latin root deci,meaning “ten.” Decimal
(or base 10) notation expresses a number as a string of digits in which each digit’s position
indicates the power of 10 by which it is multiplied. The right-most position is the ones
place (or 100 place), to the left of that is the tens place (or 101 place), to the left of that is
the hundreds place (or 102 place), and so forth, as illustrated below.

Place
103 102 101 100

thousands hundreds tens ones

Decimal Digit 5 0 4 9

Binary Representation of Numbers
There is nothing sacred about the number 10; we use 10 as a base for our usual number
system because we happen to have ten fingers. In fact, any integer greater than 1 can serve
as a base for a number system. In computer science, base 2 notation, or binary notation,
is of special importance because the signals used in modern electronics are always in one
of only two states. (The Latin root bi means “two.”)

In Section 5.4, we show that any integer can be represented uniquely as a sum of
products of the form

d ·2n,
where each n is an integer and each d is one of the binary digits (or bits) 0 or 1. For
example,
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27 = 16+ 8+ 2+ 1

= 1 ·24 + 1 ·23 + 0 ·22 + 1 ·21 + 1 ·20.
In binary notation, as in decimal notation, we write just the binary digits, and not the

powers of the base. In binary notation, then,

1

→

· 24 + 1
→

· 23 + 0
→

· 22 + 1
→

· 21 + 1

→
· 20

2710 = 1 1 0 1 1 2

where the subscripts indicate the base, whether 10 or 2, in which the number is written.
The places in binary notation correspond to the various powers of 2. The right-most
position is the ones place (or 20 place), to the left of that is the twos place (or 21 place),
to the left of that is the fours place (or 22 place), and so forth, as illustrated below.

Place
24 23 22 21 20

sixteens eights fours twos ones

Binary Digit 1 1 0 1 1

As in the decimal notation, leading zeros may be added or dropped as desired. For
example,

00310 = 310 = 1 ·21 + 1 ·20 = 112 = 0112.

Example 2.5.1 Binary Notation for Integers from 1 to 9

Derive the binary notation for the integers from 1 to 9.

Solution 110 = 1 ·20 = 12
210 = 1 ·21 + 0 ·20 = 102
310 = 1 ·21 + 1 ·20 = 112
410 = 1 ·22 + 0 ·21 + 0 ·20 = 1002
510 = 1 ·22 + 0 ·21 + 1 ·20 = 1012
610 = 1 ·22 + 1 ·21 + 0 ·20 = 1102
710 = 1 ·22 + 1 ·21 + 1 ·20 = 1112
810 = 1 ·23 + 0 ·22 + 0 ·21 + 0 ·20 = 10002
910 = 1 ·23 + 0 ·22 + 0 ·21 + 1 ·20 = 10012 ■

A list of powers of 2 is useful for doing binary-to-decimal and decimal-to-binary
conversions. See Table 2.5.1.

Table 2.5.1 Powers of 2

Power of 2 210 29 28 27 26 25 24 23 22 21 20

Decimal Form 1024 512 256 128 64 32 16 8 4 2 1
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80 Chapter 2 The Logic of Compound Statements

Example 2.5.2 Converting a Binary to a Decimal Number

Represent 1101012 in decimal notation.

Solution 1101012 = 1 ·25 + 1 ·24 + 0 ·23 + 1 ·22 + 0 ·21 + 1 ·20
= 32+ 16+ 4+ 1

= 5310

Alternatively, the schema below may be used.

2
5 =

32

2
4 =

16

2
3 =

8

2
2 =

4

2
1 =

2

2
0 =

1

1

→

1

→

0

→

1

→

0

→

12
→ 1 ·1 = 1

0 ·2 = 0
1 ·4 = 4
0 ·8 = 0
1 ·16 = 16
1 ·32 = 32

5310 ■

Example 2.5.3 Converting a Decimal to a Binary Number

Represent 209 in binary notation.

Solution Use Table 2.5.1 to write 209 as a sum of powers of 2, starting with the highest
power of 2 that is less than 209 and continuing to lower powers.

Since 209 is between 128 and 256, the highest power of 2 that is less than 209 is 128.
Hence

20910 = 128+ a smaller number.

Now 209− 128 = 81, and 81 is between 64 and 128, so the highest power of 2 that is
less than 81 is 64. Hence

20910 = 128+ 64+ a smaller number.

Continuing in this way, you obtain

20910 = 128+ 64+ 16+ 1

= 1 ·27 + 1 ·26 + 0 ·25 + 1 ·24 + 0 ·23 + 0 ·22 + 0 ·21 + 1 ·20.
For each power of 2 that occurs in the sum, there is a 1 in the corresponding position

of the binary number. For each power of 2 that is missing from the sum, there is a 0 in the
corresponding position of the binary number. Thus

20910 = 110100012 ■

Another procedure for converting from decimal to binary notation is discussed in
Section 5.1.

!
Caution! Do not read
102 as “ten”; it is the
number two. Read 102 as
“one oh base two.”

Binary Addition and Subtraction
The computational methods of binary arithmetic are analogous to those of decimal arith-
metic. In binary arithmetic the number 2 (= 102 in binary notation) plays a role similar
to that of the number 10 in decimal arithmetic.
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Example 2.5.4 Addition in Binary Notation

Add 11012 and 1112 using binary notation.

Solution Because 210 = 102 and 110 = 12, the translation of 110 + 110 = 210 to binary
notation is

12
+ 12

102

It follows that adding two 1’s together results in a carry of 1 when binary notation is
used. Adding three 1’s together also results in a carry of 1 since 310 = 112 (“one one base
two”).

12
+ 12
+ 12

112

Thus the addition can be performed as follows:

1 1 1 ← carry row

1 1 0 12
+ 1 1 12

1 0 1 0 02 ■

Example 2.5.5 Subtraction in Binary Notation

Subtract 10112 from 110002 using binary notation.

Solution In decimal subtraction the fact that 1010 − 110 = 910 is used to borrow across
several columns. For example, consider the following:

9 9
1 1 ← borrow row

1 0 0 010
− 5 810

9 4 210

In binary subtraction it may also be necessary to borrow across more than one column.
But when you borrow a 12 from 102, what remains is 12.

102
− 12

12

Thus the subtraction can be performed as follows:

0 1 1
1 1 1 ← borrow row

1 1 0 0 02
− 1 0 1 12

1 1 0 12 ■
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82 Chapter 2 The Logic of Compound Statements

Circuits for Computer Addition
Consider the question of designing a circuit to produce the sum of two binary digits P
and Q. Both P and Q can be either 0 or 1. And the following facts are known:

12 + 12 = 102,

12 + 02 = 12 = 012,

02 + 12 = 12 = 012,

02 + 02 = 02 = 002.

It follows that the circuit to be designed must have two outputs—one for the left
binary digit (this is called the carry) and one for the right binary digit (this is called
the sum). The carry output is 1 if both P and Q are 1; it is 0 otherwise. Thus the carry
can be produced using the AND-gate circuit that corresponds to the Boolean expression
P ∧ Q. The sum output is 1 if either P or Q, but not both, is 1. The sum can, therefore,
be produced using a circuit that corresponds to the Boolean expression for exclusive or:
(P ∨ Q)∧ ∼(P ∧ Q). (See Example 2.4.3(a).) Hence, a circuit to add two binary digits
P and Q can be constructed as in Figure 2.5.1. This circuit is called a half-adder.

HALF-ADDER

Circuit Input/Output Table

P

Q
NOT

AND

AND

OR
Sum

Carry

P Q Carry Sum

1 1 1 0

1 0 0 1

0 1 0 1

0 0 0 0

Figure 2.5.1 Circuit to Add P + Q, Where P and Q Are Binary Digits

Now consider the question of how to construct a circuit to add two binary integers,
each with more than one digit. Because the addition of two binary digits may result in
a carry to the next column to the left, it may be necessary to add three binary digits at
certain points. In the following example, the sum in the right column is the sum of two
binary digits, and, because of the carry, the sum in the left column is the sum of three
binary digits.

1 ← carry row

1 12
+ 1 12

1 1 02

Thus, in order to construct a circuit that will add multidigit binary numbers, it is
necessary to incorporate a circuit that will compute the sum of three binary digits. Such a
circuit is called a full-adder. Consider a general addition of three binary digits P, Q, and
R that results in a carry (or left-most digit) C and a sum (or right-most digit) S.

P
+ Q
+ R

CS

The operation of the full-adder is based on the fact that addition is a binary operation:
Only two numbers can be added at one time. Thus P is first added to Q and then the
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result is added to R. For instance, consider the following addition:

12
+ 02
+ 12
102

}
12 + 02 = 012

⎫⎬
⎭ 12 + 12 = 102

The process illustrated here can be broken down into steps that use half-adder circuits.

Step 1: Add P and Q using a half-adder to obtain a binary number with two digits.

P
+ Q
C1S1

Step 2: Add R to the sum C1S1 of P and Q.

C1S1
+ R

To do this, proceed as follows:

Step 2a: Add R to S1 using a half-adder to obtain the two-digit number C2S.

S1
+ R
C2S

Then S is the right-most digit of the entire sum of P, Q, and R.

Step 2b: Determine the left-most digit, C , of the entire sum as follows: First note that
it is impossible for both C1 and C2 to be 1’s. For if C1 = 1, then P and Q are
both 1, and so S1 = 0. Consequently, the addition of S1 and R gives a binary
number C2S1 where C2 = 0. Next observe that C will be a 1 in the case that
the addition of P and Q gives a carry of 1 or in the case that the addition of S1
(the right-most digit of P + Q) and R gives a carry of 1. In other words, C = 1
if, and only if,C1 = 1 orC2 = 1. It follows that the circuit shown in Figure 2.5.2
will compute the sum of three binary digits.

FULL-ADDER
Circuit Input/Output Table

half-adder #1

half-adder #2

AND
P

Q

R

S

T

C1

C2

S1

P Q R C S

1 1 1 1 1

1 1 0 1 0

1 0 1 1 0

1 0 0 0 1

0 1 1 1 0

0 1 0 0 1

0 0 1 0 1

0 0 0 0 0

Figure 2.5.2 Circuit to Add P + Q + R, Where P, Q, and R Are Binary Digits
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84 Chapter 2 The Logic of Compound Statements

Two full-adders and one half-adder can be used together to build a circuit that will
add two three-digit binary numbers PQR and STU to obtain the sum WXY Z . This is
illustrated in Figure 2.5.3. Such a circuit is called a parallel adder. Parallel adders can
be constructed to add binary numbers of any finite length.

half-adder

U

Q

P

S1 = Z

S2 = Y

half-adder

R

U

Q

T

P

S

C2

C1

S1 = Z

S2 = Y

S3 = X

C3 = W

full-adder

full-adder

Figure 2.5.3 A Parallel Adder to Add P Q R and STU to Obtain W XY Z

Two’s Complements and the Computer Representation
of Negative Integers

Typically, a fixed number of bits is used to represent integers on a computer, and these
are required to represent negative as well as nonnegative integers. Sometimes a particular
bit, normally the left-most, is used as a sign indicator, and the remaining bits are taken to
be the absolute value of the number in binary notation. The problem with this approach is
that the procedures for adding the resulting numbers are somewhat complicated and the
representation of 0 is not unique. A more common approach, using two’s complements,
makes it possible to add integers quite easily and results in a unique representation for 0.
The two’s complement of an integer relative to a fixed bit length is defined as follows:

• Definition

Given a positive integer a, the two’s complement of a relative to a fixed bit length
n is the n-bit binary representation of

2n − a.

Bit lengths of 16 and 32 are the most commonly used in practice. However, because
the principles are the same for all bit lengths, we use a bit length of 8 for simplicity in
this discussion. For instance, because

(28 − 27)10 = (256− 27)10 = 22910 = (128+ 64+ 32+ 4+ 1)10 = 111001012,

the 8-bit two’s complement of 27 is 111001012.
It turns out that there is a convenient way to compute two’s complements that involves

less arithmetic than direct application of the definition. For an 8-bit representation, it is
based on three facts:
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1. 28 − a = [(28 − 1)− a]+ 1.

2. The binary representation of 28 − 1 is 111111112.

3. Subtracting an 8-bit binary number a from 111111112 just switches all the 0’s in a
to 1’s and all the 1’s to 0’s. (The resulting number is called the one’s
complement of the given number.)

For instance, by (2) and (3), with a = 27,

1 1 1 1 1 1 1 1 28 − 1

−
0 0 0 1 1 0 1 1 270’s and 1’s

are switched
→
→

1 1 1 0 0 1 0 0 (28 − 1)− 27 2.5.1

and so in binary notation the difference (28 − 1)− 27 is 111001002. But by (1) with
a = 27, 28 − 27 = [(28 − 1)− 27] + 1, and so if we add 1 to (2.5.1), we obtain the 8-bit
binary representation of 28 − 27, which is the 8-bit two’s complement of 27:

1 1 1 0 0 1 0 0 (28 − 1)− 27

+
0 0 0 0 0 0 0 1 1

1 1 1 0 0 1 0 1 28 − 27

In general,

To find the 8-bit two’s complement of a positive integer a that is at most 255:

• Write the 8-bit binary representation for a.
• Flip the bits (that is, switch all the 1’s to 0’s and all the 0’s to 1’s).
• Add 1 in binary notation.

Example 2.5.6 Finding a Two’s Complement

Find the 8-bit two’s complement of 19.

Solution Write the 8-bit binary representation for 19, switch all the 0’s to 1’s and all the
1’s to 0’s, and add 1.

1910 = (16+ 2+ 1)10 = 000100112 flip the bits−−−−−−−→ 11101100 add 1−−−−→ 11101101

To check this result, note that

111011012 = (128+ 64+ 32+ 8+ 4+ 1)10 = 23710 = (256− 19)10

= (28 − 19)10,

which is the two’s complement of 19. ■
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Observe that because

28 − (28 − a) = a

the two’s complement of the two’s complement of a number is the number itself, and
therefore,

To find the decimal representation of the integer with a given 8-bit two’s
complement:

• Find the two’s complement of the given two’s complement.
• Write the decimal equivalent of the result.

Example 2.5.7 Finding a Number with a Given Two’s Complement

What is the decimal representation for the integer with two’s complement 10101001?

Solution

101010012 flip the bits−−−−−−−→ 01010110
add 1−−−−→ 010101112 = (64+ 16+ 4+ 2+ 1)10 = 8710

To check this result, note that the given number is

101010012 = (128+ 32+ 8+ 1)10 = 16910 = (256− 87)10 = (28 − 87)10,

which is the two’s complement of 87. ■

8-Bit Representation of a Number
Now consider the two’s complement of an integer n that satisfies the inequality 1 ≤ n ≤
128. Then

−1 ≥ −n ≥ −128 because multiplying by −1 reverses
the direction of the inequality

and

28 − 1 ≥ 28 − n ≥ 28 − 128 by adding 28 to all parts of the inequality.

But 28 − 128 = 256− 128 = 128 = 27. Hence

27 ≤ the two’s complement of n < 28.

It follows that the 8-bit two’s complement of an integer from 1 through 128 has a
leading bit of 1. Note also that the ordinary 8-bit representation of an integer from 0
through 127 has a leading bit of 0. Consequently, eight bits can be used to represent both
nonnegative and negative integers by representing each nonnegative integer up through
127 using ordinary 8-bit binary notation and representing each negative integer from −1
through −128 as the two’s complement of its absolute value. That is, for any integer a
from −128 through 127,

The 8-bit representation of a

=
{
the 8-bit binary representation of a if a ≥ 0

the 8-bit binary representation of 28 − |a| if a < 0
.
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The representations are illustrated in Table 2.5.2.

Table 2.5.2

8-Bit Representation (ordinary 8-bit Decimal Form of
binary notation if nonnegative or 8-bit two’s Two’s Complement

Integer complement of absolute value if negative) for Negative Integers

127 01111111

126 01111110
...

...

2 00000010

1 00000001

0 00000000

−1 11111111 28 − 1

−2 11111110 28 − 2

−3 11111101 28 − 3
...

...
...

−127 10000001 28 − 127

−128 10000000 28 − 128

Computer Addition with Negative Integers
Here is an example of how two’s complements enable addition circuits to perform sub-
traction. Suppose you want to compute 72− 54. First note that this is the same as 72+
(−54), and the 8-bit binary representations of 72 and −54 are 01001000 and 11001010,
respectively. So if you add the 8-bit binary representations for both numbers, you get

0 1 0 0 1 0 0 0
+ 1 1 0 0 1 0 1 0

1 0 0 0 1 0 0 1 0

And if you truncate the leading 1, you get 00010010. This is the 8-bit binary
representation for 18, which is the right answer!

The description below explains how to use this method to add any two integers
between −128 and 127. It is easily generalized to apply to 16-bit and 32-bit represen-
tations in order to add integers between about −2,000,000,000 and 2,000,000,000.

To add two integers in the range −128 through 127 whose sum is also in the
range −128 through 127:

• Convert both integers to their 8-bit representations (representing negative
integers by using the two’s complements of their absolute values).

• Add the resulting integers using ordinary binary addition.
• Truncate any leading 1 (overflow) that occurs in the 28th position.
• Convert the result back to decimal form (interpreting 8-bit integers with leading
0’s as nonnegative and 8-bit integers with leading 1’s as negative).
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To see why this result is true, consider four cases: (1) both integers are nonnegative,
(2) one integer is nonnegative and the other is negative and the absolute value of the
nonnegative integer is less than that of the negative one, (3) one integer is nonnegative
and the other is negative and the absolute value of the negative integer is less than or
equal to that of the nonnegative one, and (4) both integers are negative.

Case 1, (both integers are nonnegative): This case is easy because if two nonnegative
integers from 0 through 127 are written in their 8-bit representations and if their sum is
also in the range 0 through 127, then the 8-bit representation of their sum has a lead-
ing 0 and is therefore interpreted correctly as a nonnegative integer. The example below
illustrates what happens when 38 and 69 are added.

0 0 1 0 0 1 1 0 38

+
0 1 0 0 0 1 0 1 69

0 1 1 0 1 0 1 1 107

Cases (2) and (3) both involve adding a negative and a nonnegative integer. To be
concrete, let the nonnegative integer be a and the negative integer be −b and suppose
both a and −b are in the range −128 through 127. The crucial observation is that adding
the 8-bit representations of a and −b is equivalent to computing

a + (28 − b)

because the 8-bit representation of −b is the binary representation of 28 − b.

Case 2 (a is nonnegative and −b is negative and |a| < |b|): In this case, observe that
a = |a| < |b| = b and

a + (28 − b) = 28 − (b − a),

and the binary representation of this number is the 8-bit representation of −(b − a) =
a + (−b). We must be careful to check that 28 − (b − a) is between 27 and 28. But it is
because

27 = 28 − 27 ≤ 28 − (b − a) < 28 since 0 < b − a ≤ b ≤ 128 = 27.

Hence in case |a| < |b|, adding the 8-bit representations of a and −b gives the 8-bit
representation of a + (−b).

Example 2.5.8 Computing a + (−b) Where 0 ≤ a < b ≤ 128

Use 8-bit representations to compute 39+ (−89).
Solution

Step 1: Change from decimal to 8-bit representations using the two’s complement to
represent −89.

Since 3910 = (32+ 4+ 2+ 1)10 = 1001112, the 8-bit representation of 39
is 00100111. Now the 8-bit representation of −89 is the two’s complement of
89. This is obtained as follows:

8910 = (64+ 16+ 8+ 1)10 = 010110012 flip the bits−−−−−−−→
10100110 add 1−−−−→ 10100111
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So the 8-bit representation of −89 is 10100111.

Step 2: Add the 8-bit representations in binary notation and truncate the 1 in the 28th
position if there is one:

0 0 1 0 0 1 1 1
+

1 0 1 0 0 1 1 1

There is no 1 in the 28th
position to truncate→ 1 1 0 0 1 1 1 0

Step 3: Find the decimal equivalent of the result. Since its leading bit is 1, this number is
the 8-bit representation of a negative integer.

11001110 flip the bits−−−−−−−→ 00110001 add 1−−−−→ 00110010

↔ −(32+ 16+ 2)10 = −5010
Note that since 39− 89 = −50, this procedure gives the correct answer. ■

Case 3 (a is nonnegative and −b is negative and |b| ≤ |a|): In this case, observe that
b = |b| ≤ |a| = a and

a + (28 − b) = 28 + (a − b).

Also

28 ≤ 28 + (a − b) < 28 + 27 because 0 ≤ a − b ≤ a < 128 = 27.

So the binary representation of a + (28 − b) = 28 + (a − b) has a leading 1 in the ninth
(28th) position. This leading 1 is often called “overflow” because it does not fit in the
8-bit integer format. Now subtracting 28 from 28 + (a − b) is equivalent to truncating
the leading 1 in the 28th position of the binary representation of the number. But

[a + (28 − b)]− 28 = 28 + (a − b)− 28 = a − b = a + (−b).
Hence in case |a| ≥ |b|, adding the 8-bit representations of a and −b and truncating the
leading 1 (which is sure to be present) gives the 8-bit representation of a + (−b).

Example 2.5.9 Computing a + (−b) Where 1 ≤ b ≤ a ≤ 127

Use 8-bit representations to compute 39+ (−25).
Solution

Step 1: Change from decimal to 8-bit representations using the two’s complement to
represent −25.

As in Example 2.5.8, the 8-bit representation of 39 is 00100111. Now the
8-bit representation of −25 is the two’s complement of 25, which is obtained as
follows:

2510 = (16+ 8+ 1)10 = 000110012 flip the bits−−−−−−−→
11100110 add 1−−−−→ 11100111

So the 8-bit representation of −25 is 11100111.

Step 2: Add the 8-bit representations in binary notation and truncate the 1 in the 28th
position if there is one:
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0 0 1 0 0 1 1 1
+

1 1 1 0 0 1 1 1

Truncate→ 1 0 0 0 0 1 1 1 0

Step 3: Find the decimal equivalent of the result:

000011102 = (8+ 4+ 2)10 = 1410.

Since 39− 25 = 14, this is the correct answer. ■

Case 4 (both integers are negative): This case involves adding two negative integers in
the range −1 through −128 whose sum is also in this range. To be specific, consider the
sum (−a)+ (−b) where a, b, and a + b are all in the range 1 through 128. In this case,
the 8-bit representations of−a and−b are the 8-bit representations of 28 − a and 28 − b.
So if the 8-bit representations of −a and −b are added, the result is

(28 − a)+ (28 − b) = [28 − (a + b)]+ 28.

Recall that truncating a leading 1 in the ninth (28th) position of a binary number is
equivalent to subtracting 28. So when the leading 1 is truncated from the 8-bit repre-
sentation of (28 − a)+ (28 − b), the result is 28 − (a + b), which is the 8-bit represen-
tation of −(a + b) = (−a)+ (−b). (In exercise 37 you are asked to show that the sum
(28 − a)+ (28 − b) has a leading 1 in the ninth (28th) position.)

Example 2.5.10 Computing (−a) + (−b) Where 1 ≤ a, b ≤ 128, and 1 ≤ a + b ≤ 128

Use 8-bit representations to compute (−89)+ (−25).
Solution

Step 1: Change from decimal to 8-bit representations using the two’s complements to
represent −89 and −25.

The 8-bit representations of−89 and−25 were shown in Examples 2.5.8 and
2.5.9 to be 10100111 and 11100111, respectively.

Step 2: Add the 8-bit representations in binary notation and truncate the 1 in the 28th
position if there is one:

1 0 1 0 0 1 1 1
+

1 1 1 0 0 1 1 1

Truncate→ 1 1 0 0 0 1 1 1 0

Step 3: Find the decimal equivalent of the result. Because its leading bit is 1, this number
is the 8-bit representation of a negative integer.

10001110 flip the bits−−−−−−−→ 01110001 add 1−−−−→ 011100102
↔ −(64+ 32+ 16+ 2)10 = −11410

Since (−89)+ (−25) = −114, that is the correct answer. ■
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Hexadecimal Notation
It should now be obvious that numbers written in binary notation take up much more
space than numbers written in decimal notation. Yet many aspects of computer opera-
tion can best be analyzed using binary numbers. Hexadecimal notation is even more
compact than decimal notation, and it is much easier to convert back and forth between
hexadecimal and binary notation than it is between binary and decimal notation. The
word hexadecimal comes from the Greek root hex-, meaning “six,” and the Latin root
deci-,meaning “ten.” Hence hexadecimal refers to “sixteen,” and hexadecimal notation is
also called base 16 notation. Hexadecimal notation is based on the fact that any integer
can be uniquely expressed as a sum of numbers of the form

d ·16n,
where each n is a nonnegative integer and each d is one of the integers from 0 to 15. In
order to avoid ambiguity, each hexadecimal digit must be represented by a single symbol.
The integers 10 through 15 are represented by the symbols A, B, C, D, E, and F. The
sixteen hexadecimal digits are shown in Table 2.5.3, together with their decimal
equivalents and, for future reference, their 4-bit binary equivalents.

Table 2.5.3

4-Bit Binary
Decimal Hexadecimal Equivalent

0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

10 A 1010

11 B 1011

12 C 1100

13 D 1101

14 E 1110

15 F 1111

Example 2.5.11 Converting from Hexadecimal to Decimal Notation

Convert 3CF16 to decimal notation.

Solution A schema similar to the one introduced in Example 2.5.2 can be used here.
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16
2 =

25
6

16
1 =

16

16
0 =

1

316 C16 F16

= = =

310 1210 1510

→
→
→15 · 1 = 15

12 · 16 = 192
3 ·256= 768

97510

So 3CF16 = 97510. ■

Now consider how to convert from hexadecimal to binary notation. In the example
below the numbers are rewritten using powers of 2, and the laws of exponents are applied.
The result suggests a general procedure.

16
3 =

40
96

16
2 =

25
6

16
1 =

16

16
0 =

1

C16 516 016 A16

= = = =

1210 510 010 1010

→
→
→
→ 10 ·160 = (23 + 2) ·1 = 23 + 2 since 10 = 23 + 2

0 ·161 = 0 ·24 = 0 since 161 = 24

5 ·162 = (22 + 1) ·28 = 210 + 28 since 5 = 22 + 1, 162 = (24)2 = 28 and 22 ·28 = 210

12 ·163 = (23 + 22) ·212 = 215 + 214 since 12 = 23 + 22, 162 = (24)3 = 212,
23 ·212 = 215, and 22 ·212 = 214

But

(215 + 214)+ (210 + 28)+ 0+ (23 + 2)

= 1100 0000 0000 00002 + 0101 0000 00002 by the rules for writing
binary numbers.+ 0000 00002 + 10102

So
C50A16 = 1100︸︷︷︸ 0101︸︷︷︸ 0000︸︷︷︸ 10102︸ ︷︷ ︸

C16 516 016 A16

by the rules for adding
binary numbers.

The procedure illustrated in this example can be generalized. In fact, the following
sequence of steps will always give the correct answer:

To convert an integer from hexadecimal to binary notation:

• Write each hexadecimal digit of the integer in 4-bit binary notation.
• Juxtapose the results.
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Example 2.5.12 Converting from Hexadecimal to Binary Notation

Convert B09F16 to binary notation.

Solution B16 = 1110 = 10112, 016 = 010 = 00002, 916 = 910 = 10012, and F16 = 1510 =
11112. Consequently,

B 0 9 F

↔ ↔ ↔ ↔

1011 0000 1001 1111

and the answer is 10110000100111112. ■

To convert integers written in binary notation into hexadecimal notation, reverse the
steps of the previous procedure.

To convert an integer from binary to hexadecimal notation:

• Group the digits of the binary number into sets of four, starting from the right
and adding leading zeros as needed.

• Convert the binary numbers in each set of four into hexadecimal digits. Juxtapose
those hexadecimal digits.

Example 2.5.13 Converting from Binary to Hexadecimal Notation

Convert 1001101101010012 to hexadecimal notation.

Solution First group the binary digits in sets of four, working from right to left and adding
leading 0’s if necessary.

0100 1101 1010 1001.

Convert each group of four binary digits into a hexadecimal digit.

0100 1101 1010 1001

↔ ↔ ↔ ↔

4 D A 9

Then juxtapose the hexadecimal digits.

4DA916 ■

Example 2.5.14 Reading a Memory Dump

The smallest addressable memory unit on most computers is one byte, or eight bits. In
some debugging operations a dump is made of memory contents; that is, the contents
of each memory location are displayed or printed out in order. To save space and make
the output easier on the eye, the hexadecimal versions of the memory contents are given,
rather than the binary versions. Suppose, for example, that a segment of the memory
dump looks like

A3 BB 59 2E.

What is the actual content of the four memory locations?
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Solution A316 = 101000112
BB16 = 101110112
5916 = 010110012
2E16 = 001011102 ■

Test Yourself
1. To represent a nonnegative integer in binary notation means

to write it as a sum of products of the form , where .

2. To add integers in binary notation, you use the facts that
12 + 12 = and 12 + 12 + 12 = .

3. To subtract integers in binary notation, you use the facts that
102 − 12 = and 112 − 12 = .

4. A half-adder is a digital logic circuit that
, and a full-adder is a digital logic circuit

that .

5. The 8-bit two’s complement of a positive integer a
is .

6. To find the 8-bit two’s complement of a positive integer a
that is at most 255, you , , and .

7. If a is an integer with −128 ≤ a ≤ 127, the 8-bit represen-
tation of a is if a ≥ 0 and is if a < 0.

8. To add two integers in the range −128 through 127 whose
sum is also in the range −128 through 127, you , ,

, and .

9. To represent a nonnegative integer in hexadecimal notation
means to write it as a sum of products of the form ,
where .

10. To convert a nonnegative integer from hexadecimal to binary
notation, you and .

Exercise Set 2.5
Represent the decimal integers in 1–6 in binary notation.

1. 19 2. 55 3. 287

4. 458 5. 1609 6. 1424

Represent the integers in 7–12 in decimal notation.

7. 11102 8. 101112 9. 1101102

10. 11001012 11. 10001112 12. 10110112

Perform the arithmetic in 13–20 using binary notation.

13. 10112
+ 1012

14. 10012
+ 10112

15. 1011012
+ 111012

16. 1101110112
+ 10010110102

17. 101002
− 11012

18. 110102
− 11012

19. 1011012
− 100112

20. 10101002
− 101112

21. Give the output signals S and T for the circuit in the right
column if the input signals P, Q, and R are as specified.
Note that this is not the circuit for a full-adder.
a. P = 1, Q = 1, R = 1
b. P = 0, Q = 1, R = 0
c. P = 1, Q = 0, R = 1

half-adder #1

half-adder #2

AND
P

Q

R

S

T

C1

C2

S1

22. Add 111111112 + 12 and convert the result to decimal nota-
tion, to verify that 111111112 = (28 − 1)10.

Find the 8-bit two’s complements for the integers in 23–26.

23. 23 24. 67 25. 4 26. 115

Find the decimal representations for the integers with the 8-bit
representations given in 27–30.

27. 11010011 28. 10011001

29. 11110010 30. 10111010

Use 8-bit representations to compute the sums in 31–36.

31. 57+ (−118) 32. 62+ (−18)
33. (−6)+ (−73) 34. 89+ (−55)
35. (−15)+ (−46) 36. 123+ (−94)
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37.✶ Show that if a, b, and a + b are integers in the range 1
through 128, then

(28 − a)+ (28 − b) = (28 − (a + b))+ 28 ≥ 28 + 27.

Explain why it follows that if the 8-bit binary representa-
tion of the sum of the negatives of two numbers in the given
range is computed, the result is a negative number.

Convert the integers in 38–40 from hexadecimal to decimal
notation.

38. A2BC16 39. E0D16 40. 39EB16

Convert the integers in 41–43 from hexadecimal to binary nota-
tion.

41. 1C0ABE16 42. B53DF816 43. 4ADF8316

Convert the integers in 44–46 from binary to hexadecimal
notation.

44. 001011102 45. 10110111110001012

46. 110010010111002

47. Octal Notation: In addition to binary and hexadecimal,
computer scientists also use octal notation (base 8) to rep-
resent numbers. Octal notation is based on the fact that any
integer can be uniquely represented as a sum of numbers of
the form d · 8n , where each n is a nonnegative integer and
each d is one of the integers from 0 to 7. Thus, for example,
50738 = 5 ·83 + 0 ·82 + 7 ·81 + 3 ·80 = 261910.
a. Convert 615028 to decimal notation.
b. Convert 207638 to decimal notation.
c. Describe methods for converting integers from octal to

binary notation and the reverse that are similar to the
methods used in Examples 2.5.12 and 2.5.13 for con-
verting back and forth from hexadecimal to binary nota-
tion. Give examples showing that these methods result
in correct answers.

Answers for Test Yourself
1. d ·2n; d = 0 or d = 1, and n is a nonnegative integer 2. 102;112 3. 12;102
4. outputs the sum of any two binary digits; outputs the sum of any three binary digits
5. 28 − a 6. write the 8-bit binary representation of a; flip the bits; add 1 in binary notation
7. the 8-bit binary representation of a; the 8-bit binary representation of 28 − a
8. convert both integers to their 8-bit binary representations; add the results using binary notation; truncate any leading 1; convert
back to decimal form
9. d ·16n; d = 0, 1, 2, . . . 9, A, B,C, D, E, F , and n is a nonnegative integer
10. write each hexadecimal digit in 4-bit binary notation; juxtapose the results
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CHAPTER 3

THE LOGIC OF QUANTIFIED
STATEMENTS

In Chapter 2 we discussed the logical analysis of compound statements—those made of
simple statements joined by the connectives ∼,∧,∨,→, and ↔. Such analysis casts
light on many aspects of human reasoning, but it cannot be used to determine validity in
the majority of everyday and mathematical situations. For example, the argument

All men are mortal.

Socrates is a man.

∴ Socrates is mortal.

is intuitively perceived as correct. Yet its validity cannot be derived using the methods
outlined in Section 2.3. To determine validity in examples like this, it is necessary to
separate the statements into parts in much the same way that you separate declarative
sentences into subjects and predicates. And you must analyze and understand the special
role played by words that denote quantities such as “all” or “some.” The symbolic analysis
of predicates and quantified statements is called the predicate calculus. The symbolic
analysis of ordinary compound statements (as outlined in Sections 2.1–2.3) is called the
statement calculus (or the propositional calculus).

3.1 Predicates and Quantified Statements I
. . . it was not till within the last few years that it has been realized how fundamental any
and some are to the very nature of mathematics. — A. N. Whitehead (1861–1947)

As noted in Section 2.1, the sentence “He is a college student” is not a statement because
it may be either true or false depending on the value of the pronoun he. Similarly, the
sentence “x + y is greater than 0” is not a statement because its truth value depends on
the values of the variables x and y.

In grammar, the word predicate refers to the part of a sentence that gives information
about the subject. In the sentence “James is a student at Bedford College,” the word James
is the subject and the phrase is a student at Bedford College is the predicate. The predicate
is the part of the sentence from which the subject has been removed.

In logic, predicates can be obtained by removing some or all of the nouns from a
statement. For instance, let P stand for “is a student at Bedford College” and let Q stand
for “is a student at.” Then both P and Q are predicate symbols. The sentences “x is a
student at Bedford College” and “x is a student at y” are symbolized as P(x) and as
Q(x, y) respectively, where x and y are predicate variables that take values in appropri-
ate sets. When concrete values are substituted in place of predicate variables, a statement
results. For simplicity, we define a predicate to be a predicate symbol together with suit-
able predicate variables. In some other treatments of logic, such objects are referred to as
propositional functions or open sentences.
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• Definition

A predicate is a sentence that contains a finite number of variables and becomes
a statement when specific values are substituted for the variables. The domain of
a predicate variable is the set of all values that may be substituted in place of the
variable.

Example 3.1.1 Finding Truth Values of a Predicate

Let P(x) be the predicate “x2 > x” with domain the set R of all real numbers. Write
P(2), P( 12 ), and P(− 1

2 ), and indicate which of these statements are true and which are
false.

Solution P(2): 22 > 2, or 4 > 2. True.

P
(
1
2

)
:

(
1
2

)2
>

1
2 , or 1

4 >
1
2 . False.

P
(
−1

2

)
:

(
−1

2

)2
> −1

2 , or 1
4 > −1

2 . True. ■

When an element in the domain of the variable of a one-variable predicate is substi-
tuted for the variable, the resulting statement is either true or false. The set of all such
elements that make the predicate true is called the truth set of the predicate.

Note Recall that we
read these symbols as
“the set of all x in D such
that P(x).”

• Definition

If P(x) is a predicate and x has domain D, the truth set of P(x) is the set of all
elements of D that make P(x) true when they are substituted for x . The truth set of
P(x) is denoted

{x ∈ D | P(x)}.

Example 3.1.2 Finding the Truth Set of a Predicate

Let Q(n) be the predicate “n is a factor of 8.” Find the truth set of Q(n) if

a. the domain of n is the set Z+ of all positive integers

b. the domain of n is the set Z of all integers.

Solution

a. The truth set is {1, 2, 4, 8} because these are exactly the positive integers that divide 8
evenly.

b. The truth set is {1, 2, 4, 8,−1,−2,−4,−8} because the negative integers−1,−2,−4,
and −8 also divide into 8 without leaving a remainder. ■

The Universal Quantifier: ∀
One sure way to change predicates into statements is to assign specific values to all their
variables. For example, if x represents the number 35, the sentence “x is (evenly) divis-
ible by 5” is a true statement since 35 = 5 ·7. Another way to obtain statements from
predicates is to add quantifiers. Quantifiers are words that refer to quantities such as
“some” or “all” and tell for how many elements a given predicate is true. The formal
concept of quantifier was introduced into symbolic logic in the late nineteenth century by
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98 Chapter 3 The Logic of Quantified Statements

the American philosopher, logician, and engineer Charles Sanders Peirce and, indepen-
dently, by the German logician Gottlob Frege.

The symbol ∀ denotes “for all” and is called the universal quantifier. For example,
another way to express the sentence “All human beings are mortal” is to write

∀ human beings x, x is mortal.
C

ul
ve

r
P

ic
tu

re
s

Charles Sanders Peirce
(1839–1914)

When the symbol x is introduced into the phrase “∀ human beings x ,” you are sup-
posed to think of x as an individual, but generic, object—with all the properties shared
by every human being but no other properties. Thus you should say “x is mortal” rather
than “x are mortal.” In other words, use the singular “is” rather than the plural verb “are”
when describing the property satisfied by x . If you let H be the set of all human beings,
then you can symbolize the statement more formally by writing

∀x ∈ H, x is mortal,

which is read as “For all x in the set of all human beings, x is mortal.”

Note Think “for all”
when you see the
symbol ∀.

The domain of the predicate variable is generally indicated between the ∀ symbol and
the variable name (as in ∀ human beings x) or immediately following the variable name
(as in ∀x ∈ H ). Some other expressions that can be used instead of for all are for every,
for arbitrary, for any, for each, and given any. In a sentence such as “∀ real numbers x
and y, x + y = y + x ,” the ∀ symbol is understood to refer to both x and y.∗
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Gottlob Frege
(1848–1925)

Sentences that are quantified universally are defined as statements by giving them the
truth values specified in the following definition:

• Definition

Let Q(x) be a predicate and D the domain of x . A universal statement is a statement
of the form “∀x ∈ D, Q(x).” It is defined to be true if, and only if, Q(x) is true for
every x in D. It is defined to be false if, and only if, Q(x) is false for at least one x in
D. A value for x for which Q(x) is false is called a counterexample to the universal
statement.

Example 3.1.3 Truth and Falsity of Universal Statements

a. Let D = {1, 2, 3, 4, 5}, and consider the statement

∀x ∈ D, x2 ≥ x .

Show that this statement is true.

b. Consider the statement

∀x ∈ R, x2 ≥ x .

Find a counterexample to show that this statement is false.

Solution

a. Check that “x2 ≥ x” is true for each individual x in D.

12 ≥ 1, 22 ≥ 2, 32 ≥ 3, 42 ≥ 4, 52 ≥ 5.

Hence “∀x ∈ D, x2 ≥ x” is true.

∗More formal versions of symbolic logic would require writing a separate ∀ for each variable:
“∀x ∈ R(∀y ∈ R(x + y = y + x)).”
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b. Counterexample: Take x = 1
2 . Then x is in R (since 1

2 is a real number) and(
1

2

)2

= 1

4
�

1

2
.

Hence “∀x ∈ R, x2 ≥ x” is false. ■

The technique used to show the truth of the universal statement in Example 3.1.3(a)
is called themethod of exhaustion. It consists of showing the truth of the predicate sep-
arately for each individual element of the domain. (The idea is to exhaust the possibilities
before you exhaust yourself!) This method can, in theory, be used whenever the domain
of the predicate variable is finite. In recent years the prevalence of digital computers has
greatly increased the convenience of using the method of exhaustion. Computer expert
systems, or knowledge-based systems, use this method to arrive at answers to many of
the questions posed to them. Because most mathematical sets are infinite, however, the
method of exhaustion can rarely be used to derive general mathematical results.

The Existential Quantifier: ∃
The symbol ∃ denotes “there exists” and is called the existential quantifier. For example,
the sentence “There is a student in Math 140” can be written as

∃ a person p such that p is a student in Math 140,

or, more formally,

∃p ∈ P such that p is a student in Math 140,
Note Think “there
exists” when you see the
symbol ∃.

where P is the set of all people. The domain of the predicate variable is generally indi-
cated either between the ∃ symbol and the variable name or immediately following the
variable name. The words such that are inserted just before the predicate. Some other
expressions that can be used in place of there exists are there is a, we can find a, there is
at least one, for some, and for at least one. In a sentence such as “∃ integers m and n such
that m + n = m ·n,” the ∃ symbol is understood to refer to both m and n.∗

Sentences that are quantified existentially are defined as statements by giving them
the truth values specified in the following definition.

• Definition

Let Q(x) be a predicate and D the domain of x . An existential statement is a
statement of the form “∃x ∈ D such that Q(x).” It is defined to be true if, and only
if, Q(x) is true for at least one x in D. It is false if, and only if, Q(x) is false for all
x in D.

Example 3.1.4 Truth and Falsity of Existential Statements

a. Consider the statement

∃m ∈ Z+ such that m2 = m.

Show that this statement is true.

∗In more formal versions of symbolic logic, the words such that are not written out (although
they are understood) and a separate ∃ symbol is used for each variable: “∃m ∈ Z(∃n ∈ Z(m + n =
m ·n)).”
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100 Chapter 3 The Logic of Quantified Statements

b. Let E = {5, 6, 7, 8} and consider the statement

∃m ∈ E such that m2 = m.

Show that this statement is false.

Solution

a. Observe that 12 = 1. Thus “m2 = m” is true for at least one integerm. Hence “∃m ∈ Z
such that m2 = m” is true.

b. Note that m2 = m is not true for any integers m from 5 through 8:

52 = 25 �= 5, 62 = 36 �= 6, 72 = 49 �= 7, 82 = 64 �= 8.

Thus “∃m ∈ E such that m2 = m” is false. ■

Formal Versus Informal Language
It is important to be able to translate from formal to informal language when trying to
make sense of mathematical concepts that are new to you. It is equally important to
be able to translate from informal to formal language when thinking out a complicated
problem.

Example 3.1.5 Translating from Formal to Informal Language

Rewrite the following formal statements in a variety of equivalent but more informal
ways. Do not use the symbol ∀ or ∃.
a. ∀x ∈ R, x2 ≥ 0.

b. ∀x ∈ R, x2 �= −1.
c. ∃m ∈ Z+such that m2 = m.

Solution

a. All real numbers have nonnegative squares.
Or: Every real number has a nonnegative square.
Or: Any real number has a nonnegative square.
Or: The square of each real number is nonnegative.

Note The singular noun
is used to refer to the
domain when the ∀
symbol is translated as
every, any, or each.

b. All real numbers have squares that are not equal to −1.
Or: No real numbers have squares equal to −1.
(The words none are or no . . . are are equivalent to the words all are not.)

c. There is a positive integer whose square is equal to itself.
Or:We can find at least one positive integer equal to its own square.
Or: Some positive integer equals its own square.
Or: Some positive integers equal their own squares.

Note In ordinary
English, the statement in
part (c) might be taken to
be true only if there are at
least two positive integers
equal to their own
squares. In mathematics,
we understand the last
two statements in part (c)
to mean the same thing.

■

Another way to restate universal and existential statements informally is to place the
quantification at the end of the sentence. For instance, instead of saying “For any real
number x , x2 is nonnegative,” you could say “x2 is nonnegative for any real number x .”
In such a case the quantifier is said to “trail” the rest of the sentence.
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Example 3.1.6 Trailing Quantifiers

Rewrite the following statements so that the quantifier trails the rest of the sentence.

a. For any integer n, 2n is even.

b. There exists at least one real number x such that x2 ≤ 0.

Solution

a. 2n is even for any integer n.

b. x2 ≤ 0 for some real number x .
Or: x2 ≤ 0 for at least one real number x . ■

Example 3.1.7 Translating from Informal to Formal Language

Rewrite each of the following statements formally. Use quantifiers and variables.

a. All triangles have three sides.

b. No dogs have wings.

c. Some programs are structured.

Solution

a. ∀ triangles t, t has three sides.
Or: ∀t ∈ T, t has three sides (where T is the set of all triangles).

b. ∀ dogs d, d does not have wings.
Or: ∀d ∈ D, d does not have wings (where D is the set of all dogs).

c. ∃ a program p such that p is structured.
Or: ∃p ∈ P such that p is structured (where P is the set of all programs). ■

Universal Conditional Statements
A reasonable argument can be made that the most important form of statement in mathe-
matics is the universal conditional statement:

∀x, if P(x) then Q(x).

Familiarity with statements of this form is essential if you are to learn to speak mathematics.

Example 3.1.8 Writing Universal Conditional Statements Informally

Rewrite the following statement informally, without quantifiers or variables.

∀x ∈ R, if x > 2 then x2 > 4.

Solution If a real number is greater than 2 then its square is greater than 4.

Or: Whenever a real number is greater than 2, its square is greater than 4.

Or: The square of any real number greater than 2 is greater than 4.

Or: The squares of all real numbers greater than 2 are greater than 4. ■

Example 3.1.9 Writing Universal Conditional Statements Formally

Rewrite each of the following statements in the form

∀ , if then .

a. If a real number is an integer, then it is a rational number.
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b. All bytes have eight bits.

c. No fire trucks are green.

Solution

a. ∀ real numbers x , if x is an integer, then x is a rational number.
Or: ∀x ∈ R, if x ∈ Z then x ∈ Q.

b. ∀x , if x is a byte, then x has eight bits.

c. ∀x , if x is a fire truck, then x is not green.

It is common, as in (b) and (c) above, to omit explicit identification of the domain of
predicate variables in universal conditional statements. ■

Careful thought about the meaning of universal conditional statements leads to another
level of understanding for why the truth table for an if-then statement must be defined as
it is. Consider again the statement

∀ real numbers x, if x > 2 then x2 > 4.

Your experience and intuition tell you that this statement is true. But that means that

If x > 2 then x2 > 4

must be true for every single real number x . Consequently, it must be true even for values
of x that make its hypothesis “x > 2” false. In particular, both statements

If 1 > 2 then 12 > 4 and If − 3 > 2 then (−3)2 > 4

must be true. In both cases the hypothesis is false, but in the first case the conclusion
“12 > 4” is false, and in the second case the conclusion “(−3)2 > 4” is true. Hence,
regardless of whether its conclusion is true or false, an if-then statement with a false
hypothesis must be true.

Note also that the definition of valid argument is a universal conditional statement:

∀ combinations of truth values for the component statements,
if the premises are all true then the conclusion is also true.

Equivalent Forms of Universal and Existential Statements
Observe that the two statements “∀ real numbers x , if x is an integer then x is rational”
and “∀ integers x, x is rational” mean the same thing. Both have informal translations
“All integers are rational.” In fact, a statement of the form

∀x ∈ U, if P(x) then Q(x)

can always be rewritten in the form

∀x ∈ D, Q(x)

by narrowing U to be the domain D consisting of all values of the variable x that make
P(x) true. Conversely, a statement of the form

∀x ∈ D, Q(x)

can be rewritten as

∀x, if x is in D then Q(x).
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Example 3.1.10 Equivalent Forms for Universal Statements

Rewrite the following statement in the two forms “∀x , if then ” and
“∀ x , ”: All squares are rectangles.

Solution ∀x , if x is a square then x is a rectangle.

∀ squares x, x is a rectangle. ■

Similarly, a statement of the form “∃x such that p(x) and Q(x)” can be rewritten as
“∃xεD such that Q(x),” where D is the set of all x for which P(x) is true.

Example 3.1.11 Equivalent Forms for Existential Statements

A prime number is an integer greater than 1 whose only positive integer factors are
itself and 1. Consider the statement “There is an integer that is both prime and even.”
Let Prime(n) be “n is prime” and Even(n) be “n is even.” Use the notation Prime(n) and
Even(n) to rewrite this statement in the following two forms:

a. ∃n such that ∧ .

b. ∃ n such that .

Solution

a. ∃n such that Prime(n)∧ Even(n).

b. Two answers: ∃ a prime number n such that Even(n).
∃ an even number n such that Prime(n). ■

Implicit Quantification
Consider the statement

If a number is an integer, then it is a rational number.

As shown earlier, this statement is equivalent to a universal statement. However, it
does not contain the telltale word all or every or any or each. The only clue to indicate
its universal quantification comes from the presence of the indefinite article a. This is an
example of implicit universal quantification.

Existential quantification can also be implicit. For instance, the statement “The num-
ber 24 can be written as a sum of two even integers” can be expressed formally as “∃ even
integers m and n such that 24 = m + n.”

Mathematical writing contains many examples of implicitly quantified statements.
Some occur, as in the first example above, through the presence of the word a or an.
Others occur in cases where the general context of a sentence supplies part of its meaning.
For example, in an algebra course in which the letter x is always used to indicate a real
number, the predicate

If x > 2 then x2 > 4

is interpreted to mean the same as the statement

∀ real numbers x, if x > 2 then x2 > 4.

Mathematicians often use a double arrow to indicate implicit quantification symbolically.
For instance, they might express the above statement as

x > 2 ⇒ x2 > 4.
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• Notation

Let P(x) and Q(x) be predicates and suppose the common domain of x is D.

• The notation P(x) ⇒ Q (x) means that every element in the truth set of P(x)
is in the truth set of Q(x), or, equivalently, ∀x, P(x)→ Q(x).

• The notation P(x) ⇔ Q (x) means that P(x) and Q(x) have identical truth
sets, or, equivalently, ∀x, P(x)↔ Q(x).

Example 3.1.12 Using ⇒ and ⇔
Let

Q(n) be “n is a factor of 8,”

R(n) be “n is a factor of 4,”

S(n) be “n < 5 and n �= 3,”

and suppose the domain of n is Z+, the set of positive integers. Use the⇒ and⇔ symbols
to indicate true relationships among Q(n), R(n), and S(n).

Solution

1. As noted in Example 3.1.2, the truth set of Q(n) is {1, 2, 4, 8} when the domain of
n is Z+. By similar reasoning the truth set of R(n) is {1, 2, 4}. Thus it is true that
every element in the truth set of R(n) is in the truth set of Q(n), or, equivalently, ∀n
in Z+, R(n)→ Q(n). So R(n)⇒ Q(n), or, equivalently

n is a factor of 4 ⇒ n is a factor of 8.

2. The truth set of S(n) is {1, 2, 4}, which is identical to the truth set of R(n), or, equiv-
alently, ∀n in Z+, R(n)↔ S(n). So R(n)⇔ S(n), or, equivalently,

n is a factor of 4 ⇔ n < 5 and n �= 3.

Moreover, since every element in the truth set of S(n) is in the truth set of Q(n), or,
equivalently, ∀n in Z+, S(n)→ Q(n), then S(n)⇒ Q(n), or, equivalently,

n < 5 and n �= 3 ⇒ n is a factor of 8. ■

Some questions of quantification can be quite subtle. For instance, a mathematics text
might contain the following:

a. (x + 1)2 = x2 + 2x + 1. b. Solve 3x − 4 = 5.

Although neither (a) nor (b) contains explicit quantification, the reader is supposed to
understand that the x in (a) is universally quantified whereas the x in (b) is existentially
quantified. When the quantification is made explicit, (a) and (b) become

a. ∀ real numbers x, (x + 1)2 = x2 + 2x + 1.

b. Show (by finding a value) that ∃ a real number x such that 3x − 4 = 5.

The quantification of a statement—whether universal or existential—crucially deter-
mines both how the statement can be applied and what method must be used to establish
its truth. Thus it is important to be alert to the presence of hidden quantifiers when you
read mathematics so that you will interpret statements in a logically correct way.
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Tarski’s World
Tarski’s World is a computer program developed by information scientists Jon Barwise
and John Etchemendy to help teach the principles of logic. It is described in their book
The Language of First-Order Logic, which is accompanied by a CD-Rom containing the
program Tarski’s World, named after the great logician Alfred Tarski.

Example 3.1.13 Investigating Tarski’s World

The program for Tarski’s World provides pictures of blocks of various sizes, shapes, and
colors, which are located on a grid. Shown in Figure 3.1.1 is a picture of an arrangement
of objects in a two-dimensional Tarski world. The configuration can be described using
logical operators and—for the two-dimensional version—notation such as Triangle(x),
meaning “x is a triangle,” Blue(y), meaning “y is blue,” and RightOf(x, y), meaning “x
is to the right of y (but possibly in a different row).” Individual objects can be given names
such as a, b, or c.

Alfred Tarski
(1902–1983)

ba

d

f

i

k

e

h

j

c

g

Figure 3.1.1

Determine the truth or falsity of each of the following statements. The domain for all
variables is the set of objects in the Tarski world shown above.

a. ∀t , Triangle(t)→ Blue(t).

b. ∀x , Blue(x)→ Triangle(x).

c. ∃y such that Square(y)∧ RightOf(d, y).

d. ∃z such that Square(z)∧ Gray(z).

Solution

a. This statement is true: All the triangles are blue.

b. This statement is false. As a counterexample, note that e is blue and it is not a triangle.

c. This statement is true because e and h are both square and d is to their right.

d. This statement is false: All the squares are either blue or black. ■
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Test Yourself
Answers to Test Yourself questions are located at the end of each section.

1. If P(x) is a predicate with domain D, the truth set of P(x)
is denoted . We read these symbols out loud as .

2. Some ways to express the symbol ∀ in words are .

3. Some ways to express the symbol ∃ in words are .

4. A statement of the form ∀x ∈ D, Q(x) is true if, and only
if, Q(x) is for .

5. A statement of the form ∃x ∈ D such that Q(x) is true if,
and only if, Q(x) is for .

Exercise Set 3.1*
1. A menagerie consists of seven brown dogs, two black dogs,

six gray cats, ten black cats, five blue birds, six yellow birds,
and one black bird. Determine which of the following state-
ments are true and which are false.
a. There is an animal in the menagerie that is red.
b. Every animal in the menagerie is a bird or a mammal.
c. Every animal in the menagerie is brown or gray or black.
d. There is an animal in the menagerie that is neither a cat

nor a dog.
e. No animal in the menagerie is blue.
f. There are in the menagerie a dog, a cat, and a bird that

all have the same color.

2. Indicate which of the following statements are true and
which are false. Justify your answers as best as you can.
a. Every integer is a real number.
b. 0 is a positive real number.
c. For all real numbers r,−r is a negative real number.
d. Every real number is an integer.

3. Let P(x) be the predicate “x > 1/x .”
a. Write P(2), P( 12 ), P(−1), P(− 1

2 ), and P(−8), and
indicate which of these statements are true and which
are false.

b. Find the truth set of P(x) if the domain of x is R, the set
of all real numbers.

c. If the domain is the set R+ of all positive real numbers,
what is the truth set of P(x)?

4. Let Q(n) be the predicate “n2 ≤ 30.”
a. Write Q(2), Q(−2), Q(7), and Q(−7), and indicate

which of these statements are true and which are false.
b. Find the truth set of Q(n) if the domain of n is Z, the set

of all integers.
c. If the domain is the set Z+ of all positive integers, what

is the truth set of Q(n)?

5. Let Q(x, y) be the predicate “If x < y then x2 < y2” with
domain for both x and y being the set R of real numbers.
a. Explain why Q(x, y) is false if x = −2 and y = 1.
b. Give values different from those in part (a) for which

Q(x, y) is false.
c. Explain why Q(x, y) is true if x = 3 and y = 8.
d. Give values different from those in part (c) for which

Q(x, y) is true.

6. Let R(m, n) be the predicate “If m is a factor of n2 then m
is a factor of n,” with domain for both m and n being the set
Z of integers.
a. Explain why R(m, n) is false if m = 25 and n = 10.
b. Give values different from those in part (a) for which

R(m, n) is false.
c. Explain why R(m, n) is true if m = 5 and n = 10.
d. Give values different from those in part (c) for which

R(m, n) is true.

7. Find the truth set of each predicate.
a. predicate: 6/d is an integer, domain: Z
b. predicate: 6/d is an integer, domain: Z+

c. predicate: 1 ≤ x2 ≤ 4, domain: R
d. predicate: 1 ≤ x2 ≤ 4, domain: Z

8. Let B(x) be “−10 < x < 10.” Find the truth set of B(x) for
each of the following domains.
a. Z b. Z+ c. The set of all even integers

Find counterexamples to show that the statements in 9–12 are
false.

9. ∀x ∈ R, x > 1/x .

10. ∀a ∈ Z, (a − 1)/a is not an integer.

11. ∀ positive integers m and n,m ·n ≥ m + n.

12. ∀ real numbers x and y,
√
x + y = √x +√y.

13. Consider the following statement:

∀ basketball players x, x is tall.

Which of the following are equivalent ways of expressing
this statement?
a. Every basketball player is tall.
b. Among all the basketball players, some are tall.
c. Some of all the tall people are basketball players.
d. Anyone who is tall is a basketball player.
e. All people who are basketball players are tall.
f. Anyone who is a basketball player is a tall person.

∗For exercises with blue numbers or letters, solutions are given in Appendix B. The symbol H indicates that only a hint or a partial
solution is given. The symbol ✶ signals that an exercise is more challenging than usual.
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14. Consider the following statement:

∃x ∈ R such that x2 = 2.

Which of the following are equivalent ways of expressing
this statement?
a. The square of each real number is 2.
b. Some real numbers have square 2.
c. The number x has square 2, for some real number x .
d. If x is a real number, then x2 = 2.
e. Some real number has square 2.
f. There is at least one real number whose square is 2.

15.H Rewrite the following statements informally in at least two
different ways without using variables or quantifiers.
a. ∀ rectangles x, x is a quadrilateral.
b. ∃ a set A such that A has 16 subsets.

16. Rewrite each of the following statements in the form
“∀ x, .”
a. All dinosaurs are extinct.
b. Every real number is positive, negative, or zero.
c. No irrational numbers are integers.
d. No logicians are lazy.
e. The number 2,147,581,953 is not equal to the square of

any integer.
f. The number −1 is not equal to the square of any real

number.

17. Rewrite each of the following in the form “∃ x such
that .”
a. Some exercises have answers.
b. Some real numbers are rational.

18. Let D be the set of all students at your school, and let M(s)
be “s is a math major,” let C(s) be “s is a computer sci-
ence student,” and let E(s) be “s is an engineering student.”
Express each of the following statements using quantifiers,
variables, and the predicates M(s),C(s), and E(s).
a. There is an engineering student who is a math major.
b. Every computer science student is an engineering stu-

dent.
c. No computer science students are engineering students.
d. Some computer science students are also math majors.
e. Some computer science students are engineering stu-

dents and some are not.

19. Consider the following statement:

∀ integers n, if n2 is even then n is even.

Which of the following are equivalent ways of expressing
this statement?
a. All integers have even squares and are even.
b. Given any integer whose square is even, that integer is

itself even.
c. For all integers, there are some whose square is even.
d. Any integer with an even square is even.
e. If the square of an integer is even, then that integer is

even.
f. All even integers have even squares.

20.H Rewrite the following statement informally in at least two
different ways without using variables or the symbol ∀ or
the words “for all.”

∀ real numbers x, if x is positive, then
the square root of x is positive.

21. Rewrite the following statements so that the quantifier trails
the rest of the sentence.
a. For any graph G, the total degree of G is even.
b. For any isosceles triangle T , the base angles of T are

equal.
c. There exists a prime number p such that p is even.
d. There exists a continuous function f such that f is not

differentiable.

22. Rewrite each of the following statements in the form
“∀ x , if then .”
a. All Java programs have at least 5 lines.
b. Any valid argument with true premises has a true con-

clusion.

23. Rewrite each of the following statements in the two forms
“∀x , if then ” and “∀ x , ”
(without an if-then).
a. All equilateral triangles are isosceles.
b. Every computer science student needs to take data struc-

tures.

24. Rewrite the following statements in the two forms
“∃ x such that ” and “∃x such that
and .”
a. Some hatters are mad. b. Some questions are easy.

25. The statement “The square of any rational number is ratio-
nal” can be rewritten formally as “For all rational numbers
x , x2 is rational” or as “For all x , if x is rational then x2

is rational.” Rewrite each of the following statements in the
two forms “∀ x , ” and “∀x , if , then

” or in the two forms “∀ x and y, ”
and “∀x and y, if , then .”
a. The reciprocal of any nonzero fraction is a fraction.
b. The derivative of any polynomial function is a polyno-

mial function.
c. The sum of the angles of any triangle is 180◦.
d. The negative of any irrational number is irrational.
e. The sum of any two even integers is even.
f. The product of any two fractions is a fraction.

26. Consider the statement “All integers are rational numbers
but some rational numbers are not integers.”
a. Write this statement in the form “∀x , if then

, but ∃ x such that .”
b. Let Ratl(x) be “x is a rational number” and Int(x) be “x

is an integer.” Write the given statement formally using
only the symbols Ratl(x), Int(x),∀, ∃,∧,∨,∼, and→.

27. Refer to the picture of Tarski’s world given in Example
3.1.13. Let Above(x, y) mean that x is above y (but pos-
sibly in a different column). Determine the truth or falsity
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of each of the following statements. Give reasons for your
answers.
a. ∀u, Circle(u)→ Gray(u).
b. ∀u, Gray(u)→ Circle(u).
c. ∃y such that Square(y) ∧ Above(y, d).
d. ∃z such that Triangle(z) ∧ Above( f, z).

In 28–30, rewrite each statement without using quantifiers or
variables. Indicate which are true and which are false, and jus-
tify your answers as best as you can.

28. Let the domain of x be the set D of objects discussed
in mathematics courses, and let Real(x) be “x is a real
number,” Pos(x) be “x is a positive real number,” Neg(x)
be “x is a negative real number,” and Int(x) be “x is an
integer.”
a. Pos(0)
b. ∀x , Real(x) ∧ Neg(x) → Pos(−x).
c. ∀x , Int(x)→ Real(x).
d. ∃x such that Real(x) ∧ ∼Int(x).

29. Let the domain of x be the set of geometric figures in the
plane, and let Square(x) be “x is a square” and Rect(x) be
“x is a rectangle.”
a. ∃x such that Rect(x) ∧ Square(x).
b. ∃x such that Rect(x) ∧ ∼Square(x).
c. ∀x , Square(x)→ Rect(x).

30. Let the domain of x be the set Z of integers, and let Odd(x)
be “x is odd,” Prime(x) be “x is prime,” and Square(x) be

“x is a perfect square.” (An integer n is said to be a perfect
square if, and only if, it equals the square of some integer.
For example, 25 is a perfect square because 25 = 52.)
a. ∃x such that Prime(x) ∧ ∼Odd(x).
b. ∀x , Prime(x)→∼Square(x).
c. ∃x such that Odd(x) ∧ Square(x).

31.H In any mathematics or computer science text other than this
book, find an example of a statement that is universal but is
implicitly quantified. Copy the statement as it appears and
rewrite it making the quantification explicit. Give a com-
plete citation for your example, including title, author, pub-
lisher, year, and page number.

32. Let R be the domain of the predicate variable x . Which of
the following are true and which are false? Give counter
examples for the statements that are false.
a. x > 2⇒ x > 1
b. x > 2⇒ x2 > 4
c. x2 > 4⇒ x > 2
d. x2 > 4⇔ |x | > 2

33. Let R be the domain of the predicate variables a, b, c, and
d. Which of the following are true and which are false?
Give counterexamples for the statements that are false.
a. a > 0 and b > 0⇒ ab > 0
b. a < 0 and b < 0⇒ ab < 0
c. ab = 0⇒ a = 0 or b = 0
d. a < b and c < d ⇒ ac < bd

Answers for Test Yourself
1. {x ∈ D | P(x)}; the set of all x in D such that P(x) 2. Possible answers: for all, for every, for any, for each, for arbitrary, given
any 3. Possible answers: there exists, there exist, there exists at least one, for some, for at least one, we can find a 4. true; every x
in D (Alternative answers: all x in D; each x in D) 5. true; at least one x in D (Alternative answer: some x in D)

3.2 Predicates and Quantified Statements II
TOUCHSTONE: Stand you both forth now: stroke your chins, and swear by your
beards that I am a knave.
CELIA: By our beards—if we had them—thou art.
TOUCHSTONE: By my knavery—if I had it—then I were; but if you swear by that that
is not, you are not forsworn. —William Shakespeare, As You Like It

This section continues the discussion of predicates and quantified statements begun in
Section 3.1. It contains the rules for negating quantified statements; an exploration of the
relation among ∀, ∃,∧, and∨; an introduction to the concept of vacuous truth of universal
statements; examples of variants of universal conditional statements; and an extension of
the meaning of necessary, sufficient, and only if to quantified statements.
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Negations of Quantified Statements
Consider the statement “All mathematicians wear glasses.” Many people would say that
its negation is “No mathematicians wear glasses,” but if even one mathematician does not
wear glasses, then the sweeping statement that all mathematicians wear glasses is false.
So a correct negation is “There is at least one mathematician who does not wear glasses.”

The general form of the negation of a universal statement follows immediately from
the definitions of negation and of the truth values for universal and existential statements.

Theorem 3.2.1 Negation of a Universal Statement

The negation of a statement of the form

∀x in D, Q(x)

is logically equivalent to a statement of the form

∃x in D such that ∼Q(x).

Symbolically, ∼(∀x ∈ D, Q(x)) ≡ ∃x ∈ D such that ∼Q(x).

Thus

The negation of a universal statement (“all are”) is logically equivalent to an
existential statement (“some are not” or “there is at least one that is not”).

Note that when we speak of logical equivalence for quantified statements, we mean
that the statements always have identical truth values no matter what predicates are sub-
stituted for the predicate symbols and no matter what sets are used for the domains of the
predicate variables.

Now consider the statement “Some snowflakes are the same.” What is its negation?
For this statement to be false means that not a single snowflake is the same as any other.
In other words, “No snowflakes are the same,” or “All snowflakes are different.”

The general form for the negation of an existential statement follows immediately
from the definitions of negation and of the truth values for existential and universal
statements.

Theorem 3.2.2 Negation of an Existential Statement

The negation of a statement of the form

∃x in D such that Q(x)

is logically equivalent to a statement of the form

∀x in D,∼Q(x).

Symbolically, ∼(∃x ∈ D such that Q(x)) ≡ ∀x ∈ D,∼Q(x).

Thus

The negation of an existential statement (“some are”) is logically
equivalent to a universal statement (“none are” or “all are not”).
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Example 3.2.1 Negating Quantified Statements

Write formal negations for the following statements:

a. ∀ primes p, p is odd.

b. ∃ a triangle T such that the sum of the angles of T equals 200◦.

Solution

a. By applying the rule for the negation of a ∀ statement, you can see that the answer is

∃ a prime p such that p is not odd.

b. By applying the rule for the negation of a ∃ statement, you can see that the answer is

∀ triangles T, the sum of the angles of T does not equal 200◦. ■

You need to exercise special care to avoid mistakes when writing negations of state-
ments that are given informally. One way to avoid error is to rewrite the statement for-
mally and take the negation using the formal rule.

Example 3.2.2 More Negations

Rewrite the following statement formally. Then write formal and informal negations.

No politicians are honest.

Solution Formal version: ∀ politicians x, x is not honest.

Formal negation: ∃ a politician x such that x is honest.

Informal negation: Some politicians are honest. ■

Another way to avoid error when taking negations of statements that are given in
informal language is to ask yourself, “What exactlywould it mean for the given statement
to be false?What statement, if true, would be equivalent to saying that the given statement
is false?”

Example 3.2.3 Still More Negations

Write informal negations for the following statements:

a. All computer programs are finite.

b. Some computer hackers are over 40.

c. The number 1,357 is divisible by some integer between 1 and 37.

Solution

a. What exactly would it mean for this statement to be false? The statement asserts that
all computer programs satisfy a certain property. So for it to be false, there would have
to be at least one computer program that does not satisfy the property. Thus the answer
is

There is a computer program that is not finite.

Or: Some computer programs are infinite.

b. This statement is equivalent to saying that there is at least one computer hacker with
a certain property. So for it to be false, not a single computer hacker can have that
property. Thus the negation is

No computer hackers are over 40.

Or: All computer hackers are 40 or under.
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c. This statement has a trailing quantifier. Written formally it becomes:Note Which is true: the
statement in part (c) or its
negation? Is 1,357
divisible by some integer
between 1 and 37? Or is
1,357 not divisible by any
integer between 1 and 37?

∃ an integer n between 1 and 37 such that 1,357 is divisible by n.

Its negation is therefore

∀ integers n between 1 and 37; 1,357 is not divisible by n.

An informal version of the negation is

The number 1,357 is not divisible by any integer between 1 and 37. ■

!
Caution! Just inserting
the word not to negate a
quantified statement can
result in a statement that
is ambiguous.

Informal negations of many universal statements can be constructed simply by insert-
ing the word not or the words do not at an appropriate place. However, the resulting state-
ments may be ambiguous. For example, a possible negation of “All mathematicians wear
glasses” is “All mathematicians do not wear glasses.” The problem is that this sentence
has two meanings. With the proper verbal stress on the word not, it could be interpreted
as the logical negation. (What! You say that all mathematicians wear glasses? Nonsense!
All mathematicians do not wear glasses.) On the other hand, stated in a flat tone of voice
(try it!), it would mean that all mathematicians are nonwearers of glasses; that is, not a
single mathematician wears glasses. This is a much stronger statement than the logical
negation: It implies the negation but is not equivalent to it.

Negations of Universal Conditional Statements
Negations of universal conditional statements are of special importance in mathematics.
The form of such negations can be derived from facts that have already been established.

By definition of the negation of a for all statement,

∼(∀x, P(x)→ Q(x)) ≡ ∃x such that ∼(P(x)→ Q(x)). 3.2.1

But the negation of an if-then statement is logically equivalent to an and statement. More
precisely,

∼(P(x)→ Q(x)) ≡ P(x) ∧ ∼Q(x). 3.2.2

Substituting (3.2.2) into (3.2.1) gives

∼(∀x, P(x)→ Q(x)) ≡ ∃x such that (P(x)∧ ∼Q(x)).

Written less symbolically, this becomes

Negation of a Universal Conditional Statement

∼(∀x, if P(x) then Q(x)) ≡ ∃x such that P(x) and ∼Q(x).

Example 3.2.4 Negating Universal Conditional Statements

Write a formal negation for statement (a) and an informal negation for statement (b).

a. ∀ people p, if p is blond then p has blue eyes.

b. If a computer program has more than 100,000 lines, then it contains a bug.

Solution

a. ∃ a person p such that p is blond and p does not have blue eyes.

b. There is at least one computer program that has more than 100,000 lines and does not
contain a bug. ■
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The Relation among ∀, ∃, ∧, and ∨
The negation of a for all statement is a there exists statement, and the negation of a there
exists statement is a for all statement. These facts are analogous to De Morgan’s laws,
which state that the negation of an and statement is an or statement and that the nega-
tion of an or statement is an and statement. This similarity is not accidental. In a sense,
universal statements are generalizations of and statements, and existential statements are
generalizations of or statements.

If Q(x) is a predicate and the domain D of x is the set {x1, x2, . . . , xn}, then the
statements

∀x ∈ D, Q(x)

and Q(x1) ∧ Q(x2) ∧ · · · ∧ Q(xn)

are logically equivalent. For example, let Q(x) be “x ·x = x” and suppose D = {0, 1}.
Then

∀x ∈ D, Q(x)

can be rewritten as ∀ binary digits x, x ·x = x .

This is equivalent to

0 ·0 = 0 and 1 ·1 = 1,

which can be rewritten in symbols as

Q(0) ∧ Q(1).

Similarly, if Q(x) is a predicate and D = {x1, x2, . . . , xn}, then the statements

∃x ∈ D such that Q(x)

and Q(x1) ∨ Q(x2) ∨ · · · ∨ Q(xn)

are logically equivalent. For example, let Q(x) be “x + x = x” and suppose D = {0, 1}.
Then

∃x ∈ D such that Q(x)

can be rewritten as ∃ a binary digit x such that x + x = x .

This is equivalent to

0+ 0 = 0 or 1+ 1 = 1,

which can be rewritten in symbols as

Q(0) ∨ Q(1).

Vacuous Truth of Universal Statements
Suppose a bowl sits on a table and next to the bowl is a pile of five blue and five gray
balls, any of which may be placed in the bowl. If three blue balls and one gray ball are
placed in the bowl, as shown in Figure 3.2.1(a), the statement “All the balls in the bowl
are blue” would be false (since one of the balls in the bowl is gray).

Now suppose that no balls at all are placed in the bowl, as shown in Figure 3.2.1(b).
Consider the statement

All the balls in the bowl are blue.

Is this statement true or false? The statement is false if, and only if, its negation is true.
And its negation is

There exists a ball in the bowl that is not blue.
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But the only way this negation can be true is for there actually to be a nonblue ball in
the bowl. And there is not! Hence the negation is false, and so the statement is true “by
default.”

(a) (b)

Figure 3.2.1

In general, a statement of the form

∀x in D, if P(x) then Q(x)

is called vacuously true or true by default if, and only if, P(x) is false for every x in D.
By the way, in ordinary language the words in general mean that something is usu-

ally, but not always, the case. (In general, I take the bus home, but today I walked.) In
mathematics, the words in general are used quite differently. When they occur just after
discussion of a particular example (as in the preceding paragraph), they are a signal that
what is to follow is a generalization of some aspect of the example that always holds true.

Variants of Universal Conditional Statements
Recall from Section 2.2 that a conditional statement has a contrapositive, a converse,
and an inverse. The definitions of these terms can be extended to universal conditional
statements.
• Definition

Consider a statement of the form: ∀x ∈ D, if P(x) then Q(x).

1. Its contrapositive is the statement: ∀x ∈ D, if ∼Q(x) then ∼P(x).

2. Its converse is the statement: ∀x ∈ D, if Q(x) then P(x).

3. Its inverse is the statement: ∀x ∈ D, if ∼P(x) then ∼Q(x).

Example 3.2.5 Contrapositive, Converse, and Inverse of a Universal Conditional Statement

Write a formal and an informal contrapositive, converse, and inverse for the following
statement:

If a real number is greater than 2, then its square is greater than 4.

Solution The formal version of this statement is ∀x ∈ R, if x > 2 then x2 > 4.
Contrapositive: ∀x ∈ R, if x2 ≤ 4 then x ≤ 2.

Or: If the square of a real number is less than or equal to 4,
then the number is less than or equal to 2.

Converse: ∀x ∈ R, if x2 > 4 then x > 2.
Or: If the square of a real number is greater than 4, then the
number is greater than 2.

Inverse: ∀x ∈ R, if x ≤ 2 then x2 ≤ 4.
Or: If a real number is less than or equal to 2, then the square
of the number is less than or equal to 4.

Note that in solving this example, we have used the equivalence of “x ≯ a” and
“x ≤ a” for all real numbers x and a. (See page 33.) ■
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In Section 2.2 we showed that a conditional statement is logically equivalent to its
contrapositive and that it is not logically equivalent to either its converse or its inverse.
The following discussion shows that these facts generalize to the case of universal condi-
tional statements and their contrapositives, converses, and inverses.

Let P(x) and Q(x) be any predicates, let D be the domain of x , and consider the
statement

∀x ∈ D, if P(x) then Q(x)

and its contrapositive

∀x ∈ D, if ∼Q(x) then ∼P(x).

Any particular x in D that makes “if P(x) then Q(x)” true also makes “if ∼Q(x) then
∼P(x)” true (by the logical equivalence between p→ q and ∼q →∼p). It follows that
the sentence “If P(x) then Q(x)” is true for all x in D if, and only if, the sentence “If
∼Q(x) then ∼P(x)” is true for all x in D.

Thus we write the following and say that a universal conditional statement is logically
equivalent to its contrapositive:

∀x ∈ D, if P(x) then Q(x) ≡ ∀x ∈ D, if ∼Q(x) then ∼P(x)

In Example 3.2.5 we noted that the statement

∀x ∈ R, if x > 2 then x2 > 4

has the converse ∀x ∈ R, if x2 > 4 then x > 2.

Observe that the statement is true whereas its converse is false (since, for instance,
(−3)2 = 9 > 4 but −3 ≯ 2). This shows that a universal conditional statement may have
a different truth value from its converse. Hence a universal conditional statement is not
logically equivalent to its converse. This is written in symbols as follows:

∀x ∈ D, if P(x) then Q(x) ≡/ ∀x ∈ D, if Q(x) then P(x).

In the exercises at the end of this section, you are asked to show similarly that a universal
conditional statement is not logically equivalent to its inverse.

∀x ∈ D, if P(x) then Q(x) ≡/ ∀x ∈ D, if ∼P(x) then ∼Q(x).

Necessary and Sufficient Conditions, Only If
The definitions of necessary, sufficient, and only if can also be extended to apply to uni-
versal conditional statements.

• Definition

• “∀x, r(x) is a sufficient condition for s(x)” means “∀x , if r(x) then s(x).”
• “∀x, r(x) is a necessary condition for s(x)” means “∀x , if ∼r(x) then ∼s(x)”
or, equivalently, “∀x , if s(x) then r(x).”

• “∀x, r(x) only if s(x)” means “∀x , if ∼s(x) then ∼r(x)” or, equivalently, “∀x ,
if r(x) then s(x).”
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Example 3.2.6 Necessary and Sufficient Conditions

Rewrite the following statements as quantified conditional statements. Do not use the
word necessary or sufficient.

a. Squareness is a sufficient condition for rectangularity.

b. Being at least 35 years old is a necessary condition for being President of the United
States.

Solution

a. A formal version of the statement is

∀x , if x is a square, then x is a rectangle.

Or, in informal language:

If a figure is a square, then it is a rectangle.

b. Using formal language, you could write the answer as

∀ people x, if x is younger than 35, then x
cannot be President of the United States.

Or, by the equivalence between a statement and its contrapositive:

∀ people x, if x is President of the United States,
then x is at least 35 years old. ■

Example 3.2.7 Only If

Rewrite the following as a universal conditional statement:

A product of two numbers is 0 only if one of the numbers is 0.

Solution Using informal language, you could write the answer as

If neither of two numbers is 0, then the product of the numbers is not 0.

Or, by the equivalence between a statement and its contrapositive,

If a product of two numbers is 0, then one of the numbers is 0. ■

Test Yourself
1. A negation for “All R have property S” is “There is R

that .”

2. A negation for “Some R have property S” is “ .”

3. A negation for “For all x , if x has property P then x has
property Q” is “ .”

4. The converse of “For all x , if x has property P then x has
property Q” is “ .”

5. The contrapositive of “For all x , if x has property P then x
has property Q” is “ .”

6. The inverse of “For all x , if x has property P then x has
property Q” is “ .”

Exercise Set 3.2
1. Which of the following is a negation for “All discrete math-

ematics students are athletic”? More than one answer may
be correct.
a. There is a discrete mathematics student who is nonath-

letic.
b. All discrete mathematics students are nonathletic.

c. There is an athletic person who is a discrete mathematics
student.

d. No discrete mathematics students are athletic.
e. Some discrete mathematics students are nonathletic.
f. No athletic people are discrete mathematics students.
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2. Which of the following is a negation for “All dogs are
loyal”? More than one answer may be correct.
a. All dogs are disloyal. b. No dogs are loyal.
c. Some dogs are disloyal. d. Some dogs are loyal.
e. There is a disloyal animal that is not a dog.
f. There is a dog that is disloyal.
g. No animals that are not dogs are loyal.
h. Some animals that are not dogs are loyal.

3. Write a formal negation for each of the following state-
ments:
a. ∀ fish x, x has gills.
b. ∀ computers c, c has a CPU.
c. ∃ a movie m such that m is over 6 hours long.
d. ∃ a band b such that b has won at least 10 Grammy

awards.

4. Write an informal negation for each of the following state-
ments. Be careful to avoid negations that are ambiguous.
a. All dogs are friendly.
b. All people are happy.
c. Some suspicions were substantiated.
d. Some estimates are accurate.

5. Write a negation for each of the following statements.
a. Any valid argument has a true conclusion.
b. Every real number is positive, negative, or zero.

6. Write a negation for each of the following statements.
a. Sets A and B do not have any points in common.
b. Towns P and Q are not connected by any road on the

map.

7. Informal language is actually more complex than formal
language. For instance, the sentence “There are no orders
from store A for item B” contains the words there are. Is
the statement existential? Write an informal negation for
the statement, and then write the statement formally using
quantifiers and variables.

8. Consider the statement “There are no simple solutions to
life’s problems.” Write an informal negation for the state-
ment, and then write the statement formally using quanti-
fiers and variables.

Write a negation for each statement in 9 and 10.

9. ∀ real numbers x , if x > 3 then x2 > 9.

10. ∀ computer programs P , if P compiles without error mes-
sages, then P is correct.

In each of 11–14 determine whether the proposed negation is
correct. If it is not, write a correct negation.

11. Statement: The sum of any two irrational numbers
is irrational.

Proposed negation: The sum of any two irrational numbers
is rational.

12. Statement: The product of any irrational number
and any rational number is irrational.

Proposed negation: The product of any irrational number
and any rational number is rational.

13. Statement: For all integers n, if n2 is even then n is
even.

Proposed negation: For all integers n, if n2 is even then n is
not even.

14. Statement: For all real numbers x1 and x2, if
x21 = x22 then x1 = x2.

Proposed negation: For all real numbers x1 and x2, if
x21 = x22 then x1 �= x2.

15. Let D = {−48, −14, −8, 0, 1, 3, 16, 23, 26, 32, 36}.
Determine which of the following statements are true and
which are false. Provide counterexamples for those state-
ments that are false.
a. ∀x ∈ D, if x is odd then x > 0.
b. ∀x ∈ D, if x is less than 0 then x is even.
c. ∀x ∈ D, if x is even then x ≤ 0.
d. ∀x ∈ D, if the ones digit of x is 2, then the tens digit is

3 or 4.
e. ∀x ∈ D, if the ones digit of x is 6, then the tens digit is

1 or 2.

In 16–23, write a negation for each statement.

16. ∀ real numbers x , if x2 ≥ 1 then x > 0.

17. ∀ integers d, if 6/d is an integer then d = 3.

18. ∀x ∈ R, if x(x + 1) > 0 then x > 0 or x < −1.
19. ∀n ∈ Z, if n is prime then n is odd or n = 2.

20. ∀ integers a, b and c, if a − b is even and b − c is even,
then a − c is even.

21. ∀ integers n, if n is divisible by 6, then n is divisible by 2
and n is divisible by 3.

22. If the square of an integer is odd, then the integer is odd.

23. If a function is differentiable then it is continuous.

24. Rewrite the statements in each pair in if-then form and indi-
cate the logical relationship between them.

a. All the children in Tom’s family are female.
All the females in Tom’s family are children.

b. All the integers that are greater than 5 and end in 1, 3,
7, or 9 are prime.
All the integers that are greater than 5 and are prime
end in 1, 3, 7, or 9.

25. Each of the following statements is true. In each case write
the converse of the statement, and give a counterexample
showing that the converse is false.

a. If n is any prime number that is greater than 2, then
n + 1 is even.

b. If m is any odd integer, then 2m is even.
c. If two circles intersect in exactly two points, then they

do not have a common center.
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In 26–33, for each statement in the referenced exercise write the
converse, inverse, and contrapositive. Indicate as best as you can
which among the statement, its converse, its inverse, and its con-
trapositive are true and which are false. Give a counterexample
for each that is false.

26. Exercise 16 27. Exercise 17

28. Exercise 18 29. Exercise 19

30. Exercise 20 31. Exercise 21

32. Exercise 22 33. Exercise 23

34. Write the contrapositive for each of the following state-
ments.
a. If n is prime, then n is not divisible by any prime num-

ber between 1 and
√
n strictly. (Assume that n is a fixed

integer that is greater than 1.)
b. If A and B do not have any elements in common, then

they are disjoint. (Assume that A and B are fixed sets.)

35. Give an example to show that a universal conditional state-
ment is not logically equivalent to its inverse.

36.✶ If P(x) is a predicate and the domain of x is the set of
all real numbers, let R be “∀x ∈ Z, P(x),” let S be “∀x ∈
Q, P(x),” and let T be “∀x ∈ R, P(x).”
a. Find a definition for P(x) (but do not use “x ∈ Z”) so

that R is true and both S and T are false.
b. Find a definition for P(x) (but do not use “x ∈ Q”) so

that both R and S are true and T is false.

37. Consider the following sequence of digits: 0204. A person
claims that all the 1’s in the sequence are to the left of all the
0’s in the sequence. Is this true? Justify your answer. (Hint:
Write the claim formally and write a formal negation for it.
Is the negation true or false?)

38. True or false? All occurrences of the letter u in Discrete
Mathematics are lowercase. Justify your answer.

Rewrite each statement of 39–42 in if-then form.

39. Earning a grade of C− in this course is a sufficient condi-
tion for it to count toward graduation.

40. Being divisible by 8 is a sufficient condition for being divis-
ible by 4.

41. Being on time each day is a necessary condition for keeping
this job.

42. Passing a comprehensive exam is a necessary condition for
obtaining a master’s degree.

Use the facts that the negation of a ∀ statement is a ∃ statement
and that the negation of an if-then statement is an and statement
to rewrite each of the statements 43–46 without using the word
necessary or sufficient.

43. Being divisible by 8 is not a necessary condition for being
divisible by 4.

44. Having a large income is not a necessary condition for a
person to be happy.

45. Having a large income is not a sufficient condition for a
person to be happy.

46. Being a polynomial is not a sufficient condition for a func-
tion to have a real root.

47. The computer scientists Richard Conway and David Gries
once wrote:

The absence of error messages during translation
of a computer program is only a necessary and
not a sufficient condition for reasonable [program]
correctness.

Rewrite this statement without using the words necessary
or sufficient.

48. A frequent-flyer club brochure states, “You may select
among carriers only if they offer the same lowest fare.”
Assuming that “only if” has its formal, logical meaning,
does this statement guarantee that if two carriers offer
the same lowest fare, the customer will be free to choose
between them? Explain.

Answers for Test Yourself
1. some (Alternative answers: at least one; an); does not have property S. 2. No R have property S. 3. There is an x such that x
has property P and x does not have property Q. 4. For all x , if x has property Q then x has property P . 5. For all x , if x does not
have property Q then x does not have property P . 6. For all x , if x does not have property P then x does not have property Q.

3.3 Statements with Multiple Quantifiers
It is not enough to have a good mind. The main thing is to use it well. —René Descartes

Imagine you are visiting a factory that manufactures computer microchips. The factory
guide tells you,

There is a person supervising every detail of the production process.
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118 Chapter 3 The Logic of Quantified Statements

Note that this statement contains informal versions of both the existential quantifier there
is and the universal quantifier every. Which of the following best describes its meaning?

• There is one single person who supervises all the details of the production process.
• For any particular production detail, there is a person who supervises that detail,
but there might be different supervisors for different details.

As it happens, either interpretation could be what the guide meant. (Reread the sentence
to be sure you agree!) Taken by itself, his statement is genuinely ambiguous, although
other things he may have said (the context for his statement) might have clarified it. In
our ordinary lives, we deal with this kind of ambiguity all the time. Usually context helps
resolve it, but sometimes we simply misunderstand each other.

In mathematics, formal logic, and computer science, by contrast, it is essential that we
all interpret statements in exactly the same way. For instance, the initial stage of software
development typically involves careful discussion between a programmer analyst and
a client to turn vague descriptions of what the client wants into unambiguous program
specifications that client and programmer can mutually agree on.

Because many important technical statements contain both ∃ and ∀, a convention has
developed for interpreting them uniformly. When a statement contains more than one
quantifier, we imagine the actions suggested by the quantifiers as being performed in the
order in which the quantifiers occur. For instance, consider a statement of the form

∀x in set D, ∃y in set E such that x and y satisfy property P(x, y).

To show that such a statement is true, you must be able to meet the following challenge:

• Imagine that someone is allowed to choose any element whatsoever from the set
D, and imagine that the person gives you that element. Call it x .

• The challenge for you is to find an element y in E so that the person’s x and your
y, taken together, satisfy property P(x, y).

Note that because you do not have to specify the y until after the other person has
specified the x, you are allowed to find a different value of y for each different x you
are given.

Example 3.3.1 Truth of a ∀∃ Statement in a Tarski World

Consider the Tarski world shown in Figure 3.3.1.

a

b c

f

i

e g

h

j

d

Figure 3.3.1

Show that the following statement is true in this world:

For all triangles x , there is a square y such that x and y have the same color.
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Solution The statement says that no matter which triangle someone gives you, you will be
able to find a square of the same color. There are only three triangles, d, f , and i . The
following table shows that for each of these triangles a square of the same color can be
found.

Given x = choose y = and check that y is the same color as x.

d e yes �
f or i h or g yes � ■

Now consider a statement containing both ∀ and ∃, where the ∃ comes before the ∀:
∃ an x in D such that ∀y in E, x and y satisfy property P(x, y).

To show that a statement of this form is true:

You must find one single element (call it x) in D with the following property:

• After you have found your x , someone is allowed to choose any element whatsoever
from E . The person challenges you by giving you that element. Call it y.

• Your job is to show that your x together with the person’s y satisfy property P(x, y).

Note that your x has to work for any y the person gives you; you are not allowed to
change your x once you have specified it initially.

Example 3.3.2 Truth of a ∃∀ Statement in a Tarski World

Consider again the Tarski world in Figure 3.3.1. Show that the following statement is
true: There is a triangle x such that for all circles y, x is to the right of y.

Solution The statement says that you can find a triangle that is to the right of all the circles.
Actually, either d or i would work for all of the three circles, a, b, and c, as you can see
in the following table.

Choose x = Then, given y = check that x is to the right of y.

d or i a yes �
b yes �
c yes � ■

Here is a summary of the convention for interpreting statements with two different
quantifiers:

Interpreting Statements with Two Different Quantifiers

If you want to establish the truth of a statement of the form

∀x in D, ∃y in E such that P(x, y)

your challenge is to allow someone else to pick whatever element x in D they wish
and then you must find an element y in E that “works” for that particular x .

If you want to establish the truth of a statement of the form

∃x in D such that ∀y in E, P(x, y)

your job is to find one particular x in D that will “work” no matter what y in E
anyone might choose to challenge you with.
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120 Chapter 3 The Logic of Quantified Statements

Example 3.3.3 Interpreting Multiply-Quantified∗ Statements

A college cafeteria line has four stations: salads, main courses, desserts, and beverages.
The salad station offers a choice of green salad or fruit salad; the main course station
offers spaghetti or fish; the dessert station offers pie or cake; and the beverage station
offers milk, soda, or coffee. Three students, Uta, Tim, and Yuen, go through the line and
make the following choices:

Uta: green salad, spaghetti, pie, milk

Tim: fruit salad, fish, pie, cake, milk, coffee

Yuen: spaghetti, fish, pie, soda

These choices are illustrated in Figure 3.3.2.

green salad
fruit salad

Salads

spaghetti
fish

Main courses

pie
cake

Desserts

milk
soda
coffee

Beverages

Uta

Tim

Yuen

Figure 3.3.2

Write each of following statements informally and find its truth value.

a. ∃ an item I such that ∀ students S, S chose I .

b. ∃ a student S such that ∀ items I, S chose I .

c. ∃ a student S such that ∀ stations Z , ∃ an item I in Z such that S chose I .

d. ∀ students S and ∀ stations Z , ∃ an item I in Z such that S chose I .

Solution

a. There is an item that was chosen by every student. This is true; every student chose pie.

b. There is a student who chose every available item. This is false; no student chose all
nine items.

c. There is a student who chose at least one item from every station. This is true; both
Uta and Tim chose at least one item from every station.

d. Every student chose at least one item from every station. This is false; Yuen did not
choose a salad. ■

∗The term “multiply-quantified” is pronounced MUL-ti-plee QUAN-ti-fied. A multiply-quantified
statement is a statement that contains more than one quantifier.
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Translating from Informal to Formal Language
Most problems are stated in informal language, but solving them often requires translating
them into more formal terms.

Example 3.3.4 Translating Multiply-Quantified Statements from Informal
to Formal Language

The reciprocal of a real number a is a real number b such that ab = 1. The following
two statements are true. Rewrite them formally using quantifiers and variables:

a. Every nonzero real number has a reciprocal.

b. There is a real number with no reciprocal. The number 0 has no reciprocal.

Solution

a. ∀ nonzero real numbers u, ∃ a real number v such that uv = 1.

b. ∃ a real number c such that ∀ real numbers d, cd �= 1. ■

Example 3.3.5 There Is a Smallest Positive Integer

Recall that every integer is a real number and that real numbers are of three types: posi-
tive, negative, and zero (zero being neither positive nor negative). Consider the statement
“There is a smallest positive integer.” Write this statement formally using both symbols
∃ and ∀.

Solution To say that there is a smallest positive integer means that there is a positive integer
m with the property that no matter what positive integer n a person might pick, m will be
less than or equal to n:

∃ a positive integerm such that ∀ positive integers n,m ≤ n.

Note that this statement is true because 1 is a positive integer that is less than or equal to
every positive integer.

–3–4–5 –2 –1 0 1 2 3 4 5

positive integers

■

Example 3.3.6 There Is No Smallest Positive Real Number

Imagine any positive real number x on the real number line. These numbers correspond
to all the points to the right of 0. Observe that no matter how small x is, the number x/2
will be both positive and less than x .∗

–2 –1 0 1 2x

x
2

∗This can be deduced from the properties of the real numbers given in Appendix A. Because x is
positive, 0 < x . Add x to both sides to obtain x < 2x . Then 0 < x < 2x . Now multiply all parts of
the inequality by the positive number 1/2. This does not change the direction of the inequality, so
0 < x/2 < x .
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122 Chapter 3 The Logic of Quantified Statements

Thus the following statement is true: “There is no smallest positive real number.” Write
this statement formally using both symbols ∀ and ∃.

Solution ∀ positive real numbers x, ∃ a positive real number y such that y < x . ■

Example 3.3.7 The Definition of Limit of a Sequence

The definition of limit of a sequence, studied in calculus, uses both quantifiers ∀ and ∃
and also if-then. We say that the limit of the sequence an as n goes to infinity equals L
and write

lim
n→∞ an = L

if, and only if, the values of an become arbitrarily close to L as n gets larger and larger
without bound. More precisely, this means that given any positive number ε, we can find
an integer N such that whenever n is larger than N , the number an sits between L − ε

and L + ε on the number line.

L – ε L + εL

an must lie in here when n > N

Symbolically:

∀ε > 0, ∃ an integer N such that ∀ integers n,
if n > N then L − ε < an < L + ε.

Considering the logical complexity of this definition, it is no wonder that many students
find it hard to understand. ■

Ambiguous Language
The drawing in Figure 3.3.3 is a famous example of visual ambiguity. When you look at
it for a while, you will probably see either a silhouette of a young woman wearing a large
hat or an elderly woman with a large nose. Whichever image first pops into your mind,

Figure 3.3.3
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try to see how the drawing can be interpreted in the other way. (Hint: The mouth of the
elderly woman is the necklace on the young woman.)

Once most people see one of the images, it is difficult for them to perceive the other.
So it is with ambiguous language. Once you interpreted the sentence at the beginning of
this section in one way, it may have been hard for you to see that it could be understood
in the other way. Perhaps you had difficulty even though the two possible meanings were
explained, just as many people have difficulty seeing the second interpretation for the
drawing even when they are told what to look for.

Although statements written informally may be open to multiple interpretations, we
cannot determine their truth or falsity without interpreting them one way or another.
Therefore, we have to use context to try to ascertain their meaning as best we can.

Negations of Multiply-Quantified Statements
You can use the same rules to negate multiply-quantified statements that you used to
negate simpler quantified statements. Recall that

∼(∀x in D, P(x)) ≡ ∃x in D such that ∼P(x).

and

∼(∃x in D such that P(x)) ≡ ∀x in D,∼P(x).

We apply these laws to find

∼(∀x in D, ∃y in E such that P(x, y))

by moving in stages from left to right along the sentence.

First version of negation: ∃x in D such that ∼(∃y in E such that P(x, y)).

Final version of negation: ∃x in D such that ∀y in E,∼P(x, y).

Similarly, to find

∼(∃x in D such that ∀y in E, P(x, y)),

we have

First version of negation: ∀x in D,∼(∀y in E, P(x, y)).

Final version of negation: ∀x in D, ∃y in E such that ∼P(x, y).

These facts can be summarized as follows:

Negations of Multiply-Quantified Statements

∼(∀ x in D, ∃y in E such that P(x, y)) ≡ ∃x in D such that ∀y in E,∼P(x, y).

∼(∃x in D such that ∀y in E, P(x, y)) ≡ ∀x in D, ∃y in E such that ∼P(x, y).
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Example 3.3.8 Negating Statements in a Tarski World

Refer to the Tarski world of Figure 3.3.1, which is reprinted here for reference.

a

b c

f

i

e g

h

j

d

Write a negation for each of the following statements, and determine which is true, the
given statement or its negation.

a. For all squares x , there is a circle y such that x and y have the same color.

b. There is a triangle x such that for all squares y, x is to the right of y.

Solution

a. First version of negation: ∃ a square x such that ∼(∃ a circle y such
that x and y have the same color).

Final version of negation: ∃ a square x such that ∀ circles y, x and y
do not have the same color.

The negation is true. Square e is black and no circle is black, so there is a square that does
not have the same color as any circle.

b. First version of negation: ∀ triangles x,∼ (∀ squares y, x is to the
right of y).

Final version of negation: ∀ triangles x, ∃ a square y such that x is
not to the right of y.

The negation is true because no matter what triangle is chosen, it is not to the right of
square g (or square j). ■

Order of Quantifiers
Consider the following two statements:

∀ people x, ∃ a person y such that x loves y.

∃ a person y such that ∀ people x, x loves y.

Note that except for the order of the quantifiers, these statements are identical. How-
ever, the first means that given any person, it is possible to find someone whom that
person loves, whereas the second means that there is one amazing individual who is
loved by all people. (Reread the statements carefully to verify these interpretations!)
The two sentences illustrate an extremely important property about multiply-quantified
statements:
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In a statement containing both ∀ and ∃, changing the order of the quantifiers usually
changes the meaning of the statement.!

Caution! If a statement
contains two different
quantifiers, reversing their
order can change the truth
value of the statement to
its opposite.

Interestingly, however, if one quantifier immediately follows another quantifier of the
same type, then the order of the quantifiers does not affect the meaning. Consider the
commutative property of addition of real numbers, for example:

∀ real numbers x and ∀ real numbers y, x + y = y + x .

This means the same as

∀ real numbers y and ∀ real numbers x, x + y = y + x .

Thus the property can be expressed more briefly as

∀ real numbers x and y, x + y = y + x .

Example 3.3.9 Quantifier Order in a Tarski World

Look again at the Tarski world of Figure 3.3.1. Do the following two statements have the
same truth value?

a. For every square x there is a triangle y such that x and y have different colors.

b. There exists a triangle y such that for every square x, x and y have different colors.

Solution Statement (a) says that if someone gives you one of the squares from the Tarski
world, you can find a triangle that has a different color. This is true. If someone gives you
square g or h (which are gray), you can use triangle d (which is black); if someone gives
you square e (which is black), you can use either triangle f or triangle i (which are both
gray); and if someone gives you square j (which is blue), you can use triangle d (which
is black) or triangle f or i (which are both gray).

Statement (b) says that there is one particular triangle in the Tarski world that has
a different color from every one of the squares in the world. This is false. Two of the
triangles are gray, but they cannot be used to show the truth of the statement because the
Tarski world contains gray squares. The only other triangle is black, but it cannot be used
either because there is a black square in the Tarski world.

Thus one of the statements is true and the other is false, and so they have opposite
truth values. ■

Formal Logical Notation
In some areas of computer science, logical statements are expressed in purely symbolic
notation. The notation involves using predicates to describe all properties of variables
and omitting the words such that in existential statements. (When you try to figure out
the meaning of a formal statement, however, it is helpful to think the words such that to
yourself each time they are appropriate.) The formalism also depends on the following
facts:

“∀x in D, P(x)” can be written as“∀x(x in D→ P(x)),” and

“∃x in D such that P(x)” can be written as “∃x(x in D ∧ P(x)).”

We illustrate the use of these facts in Example 3.3.10.
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Example 3.3.10 Formalizing Statements in a Tarski World

Consider once more the Tarski world of Figure 3.3.1:

a

b c

f

i

e g

h

j

d

Let Triangle(x), Circle(x), and Square(x) mean “x is a triangle,” “x is a circle,” and “x
is a square”; let Blue(x), Gray(x), and Black(x) mean “x is blue,” “x is gray,” and “x is
black”; let RightOf(x, y), Above(x, y), and SameColorAs(x, y) mean “x is to the right
of y,” “x is above y,” and “x has the same color as y”; and use the notation x = y to
denote the predicate “x is equal to y”. Let the common domain D of all variables be the
set of all the objects in the Tarski world. Use formal, logical notation to write each of the
following statements, and write a formal negation for each statement.

a. For all circles x, x is above f .

b. There is a square x such that x is black.

c. For all circles x , there is a square y such that x and y have the same color.

d. There is a square x such that for all triangles y, x is to right of y.

Solution

a. Statement: ∀x(Circle(x)→ Above(x, f )).
Negation: ∼(∀x(Circle(x)→ Above(x, f )))

≡ ∃x ∼ (Circle(x)→ Above(x, f ))
by the law for negating a ∀ statement

≡ ∃x(Circle(x) ∧ ∼Above(x, f ))
by the law of negating an if-then statement

b. Statement: ∃x(Square(x) ∧ Black(x)).
Negation: ∼(∃x(Square(x) ∧ Black(x)))

≡ ∀x ∼ (Square(x) ∧ Black(x))
by the law for negating a ∃ statement

≡ ∀x(∼Square(x) ∨ ∼Black(x))
by De Morgan’s law

c. Statement: ∀x(Circle(x)→ ∃y(Square(y) ∧ SameColor(x, y))).
Negation: ∼(∀x(Circle(x)→ ∃y(Square(y) ∧ SameColor(x, y))))

≡ ∃x ∼ (Circle(x)→ ∃y(Square(y) ∧ SameColor(x, y)))
by the law for negating a ∀ statement

≡ ∃x(Circle(x) ∧ ∼(∃y(Square(y) ∧ SameColor(x, y))))
by the law for negating an if-then statement
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≡ ∃x(Circle(x) ∧ ∀y(∼(Square(y) ∧ SameColor(x, y))))
by the law for negating a ∃ statement

≡ ∃x(Circle(x) ∧ ∀y(∼Square(y) ∨ ∼SameColor(x, y)))
by De Morgan’s law

d. Statement: ∃x(Square(x) ∧ ∀y(Triangle(y)→ RightOf(x, y))).
Negation: ∼(∃x(Square(x) ∧ ∀y(Triangle(y)→ RightOf(x, y))))

≡ ∀x ∼ (Square(x) ∧ ∀y(Triangle(x)→ RightOf(x, y)))
by the law for negating a ∃ statement

≡ ∀x(∼Square(x) ∨ ∼(∀y(Triangle(y)→ RightOf(x, y))))
by De Morgan’s law

≡ ∀x(∼Square(x) ∨ ∃y(∼(Triangle(y)→ RightOf(x, y))))
by the law for negating a ∀ statement

≡ ∀x(∼Square(x) ∨ ∃y(Triangle(y) ∧ ∼RightOf(x, y)))
by the law for negating an if-then statement

■

The disadvantage of the fully formal notation is that because it is complex and
somewhat remote from intuitive understanding, when we use it, we may make errors
that go unrecognized. The advantage, however, is that operations, such as taking nega-
tions, can be made completely mechanical and programmed on a computer. Also, when
we become comfortable with formal manipulations, we can use them to check our intu-
ition, and then we can use our intuition to check our formal manipulations. Formal logical
notation is used in branches of computer science such as artificial intelligence, program
verification, and automata theory and formal languages.

Taken together, the symbols for quantifiers, variables, predicates, and logical
connectives make up what is known as the language of first-order logic. Even though
this language is simpler in many respects than the language we use every day, learning it
requires the same kind of practice needed to acquire any foreign language.

Prolog
The programming language Prolog (short for programming in logic) was developed in
France in the 1970s by A. Colmerauer and P. Roussel to help programmers working in
the field of artificial intelligence. A simple Prolog program consists of a set of statements
describing some situation together with questions about the situation. Built into the lan-
guage are search and inference techniques needed to answer the questions by deriving
the answers from the given statements. This frees the programmer from the necessity of
having to write separate programs to answer each type of question. Example 3.3.11 gives
a very simple example of a Prolog program.

Example 3.3.11 A Prolog Program

Consider the following picture, which shows colored blocks stacked on a table.

g

b1

w1

w2

b2

b3

g

b1 w1

= gray block

= blue block 1

= blue block 2

= blue block 3

= white block 1

= white block 2w2b2

b3
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128 Chapter 3 The Logic of Quantified Statements

The following are statements in Prolog that describe this picture and ask two questions
about it.

Note Different Prolog
implementations follow
different conventions as to
how to represent constant,
variable, and predicate
names and forms of
questions and answers.
The conventions used
here are similar to those
of Edinburgh Prolog.

isabove(g, b1) color(g, gray) color(b3, blue)

isabove(b1, w1) color(b1, blue) color(w1,white)

isabove(w2, b2) color(b2, blue) color(w2,white)

isabove(b2, b3) isabove(X, Z) if isabove(X, Y ) and isabove(Y, Z)

?color(b1, blue) ?isabove(X, w1)

The statements “isabove(g, b1)” and “color(g, gray)” are to be interpreted as “g is above
b1” and “g is colored gray”. The statement “isabove(X, Z) if isabove(X, Y ) and
isabove(Y, Z)” is to be interpreted as “For all X , Y , and Z , if X is above Y and Y is
above Z , then X is above Z .” The program statement

?color(b1, blue)

is a question asking whether block b1 is colored blue. Prolog answers this by writing

Yes.

The statement

?isabove(X, w1)

is a question asking for which blocks X the predicate “X is above w1” is true. Prolog
answers by giving a list of all such blocks. In this case, the answer is

X = b1, X = g.

Note that Prolog can find the solution X = b1 by merely searching the original set of
given facts. However, Prolog must infer the solution X = g from the following statements:

isabove(g, b1),

isabove(b1, w1),

isabove(X, Z) if isabove(X, Y ) and isabove(Y, Z).

Write the answers Prolog would give if the following questions were added to the pro-
gram above.

a. ?isabove(b2, w1) b. ?color(w1, X) c. ?color(X , blue)

Solution

a. The question means “Is b2 above w1?”; so the answer is “No.”

b. The question means “For what colors X is the predicate ‘w1 is colored X ’ true?”; so
the answer is “X = white.”

c. The question means “For what blocks is the predicate ‘X is colored blue’ true?”; so
the answer is “X = b1,” “X = b2,” and “X = b3.” ■

Test Yourself
1. To establish the truth of a statement of the form “∀x in

D, ∃y in E such that P(x, y),” you imagine that some-
one has given you an element x from D but that you
have no control over what that element is. Then you
need to find with the property that the x the person
gave you together with the you subsequently found
satisfy .

2. To establish the truth of a statement of the form “∃x in D
such that ∀y in E , P(x, y),” you need to find so that
no matter what a person might subsequently give you,

will be true.

3. Consider the statement “∀x , ∃y such that P(x, y), a property
involving x and y, is true.” A negation for this statement is
“ .”
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4. Consider the statement “∃x such that ∀y, P(x, y), a prop-
erty involing x and y, is true.” A negation for this statement
is “ .”

5. Suppose P(x, y) is some property involving x and y, and
suppose the statement“∀x in D, ∃y in E such that P(x, y)”

is true. Then the statement “∃x in D such that ∀y in E ,
P(x, y)”

a. is true. b. is false. c. may be true or may be false.

Exercise Set 3.3
1. Let C be the set of cities in the world, let N be the set

of nations in the world, and let P(c, n) be “c is the capi-
tal city of n.” Determine the truth values of the following
statements.
a. P(Tokyo, Japan) b. P(Athens, Egypt)
c. P(Paris, France) d. P(Miami, Brazil)

2. Let G(x, y) be “x2 > y.” Indicate which of the following
statements are true and which are false.
a. G(2, 3) b. G(1, 1)

c. G
(
1
2 ,

1
2

)
d. G(−2, 2)

3. The following statement is true: “∀ nonzero numbers x, ∃ a
real number y such that xy = 1.” For each x given below,
find a y to make the predicate “xy = 1” true.
a. x = 2 b. x = −1 c. x = 3/4

4. The following statement is true: “∀ real numbers x, ∃ an
integer n such that n > x .”∗ For each x given below, find an
n to make the predicate “n > x” true.
a. x = 15.83 b. x = 108 c. x = 1010

10

The statements in exercises 5–8 refer to the Tarski world given
in Example 3.3.1. Explain why each is true.

5. For all circles x there is a square y such that x and y have
the same color.

6. For all squares x there is a circle y such that x and y have
different colors and y is above x .

7. There is a triangle x such that for all squares y, x is above y.

8. There is a triangle x such that for all circles y, y is above x .

9. Let D = E = {−2,−1, 0, 1, 2}. Explain why the following
statements are true.
a. ∀x in D, ∃y in E such that x + y = 0.
b. ∃x in D such that ∀y in E, x + y = y.

10. This exercise refers to Example 3.3.3. Determine whether
each of the following statements is true or false.
a. ∀ students S, ∃ a dessert D such that S chose D.
b. ∀ students S, ∃ a salad T such that S chose T .
c. ∃ a dessert D such that ∀ students S, S chose D.
d. ∃ a beverage B such that ∀ students D, D chose B.
e. ∃ an item I such that ∀ students S, S did not choose I .
f. ∃ a station Z such that ∀ students S, ∃ an item I such

that S chose I from Z .

11. Let S be the set of students at your school, let M be the set
of movies that have ever been released, and let V (s,m) be
“student s has seen movie m.” Rewrite each of the follow-
ing statements without using the symbol ∀, the symbol ∃,
or variables.
a. ∃s ∈ S such that V (s, Casablanca).
b. ∀s ∈ S, V (s, Star Wars).
c. ∀s ∈ S, ∃m ∈ M such that V (s,m).
d. ∃m ∈ M such that ∀s ∈ S, V (s,m).
e. ∃s ∈ S, ∃t ∈ S, and ∃m ∈ M such that s �= t and

V (s,m) ∧ V (t,m).
f. ∃s ∈ S and ∃t ∈ S such that s �= t and ∀m ∈ M,

V (s,m)→ V (t,m).

12. Let D = E = {−2,−1, 0, 1, 2}. Write negations for each
of the following statements and determine which is true,
the given statement or its negation.
a. ∀x in D, ∃y in E such that x + y = 1.
b. ∃x in D such that ∀y in E, x + y = −y.
c. ∀x in D, ∃y in E such that xy ≥ y.
d. ∃x in D such that ∀y in E , x ≤ y.

In each of 13–19, (a) rewrite the statement in English without
using the symbol ∀ or ∃ or variables and expressing your answer
as simply as possible, and (b) write a negation for the statement.

13. ∀ colors C, ∃ an animal A such that A is colored C .

14. ∃ a book b such that ∀ people p, p has read b.

15. ∀ odd integers n, ∃ an integer k such that n = 2k + 1.

16. ∃ a real number u such that ∀ real numbers v, uv = v.

17. ∀r ∈ Q, ∃ integers a and b such that r = a/b.

18. ∀x ∈ R, ∃ a real number y such that x + y = 0.

19. ∃x ∈ R such that for all real numbers y, x + y = 0.

20. Recall that reversing the order of the quantifiers in a state-
ment with two different quantifiers may change the truth
value of the statement—but it does not necessarily do so.
All the statements in the pairs on the next page refer to the
Tarski world of Figure 3.3.1. In each pair, the order of the
quantifiers is reversed but everything else is the same. For
each pair, determine whether the statements have the same
or opposite truth values. Justify your answers.

∗This is called the Archimedean principle because it was first formulated (in geometric terms) by the great Greek mathematician
Archimedes of Syracuse, who lived from about 287 to 212 B.C.E.
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a. (1) For all squares y there is a triangle x such that x and
y have different color.
(2) There is a triangle x such that for all squares y, x and
y have different colors.

b. (1) For all circles y there is a square x such that x and y
have the same color.
(2) There is a square x such that for all circles y, x and
y have the same color.

21. For each of the following equations, determine which of the
following statements are true:
(1) For all real numbers x , there exists a real number y

such that the equation is true.
(2) There exists a real number x , such that for all real num-

bers y, the equation is true.

Note that it is possible for both statements to be true or for
both to be false.
a. 2x + y = 7
b. y + x = x + y
c. x2 − 2xy + y2 = 0
d. (x − 5)(y − 1) = 0
e. x2 + y2 = −1

In 22 and 23, rewrite each statement without using variables or
the symbol ∀ or ∃. Indicate whether the statement is true or false.

22. a. ∀ real numbers x, ∃ a real number y such that x + y = 0.
b. ∃ a real number y such that ∀ real numbers x, x + y = 0.

23. a. ∀ nonzero real numbers r, ∃ a real number s such that
rs = 1.

b. ∃ a real number r such that ∀ nonzero real numbers
s, rs = 1.

24. Use the laws for negating universal and existential state-
ments to derive the following rules:
a. ∼(∀x ∈ D(∀y ∈ E(P(x, y))))

≡ ∃x ∈ D(∃y ∈ E(∼P(x, y)))

b. ∼(∃x ∈ D(∃y ∈ E(P(x, y))))
≡ ∀x ∈ D(∀y ∈ E(∼P(x, y)))

Each statement in 25–28 refers to the Tarski world of Figure
3.3.1. For each, (a) determine whether the statement is true or
false and justify your answer, (b) write a negation for the state-
ment (referring, if you wish, to the result in exercise 24).

25. ∀ circles x and ∀ squares y, x is above y.

26. ∀ circles x and ∀ triangles y, x is above y.

27. ∃ a circle x and ∃ a square y such that x is above y and x
and y have different colors.

28. ∃ a triangle x and ∃ a square y such that x is above y and x
and y have the same color.

For each of the statements in 29 and 30, (a) write a new state-
ment by interchanging the symbols ∀ and ∃, and (b) state which
is true: the given statement, the version with interchanged quan-
tifiers, neither, or both.

29. ∀x ∈ R, ∃y ∈ R such that x < y.

30. ∃x ∈ R such that ∀y ∈ R− (the set of negative real
numbers), x > y.

31. Consider the statement “Everybody is older than some-
body.” Rewrite this statement in the form “∀ people x,
∃ .”

32. Consider the statement “Somebody is older than every-
body.” Rewrite this statement in the form “∃ a person x such
that ∀ .”

In 33–39, (a) rewrite the statement formally using quantifiers
and variables, and (b) write a negation for the statement.

33. Everybody loves somebody.

34. Somebody loves everybody.

35. Everybody trusts somebody.

36. Somebody trusts everybody.

37. Any even integer equals twice some integer.

38. Every action has an equal and opposite reaction.

39. There is a program that gives the correct answer to every
question that is posed to it.

40. In informal speech most sentences of the form “There is
every ” are intended to be understood as

meaning “∀ ∃ ,” even though the existen-
tial quantifier there is comes before the universal quantifier
every. Note that this interpretation applies to the following
well-known sentences. Rewrite them using quantifiers and
variables.

a. There is a sucker born every minute.
b. There is a time for every purpose under heaven.

41. Indicate which of the following statements are true and
which are false. Justify your answers as best you can.

a. ∀x ∈ Z+, ∃y ∈ Z+ such that x = y + 1.
b. ∀x ∈ Z, ∃y ∈ Z such that x = y + 1.
c. ∃x ∈ R such that ∀y ∈ R, x = y + 1.
d. ∀x ∈ R+, ∃y ∈ R+ such that xy = 1.
e. ∀x ∈ R, ∃y ∈ R such that xy = 1.
f. ∀x ∈ Z+ and ∀y ∈ Z+, ∃z ∈ Z+ such that z = x − y.
g. ∀x ∈ Z and ∀y ∈ Z, ∃z ∈ Z such that z = x − y.
h. ∃u ∈ R+ such that ∀v ∈ R+, uv < v.

42. Write the negation of the definition of limit of a sequence
given in Example 3.3.7.

43. The following is the definition for limx→a f (x) = L:

For all real numbers ε > 0, there exists a real
number δ > 0 such that for all real numbers x, if
a− δ < x < a+ δ and x �= a then
L− ε < f(x) < L+ ε.

Write what it means for limx→a f (x) �= L . In other words,
write the negation of the definition.

44. The notation ∃! stands for the words “there exists a unique.”
Thus, for instance, “∃! x such that x is prime and x is even”
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means that there is one and only one even prime number.
Which of the following statements are true and which are
false? Explain.
a. ∃! real number x such that ∀ real numbers y, xy = y.
b. ∃! integer x such that 1/x is an integer.
c. ∀ real numbers x, ∃! real number y such that x + y = 0.

45.✶ Suppose that P(x) is a predicate and D is the domain
of x . Rewrite the statement “∃! x ∈ D such that P(x)”
without using the symbol ∃!. (See exercise 44 for the
meaning of ∃!.)

In 46–54, refer to the Tarski world given in Figure 3.1.1, which
is printed again here for reference. The domains of all variables
consist of all the objects in the Tarski world. For each state-
ment, (a) indicate whether the statement is true or false and jus-
tify your answer, (b) write the given statement using the formal
logical notation illustrated in Example 3.3.10, and (c) write the
negation of the given statement using the formal logical notation
of Example 3.3.10.

ba

d

f

i

k

e

h

j

c

g

46. There is a triangle x such that for all squares y, x is above y.

47. There is a triangle x such that for all circles y, x is above y.

48. For all circles x , there is a square y such that y is to the
right of x .

49. For every object x , there is an object y such that x �= y
and x and y have different colors.

50. For every object x , there is an object y such that if x �= y
then x and y have different colors.

51. There is an object y such that for all objects x , if x �= y
then x and y have different colors.

52. For all circles x and for all triangles y, x is to the right of y.

53. There is a circle x and there is a square y such that x and y
have the same color.

54. There is a circle x and there is a triangle y such that x and
y have the same color.

Let P(x) and Q(x) be predicates and suppose D is the domain
of x . In 55–58, for the statement forms in each pair, determine
whether (a) they have the same truth value for every choice of
P(x), Q(x), and D, or (b) there is a choice of P(x), Q(x), and
D for which they have opposite truth values.

55. ∀x ∈ D, (P(x) ∧ Q(x)), and
(∀x ∈ D, P(x)) ∧ (∀x ∈ D, Q(x))

56. ∃x ∈ D, (P(x) ∧ Q(x)), and
(∃x ∈ D, P(x)) ∧ (∃x ∈ D, Q(x))

57. ∀x ∈ D, (P(x) ∨ Q(x)), and
(∀x ∈ D, P(x)) ∨ (∀x ∈ D, Q(x))

58. ∃x ∈ D, (P(x) ∨ Q(x)), and
(∃x ∈ D, P(x)) ∨ (∃x ∈ D, Q(x))

In 59–61, find the answers Prolog would give if the following
questions were added to the program given in Example 3.3.11.

59. a. ?isabove(b1, w1)

b. ?color(X , white)
c. ?isabove(X, b3)

60. a. ?isabove(w1, g)
b. ?color(w2, blue)
c. ?isabove(X, b1)

61. a. ?isabove(w2, b3)
b. ?color(X , gray)
c. ?isabove(g, X )

Answers for Test Yourself
1. an element y in E ; y; P(x, y) 2. an element x in D; y in E ; P(x, y) 3. ∃x such that ∀y, the property P(x, y) is false. 4. ∀x ,
∃y such that the property P(x, y) is false. 5. The answer is (c): the truth or falsity of a statement in which the quantifiers are reversed
depends on the nature of the property involving x and y.
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3.4 Arguments with Quantified Statements
The only complete safeguard against reasoning ill, is the habit of reasoning well; familiarity with
the principles of correct reasoning; and practice in applying those principles. — John Stuart Mill

The rule of universal instantiation (in-stan-she-AY-shun) says the following:

If some property is true of everything in a set, then it is true of any particular thing
in the set.

Use of the words universal instantiation indicates that the truth of a property in a particu-
lar case follows as a special instance of its more general or universal truth. The validity of
this argument form follows immediately from the definition of truth values for a universal
statement. One of the most famous examples of universal instantiation is the following:

All men are mortal.

Socrates is a man.

∴ Socrates is mortal.

Universal instantiation is the fundamental tool of deductive reasoning. Mathematical
formulas, definitions, and theorems are like general templates that are used over and over
in a wide variety of particular situations. A given theorem says that such and such is true
for all things of a certain type. If, in a given situation, you have a particular object of
that type, then by universal instantiation, you conclude that such and such is true for that
particular object. You may repeat this process 10, 20, or more times in a single proof or
problem solution.

As an example of universal instantiation, suppose you are doing a problem that requires
you to simplify rk+1·r,
where r is a particular real number and k is a particular integer. You know from your
study of algebra that the following universal statements are true:

1. For all real numbers x and all integers m and n, xm ·xn = xm+n .

2. For all real numbers x, x1 = x .

So you proceed as follows:

rk+1·r = rk+1·r1 Step 1

= r (k+1)+1 Step 2

= rk+2 by basic algebra.

The reasoning behind step 1 and step 2 is outlined as follows.

Step 1: For all real numbers x, x1 = x . universal truth

r is a particular real number. particular instance

∴ r1 = r. conclusion

Step 2: For all real numbers x and all integers
m and n, xm·xn = xm+n. universal truth

r is a particular real number and k + 1
and 1 are particular integers. particular instance

∴ rk+1·r1 = r (k+1)+1. conclusion

Both arguments are examples of universal instantiation.
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Universal Modus Ponens
The rule of universal instantiation can be combined with modus ponens to obtain the valid
form of argument called universal modus ponens.

Universal Modus Ponens

Formal Version Informal Version

∀x , if P(x) then Q(x). If x makes P(x) true, then x makes Q(x) true.

P(a) for a particular a. a makes P(x) true.

∴ Q(a). ∴ a makes Q(x) true.

Note that the first, or major, premise of universal modus ponens could be written “All
things that make P(x) true make Q(x) true,” in which case the conclusion would follow
by universal instantiation alone. However, the if-then form is more natural to use in the
majority of mathematical situations.

Example 3.4.1 Recognizing Universal Modus Ponens

Rewrite the following argument using quantifiers, variables, and predicate symbols. Is
this argument valid? Why?

If an integer is even, then its square is even.

k is a particular integer that is even.

∴ k2 is even.

Solution The major premise of this argument can be rewritten as

∀x, if x is an even integer then x2 is even.

Let E(x) be “x is an even integer,” let S(x) be “x2 is even,” and let k stand for a particular
integer that is even. Then the argument has the following form:

∀x, if E(x) then S(x).

E(k), for a particular k.

∴ S(k).

This argument has the form of universal modus ponens and is therefore valid. ■

Example 3.4.2 Drawing Conclusions Using Universal Modus Ponens

Write the conclusion that can be inferred using universal modus ponens.

If T is any right triangle with hypotenuse
c and legs a and b, then c2 = a2 + b2.

The triangle shown at the right is a right
triangle with both legs equal to 1 and
hypotenuse c.

∴ .

Pythagorean theorem

1

c 1

Solution c2 = 12 + 12 = 2
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Note that if you take the nonnegative square root of both sides of this equation, you
obtain c = √2. This shows that there is a line segment whose length is

√
2. Section 4.7

contains a proof that
√
2 is not a rational number. ■

Use of Universal Modus Ponens in a Proof
In Chapter 4 we discuss methods of proving quantified statements. Here is a proof that
the sum of any two even integers is even. It makes use of the definition of even integer,
namely, that an integer is even if, and only if, it equals twice some integer. (Or, more
formally: ∀ integers x , x is even if, and only if, ∃ an integer k such that x = 2k.)

Suppose m and n are particular but arbitrarily chosen even integers. Then m = 2r for
some integer r,(1) and n = 2s for some integer s.(2) Hence

m + n = 2r + 2s by substitution

= 2(r + s)(3) by factoring out the 2.

Now r + s is an integer,(4) and so 2(r + s) is even.(5) Thus m + n is even.

Note The logical
principle of existential
instantiation says that if
we know something
exists, we may give it a
name. This principle,
discussed further in
Section 4.1 allows us to
give the integers the
names r and s.

The following expansion of the proof shows how each of the numbered steps is justified
by arguments that are valid by universal modus ponens.

(1) If an integer is even, then it equals twice some integer.
m is a particular even integer.

∴ m equals twice some integer r .

(2) If an integer is even, then it equals twice some integer.
n is a particular even integer.

∴ n equals twice some integer s.

(3) If a quantity is an integer, then it is a real number.
r and s are particular integers.

∴ r and s are real numbers.

For all a, b, and c, if a, b, and c are real numbers, then ab + ac = a(b + c).
2, r , and s are particular real numbers.

∴ 2r + 2s = 2(r + s).

(4) For all u and v, if u and v are integers, then u + v is an integer.
r and s are two particular integers.

∴ r + s is an integer.

(5) If a number equals twice some integer, then that number is even.
2(r + s) equals twice the integer r + s.

∴ 2(r + s) is even.

Of course, the actual proof that the sum of even integers is even does not explic-
itly contain the sequence of arguments given above. (Heaven forbid!) And, in fact, peo-
ple who are good at analytical thinking are normally not even conscious that they are
reasoning in this way. But that is because they have absorbed the method so completely
that it has become almost as automatic as breathing.

Universal Modus Tollens
Another crucially important rule of inference is universal modus tollens. Its validity
results from combining universal instantiation with modus tollens. Universal modus tol-
lens is the heart of proof of contradiction, which is one of the most important methods of
mathematical argument.
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Universal Modus Tollens

Formal Version Informal Version

∀x , if P(x) then Q(x). If x makes P(x) true, then x makes Q(x) true.

∼Q(a), for a particular a. a does not make Q(x) true.

∴ ∼P(a). ∴ a does not make P(x) true.

Example 3.4.3 Recognizing the Form of Universal Modus Tollens

Rewrite the following argument using quantifiers, variables, and predicate symbols. Write
the major premise in conditional form. Is this argument valid? Why?

All human beings are mortal.

Zeus is not mortal.

∴ Zeus is not human.

Solution The major premise can be rewritten as

∀x, if x is human then x is mortal.

Let H(x) be “x is human,” let M(x) be “x is mortal,” and let Z stand for Zeus. The
argument becomes

∀x, if H(x) then M(x)

∼M(Z)

∴ ∼H(Z).

This argument has the form of universal modus tollens and is therefore valid. ■

Example 3.4.4 Drawing Conclusions Using Universal Modus Tollens

Write the conclusion that can be inferred using universal modus tollens.

All professors are absent-minded.

Tom Hutchins is not absent-minded.

∴ .

Solution Tom Hutchins is not a professor. ■

Proving Validity of Arguments with Quantified
Statements

The intuitive definition of validity for arguments with quantified statements is the same as
for arguments with compound statements. An argument is valid if, and only if, the truth
of its conclusion follows necessarily from the truth of its premises. The formal definition
is as follows:

• Definition

To say that an argument form is validmeans the following: No matter what particular
predicates are substituted for the predicate symbols in its premises, if the resulting
premise statements are all true, then the conclusion is also true. An argument is
called valid if, and only if, its form is valid.
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As already noted, the validity of universal instantiation follows immediately from the
definition of the truth value of a universal statement. General formal proofs of validity
of arguments in the predicate calculus are beyond the scope of this book. We give the
proof of the validity of universal modus ponens as an example to show that such proofs
are possible and to give an idea of how they look.

Universal modus ponens asserts that

∀x, if P(x) then Q(x).

P(a) for a particular a.

∴ Q(a).

To prove that this form of argument is valid, suppose the major and minor premises are
both true. [We must show that the conclusion “Q(a)” is also true.] By the minor premise,
P(a) is true for a particular value of a. By the major premise and universal instantiation,
the statement “If P(a) then Q(a)” is true for that particular a. But by modus ponens,
since the statements “If P(a) then Q(a)” and “P(a)” are both true, it follows that Q(a)
is true also. [This is what was to be shown.]

The proof of validity given above is abstract and somewhat subtle. We include the
proof not because we expect that you will be able to make up such proofs yourself at
this stage of your study. Rather, it is intended as a glimpse of a more advanced treatment
of the subject, which you can try your hand at in exercises 35 and 36 at the end of this
section if you wish.

One of the paradoxes of the formal study of logic is that the laws of logic are used to
prove that the laws of logic are valid!

In the next part of this section we show how you can use diagrams to analyze the
validity or invalidity of arguments that contain quantified statements. Diagrams do not
provide totally rigorous proofs of validity and invalidity, and in some complex settings
they may even be confusing, but in many situations they are helpful and convincing.

Using Diagrams to Test for Validity
Consider the statement

All integers are rational numbers.

Or, formally,

∀ integers n, n is a rational number.

Picture the set of all integers and the set of all rational numbers as disks. The truth of the
given statement is represented by placing the integers disk entirely inside the rationals
disk, as shown in Figure 3.4.1.

rational numbers

integers

Figure 3.4.1

Because the two statements “∀x ∈ D, Q(x)” and “∀x , if x is in D then Q(x)” are logi-
cally equivalent, both can be represented by diagrams like the foregoing.
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Perhaps the first person to use diagrams like these to analyze arguments was the
German mathematician and philosopher Gottfried Wilhelm Leibniz. Leibniz (LIPE-nits)
was far ahead of his time in anticipating modern symbolic logic. He also developed the
main ideas of the differential and integral calculus at approximately the same time as (and
independently of) Isaac Newton (1642–1727).

C
ul

ve
r

P
ic

tu
re

s

G. W. Leibniz
(1646–1716)

To test the validity of an argument diagrammatically, represent the truth of both
premises with diagrams. Then analyze the diagrams to see whether they necessarily rep-
resent the truth of the conclusion as well.

Example 3.4.5 Using a Diagram to Show Validity

Use diagrams to show the validity of the following syllogism:

All human beings are mortal.

Zeus is not mortal.

∴ Zeus is not a human being.

Solution The major premise is pictured on the left in Figure 3.4.2 by placing a disk labeled
“human beings” inside a disk labeled “mortals.” The minor premise is pictured on the
right in Figure 3.4.2 by placing a dot labeled “Zeus” outside the disk labeled “mortals.”

human beings

mortals

Major premise

mortals

Minor premise

Zeus

Figure 3.4.2

The two diagrams fit together in only one way, as shown in Figure 3.4.3.

human beings

mortals

Zeus

Figure 3.4.3

Since the Zeus dot is outside the mortals disk, it is necessarily outside the human beings
disk. Thus the truth of the conclusion follows necessarily from the truth of the premises.
It is impossible for the premises of this argument to be true and the conclusion false;
hence the argument is valid. ■
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Example 3.4.6 Using Diagrams to Show Invalidity

Use a diagram to show the invalidity of the following argument:

All human beings are mortal.

Felix is mortal.

∴ Felix is a human being.

Solution The major and minor premises are represented diagrammatically in Figure 3.4.4.

human beings

mortals

Major premise

mortals

Minor premise

Felix

Figure 3.4.4

All that is known is that the Felix dot is located somewhere inside the mortals disk.
Where it is located with respect to the human beings disk cannot be determined. Either
one of the situations shown in Figure 3.4.5 might be the case.

human beings human beings

mortals

(a)

mortals

(b)

Felix

Felix

Figure 3.4.5

The conclusion “Felix is a human being” is true in the first case but not in the second
(Felix might, for example, be a cat). Because the conclusion does not necessarily follow
from the premises, the argument is invalid. ■

!
Caution! Be careful
when using diagrams to
test for validity! For
instance, in this example
if you put the diagrams
for the premises together
to obtain only Figure
3.4.5(a) and not Figure
3.4.5(b), you would
conclude erroneously that
the argument was valid.

The argument of Example 3.4.6 would be valid if the major premise were replaced
by its converse. But since a universal conditional statement is not logically equivalent to
its converse, such a replacement cannot, in general, be made. We say that this argument
exhibits the converse error.

Converse Error (Quantified Form)

Formal Version Informal Version

∀x , if P(x) then Q(x). If x makes P(x) true, then x makes Q(x) true.

Q(a) for a particular a. a makes Q(x) true.

∴ P(a). ← invalid
conclusion

∴ a makes P(x) true. ← invalid
conclusion
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The following form of argument would be valid if a conditional statement were logi-
cally equivalent to its inverse. But it is not, and the argument form is invalid. We say that
it exhibits the inverse error. You are asked to show the invalidity of this argument form in
the exercises at the end of this section.

Inverse Error (Quantified Form)

Formal Version Informal Version

∀x , if P(x) then Q(x). If x makes P(x) true, then x makes Q(x) true.

∼P(a), for a particular a. a does not make P(x) true.

∴ ∼Q(a). ← invalid
conclusion

∴ a does not make Q(x) true. ← invalid
conclusion

Example 3.4.7 An Argument with “No”

Use diagrams to test the following argument for validity:

No polynomial functions have horizontal asymptotes.

This function has a horizontal asymptote.

∴ This function is not a polynomial function.

Solution A good way to represent the major premise diagrammatically is shown in Figure
3.4.6, two disks—a disk for polynomial functions and a disk for functions with horizontal
asymptotes—that do not overlap at all. The minor premise is represented by placing a dot
labeled “this function” inside the disk for functions with horizontal asymptotes.

polynomial functions
functions with

horizontal  asymptotes

this function

Figure 3.4.6

The diagram shows that “this function” must lie outside the polynomial functions disk,
and so the truth of the conclusion necessarily follows from the truth of the premises.
Hence the argument is valid. ■

An alternative approach to this example is to transform the statement “No polynomial
functions have horizontal asymptotes” into the equivalent form “∀x , if x is a polynomial
function, then x does not have a horizontal asymptote.” If this is done, the argument can
be seen to have the form

∀x, if P(x) then Q(x).

∼Q(a), for a particular a.

∴∼P(a).

where P(x) is “x is a polynomial function” and Q(x) is “x does not have a horizontal
asymptote.” This is valid by universal modus tollens.
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Creating Additional Forms of Argument
Universal modus ponens and modus tollens were obtained by combining universal instan-
tiation with modus ponens and modus tollens. In the same way, additional forms of argu-
ments involving universally quantified statements can be obtained by combining universal
instantiation with other of the valid argument forms given in Section 2.3. For instance, in
Section 2.3 the argument form called transitivity was introduced:

p→ q

q → r

∴ p→ r

This argument form can be combined with universal instantiation to obtain the following
valid argument form.

Universal Transitivity

Formal Version Informal Version

∀x P(x)→ Q(x). Any x that makes P(x) true makes Q(x) true.

∀xQ(x)→ R(x). Any x that makes Q(x) true makes R(x) true.

∴ ∀x P(x)→ R(x). ∴ Any x that makes P(x) true makes R(x) true.

Example 3.4.8 Evaluating an Argument for Tarski’s World

The following argument refers to the kind of arrangement of objects of various types and
colors described in Examples 3.1.13 and 3.3.1. Reorder and rewrite the premises to show
that the conclusion follows as a valid consequence from the premises.

1. All the triangles are blue.

2. If an object is to the right of all the squares, then it is above all the circles.

3. If an object is not to the right of all the squares, then it is not blue.

∴ All the triangles are above all the circles.

Solution It is helpful to begin by rewriting the premises and the conclusion in if-then form:

1. ∀x , if x is a triangle, then x is blue.

2. ∀x , if x is to the right of all the squares, then x is above all the circles.

3. ∀x , if x is not to the right of all the squares, then x is not blue.

∴ ∀x , if x is a triangle, then x is above all the circles.

The goal is to reorder the premises so that the conclusion of each is the same as
the hypothesis of the next. Also, the hypothesis of the argument’s conclusion should be
the same as the hypothesis of the first premise, and the conclusion of the argument’s
conclusion should be the same as the conclusion of the last premise. To achieve this goal,
it may be necessary to rewrite some of the statements in contrapositive form.

In this example you can see that the first premise should remain where it is, but the
second and third premises should be interchanged. Then the hypothesis of the argument
is the same as the hypothesis of the first premise, and the conclusion of the argument’s
conclusion is the same as the conclusion of the third premise. But the hypotheses and
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conclusions of the premises do not quite line up. This is remedied by rewriting the third
premise in contrapositive form.

Thus the premises and conclusion of the argument can be rewritten as follows:

1. ∀x , if x is a triangle, then x is blue.

3. ∀x , if x is blue, then x is to the right of all the squares.

2. ∀x , if x is to the right of all the squares, then x is above all the circles.

∴ ∀x , if x is a triangle, then x is above all the circles.

The validity of this argument follows easily from the validity of universal transitivity.
Putting 1 and 3 together and using universal transitivity gives that

4. ∀x , if x is a triangle, then x is to the right of all the squares.

And putting 4 together with 2 and using universal transitivity gives that

∀x, if x is a triangle, then x is above all the circles,

which is the conclusion of the argument. ■

Remark on the Converse and Inverse Errors
One reason why so many people make converse and inverse errors is that the forms of
the resulting arguments would be valid if the major premise were a biconditional rather
than a simple conditional. And, as we noted in Section 2.2, many people tend to conflate
biconditionals and conditionals.

Consider, for example, the following argument:

All the town criminals frequent the Den of Iniquity bar.

John frequents the Den of Iniquity bar.

∴ John is one of the town criminals.

The conclusion of this argument is invalid—it results from making the converse error.
Therefore, it may be false even when the premises of the argument are true. This type of
argument attempts unfairly to establish guilt by association.

The closer, however, the major premise comes to being a biconditional, the more
likely the conclusion is to be true. If hardly anyone but criminals frequents the bar and
John also frequents the bar, then it is likely (though not certain) that John is a criminal.
On the basis of the given premises, it might be sensible to be suspicious of John, but it
would be wrong to convict him.

A variation of the converse error is a very useful reasoning tool, provided that it
is used with caution. It is the type of reasoning that is used by doctors to make medical
diagnoses and by auto mechanics to repair cars. It is the type of reasoning used to generate
explanations for phenomena. It goes like this: If a statement of the form

For all x, if P(x) then Q(x)

is true, and if

Q(a) is true, for a particular a,

then check out the statement P(a); it just might be true. For instance, suppose a doctor
knows that

For all x, if x has pneumonia, then x has a fever and chills,
coughs deeply, and feels exceptionally tired and miserable.
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And suppose the doctor also knows that

John has a fever and chills, coughs deeply,
and feels exceptionally tired and miserable.

On the basis of these data, the doctor concludes that a diagnosis of pneumonia is a strong
possibility, though not a certainty. The doctor will probably attempt to gain further sup-
port for this diagnosis through laboratory testing that is specifically designed to detect
pneumonia. Note that the closer a set of symptoms comes to being a necessary and suf-
ficient condition for an illness, the more nearly certain the doctor can be of his or her
diagnosis.

This form of reasoning has been named abduction by researchers working in artificial
intelligence. It is used in certain computer programs, called expert systems, that attempt
to duplicate the functioning of an expert in some field of knowledge.

Test Yourself
1. The rule of universal instantiation says that if some property

is true for in a domain, then it is true for .

2. If the first two premises of universal modus ponens are writ-
ten as “If x makes P(x) true, then x makes Q(x) true” and
“For a particular value of a ,” then the conclusion can
be written as “ .”

3. If the first two premises of universal modus tollens are writ-
ten as “If x makes P(x) true, then xmakes Q(x) true” and

“For a particular value of a ,” then the conclusion can
be written as “ .”

4. If the first two premises of universal transitivity are written
as “Any x that makes P(x) true makes Q(x) true” and “Any
x that makes Q(x) true makes R(x) true,” then the conclu-
sion can be written as “ .”

5. Diagrams can be helpful in testing an argument for validity.
However, if some possible configurations of the premises
are not drawn, a person could conclude that an argument
was when it was actually .

Exercise Set 3.4
1. Let the following law of algebra be the first statement of an

argument: For all real numbers a and b,

(a + b)2 = a2 + 2ab + b2.

Suppose each of the following statements is, in turn, the
second statement of the argument. Use universal instantia-
tion or universal modus ponens to write the conclusion that
follows in each case.
a. a = x and b = y are particular real numbers.
b. a = fi and b = f j are particular real numbers.
c. a = 3u and b = 5v are particular real numbers.
d. a = g(r) and b = g(s) are particular real numbers.
e. a = log(t1) and b = log(t2) are particular real numbers.

Use universal instantiation or universal modus ponens to fill in
valid conclusions for the arguments in 2–4.

2. If an integer n equals 2 ·k and k is an integer, then n is
even.
0 equals 2 ·0 and 0 is an integer.

∴ .

3. For all real numbers a, b, c, and d, if b �= 0 and d �= 0,
then a/b + c/d = (ad + bc)/bd.
a = 2, b = 3, c = 4, and d = 5 are particular real
numbers such that b �= 0 and d �= 0.

∴ .

4. ∀ real numbers r , a, and b, if r is positive, then
(ra)b = rab.
r = 3, a = 1/2, and b = 6 are particular real numbers
such that r is positive.

∴ .

Use universal modus tollens to fill in valid conclusions for the
arguments in 5 and 6.

5. All irrational numbers are real numbers
1
0 is not a real number.

∴ .

6. If a computer program is correct, then compilation of the
program does not produce error messages.
Compilation of this program produces error messages.

∴ .

Some of the arguments in 7–18 are valid by universal modus
ponens or universal modus tollens; others are invalid and exhibit
the converse or the inverse error. State which are valid and
which are invalid. Justify your answers.

7. All healthy people eat an apple a day.
Keisha eats an apple a day.

∴ Keisha is a healthy person.
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8. All freshmen must take writing.
Caroline is a freshman.

∴ Caroline must take writing.

9. All healthy people eat an apple a day.
Herbert is not a healthy person.

∴ Herbert does not eat an apple a day.

10. If a product of two numbers is 0, then at least one of the
numbers is 0.
For a particular number x , neither (2x + 1) nor (x − 7)
equals 0.

∴ The product (2x + 1)(x − 7) is not 0.

11. All cheaters sit in the back row.
Monty sits in the back row.

∴ Monty is a cheater.

12. All honest people pay their taxes.
Darth is not honest.

∴ Darth does not pay his taxes.

13. For all students x , if x studies discrete mathematics, then
x is good at logic.
Tarik studies discrete mathematics.

∴ Tarik is good at logic.

14. If compilation of a computer program produces error
messages, then the program is not correct.
Compilation of this program does not produce error
messages.

∴ This program is correct.

15. Any sum of two rational numbers is rational.
The sum r + s is rational.

∴ The numbers r and s are both rational.

16. If a number is even, then twice that number is even.
The number 2n is even, for a particular number n.

∴ The particular number n is even.

17. If an infinite series converges, then the terms go to 0.

The terms of the infinite series
∞∑
n=1

1

n
go to 0.

∴ The infinite series
∞∑
n=1

1

n
converges.

18. If an infinite series converges, then its terms go to 0.

The terms of the infinite series
∞∑
n=1

n

n + 1
do not go to 0.

∴ The infinite series
∞∑
n=1

n

n + 1
does not converge.

19. Rewrite the statement “No good cars are cheap” in the form
“∀x , if P(x) then ∼Q(x).” Indicate whether each of the
following arguments is valid or invalid, and justify your
answers.
a. No good car is cheap.

A Rimbaud is a good car.
∴ A Rimbaud is not cheap.

b. No good car is cheap.
A Simbaru is not cheap.

∴ A Simbaru is a good car.
c. No good car is cheap.

A VX Roadster is cheap.
∴ A VX Roadster is not good.

d. No good car is cheap.
An Omnex is not a good car.

∴ An Omnex is cheap.

20. a. Use a diagram to show that the following argument can
have true premises and a false conclusion.

All dogs are carnivorous.
Aaron is not a dog.

∴ Aaron is not carnivorous.

b. What can you conclude about the validity or invalidity
of the following argument form? Explain how the result
from part (a) leads to this conclusion.

∀x, if P(x) then Q(x).

∼P(a) for a particular a.

∴ ∼Q(a).

Indicate whether the arguments in 21–27 are valid or invalid.
Support your answers by drawing diagrams.

21. All people are mice.
All mice are mortal.

∴ All people are mortal.

22. All discrete mathematics students can tell a valid
argument from an invalid one.
All thoughtful people can tell a valid argument from an
invalid one.

∴ All discrete mathematics students are thoughtful.

23. All teachers occasionally make mistakes.
No gods ever make mistakes.

∴ No teachers are gods.

24. No vegetarians eat meat.
All vegans are vegetarian.

∴ No vegans eat meat.

25. No college cafeteria food is good.
No good food is wasted.

∴ No college cafeteria food is wasted.

26. All polynomial functions are differentiable.
All differentiable functions are continuous.

∴ All polynomial functions are continuous.

27. [Adapted from Lewis Carroll.]
Nothing intelligible ever puzzles me.
Logic puzzles me.

∴ Logic is unintelligible.
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In exercises 28–32, reorder the premises in each of the
arguments to show that the conclusion follows as a valid con-
sequence from the premises. It may be helpful to rewrite the
statements in if-then form and replace some statements by their
contrapositives. Exercises 28–30 refer to the kinds of Tarski
worlds discussed in Example 3.1.13 and 3.3.1. Exercises 31 and
32 are adapted from Symbolic Logic by Lewis Carroll.∗

28. 1. Every object that is to the right of all the blue objects is
above all the triangles.

2. If an object is a circle, then it is to the right of all the
blue objects.

3. If an object is not a circle, then it is not gray.
∴ All the gray objects are above all the triangles.

29. 1. All the objects that are to the right of all the triangles are
above all the circles.

2. If an object is not above all the black objects, then it is
not a square.

3. All the objects that are above all the black objects are to
the right of all the triangles.

∴ All the squares are above all the circles.

30. 1. If an object is above all the triangles, then it is above all
the blue objects.

2. If an object is not above all the gray objects, then it is
not a square.

3. Every black object is a square.
4. Every object that is above all the gray objects is above

all the triangles.
∴ If an object is black, then it is above all the blue objects.

31. 1. I trust every animal that belongs to me.
2. Dogs gnaw bones.
3. I admit no animals into my study unless they will beg

when told to do so.
4. All the animals in the yard are mine.
5. I admit every animal that I trust into my study.

∗Lewis Carroll, Symbolic Logic (New York: Dover, 1958),
pp. 118, 120, 123.

6. The only animals that are really willing to beg when told
to do so are dogs.

∴ All the animals in the yard gnaw bones.

32. 1. When I work a logic example without grumbling, you
may be sure it is one I understand.

2. The arguments in these examples are not arranged in
regular order like the ones I am used to.

3. No easy examples make my head ache.
4. I can’t understand examples if the arguments are not

arranged in regular order like the ones I am used to.
5. I never grumble at an example unless it gives me a

headache.
∴ These examples are not easy.

In 33 and 34 a single conclusion follows when all the given
premises are taken into consideration, but it is difficult to see
because the premises are jumbled up. Reorder the premises to
make it clear that a conclusion follows logically, and state the
valid conclusion that can be drawn. (It may be helpful to rewrite
some of the statements in if-then form and to replace some state-
ments by their contrapositives.)

33. 1. No birds except ostriches are at least 9 feet tall.
2. There are no birds in this aviary that belong to anyone

but me.
3. No ostrich lives on mince pies.
4. I have no birds less than 9 feet high.

34. 1. All writers who understand human nature are clever.
2. No one is a true poet unless he can stir the human heart.
3. Shakespeare wrote Hamlet.
4. No writer who does not understand human nature can

stir the human heart.
5. None but a true poet could have written Hamlet.

35.✶ Derive the validity of universal modus tollens from the
validity of universal instantiation and modus tollens.

36.✶ Derive the validity of universal form of part(a) of the elim-
ination rule from the validity of universal instantiation and
the valid argument called elimination in Section 2.3.

Answers for Test Yourself
1. all elements; any particular element in the domain (Or: each individual element of the domain) 2. P(a) is true; Q(a) is true
3. Q(a) is false; P(a) is false 4. Any x that makes P(x) true makes R(x) true. 5. valid; invalid (Or: invalid; valid).
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CHAPTER 4

ELEMENTARY NUMBER THEORY
AND METHODS OF PROOF

The underlying content of this chapter is likely to be familiar to you. It consists of proper-
ties of integers (whole numbers), rational numbers (integer fractions), and real numbers.
The underlying theme of this chapter is the question of how to determine the truth or
falsity of a mathematical statement.

Here is an example involving a concept used frequently in computer science. Given
any real number x , the floor of x , or greatest integer in x , denoted �x�, is the largest
integer that is less than or equal to x . On the number line, �x� is the integer immediately
to the left of x (or equal to x if x is, itself, an integer). Thus �2.3� = 2, �12.99999� = 12,
and �−1.5� = −2. Consider the following two questions:

1. For any real number x , is �x − 1� = �x� − 1?

2. For any real numbers x and y, is �x − y� = �x� − �y�?
Take a few minutes to try to answer these questions for yourself.

It turns out that the answer to (1) is yes, whereas the answer to (2) is no. Are these the
answers you got? If not, don’t worry. In Section 4.5 you will learn the techniques you need
to answer these questions and more. If you did get the correct answers, congratulations!
You have excellent mathematical intuition. Now ask yourself, “How sure am I of my
answers? Were they plausible guesses or absolute certainties? Was there any difference
in certainty between my answers to (1) and (2)? Would 1 have been willing to bet a large
sum of money on the correctness of my answers?”

One of the best ways to think of a mathematical proof is as a carefully reasoned
argument to convince a skeptical listener (often yourself) that a given statement is true.
Imagine the listener challenging your reasoning every step of the way, constantly asking,
“Why is that so?” If you can counter every possible challenge, then your proof as a whole
will be correct.

As an example, imagine proving to someone not very familiar with mathematical
notation that if x is a number with 5x + 3 = 33, then x = 6. You could argue as follows:

If 5x + 3 = 33, then 5x + 3 minus 3 will equal 33− 3 since subtracting the same
number from two equal quantities gives equal results. But 5x + 3 minus 3 equals
5x because adding 3 to 5x and then subtracting 3 just leaves 5x . Also, 33− 3 = 30.
Hence 5x = 30. This means that x is a number which when multiplied by 5 equals 30.
But the only number with this property is 6. Therefore, if 5x + 3 = 33 then x = 6.

Of course there are other ways to phrase this proof, depending on the level of math-
ematical sophistication of the intended reader. In practice, mathematicians often omit

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



146 Chapter 4 Elementary Number Theory and Methods of Proof

reasons for certain steps of an argument when they are confident that the reader can easily
supply them. When you are first learning to write proofs, however, it is better to err on the
side of supplying too many reasons rather than too few. All too frequently, when even the
best mathematicians carefully examine some “details” in their arguments, they discover
that those details are actually false. One of the most important reason’s for requiring proof
in mathematics is that writing a proof forces us to become aware of weaknesses in our
arguments and in the unconscious assumptions we have made.

Sometimes correctness of a mathematical argument can be a matter of life or death.
Suppose, for example, that a mathematician is part of a team charged with designing
a new type of airplane engine, and suppose that the mathematician is given the job of
determining whether the thrust delivered by various engine types is adequate. If you knew
that the mathematician was only fairly sure, but not positive, of the correctness of his
analysis, you would probably not want to ride in the resulting aircraft.

At a certain point in Lewis Carroll’s Alice in Wonderland (see exercise 28 in Section
2.2), the March Hare tells Alice to “say what you mean.” In other words, she should
be precise in her use of language: If she means a thing, then that is exactly what she
should say. In this chapter, perhaps more than in any other mathematics course you have
ever taken, you will find it necessary to say what you mean. Precision of thought and
language is essential to achieve the mathematical certainty that is needed if you are to
have complete confidence in your solutions to mathematical problems.

4.1 Direct Proof and Counterexample I: Introduction

Mathematics, as a science, commenced when first someone, probably a Greek, proved
propositions about “any” things or about “some” things without specification of
definite particular things. — Alfred North Whitehead, 1861–1947

Both discovery and proof are integral parts of problem solving. When you think you have
discovered that a certain statement is true, try to figure out why it is true. If you succeed,
you will know that your discovery is genuine. Even if you fail, the process of trying will
give you insight into the nature of the problem and may lead to the discovery that the
statement is false. For complex problems, the interplay between discovery and proof is
not reserved to the end of the problem-solving process but, rather, is an important part of
each step.

Assumptions

• In this text we assume a familiarity with the laws of basic algebra, which are listed
in Appendix A.

• We also use the three properties of equality: For all objects A, B, and C ,
(1) A = A, (2) if A = B then B = A, and (3) if A = B and B = C , then A = C .

• In addition, we assume that there is no integer between 0 and 1 and that the set of
all integers is closed under addition, subtraction, and multiplication. This means
that sums, differences, and products of integers are integers.

• Of course, most quotients of integers are not integers. For example, 3÷ 2, which
equals 3/2, is not an integer, and 3÷ 0 is not even a number.

The mathematical content of this section primarily concerns even and odd integers
and prime and composite numbers.
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Definitions
In order to evaluate the truth or falsity of a statement, you must understand what the
statement is about. In other words, you must know the meanings of all terms that occur
in the statement. Mathematicians define terms very carefully and precisely and consider
it important to learn definitions virtually word for word.

• Definitions

An integer n is even if, and only if, n equals twice some integer. An integer n is odd
if, and only if, n equals twice some integer plus 1.

Symbolically, if n is an integer, then

n is even ⇔ ∃ an integer k such that n = 2k.
n is odd ⇔ ∃ an integer k such that n = 2k + 1.

It follows from the definition that if you are doing a problem in which you happen to
know that a certain integer is even, you can deduce that it has the form 2 · (some integer).
Conversely, if you know in some situation that an integer equals 2 · (some integer), then
you can deduce that the integer is even.

Know a particular n has the form
integer n is even.

deduce−−−−−→ 2 · (some integer).

Know n has the form n is even.
2 · (some integer).

deduce−−−−−→

Example 4.1.1 Even and Odd Integers

Use the definitions of even and odd to justify your answers to the following questions.

a. Is 0 even?

b. Is −301 odd?

c. If a and b are integers, is 6a2b even?

d. If a and b are integers, is 10a + 8b + 1 odd?

e. Is every integer either even or odd?

Solution

a. Yes, 0 = 2 ·0.
b. Yes, −301 = 2(−151)+ 1.

c. Yes, 6a2b = 2(3a2b), and since a and b are integers, so is 3a2b (being a product of
integers).

d. Yes, 10a + 8b + 1 = 2(5a + 4b)+ 1, and since a and b are integers, so is 5a + 4b
(being a sum of products of integers).

e. The answer is yes, although the proof is not obvious. (Try giving a reason yourself.)
We will show in Section 4.4 that this fact results from another fact known as the
quotient-remainder theorem. ■

The integer 6, which equals 2 ·3, is a product of two smaller positive integers. On
the other hand, 7 cannot be written as a product of two smaller positive integers; its only
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positive factors are 1 and 7. A positive integer, such as 7, that cannot be written as a
product of two smaller positive integers is called prime.

• Definition

An integer n is prime if, and only if, n> 1 and for all positive integers r and s, if
n= rs, then either r or s equals n. An integer n is composite if, and only if, n> 1
and n= rs for some integers r and s with 1< r< n and 1< s< n.

In symbols:

n is prime ⇔ ∀ positive integers r and s, if n = rs
then either r = 1 and s = n or r = n and s = 1.

n is composite ⇔ ∃ positive integers r and s such that n = rs
and 1 < r < n and 1 < s < n.

Example 4.1.2 Prime and Composite Numbers

a. Is 1 prime?

b. Is every integer greater than 1 either prime or composite?

c. Write the first six prime numbers.

d. Write the first six composite numbers.

Solution

a. No. A prime number is required to be greater than 1.Note The reason for not
allowing 1 to be prime is
discussed in Section 4.3. b. Yes. Let n be any integer that is greater than 1. Consider all pairs of positive integers

r and s such that n = rs. There exist at least two such pairs, namely r = n and s = 1
and r = 1 and s = n. Moreover, since n = rs, all such pairs satisfy the inequalities
1 ≤ r ≤ n and 1 ≤ s ≤ n. If n is prime, then the two displayed pairs are the only ways
to write n as rs. Otherwise, there exists a pair of positive integers r and s such that
n = rs and neither r nor s equals either 1 or n. Therefore, in this case 1 < r < n and
1 < s < n, and hence n is composite.

c. 2, 3, 5, 7, 11, 13

d. 4, 6, 8, 9, 10, 12 ■

Proving Existential Statements
According to the definition given in Section 3.1, a statement in the form

∃x ∈ D such that Q(x)

is true if, and only if,

Q(x) is true for at least one x in D.

One way to prove this is to find an x in D that makes Q(x) true. Another way is to give
a set of directions for finding such an x . Both of these methods are called constructive
proofs of existence.
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Example 4.1.3 Constructive Proofs of Existence

a. Prove the following: ∃ an even integer n that can be written in two ways as a sum of
two prime numbers.

b. Suppose that r and s are integers. Prove the following: ∃ an integer k such that
22r + 18s = 2k.

Solution

a. Let n = 10. Then 10 = 5+ 5 = 3+ 7 and 3, 5, and 7 are all prime numbers.

b. Let k = 11r + 9s. Then k is an integer because it is a sum of products of integers; and
by substitution, 2k = 2(11r + 9s), which equals 22r + 18s by the distributive law of
algebra. ■

A nonconstructive proof of existence involves showing either (a) that the existence
of a value of x that makes Q(x) true is guaranteed by an axiom or a previously proved
theorem or (b) that the assumption that there is no such x leads to a contradiction. The
disadvantage of a nonconstructive proof is that it may give virtually no clue about where
or how x may be found. The widespread use of digital computers in recent years has
led to some dissatisfaction with this aspect of nonconstructive proofs and to increased
efforts to produce constructive proofs containing directions for computer calculation of
the quantity in question.

Disproving Universal Statements by Counterexample
To disprove a statement means to show that it is false. Consider the question of disproving
a statement of the form

∀x in D, if P(x) then Q(x).

Showing that this statement is false is equivalent to showing that its negation is true. The
negation of the statement is existential:

∃x in D such that P(x) and not Q(x).

But to show that an existential statement is true, we generally give an example, and
because the example is used to show that the original statement is false, we call it a coun-
terexample. Thus the method of disproof by counterexample can be written as follows:

Disproof by Counterexample

To disprove a statement of the form “∀x ∈ D, if P(x) then Q(x),” find a value of x
in D for which the hypothesis P(x) is true and the conclusion Q(x) is false. Such
an x is called a counterexample.

Example 4.1.4 Disproof by Counterexample

Disprove the following statement by finding a counterexample:

∀ real numbers a and b, if a2 = b2 then a = b.

Solution To disprove this statement, you need to find real numbers a and b such that the
hypothesis a2 = b2 is true and the conclusion a = b is false. The fact that both positive
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and negative integers have positive squares helps in the search. If you flip through some
possibilities in your mind, you will quickly see that 1 and −1 will work (or 2 and −2, or
0.5 and −0.5, and so forth).

Statement: ∀ real numbers a and b, if a2 = b2, then a = b.

Counterexample: Let a = 1 and b = −1. Then a2 = 12 = 1 and b2 = (−1)2 = 1,
and so a2 = b2. But a �= b since 1 �= −1.

■

It is a sign of intelligence to make generalizations. Frequently, after observing a prop-
erty to hold in a large number of cases, you may guess that it holds in all cases. You may,
however, run into difficulty when you try to prove your guess. Perhaps you just have not
figured out the key to the proof. But perhaps your guess is false. Consequently, when
you are having serious difficulty proving a general statement, you should interrupt your
efforts to look for a counterexample. Analyzing the kinds of problems you are encoun-
tering in your proof efforts may help in the search. It may even happen that if you find a
counterexample and therefore prove the statement false, your understanding may be suf-
ficiently clarified that you can formulate a more limited but true version of the statement.
For instance, Example 4.1.4 shows that it is not always true that if the squares of two
numbers are equal, then the numbers are equal. However, it is true that if the squares of
two positive numbers are equal, then the numbers are equal.

Proving Universal Statements
The vast majority of mathematical statements to be proved are universal. In discussing
how to prove such statements, it is helpful to imagine them in a standard form:

∀x ∈ D, if P(x) then Q(x).

Sections 1.1 and 3.1 give examples showing how to write any universal statement in this
form. When D is finite or when only a finite number of elements satisfy P(x), such a
statement can be proved by the method of exhaustion.

Example 4.1.5 The Method of Exhaustion

Use the method of exhaustion to prove the following statement:

∀n ∈ Z, if n is even and 4 ≤ n ≤ 26, then n can be written as a sum
of two prime numbers.

Solution 4 = 2+ 2 6 = 3+ 3 8 = 3+ 5 10 = 5+ 5

12 = 5+ 7 14 = 11+ 3 16 = 5+ 11 18 = 7+ 11

20 = 7+ 13 22 = 5+ 17 24 = 5+ 19 26 = 7+ 19 ■

In most cases in mathematics, however, the method of exhaustion cannot be used.
For instance, can you prove by exhaustion that every even integer greater than 2 can be
written as a sum of two prime numbers? No. To do that you would have to check every
even integer, and because there are infinitely many such numbers, this is an impossible
task.
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Even when the domain is finite, it may be infeasible to use the method of exhaustion.
Imagine, for example, trying to check by exhaustion that the multiplication circuitry of a
particular computer gives the correct result for every pair of numbers in the computer’s
range. Since a typical computer would require thousands of years just to compute all
possible products of all numbers in its range (not to mention the time it would take to
check the accuracy of the answers), checking correctness by the method of exhaustion is
obviously impractical.

The most powerful technique for proving a universal statement is one that works
regardless of the size of the domain over which the statement is quantified. It is called
the method of generalizing from the generic particular. Here is the idea underlying the
method:

Method of Generalizing from the Generic Particular

To show that every element of a set satisfies a certain property, suppose x is a
particular but arbitrarily chosen element of the set, and show that x satisfies the
property.

Example 4.1.6 Generalizing from the Generic Particular

At some time you may have been shown a “mathematical trick” like the following. You
ask a person to pick any number, add 5, multiply by 4, subtract 6, divide by 2, and subtract
twice the original number. Then you astound the person by announcing that their final
result was 7. How does this “trick” work? Let an empty box � or the symbol x stand
for the number the person picks. Here is what happens when the person follows your
directions:

Step Visual Result Algebraic Result

Pick a number. � x

Add 5. � | | | | | x + 5

Multiply by 4. � | | | | |
(x + 5) ·4 = 4x + 20

� | | | | |
� | | | | |
� | | | | |

Subtract 6. � | |
(4x + 20)− 6 = 4x + 14

� | |
� | | | | |
� | | | | |

Divide by 2. � | | 4x + 14

2
= 2x + 7� | | | | |

Subtract twice the original number. | |
(2x + 7)− 2x = 7| | | | |

Thus no matter what number the person starts with, the result will always be 7. Note that
the x in the analysis above is particular (because it represents a single quantity), but it
is also arbitrarily chosen or generic (because any number whatsoever can be put in its
place). This illustrates the process of drawing a general conclusion from a particular but
generic object. ■
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The point of having x be arbitrarily chosen (or generic) is to make a proof that can
be generalized to all elements of the domain. By choosing x arbitrarily, you are making
no special assumptions about x that are not also true of all other elements of the domain.
The word generic means “sharing all the common characteristics of a group or class.”
Thus everything you deduce about a generic element x of the domain is equally true of
any other element of the domain.

When the method of generalizing from the generic particular is applied to a property
of the form “If P(x) then Q(x),” the result is the method of direct proof. Recall that
the only way an if-then statement can be false is for the hypothesis to be true and the
conclusion to be false. Thus, given the statement “If P(x) then Q(x),” if you can show
that the truth of P(x) compels the truth of Q(x), then you will have proved the statement.
It follows by the method of generalizing from the generic particular that to show that “∀x ,
if P(x) then Q(x),” is true for all elements x in a set D, you suppose x is a particular but
arbitrarily chosen element of D that makes P(x) true, and then you show that x makes
Q(x) true.

Method of Direct Proof

1. Express the statement to be proved in the form “∀x ∈ D, if P(x) then Q(x).”
(This step is often done mentally.)

2. Start the proof by supposing x is a particular but arbitrarily chosen element of D
for which the hypothesis P(x) is true. (This step is often abbreviated “Suppose
x ∈ D and P(x).”)

3. Show that the conclusion Q(x) is true by using definitions, previously established
results, and the rules for logical inference.

Example 4.1.7 A Direct Proof of a Theorem

Prove that the sum of any two even integers is even.!
Caution! The word two
in this statement does not
necessarily refer to two
distinct integers. If a
choice of integers is made
arbitrarily, the integers are
very likely to be distinct,
but they might be the
same.

Solution Whenever you are presented with a statement to be proved, it is a good idea to
ask yourself whether you believe it to be true. In this case you might imagine some pairs
of even integers, say 2+ 4, 6+ 10, 12+ 12, 28+ 54, and mentally check that their sums
are even. However, since you cannot possibly check all pairs of even numbers, you cannot
know for sure that the statement is true in general by checking its truth in these particular
instances. Many properties hold for a large number of examples and yet fail to be true in
general.

To prove this statement in general, you need to show that no matter what even integers
are given, their sum is even. But given any two even integers, it is possible to represent
them as 2r and 2s for some integers r and s. And by the distributive law of algebra,
2r + 2s = 2(r + s), which is even. Thus the statement is true in general.

Suppose the statement to be proved were much more complicated than this. What is
the method you could use to derive a proof?

Formal Restatement: ∀ integers m and n, if m and n are even then m + n is even.

This statement is universally quantified over an infinite domain. Thus to prove it in gen-
eral, you need to show that no matter what two integers you might be given, if both of
them are even then their sum will also be even.

Next ask yourself, “Where am I starting from?” or “What am I supposing?” The
answer to such a question gives you the starting point, or first sentence, of the proof.
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Starting Point: Suppose m and n are particular but arbitrarily chosen integers that are
even.

Or, in abbreviated form:

Suppose m and n are any even integers.

Then ask yourself, “What conclusion do I need to show in order to complete the proof?”

To Show: m + n is even.

At this point you need to ask yourself, “How do I get from the starting point to the
conclusion?” Since both involve the term even integer, you must use the definition of
this term—and thus you must know what it means for an integer to be even. It follows
from the definition that since m and n are even, each equals twice some integer. One of
the basic laws of logic, called existential instantiation, says, in effect, that if you know
something exists, you can give it a name. However, you cannot use the same name to
refer to two different things, both of which are currently under discussion.

Existential Instantiation

If the existence of a certain kind of object is assumed or has been deduced then it
can be given a name, as long as that name is not currently being used to denote
something else.

!
Caution! Because m
and n are arbitrarily
chosen, they could be any
pair of even integers
whatsoever. Once r is
introduced to satisfy
m = 2r , then r is not
available to represent
something else. If you
had set m = 2r , and
n = 2r , then m would
equal n, which need not
be the case.

Thus since m equals twice some integer, you can give that integer a name, and since n
equals twice some integer, you can also give that integer a name:

m = 2r, for some integer r and n = 2s, for some integer s.

Now what you want to show is that m + n is even. In other words, you want to show
that m + n equals 2 · (some integer). Having just found alternative representations for m
(as 2r ) and n (as 2s), it seems reasonable to substitute these representations in place of m
and n:

m + n = 2r + 2s.

Your goal is to show that m + n is even. By definition of even, this means that m + n can
be written in the form

2 · (some integer).

This analysis narrows the gap between the starting point and what is to be shown to
showing that

2r + 2s = 2 · (some integer).

Why is this true? First, because of the distributive law from algebra, which says that

2r + 2s = 2(r + s),

and, second, because the sum of any two integers is an integer, which implies that r + s
is an integer.

This discussion is summarized by rewriting the statement as a theorem and giving a
formal proof of it. (In mathematics, the word theorem refers to a statement that is known
to be true because it has been proved.) The formal proof, as well as many others in this
text, includes explanatory notes to make its logical flow apparent. Such comments are
purely a convenience for the reader and could be omitted entirely. For this reason they are
italicized and enclosed in italic square brackets: [ ].
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Donald Knuth, one of the pioneers of the science of computing, has compared con-
structing a computer program from a set of specifications to writing a mathematical proof
based on a set of axioms.∗ In keeping with this analogy, the bracketed comments can be
thought of as similar to the explanatory documentation provided by a good programmer.
Documentation is not necessary for a program to run, but it helps a human reader under-
stand what is going on.

Theorem 4.1.1

The sum of any two even integers is even.

Proof:

Suppose m and n are [particular but arbitrarily chosen] even integers. [We must show
that m + n is even.] By definition of even, m = 2r and n = 2s for some integers r
and s. Then

m + n = 2r + 2s by substitution

= 2(r + s) by factoring out a 2.

Let t = r + s. Note that t is an integer because it is a sum of integers. Hence

m + n = 2t where t is an integer.

It follows by definition of even that m + n is even. [This is what we needed to show.]†

■

Note Introducing t to
equal r + s is another use
of existential
instantiation.

Most theorems, like the one above, can be analyzed to a point where you realize that
as soon as a certain thing is shown, the theorem will be proved. When that thing has been
shown, it is natural to end the proof with the words “this is what we needed to show.” The
Latin words for this are quod erat demonstrandum, or Q.E.D. for short. Proofs in older
mathematics books end with these initials.

Note that both the if and the only if parts of the definition of even were used in the
proof of Theorem 4.1.1. Since m and n were known to be even, the only if (⇒) part of
the definition was used to deduce that m and n had a certain general form. Then, after
some algebraic substitution and manipulation, the if (⇐) part of the definition was used
to deduce that m + n was even.

Directions for Writing Proofs of Universal Statements
Think of a proof as a way to communicate a convincing argument for the truth of a
mathematical statement. When you write a proof, imagine that you will be sending it to
a capable classmate who has had to miss the last week or two of your course. Try to be
clear and complete. Keep in mind that your classmate will see only what you actually
write down, not any unexpressed thoughts behind it. Ideally, your proof will lead your
classmate to understand why the given statement is true.

∗Donald E. Knuth, The Art of Computer Programming, 2nd ed., Vol. I (Reading, MA: Addison-
Wesley, 1973), p. ix.
†See page 134 for a discussion of the role of universal modus ponens in this proof.
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Over the years, the following rules of style have become fairly standard for writing
the final versions of proofs:

1. Copy the statement of the theorem to be proved on your paper.

2. Clearly mark the beginning of your proof with the word Proof.

3. Make your proof self-contained.
This means that you should explain the meaning of each variable used in your

proof in the body of the proof. Thus you will begin proofs by introducing the initial
variables and stating what kind of objects they are. The first sentence of your proof
would be something like “Suppose m and n are any even integers” or “Let x be a real
number such that x is greater than 2.” This is similar to declaring variables and their
data types at the beginning of a computer program.

At a later point in your proof, you may introduce a new variable to represent a
quantity that is known at that point to exist. For example, if you have assumed that a
particular integer n is even, then you know that n equals 2 times some integer, and you
can give this integer a name so that you can work with it concretely later in the proof.
Thus if you decide to call the integer, say, s, you would write, “Since n is even, n = 2s
for some integer s,” or “since n is even, there exists an integer s such that n = 2s.”

4. Write your proof in complete, gramatically correct sentences.
This does not mean that you should avoid using symbols and shorthand abbrevia-

tions, just that you should incorporate them into sentences. For example, the proof of
Theorem 4.1.1 contains the sentence

Then m + n = 2r + 2s

= 2(r + s).

To read such text as a sentence, read the first equals sign as “equals” and each subse-
quent equals sign as “which equals.”

5. Keep your reader informed about the status of each statement in your proof.
Your reader should never be in doubt about whether something in your proof has

been assumed or established or is still to be deduced. If something is assumed, preface
it with a word like Suppose or Assume. If it is still to be shown, preface it with words
like,Wemust show that or In other words, we must show that. This is especially impor-
tant if you introduce a variable in rephrasing what you need to show. (See Common
Mistakes on the next page.)

6. Give a reason for each assertion in your proof.
Each assertion in a proof should come directly from the hypothesis of the theorem,

or follow from the definition of one of the terms in the theorem, or be a result obtained
earlier in the proof, or be a mathematical result that has previously been established or
is agreed to be assumed. Indicate the reason for each step of your proof using phrases
such as by hypothesis, by definition of . . . , and by theorem . . . .

7. Include the “little words and phrases” that make the logic of your arguments
clear.

When writing a mathematical argument, especially a proof, indicate how each
sentence is related to the previous one. Does it follow from the previous sentence or
from a combination of the previous sentence and earlier ones? If so, start the sentence
by stating the reason why it follows or by writing Then, or Thus, or So, or Hence, or
Therefore, or Consequently, or It follows that, and include the reason at the end of the
sentence. For instance, in the proof of Theorem 4.1.1, once you know that m is even,
you can write: “By definition of even, m = 2r for some integer r ,” or you can write,
“Then m = 2r for some integer r by definition of even.”
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If a sentence expresses a new thought or fact that does not follow as an immedi-
ate consequence of the preceding statement but is needed for a later part of a proof,
introduce it by writing Observe that, or Note that, or But, or Now.

Sometimes in a proof it is desirable to define a new variable in terms of previous
variables. In such a case, introduce the new variable with the word Let. For instance,
in the proof of Theorem 4.1.1, once it is known that m + n = 2(r + s), where r and
s are integers, a new variable t is introduced to represent r + s. The proof goes on to
say, “Let t = r + s. Then t is an integer because it is a sum of two integers.”

8. Display equations and inequalities.
The convention is to display equations and inequalities on separate lines to increase

readability, both for other people and for ourselves so that we can more easily check
our work for accuracy. We follow the convention in the text of this book, but in order
to save space, we violate it in a few of the exercises and in many of the solutions con-
tained in Appendix B. So you may need to copy out some parts of solutions on scratch
paper to understand them fully. Please follow the convention in your own work. Leave
plenty of empty space, and don’t be stingy with paper!

Variations among Proofs
It is rare that two proofs of a given statement, written by two different people, are identi-
cal. Even when the basic mathematical steps are the same, the two people may use differ-
ent notation or may give differing amounts of explanation for their steps, or may choose
different words to link the steps together into paragraph form. An important question is
how detailed to make the explanations for the steps of a proof. This must ultimately be
worked out between the writer of a proof and the intended reader, whether they be stu-
dent and teacher, teacher and student, student and fellow student, or mathematician and
colleague. Your teacher may provide explicit guidelines for you to use in your course. Or
you may follow the example of the proofs in this book (which are generally explained
rather fully in order to be understood by students at various stages of mathematical devel-
opment). Remember that the phrases written inside brackets [ ] are intended to elucidate
the logical flow or underlying assumptions of the proof and need not be written down at
all. It is entirely your decision whether to include such phrases in your own proofs.

Common Mistakes
The following are some of the most common mistakes people make when writing math-
ematical proofs.

1. Arguing from examples.
Looking at examples is one of the most helpful practices a problem solver can

engage in and is encouraged by all good mathematics teachers. However, it is a mistake
to think that a general statement can be proved by showing it to be true for some special
cases. A property referred to in a universal statement may be true in many instances
without being true in general.

Here is an example of this mistake. It is an incorrect “proof” of the fact that the
sum of any two even integers is even. (Theorem 4.1.1).

This is true because if m = 14 and n = 6, which are both even,
then m + n = 20, which is also even.

Some people find this kind of argument convincing because it does, after all, consist
of evidence in support of a true conclusion. But remember that when we discussed
valid arguments, we pointed out that an argument may be invalid and yet have a true
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conclusion. In the same way, an argument from examples may be mistakenly used to
“prove” a true statement. In the previous example, it is not sufficient to show that the
conclusion “m + n is even” is true for m = 14 and n = 6. You must give an argument
to show that the conclusion is true for any even integers m and n.

2. Using the same letter to mean two different things.
Some beginning theorem provers give a new variable quantity the same letter name

as a previously introduced variable. Consider the following “proof” fragment:

Suppose m and n are any odd integers. Then by definition of odd,
m = 2k + 1 and n = 2k + 1 for some integer k.

This is incorrect. Using the same symbol, k, in the expressions for both m and n
implies that m = 2k + 1 = n. It follows that the rest of the proof applies only to inte-
gers m and n that equal each other. This is inconsistent with the supposition that m
and n are arbitrarily chosen odd integers. For instance, the proof would not show that
the sum of 3 and 5 is even.

3. Jumping to a conclusion.
To jump to a conclusion means to allege the truth of something without giving an

adequate reason. Consider the following “proof” that the sum of any two even integers
is even.

Suppose m and n are any even integers. By definition of even, m = 2r and
n = 2s for some integers r and s. Then m + n = 2r + 2s. So m + n is even.

The problem with this “proof” is that the crucial calculation

2r + 2s = 2(r + s)

is missing. The author of the “proof” has jumped prematurely to a conclusion.

4. Circular reasoning.
To engage in circular reasoning means to assume what is to be proved; it is a

variation of jumping to a conclusion. As an example, consider the following “proof”
of the fact that the product of any two odd integers is odd:

Suppose m and n are any odd integers. When any odd integers are
multiplied, their product is odd. Hence mn is odd.

5. Confusion between what is known and what is still to be shown.
A more subtle way to engage in circular reasoning occurs when the conclusion to

be shown is restated using a variable. Here is an example in a “proof” that the product
of any two odd integers is odd:

Suppose m and n are any odd integers. We must show that mn is odd. This means
that there exists an integer s such that

mn = 2s + 1.

Also by definition of odd, there exist integers a and b such that

m = 2a + 1 and n = 2b + 1.

Then

mn = (2a + 1)(2b + 1) = 2s + 1.

So, since s is an integer, mn is odd by definition of odd.
In this example, when the author restated the conclusion to be shown (that mn is

odd), the author wrote “there exists an integer s such that mn = 2s + 1.” Later the
author jumped to an unjustified conclusion by assuming the existence of this s when
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that had not, in fact, been established. This mistake might have been avoided if the
author had written “This means that we must show that there exists an integer s such
that

mn = 2s + 1.

An even better way to avoid this kind of error is not to introduce a variable into a proof
unless it is either part of the hypothesis or deducible from it.

6. Use of any rather than some.
There are a few situations in which the words any and some can be used inter-

changeably. For instance, in starting a proof that the square of any odd integer is odd,
one could correctly write “Suppose m is any odd integer” or “Suppose m is some odd
integer.” In most situations, however, the words any and some are not interchangeable.
Here is the start of a “proof” that the square of any odd integer is odd, which uses any
when the correct word is some:

Suppose m is a particular but arbitrarily chosen odd integer.
By definition of odd, m = 2a + 1 for any integer a.

In the second sentence it is incorrect to say that “m = 2a + 1 for any integer a”
because a cannot be just “any” integer; in fact, solving m = 2a + 1 for a shows
that the only possible value for a is (m − 1)/2. The correct way to finish the sec-
ond sentence is, “m = 2a + 1 for some integer a” or “there exists an integer a such
that m = 2a + 1.”

7. Misuse of the word if.
Another common error is not serious in itself, but it reflects imprecise think-

ing that sometimes leads to problems later in a proof. This error involves using the
word if when the word because is really meant. Consider the following proof
fragment:

Suppose p is a prime number. If p is prime, then p cannot be
written as a product of two smaller positive integers.

The use of the word if in the second sentence is inappropriate. It suggests that the
primeness of p is in doubt. But p is known to be prime by the first sentence. It cannot
be written as a product of two smaller positive integers because it is prime. Here is a
correct version of the fragment:

Suppose p is a prime number. Because p is prime, p cannot be
written as a product of two smaller positive integers.

Getting Proofs Started
Believe it or not, once you understand the idea of generalizing from the generic particular
and the method of direct proof, you can write the beginnings of proofs even for theorems
you do not understand. The reason is that the starting point and what is to be shown in a
proof depend only on the linguistic form of the statement to be proved, not on the content
of the statement.

Note You are not
expected to know
anything about complete,
bipartite graphs.

Example 4.1.8 Identifying the “Starting Point” and the “Conclusion to Be Shown”

Write the first sentence of a proof (the “starting point”) and the last sentence of a proof
(the “conclusion to be shown”) for the following statement:

Every complete, bipartite graph is connected.
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Solution It is helpful to rewrite the statement formally using a quantifier and a variable:

︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷domain hypothesis conclusion

Formal Restatement: ∀ graphs G, if G is complete and bipartite, then G is connected.

The first sentence, or starting point, of a proof supposes the existence of an object (in
this case G) in the domain (in this case the set of all graphs) that satisfies the hypothesis
of the if-then part of the statement (in this case that G is complete and bipartite). The
conclusion to be shown is just the conclusion of the if-then part of the statement (in this
case that G is connected).

Starting Point: Suppose G is a [particular but arbitrarily chosen] graph such that G
is complete and bipartite.

Conclusion to Be Shown: G is connected.

Thus the proof has the following shape:

Proof:

Suppose G is a [particular but arbitrarily chosen] graph such that G is complete and
bipartite.
...

Therefore, G is connected. ■

Showing That an Existential Statement Is False
Recall that the negation of an existential statement is universal. It follows that to prove an
existential statement is false, you must prove a universal statement (its negation) is true.

Example 4.1.9 Disproving an Existential Statement

Show that the following statement is false:

There is a positive integer n such that n2 + 3n + 2 is prime.

Solution Proving that the given statement is false is equivalent to proving its negation is
true. The negation is

For all positive integers n, n2 + 3n + 2 is not prime.

Because the negation is universal, it is proved by generalizing from the generic particular.

Claim: The statement “There is a positive integer n such that n2 + 3n + 2 is prime” is
false.

Proof:

Suppose n is any [particular but arbitrarily chosen] positive integer. [We will show that
n2 + 3n + 2 is not prime.]We can factor n2 + 3n + 2 to obtain n2 + 3n + 2 = (n + 1)(n +
2). We also note that n + 1 and n + 2 are integers (because they are sums of integers) and
that both n + 1 > 1 and n + 2 > 1 (because n ≥ 1). Thus n2 + 3n + 2 is a product of
two integers each greater than 1, and so n2 + 3n + 2 is not prime. ■

Conjecture, Proof, and Disproof
More than 350 years ago, the French mathematician Pierre de Fermat claimed that it is
impossible to find positive integers x, y, and z with xn + yn = zn if n is an integer that
is at least 3. (For n = 2, the equation has many integer solutions, such as 32 + 42 = 52

and 52 + 122 = 132.) Fermat wrote his claim in the margin of a book, along with the
comment “I have discovered a truly remarkable PROOF of this theoremwhich this margin
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is too small to contain.” No proof, however, was found among his papers, and over the
years some of the greatest mathematical minds tried and failed to discover a proof or a
counterexample, for what came to be known as Fermat’s last theorem.

In 1986 Kenneth Ribet of the University of California at Berkeley showed that if a cer-
tain other statement, the Taniyama–Shimura conjecture, could be proved, then Fermat’s
theorem would follow. Andrew Wiles, an English mathematician and faculty member at
Princeton University, had become intrigued by Fermat’s claim while still a child and, as
an adult, had come to work in the branch of mathematics to which the Taniyama–Shimura
conjecture belonged. As soon as he heard of Ribet’s result, Wiles immediately set to work
to prove the conjecture. In June of 1993, after 7 years of concentrated effort, he presented
a proof to worldwide acclaim.
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During the summer of 1993, however, while every part of the proof was being care-
fully checked to prepare for formal publication, Wiles found that he could not justify one
step and that that step might actually be wrong. He worked unceasingly for another year
to resolve the problem, finally realizing that the gap in the proof was a genuine error but
that an approach he had worked on years earlier and abandoned provided a way around
the difficulty. By the end of 1994, the revised proof had been thoroughly checked and
pronounced correct in every detail by experts in the field. It was published in the Annals
of Mathematics in 1995. Several books and an excellent documentary television show
have been produced that convey the drama and excitement of Wiles’s discovery.∗

One of the oldest problems in mathematics that remains unsolved is the Goldbach
conjecture. In Example 4.1.5 it was shown that every even integer from 4 to 26 can be
represented as a sum of two prime numbers. More than 250 years ago, Christian Goldbach
(1690–1764) conjectured that every even integer greater than 2 can be so represented.
Explicit computer-aided calculations have shown the conjecture to be true up to at least
1018. But there is a huge chasm between 1018 and infinity. As pointed out by James Gleick
of the New York Times, many other plausible conjectures in number theory have proved
false. Leonhard Euler (1707–1783), for example, proposed in the eighteenth century that
a4 + b4 + c4 = d4 had no nontrivial whole number solutions. In other words, no three
perfect fourth powers add up to another perfect fourth power. For small numbers, Euler’s
conjecture looked good. But in 1987 a Harvard mathematician, Noam Elkies, proved it
wrong. One counterexample, found by Roger Frye of Thinking Machines Corporation in
a long computer search, is 95,8004 + 217,5194 + 414,5604 = 422,4814.†

In May 2000, “to celebrate mathematics in the new millennium,” the Clay Mathe-
matics Institute of Cambridge, Massachusetts, announced that it would award prizes of
$1 million each for the solutions to seven longstanding, classical mathematical ques-
tions. One of them, “P vs. NP,” asks whether problems belonging to a certain class can
be solved on a computer using more efficient methods than the very inefficient methods
that are presently known to work for them. This question is discussed briefly at the end
of Chapter 11.

Test Yourself
Answers to Test Yourself questions are located at the end of each section.

1. An integer is even if, and only if, _____.

2. An integer is odd if, and only if, _____.

3. An integer n is prime if, and only if, _____.

4. The most common way to disprove a universal statement is
to find _____.

∗“The Proof,” produced in 1997, for the series Nova on the Public Broadcasting System; Fermat’s
Enigma: The Epic Quest to Solve the World’s Greatest Mathematical Problem, by Simon Singh
and John Lynch (New York: Bantam Books, 1998); Fermat’s Last Theorem: Unlocking the Secret
of an Ancient Mathematical Problem by Amir D. Aczel (New York: Delacorte Press, 1997).
†James Gleick, “Fermat’s Last Theorem Still Has Zero Solutions,” New York Times, 17 April 1988.
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5. According to the method of generalizing from the generic
particular, to show that every element of a set satisfies a cer-
tain property, suppose x is a _____, and show that _____.

6. To use the method of direct proof to prove a statement of the
form, “For all x in a set D, if P(x) then Q(x),” one supposes
that _____ and one shows that _____.

Exercise Set 4.1*
In 1–3, use the definitions of even, odd, prime, and composite
to justify each of your answers.

1. Assume that k is a particular integer.
a. Is −17 an odd integer? b. Is 0 an even integer?
c. Is 2k − 1 odd?

2. Assume that m and n are particular integers.
a. Is 6m + 8n even? b. Is 10mn + 7 odd?
c. If m > n > 0, is m2 − n2 composite?

3. Assume that r and s are particular integers.
a. Is 4rs even? b. Is 6r + 4s2 + 3 odd?
c. If r and s are both positive, is r 2 + 2rs + s2 composite?

Prove the statements in 4–10.

4. There are integers m and n such that m > 1 and n > 1 and
1
m +

1
n is an integer.

5. There are distinct integers m and n such that 1
m +

1
n is an

integer.

6. There are real numbers a and b such that
√
a + b = √a +√b.

7. There is an integer n > 5 such that 2n − 1 is prime.

8. There is a real number x such that x > 1 and 2x > x10.

Definition: An integer n is called a perfect square if, and
only if, n = k2 for some integer k.

9. There is a perfect square that can be written as a sum of two
other perfect squares.

10. There is an integer n such that 2n2 − 5n + 2 is prime.

Disprove the statements in 11–13 by giving a counterexample.

11. For all real numbers a and b, if a < b then a2 < b2.

12. For all integers n, if n is odd then n−1
2 is odd.

13. For all integers m and n, if 2m + n is odd then m and n are
both odd.

In 14–16, determine whether the property is true for all integers,
true for no integers, or true for some integers and false for other
integers. Justify your answers.

14. (a + b)2 = a2 + b2 15.H −an = (−a)n

16. The average of any two odd integers is odd.

Prove the statements in 17 and 18 by the method of exhaustion.

17. Every positive even integer less than 26 can be expressed
as a sum of three or fewer perfect squares. (For instance,
10 = 12 + 32 and 16 = 42.)

18. For each integer n with 1 ≤ n ≤ 10, n2 − n + 11 is a prime
number.

19. a. Rewrite the following theorem in three different ways: as
∀ , if _____ then _____, as ∀ _____, _____ (with-
out using the words if or then), and as If _____, then _____
(without using an explicit universal quantifier).

b. Fill in the blanks in the proof of the theorem.

Theorem: The sum of any even integer and any odd inte-
ger is odd.

Proof: Suppose m is any even integer and n is (a) . By
definition of even, m = 2r for some (b) , and by defini-
tion of odd, n = 2s + 1 for some integer s. By substitution
and algebra,

m + n = (c) = 2(r + s)+ 1.

Since r and s are both integers, so is their sum r + s. Hence
m + n has the form twice some integer plus one, and so
(d) by definition of odd.

Each of the statements in 20–23 is true. For each, (a) rewrite
the statement with the quantification implicit as If _____, then
_____, and (b) write the first sentence of a proof (the “starting
point”) and the last sentence of a proof (the “conclusion to be
shown”). Note that you do not need to understand the statements
in order to be able to do these exercises.

20. For all integers m, if m > 1 then 0 <
1
m < 1.

21. For all real numbers x , if x > 1 then x2 > x .

22. For all integers m and n, if mn = 1 then m = n = 1 or
m = n = −1.

23. For all real numbers x , if 0 < x < 1 then x2 < x .

∗For exercises with blue numbers, solutions are given in Appendix B. The symbol H indicates that only a hint or partial solution is
given. The symbol ✶ signals that an exercise is more challenging than usual.
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162 Chapter 4 Elementary Number Theory and Methods of Proof

Prove the statements in 24–34. In each case use only the defini-
tions of the terms and the Assumptions listed on page 146, not
any previously established properties of odd and even integers.
Follow the directions given in this section for writing proofs of
universal statements.

24. The negative of any even integer is even.

25. The difference of any even integer minus any odd integer is
odd.

26.H The difference between any odd integer and any even inte-
ger is odd. (Note: The “proof” shown in exericse 39 con-
tains an error. Can you spot it?)

27. The sum of any two odd integers is even.

28. For all integers n, if n is odd then n2 is odd.

29. For all integers n, if n is odd then 3n + 5 is even.

30. For all integers m, if m is even then 3m + 5 is odd.

31. If k is any odd integer and m is any even integer, then,
k2 + m2 is odd.

32. If a is any odd integer and b is any even integer, then,
2a + 3b is even.

33. If n is any even integer, then (−1)n = 1.

34. If n is any odd integer, then (−1)n = −1.
Prove that the statements in 35–37 are false.

35. There exists an integer m ≥ 3 such that m2 − 1 is prime.

36. There exists an integer n such that 6n2 + 27 is prime.

37. There exists an integer k ≥ 4 such that 2k2 − 5k + 2 is
prime.

Find the mistakes in the “proofs” shown in 38–42.

38. Theorem: For all integers k, if k > 0 then k2 + 2k + 1 is
composite.

“Proof: For k = 2, k2 + 2k + 1 = 22 + 2 ·2+ 1 = 9. But
9 = 3 ·3, and so 9 is composite. Hence the theorem is true.”

39. Theorem: The difference between any odd integer and any
even integer is odd.

“Proof: Suppose n is any odd integer, and m is any even
integer. By definition of odd, n = 2k + 1 where k is an
integer, and by definition of even, m = 2k where k is an
integer. Then

n − m = (2k + 1)− 2k = 1.

But 1 is odd. Therefore, the difference between any odd
integer and any even integer is odd.”

40. Theorem: For all integers k, if k > 0 then k2 + 2k + 1 is
composite.

“Proof: Suppose k is any integer such that k > 0. If
k2 + 2k + 1 is composite, then k2 + 2k + 1 = rs for some
integers r and s such that

1 < r < (k2 + 2k + 1)

and 1 < s < (k2 + 2k + 1).

Since k2 + 2k + 1 = rs

and both r and s are strictly between 1 and k2 + 2k + 1,
then k2 + 2k + 1 is not prime. Hence k2 + 2k + 1 is com-
posite as was to be shown.”

41. Theorem: The product of an even integer and an odd inte-
ger is even.

“Proof: Suppose m is an even integer and n is an odd inte-
ger. Ifm ·n is even, then by definition of even there exists an
integer r such that m ·n = 2r . Also since m is even, there
exists an integer p such that m = 2p, and since n is odd
there exists an integer q such that n = 2q + 1. Thus

mn = (2p)(2q + 1) = 2r,

where r is an integer. By definition of even, then, m ·n is
even, as was to be shown.”

42. Theorem: The sum of any two even integers equals 4k for
some integer k.

“Proof: Suppose m and n are any two even integers. By
definition of even, m = 2k for some integer k and n = 2k
for some integer k. By substitution,

m + n = 2k + 2k = 4k.

This is what was to be shown.”

In 43–60 determine whether the statement is true or false. Jus-
tify your answer with a proof or a counterexample, as appropri-
ate. In each case use only the definitions of the terms and the
Assumptions listed on page 146 not any previously established
properties.

43. The product of any two odd integers is odd.

44. The negative of any odd integer is odd.

45. The difference of any two odd integers is odd.

46. The product of any even integer and any integer is even.

47. If a sum of two integers is even, then one of the sum-
mands is even. (In the expression a + b, a and b are called
summands.)

48. The difference of any two even integers is even.

49. The difference of any two odd integers is even.

50. For all integers n and m, if n − m is even then n3 − m3 is
even.

51. For all integers n, if n is prime then (−1)n = −1.
52. For all integers m, if m > 2 then m2 − 4 is composite.

53. For all integers n, n2 − n + 11 is a prime number.

54. For all integers n, 4(n2 + n + 1)− 3n2 is a perfect square.
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55. Every positive integer can be expressed as a sum of three or
fewer perfect squares.

56.✶H (Two integers are consecutive if, and only if, one is one
more than the other.) Any product of four consecutive inte-
gers is one less than a perfect square.

57. If m and n are positive integers and mn is a perfect square,
then m and n are perfect squares.

58. The difference of the squares of any two consecutive inte-
gers is odd.

59. For all nonnegative real numbers a and b,
√
ab = √a√b.

(Note that if x is a nonnegative real number, then there is a

unique nonnegative real number y, denoted
√
x , such that

y2 = x .)

60. For all nonnegative real numbers a and b,
√
a + b = √a +√b.

61. Suppose that integers m and n are perfect squares. Then
m + n + 2

√
mn is also a perfect square. Why?

62.✶H If p is a prime number, must 2p − 1 also be prime? Prove
or give a counterexample.

63.✶ If n is a nonnegative integer, must 22
n + 1 be prime? Prove

or give a counterexample.

Answers for Test Yourself
1. it equals twice some integer 2. it equals twice some integer plus 1 3. n is greater than 1 and if n equals the product of any
two positive integers, then one of the integers equals 1 and the other equals n. 4. a counterexample 5. particular but arbitrarily
chosen element of the set; x satisfies the given property 6. x is a particular but arbitrarily chosen element of the set D that makes
the hypothesis P(x) true; x makes the conclusion Q(x) true.

4.2 Direct Proof and Counterexample II: Rational Numbers

Such, then, is the whole art of convincing. It is contained in two principles: to define all
notations used, and to prove everything by replacing mentally the defined terms by their
definitions. —Blaise Pascal, 1623–1662

Sums, differences, and products of integers are integers. But most quotients of integers
are not integers. Quotients of integers are, however, important; they are known as rational
numbers.

• Definition

A real number r is rational if, and only if, it can be expressed as a quotient of two
integers with a nonzero denominator. A real number that is not rational is irrational.
More formally, if r is a real number, then

r is rational ⇔ ∃ integers a and b such that r = a

b
and b �= 0.

The word rational contains the word ratio, which is another word for quotient. A rational
number can be written as a ratio of integers.

Example 4.2.1 Determining Whether Numbers Are Rational or Irrational

a. Is 10/3 a rational number?

b. Is − 5
39 a rational number?

c. Is 0.281 a rational number?

d. Is 7 a rational number?

e. Is 0 a rational number?
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164 Chapter 4 Elementary Number Theory and Methods of Proof

f. Is 2/0 a rational number?

g. Is 2/0 an irrational number?

h. Is 0.12121212 . . . a rational number (where the digits 12 are assumed to repeat
forever)?

i. If m and n are integers and neither m nor n is zero, is (m + n)/mn a rational number?

Solution

a. Yes, 10/3 is a quotient of the integers 10 and 3 and hence is rational.

b. Yes, − 5
39 = −539 , which is a quotient of the integers −5 and 39 and hence is rational.

c. Yes, 0.281 = 281/1000. Note that the real numbers represented on a typical calculator
display are all finite decimals. An explanation similar to the one in this example shows
that any such number is rational. It follows that a calculator with such a display can
represent only rational numbers.

d. Yes, 7 = 7/1.

e. Yes, 0 = 0/1.

f. No, 2/0 is not a number (division by 0 is not allowed).

g. No, because every irrational number is a number, and 2/0 is not a number. We discuss
additional techniques for determining whether numbers are irrational in Sections 4.6,
4.7, and 9.4.

h. Yes. Let x = 0.12121212 . . . . Then 100x = 12.12121212 . . . . Thus

100x − x = 12.12121212 . . .− 0.12121212 . . . = 12.

But also 100x − x = 99x by basic algebra

Hence 99x = 12,

and so x = 12

99
.

Therefore, 0.12121212 . . . = 12/99, which is a ratio of two nonzero integers and thus
is a rational number.

Note that you can use an argument similar to this one to show that any repeating
decimal is a rational number. In Section 9.4 we show that any rational number can be
written as a repeating or terminating decimal.

i. Yes, since m and n are integers, so are m + n and mn (because sums and products of
integers are integers). Also mn �= 0 by the zero product property. One version of this
property says the following:

Zero Product Property

If neither of two real numbers is zero, then their product is also not zero.
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(See Theorem T11 in Appendix A and exercise 8 at the end of this section.) It follows
that (m + n)/mn is a quotient of two integers with a nonzero denominator and hence
is a rational number. ■

More on Generalizing from the Generic Particular
Some people like to think of the method of generalizing from the generic particular as
a challenge process. If you claim a property holds for all elements in a domain, then
someone can challenge your claim by picking any element in the domain whatsoever and
asking you to prove that that element satisfies the property. To prove your claim, you
must be able to meet all such challenges. That is, you must have a way to convince the
challenger that the property is true for an arbitrarily chosen element in the domain.

For example, suppose “A” claims that every integer is a rational number. “B” chal-
lenges this claim by asking “A” to prove it for n = 7. “A” observes that

7 = 7

1
which is a quotient of integers and hence rational.

“B” accepts this explanation but challenges again with n = −12. “A” responds that

−12 = −12
1

which is a quotient of integers and hence rational.

Next “B” tries to trip up “A” by challenging with n = 0, but “A” answers that

0 = 0

1
which is a quotient of integers and hence rational.

As you can see, “A” is able to respond effectively to all “B”s challenges because “A” has a
general procedure for putting integers into the form of rational numbers: “A” just divides
whatever integer “B” gives by 1. That is, no matter what integer n “B” gives “A”, “A”
writes

n = n

1
which is a quotient of integers and hence rational.

This discussion proves the following theorem.

Theorem 4.2.1

Every integer is a rational number.

In exercise 11 at the end of this section you are asked to condense the above discussion
into a formal proof.

Proving Properties of Rational Numbers
The next example shows how to use the method of generalizing from the generic partic-
ular to prove a property of rational numbers.

Example 4.2.2 A Sum of Rationals Is Rational

Prove that the sum of any two rational numbers is rational.

Solution Begin by mentally or explicitly rewriting the statement to be proved in the form
“∀ , if then .”
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Formal Restatement: ∀ real numbers r and s, if r and s are rational then r + s is rational.

Next ask yourself, “Where am I starting from?” or “What am I supposing?” The answer
gives you the starting point, or first sentence, of the proof.

Starting Point: Suppose r and s are particular but arbitrarily chosen real numbers such
that r and s are rational; or, more simply,

Suppose r and s are rational numbers.

Then ask yourself, “What must I show to complete the proof?”

To Show: r + s is rational.

Finally ask, “How do I get from the starting point to the conclusion?” or “Why must r + s
be rational if both r and s are rational?” The answer depends in an essential way on the
definition of rational.

Rational numbers are quotients of integers, so to say that r and s are rational means
that

r = a

b
and s = c

d
for some integers a, b, c, and d
where b �= 0 and d �= 0.

It follows by substitution that

r + s = a

b
+ c

d
.

You need to show that r + s is rational, which means that r + s can be written as a single
fraction or ratio of two integers with a nonzero denominator. But the right-hand side of
equation (4.2.1) in

a

b
+ c

d
= ad

bd
+ bc

bd
rewriting the fraction with a common
denominator

= ad + bc

bd
adding fractions with a common
denominator.

Is this fraction a ratio of integers? Yes. Because products and sums of integers are inte-
gers, ad + bc and bd are both integers. Is the denominator bd �= 0? Yes, by the zero
product property (since b �= 0 and d �= 0). Thus r + s is a rational number.

This discussion is summarized as follows:

Theorem 4.2.2

The sum of any two rational numbers is rational.

Proof:

Suppose r and s are rational numbers. [We must show that r + s is rational.] Then,
by definition of rational, r = a/b and s = c/d for some integers a, b, c, and d with
b �= 0 and d �= 0. Thus

r + s = a

b
+ c

d
by substitution

= ad + bc

bd
by basic algebra.
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Let p = ad + bc and q = bd. Then p and q are integers because products and sums
of integers are integers and because a, b, c, and d are all integers. Also q �= 0 by the
zero product property. Thus

r + s = p

q
where p and q are integers and q �= 0.

Therefore, r + s is rational by definition of a rational number. [This is what was to be
shown.]

■

Deriving New Mathematics from Old
Section 4.1 focused on establishing truth and falsity of mathematical theorems using
only the basic algebra normally taught in secondary school; the fact that the integers are
closed under addition, subtraction, and multiplication; and the definitions of the terms in
the theorems themselves. In the future, when we ask you to prove something directly
from the definitions, we will mean that you should restrict yourself to this approach.
However, once a collection of statements has been proved directly from the definitions,
another method of proof becomes possible. The statements in the collection can be used
to derive additional results.

Example 4.2.3 Deriving Additional Results about Even and Odd Integers

Suppose that you have already proved the following properties of even and odd integers:

1. The sum, product, and difference of any two even integers are even.

2. The sum and difference of any two odd integers are even.

3. The product of any two odd integers is odd.

4. The product of any even integer and any odd integer is even.

5. The sum of any odd integer and any even integer is odd.

6. The difference of any odd integer minus any even integer is odd.

7. The difference of any even integer minus any odd integer is odd.

Use the properties listed above to prove that if a is any even integer and b is any odd

integer, then a2+b2+1
2 is an integer.

Solution Suppose a is any even integer and b is any odd integer. By property 3, b2 is odd,
and by property 1, a2 is even. Then by property 5, a2 + b2 is odd, and because 1 is also
odd, the sum (a2 + b2)+ 1 = a2 + b2 + 1 is even by property 2. Hence, by definition
of even, there exists an integer k such that a2 + b2 + 1 = 2k. Dividing both sides by 2

gives a2+b2+1
2 = k, which is an integer. Thus a2+b2+1

2 is an integer [as was to be
shown]. ■

A corollary is a statement whose truth can be immediately deduced from a theorem
that has already been proved.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



168 Chapter 4 Elementary Number Theory and Methods of Proof

Example 4.2.4 The Double of a Rational Number

Derive the following as a corollary of Theorem 4.2.2.

Corollary 4.2.3

The double of a rational number is rational.

Solution The double of a number is just its sum with itself. But since the sum of any two
rational numbers is rational (Theorem 4.2.2), the sum of a rational number with itself is
rational. Hence the double of a rational number is rational. Here is a formal version of
this argument:

Proof:

Suppose r is any rational number. Then 2r = r + r is a sum of two rational numbers. So,
by Theorem 4.2.2, 2r is rational. ■

Test Yourself
1. To show that a real number is rational, we must show that

we can write it as _____.
2. An irrational number is a _____ that is _____.

3. Zero is a rational number because _____.

Exercise Set 4.2
The numbers in 1–7 are all rational. Write each number as a
ratio of two integers.

1. −35

6
2. 4.6037 3.

4

5
+ 2

9

4. 0.37373737 . . .

5. 0.56565656 . . .

6. 320.5492492492 . . .

7. 52.4672167216721 . . .

8. The zero product property, says that if a product of two real
numbers is 0, then one of the numbers must be 0.

a. Write this property formally using quantifiers and
variables.

b. Write the contrapositive of your answer to part (a).
c. Write an informal version (without quantifier symbols

or variables) for your answer to part (b).

9. Assume that a and b are both integers and that a �= 0
and b �= 0. Explain why (b − a)/(ab2) must be a rational
number.

10. Assume that m and n are both integers and that n �= 0.
Explain why (5m + 12n)/(4n) must be a rational number.

11. Prove that every integer is a rational number.

12. Fill in the blanks in the following proof that the square of
any rational number is rational:

Proof: Suppose that r is (a) . By definition of rational,
r = a/b for some (b) with b �= 0. By substitution,

r 2 = (c) = a2/b2.

Since a and b are both integers, so are the products a2 and
(d) . Also b2 �= 0 by the (e) . Hence r 2 is a ratio of two
integers with a nonzero denominator, and so (f ) by defi-
nition of rational.

13. Consider the statement: The negative of any rational num-
ber is rational.
a. Write the statement formally using a quantifier and a

variable.
b. Determine whether the statement is true or false and jus-

tify your answer.

14. Consider the statement: The square of any rational number
is a rational number.
a. Write the statement formally using a quantifier and a

variable.
b. Determine whether the statement is true or false and jus-

tify your answer.

Determine which of the statements in 15–20 are true and which
are false. Prove each true statement directly from the defi-
nitions, and give a counterexample for each false statement.
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In case the statement is false, determine whether a small change
would make it true. If so, make the change and prove the new
statement. Follow the directions for writing proofs on page 154.

15. The product of any two rational numbers is a rational
number.

16.H The quotient of any two rational numbers is a rational
number.

17.H The difference of any two rational numbers is a rational
number.

18.H If r and s are any two rational numbers, then r+s
2 is

rational.

19.H For all real numbers a and b, if a < b then a <
a+b
2 < b.

(You may use the properties of inequalities in T17–T27 of
Appendix A.)

20. Given any two rational numbers r and s with r < s, there
is another rational number between r and s. (Hint: Use the
results of exercises 18 and 19.)

Use the properties of even and odd integers that are listed in
Example 4.2.3 to do exercises 21–23. Indicate which properties
you use to justify your reasoning.

21. True or false? If m is any even integer and n is any odd
integer, then m2 + 3n is odd. Explain.

22. True or false? If a is any odd integer, then a2 + a is even.
Explain.

23. True or false? If k is any even integer and m is any odd
integer, then (k + 2)2 − (m − 1)2 is even. Explain.

Derive the statements in 24–26 as corollaries of Theorems 4.2.1,
4.2.2, and the results of exercises 12, 13, 14, 15, and 17.

24. For any rational numbers r and s, 2r + 3s is rational.

25. If r is any rational number, then 3r 2 − 2r + 4 is rational.

26. For any rational number s, 5s3 + 8s2 − 7 is rational.

27. It is a fact that if n is any nonnegative integer, then

1+ 1

2
+ 1

22
+ 1

23
+ · · · + 1

2n
= 1− (1/2n+1)

1− (1/2)
.

(A more general form of this statement is proved in Section
5.2). Is the right-hand side of this equation rational? If so,
express it as a ratio of two integers.

28. Suppose a, b, c, and d are integers and a �= c. Suppose also
that x is a real number that satisfies the equation

ax + b

cx + d
= 1.

Must x be rational? If so, express x as a ratio of two
integers.

29.✶ Suppose a, b, and c are integers and x, y, and z are nonzero
real numbers that satisfy the following equations:

xy

x + y
= a and

xz

x + z
= b and

yz

y + z
= c.

Is x rational? If so, express it as a ratio of two integers.

30. Prove that if one solution for a quadratic equation of the
form x2 + bx + c = 0 is rational (where b and c are ratio-
nal), then the other solution is also rational. (Use the fact
that if the solutions of the equation are r and s, then
x2 + bx + c = (x − r)(x − s).)

31. Prove that if a real number c satisfies a polynomial equation
of the form

r3x
3 + r2x

2 + r1x + r0 = 0,

where r0, r1, r2, and r3 are rational numbers, then c satisfies
an equation of the form

n3x
3 + n2x

2 + n1x + n0 = 0,

where n0, n1, n2, and n3 are integers.

Definition: A number c is called a root of a polynomial p(x)
if, and only if, p(c) = 0.

32.✶ Prove that for all real numbers c, if c is a root of a polyno-
mial with rational coefficients, then c is a root of a polyno-
mial with integer coefficients.

Use the properties of even and odd integers that are listed in
Example 4.2.3 to do exercises 33 and 34.

33. When expressions of the form (x − r)(x − s) are multi-
plied out, a quadratic polynomial is obtained. For instance,
(x − 2)(x − (−7)) = (x − 2)(x + 7) = x2 + 5x − 14.

a.H What can be said about the coefficients of the polyno-
mial obtained by multiplying out (x − r)(x − s) when
both r and s are odd integers? when both r and s are
even integers? when one of r and s is even and the other
is odd?

b. It follows from part (a) that x2 − 1253x + 255 cannot
be written as a product of two polynomials with integer
coefficients. Explain why this is so.

34.✶ Observe that (x − r)(x − s)(x − t)

= x3 − (r + s + t)x2 + (rs + r t + st)x − rst.

a. Derive a result for cubic polynomials similar to the result
in part (a) of exercise 33 for quadratic polynomials.

b. Can x3 + 7x2 − 8x − 27 be written as a product of three
polynomials with integer coefficients? Explain.

In 35–39 find the mistakes in the “proofs” that the sum of any
two rational numbers is a rational number.

35. “Proof: Any two rational numbers produce a rational
number when added together. So if r and s are particu-
lar but arbitrarily chosen rational numbers, then r + s is
rational.”

36. “Proof: Let rational numbers r = 1
4 and s = 1

2 be given.

Then r + s = 1
4 +

1
2 =

3
4 , which is a rational number. This

is what was to be shown.”
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37. “Proof: Suppose r and s are rational numbers. By defini-
tion of rational, r = a/b for some integers a and b with
b �= 0, and s = a/b for some integers a and b with b �= 0.
Then

r + s = a

b
+ a

b
= 2a

b
.

Let p = 2a. Then p is an integer since it is a product of
integers. Hence r + s = p/b, where p and b are integers
and b �= 0. Thus r + s is a rational number by definition of
rational. This is what was to be shown.”

38. “Proof: Suppose r and s are rational numbers. Then
r = a/b and s = c/d for some integers a, b, c, and d with
b �= 0 and d �= 0 (by definition of rational). Then

r + s = a

b
+ c

d
.

But this is a sum of two fractions, which is a fraction.
So r + s is a rational number since a rational number is
a fraction.”

39. “Proof: Suppose r and s are rational numbers. If r + s is
rational, then by definition of rational r + s = a/b for some
integers a and b with b �= 0. Also since r and s are rational,
r = i/j and s = m/n for some integers i, j,m, and n with
j �= 0 and n �= 0. It follows that

r + s = i

j
+ m

n
= a

b
,

which is a quotient of two integers with a nonzero denomi-
nator. Hence it is a rational number. This is what was to be
shown.”

Answers for Test Yourself
1. a ratio of integers with a nonzero denominator 2. real number; not rational 3. 0 = 0

1

4.3 Direct Proof and Counterexample III: Divisibility

The essential quality of a proof is to compel belief. — Pierre de Fermat

When you were first introduced to the concept of division in elementary school, you were
probably taught that 12 divided by 3 is 4 because if you separate 12 objects into groups
of 3, you get 4 groups with nothing left over.

xxx xxx xxx xxx

You may also have been taught to describe this fact by saying that “12 is evenly divisible
by 3” or “3 divides 12 evenly.”

The notion of divisibility is the central concept of one of the most beautiful subjects
in advanced mathematics: number theory, the study of properties of integers.

• Definition

If n and d are integers and d �= 0 then

n is divisible by d if, and only if, n equals d times some integer.

Instead of “n is divisible by d,” we can say that

n is a multiple of d, or
d is a factor of n, or
d is a divisor of n, or
d divides n.

The notation d | n is read “d divides n.” Symbolically, if n and d are integers and
d �= 0:

d | n ⇔ ∃ an integer k such that n = dk.
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Example 4.3.1 Divisibility

a. Is 21 divisible by 3? b. Does 5 divide 40? c. Does 7 | 42?
d. Is 32 a multiple of −16? e. Is 6 a factor of 54? f. Is 7 a factor of −7?

Solution

a. Yes, 21 = 3 ·7. b. Yes, 40 = 5 ·8. c. Yes, 42 = 7 ·6.
d. Yes, 32 = (−16) ·(−2). e. Yes, 54 = 6 ·9. f. Yes, −7 = 7 ·(−1). ■

Example 4.3.2 Divisors of Zero

If k is any nonzero integer, does k divide 0?

Solution Yes, because 0 = k ·0. ■

Two useful properties of divisibility are (1) that if one positive integer divides a sec-
ond positive integer, then the first is less than or equal to the second, and (2) that the only
divisors of 1 are 1 and −1.

Theorem 4.3.1 A Positive Divisor of a Positive Integer

For all integers a and b, if a and b are positive and a divides b, then a ≤ b.

Proof:

Suppose a and b are positive integers and a divides b. [We must show that a ≤ b.]
Then there exists an integer k so that b = ak. By property T25 of Appendix A, k
must be positive because both a and b are positive. It follows that

1 ≤ k

because every positive integer is greater than or equal to 1. Multiplying both sides
by a gives

a ≤ ka = b

because multiplying both sides of an inequality by a positive number preserves the
inequality by property T20 of Appendix A. Thus a ≤ b [as was to be shown].

■

Theorem 4.3.2 Divisors of 1

The only divisors of 1 are 1 and −1.

Proof:

Since 1 ·1 = 1 and (−1)(−1) = 1, both 1 and −1 are divisors of 1. Now suppose
m is any integer that divides 1. Then there exists an integer n such that 1 = mn. By
Theorem T25 in Appendix A, either both m and n are positive or both m and n are
negative. If both m and n are positive, then m is a positive integer divisor of 1. By
Theorem 4.3.1, m ≤ 1, and, since the only positive integer that is less than or equal

continued on page 172
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172 Chapter 4 Elementary Number Theory and Methods of Proof

to 1 is 1 itself, it follows that m = 1. On the other hand, if both m and n are negative,
then, by Theorem T12 in Appendix A, (−m)(−n) = mn = 1. In this case −m is
a positive integer divisor of 1, and so, by the same reasoning, −m = 1 and thus
m = −1. Therefore there are only two possibilities: either m = 1 or m = −1. So the
only divisors of 1 are 1 and −1.

Example 4.3.3 Divisibility of Algebraic Expressions

a. If a and b are integers, is 3a + 3b divisible by 3?

b. If k and m are integers, is 10km divisible by 5?

Solution

a. Yes. By the distributive law of algebra, 3a + 3b = 3(a + b) and a + b is an integer
because it is a sum of two integers.

b. Yes. By the associative law of algebra, 10km = 5 ·(2km) and 2km is an integer because
it is a product of three integers. ■

When the definition of divides is rewritten formally using the existential quantifier,
the result is

d | n ⇔ ∃ an integer k such that n = dk.

Since the negation of an existential statement is universal, it follows that d does not divide
n (denoted d � | n) if, and only if, ∀ integers k, n �= dk, or, in other words, the quotient n/d
is not an integer.

For all integers n and d, d � | n ⇔ n

d
is not an integer.

Example 4.3.4 Checking Nondivisibility

Does 4 | 15?
Solution No, 154 = 3.75, which is not an integer. ■

!
Caution!
a | b denotes the sentence
“a divides b,” whereas
a/b denotes the number
a divided by b.

Be careful to distinguish between the notation a | b and the notation a/b. The notation
a | b stands for the sentence “a divides b,” which means that there is an integer k such that
b = ak. Dividing both sides by a gives b/a = k, an integer. Thus, when a �= 0, a | b if,
and only if, b/a is an integer. On the other hand, the notation a/b stands for the number
a/b which is the result of dividing a by b and which may or may not be an integer. In
particular, be sure to avoid writing things like

��������������
4 | (3+ 5)= 4 | 8.

If read out loud, this becomes, “4 divides the quantity 3 plus 5 equals 4 divides 8,” which
is nonsense.

Example 4.3.5 Prime Numbers and Divisibility

An alternative way to define a prime number is to say that an integer n > 1 is prime if,
and only if, its only positive integer divisors are 1 and itself. ■
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Proving Properties of Divisibility
One of the most useful properties of divisibility is that it is transitive. If one number
divides a second and the second number divides a third, then the first number divides the
third.

Example 4.3.6 Transitivity of Divisibility

Prove that for all integers a, b, and c, if a | b and b | c, then a | c.
Solution Since the statement to be proved is already written formally, you can immediately

pick out the starting point, or first sentence of the proof, and the conclusion that must be
shown.

Starting Point: Suppose a, b, and c are particular but arbitrarily chosen integers such that
a | b and b | c.

To Show: a | c.
You need to show that a | c, or, in other words, that

c = a · (some integer).

But since a | b,
b = ar for some integer r. 4.3.1

And since b | c,
c = bs for some integer s. 4.3.2

Equation 4.3.2 expresses c in terms of b, and equation 4.3.1 expresses b in terms of a.
Thus if you substitute 4.3.1 into 4.3.2, you will have an equation that expresses c in
terms of a.

c = bs by equation 4.3.2

= (ar)s by equation 4.3.1.

But (ar)s = a(rs) by the associative law for multiplication. Hence

c = a(rs).

Now you are almost finished. You have expressed c as a · (something). It remains only to
verify that that something is an integer. But of course it is, because it is a product of two
integers.

This discussion is summarized as follows:

Theorem 4.3.3 Transitivity of Divisibility

For all integers a, b, and c, if a divides b and b divides c, then a divides c.

Proof:

Suppose a, b, and c are [particular but arbitrarily chosen] integers such that a divides
b and b divides c. [We must show that a divides c.] By definition of divisibility,

b = ar and c = bs for some integers r and s.

continued on page 174
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By substitution

c = bs

= (ar)s

= a(rs) by basic algebra.

Let k = rs. Then k is an integer since it is a product of integers, and therefore

c = ak where k is an integer.

Thus a divides c by definition of divisibility. [This is what was to be shown.]

■

It would appear from the definition of prime that to show that an integer is prime
you would need to show that it is not divisible by any integer greater than 1 and less
than itself. In fact, you need only check whether it is divisible by a prime number less
than or equal to itself. This follows from Theorems 4.3.1, 4.3.3, and the following the-
orem, which says that any integer greater than 1 is divisible by a prime number. The
idea of the proof is quite simple. You start with a positive integer. If it is prime, you
are done; if not, it is a product of two smaller positive factors. If one of these is prime,
you are done; if not, you can pick one of the factors and write it as a product of still
smaller positive factors. You can continue in this way, factoring the factors of the number
you started with, until one of them turns out to be prime. This must happen eventually
because all the factors can be chosen to be positive and each is smaller than the preced-
ing one.

Theorem 4.3.4 Divisibility by a Prime

Any integer n > 1 is divisible by a prime number.

Proof:

Suppose n is a [particular but arbitrarily chosen] integer that is greater than 1. [We
must show that there is a prime number that divides n.] If n is prime, then n is divisible
by a prime number (namely itself), and we are done. If n is not prime, then, as
discussed in Example 4.1.2b,

n = r0s0 where r0 and s0 are integers and
1 < r0 < n and 1 < s0 < n.

It follows by definition of divisibility that r0 | n.
If r0 is prime, then r0 is a prime number that divides n, and we are done. If r0 is

not prime, then

r0 = r1s1 where r1 and s1 are integers and
1 < r1 < r0 and 1 < s1 < r0.

It follows by the definition of divisibility that r1 | r0. But we already know that r0 | n.
Consequently, by transitivity of divisibility, r1 | n.

If r1 is prime, then r1 is a prime number that divides n, and we are done. If r1 is
not prime, then

r1 = r2s2 where r2 and s2 are integers and
1 < r2 < r1 and 1 < s2 < r1.
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It follows by definition of divisibility that r2 | r1. But we already know that r1 | n.
Consequently, by transitivity of divisibility, r2 | n.

If r2 is prime, then r2 is a prime number that divides n, and we are done. If r2 is
not prime, then we may repeat the previous process by factoring r2 as r3s3.

We may continue in this way, factoring successive factors of n until we find a
prime factor. We must succeed in a finite number of steps because each new factor
is both less than the previous one (which is less than n) and greater than 1, and there
are fewer than n integers strictly between 1 and n.∗ Thus we obtain a sequence

r0, r1, r2, . . . , rk,

where k ≥ 0, 1 < rk < rk−1 < · · · < r2 < r1 < r0 < n, and ri | n for each i = 0, 1,
2, . . . , k. The condition for termination is that rk should be prime. Hence rk is a
prime number that divides n. [This is what we were to show.]

Counterexamples and Divisibility
To show that a proposed divisibility property is not universally true, you need only find
one pair of integers for which it is false.

Example 4.3.7 Checking a Proposed Divisibility Property

Is the following statement true or false? For all integers a and b, if a | b and b | a then
a = b.

Solution This statement is false. Can you think of a counterexample just by concentrating
for a minute or so?

The following discussion describes a mental process that may take just a few seconds.
It is helpful to be able to use it consciously, however, to solve more difficult problems.

To discover the truth or falsity of a statement such as the one given above, start off
much as you would if you were trying to prove it.

Starting Point: Suppose a and b are integers such that a | b and b | a.
Ask yourself, “Must it follow that a = b, or could it happen that a �= b for some a and b?”
Focus on the supposition. What does it mean? By definition of divisibility, the conditions
a | b and b | a mean that

b = ka and a = lb for some integers k and l.

Must it follow that a = b, or can you find integers a and b that satisfy these equations for
which a �= b? The equations imply that

b = ka = k(lb) = (kl)b.

Since b | a, b �= 0, and so you can cancel b from the extreme left and right sides to obtain

1 = kl.

In other words, k and l are divisors of 1. But, by Theorem 4.3.2, the only divisors of
1 are 1 and −1. Thus k and l are both 1 or are both −1. If k = l = 1, then b = a. But

∗Strictly speaking, this statement is justified by an axiom for the integers called the well-ordering
principle, which is discussed in Section 5.4. Theorem 4.3.4 can also be proved using strong math-
ematical induction, as shown in Example 5.4.1.
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if k = l = −1, then b = −a and so a �= b. This analysis suggests that you can find a
counterexample by taking b = −a. Here is a formal answer:

Proposed Divisibility Property: For all integers a and b, if a | b and b | a
then a = b.

Counterexample: Let a = 2 and b = −2. Then
a | b since 2 | (−2) and b | a since (−2) | 2, but a �= b since 2 �= −2.

Therefore, the statement is false.

■

The search for a proof will frequently help you discover a counterexample (provided
the statement you are trying to prove is, in fact, false). Conversely, in trying to find a
counterexample for a statement, you may come to realize the reason why it is true (if it
is, in fact, true). The important thing is to keep an open mind until you are convinced by
the evidence of your own careful reasoning.

The Unique Factorization of Integers Theorem
Themost comprehensive statement about divisibility of integers is contained in the unique
factorization of integers theorem. Because of its importance, this theorem is also called
the fundamental theorem of arithmetic.Although Euclid, who lived about 300 B.C., seems
to have been acquainted with the theorem, it was first stated precisely by the great German
mathematician Carl Friedrich Gauss (rhymes with house) in 1801.

The unique factorization of integers theorem says that any integer greater than 1 either
is prime or can be written as a product of prime numbers in a way that is unique except,
perhaps, for the order in which the primes are written. For example,

72 = 2 ·2 ·2 ·3 ·3 = 2 ·3 ·3 ·2 ·2 = 3 ·2 ·2 ·3 ·2
and so forth. The three 2’s and two 3’s may be written in any order, but any factorization of
72 as a product of primes must contain exactly three 2’s and two 3’s—no other collection
of prime numbers besides three 2’s and two 3’s multiplies out to 72.

Note This theorem is
the reason the number 1 is
not allowed to be prime.
If 1 were prime, then
factorizations would not
be unique. For example,
6 = 2 ·3 = 1 ·2 ·3, and
so forth.

Theorem 4.3.5 Unique Factorization of Integers Theorem
(Fundamental Theorem of Arithmetic)

Given any integer n > 1, there exist a positive integer k, distinct prime numbers
p1, p2, . . . , pk , and positive integers e1, e2, . . . , ek such that

n = pe11 pe22 pe33 . . . pekk ,

and any other expression for n as a product of prime numbers is identical to this
except, perhaps, for the order in which the factors are written.

The proof of the unique factorization theorem is outlined in the exercises for Sec-
tions 5.4 and 8.4.

Because of the unique factorization theorem, any integer n > 1 can be put into a
standard factored form in which the prime factors are written in ascending order from
left to right.
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• Definition

Given any integer n > 1, the standard factored form of n is an expression of the
form

n = pe11 pe22 pe33 · · · pekk ,

where k is a positive integer; p1, p2, . . . , pk are prime numbers; e1, e2, . . . , ek are
positive integers; and p1 < p2 < · · · < pk .

Example 4.3.8 Writing Integers in Standard Factored Form

Write 3,300 in standard factored form.

Solution First find all the factors of 3,300. Then write them in ascending order:

3,300 = 100 ·33 = 4 ·25 ·3 ·11
= 2 ·2 ·5 ·5 ·3 ·11 = 22 ·31 ·52 ·111. ■

Example 4.3.9 Using Unique Factorization to Solve a Problem

Suppose m is an integer such that

8 ·7 ·6 ·5 ·4 ·3 ·2 ·m = 17 ·16 ·15 ·14 ·13 ·12 ·11 ·10.
Does 17 |m?

Solution Since 17 is one of the prime factors of the right-hand side of the equation, it is
also a prime factor of the left-hand side (by the unique factorization of integers theorem).
But 17 does not equal any prime factor of 8, 7, 6, 5, 4, 3, or 2 (because it is too large).
Hence 17 must occur as one of the prime factors of m, and so 17 |m. ■

Test Yourself
1. To show that a nonzero integer d divides an integer n, we

must show that _____.

2. To say that d divides n means the same as saying that _____
is divisible by _____.

3. If a and b are positive integers and a | b, then _____ is less
than or equal to _____.

4. For all integers n and d, d � | n if, and only if, _____.

5. If a and b are integers, the notation a | b denotes _____ and
the notation a/b denotes _____.

6. The transitivity of divisibility theorem says that for all inte-
gers a, b, and c, if _____ then _____.

7. The divisibility by a prime theorem says that every integer
greater than 1 is _____.

8. The unique factorization of integers theorem says that any
integer greater than 1 is either _____ or can be written as
_____ in a way that is unique except possibly for the _____
in which the numbers are written.

Exercise Set 4.3
Give a reason for your answer in each of 1–13. Assume that all
variables represent integers.

1. Is 52 divisible by 13? 2. Does 7 | 56?
3. Does 5 | 0?

4. Does 3 divide (3k + 1)(3k + 2)(3k + 3)?

5. Is 6m(2m + 10) divisible by 4?

6. Is 29 a multiple of 3? 7. Is −3 a factor of 66?
8. Is 6a(a + b) a multiple of 3a?
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9. Is 4 a factor of 2a ·34b?
10. Does 7 | 34? 11. Does 13 | 73?
12. If n = 4k + 1, does 8 divide n2 − 1?

13. If n = 4k + 3, does 8 divide n2 − 1?

14. Fill in the blanks in the following proof that for all integers
a and b, if a | b then a | (−b).
Proof: Suppose a and b are any integers such that (a) . By
definition of divisibility, there exists an integer r such that
(b) . By substitution.

−b = −ar = a(−r).
Let t = (c) . Then t is an integer because t = (−1) ·r , and
both−1 and r are integers. Thus, by substitution,−b = at ,
where r is an integer, and so by definition of divisibility,
(d) , as was to be shown.

Prove statements 15 and 16 directly from the definition of divis-
ibility.

15. For all integers a, b, and c, if a | b and a | c then a | (b + c).

16.H For all integers a, b, and c, if a | b and a | c then a | (b − c).

17. Consider the following statement: The negative of any mul-
tiple of 3 is a multiple of 3.
a. Write the statement formally using a quantifier and a

variable.
b. Determine whether the statement is true or false and jus-

tify your answer.

18. Show that the following statement is false: For all integers
a and b, if 3 | (a + b) then 3 | (a − b).

For each statement in 19–31, determine whether the statement
is true or false. Prove the statement directly from the definitions
if it is true, and give a counterexample if it is false.

19.H For all integers a, b, and c, if a divides b then a divides bc.

20. The sum of any three consecutive integers is divisible by
3. (Two integers are consecutive if, and only if, one is one
more than the other.)

21. The product of any two even integers is a multiple of 4.

22.H A necessary condition for an integer to be divisible by 6 is
that it be divisible by 2.

23. A sufficient condition for an integer to be divisible by 8 is
that it be divisible by 16.

24. For all integers a, b, and c, if a | b and a | c then
a | (2b − 3c).

25. For all integers a, b, and c, if a is a factor of c then ab is a
factor of c.

26.H For all integers a, b, and c, if ab | c then a | c and b | c.
27.H For all integers a, b, and c, if a | (b + c) then a | b or a | c.

28. For all integers a, b, and c, if a | bc then a | b or a | c.
29. For all integers a and b, if a | b then a2 | b2.
30. For all integers a and n, if a | n2 and a ≤ n then a | n.
31. For all integers a and b, if a | 10b then a | 10 or a | b.
32. A fast-food chain has a contest in which a card with num-

bers on it is given to each customer who makes a purchase.
If some of the numbers on the card add up to 100, then
the customer wins $100. A certain customer receives a card
containing the numbers

72, 21, 15, 36, 69, 81, 9, 27, 42, and 63.

Will the customer win $100? Why or why not?

33. Is it possible to have a combination of nickels, dimes, and
quarters that add up to $4.72? Explain.

34. Is it possible to have 50 coins, made up of pennies, dimes,
and quarters, that add up to $3? Explain.

35. Two athletes run a circular track at a steady pace so that the
first completes one round in 8 minutes and the second in
10 minutes. If they both start from the same spot at 4 P.M.,
when will be the first time they return to the start together?

36. It can be shown (see exercises 44–48) that an integer is
divisible by 3 if, and only if, the sum of its digits is divisible
by 3. An integer is divisible by 9 if, and only if, the sum of
its digits is divisible by 9. An integer is divisible by 5 if,
and only if, its right-most digit is a 5 or a 0. And an integer
is divisible by 4 if, and only if, the number formed by its
right-most two digits is divisible by 4. Check the following
integers for divisibility by 3, 4, 5 and 9.
a. 637,425,403,705,125 b. 12,858,306,120,312
c. 517,924,440,926,512 d. 14,328,083,360,232

37. Use the unique factorization theorem to write the following
integers in standard factored form.
a. 1,176 b. 5,733 c. 3,675

38. Suppose that in standard factored form a = pe11 pe22 · · · pekk ,
where k is a positive integer; p1, p2, . . . , pk are prime num-
bers; and e1, e2, . . . , ek are positive integers.
a. What is the standard factored form for a2?
b. Find the least positive integer n such that 25 ·3 ·52 ·73 ·n

is a perfect square. Write the resulting product as a per-
fect square.

c. Find the least positive integer m such that
22 ·35 ·7 ·11 ·m is a perfect square. Write the resulting
product as a perfect square.

39. Suppose that in standard factored form a = pe11 pe22 · · · pekk ,
where k is a positive integer; p1, p2, . . . , pk are prime num-
bers; and e1, e2, . . . , ek are positive integers.
a. What is the standard factored form for a3?
b. Find the least positive integer k such that 24 ·35 ·7 ·112 ·k

is a perfect cube (i.e., equals an integer to the third
power). Write the resulting product as a perfect cube.
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40. a. If a and b are integers and 12a = 25b, does 12 | b? does
25 | a? Explain.

b. If x and y are integers and 10x = 9y, does 10 | y? does
9 | x? Explain.

41.H How many zeros are at the end of 458 ·885? Explain how
you can answer this question without actually computing
the number. (Hint: 10 = 2 ·5.)

42. If n is an integer and n > 1, then n! is the product of n and
every other positive integer that is less than n. For example,
5! = 5 ·4 ·3 ·2 ·1.
a. Write 6! in standard factored form.
b. Write 20! in standard factored form.
c. Without computing the value of (20!)2 determine how

many zeros are at the end of this number when it is writ-
ten in decimal form. Justify your answer.

43.✶ In a certain town 2/3 of the adult men are married to 3/5
of the adult women. Assume that all marriages are monog-
amous (no one is married to more than one other person).
Also assume that there are at least 100 adult men in the
town. What is the least possible number of adult men in the
town? of adult women in the town?

Definition: Given any nonnegative integer n, the decimal
representation of n is an expression of the form

dkdk−1 · · · d2d1d0,
where k is a nonnegative integer; d0, d1, d2, . . . , dk (called
the decimal digits of n) are integers from 0 to 9 inclusive;
dk �= 0 unless n = 0 and k = 0; and

n = dk ·10k + dk−1 ·10k−1 + · · · + d2 ·102 + d1 ·10+ d0.

(For example, 2,503 = 2 ·103 + 5 ·102 + 0 ·10+ 3.)

44. Prove that if n is any nonnegative integer whose decimal
representation ends in 0, then 5 | n. (Hint: If the decimal
representation of a nonnegative integer n ends in d0, then
n = 10m + d0 for some integer m.)

45. Prove that if n is any nonnegative integer whose decimal
representation ends in 5, then 5 | n.

46. Prove that if the decimal representation of a nonnegative
integer n ends in d1d0 and if 4 | (10d1 + d0), then 4 | n.
(Hint: If the decimal representation of a nonnegative inte-
ger n ends in d1d0, then there is an integer s such that
n = 100s + 10d1 + d0.)

47.✶H Observe that

7524 = 7 ·1000+ 5 ·100+ 2 ·10+ 4

= 7(999+ 1)+ 5(99+ 1)+ 2(9+ 1)+ 4

= (7 ·999+ 7)+ (5 ·99+ 5)+ (2 ·9+ 2)+ 4

= (7 ·999+ 5 ·99+ 2 ·9)+ (7+ 5+ 2+ 4)

= (7 ·111 ·9+ 5 ·11 ·9+ 2 ·9)+ (7+ 5+ 2+ 4)

= (7 ·111+ 5 ·11+ 2) ·9+ (7+ 5+ 2+ 4)

= (an integer divisible by 9)

+ (the sum of the digits of 7524).

Since the sum of the digits of 7524 is divisible by 9, 7524
can be written as a sum of two integers each of which is
divisible by 9. It follows from exercise 15 that 7524 is divis-
ible by 9.

Generalize the argument given in this example to any
nonnegative integer n. In other words, prove that for any
nonnegative integer n, if the sum of the digits of n is divis-
ible by 9, then n is divisible by 9.

48.✶ Prove that for any nonnegative integer n, if the sum of the
digits of n is divisible by 3, then n is divisible by 3.

49.✶ Given a positive integer n written in decimal form, the alter-
nating sum of the digits of n is obtained by starting with the
right-most digit, subtracting the digit immediately to its left,
adding the next digit to the left, subtracting the next digit,
and so forth. For example, the alternating sum of the digits
of 180,928 is 8− 2+ 9− 0+ 8− 1 = 22. Justify the fact
that for any nonnegative integer n, if the alternating sum of
the digits of n is divisible by 11, then n is divisible by 11.

Answers for Test Yourself
1. n equals d times some integer (Or: there is an integer r such that n = dr ) 2. n; d 3. a; b 4. n

d is not an integer 5. the
sentence “a divides b”; the number obtained when a is divided by b 6. a divides b and b divides c; a divides c 7. divisible by
some prime number 8. prime; a product of prime numbers; order
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4.4 Direct Proof and Counterexample IV: Division
into Cases and the Quotient-Remainder Theorem

Be especially critical of any statement following the word “obviously.”
— Anna Pell Wheeler 1883–1966

When you divide 11 by 4, you get a quotient of 2 and a remainder of 3.

2 ← quotient

4 11
8
3 ← remainder

Another way to say this is that 11 equals 2 groups of 4 with 3 left over:

xxxx xxxx xxx
↑ ↑

2 groups of 4 3 left over

Or,

11 = 2 ·4+ 3.
↑ ↑

2 groups of 4 3 left over

Of course, the number left over (3) is less than the size of the groups (4) because if 4 or
more were left over, another group of 4 could be separated off.

The quotient-remainder theorem says that when any integer n is divided by any pos-
itive integer d, the result is a quotient q and a nonnegative remainder r that is smaller
than d.

Theorem 4.4.1 The Quotient-Remainder Theorem

Given any integer n and positive integer d, there exist unique integers q and r such
that

n = dq + r and 0 ≤ r < d.

The proof that there exist integers q and r with the given properties is in Section 5.4;
the proof that q and r are unique is outlined in exercise 18 in Section 4.7.

If n is positive, the quotient-remainder theorem can be illustrated on the number line
as follows:

0 2d 3dd qd n

r

If n is negative, the picture changes. Since n = dq + r , where r is nonnegative, d must
be multiplied by a negative integer q to go below n. Then the nonnegative integer r is
added to come back up to n. This is illustrated as follows:

0–2d–3d –dqd n

r
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Example 4.4.1 The Quotient-Remainder Theorem

For each of the following values of n and d, find integers q and r such that n = dq + r
and 0 ≤ r < d.

a. n = 54, d = 4 b. n = −54, d = 4 c. n = 54, d = 70

Solution

a. 54 = 4 ·13+ 2; hence q = 13 and r = 2.

b. −54 = 4 ·(−14)+ 2; hence q = −14 and r = 2.

c. 54 = 70 ·0+ 54; hence q = 0 and r = 54. ■

div and mod
A number of computer languages have built-in functions that enable you to compute
many values of q and r for the quotient-remainder theorem. These functions are called
div and mod in Pascal, are called / and % in C and C++, are called / and % in Java,
and are called / (or \) and mod in .NET. The functions give the values that satisfy the
quotient-remainder theorem when a nonnegative integer n is divided by a positive integer
d and the result is assigned to an integer variable. However, they do not give the values
that satisfy the quotient-remainder theorem when a negative integer n is divided by a
positive integer d.

• Definition

Given an integer n and a positive integer d,

n div d = the integer quotient obtained
when n is divided by d, and

n mod d = the nonnegative integer remainder obtained
when n is divided by d.

Symbolically, if n and d are integers and d > 0, then

n div d = q and n mod d = r ⇔ n = dq + r

where q and r are integers and 0 ≤ r < d.

Note that it follows from the quotient-remainder theorem that n mod d equals one of
the integers from 0 through d − 1 (since the remainder of the division of n by d must be
one of these integers). Note also that a necessary and sufficient condition for an integer
n to be divisible by an integer d is that n mod d = 0. You are asked to prove this in the
exercises at the end of this section.

You can also use a calculator to compute values of div and mod. For instance, to
compute n div d for a nonnegative integer n and a positive integer d, you just divide n by
d and ignore the part of the answer to the right of the decimal point. To find n mod d, you
can use the fact that if n = dq + r , then r = n − dq. Thus n = d · (n div d)+ n mod d,
and so

n mod d = n − d · (n div d ).
Hence, to find n mod d compute n div d, multiply by d, and subtract the result from n.
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Example 4.4.2 Computing div and mod

Compute 32 div 9 and 32 mod 9 by hand and with a calculator.

Solution Performing the division by hand gives the following results:

3 ← 32 div 9

9 32
27

5 ← 32 mod 9

If you use a four-function calculator to divide 32 by 9, you obtain an expression like
3.555555556. Discarding the fractional part gives 32 div 9 = 3, and so

32 mod 9 = 32− 9 ·(32 div 9) = 32− 27 = 5.

A calculator with a built-in integer-part function iPart allows you to input a single expres-
sion for each computation:

32 div 9 = iPart(32/9)

and 32 mod 9 = 32− 9 · iPart (32/9) = 5. ■

Example 4.4.3 Computing the Day of the Week

Suppose today is Tuesday, and neither this year nor next year is a leap year. What day of
the week will it be 1 year from today?

Solution There are 365 days in a year that is not a leap year, and each week has 7 days.
Now

365 div 7 = 52 and 365 mod 7 = 1

because 365 = 52 ·7+ 1. Thus 52 weeks, or 364 days, from today will be a Tuesday, and
so 365 days from today will be 1 day later, namely Wednesday.

More generally, if DayT is the day of the week today and DayN is the day of the week
in N days, then

DayN = (DayT + N ) mod 7, 4.4.1

where Sunday = 0, Monday = 1, . . . , Saturday = 6. ■

Example 4.4.4 Solving a Problem about mod

Suppose m is an integer. If m mod 11 = 6, what is 4m mod 11?

Solution Because m mod 11 = 6, the remainder obtained when m is divided by 11 is 6.
This means that there is some integer q so that

m = 11q + 6.

Thus 4m = 44q + 24 = 44q + 22+ 2 = 11(4q + 2)+ 2.

Since 4q + 2 is an integer (because products and sums of integers are integers) and since
2 < 11, the remainder obtained when 4m is divided by 11 is 2. Therefore,

4m mod 11 = 2. ■
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Representations of Integers
In Section 4.1 we defined an even integer to have the form twice some integer. At that
time we could have defined an odd integer to be one that was not even. Instead, because
it was more useful for proving theorems, we specified that an odd integer has the form
twice some integer plus one. The quotient-remainder theorem brings these two ways of
describing odd integers together by guaranteeing that any integer is either even or odd.
To see why, let n be any integer, and consider what happens when n is divided by 2.
By the quotient-remainder theorem (with d = 2), there exist unique integers q and r
such that

n = 2q + r and 0 ≤ r < 2.

But the only integers that satisfy 0 ≤ r < 2 are r = 0 and r = 1. It follows that given any
integer n, there exists an integer q with

n = 2q + 0 or n = 2q + 1.

In the case that n = 2q + 0 = 2q, n is even. In the case that n = 2q + 1, n is odd. Hence
n is either even or odd, and, because of the uniqueness of q and r, n cannot be both even
and odd.

The parity of an integer refers to whether the integer is even or odd. For instance, 5
has odd parity and 28 has even parity. We call the fact that any integer is either even or
odd the parity property.

Example 4.4.5 Consecutive Integers Have Opposite Parity

Prove that given any two consecutive integers, one is even and the other is odd.

Solution Two integers are called consecutive if, and only if, one is one more than the other.
So if one integer is m, the next consecutive integer is m + 1.

To prove the given statement, start by supposing that you have two particular but
arbitrarily chosen consecutive integers. If the smaller is m, then the larger will be m + 1.
How do you know for sure that one of these is even and the other is odd? You might
imagine some examples: 4, 5; 12, 13; 1,073, 1,074. In the first two examples, the smaller
of the two integers is even and the larger is odd; in the last example, it is the reverse.
These observations suggest dividing the analysis into two cases.

Case 1: The smaller of the two integers is even.

Case 2: The smaller of the two integers is odd.

In the first case, when m is even, it appears that the next consecutive integer is odd.
Is this always true? If an integer m is even, must m + 1 necessarily be odd? Of course
the answer is yes. Because if m is even, then m = 2k for some integer k, and so m + 1 =
2k + 1, which is odd.

In the second case, when m is odd, it appears that the next consecutive integer is even.
Is this always true? If an integer m is odd, must m + 1 necessarily be even? Again,
the answer is yes. For if m is odd, then m = 2k + 1 for some integer k, and so m + 1 =
(2k + 1)+ 1 = 2k + 2 = 2(k + 1), which is even.

This discussion is summarized on the following page.
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Theorem 4.4.2 The Parity Property

Any two consecutive integers have opposite parity.

Proof:

Suppose that two [particular but arbitrarily chosen] consecutive integers are given;
call them m and m + 1. [We must show that one of m and m + 1 is even and that the
other is odd.] By the parity property, either m is even or m is odd. [We break the proof
into two cases depending on whether m is even or odd.]

Case 1 (m is even): In this case,m = 2k for some integer k, and som + 1 = 2k + 1,
which is odd [by definition of odd]. Hence in this case, one of m and m + 1 is even
and the other is odd.

Case 2 (m is odd): In this case, m = 2k + 1 for some integer k, and so m + 1 =
(2k + 1)+ 1 = 2k + 2 = 2(k + 1). But k + 1 is an integer because it is a sum of
two integers. Therefore, m + 1 equals twice some integer, and thus m + 1 is even.
Hence in this case also, one of m and m + 1 is even and the other is odd.

It follows that regardless of which case actually occurs for the particular m and
m + 1 that are chosen, one of m and m + 1 is even and the other is odd. [This is what
was to be shown.]

■

The division into cases in a proof is like the transfer of control for an if-then-else
statement in a computer program. If m is even, control transfers to case 1; if not, control
transfers to case 2. For any given integer, only one of the cases will apply. You must
consider both cases, however, to obtain a proof that is valid for an arbitrarily given integer
whether even or not.

There are times when division into more than two cases is called for. Suppose that at
some stage of developing a proof, you know that a statement of the form

A1 or A2 or A3 or . . . or An

is true, and suppose you want to deduce a conclusion C . By definition of or, you know
that at least one of the statements Ai is true (although you may not know which). In this
situation, you should use the method of division into cases. First assume A1 is true and
deduce C ; next assume A2 is true and deduce C ; and so forth until you have assumed An

is true and deduced C . At that point, you can conclude that regardless of which statement
Ai happens to be true, the truth of C follows.

Method of Proof by Division into Cases

To prove a statement of the form “If A1 or A2 or . . . or An , then C ,” prove all of the
following:

If A1, then C,

If A2, then C,

...

If An, then C.

This process shows that C is true regardless of which of A1, A2, . . . , An happens to
be the case.
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Proof by division into cases is a generalization of the argument form shown in Exam-
ple 2.3.7, whose validity you were asked to establish in exercise 21 of Section 2.3. This
method of proof was combined with the quotient-remainder theorem for d = 2 to prove
Theorem 4.4.2. Allowing d to take on additional values makes it possible to obtain a
variety of other results. We begin by showing what happens when a = 4.

Example 4.4.6 Representations of Integers Modulo 4

Show that any integer can be written in one of the four forms

n = 4q or n = 4q + 1 or n = 4q + 2 or n = 4q + 3

for some integer q.

Solution Given any integer n, apply the quotient-remainder theorem to n with d = 4. This
implies that there exist an integer quotient q and a remainder r such that

n = 4q + r and 0 ≤ r < 4.

But the only nonnegative remainders r that are less than 4 are 0, 1, 2, and 3. Hence

n = 4q or n = 4q + 1 or n = 4q + 2 or n = 4q + 3

for some integer q. ■

The next example illustrates how the alternative representations for integers modulo 4
can help establish a result in number theory. The solution is broken into two parts: a dis-
cussion and a formal proof. These correspond to the stages of actual proof development.
Very few people, when asked to prove an unfamiliar theorem, immediately write down
the kind of formal proof you find in a mathematics text. Most need to experiment with
several possible approaches before they find one that works. A formal proof is much like
the ending of a mystery story—the part in which the action of the story is systematically
reviewed and all the loose ends are carefully tied together.

Note Another way to
state this fact is that if you
square an odd integer and
divide by 8, you will
always get a remainder of
1. Try a few examples!

Example 4.4.7 The Square of an Odd Integer

Prove: The square of any odd integer has the form 8m + 1 for some integer m.

Solution Begin by asking yourself, “Where am I starting from?” and “What do I need to
show?” To help answer these questions, introduce variables to represent the quantities in
the statement to be proved.

Formal Restatement: ∀ odd integers n, ∃ an integer m such that n2 = 8m + 1.

From this, you can immediately identify the starting point and what is to be shown.

Starting Point: Suppose n is a particular but arbitrarily chosen odd integer.

To Show: ∃ an integer m such that n2 = 8m + 1.

This looks tough. Why should there be an integer m with the property that n2 =
8m + 1? That would say that (n2 − 1)/8 is an integer, or that 8 divides n2 − 1. Perhaps
you could make use of the fact that n2 − 1 = (n − 1)(n + 1). Does 8 divide (n − 1)(n +
1)? Since n is odd, both (n − 1) and (n + 1) are even. That means that their product is
divisible by 4. But that’s not enough. You need to show that the product is divisible by 8.
This seems to be a blind alley.

You could try another tack. Since n is odd, you could represent n as 2q + 1 for some
integer q. Then n2 = (2q + 1)2 = 4q2 + 4q + 1 = 4(q2 + q)+ 1. It is clear from this
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analysis that n2 can be written in the form 4m + 1, but it may not be clear that it can be
written as 8m + 1. This also seems to be a blind alley.∗

Yet another possibility is to use the result of Example 4.4.6. That example showed
that any integer can be written in one of the four forms 4q, 4q + 1, 4q + 2, or 4q + 3.
Two of these, 4q + 1 and 4q + 3, are odd. Thus any odd integer can be written in the
form 4q + 1 or 4q + 3 for some integer q. You could try breaking into cases based on
these two different forms.

Note Desperation can
spur creativity. When you
have tried all the obvious
approaches without
success and you really
care about solving a
problem, you reach into
the odd corners of your
memory for anything that
may help.

It turns out that this last possibility works! In each of the two cases, the conclu-
sion follows readily by direct calculation. The details are shown in the following formal
proof:

Theorem 4.4.3

The square of any odd integer has the form 8m + 1 for some integer m.

Proof:

Suppose n is a [particular but arbitrarily chosen] odd integer. By the quotient-remainder
theorem, n can be written in one of the forms

4q or 4q + 1 or 4q + 2 or 4q + 3

for some integer q. In fact, since n is odd and 4q and 4q + 2 are even, n must have
one of the forms

4q + 1 or 4q + 3.

Case 1 (n = 4q + 1 for some integer q): [We must find an integer m such that
n2 = 8m + 1.] Since n = 4q + 1,

n2 = (4q + 1)2 by substitution

= (4q + 1)(4q + 1) by definition of square

= 16q2 + 8q + 1

= 8(2q2 + q)+ 1 by the laws of algebra.

Let m = 2q2 + q. Then m is an integer since 2 and q are integers and sums and
products of integers are integers. Thus, substituting,

n2 = 8m + 1 where m is an integer.

Case 2 (n = 4q + 3 for some integer q): [We must find an integer m such that
n2 = 8m + 1.] Since n = 4q + 3,

n2 = (4q + 3)2 by substitution

= (4q + 3)(4q + 3) by definition of square

= 16q2 + 24q + 9

= 16q2 + 24q + (8+ 1)

= 8(2q2 + 3q + 1)+ 1 by the laws of algebra.

[The motivation for the choice of algebra steps was the desire to write the expression in
the form 8 · (some integer)+ 1.]

∗See exercise 18 for a different perspective.
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Let m = 2q2 + 3q + 1. Then m is an integer since 1, 2, 3, and q are integers and
sums and products of integers are integers. Thus, substituting,

n2 = 8m + 1 where m is an integer.

Cases 1 and 2 show that given any odd integer, whether of the form 4q + 1 or
4q + 3, n2 = 8m + 1 for some integer m. [This is what we needed to show.]

■

Note that the result of Theorem 4.4.3 can also be written, “For any odd integer n,
n2 mod 8 = 1.”

In general, according to the quotient-remainder theorem, if an integer n is divided by
an integer d, the possible remainders are 0, 1, 2, . . ., (d − 1). This implies that n can be
written in one of the forms

dq, dq + 1, dq + 2, , . . . , dq + (d − 1) for some integer q.

Many properties of integers can be obtained by giving d a variety of different values and
analyzing the cases that result.

Absolute Value and the Triangle Inequality
The triangle inequality is one of the most important results involving absolute value. It
has applications in many areas of mathematics.

• Definition

For any real number x , the absolute value of x, denoted |x |, is defined as follows:

|x | =
{

x if x ≥ 0

−x if x < 0
.

The triangle inequality says that the absolute value of the sum of two numbers is less
than or equal to the sum of their absolute values. We give a proof based on the following
two facts, both of which are derived using division into cases. We state both as lemmas. A
lemma is a statement that does not have much intrinsic interest but is helpful in deriving
other results.

Lemma 4.4.4

For all real numbers r,−|r | ≤ r ≤ |r |.

Proof:

Suppose r is any real number. We divide into cases according to whether r ≥ 0 or
r < 0.
Case 1 (r ≥ 0): In this case, by definition of absolute value, |r | = r . Also, since r is
positive and −|r | is negative, −|r | < r . Thus it is true that

−|r | ≤ r ≤ |r |.
continued on page 188
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Case 2 (r < 0): In this case, by definition of absolute value, |r | = −r . Multiplying
both sides by −1 gives that −|r | = r . Also, since r is negative and |r | is positive,
r < |r |. Thus it is also true in this case that

−|r | ≤ r ≤ |r |.
Hence, in either case,

−|r | ≤ r ≤ |r |
[as was to be shown].

Lemma 4.4.5

For all real numbers r, | − r | = |r |.

Proof:

Suppose r is any real number. By Theorem T23 in Appendix A, if r > 0, then
−r < 0, and if r < 0, then −r > 0. Thus

| − r | =

⎧⎪⎨
⎪⎩
−r if − r > 0

0 if − r = 0 by definition of absolute value

−(−r) if − r < 0

=

⎧⎪⎨
⎪⎩
−r if − r > 0

0 if − r = 0

r if − r < 0

because −(−r) = r by Theorem T4

in Appendix A

=

⎧⎪⎨
⎪⎩
−r if r < 0

0 if − r = 0

r if r > 0

because, by Theorem T24 in Appendix A, when

−r > 0, then r < 0, when − r < 0, then r > 0,

and when −r = 0, then r = 0

=
{

r if r ≥ 0

−r if r < 0
by reformatting the previous result

= |r | by definition of absolute value.

Lemmas 4.4.4 and 4.4.5 now provide a basis for proving the triangle inequlity.

Theorem 4.4.6 The Triangle Inequality

For all real numbers x and y, |x + y| ≤ |x | + |y|.

Proof:

Suppose x and y, are any real numbers.

Case 1 (x + y ≥ 0): In this case, |x + y| = x + y, and so, by Lemma 4.4.4,

x ≤ |x | and y ≤ |y|.
Hence, by Theorem T26 of Appendix A,

|x + y| = x + y ≤ |x | + |y|.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



4.4 Direct Proof and Counterexample IV: Division into Cases and the Quotient-Remainder Theorem 189

Case 2 (x + y < 0): In this case, |x + y| = −(x + y) = (−x)+ (−y), and so, by
Lemmas 4.4.4 and 4.4.5,

−x ≤ | − x | = |x | and − y ≤ | − y| = |y|.
It follows, by Theorem T26 of Appendix A, that

|x + y| = (−x)+ (−y) ≤ |x | + |y|.
Hence in both cases |x + y| ≤ |x | + |y| [as was to be shown].

Test Yourself
1. The quotient-remainder theorem says that for all integers n

and d with d ≥ 0, there exist _____ q and r such that _____
and _____.

2. If n and d are integers with d > 0, n div d is _____ and n
mod d is _____.

3. The parity of an integer indicates whether the integer is
_____.

4. According to the quotient-remainder theorem, if an integer
n is divided by a positive integer d, the possible remainders
are _____. This implies that n can be written in one of the
forms _____ for some integer q.

5. To prove a statement of the form “If A1 or A2 or A3, then
C ,” prove _____ and _____ and _____.

6. The triangle inequality says that for all real numbers x and
y, _____.

Exercise Set 4.4
For each of the values of n and d given in 1–6, find integers q
and r such that n = dq + r and 0 ≤ r < d.

1. n = 70, d = 9 2. n = 62, d = 7

3. n = 36, d = 40 4. n = 3, d = 11

5. n = −45, d = 11 6. n = −27, d = 8

Evaluate the expressions in 7–10.

7. a. 43 div 9 b. 43 mod 9

8. a. 50 div 7 b. 50 mod 7

9. a. 28 div 5 b. 28 mod 5

10. a. 30 div 2 b. 30 mod 2

11. Check the correctness of formula (4.4.1) given in Example
4.4.3 for the following values of DayT and N .
a. DayT = 6 (Saturday) and N = 15

b. DayT = 0 (Sunday) and N = 7

c. DayT = 4 (Thursday) and N = 12

12.✶ Justify formula (4.4.1) for general values of DayT and N .

13. On a Monday a friend says he will meet you again in 30
days. What day of the week will that be?

14.H If today is Tuesday, what day of the week will it be 1,000
days from today?

15. January 1, 2000, was a Saturday, and 2000 was a leap year.
What day of the week will January 1, 2050, be?

16. Suppose d is a positive integer and n is any integer. If
d | n, what is the remainder obtained when the quotient-
remainder theorem is applied to n with divisor d?

17. Prove that the product of any two consecutive integers is
even.

18. The result of exercise 17 suggests that the second apparent
blind alley in the discussion of Example 4.4.7 might not be
a blind alley after all. Write a new proof of Theorem 4.4.3
based on this observation.

19. Prove that for all integers n, n2 − n + 3 is odd.

20. Suppose a is an integer. If a mod 7 = 4, what is 5a mod 7?
In other words, if division of a by 7 gives a remainder of 4,
what is the remainder when 5a is divided by 7?

21. Suppose b is an integer. If b mod 12 = 5, what is
8b mod 12? In other words, if division of b by 12 gives a
remainder of 5, what is the remainder when 8b is divided
by 12?

22. Suppose c is an integer. If c mod 15 = 3, what is
10c mod 15? In other words, if division of c by 15 gives a
remainder of 3, what is the remainder when 10c is divided
by 15?

23. Prove that for all integers n, if n mod 5 = 3 then
n2 mod 5 = 4.

24. Prove that for all integers m and n, if m mod 5 = 2 and
n mod 3 = 6 then mn mod 5 = 1.

25. Prove that for all integers a and b, if a mod 7 = 5 and
b mod 7 = 6 then ab mod 7 = 2.

26.H Prove that a necessary and sufficient condition for a non-
negative integer n to be divisible by a positive integer d is
that n mod d = 0.
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27. Show that any integer n can be written in one of the three
forms

n = 3q or n = 3q + 1 or n = 3q + 2

for some integer q.

28. a. Use the quotient-remainder theorem with d = 3 to prove
that the product of any three consecutive integers is
divisible by 3.

b. Use the mod notation to rewrite the result of part (a).

29.H a. Use the quotient-remainder theorem with d = 3 to prove
that the square of any integer has the form 3k or 3k + 1
for some integer k.

b. Use the mod notation to rewrite the result of part (a).

30. a. Use the quotient-remainder theorem with d = 3 to prove
that the product of any two consecutive integers has the
form 3k or 3k + 2 for some integer k.

b. Use the mod notation to rewrite the result of part (a).

In 31–33, you may use the properties listed in Example 4.2.3.

31. a. Prove that for all integers m and n,m + n and m − n
are either both odd or both even.

b. Find all solutions to the equation m2 − n2 = 56 for
which both m and n are positive integers.

c. Find all solutions to the equation m2 − n2 = 88 for
which both m and n are positive integers.

32. Given any integers a, b, and c, if a − b is even and b − c
is even, what can you say about the parity of 2a − (b + c)?
Prove your answer.

33. Given any integers a, b, and c, if a − b is odd and b − c
is even, what can you say about the parity of a − c? Prove
your answer.

34.H Given any integer n, if n > 3, could n, n + 2, and n + 4
all be prime? Prove or give a counterexample.

Prove each of the statements in 35–46.

35. The fourth power of any integer has the form 8m or 8m + 1
for some integer m.

36.H The product of any four consecutive integers is divisible
by 8.

37. The square of any integer has the form 4k or 4k + 1 for
some integer k.

38.H For any integer n, n2 + 5 is not divisible by 4.

39.H The sum of any four consecutive integers has the form
4k + 2 for some integer k.

40. For any integer n, n(n2 − 1)(n + 2) is divisible by 4.

41. For all integers m,m2 = 5k, or m2 = 5k + 1, or
m2 = 5k + 4 for some integer k.

42.H Every prime number except 2 and 3 has the form 6q + 1 or
6q + 5 for some integer q.

43. If n is an odd integer, then n4 mod 16 = 1.

44.H For all real numbers x and y, |x | · |y| = |xy|.
45. For all real numbers r and c with c ≥ 0, if−c ≤ r ≤ c, then
|r | ≤ c.

46. For all real numbers r and c with c ≥ 0, if |r | ≤ c, then
−c ≤ r ≤ c.

47. A matrixM has 3 rows and 4 columns.⎡
⎣a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34

⎤
⎦

The 12 entries in the matrix are to be stored in row major
form in locations 7,609 to 7,620 in a computer’s memory.
This means that the entries in the first row (reading left to
right) are stored first, then the entries in the second row, and
finally the entries in the third row.
a. Which location will a22 be stored in?

b. Write a formula (in i and j) that gives the integer n so
that ai j is stored in location 7,609 + n.

c. Find formulas (in n) for r and s so that ars is stored in
location 7,609 + n.

48. Let M be a matrix with m rows and n columns, and
suppose that the entries of M are stored in a computer’s
memory in row major form (see exercise 47) in locations
N , N + 1, N + 2, . . . , N + mn − 1. Find formulas in k for
r and s so that ars is stored in location N + k.

49.✶ Ifm, n, and d are integers, d > 0, and m mod d = n mod d,
does it necessarily follow that m = n? That m − n is divis-
ible by d? Prove your answers.

50.✶ If m, n, and d are integers, d > 0, and d | (m − n), what is
the relation between m mod d and n mod d? Prove your
answer.

51.✶ If m, n, a, b, and d are integers, d > 0, and m mod d = a
and n mod d = b, is (m + n) mod d = a + b? Is (m + n)
mod d = (a + b) mod d? Prove your answers.

52.✶ If m, n, a, b, and d are integers, d > 0, and m mod d = a
and n mod d = b, is (mn)mod d = ab? Is (mn)mod d = ab
mod d? Prove your answers.

53. Prove that if m, d, and k are integers and d > 0, then
(m + dk) mod d = m mod d .

Answers for Test Yourself
1. integers; n = dq + r; 0 ≤ r < d 2. the quotient obtained when n is divided by d; the nonnegative remainder obtained when n
is divided by d 3. odd or even 4. 0, 1, 2, . . . , (d − 1); dq, dq + 1, dq + 2, . . . , dq + (d − 1) 5. If A1, then C ; If A2, then
C ; If A3, then C 6. |x + y| ≤ |x | + |y|
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4.5 Direct Proof and Counterexample V:
Floor and Ceiling

Proof serves many purposes simultaneously. In being exposed to the scrutiny and
judgment of a new audience, [a] proof is subject to a constant process of criticism and
revalidation. Errors, ambiguities, and misunderstandings are cleared up by constant
exposure. Proof is respectability. Proof is the seal of authority.

Proof, in its best instances, increases understanding by revealing the heart of the
matter. Proof suggests new mathematics. The novice who studies proofs gets closer to
the creation of new mathematics. Proof is mathematical power, the electric voltage of
the subject which vitalizes the static assertions of the theorems.

Finally, proof is ritual, and a celebration of the power of pure reason.
— Philip J. Davis and Reuben Hersh, The Mathematical Experience, 1981

Imagine a real number sitting on a number line. The floor and ceiling of the number are
the integers to the immediate left and to the immediate right of the number (unless the
number is, itself, an integer, in which case its floor and ceiling both equal the number
itself ). Many computer languages have built-in functions that compute floor and ceiling
automatically. These functions are very convenient to use when writing certain kinds
of computer programs. In addition, the concepts of floor and ceiling are important in
analyzing the efficiency of many computer algorithms.

• Definition

Given any real number x , the floor of x, denoted �x�, is defined as follows:

�x� = that unique integer n such that n ≤ x < n + 1.

Symbolically, if x is a real number and n is an integer, then

�x� = n ⇔ n ≤ x < n + 1.

n n + 1

x

floor of x = �x�

• Definition

Given any real number x , the ceiling of x, denoted �x�, is defined as follows:

�x� = that unique integer n such that n − 1 < x ≤ n.

Symbolically, if x is a real number and n is an integer, then

�x� = n ⇔ n − 1 < x ≤ n.

nn – 1

x

ceiling of x = �x�
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Example 4.5.1 Computing Floors and Ceilings

Compute �x� and �x� for each of the following values of x :

a. 25/4 b. 0.999 c. −2.01

Solution

a. 25/4 = 6.25 and 6 < 6.25 < 7; hence �25/4� = 6 and �25/4� = 7.

b. 0 < 0.999 < 1; hence �0.999� = 0 and �0.999� = 1.

c. −3 < −2.01 < −2; hence �−2.01� = −3 and �−2.01� = −2.
Note that on some calculators �x� is denoted INT (x). ■

Example 4.5.2 An Application

The 1,370 students at a college are given the opportunity to take buses to an out-of-town
game. Each bus holds a maximum of 40 passengers.

a. For reasons of economy, the athletic director will send only full buses. What is the
maximum number of buses the athletic director will send?

b. If the athletic director is willing to send one partially filled bus, how many buses will
be needed to allow all the students to take the trip?

Solution

a. �1370/40� = �34.25� = 34 b. �1370/40� = �34.25� = 35 ■

Example 4.5.3 Some General Values of Floor

If k is an integer, what are �k� and �k + 1/2�? Why?

Solution Suppose k is an integer. Then

�k� = k because k is an integer and k ≤ k < k + 1,

and ⌊
k + 1

2

⌋
= k because k is an integer and k ≤ k + 1

2
< k + 1. ■

Example 4.5.4 Disproving an Alleged Property of Floor

Is the following statement true or false?

For all real numbers x and y, �x + y� = �x� + �y�.
Solution The statement is false. As a counterexample, take x = y = 1

2 . Then

�x� + �y� =
⌊
1

2

⌋
+
⌊
1

2

⌋
= 0+ 0 = 0,
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whereas

�x + y� =
⌊
1

2
+ 1

2

⌋
= �1� = 1.

Hence �x + y� �= �x� + �y�.
To arrive at this counterexample, you could have reasoned as follows: Suppose x and

y are real numbers. Must it necessarily be the case that �x + y� = �x� + �y�, or could
x and y be such that �x + y� �= �x� + �y�? Imagine values that the various quantities
could take. For instance, if both x and y are positive, then �x� and �y� are the integer
parts of �x� and �y� respectively; just as

2
3

5
= 2+ 3

5→

integer part

→

fractional part

so is

x = �x� + fractional part of x

and

y = �y� + fractional part of y.

where the term fractional part is understood here to mean the part of the number to the
right of the decimal point when the number is written in decimal notation. Thus if x and
y are positive,

x + y = �x� + �y� + the sum of the fractional parts of x and y.

But also

x + y = �x + y� + the fractional part of (x + y).

These equations show that if there exist numbers x and y such that the sum of the frac-
tional parts of x and y is at least 1, then a counterexample can be found. But there do
exist such x and y; for instance, x = 1

2 and y = 1
2 as before. ■

The analysis of Example 4.5.4 indicates that if x and y are positive and the sum of
their fractional parts is less than 1, then �x + y� = �x� + �y�. In particular, if x is posi-
tive and m is a positive integer, then �x + m� = �x� + �m� = �x� + m. (The fractional
part of m is 0; hence the sum of the fractional parts of x and m equals the fractional part
of x , which is less than 1.) It turns out that you can use the definition of floor to show that
this equation holds for all real numbers x and for all integers m.

Example 4.5.5 Proving a Property of Floor

Prove that for all real numbers x and for all integers m, �x + m� = �x� + m.

Solution Begin by supposing that x is a particular but arbitrarily chosen real number and
that m is a particular but arbitrarily chosen integer. You must show that �x + m� =
�x� + m. Since this is an equation involving �x� and �x + m�, it is reasonable to give
one of these quantities a name: Let n = �x�. By definition of floor,

n is an integer and n ≤ x < n + 1.
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This double inequality enables you to compute the value of �x + m� in terms of n by
adding m to all sides:

n + m ≤ x + m < n + m + 1.

Thus the left-hand side of the equation to be shown is

�x + m� = n + m.

On the other hand, since n = �x�, the right-hand side of the equation to be shown is

�x� + m = n + m

also. Thus �x + m� = �x� + m. This discussion is summarized as follows:

Theorem 4.5.1

For all real numbers x and all integers m, �x + m� = �x� + m.

Proof:

Suppose a real number x and an integer m are given. [We must show that �x + m� =
�x� + m.] Let n = �x�. By definition of floor, n is an integer and

n ≤ x < n + 1.

Add m to all three parts to obtain

n + m ≤ x + m < n + m + 1

[since adding a number to both sides of an inequality does not change the direction of
the inequality].

Now n + m is an integer [since n and m are integers and a sum of integers is
an integer], and so, by definition of floor, the left-hand side of the equation to be
shown is

�x + m� = n + m.

But n = �x�. Hence, by substitution,

n + m = �x� + m,

which is the right-hand side of the equation to be shown. Thus �x + m� = �x� + m
[as was to be shown].

■

The analysis of a number of computer algorithms, such as the binary search and merge
sort algorithms, requires that you know the value of �n/2�, where n is an integer. The
formula for computing this value depends on whether n is even or odd.
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Theorem 4.5.2 The Floor of n/2

For any integer n,

⌊
n

2

⌋
=

⎧⎪⎪⎨
⎪⎪⎩
n

2
if n is even

n − 1

2
if n is odd.

Proof:

Suppose n is a [particular but arbitrarily chosen] integer. By the quotient-remainder
theorem, either n is odd or n is even.

Case 1 (n is odd): In this case, n = 2k + 1 for some integer k. [We must show that
�n/2� = (n − 1)/2.] But the left-hand side of the equation to be shown is⌊

n

2

⌋
=

⌊
2k + 1

2

⌋
=

⌊
2k

2
+ 1

2

⌋
=

⌊
k + 1

2

⌋
= k

because k is an integer and k ≤ k + 1/2 < k + 1. And the right-hand side of the
equation to be shown is

n − 1

2
= (2k + 1)− 1

2
= 2k

2
= k

also. So since both the left-hand and right-hand sides equal k, they are equal to each

other. That is,

⌊
n

2

⌋
= n − 1

2
[as was to be shown].

Case 2 (n is even): In this case, n = 2k for some integer k. [We must show that
�n/2� = n/2.] The rest of the proof of this case is left as an exercise.

Given any integer n and a positive integer d, the quotient-remainder theorem guaran-
tees the existence of unique integers q and r such that

n = dq + r and 0 ≤ r < d.

The following theorem states that the floor notation can be used to describe q and r as
follows:

q =
⌊
n

d

⌋
and r = n − d

⌊
n

d

⌋
.

Thus if, on a calculator or in a computer language, floor is built in but div and mod are
not, div and mod can be defined as follows: For a nonnegative integer n and a positive
integer d,

n div d =
⌊
n

d

⌋
and n mod d = n − d

⌊
n

d

⌋
. 4.5.1

Note that d divides n if, and only if, n mod d = 0, or, in other words, n = d�n/d�. You
are asked to prove this in exercise 13.
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Theorem 4.5.3

If n is any integer and d is a positive integer, and if q = �n/d� and r = n − d�n/d�,
then

n = dq + r and 0 ≤ r < d.

Proof:

Suppose n is any integer, d is a positive integer, q = �n/d�, and r =
n − d�n/d�. [We must show that n = dq + r and 0 ≤ r < d.] By substitution,

dq + r = d

⌊
n

d

⌋
+
(
n − d

⌊
n

d

⌋)
= n.

So it remains only to show that 0 ≤ r < d. But q = �n/d�. Thus, by definition of
floor,

q ≤ n

d
< q + 1.

Then

dq ≤ n < dq + d by multiplying all parts by d

and so

0 ≤ n − dq < d by subtracting dq from all parts

But

r = n − d

⌊
n

d

⌋
= n − dq.

Hence

0 ≤ r < d by substitution.

[This is what was to be shown.]

Example 4.5.6 Computing div and mod

Use the floor notation to compute 3850 div 17 and 3850 mod 17.

Solution By formula (4.5.1),

3850 div 17 = �3850/17� = �226.4705882 . . .� = 226

3850 mod 17 = 3850− 17 ·�3850/17�
= 3850− 17 ·226
= 3850− 3842 = 8. ■

Test Yourself
1. Given any real number x , the floor of x is the unique integer

n such that _____.
2. Given any real number x , the ceiling of x is the unique inte-

ger n such that _____.
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Exercise Set 4.5
Compute �x� and �x� for each of the values of x in 1–4.

1. 37.999 2. 17/4

3. −14.00001 4. −32/5
5. Use the floor notation to express 259 div 11 and

259 mod 11.

6. If k is an integer, what is �k�? Why?

7. If k is an integer, what is
⌈
k + 1

2

⌉
? Why?

8. Seven pounds of raw material are needed to manufacture
each unit of a certain product. Express the number of units
that can be produced from n pounds of raw material using
either the floor or the ceiling notation. Which notation is
more appropriate?

9. Boxes, each capable of holding 36 units, are used to ship
a product from the manufacturer to a wholesaler. Express
the number of boxes that would be required to ship n units
of the product using either the floor or the ceiling notation.
Which notation is more appropriate?

10. If 0 = Sunday, 1 = Monday, 2 = Tuesday, . . . , 6 = Satur-
day, then January 1 of year n occurs on the day of the week
given by the following formula:(

n +
⌊
n − 1

4

⌋
−
⌊
n − 1

100

⌋
+
⌊
n − 1

400

⌋)
mod 7.

a. Use this formula to find January 1 of
i. 2050 ii. 2100 iii. the year of your birth.

b.H Interpret the different components of this formula.

11. State a necessary and sufficient condition for the floor of a
real number to equal that number.

12. Prove that if n is any even integer, then �n/2� = n/2.

13. Suppose n and d are integers and d �= 0. Prove each of the
following.
a. If d | n, then n = �n/d� ·d.
b. If n = �n/d� ·d , then d | n.
c. Use the floor notation to state a necessary and sufficient

condition for an integer n to be divisible by an integer d.

Some of the statements in 14–22 are true and some are false.
Prove each true statement and find a counterexample for each
false statement, but do not use Theorem 4.5.1. in your proofs.

14. For all real numbers x and y, �x − y� = �x� − �y�.

15. For all real numbers x, �x − 1� = �x� − 1.

16. For all real numbers x, �x2� = �x�2.
17.H For all integers n,

�n/3� =

⎧⎪⎨
⎪⎩
n/3 if n mod 3 = 0

(n − 1)/3 if n mod 3 = 1

(n − 2)/3 if n mod 3 = 2

.

18.H For all real numbers x and y, �x + y� = �x� + �y�.
19.H For all real numbers x, �x − 1� = �x� − 1.

20. For all real numbers x and y, �xy� = �x� ·�y�.
21. For all odd integers n, �n/2� = (n + 1)/2.

22. For all real numbers x and y, �xy� = �x� ·�y�.
Prove each of the statements in 23–29.

23. For any real number x , if x is not an integer, then
�x� + �−x� = −1.

24. For any integer m and any real number x , if x is not an
integer, then �x� + �m − x� = m − 1.

25.H For all real numbers x, ��x/2�/2� = �x/4�.
26. For all real numbers x , if x − �x� < 1/2 then
�2x� = 2�x�.

27. For all real numbers x , if x − �x� ≥ 1/2 then
�2x� = 2�x� + 1.

28. For any odd integer n,⌊
n2

4

⌋
=

(
n − 1

2

)(
n + 1

2

)
.

29. For any odd integer n,⌈
n2

4

⌉
= n2 + 3

4
.

30. Find the mistake in the following “proof” that �n/2� =
(n − 1)/2 if n is an odd integer.
“Proof: Suppose n is any odd integer. Then n = 2k + 1 for
some integer k. Consequently,⌊

2k + 1

2

⌋
= (2k + 1)− 1

2
= 2k

2
= k.

But n = 2k + 1. Solving for k gives k = (n − 1)/2.
Hence, by substitution, �n/2� = (n − 1)/2.”

Answers for Test Yourself
1. n ≤ x < n + 1 2. n − 1 < x ≤ n
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198 Chapter 4 Elementary Number Theory and Methods of Proof

4.6 Indirect Argument: Contradiction
and Contraposition

Reductio ad absurdum is one of a mathematician’s finest weapons. It is a far finer
gambit than any chess gambit: a chess player may offer the sacrifice of a pawn or even
a piece, but the mathematician offers the game. — G. H. Hardy, 1877–1947

In a direct proof you start with the hypothesis of a statement and make one deduction after
another until you reach the conclusion. Indirect proofs are more roundabout. One kind of
indirect proof, argument by contradiction, is based on the fact that either a statement
is true or it is false but not both. So if you can show that the assumption that a given
statement is not true leads logically to a contradiction, impossibility, or absurdity, then
that assumption must be false: and, hence, the given statement must be true. This method
of proof is also known as reductio ad impossible or reductio ad absurdum because it relies
on reducing a given assumption to an impossibility or absurdity.

Argument by contradiction occurs in many different settings. For example, if a man
accused of holding up a bank can prove that he was some place else at the time the crime
was committed, he will certainly be acquitted. The logic of his defense is as follows:

Suppose I did commit the crime. Then at the time of the crime, I would have had to be
at the scene of the crime. In fact, at the time of the crime I was in a meeting with 20
people far from the crime scene, as they will testify. This contradicts the assumption
that I committed the crime since it is impossible to be in two places at one time. Hence
that assumption is false.

Another example occurs in debate. One technique of debate is to say, “Suppose for
a moment that what my opponent says is correct.” Starting from this supposition, the
debater then deduces one statement after another until finally arriving at a statement that
is completely ridiculous and unacceptable to the audience. By this means the debater
shows the opponent’s statement to be false.

The point of departure for a proof by contradiction is the supposition that the state-
ment to be proved is false. The goal is to reason to a contradiction. Thus proof by contra-
diction has the following outline:

Method of Proof by Contradiction

1. Suppose the statement to be proved is false. That is, suppose that the negation of
the statement is true.

2. Show that this supposition leads logically to a contradiction.

3. Conclude that the statement to be proved is true.

Note Be very careful
when writing the
negation!

There are no clear-cut rules for when to try a direct proof and when to try a proof by
contradiction, but there are some general guidelines. Proof by contradiction is indicated
if you want to show that there is no object with a certain property, or if you want to show
that a certain object does not have a certain property. The next two examples illustrate
these situations.

Example 4.6.1 There Is No Greatest Integer

Use proof by contradiction to show that there is no greatest integer.
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4.6 Indirect Argument: Contradiction and Contraposition 199

Solution Most small children believe there is a greatest integer—they often call it a “zil-
lion.” But with age and experience, they change their belief. At some point they realize
that if there were a greatest integer, they could add 1 to it to obtain an integer that was
greater still. Since that is a contradiction, no greatest integer can exist. This line of rea-
soning is the heart of the formal proof.

For the proof, the “certain property” is the property of being the greatest integer. To
prove that there is no object with this property, begin by supposing the negation: that
there is an object with the property.

Starting Point: Suppose not. Suppose there is a greatest integer; call it N .

This means that N ≥ n for all integers n.

To Show: This supposition leads logically to a contradiction.

Theorem 4.6.1

There is no greatest integer.

Proof:

[We take the negation of the theorem and suppose it to be true.] Suppose not. That
is, suppose there is a greatest integer N . [We must deduce a contradiction.] Then
N ≥ n for every integer n. Let M = N + 1. Now M is an integer since it is a sum
of integers. Also M > N since M = N + 1. Thus M is an integer that is greater
than N . So N is the greatest integer and N is not the greatest integer, which is a
contradiction. [This contradiction shows that the supposition is false and, hence, that
the theorem is true.]

■

After a contradiction has been reached, the logic of the argument is always the same:
“This is a contradiction. Hence the supposition is false and the theorem is true.” Because
of this, most mathematics texts end proofs by contradiction at the point at which the
contradiction has been obtained.

The contradiction in the next example is based on the fact that 1/2 is not an integer.

Example 4.6.2 No Integer Can Be Both Even and Odd

The fact that no integer can be both even and odd follows from the uniqueness part of
the quotient-remainder theorem. A full proof of this port of the theorem is outlined in
exercise 18 of section 4.7. This example shows how to use proof by contradiction to
prove one specific case.

Theorem 4.6.2

There is no integer that is both even and odd.

Proof:

[We take the negation of the theorem and suppose it to be true.] Suppose not. That is,
suppose there is at least one integer n that is both even and odd. [We must deduce a
contradiction.] By definition of even, n = 2a for some integer a, and by definition of
odd, n = 2b + 1 for some integer b. Consequently,

2a = 2b + 1 by equating the two expressions for n

continued on page 200

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



200 Chapter 4 Elementary Number Theory and Methods of Proof

and so

2a − 2b = 1

2(a − b) = 1

a − b = 1/2 by algebra.

Now since a and b are integers, the difference a − b must also be an integer. But
a − b = 1/2, and 1/2 is not an integer. Thus a − b is an integer and a − b is not
an integer, which is a contradiction. [This contradiction shows that the supposition is
false and, hence, that the theorem is true.]

■

The next example asks you to show that the sum of any rational number and any
irrational number is irrational. One way to think of this is in terms of a certain object
(the sum of a rational and an irrational) not having a certain property (the property of
being rational). This suggests trying a proof by contradiction: suppose the object has the
property and deduce a contradiction.

Example 4.6.3 The Sum of a Rational Number and an Irrational Number

Use proof by contradiction to show that the sum of any rational number and any irrational
number is irrational.

!
Caution! The negation
of “The sum of any
irrational number and any
rational number is
irrational” is NOT “The
sum of any irrational
number and any rational
number is rational.”

Solution Begin by supposing the negation of what you are to prove. Be very careful when
writing down what this means. If you take the negation incorrectly, the entire rest of
the proof will be flawed. In this example, the statement to be proved can be written
formally as

∀ real numbers r and s, if r is rational and
s is irrational, then r + s is irrational.

From this you can see that the negation is

∃ a rational number r and an irrational
number s such that r + s is rational.

It follows that the starting point and what is to be shown are as follows:

Starting Point: Suppose not. That is, suppose there is a rational number r and an irrational
number s such that r + s is rational.

To Show: This supposition leads to a contradiction.

To derive a contradiction, you need to understand what you are supposing: that there are
numbers r and s such that r is rational, s is irrational, and r + s is rational. By definition
of rational and irrational, this means that s cannot be written as a quotient of any two
integers but that r and r + s can:

r = a

b
for some integers a and b with b �= 0, and 4.6.1

r + s = c

d
for some integers c and d with d �= 0. 4.6.2
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If you substitute (4.6.1) into (4.6.2), you obtain
a

b
+ s = c

d
.

Subtracting a/b from both sides gives

s = c

d
− a

b

= bc

bd
− ad

bd
by rewriting c/d and a/b as equivalent fractions

= bc − ad

bd
by the rule for subtracting fractions

with the same denominator.

But both bc − ad and bd are integers because products and differences of integers are
integers, and bd �= 0 by the zero product property. Hence s can be expressed as a quotient
of two integers with a nonzero denominator, and so s is rational, which contradicts the
supposition that it is irrational.

This discussion is summarized in a formal proof.

Theorem 4.6.3

The sum of any rational number and any irrational number is irrational.

Proof:

[We take the negation of the theorem and suppose it to be true.] Suppose not. That is,
suppose there is a rational number r and an irrational number s such that r + s is
rational. [We must deduce a contradiction.] By definition of rational, r = a/b and
r + s = c/d for some integers a, b, c, and d with b �= 0 and d �= 0. By substitution,

a

b
+ s = c

d
,

and so

s = c

d
− a

b
by subtracting a/b from both sides

= bc − ad

bd
by the laws of algebra.

Now bc − ad and bd are both integers [since a, b, c, and d are integers and since prod-
ucts and differences of integers are integers], and bd �= 0 [by the zero product property].
Hence s is a quotient of the two integers bc − ad and bd with bd �= 0. Thus, by def-
inition of rational, s is rational, which contradicts the supposition that s is irrational.
[Hence the supposition is false and the theorem is true.]

■

Argument by Contraposition
A second form of indirect argument, argument by contraposition, is based on the logical
equivalence between a statement and its contrapositive. To prove a statement by con-
traposition, you take the contrapositive of the statement, prove the contrapositive by a
direct proof, and conclude that the original statement is true. The underlying reasoning
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202 Chapter 4 Elementary Number Theory and Methods of Proof

is that since a conditional statement is logically equivalent to its contrapositive, if the
contrapositive is true then the statement must also be true.

Method of Proof by Contraposition

1. Express the statement to be proved in the form

∀x in D, if P(x) then Q(x).

(This step may be done mentally.)

2. Rewrite this statement in the contrapositive form

∀x in D, if Q(x) is false then P(x) is false.

(This step may also be done mentally.)

3. Prove the contrapositive by a direct proof.

a. Suppose x is a (particular but arbitrarily chosen) element of D such that Q(x)
is false.

b. Show that P(x) is false.

Example 4.6.4 If the Square of an Integer Is Even, Then the Integer Is Even

Prove that for all integers n, if n2 is even then n is even.

Solution First form the contrapositive of the statement to be proved.

Contrapositive: For all integers n, if n is not even then n2 is not even.

By the quotient-remainder theorem with d = 2, any integer is even or odd, so any integer
that is not even is odd. Also by Theorem 4.6.2, no integer can be both even and odd. So
if an integer is odd, then it is not even. Thus the contrapositive can be restated as follows:

Contrapositive: For all integers n, if n is odd then n2 is odd.

A straightforward computation is the heart of a direct proof for this statement, as shown
below.

Proposition 4.6.4

For all integers n, if n2 is even then n is even.

Proof (by contraposition):

Suppose n is any odd integer. [We must show that n2 is odd.] By definition of odd,
n = 2k + 1 for some integer k. By substitution and algebra,

n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k)+ 1.

But 2k2 + 2k is an integer because products and sums of integers are integers.
So n2 = 2 · (an integer)+ 1, and thus, by definition of odd, n2 is odd [as was to be
shown].

We used the word proposition here rather than theorem because although the word theorem
can refer to any statement that has been proved, mathematicians often restrict it to
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especially important statements that have many and varied consequences. Then they use
the word proposition to refer to a statement that is somewhat less consequential but
nonetheless worth writing down. We will use Proposition 4.6.4 in Section 4.7 to prove
that
√
2 is irrational. ■

Relation between Proof by Contradiction
and Proof by Contraposition

Observe that any proof by contraposition can be recast in the language of proof by con-
tradiction. In a proof by contraposition, the statement

∀x in D, if P(x) then Q(x)

is proved by giving a direct proof of the equivalent statement

∀x in D, if ∼Q(x) then ∼P(x).

To do this, you suppose you are given an arbitrary element x of D such that ∼Q(x). You
then show that ∼P(x). This is illustrated in Figure 4.6.1.

Suppose x is an arbitrary
element of D such that ∼Q(x).

sequence of steps
∼P(x)

Figure 4.6.1 Proof by Contraposition

Exactly the same sequence of steps can be used as the heart of a proof by contradiction
for the given statement. The only thing that changes is the context in which the steps are
written down.

To rewrite the proof as a proof by contradiction, you suppose there is an x in D such
that P(x) and ∼Q(x). You then follow the steps of the proof by contraposition to deduce
the statement ∼P(x). But ∼P(x) is a contradiction to the supposition that P(x) and
∼Q(x). (Because to contradict a conjunction of two statements, it is only necessary to
contradict one of them.) This process is illustrated in Figure 4.6.2.

Suppose ∃x in D such
that P(x) and ∼Q(x).

Contradiction:
P(x) and ∼P(x)

same sequence of steps

Figure 4.6.2 Proof by Contradiction

As an example, here is a proof by contradiction of Proposition 4.6.4, namely that for
any integer n, if n2 is even then n is even.

Proposition 4.6.4

For all integers n, if n2 is even then n is even.

Proof (by contradiction):

[We take the negation of the theorem and suppose it to be true.] Suppose not. That
is, suppose there is an integer n such that n2 is even and n is not even. [We must
deduce a contradiction.] By the quotient-remainder theorem with d = 2, any integer

continued on page 204
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is even or odd. Hence, since n is not even it is odd, and thus, by definition of odd,
n = 2k + 1 for some integer k. By substitution and algebra:

n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k)+ 1.

But 2k2 + 2k is an integer because products and sums of integers are integers. So
n2 = 2 · (an integer)+ 1, and thus, by definition of odd, n2 is odd. Therefore, n2 is
both even and odd. This contradicts Theorem 4.6.2, which states that no integer can
be both even and odd. [This contradiction shows that the supposition is false and, hence,
that the proposition is true.]

Note that when you use proof by contraposition, you know exactly what conclusion
you need to show, namely the negation of the hypothesis; whereas in proof by contra-
diction, it may be difficult to know what contradiction to head for. On the other hand,
when you use proof by contradiction, once you have deduced any contradiction whatso-
ever, you are done. The main advantage of contraposition over contradiction is that you
avoid having to take (possibly incorrectly) the negation of a complicated statement. The
disadvantage of contraposition as compared with contradiction is that you can use contra-
position only for a specific class of statements—those that are universal and conditional.
The previous discussion shows that any statement that can be proved by contraposition
can be proved by contradiction. But the converse is not true. Statements such as “

√
2

is irrational” (discussed in the next section) can be proved by contradiction but not by
contraposition.

Proof as a Problem-Solving Tool
Direct proof, disproof by counterexample, proof by contradiction, and proof by contra-
position are all tools that may be used to help determine whether statements are true or
false. Given a statement of the form

For all elements in a domain, if (hypothesis) then (conclusion),

imagine elements in the domain that satisfy the hypothesis. Ask yourself: Must they sat-
isfy the conclusion? If you can see that the answer is “yes” in all cases, then the statement
is true and your insight will form the basis for a direct proof. If after some thought it is
not clear that the answer is “yes,” ask yourself whether there are elements of the domain
that satisfy the hypothesis and not the conclusion. If you are successful in finding some,
then the statement is false and you have a counterexample. On the other hand, if you are
not successful in finding such elements, perhaps none exist. Perhaps you can show that
assuming the existence of elements in the domain that satisfy the hypothesis and not the
conclusion leads logically to a contradiction. If so, then the given statement is true and
you have the basis for a proof by contradiction. Alternatively, you could imagine elements
of the domain for which the conclusion is false and ask whether such elements also fail
to satisfy the hypothesis. If the answer in all cases is “yes,” then you have a basis for a
proof by contraposition.

Solving problems, especially difficult problems, is rarely a straightforward process.
At any stage of following the guidelines above, you might want to try the method of
a previous stage again. If, for example, you fail to find a counterexample for a certain
statement, your experience in trying to find it might help you decide to reattempt a direct
argument rather than trying an indirect one. Psychologists who have studied problem
solving have found that the most successful problem solvers are those who are flexible
and willing to use a variety of approaches without getting stuck in any one of them for
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very long. Mathematicians sometimes work for months (or longer) on difficult problems.
Don’t be discouraged if some problems in this book take you quite a while to solve.

Learning the skills of proof and disproof is much like learning other skills, such as
those used in swimming, tennis, or playing a musical instrument. When you first start
out, you may feel bewildered by all the rules, and you may not feel confident as you
attempt new things. But with practice the rules become internalized and you can use
them in conjunction with all your other powers—of balance, coordination, judgment,
aesthetic sense—to concentrate on winning a meet, winning a match, or playing a concert
successfully.

Now that you have worked through the first five sections of this chapter, return to the
idea that, above all, a proof or disproof should be a convincing argument. You need to
know how direct and indirect proofs and counterexamples are structured. But to use this
knowledge effectively, you must use it in conjunction with your imaginative powers, your
intuition, and especially your common sense.

Test Yourself
1. To prove a statement by contradiction, you suppose that

_____ and you show that _____.

2. A proof by contraposition of a statement of the form “∀x ∈
D, if P(x) then Q(x)” is a direct proof of _____.

3. To prove a statement of the form “∀x ∈ D, if P(x) then
Q(x)” by contraposition, you suppose that _____ and you
show that _____.

Exercise Set 4.6
1. Fill in the blanks in the following proof by contradiction

that there is no least positive real number.

Proof: Suppose not. That is, suppose that there is a least
positive real number x . [We must deduce (a) ] Consider the
number x/2. Since x is a positive real number, x/2 is also
(b) . In addition, we can deduce that x/2 < x by multiply-
ing both sides of the inequality 1 < 2 by (c) and dividing
(d) . Hence x/2 is a positive real number that is less than
the least positive real number. This is a (e) [Thus the sup-
position is false, and so there is no least positive real number.]

2. Is
1

0
an irrational number? Explain.

3. Use proof by contradiction to show that for all integers n,
3n + 2 is not divisible by 3.

4. Use proof by contradiction to show that for all integers
m, 7m + 4 is not divisible by 7.

Carefully formulate the negations of each of the statements in
5–7. Then prove each statement by contradiction.

5. There is no greatest even integer.

6. There is no greatest negative real number.

7. There is no least positive rational number.

8. Fill in the blanks for the following proof that the difference
of any rational number and any irrational number is irra-
tional.
Proof: Suppose not. That is, suppose that there exist (a)

x and (b) y such that x − y is rational. By definition of

rational, there exist integers a, b, c, and d with b �= 0 and
d �= 0 so that x = (c) and x − y = (d) . By substitution,

a

b
− y = c

d

Adding y and subtracting
c

d
on both sides gives

y = (e)

= ad

bd
− bc

bd

= ad − bc

bd
by algebra.

Now both ad − bc and bd are integers because products
and differences of (f) are (g) . And bd �= 0 by the (h) .
Hence y is a ratio of integers with a nonzero denominator,
and thus y is (i) by definition of rational. We therefore
have both that y is irrational and that y is rational, which is
a contradiction. [Thus the supposition is false and the state-
ment to be proved is true.]

9. a. When asked to prove that the difference of any irra-
tional number and any rational number is irrational, a
student began, “Suppose not. That is, suppose the differ-
ence of any irrational number and any rational number
is rational.” What is wrong with beginning the proof in
this way? (Hint: Review the answer to exercise 11 in
Section 3.2.)

b. Prove that the difference of any irrational number and
any rational number is irrational.
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Prove each statement in 10–17 by contradiction.

10. The square root of any irrational number is irrational.

11. The product of any nonzero rational number and any irra-
tional number is irrational.

12. If a and b are rational numbers, b �= 0, and r is an irrational
number, then a + br is irrational.

13.H For any integer n, n2 − 2 is not divisible by 4.

14.H For all prime numbers a, b, and c, a2 + b2 �= c2.

15.H If a, b, and c are integers and a2 + b2 = c2, then at least
one of a and b is even.

16.✶H For all odd integers a, b, and c, if z is a solution of
ax2 + bx + c = 0 then z is irrational. (In the proof, use
the properties of even and odd integers that are listed in
Example 4.2.3.)

17. For all integers a, if a mod 6 = 3, then a mod 3 �= 2.

18. Fill in the blanks in the following proof by contraposition
that for all integers n, if 5 � | n2 then 5 � | n.
Proof (by contraposition): [The contrapositive is: For all
integers n, if 5 | n then 5 | n2.] Suppose n is any integer
such that (a) . [We must show that (b) .] By definition
of divisibility, n = (c) for some integer k. By substitu-
tion, n2 = (d) = 5(5k2). But 5k2 is an integer because it
is a product of integers. Hence n2 = 5 · (an integer), and so
(e) [as was to be shown].

Prove the statements in 19 and 20 by contraposition.

19. If a product of two positive real numbers is greater than
100, then at least one of the numbers is greater than 10.

20. If a sum of two real numbers is less than 50, then at least
one of the numbers is less than 25.

21. Consider the statement “For all integers n, if n2 is odd then
n is odd.”
a. Write what you would suppose and what you would

need to show to prove this statement by contradiction.
b. Write what you would suppose and what you would

need to show to prove this statement by contraposition.

22. Consider the statement “For all real numbers r , if r 2 is irra-
tional then r is irrational.”
a. Write what you would suppose and what you would

need to show to prove this statement by contradiction.
b. Write what you would suppose and what you would

need to show to prove this statement by contraposition.

Prove each of the statements in 23–29 in two ways: (a) by con-
traposition and (b) by contradiction.

23. The negative of any irrational number is irrational.

24. The reciprocal of any irrational number is irrational. (The
reciprocal of a nonzero real number x is 1/x .)

25.H For all integers n, if n2 is odd then n is odd.

26. For all integers a, b, and c, if a � | bc then a � | b. (Recall that
the symbol � | means “does not divide.”)

27.H For all integers m and n, if m + n is even then m and n are
both even or m and n are both odd.

28. For all integers m and n, if mn is even then m is even or n
is even.

29. For all integers a, b, and c, if a | b and a � | c, then
a � | (b + c). (Hint: To prove p→ q ∨ r, it suffices to prove
either p ∧ ∼q → r or p ∧ ∼r → q. See exercise 14 in
Section 2.2.)

30. The following “proof” that every integer is rational is incor-
rect. Find the mistake.

“Proof (by contradiction): Suppose not. Suppose every
integer is irrational. Then the integer 1 is irrational. But
1 = 1/1, which is rational. This is a contradiction. [Hence
the supposition is false and the theorem is true.] ”

31. a. Prove by contraposition: For all positive integers n, r ,
and s, if rs ≤ n, then r ≤ √n or s ≤ √n.

b. Prove: For all integers n > 1, if n is not prime, then
there exists a prime number p such that p ≤ √n and
n is divisible by p. (Hints: Use the result of part (a),
Theorems 4.3.1, 4.3.3, and 4.3.4, and the transitive prop-
erty of order.)

c. State the contrapositive of the result of part (b).
The results of exercise 31 provide a way to test whether
an integer is prime.

Test for Primality
Given an integer n > 1, to test whether n is prime check to
see if it is divisible by a prime number less than or equal to
its square root. If it is not divisible by any of these numbers,
then it is prime.

32. Use the test for primality to determine whether the follow-
ing numbers are prime or not.
a. 667 b. 557 c. 527 d. 613

33. The sieve of Eratosthenes, named after its inventor, the
Greek scholar Eratosthenes (276–194 B.C.E.), provides a
way to find all prime numbers less than or equal to some
fixed number n. To construct it, write out all the integers
from 2 to n. Cross out all multiples of 2 except 2 itself,
then all multiples of 3 except 3 itself, then all multiples of
5 except 5 itself, and so forth. Continue crossing out the
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multiples of each successive prime number up to
√
n. The

numbers that are not crossed out are all the prime numbers
from 2 to n. Here is a sieve of Eratosthenes that includes
the numbers from 2 to 27. The multiples of 2 are crossed
out with a /, the multiples of 3 with a \, and the multiples
of 5 with a —.

2 3 4 5 6 7 8 9 10 11 12 13 14
15 16 17 18 19 20 21 22 23 24 25 26 27

Use the sieve of Eratosthenes to find all prime numbers less
than 100.

34. Use the test for primality and the result of exercise 33 to
determine whether the following numbers are prime.
a. 9,269 b. 9,103 c. 8,623 d. 7,917

35.✶H Use proof by contradiction to show that every integer
greater than 11 is a sum of two composite numbers.

Answers for Test Yourself
1. the statement is false; this supposition leads to a contradiction 2. the contrapositive of the statement, namely, ∀x ∈ D, if ∼Q(x)
then ∼P(x) 3. x is any [particular but arbitrarily chosen] element of D for which Q(x) is false; P(x) is false

4.7 Indirect Argument: Two Classical Theorems

He is unworthy of the name of man who does not know that the diagonal of a square is
incommensurable with its side.—Plato (ca. 428–347 B.C.E.)

This section contains proofs of two of the most famous theorems in mathematics: that
√
2

is irrational and that there are infinitely many prime numbers. Both proofs are examples
of indirect arguments and were well known more than 2,000 years ago, but they remain
exemplary models of mathematical argument to this day.

The Irrationality of
√
2

When mathematics flourished at the time of the ancient Greeks, mathematicians believed
that given any two line segments, say A: and B: , a certain unit of length
could be found so that segment A was exactly a units long and segment B was exactly
b units long. (The segments were said to be commensurable with respect to this special
unit of length.) Then the ratio of the lengths of A and B would be in the same proportion
as the ratio of the integers a and b. Symbolically:

length A

length B
= a

b
.

Now it is easy to find a line segment of length
√
2; just take the diagonal of the unit

square:

c

1

1

By the Pythagorean theorem, c2 = 12 + 12 = 2, and so c = √2. If the belief of the
ancient Greeks were correct, there would be integers a and b such that

length (diagonal)

length (side)
= a

b
.
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And this would imply that

c

1
=
√
2

1
= √2 = a

b
.

But then
√
2 would be a ratio of two integers, or, in other words,

√
2 would be rational.
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Euclid
(fl. 300 B.C.E.)

In the fourth or fifth century B.C.E., the followers of the Greek mathematician and
philosopher Pythagoras discovered that

√
2 was not rational. This discovery was very

upsetting to them, for it undermined their deep, quasi-religious belief in the power of
whole numbers to describe phenomena.

The following proof of the irrationality of
√
2 was known to Aristotle and is similar to

that in the tenth book of Euclid’s Elements of Geometry. The Greek mathematician Euclid
is best known as a geometer. In fact, knowledge of the geometry in the first six books of
his Elements has been considered an essential part of a liberal education for more than
2,000 years. Books 7–10 of his Elements, however, contain much that we would now call
number theory.

The proof begins by supposing the negation:
√
2 is rational. This means that there

exist integers m and n such that
√
2 = m/n. Now if m and n have any common factors,

these may be factored out to obtain a new fraction, equal to m/n, in which the numerator
and denominator have no common factors. (For example, 18/12 = (6 ·3)/(6 ·2) = 3/2,
which is a fraction whose numerator and denominator have no common factors.) Thus,
without loss of generality, we may assume that m and n had no common factors in the
first place. We will then derive the contradiction that m and n do have a common factor
of 2. The argument makes use of Proposition 4.6.4. If the square of an integer is even,
then that integer is even.

Note Strictly speaking,
being able to assume that
m and n have no common
factors is a consequence
of the “well-ordering
principle for the integers,”
which is discussed in
Section 5.4.

Theorem 4.7.1 Irrationality of
√
2

√
2 is irrational.

Proof:

[We take the negation and suppose it to be true.] Suppose not. That is, suppose
√
2 is

rational. Then there are integers m and n with no common factors such that
√
2 = m

n
4.7.1

[by dividing m and n by any common factors if necessary]. [We must derive a contradic-
tion.] Squaring both sides of equation (4.7.1) gives

2 = m2

n2
.

Or, equivalently,

m2 = 2n2. 4.7.2

Note that equation (4.7.2) implies that m2 is even (by definition of even). It follows
that m is even (by Proposition 4.6.4). We file this fact away for future reference and
also deduce (by definition of even) that

m = 2k for some integer k. 4.7.3
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Substituting equation (4.7.3) into equation (4.7.2), we see that

m2 = (2k)2 = 4k2 = 2n2.

Dividing both sides of the right-most equation by 2 gives

n2 = 2k2.

Consequently, n2 is even, and so n is even (by Proposition 4.6.4). But we also know
that m is even. [This is the fact we filed away.] Hence both m and n have a com-
mon factor of 2. But this contradicts the supposition that m and n have no common
factors. [Hence the supposition is false and so the theorem is true.]

Now that you have seen the proof that
√
2 is irrational, you can use the irrationality

of
√
2 to derive the irrationality of certain other real numbers.

Example 4.7.1 Irrationality of 1 + 3
√
2

Prove by contradiction that 1+ 3
√
2 is irrational.

Solution The essence of the argument is the observation that if 1+ 3
√
2 could be written

as a ratio of integers, then so could
√
2. But by Theorem 4.7.1, we know that to be

impossible.

Proposition 4.7.2

1+ 3
√
2 is irrational.

Proof:

Suppose not. Suppose 1+ 3
√
2 is rational. [We must derive a contradiction.] Then by

definition of rational,

1+ 3
√
2 = a

b
for some integers a and b with b �= 0.

It follows that

3
√
2 = a

b
− 1 by subtracting 1 from both sides

= a

b
− b

b
by substitution

= a − b

b
by the rule for subtracting fractions

with a common denominator.

Hence
√
2 = a − b

3b
by dividing both sides by 3.

But a − b and 3b are integers (since a and b are integers and differences and products of
integers are integers), and 3b �= 0 by the zero product property. Hence

√
2 is a quotient

of the two integers a − b and 3b with 3b �= 0, and so
√
2 is rational (by definition of

rational.) This contradicts the fact that
√
2 is irrational. [This contradiction shows that

the supposition is false.] Hence 1+ 3
√
2 is irrational.

■
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Are There Infinitely Many Prime Numbers?
You know that a prime number is a positive integer that cannot be factored as a product
of two smaller positive integers. Is the set of all such numbers infinite, or is there a largest
prime number? The answer was known to Euclid, and a proof that the set of all prime
numbers is infinite appears in Book 9 of his Elements of Geometry.

Euclid’s proof requires one additional fact we have not yet established: If a prime
number divides an integer, then it does not divide the next successive integer.

Proposition 4.7.3

For any integer a and any prime number p, if p | a then p � | (a + 1).

Proof:

Suppose not. That is, suppose there exists an integer a and a prime number p such
that p | a and p | (a + 1). Then, by definition of divisibility, there exist integers r and
s such that a = pr and a + 1 = ps. It follows that

1 = (a + 1)− a = ps − pr = p(s − r),

and so (since s − r is an integer) p | 1. But, by Theorem 4.3.2, the only integer
divisors of 1 are 1 and −1, and p > 1 because p is prime. Thus p ≤ 1 and p > 1,
which is a contradiction. [Hence the supposition is false, and the proposition is true.]

The idea of Euclid’s proof is this: Suppose the set of prime numbers were finite. Then
you could take the product of all the prime numbers and add one. By Theorem 4.3.4 this
number must be divisible by some prime number. But by Proposition 4.7.3, this number
is not divisible by any of the prime numbers in the set. Hence there must be a prime
number that is not in the set of all prime numbers, which is impossible.

The following formal proof fills in the details of this outline.

Theorem 4.7.4 Infinitude of the Primes

The set of prime numbers is infinite.

Proof (by contradiction):

Suppose not. That is, suppose the set of prime numbers is finite. [We must deduce a
contradiction.] Then some prime number p is the largest of all the prime numbers,
and hence we can list the prime numbers in ascending order:

2, 3, 5, 7, 11,. . . ,p.

Let N be the product of all the prime numbers plus 1:

N = (2 ·3 ·5 ·7 ·11· · ·p)+ 1

Then N > 1, and so, by Theorem 4.3.4, N is divisible by some prime number q.
Because q is prime, q must equal one of the prime numbers 2, 3, 5, 7, 11, . . . , p.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
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Thus, by definition of divisibility, q divides 2 ·3 ·5 ·7 ·11· · ·p, and so, by
Proposition 4.7.3, q does not divide (2 ·3 ·5 ·7 ·11· · ·p)+ 1, which equals N . Hence
N is divisible by q and N is not divisible by q, and we have reached a contradiction.
[Therefore, the supposition is false and the theorem is true.]

■

The proof of Theorem 4.7.4 shows that if you form the product of all prime numbers
up to a certain point and add one, the result, N , is divisible by a prime number not on the
list. The proof does not show that N is, itself, prime. In the exercises at the end of this
section you are asked to find an example of an integer N constructed in this way that is
not prime.

When to Use Indirect Proof
The examples in this section and Section 4.6 have not provided a definitive answer to
the question of when to prove a statement directly and when to prove it indirectly. Many
theorems can be proved either way. Usually, however, when both types of proof are pos-
sible, indirect proof is clumsier than direct proof. In the absence of obvious clues sug-
gesting indirect argument, try first to prove a statement directly. Then, if that does not
succeed, look for a counterexample. If the search for a counterexample is unsuccessful,
look for a proof by contradiction or contraposition.

Open Questions in Number Theory
In this section we proved that there are infinitely many prime numbers. There is no known
formula for obtaining primes, but a few formulas have been found to be more successful
at producing them than other formulas. One such is due to Marin Mersenne, a French
monk who lived from 1588–1648. Mersenne primes have the form 2p − 1, where p is
prime. Not all numbers of this form are prime, but because Mersenne primes are easier to
test for primality than are other numbers, most of the largest known prime numbers are
Mersenne primes.

An interesting question is whether there are infinitely many Mersenne primes. As
of the date of publication of this book, the answer is not known, but new mathematical
discoveries are being made every day and by the time you read this someone may have
discovered the answer. Another formula that seems to produce a relatively large number
of prime numbers is due to Fermat. Fermat primes are prime numbers of the form 22

n + 1,
where n is a positive integer. Are there infinitely many Fermat primes? Again, as of now,
no one knows. Similarly unknown are whether there are infinitely many primes of the
form n2 + 1, where n is a positive integer, and whether there is always a prime number
between integers n2 and (n + 1)2.
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Another famous open question involving primes is the twin primes conjecture, which
states that there are infinitely many pairs of prime numbers of the form p and p + 2. As
with other well-known problems in number theory, this conjecture has withstood com-
puter testing up to extremely large numbers, and some progress has been made toward a
proof. In 2004, Ben Green and Terence Tao showed that for any integer m > 1, there is
a sequence of m equally spaced integers all of which are prime. In other words, there are
are positive integers n and k so that the following numbers are all prime:

n, n + k, n + 2k, n + 3k, . . . , n + (m − 1)k.

Related to the twin primes conjecture is a conjecture made by Sophie Germain, a
French mathematician born in 1776, who made significant progress toward a proof of
Fermat’s Last Theorem. Germain conjectured that there are infinitely many prime number
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pairs of the form p and 2p + 1. Initial values of p with this property are 2, 3, 5, 11, 23, 29,
41, and 53, and computer testing has verified the conjecture for many additional values.
In fact, as of the writing of this book, the largest prime p for which 2p + 1 is also known
to be prime is 183027 ·2265440 − 1. This is a number with 79911 decimal digits! But
compared with infinity, any number, no matter how large, is less than a drop in the bucket.

In 1844, the Belgian mathematician Eugène Catalan conjectured that the only solu-
tions to the equation xn − ym = 1, where x , y, n, and m are all integers greater than 1, is
32 − 23 = 1. This conjecture also remains unresolved to this day.

In 1993, while trying to prove Fermat’s last theorem, an amateur number theorist,
Andrew Beal, became intrigued by the equation xm + yn = zk , where no two of x , y, or
z have any common factor other than ±1. When diligent effort, first by hand and then
by computer, failed to reveal any solutions, Beal conjectured that no solutions exist. His
conjecture has become known as Beal’s conjecture, and he has offered a prize of $100,000
to anyone who can either prove or disprove it.

These are just a few of a large number of open questions in number theory. Many
people believe that mathematics is a fixed subject that changes very little from one century
to the next. In fact, more mathematical questions are being raised and more results are
being discovered now than ever before in history.
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Test Yourself
1. The ancient Greeks discovered that in a right triangle where

both legs have length 1, the ratio of the length of the
hypotenuse to the length of one of the legs is not equal to
a ratio of _____.

2. One way to prove that
√
2 is an irrational number is to

assume that
√
2 = a/b for some integers a and b that have

no common factor greater than 1, use the lemma that says

that if the square of an integer is even then _____, and even-
tually show that a and b _____.

3. One way to prove that there are infinitely many prime num-
bers is to assume that there is a largest prime number p,
construct the number _____, and then show that this num-
ber has to be divisible by a prime number that is greater than
_____.

Exercise Set 4.7
1. A calculator display shows that

√
2 = 1.414213562, and

1.414213562 = 1414213562

1000000000
. This suggests that

√
2 is a

rational number, which contradicts Theorem 4.7.1. Explain
the discrepancy.

2. Example 4.2.1(h) illustrates a technique for showing that
any repeating decimal number is rational. A calcula-
tor display shows the result of a certain calculation as
40.72727272727. Can you be sure that the result of the cal-
culation is a rational number? Explain.

Determine which statements in 3–13 are true and which are
false. Prove those that are true and disprove those that are false.

3. 6− 7
√
2 is irrational. 4. 3

√
2− 7 is irrational.

5.
√
4 is irrational. 6.

√
2/6 is rational.

7. The sum of any two irrational numbers is irrational.

8. The difference of any two irrational numbers is irrational.

9. The positive square root of a positive irrational number is
irrational.

10. If r is any rational number and s is any irrational number,
then r/s is irrational.

11. The sum of any two positive irrational numbers is irrational.

12. The product of any two irrational numbers is irrational.

13.H If an integer greater than 1 is a perfect square, then its cube
root is irrational.

14. Consider the following sentence: If x is rational then
√
x is

irrational. Is this sentence always true, sometimes true and
sometimes false, or always false? Justify your answer.

15. a. Prove that for all integers a, if a3 is even then a is even.
b. Prove that 3

√
2 is irrational.

16. a. Use proof by contradiction to show that for any inte-
ger n, it is impossible for n to equal both 3q1 + r1 and
3q2 + r2, where q1, q2, r1, and r2, are integers, 0 ≤ r1 <

3, 0 ≤ r2 < 3, and r1 �= r2.
b. Use proof by contradiction, the quotient-remainder

theorem, division into cases, and the result of part (a)
to prove that for all integers n, if n2 is divisible by 3 then
n is divisible by 3.

c. Prove that
√
3 is irrational.

17. Give an example to show that if d is not prime and n2 is
divisible by d, then n need not be divisible by d.
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18.H The quotient-remainder theorem says not only that there
exist quotients and remainders but also that the quotient and
remainder of a division are unique. Prove the uniqueness.
That is, prove that if a and d are integers with d > 0 and if
q1, r1, q2, and r2 are integers such that

a = dq1 + r1 where 0 ≤ r1 < d

and

a = dq2 + r2 where 0 ≤ r2 < d,

then

q1 = q2 and r1 = r2.

19.H Prove that
√
5 is irrational.

20.H Prove that for any integer a, 9 � | (a2 − 3).

21. An alternative proof of the irrationality of
√
2 counts the

number of 2’s on the two sides of the equation 2n2 = m2

and uses the unique factorization of integers theorem
to deduce a contradiction. Write a proof that uses this
approach.

22. Use the proof technique illustrated in exercise 21 to prove
that if n is any integer that is not a perfect square, then

√
n

is irrational.

23.H Prove that
√
2+√3 is irrational.

24.✶ Prove that log5(2) is irrational. (Hint: Use the unique fac-
torisation of integers theorem.)

25.H Let N = 2 ·3 ·5 ·7+ 1. What remainder is obtained when
N is divided by 2? 3? 5? 7? Is N prime? Justify your
answer.

26.H Suppose a is an integer and p is a prime number such that
p | a and p | (a + 3). What can you deduce about p? Why?

27. Let p1, p2, p3, . . . be a list of all prime numbers in ascend-
ing order. Here is a table of the first six:

p1 p2 p3 p4 p5 p6

2 3 5 7 11 13

a.H For each i = 1, 2, 3, 4, 5, 6, let Ni = p1 p2 · · · pi + 1.
Calculate N1, N2, N3, N4, N5, and N6.

b. For each i = 1, 2, 3, 4, 5, 6, find the smallest prime
number qi such that qi divides Ni . (Hint: Use the test for
primality from exercise 31 in Section 4.6 to determine
your answers.)

For exercises 28 and 29, use the fact that for all integers n,

n! = n(n − 1) . . . 3 ·2 ·1.

28. An alternative proof of the infinitude of the prime numbers
begins as follows:

Proof: Suppose there are only finitely many prime num-
bers. Then one is the largest. Call it p. Let M = p! + 1. We
will show that there is a prime number q such that q > p.
Complete this proof.

29.✶H Prove that for all integers n, if n > 2 then there is a prime
number p such that n < p < n!.

30.✶H Prove that if p1, p2, . . . , and pn are distinct prime numbers
with p1 = 2 and n > 1, then p1 p2 · · · pn + 1 can be written
in the form 4k + 3 for some integer k.

31.H a. Fermat’s last theorem says that for all integers n > 2,
the equation xn + yn = zn has no positive integer solu-
tion (solution for which x, y, and z are positive integers).
Prove the following: If for all prime numbers p > 2,
x p + y p = z p has no positive integer solution, then for
any integer n > 2 that is not a power of 2, xn + yn = zn

has no positive integer solution.
b. Fermat proved that there are no integers x, y, and z such

that x4 + y4 = z4. Use this result to remove the restric-
tion in part (a) that n not be a power of 2. That is, prove
that if n is a power of 2 and n > 4, then xn + yn = zn

has no positive integer solution.

For exercises 32–35 note that to show there is a unique object
with a certain property, show that (1) there is an object with
the property and (2) if objects A and B have the property, then
A = B.

32. Prove that there exists a unique prime number of the form
n2 − 1, where n is an integer that is greater than or equal
to 2.

33. Prove that there exists a unique prime number of the form
n2 + 2n − 3, where n is a positive integer.

34. Prove that there is at most one real number a with the prop-
erty that a + r = r for all real numbers r . (Such a number
is called an additive identity.)

35. Prove that there is at most one real number b with the prop-
erty that br = r for all real numbers r . (Such a number is
called a multiplicative identity.)

Answers for Test Yourself
1. two integers 2. the integer is even; have a common factor greater than 1 3. 2 ·3 ·5 ·7 ·11 · · · p + 1; p
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4.8 Application: Algorithms

Begin at the beginning . . . and go on till you come to the end: then stop.
— Lewis Carroll, Alice’s Adventures in Wonderland, 1865

In this section we will show how the number theory facts developed in this chapter form
the basis for some useful computer algorithms.

The word algorithm refers to a step-by-step method for performing some action.
Some examples of algorithms in everyday life are food preparation recipes, directions
for assembling equipment or hobby kits, sewing pattern instructions, and instructions for
filling out income tax forms. Much of elementary school mathematics is devoted to learn-
ing algorithms for doing arithmetic such as multidigit addition and subtraction, multidigit
(or long) multiplication, and long division.

The idea of a computer algorithm is credited to Ada Augusta, Countess of Lovelace.
Trained as a mathematician, she became very interested in Charles Babbage’s design
for an “Analytical Engine,” a machine similar in concept to a modern computer. Lady
Lovelace extended Babbage’s explorations of how such a machine would operate, recog-
nizing that its importance lay “in the possibility of using a given sequence of instructions
repeatedly, the number of times being either preassigned or dependent on the results of
the computation.” This is the essence of a modern computer algorithm.
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Lady Lovelace (1815–1852)

An Algorithmic Language
The algorithmic language used in this book is a kind of pseudocode, combining elements
of Pascal, C, Java, and VB.NET, and ordinary, but fairly precise, English. We will use
some of the formal constructs of computer languages—such as assignment statements,
loops, and so forth—but we will ignore the more technical details, such as the require-
ment for explicit end-of-statement delimiters, the range of integer values available on a
particular installation, and so forth. The algorithms presented in this text are intended to
be precise enough to be easily translated into virtually any high-level computer language.

In high-level computer languages, the term variable is used to refer to a specific
storage location in a computer’s memory. To say that the variable x has the value 3 means
that the memory location corresponding to x contains the number 3. A given storage
location can hold only one value at a time. So if a variable is given a new value during
program execution, then the old value is erased. The data type of a variable indicates the
set in which the variable takes its values, whether the set of integers, or real numbers, or
character strings, or the set {0, 1} (for a Boolean variable), and so forth.

An assignment statement gives a value to a variable. It has the form

x := e,

where x is a variable and e is an expression. This is read “x is assigned the value e” or “let
x be e.” When an assignment statement is executed, the expression e is evaluated (using
the current values of all the variables in the expression), and then its value is placed in the
memory location corresponding to x (replacing any previous contents of this location).

Ordinarily, algorithm statements are executed one after another in the order in which
they are written. Conditional statements allow this natural order to be overridden by
using the current values of program variables to determine which algorithm statement
will be executed next. Conditional statements are denoted either

a. if (condition) or b. if (condition) then s1
then s1
else s2
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where condition is a predicate involving algorithm variables and where s1 and s2 are
algorithm statements or groups of algorithm statements. We generally use indentation to
indicate that statements belong together as a unit. When ambiguity is possible, however,
we may explicitly bind a group of statements together into a unit by preceding the group
with the word do and following it with the words end do.

Execution of an if-then-else statement occurs as follows:

1. The condition is evaluated by substituting the current values of all algorithm variables
appearing in it and evaluating the truth or falsity of the resulting statement.

2. If condition is true, then s1 is executed and execution moves to the next algorithm
statement following the if-then-else statement.

3. If condition is false, then s2 is executed and execution moves to the next algorithm
statement following the if-then-else statement.

Execution of an if-then statement is similar to execution of an if-then-else statement,
except that if condition is false, execution passes immediately to the next algorithm state-
ment following the if-then statement.

Often condition is called a guard because it is stationed before s1 and s2 and restricts
access to them.

Example 4.8.1 Execution of if-then-else and if-then Statements

Consider the following algorithm segments:

a. if x > 2 b. y := 0

then y := x + 1 if x > 2 then y := 2x

else do x := x − 1

y := 3 ·x end do

What is the value of y after execution of these segments for the following values of x?

i. x = 5 ii. x = 2

Solution

a. (i) Because the value of x is 5 before execution, the guard condition x > 2 is true
at the time it is evaluated. Hence the statement following then is executed, and
so the value of x + 1 = 5+ 1 is computed and placed in the storage location
corresponding to y. So after execution, y = 6.

(ii) Because the value of x is 2 before execution, the guard condition x > 2 is false at
the time it is evaluated. Hence the statement following else is executed. The value
of x − 1 = 2 − 1 is computed and placed in the storage location corresponding
to x , and the value of 3 ·x = 3 ·1 is computed and placed in the storage location
corresponding to y. So after execution, y = 3.

b. (i) Since x = 5 initially, the condition x > 2 is true at the time it is evaluated. So the
statement following then is executed, and y obtains the value 25 = 32.

(ii) Since x = 2 initially, the condition x > 2 is false at the time it is evaluated. Exe-
cution, therefore, moves to the next statement following the if-then statement,
and the value of y does not change from its initial value of 0. ■

Iterative statements are used when a sequence of algorithm statements is to be exe-
cuted over and over again. We will use two types of iterative statements: while loops and
for-next loops.
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A while loop has the form

while (condition)

[statements that make up
the body of the loop]

end while

where condition is a predicate involving algorithm variables. The word while marks the
beginning of the loop, and the words end while mark its end. Execution of a while loop
occurs as follows:

1. The condition is evaluated by substituting the current values of all the algorithm vari-
ables and evaluating the truth or falsity of the resulting statement.

2. If condition is true, all the statements in the body of the loop are executed in order.
Then execution moves back to the beginning of the loop and the process repeats.

3. If condition is false, execution passes to the next algorithm statement following the
loop.

The loop is said to be iterated (IT-a-rate-ed) each time the statements in the body of the
loop are executed. Each execution of the body of the loop is called an iteration (it-er-AY-
shun) of the loop.

Example 4.8.2 Tracing Execution of a whilewhilewhile Loop

Trace the execution of the following algorithm segment by finding the values of all the
algorithm variables each time they are changed during execution:

i := 1, s := 0

while (i ≤ 2)

s := s + i

i := i + 1

end while

Solution Since i is given an initial value of 1, the condition i ≤ 2 is true when the while
loop is entered. So the statements within the loop are executed in order:

s = 0+ 1 = 1 and i = 1+ 1 = 2.

Then execution passes back to the beginning of the loop.
The condition i ≤ 2 is evaluated using the current value of i , which is 2. The condition

is true, and so the statements within the loop are executed again:

s = 1+ 2 = 3 and i = 2+ 1 = 3.

Then execution passes back to the beginning of the loop.
The condition i ≤ 2 is evaluated using the current value of i , which is 3. This time

the condition is false, and so execution passes beyond the loop to the next statement of
the algorithm.

This discussion can be summarized in a table, called a trace table, that shows the
current values of algorithm variables at various points during execution. The trace table
for a while loop generally gives all values immediately following each iteration of the
loop. (“After the zeroth iteration” means the same as “before the first iteration.”)
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Trace Table

Iteration Number
0 1 2

Variable Name
i 1 2 3

s 0 1 3 ■

The second form of iteration we will use is a for-next loop. A for-next loop has the
following form:

for variable := initial expression to final expression

[statements that make up
the body of the loop]

next (same) variable

A for-next loop is executed as follows:

1. The for-next loop variable is set equal to the value of initial expression.

2. A check is made to determine whether the value of variable is less than or equal to the
value of final expression.

3. If the value of variable is less than or equal to the value of final expression, then the
statements in the body of the loop are executed in order, variable is increased by 1,
and execution returns back to step 2.

4. If the value of variable is greater than the value of final expression, then execution
passes to the next algorithm statement following the loop.

Example 4.8.3 Trace Table for a for-nextfor-nextfor-next Loop

Convert the for-next loop shown below into a while loop. Construct a trace table for the
loop.

for i := 1 to 4

x := i2

next i

Solution The given for-next loop is equivalent to the following:

i := 1

while (i ≤ 4)

x := i2

i := i + 1

end while

Its trace table is as follows:

Trace Table

Iteration Number
0 1 2 3 4

Variable Name
x 1 4 9 16

i 1 2 3 4 5 ■
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A Notation for Algorithms
We will express algorithms as subroutines that can be called upon by other algorithms
as needed and used to transform a set of input variables with given values into a set of
output variables with specific values. The output variables and their values are assumed
to be returned to the calling algorithm. For example, the division algorithm specifies a
procedure for taking any two positive integers as input and producing the quotient and
remainder of the division of one number by the other as output. Whenever an algorithm
requires such a computation, the algorithm can just “call” the division algorithm to do
the job.

We generally include the following information when describing algorithms formally:

1. The name of the algorithm, together with a list of input and output variables.

2. A brief description of how the algorithm works.

3. The input variable names, labeled by data type (whether integer, real number, and so
forth).

4. The statements that make up the body of the algorithm, possibly with explanatory
comments.

5. The output variable names, labeled by data type.
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al-Khowârizmî
(ca. 780–850)

Youmay wonder where the word algorithm came from. It evolved from the last part of
the name of the Persian mathematician Abu Ja’far Mohammed ibn Mûsâ al-Khowârizmî.
During Europe’s Dark Ages, the Arabic world enjoyed a period of intense intellectual
activity. One of the great mathematical works of that period was a book written by
al-Khowârizmî that contained foundational ideas for the subject of algebra. The trans-
lation of this book into Latin in the thirteenth century had a profound influence on the
development of mathematics during the European Renaissance.

The Division Algorithm
For an integer a and a positive integer d, the quotient-remainder theorem guarantees the
existence of integers q and r such that

a = dq + r and 0 ≤ r < d.

In this section, we give an algorithm to calculate q and r for given a and d where a is
nonnegative. (The extension to negative a is left to the exercises at the end of this sec-
tion.) The following example illustrates the idea behind the algorithm. Consider trying to
find the quotient and the remainder of the division of 32 by 9, but suppose that you do not
remember your multiplication table and have to figure out the answer from basic princi-
ples. The quotient represents that number of 9’s that are contained in 32. The remainder is
the number left over when all possible groups of 9 are subtracted. Thus you can calculate
the quotient and remainder by repeatedly subtracting 9 from 32 until you obtain a number
less than 9:

32− 9 = 23 ≥ 9, and

32− 9− 9 = 14 ≥ 9, and

32− 9− 9− 9 = 5 < 9.

This shows that 3 groups of 9 can be subtracted from 32 with 5 left over. Thus the quotient
is 3 and the remainder is 5.
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Algorithm 4.8.1 Division Algorithm

[Given a nonnegative integer a and a positive integer d, the aim of the algorithm is to
find integers q and r that satisfy the conditions a = dq + r and 0 ≤ r < d. This is done
by subtracting d repeatedly from a until the result is less than d but is still nonnegative.

0 ≤ a − d − d − d − · · · − d = a − dq < d.

The total number of d’s that are subtracted is the quotient q. The quantity a − dq equals
the remainder r .]

Input: a [a nonnegative integer], d [a positive integer]

Algorithm Body:

r := a, q := 0
[Repeatedly subtract d from r until a number less than d is obtained. Add 1 to q each
time d is subtracted.]

while (r ≥ d)

r := r − d

q := q + 1

end while

[After execution of the while loop, a = dq + r .]

Output: q, r [nonnegative integers]

Note that the values of q and r obtained from the division algorithm are the same as
those computed by the div and mod functions built into a number of computer languages.
That is, if q and r are the quotient and remainder obtained from the division algorithm
with input a and d, then the output variables q and r satisfy

q = a div d and r = a mod d.

The next example asks for a trace of the division algorithm.

Example 4.8.4 Tracing the Division Algorithm

Trace the action of Algorithm 4.8.1 on the input variables a = 19 and d = 4.

Solution Make a trace table as shown below. The column under the kth iteration gives the
states of the variables after the kth iteration of the loop.

Iteration Number
0 1 2 3 4

a 19

Variable Name
d 4

r 19 15 11 7 3

q 0 1 2 3 4 ■
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The Euclidean Algorithm
The greatest common divisor of two integers a and b is the largest integer that divides
both a and b. For example, the greatest common divisor of 12 and 30 is 6. The Euclidean
algorithm provides a very efficient way to compute the greatest common divisor of two
integers.

• Definition

Let a and b be integers that are not both zero. The greatest common divisor of a
and b, denoted gcd(a, b), is that integer d with the following properties:

1. d is a common divisor of both a and b. In other words,

d | a and d | b.
2. For all integers c, if c is a common divisor of both a and b, then c is less than or

equal to d. In other words,

for all integers c, if c | a and c | b, then c ≤ d.

Example 4.8.5 Calculating Some gcd’s

a. Find gcd(72, 63).

b. Find gcd(1020, 630).

c. In the definition of greatest common divisor, gcd(0, 0) is not allowed. Why not? What
would gcd(0, 0) equal if it were found in the same way as the greatest common divisors
for other pairs of numbers?

Solution

a. 72 = 9 ·8 and 63 = 9 ·7. So 9 | 72 and 9 | 63, and no integer larger than 9 divides both
72 and 63. Hence gcd(72, 63) = 9.

b. By the laws of exponents, 1020 = 220 ·520 and 630 = 230 ·330 = 220 ·210 ·330. It follows
that

220 | 1020 and 220 | 630,
and by the unique factorization of integers theorem, no integer larger than 220 divides
both 1020 and 630 (because no more than twenty 2’s divide 1020, no 3’s divide 1020,
and no 5’s divide 630). Hence gcd(1020, 630) = 220.

c. Suppose gcd(0, 0) were defined to be the largest common factor that divides 0 and 0.
The problem is that every positive integer divides 0 and there is no largest integer. So
there is no largest common divisor! ■

Calculating gcd’s using the approach illustrated in Example 4.8.5 works only when
the numbers can be factored completely. By the unique factorization of integers theorem,
all numbers can, in principle, be factored completely. But, in practice, even using the
highest-speed computers, the process is unfeasibly long for very large integers. Over
2,000 years ago, Euclid devised a method for finding greatest common divisors that is
easy to use and is much more efficient than either factoring the numbers or repeatedly
testing both numbers for divisibility by successively larger integers.

The Euclidean algorithm is based on the following two facts, which are stated as
lemmas.
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Lemma 4.8.1

If r is a positive integer, then gcd(r, 0) = r .

Proof:

Suppose r is a positive integer. [We must show that the greatest common divisor of both
r and 0 is r .] Certainly, r is a common divisor of both r and 0 because r divides itself
and also r divides 0 (since every positive integer divides 0). Also no integer larger
than r can be a common divisor of r and 0 (since no integer larger than r can divide
r ). Hence r is the greatest common divisor of r and 0.

The proof of the second lemma is based on a clever pattern of argument that is used
in many different areas of mathematics: To prove that A = B, prove that A ≤ B and that
B ≤ A.

Lemma 4.8.2

If a and b are any integers not both zero, and if q and r are any integers such that

a = bq + r,

then

gcd(a, b) = gcd(b, r).

Proof:

[The proof is divided into two sections: (1) proof that gcd(a, b) ≤ gcd(b, r), and (2)
proof that gcd(b, r) ≤ gcd(a, b). Since each gcd is less than or equal to the other, the
two must be equal.]

1. gcd (a, b) ≤ gcd (b, r):

a. [We will first show that any common divisor of a and b is also a common divisor
of b and r.]

Let a and b be integers, not both zero, and let c be a common divisor of
a and b. Then c | a and c | b, and so, by definition of divisibility, a = nc and
b = mc, for some integers n and m. Now substitute into the equation

a = bq + r

to obtain

nc = (mc)q + r.

Then solve for r :

r = nc − (mc)q = (n − mq)c.

But n − mq is an integer, and so, by definition of divisibility, c | r . Because we
already know that c | b, we can conclude that c is a common divisor of b and r
[as was to be shown].

continued on page 222
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b. [Next we show that gcd(a, b) ≤ gcd(b, r).]
By part (a), every common divisor of a and b is a common divisor of b and

r . It follows that the greatest common divisor of a and b is defined because
a and b are not both zero, and it is a common divisor of b and r . But then
gcd(a, b) (being one of the common divisors of b and r ) is less than or equal
to the greatest common divisor of b and r :

gcd(a, b) ≤ gcd(b, r).

2. gcd (b, r) ≤ gcd (a, b):
The second part of the proof is very similar to the first part. It is left as an

exercise.

The Euclidean algorithm can be described as follows:

1. Let A and B be integers with A > B ≥ 0.

2. To find the greatest common divisor of A and B, first check whether B = 0. If it
is, then gcd(A, B) = A by Lemma 4.8.1. If it isn’t, then B > 0 and the quotient-
remainder theorem can be used to divide A by B to obtain a quotient q and a
remainder r :

A = Bq + r where 0 ≤ r < B.

By Lemma 4.8.2, gcd(A, B) = gcd(B, r). Thus the problem of finding the greatest
common divisor of A and B is reduced to the problem of finding the greatest common
divisor of B and r .

What makes this piece of information useful is that B and r are smaller numbers
than A and B. To see this, recall that we assumed

A > B ≥ 0.

Also the r found by the quotient-remainder theorem satisfies

0 ≤ r < B.

Putting these two inequalities together gives

0 ≤ r < B < A.

So the larger number of the pair (B, r) is smaller than the larger number of the pair
(A, B).

3. Now just repeat the process, starting again at (2), but use B instead of A and r instead
of B. The repetitions are guaranteed to terminate eventually with r = 0 because each
new remainder is less than the preceding one and all are nonnegative.

Note Strictly speaking,
the fact that the
repetitions eventually
terminate is justified by
the well-ordering
principle for the integers,
which is discussed in
Section 5.4.

By the way, it is always the case that the number of steps required in the Euclidean
algorithm is at most five times the number of digits in the smaller integer. This was proved
by the French mathematician Gabriel Lamé (1795–1870).
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The following example illustrates how to use the Euclidean algorithm.

Example 4.8.6 Hand-Calculation of gcd’s Using the Euclidean Algorithm

Use the Euclidean algorithm to find gcd(330, 156).

Solution

1. Divide 330 by 156:

2← quotient

156 330
312
18← remainder

Thus 330 = 156 ·2+ 18 and hence gcd(330, 156) = gcd(156, 18) by Lemma 4.8.2.

2. Divide 156 by 18:

8← quotient

18 156
144
12← remainder

Thus 156 = 18 ·8+ 12 and hence gcd(156, 18) = gcd(18, 12) by Lemma 4.8.2.

3. Divide 18 by 12:

1← quotient

12 18
12
6← remainder

Thus 18 = 12 ·1+ 6 and hence gcd(18, 12) = gcd(12, 6) by Lemma 4.8.2.

4. Divide 12 by 6:

2← quotient

6 12
12
0← remainder

Thus 12 = 6 ·2+ 0 and hence gcd(12, 6) = gcd(6, 0) by Lemma 4.8.2.

Putting all the equations above together gives

gcd(330, 156) = gcd(156, 18)

= gcd(18, 12)

= gcd(12, 6)

= gcd(6, 0)

= 6 by Lemma 4.8.1.

Therefore, gcd(330, 156) = 6. ■

The following is a version of the Euclidean algorithm written using formal algorithm
notation.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



224 Chapter 4 Elementary Number Theory and Methods of Proof

Algorithm 4.8.2 Euclidean Algorithm

[Given two integers A and B with A > B ≥ 0, this algorithm computes gcd(A, B). It is
based on two facts:

1. gcd(a, b) = gcd(b, r) if a, b, q, and r are integers with a = b ·q + r and 0 ≤ r < b.

2. gcd(a, 0) = a.]

Input: A, B [integers with A > B ≥ 0]

Algorithm Body:

a := A, b := B, r := B
[If b �= 0, compute a mod b, the remainder of the integer division of a by b, and set r
equal to this value. Then repeat the process using b in place of a and r in place of b.]

while (b �= 0)

r := a mod b
[The value of a mod b can be obtained by calling the division algorithm.]

a := b

b := r

end while

[After execution of the while loop, gcd(A, B) = a.]
gcd := a

Output: gcd [a positive integer]

Test Yourself
1. When an algorithm statement of the form x := e is exe-

cuted, _____.

2. Consider an algorithm statement of the following form.

if (condition)
then s1
else s2
When such a statement is executed, the truth or falsity

of the condition is evaluated. If condition is true, _____.
If condition is false, _____.

3. Consider an algorithm statement of the following form.

while (condition)
[statements that make up the body of the loop]
end while

When such a statement is executed, the truth or falsity
of the condition is evaluated. If condition is true, _____.
If condition is false, _____.

4. Consider an algorithm statement of the following form.

for variable := initial expression to final expression.
[statements that make up the body of the loop]
next (same) variable

When such a statement is executed, variable is set equal to
the value of the initial expression, and a check is made to
determine whether the value of variable is less than or equal
to the value of final expression. If so, _____. If not, _____.

5. Given a nonnegative integer a and a positive integer d the
division algorithm computes _____.

6. Given integers a and b, not both zero, gcd(a, b) is the inte-
ger d that satisfies the following two conditions: _____ and
_____.

7. If r is a positive integer, then gcd(r, 0) = _____.

8. If a and b are integers not both zero and if q and r are
nonnegative integers such that a = bq + r then gcd(a, b) =
_____.

9. Given positive integers A and B with A > B, the Euclidean
algorithm computes _____.
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Exercise Set 4.8
Find the value of z when each of the algorithm segments in 1
and 2 is executed.

1. i := 2

if (i > 3 or i ≤ 0)

then z := 1

else z := 0

2. i := 3

if (i ≤ 3 or i > 6)

then z := 2

else z := 0

3. Consider the following algorithm segment:

if x · y > 0 then do y := 3 · x
x := x + 1 end do

z := x · y
Find the value of z if prior to execution x and y have the
values given below.
a. x = 2, y = 3 b. x = 1, y = 1

Find the values of a and e after execution of the loops in 4
and 5:

4. a := 2

for i := 1 to 2

a := a

2
+ 1

a

next i

5. e := 0, f := 2

for j := 1 to 4

f := f · j
e := e + 1

f

next j

Make a trace table to trace the action of Algorithm 4.8.1 for the
input variables given in 6 and 7.

6. a = 26, d = 7 7. a = 59, d = 13

8. The following algorithm segment makes change; given an
amount of money A between 1c/ and 99c/, it determines a
breakdown of A into quarters (q), dimes (d), nickels (n),
and pennies (p).

q : = A div 25

A : = A mod 25

d : = A div 10

A : = A mod 10

n : = A div 5

p : = A mod 5

a. Trace this algorithm segment for A = 69.
b. Trace this algorithm segment for A = 87.

Find the greatest common divisor of each of the pairs of integers
in 9–12. (Use any method you wish.)

9. 27 and 72 10. 5 and 9

11. 7 and 21 12. 48 and 54

Use the Euclidean algorithm to hand-calculate the greatest com-
mon divisors of each of the pairs of integers in 13–16.

13. 1,188 and 385 14. 509 and 1,177

15. 832 and 10,933 16. 4,131 and 2,431

Make a trace table to trace the action of Algorithm 4.8.2 for the
input variables given in 17 and 18.

17. 1,001 and 871 18. 5,859 and 1,232

19.H Prove that for all positive integers a and b, a | b if, and only
if, gcd(a, b) = a. (Note that to prove “A if, and only if, B,”
you need to prove “if A then B” and “if B then A.”)

20. a. Prove that if a and b are integers, not both zero, and
d = gcd(a, b), then a/d and b/d are integers with no
common divisor that is greater than one.

b. Write an algorithm that accepts the numerator and
denominator of a fraction as input and produces as out-
put the numerator and denominator of that fraction writ-
ten in lowest terms. (The algorithm may call upon the
Euclidean algorithm as needed.)

21. Complete the proof of Lemma 4.8.2 by proving the follow-
ing: If a and b are any integers with b �= 0 and q and r are
any integers such that

a = bq + r.

then gcd(b, r) ≤ gcd(a, b).

22.H a. Prove: If a and d are positive integers and q and r are
integers such that a = dq + r and 0 < r < d, then

−a = d(−(q + 1))+ (d − r)

and 0 < d − r < d.

b. Indicate how to modify Algorithm 4.8.1 to allow for the
input a to be negative.

23. a. Prove that if a, d, q, and r are integers such that a =
dq + r and 0 ≤ r < d, then

q = �a/d� and r = a − �a/d� ·d.
b. In a computer language with a built-in-floor function,

div and mod can be calculated as follows:

a div d = �a/d� and a mod d = a − �a/d� ·d.
Rewrite the steps of Algorithm 4.8.2 for a computer lan-
guage with a built-in floor function but without div and
mod.

24. An alternative to the Euclidean algorithm uses subtraction
rather than division to compute greatest common divisors.
(After all, division is repeated subtraction.) It is based on
the following lemma:

Lemma 4.8.3

If a ≥ b > 0, then gcd(a, b) = gcd(b, a − b).
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Algorithm 4.8.3 Computing gcd’s by Subtraction

[Given two positive integers A and B, variables a and b are set
equal to A and B. Then a repetitive process begins. If a �= 0,
and b �= 0, then the larger of a and b is set equal to a − b (if
a ≥ b) or to b − a (if a < b), and the smaller of a and b is left
unchanged. This process is repeated over and over until eventu-
ally a or b becomes 0. By Lemma 4.8.3, after each repetition of
the process,

gcd(A, B) = gcd(a, b).

After the last repetition,

gcd(A, B) = gcd(a, 0) or gcd(A, B) = gcd(0, b)

depending on whether a or b is nonzero. But by Lemma 4.8.1,

gcd(a, 0) = a and gcd(0, b) = b.

Hence, after the last repetition,

gcd(A, B) = a if a �= 0 or gcd(A, B) = b if b �= 0.]

Input: A, B [positive integers]

Algorithm Body:

a := A, b := B

while (a �= 0 and b �= 0)

if a ≥ b then a := a − b

else b := b − a

end while

if a = 0 then gcd := b

else gcd := a

[After execution of the if-then-else statement,
gcd= gcd(A, B).]

Output: gcd [a positive integer]

a. Prove Lemma 4.8.3.
b. Trace the execution of Algorithm 4.8.3 for A = 630 and

B = 336.
c. Trace the execution of Algorithm 4.8.3 for A = 768 and

B = 348.

Exercises 25–29 refer to the following definition.

Definition: The least commonmultiple of two nonzero inte-
gers a and b, denoted lcm(a, b), is the positive integer c
such that
a. a | c and b | c
b. for all positive integers m, if a |m and b |m, then c ≤ m.

25. Find
a. lcm(12, 18) b. lcm(22 ·3 ·5, 23 ·32)
c. lcm(2800, 6125)

26. Prove that for all positive integers a and b, gcd(a, b) =
lcm(a, b) if, and only if, a = b.

27. Prove that for all positive integers a and b, a | b if, and only
if, lcm(a, b) = b.

28. Prove that for all integers a and b, gcd(a, b) | lcm(a, b).

29.H Prove that for all positive integers a and b,
gcd(a, b) · lcm(a, b) = ab.

Answers for Test Yourself
1. the expression e is evaluated (using the current values of all the variables in the expression), and this value is placed in the memory
location corresponding to x (replacing any previous contents of the location) 2. statement s1 is executed; statement s2 is executed
3. all statements in the body of the loop are executed in order and then execution moves back to the beginning of the loop and the
process repeats; execution passes to the next algorithm statement following the loop 4. the statements in the body of the loop are
executed in order, variable is increased by 1, and execution returns to the top of the loop; execution passes to the next algorithm
statement following the loop 5. integers q and r with the property that n = dq + r and 0 ≤ r < d 6. d divides both a and b; if c
is a common divisor of both a and b, then c ≤ d 7. r 8. gcd(b, r) 9. the greatest common divisor of A and B (Or: gcd(A,B))
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CHAPTER 5

SEQUENCES, MATHEMATICAL
INDUCTION, AND RECURSION

One of the most important tasks of mathematics is to discover and characterize regular
patterns, such as those associated with processes that are repeated. The main mathemati-
cal structure used in the study of repeated processes is the sequence, and the main mathe-
matical tool used to verify conjectures about sequences is mathematical induction. In this
chapter we introduce the notation and terminology of sequences, show how to use both
ordinary and strong mathematical induction to prove properties about them, illustrate the
various ways recursively defined sequences arise, describe a method for obtaining an
explicit formula for a recursively defined sequence, and explain how to verify the cor-
rectness of such a formula. We also discuss a principle—the well-ordering principle for
the integers—that is logically equivalent to the two forms of mathematical induction, and
we show how to adapt mathematical induction to prove the correctness of computer algo-
rithms. In the final section we discuss more general recursive definitions, such as the one
used for the careful formulation of the concept of Boolean expression, and the idea of
recursive function.

5.1 Sequences

A mathematician, like a painter or poet, is a maker of patterns.
— G. H. Hardy, A Mathematician’s Apology, 1940

Imagine that a person decides to count his ancestors. He has two parents, four grandpar-
ents, eight great-grandparents, and so forth, These numbers can be written in a row as

2, 4, 8, 16, 32, 64, 128, . . .

The symbol “. . .” is called an ellipsis. It is shorthand for “and so forth.”
To express the pattern of the numbers, suppose that each is labeled by an integer

giving its position in the row.

Position in the row 1 2 3 4 5 6 7 . . .

Number of ancestors 2 4 8 16 32 64 128 . . .

The number corresponding to position 1 is 2, which equals 21. The number corresponding
to position 2 is 4, which equals 22. For positions 3, 4, 5, 6, and 7, the corresponding
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228 Chapter 5 Sequences, Mathematical Induction, and Recursion

numbers are 8, 16, 32, 64, and 128, which equal 23, 24, 25, 26, and 27, respectively. For
a general value of k, let Ak be the number of ancestors in the kth generation back. The
pattern of computed values strongly suggests the following for each k:

Ak = 2k .

Note Strictly speaking,
the true value of Ak is less
than 2k when k is large,
because ancestors from
one branch of the family
tree may also appear on
other branches of the tree. • Definition

A sequence is a function whose domain is either all the integers between two given
integers or all the integers greater than or equal to a given integer.

We typically represent a sequence as a set of elements written in a row. In the sequence
denoted

am, am+1, am+2, . . . , an,

each individual element ak (read “a sub k”) is called a term. The k in ak is called a
subscript or index, m (which may be any integer) is the subscript of the initial term,
and n (which must be greater than or equal to m) is the subscript of the final term. The
notation

am, am+1, am+2, . . .

denotes an infinite sequence. An explicit formula or general formula for a sequence is
a rule that shows how the values of ak depend on k.

The following example shows that it is possible for two different formulas to give
sequences with the same terms.

Example 5.1.1 Finding Terms of Sequences Given by Explicit Formulas

Define sequences a1, a2, a3, . . . and b2, b3, b4, . . . by the following explicit formulas:

ak = k

k + 1
for all integers k ≥ 1,

bi = i − 1

i
for all integers i ≥ 2.

Compute the first five terms of both sequences.

Solution
a1 = 1

1+ 1
= 1

2
b2 = 2− 1

2
= 1

2

a2 = 2

2+ 1
= 2

3
b3 = 3− 1

3
= 2

3

a3 = 3

3+ 1
= 3

4
b4 = 4− 1

4
= 3

4

a4 = 4

4+ 1
= 4

5
b5 = 5− 1

5
= 4

5

a5 = 5

5+ 1
= 5

6
b6 = 6− 1

6
= 5

6

As you can see, the first terms of both sequences are 1
2 ,

2
3 ,

3
4 ,

4
5 ,

5
6 ; in fact, it can be

shown that all terms of both sequences are identical. ■
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The next example shows that an infinite sequence may have a finite number of values.

Example 5.1.2 An Alternating Sequence

Compute the first six terms of the sequence c0, c1, c2, . . . defined as follows:

c j = (−1) j for all integers j ≥ 0.

Solution c0 = (−1)0 = 1

c1 = (−1)1 = −1
c2 = (−1)2 = 1

c3 = (−1)3 = −1
c4 = (−1)4 = 1

c5 = (−1)5 = −1
Thus the first six terms are 1,−1, 1,−1, 1,−1. By exercises 33 and 34 of Section 4.1,
even powers of −1 equal 1 and odd powers of −1 equal −1. It follows that the sequence
oscillates endlessly between 1 and −1. ■

In Examples 5.1.1 and 5.1.2 the task was to compute the first few values of a sequence
given by an explicit formula. The next example treats the question of how to find an
explicit formula for a sequence with given initial terms. Any such formula is a guess, but
it is very useful to be able to make such guesses.

Example 5.1.3 Finding an Explicit Formula to Fit Given Initial Terms

Find an explicit formula for a sequence that has the following initial terms:

1, −1

4
,

1

9
, − 1

16
,

1

25
, − 1

36
, . . . .

Solution Denote the general term of the sequence by ak and suppose the first term is a1.
Then observe that the denominator of each term is a perfect square. Thus the terms can
be rewritten as

1

12
,

(−1)
22

,
1

32
,

(−1)
42

,
1

52
,

(−1)
62

.

( ( ( ( ( (
a1 a2 a3 a4 a5 a6

Note that the denominator of each term equals the square of the subscript of that term,
and that the numerator equals ±1. Hence

ak = ±1
k2

.

Also the numerator oscillates back and forth between +1 and −1; it is +1 when k is odd
and−1 when k is even. To achieve this oscillation, insert a factor of (−1)k+1 (or (−1)k−1)
into the formula for ak . [For when k is odd, k + 1 is even and thus (−1)k+1 = +1; and when
k is even, k + 1 is odd and thus (−1)k+1 = −1.] Consequently, an explicit formula that
gives the correct first six terms is

ak = (−1)k+1
k2

for all integers k ≥ 1.
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!
Caution! It is also
possible for two
sequences to start off with
the same initial values but
diverge later on. See
exercise 5 at the end of
this section.

Note that making the first term a0 would have led to the alternative formula

ak = (−1)k
(k + 1)2

for all integers k ≥ 0.

You should check that this formula also gives the correct first six terms. ■

Summation Notation
Consider again the example in which Ak = 2k represents the number of ancestors a per-
son has in the kth generation back. What is the total number of ancestors for the past six
generations? The answer is

A1 + A2 + A3 + A4 + A5 + A6 = 21 + 22 + 23 + 24 + 25 + 26 = 126.

C
O

R
B

IS

Joseph Louis Lagrange
(1736–1813)

It is convenient to use a shorthand notation to write such sums. In 1772 the French
mathematician Joseph Louis Lagrange introduced the capital Greek letter sigma, �, to
denote the word sum (or summation), and defined the summation notation as follows:

• Definition

If m and n are integers and m ≤ n, the symbol
n∑

k=m
ak , read the summation from

k equals m to n of a-sub-k, is the sum of all the terms am, am+1, am+2, . . . , an .
We say that am + am+1 + am+2 + . . .+ an is the expanded form of the sum, and
we write

n∑
k=m

ak = am + am+1 + am+2 + · · · + an.

We call k the index of the summation, m the lower limit of the summation, and n
the upper limit of the summation.

Example 5.1.4 Computing Summations

Let a1 = −2, a2 = −1, a3 = 0, a4 = 1, and a5 = 2. Compute the following:

a.
5∑

k=1
ak b.

2∑
k=2

ak c.
2∑

k=1
a2k

Solution

a.
5∑

k=1
ak = a1 + a2 + a3 + a4 + a5 = (−2)+ (−1)+ 0+ 1+ 2 = 0

b.
2∑

k=2
ak = a2 = −1

c.
2∑

k=1
a2k = a2 ·1 + a2 ·2 = a2 + a4 = −1+ 1 = 0 ■
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Oftentimes, the terms of a summation are expressed using an explicit formula. For
instance, it is common to see summations such as

5∑
k=1

k2 or
8∑

i=0

(−1)i
i + 1

.

Example 5.1.5 When the Terms of a Summation Are Given by a Formula

Compute the following summation:

5∑
k=1

k2.

Solution
5∑

k=1
k2 = 12 + 22 + 32 + 42 + 52 = 55. ■

When the upper limit of a summation is a variable, an ellipsis is used to write the
summation in expanded form.

Example 5.1.6 Changing from Summation Notation to Expanded Form

Write the following summation in expanded form:

n∑
i=0

(−1)i
i + 1

.

Solution
n∑

i=0

(−1)i
i + 1

= (−1)0
0+ 1

+ (−1)1
1+ 1

+ (−1)2
2+ 1

+ (−1)3
3+ 1

+ · · · + (−1)n
n + 1

= 1

1
+ (−1)

2
+ 1

3
+ (−1)

4
+ · · · + (−1)n

n + 1

= 1− 1

2
+ 1

3
− 1

4
+ · · · + (−1)n

n + 1
■

Example 5.1.7 Changing from Expanded Form to Summation Notation

Express the following using summation notation:

1

n
+ 2

n + 1
+ 3

n + 2
+ · · · + n + 1

2n
.

Solution The general term of this summation can be expressed as
k + 1

n + k
for integers k from

0 to n. Hence

1

n
+ 2

n + 1
+ 3

n + 2
+ · · · + n + 1

2n
=

n∑
k=0

k + 1

n + k
. ■

For small values of n, the expanded form of a sum may appear ambiguous. For
instance, consider

12 + 22 + 32 + · · · + n2.

This expression is intended to represent the sum of squares of consecutive integers start-
ing with 12 and ending with n2. Thus, if n= 1 the sum is just 12, if n= 2 the sum is
12 + 22, and if n= 3 the sum is 12 + 22 + 32.
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Example 5.1.8 Evaluating a1, a2, a3, . . . , an for Small n

What is the value of the expression
1

1 ·2 +
1

2 ·3 +
1

3 ·4 + · · · +
1

n ·(n + 1)
when

n = 1? n = 2? n = 3?

!
Caution! Do not write
that for n = 1, the sum is

1

1 ·2 +
1

2 ·3 +
1

3 ·4 + · · · +
1

1 ·2 .

This is crossed out
because it is incorrect.

Solution

When n = 1, the expression equals
1

1 ·2 =
1

2
.

When n = 2, it equals
1

1 ·2 +
1

2 ·3 =
1

2
+ 1

6
= 2

3
.

When n = 3, it is
1

1 ·2 +
1

2 ·3 +
1

3 ·4 =
1

2
+ 1

6
+ 1

12
= 3

4
.

■

Amore mathematically precise definition of summation, called a recursive definition,
is the following:∗ If m is any integer, then

m∑
k=m

ak = am and
n∑

k=m
ak =

n−1∑
k=m

ak + an for all integers n > m.

When solving problems, it is often useful to rewrite a summation using the recursive form
of the definition, either by separating off the final term of a summation or by adding a
final term to a summation.

Example 5.1.9 Separating Off a Final Term and Adding On a Final Term

a. Rewrite
n+1∑
i=1

1

i2
by separating off the final term.

b. Write
n∑

k=0
2k + 2n+1 as a single summation.

Solution

a.
n+1∑
i=1

1

i2
=

n∑
i=1

1

i2
+ 1

(n + 1)2
b.

n∑
k=0

2k + 2n+1 =
n+1∑
k=0

2k ■

In certain sums each term is a difference of two quantities. When you write such sums
in expanded form, you sometimes see that all the terms cancel except the first and the last.
Successive cancellation of terms collapses the sum like a telescope.

Example 5.1.10 A Telescoping Sum

Some sums can be transformed into telescoping sums, which then can be rewritten as a
simple expression. For instance, observe that

1

k
− 1

k + 1
= (k + 1)− k

k(k + 1)
= 1

k(k + 1)
.

Use this identity to find a simple expression for
n∑

k=1

1

k(k + 1)
.

∗Other recursively defined sequences are discussed later in this section and, in greater detail, in
Section 5.6.
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Solution

n∑
k=1

1

k(k + 1)
=

n∑
k=1

(
1

k
− 1

k + 1

)

=
(
1

1
− 1

2

)
+
(
1

2
− 1

3

)
+
(
1

3
− 1

4

)
+ · · · +

(
1

n − 1
− 1

n

)
+
(
1

n
− 1

n + 1

)

= 1− 1

n + 1
. ■

Product Notation
The notation for the product of a sequence of numbers is analogous to the notation for
their sum. The Greek capital letter pi, �, denotes a product. For example,

5∏
k=1

ak = a1a2a3a4a5.

• Definition

If m and n are integers and m ≤ n, the symbol
n∏

k=m
ak , read the product from k

equals m to n of a-sub-k, is the product of all the terms am, am+1, am+2, . . . , an .

We write n∏
k=m

ak = am ·am+1 ·am+2 · · · an.

A recursive definition for the product notation is the following: If m is any
integer, then

m∏
k=m

ak = am and
n∏

k=m
ak =

(
n−1∏
k=m

ak

)
·an for all integers n > m.

Example 5.1.11 Computing Products

Compute the following products:

a.
5∏

k=1
k b.

1∏
k=1

k

k + 1

Solution

a.
5∏

k=1
k = 1 ·2 ·3 ·4 ·5 = 120 b.

1∏
k=1

k

k + 1
= 1

1+ 1
= 1

2
■

Properties of Summations and Products
The following theorem states general properties of summations and products. The proof
of the theorem is discussed in Section 5.6.
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Theorem 5.1.1

If am, am+1, am+2, . . . and bm, bm+1, bm+2, . . . are sequences of real numbers and c
is any real number, then the following equations hold for any integer n ≥ m:

1.
n∑

k=m
ak +

n∑
k=m

bk =
n∑

k=m
(ak + bk)

2. c ·
n∑

k=m
ak =

n∑
k=m

c ·ak generalized distributive law

3.

(
n∏

k=m
ak

)
·
(

n∏
k=m

bk

)
=

n∏
k=m

(ak ·bk).

Example 5.1.12 Using Properties of Summation and Product

Let ak = k + 1 and bk = k − 1 for all integers k. Write each of the following expressions
as a single summation or product:

a.
n∑

k=m
ak + 2 ·

n∑
k=m

bk b.

(
n∏

k=m
ak

)
·
(

n∏
k=m

bk

)

Solution

a.
n∑

k=m
ak + 2 ·

n∑
k=m

bk =
n∑

k=m
(k + 1)+ 2 ·

n∑
k=m

(k − 1) by substitution

=
n∑

k=m
(k + 1)+

n∑
k=m

2 ·(k − 1) by Theorem 5.1.1 (2)

=
n∑

k=m
((k + 1)+ 2 ·(k − 1)) by Theorem 5.1.1 (1)

=
n∑

k=m
(3k − 1) by algebraic

simplification

b. (
n∏

k=m
ak

)
·
(

n∏
k=m

bk

)
=

(
n∏

k=m
(k + 1)

)
·
(

n∏
k=m

(k − 1)

)
by substitution

=
n∏

k=m
(k + 1) ·(k − 1) by Theorem 5.1.1 (3)

=
n∏

k=m
(k2 − 1) by algebraic

simplification
■

Change of Variable
Observe that

3∑
k=1

k2 = 12 + 22 + 32

and also that
3∑

i=1
i2 = 12 + 22 + 32.
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Hence

3∑
k=1

k2 =
3∑

i=1
i2.

This equation illustrates the fact that the symbol used to represent the index of a sum-
mation can be replaced by any other symbol as long as the replacement is made in each
location where the symbol occurs. As a consequence, the index of a summation is called
a dummy variable. A dummy variable is a symbol that derives its entire meaning from
its local context. Outside of that context (both before and after), the symbol may have
another meaning entirely.

The appearance of a summation can be altered by more complicated changes of
variable as well. For example, observe that

4∑
j=2

( j − 1)2 = (2− 1)2 + (3− 1)2 + (4− 1)2

= 12 + 22 + 32

=
3∑

k=1
k2.

A general procedure to transform the first summation into the second is illustrated in
Example 5.1.13.

Example 5.1.13 Transforming a Sum by a Change of Variable

Transform the following summation by making the specified change of variable.

summation:
6∑

k=0

1

k + 1
change of variable: j = k + 1

Solution First calculate the lower and upper limits of the new summation:

When k = 0, j = k + 1 = 0+ 1 = 1.

When k = 6, j = k + 1 = 6+ 1 = 7.

Thus the new sum goes from j = 1 to j = 7.
Next calculate the general term of the new summation. You will need to replace each

occurrence of k by an expression in j :

Since j = k + 1, then k = j − 1.

Hence
1

k + 1
= 1

( j − 1)+ 1
= 1

j
.

Finally, put the steps together to obtain

6∑
k=0

1

k + 1
=

7∑
j=1

1

j
.

■
5.1.1

Equation (5.1.1) can be given an additional twist by noting that because the j in the
right-hand summation is a dummy variable, it may be replaced by any other variable
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name, as long as the substitution is made in every location where j occurs. In particular,
it is legal to substitute k in place of j to obtain

7∑
j=1

1

j
=

7∑
k=1

1

k
. 5.1.2

Putting equations (5.1.1) and (5.1.2) together gives

6∑
k=0

1

k + 1
=

7∑
k=1

1

k
.

Sometimes it is necessary to shift the limits of one summation in order to add it to
another. An example is the algebraic proof of the binomial theorem, given in Section 9.7.
A general procedure for making such a shift when the upper limit is part of the summand
is illustrated in the next example.

Example 5.1.14 When the Upper Limit Appears in the Expression to Be Summed

a. Transform the following summation by making the specified change of variable.

summation:
n+1∑
k=1

(
k

n + k

)
change of variable: j = k − 1

b. Transform the summation obtained in part (a) by changing all j’s to k’s.

Solution

a. When k = 1, then j = k − 1 = 1− 1 = 0. (So the new lower limit is 0.) When
k = n + 1, then j = k − 1 = (n + 1)− 1 = n. (So the new upper limit is n.)

Since j = k − 1, then k = j + 1. Also note that n is a constant as far as the terms
of the sum are concerned. It follows that

k

n + k
= j + 1

n + ( j + 1)

and so the general term of the new summation is

j + 1

n + ( j + 1)
.

Therefore,

n+1∑
k=1

k

n + k
=

n∑
j=0

j + 1

n + ( j + 1)
. 5.1.3

b. Changing all the j’s to k’s in the right-hand side of equation (5.1.3) gives

n∑
j=0

j + 1

n + ( j + 1)
=

n∑
k=0

k + 1

n + (k + 1)
5.1.4

Combining equations (5.1.3) and (5.1.4) results in

n+1∑
k=1

k

n + k
=

n∑
k=0

k + 1

n + (k + 1)
.

■
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Factorial and “n Choose r” Notation
The product of all consecutive integers up to a given integer occurs so often in mathemat-
ics that it is given a special notation—factorial notation.

• Definition

For each positive integer n, the quantity n factorial denoted n!, is defined to be the
product of all the integers from 1 to n:

n! = n ·(n − 1) · · · 3 ·2 ·1.
Zero factorial, denoted 0!, is defined to be 1:

0! = 1.

The definition of zero factorial as 1 may seem odd, but, as you will see when you read
Chapter 9, it is convenient for many mathematical formulas.

Example 5.1.15 The First Ten Factorials

0! = 1 1! = 1

2! = 2 ·1 = 2 3! = 3 ·2 ·1 = 6

4! = 4 ·3 ·2 ·1 = 24 5! = 5 ·4 ·3 ·2 ·1 = 120

6! = 6 ·5 ·4 ·3 ·2 ·1 = 720 7! = 7 ·6 ·5 ·4 ·3 ·2 ·1 = 5,040

8! = 8 ·7 ·6 ·5 ·4 ·3 ·2 ·1 9! = 9 ·8 ·7 ·6 ·5 ·4 ·3 ·2 ·1
= 40,320 = 362,880 ■

As you can see from the example above, the values of n! grow very rapidly. For
instance, 40! ∼= 8.16× 1047, which is a number that is too large to be computed exactly
using the standard integer arithmetic of the machine-specific implementations of many
computer languages. (The symbol ∼= means “is approximately equal to.”)

A recursive definition for factorial is the following: Given any nonnegative integer n,

n! =
{
1 if n = 0
n ·(n − 1)! if n ≥ 1.

The next example illustrates the usefulness of the recursive definition for making
computations.

!
Caution! Note that
n · (n − 1)! is to be
interpreted as
n · [(n − 1)!].

Example 5.1.16 Computing with Factorials

Simplify the following expressions:

a.
8!
7! b.

5!
2! ·3! c.

1

2! ·4! +
1

3! ·3! d.
(n + 1)!

n! e.
n!

(n − 3)!
Solution

a.
8!
7! =

8 ·7!
7! = 8

b.
5!

2! ·3! =
5 ·4 ·3!
2! ·3! =

5 ·4
2 ·1 = 10
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238 Chapter 5 Sequences, Mathematical Induction, and Recursion

c. 1

2! ·4! +
1

3! ·3! =
1

2! ·4! ·
3

3
+ 1

3! ·3! ·
4

4

by multiplying each numerator and
denominator by just what is necessary to
obtain a common denominator

= 3

3 ·2! ·4! +
4

3! ·4 ·3! by rearranging factors

= 3

3! ·4! +
4

3! ·4! because 3 ·2! = 3! and 4 ·3! = 4!

= 7

3! ·4!
by the rule for adding fractions
with a common denominator

= 7

144

d.
(n + 1)!

n! = (n + 1) ·n!
n! = n + 1

e.
n!

(n − 3)! =
n ·(n − 1) ·(n − 2) ·(n − 3)!

(n − 3)! = n ·(n − 1) ·(n − 2)

= n3 − 3n2 + 2n ■

An important use for the factorial notation is in calculating values of quantities, called
n choose r, that occur in many branches of mathematics, especially those connected with
the study of counting techniques and probability.

• Definition

Let n and r be integers with 0 ≤ r ≤ n. The symbol(
n
r

)
is read “n choose r” and represents the number of subsets of size r that can be chosen
from a set with n elements.

Observe that the definition implies that
(n
r

)
will always be an integer because it

is a number of subsets. In Section 9.5 we will explore many uses of n choose r for
solving problems involving counting, and we will prove the following computational
formula:

• Formula for Computing
(n

r

)
For all integers n and r with 0 ≤ r ≤ n,(

n
r

)
= n!

r !(n − r)! .

In the meantime, we will provide a few experiences with using it. Because n choose r is
always an integer, you can be sure that all the factors in the denominator of the formula
will be canceled out by factors in the numerator. Many electronic calculators have keys for
computing values of

(n
r

)
. These are denoted in various ways such as nCr, C(n, r), nCr ,

and Cn,r . The letter C is used because the quantities
(n
r

)
are also called combinations.

Sometimes they are referred to as binomial coefficients because of the connection with
the binomial theorem discussed in Section 9.7.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



5.1 Sequences 239

Example 5.1.17 Computing
(
n
r

)
by Hand

Use the formula for computing

(
n
r

)
to evaluate the following expressions:

a.

(
8
5

)
b.

(
4
0

)
c.

(
n + 1
n

)

Solution

a.
(
8
5

)
= 8!

5!(8− 5)!
= 8 ·7 ·6 ·5 ·4 ·3 ·2 ·1

(5 ·4 ·3 ·2 ·1) ·( ·3 ·2 ·1)
= 56.

always cancel common factors
before multiplying

b.

(
4
4

)
= 4!

4!(4− 4)! =
4!
4!0! =

4 ·3 ·2 ·1
(4 ·3 ·2 ·1)(1) = 1

The fact that 0! = 1 makes this formula computable. It gives the correct value because a
set of size 4 has exactly one subset of size 4, namely itself.

c.

(
n + 1
n

)
= (n + 1)!

n!((n + 1)− n)! =
(n + 1)!
n!1! = (n + 1) ·n!

n! = n + 1 ■

Sequences in Computer Programming
An important data type in computer programming consists of finite sequences. In com-
puter programming contexts, these are usually referred to as one-dimensional arrays. For
example, consider a program that analyzes the wages paid to a sample of 50 workers.
Such a program might compute the average wage and the difference between each indi-
vidual wage and the average. This would require that each wage be stored in memory for
retrieval later in the calculation. To avoid the use of entirely separate variable names for
all of the 50 wages, each is written as a term of a one-dimensional array:

W[1],W[2],W[3], . . . ,W[50].
Note that the subscript labels are written inside square brackets. The reason is that until
relatively recently, it was impossible to type actual dropped subscripts on most computer
keyboards.

The main difficulty programmers have when using one-dimensional arrays is keeping
the labels straight.

Example 5.1.18 Dummy Variable in a Loop

The index variable for a for-next loop is a dummy variable. For example, the following
three algorithm segments all produce the same output:

1. for i := 1 to n 2. for j := 0 to n − 1 3. for k := 2 to n + 1

print a[i] print a[ j + 1] print a[k − 1]
next i next j next k ■

The recursive definitions for summation, product, and factorial lead naturally to com-
putational algorithms. For instance, here are two sets of pseudocode to find the sum
of a[1], a[2], . . . , a[n]. The one on the left exactly mimics the recursive definition by
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initializing the sum to equal a[1]; the one on the right initializes the sum to equal 0. In
both cases the output is

∑n
k=1 a[k].

s := a[1] s := 0

for k := 2 to n for k := 1 to n

s := s + a[k] s := s + a[k]
next k next k

Application: Algorithm to Convert from Base 10
to Base 2 Using Repeated Division by 2

Section 2.5 contains some examples of converting integers from decimal to binary
notation. The method shown there, however, is only convenient to use with small num-
bers. A systematic algorithm to convert any nonnegative integer to binary notation uses
repeated division by 2.

Suppose a is a nonnegative integer. Divide a by 2 using the quotient-remainder
theorem to obtain a quotient q[0] and a remainder r [0]. If the quotient is nonzero, divide
by 2 again to obtain a quotient q[1] and a remainder r [1]. Continue this process until a
quotient of 0 is obtained. At each stage, the remainder must be less than the divisor, which
is 2. Thus each remainder is either 0 or 1. The process is illustrated below for a = 38.
(Read the divisions from the bottom up.)

0 remainder = 1 = r [5]

2 1 remainder = 0 = r [4]

2 2 remainder = 0 = r [3]

2 4 remainder = 1 = r [2]

2 9 remainder = 1 = r [1]

2 19 remainder = 0 = r [0]

2 38

The results of all these divisions can be written as a sequence of equations:

38 = 19 ·2+ 0,

19 = 9 ·2+ 1,

9 = 4 ·2+ 1,

4 = 2 ·2+ 0,

2 = 1 ·2+ 0,

1 = 0 ·2+ 1.

By repeated substitution, then,

38 = 19 ·2+ 0

= (9 ·2+ 1) ·2+ 0 = 9 ·22 + 1 ·2+ 0

= (4 ·2+ 1) ·22 + 1 ·2+ 0 = 4 ·23 + 1 ·22 + 1 ·2+ 0

= (2 ·2+ 0) ·23 + 1 ·22 + 1 ·2+ 0

= 2 ·24 + 0 ·23 + 1 ·22 + 1 ·2+ 0

= (1 ·2+ 0) ·24 + 0 ·23 + 1 ·22 + 1 ·2+ 0

= 1 ·25 + 0 ·24 + 0 ·23 + 1 ·22 + 1 ·2+ 0.
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Note that each coefficient of a power of 2 on the right-hand side of the previous page
is one of the remainders obtained in the repeated division of 38 by 2. This is true for the
left-most 1 as well, because 1 = 0 ·2+ 1. Thus

3810 = 1001102 = (r [5]r [4]r [3]r [2]r [1]r [0])2.
In general, if a nonnegative integer a is repeatedly divided by 2 until a quotient of zero

is obtained and the remainders are found to be r [0], r [1], . . . , r [k], then by the quotient-
remainder theorem each r [i] equals 0 or 1, and by repeated substitution from the theorem,

a = 2k ·r [k] + 2k−1·r [k − 1] + · · · + 22·r [2] + 21·r [1] + 20·r [0]. 5.1.5

Thus the binary representation for a can be read from equation (5.1.5):

a10 = (r [k]r [k − 1] · · · r [2]r [1]r [0])2.

Example 5.1.19 Converting from Decimal to Binary Notation Using Repeated
Division by 2

Use repeated division by 2 to write the number 2910 in binary notation.

Solution

0 remainder = r [4] = 1

2 1 remainder = r [3] = 1

2 3 remainder = r [2] = 1

2 7 remainder = r [1] = 0

2 14 remainder = r [0] = 1

2 29

Hence 2910 = (r [4]r [3]r [2]r [1]r [0])2 = 111012. ■

The procedure we have described for converting from base 10 to base 2 is formalized
in the following algorithm:

Algorithm 5.1.1 Decimal to Binary Conversion Using Repeated Division by 2

[In Algorithm 5.1.1 the input is a nonnegative integer n. The aim of the algorithm
is to produce a sequence of binary digits r [0], r [1], r [2], . . . , r [k] so that the binary
representation of a is

(r [k]r [k − 1] · · · r [2]r [1]r [0])2.
That is,

n = 2k ·r [k] + 2k−1·r [k − 1] + · · · + 22·r [2] + 21·r [1] + 20·r [0].]

continued on page 242
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Input: n [a nonnegative integer]
Algorithm Body:

q := n, i := 0
[Repeatedly perform the integer division of q by 2 until q becomes 0. Store successive
remainders in a one-dimensional array r [0], r [1], r [2], . . . , r [k]. Even if the initial-
value of q equals 0, the loop should execute one time (so that r [0] is computed ). Thus
the guard condition for the while loop is i = 0 or q �= 0.]

while (i = 0 or q �= 0)

r [i] := q mod 2

q := q div 2

[r [i] and q can be obtained by calling the division algorithm.]

i := i + 1

end while

[After execution of this step, the values of r [0], r [1], . . . , r [i − 1] are all 0’s and 1’s,
and a = (r [i − 1]r [i − 2] · · · r [2]r [1]r [0])2.]

Output: r [0], r [1], r [2], . . . , r [i − 1] [a sequence of integers]

Test Yourself
Answers to Test Yourself questions are located at the end of each section.

1. The notation
n∑

k=m
ak is read “_____.”

2. The expanded form of
n∑

k=m
ak is _____.

3. The value of a1 + a2 + a3 + · · · + an when n = 2
is “_____.”

4. The notation
n∏

k=m
ak is read “_____.”

5. If n is a positive integer, then n! = _____.

6.
n∑

k=m
ak + c

n∑
k=m

bk = _____.

7.

(
n∏

k=m
ak

)(
n∏

k=m
bk

)
= _____.

Exercise Set 5.1*
Write the first four terms of the sequences defined by the
formulas in 1–6.

1. ak = k

10+ k
, for all integers k ≥ 1.

2. b j = 5− j

5+ j
, for all integers j ≥ 1.

3. ci = (−1)i
3i

, for all integers i ≥ 0.

4. dm = 1+
(
1

2

)m

for all integers m ≥ 0.

5. en =
⌊n
2

⌋
·2, for all integers n ≥ 0.

6. fn =
⌊n
4

⌋
·4, for all integers n ≥ 1.

7. Let ak = 2k + 1 and bk = (k − 1)3 + k + 2 for all integers
k ≥ 0. Show that the first three terms of these sequences are
identical but that their fourth terms differ.

Compute the first fifteen terms of each of the sequences in 8
and 9, and describe the general behavior of these sequences in
words. (A definition of logarithm is given in Section 7.1.)

8. gn = �log2 n� for all integers n ≥ 1.

9. hn = n�log2 n� for all integers n ≥ 1.

∗For exercises with blue numbers or letters, solutions are given in Appendix B. The symbolH indicates that only a hint or a partial
solution is given. The symbol ✶ signals that an exercise is more challenging than usual.
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Find explicit formulas for sequences of the form a1, a2, a3, . . .
with the initial terms given in 10–16.

10. −1, 1,−1, 1,−1, 1 11. 0, 1,−2, 3,−4, 5
12.

1

4
,
2

9
,
3

16
,
4

25
,
5

36
,
6

49

13. 1− 1

2
,
1

2
− 1

3
,
1

3
− 1

4
,
1

4
− 1

5
,
1

5
− 1

6
,
1

6
− 1

7

14.
1

3
,
4

9
,
9

27
,
16

81
,
25

243
,
36

729

15. 0,−1

2
,
2

3
,−3

4
,
4

5
,−5

6
,
6

7

16. 3, 6, 12, 24, 48, 96

17.✶ Consider the sequence defined by an = 2n + (−1)n − 1

4
for all integers n ≥ 0. Find an alternative explicit formula
for an that uses the floor notation.

18. Let a0 = 2, a1 = 3, a2 = −2, a3 = 1, a4 = 0, a5 = −1,
and a6 = −2. Compute each of the summations and
products below.

a.
6∑

i=0
ai b.

0∑
i=0

ai c.
3∑
j=1

a2 j d.
6∏

k=0
ak e.

2∏
k=2

ak

Compute the summations and products in 19–28.

19.
5∑

k=1
(k + 1) 20.

4∏
k=2

k2 21.
3∑

m=0

1

2m

22.
4∏
j=0

(−1) j 23.
1∑

i=1
i(i + 1) 24.

0∑
j=0

( j + 1) ·2 j

25.
2∏

k=2

(
1− 1

k

)
26.

1∑
k=−1

(k2 + 3)

27.
10∑
n=1

(
1

n
− 1

n + 1

)
28.

5∏
i=2

i(i + 2)

(i − 1) ·(i + 1)

Write the summations in 29–32 in expanded form.

29.
n∑

i=1
(−2)i 30.

n∑
j=1

j ( j + 1) 31.
n+1∑
k=0

1

k! 32.
k+1∑
i=1

i(i !)

Evaluate the summations and products in 33–36 for the indi-
cated values of the variable.

33.
1

12
+ 1

22
+ 1

32
+ . . .+ 1

n2
; n = 1

34. 1(1!)+ 2(2!)+ 3(3!)+ . . .+ m(m!); m = 2

35.
(

1

1+ 1

)(
2

2+ 1

)(
3

3+ 1

)
. . .

(
k

k + 1

)
; k = 3

36.

(
1 ·2
3 ·4

)(
4 ·5
6 ·7

)(
6 ·7
8 ·9

)
. . .

(
m ·(m + 1)

(m + 2) ·(m + 3)

)
;m = 1

Rewrite 37–39 by separating off the final term.

37.
k+1∑
i=1

i(i !) 38.
m+1∑
k=1

k2 39.
n+1∑
m=1

m(m + 1)

Write each of 40–42 as a single summation.

40.
k∑

i=1
i3 + (k + 1)3 41.

m∑
k=1

k

k + 1
+ m + 1

m + 2

42.
n∑

m=0
(m + 1)2m + (n + 2)2n+1

Write each of 43–52 using summation or product notation.

43. 12 − 22 + 32 − 42 + 52 − 62 + 72

44. (13 − 1)− (23 − 1)+ (33 − 1)− (43 − 1)+ (53 − 1)

45. (22 − 1) ·(32 − 1) ·(42 − 1)

46.
2

3 ·4 −
3

4 ·5 +
4

5 ·6 −
5

6 ·7 +
6

7 ·8
47. 1− r + r 2 − r 3 + r 4 − r 5

48. (1− t) ·(1− t2) ·(1− t3) ·(1− t4)

49. 13 + 23 + 33 + · · · + n3

50.
1

2! +
2

3! +
3

4! + · · · +
n

(n + 1)!
51. n + (n − 1)+ (n − 2)+ · · · + 1

52. n + n − 1

2! +
n − 2

3! +
n − 3

4! + · · · +
1

n!
Transform each of 53 and 54 by making the change of variable
i = k + 1.

53.
5∑

k=0
k(k − 1) 54.

n∏
k=1

k

k2 + 4

Transform each of 55–58 by making the change of variable
j = i − 1.

55.
n+1∑
i=1

(i − 1)2

i ·n 56.
n∑

i=3

i

i + n − 1

57.
n−1∑
i=1

i

(n − i)2
58.

2n∏
i=n

n − i + 1

n + i

Write each of 59–61 as a single summation or product.

59. 3 ·
n∑

k=1
(2k − 3)+

n∑
k=1

(4− 5k)

60. 2 ·
n∑

k=1
(3k2 + 4)+ 5 ·

n∑
k=1

(2k2 − 1)

61.

(
n∏

k=1

k

k + 1

)
·
(

n∏
k=1

k + 1

k + 2

)

Compute each of 62–76. Assume the values of the variables are
restricted so that the expressions are defined.

62.
4!
3! 63.

6!
8! 64.

4!
0!

65.
n!

(n − 1)! 66.
(n − 1)!
(n + 1)! 67.

n!
(n − 2)!
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68.
((n + 1)!)2

(n!)2 69.
n!

(n − k)! 70.
n!

(n − k + 1)!

71.
(
5
3

)
72.

(
7
4

)
73.

(
3
0

)

74.

(
5
5

)
75.

(
n

n − 1

)
76.

(
n + 1
n − 1

)
77. a. Prove that n! + 2 is divisible by 2, for all integers n ≥ 2.

b. Prove that n! + k is divisible by k, for all integers n ≥ 2
and k = 2, 3, . . . , n.

c.H Given any integerm ≥ 2, is it possible to find a sequence
of m − 1 consecutive positive integers none of which is
prime? Explain your answer.

78. Prove that for all nonnegative integers n and r with

r + 1 ≤ n,

(
n

r + 1

)
= n − r

r + 1

(
n
r

)
.

79. Prove that if p is a prime number and r is an integer with

0 < r < p, then

(
p
r

)
is divisible by p.

80. Suppose a[1], a[2], a[3], . . . , a[m] is a one-dimensional
array and consider the following algorithm segment:

sum := 0

for k := 1 to m

sum := sum + a[k]
next k

Fill in the blanks below so that each algorithm segment per-
forms the same job as the one given previously.
a. sum := 0

for i := 0 to

sum :=
next i

b. sum := 0

for j := 2 to

sum :=
next j

Use repeated division by 2 to convert (by hand) the integers in
81–83 from base 10 to base 2.

81. 90 82. 98 83. 205

Make a trace table to trace the action of Algorithm 5.1.1 on the
input in 84–86.

84. 23 85. 28 86. 44

87. Write an informal description of an algorithm (using
repeated division by 16) to convert a nonnegative inte-
ger from decimal notation to hexadecimal notation
(base 16).

Use the algorithm you developed for exercise 87 to convert the
integers in 88–90 to hexadecimal notation.

88. 287 89. 693 90. 2,301

91. Write a formal version of the algorithm you developed for
exercise 87.

Answers for Test Yourself
1. the summation from k equals m to n of a-sub-k 2. am + am+1 + am+2 + · · · + an 3. a1 + a2 4. the product from k equals m to

n of a-sub-k 5. n · (n − 1) · · · 3 ·2 ·1 (Or: n ·(n − 1)!) 6.
n∑

k=m
(ak + cbk) 7.

n∏
k=m

akbk

5.2 Mathematical Induction I
[Mathematical induction is] the standard proof technique in computer science.
— Anthony Ralston, 1984

Mathematical induction is one of the more recently developed techniques of proof in the
history of mathematics. It is used to check conjectures about the outcomes of processes
that occur repeatedly and according to definite patterns. We introduce the technique with
an example.

Some people claim that the United States penny is such a small coin that it should
be abolished. They point out that frequently a person who drops a penny on the ground
does not even bother to pick it up. Other people argue that abolishing the penny would
not give enough flexibility for pricing merchandise. What prices could still be paid with
exact change if the penny were abolished and another coin worth 3c/ were introduced?
The answer is that the only prices that could not be paid with exact change would be
1c/, 2c/, 4c/, and 7c/. In other words,

Any whole number of cents of at least 8c/ can be obtained using 3c/ and 5c/ coins.

More formally:

For all integers n ≥ 8, n cents can be obtained using 3c/ and 5c/ coins.
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5.2 Mathematical Induction I 245

Even more formally:

For all integers n ≥ 8, P(n) is true, where P(n) is the sentence
“n cents can be obtained using 3c/ and 5c/ coins.”

You could check that P(n) is true for a few particular values of n, as is done in the table
below.

Number of Cents How to Obtain It

8c/ 3c/+ 5c/

9c/ 3c/+ 3c/+ 3c/

10c/ 5c/+ 5c/

11c/ 3c/+ 3c/+ 5c/

12c/ 3c/+ 3c/+ 3c/+ 3c/

13c/ 3c/+ 5c/+ 5c/

14c/ 3c/+ 3c/+ 3c/+ 5c/

15c/ 5c/+ 5c/+ 5c/

16c/ 3c/+ 3c/+ 5c/+ 5c/

17c/ 3c/+ 3c/+ 3c/+ 3c/+ 5c/

The cases shown in the table provide inductive evidence to support the claim that
P(n) is true for general n. Indeed, P(n) is true for all n ≥ 8 if, and only if, it is possible
to continue filling in the table for arbitrarily large values of n.

The kth line of the table gives information about how to obtain kc/ using 3c/ and 5c/
coins. To continue the table to the next row, directions must be given for how to obtain
(k + 1)c/ using 3c/ and 5c/ coins. The secret is to observe first that if kc/ can be obtained
using at least one 5c/ coin, then (k + 1)c/ can be obtained by replacing the 5c/ coin by two
3c/ coins, as shown in Figure 5.2.1.

k¢ (k + 1)¢

3¢ 3¢5¢

Replace a 5¢ coin by
two 3¢ coins.

Remove Add

Figure 5.2.1

If, on the other hand, kc/ is obtained without using a 5c/ coin, then 3c/ coins are used
exclusively. And since the total is at least 8c/, three or more 3c/ coins must be included.
Three of the 3c/ coins can be replaced by two 5c/ coins to obtain a total of (k + 1)c/, as
shown in Figure 5.2.2.

The structure of the argument above can be summarized as follows: To show that
P(n) is true for all integers n ≥ 8, (1) show that P(8) is true, and (2) show that the truth
of P(k + 1) follows necessarily from the truth of P(k) for each k ≥ 8.

Any argument of this form is an argument by mathematical induction. In general,
mathematical induction is a method for proving that a property defined for integers n is
true for all values of n that are greater than or equal to some initial integer.
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5¢

k¢ (k + 1)¢

Remove Add

k¢ (k + 1)¢

5¢
3¢ 3¢

3¢

Replace three 3¢ coins
by two 5¢ coins.

Remove Add

Figure 5.2.2

Principle of Mathematical Induction

Let P(n) be a property that is defined for integers n, and let a be a fixed integer.
Suppose the following two statements are true:

1. P(a) is true.

2. For all integers k ≥ a, if P(k) is true then P(k + 1) is true.

Then the statement
for all integers n ≥ a, P(n)

is true.

The first known use of mathematical induction occurs in the work of the Italian sci-
entist Francesco Maurolico in 1575. In the seventeenth century both Pierre de Fermat
and Blaise Pascal used the technique, Fermat calling it the “method of infinite descent.”
In 1883 Augustus De Morgan (best known for De Morgan’s laws) described the process
carefully and gave it the name mathematical induction.

To visualize the idea of mathematical induction, imagine an infinite collection of
dominoes positioned one behind the other in such a way that if any given domino falls
backward, it makes the one behind it fall backward also. (See Figure 5.2.3) Then imagine
that the first domino falls backward. What happens? . . . They all fall down!

1
2

3
4

k k + 1

Figure 5.2.3 If the kth domino falls backward, it pushes the (k + 1)st domino backward also.

To see the connection between this image and the principle of mathematical induction,
let P(n) be the sentence “The nth domino falls backward.” It is given that for each k ≥ 1,
if P(k) is true (the kth domino falls backward), then P(k + 1) is also true (the (k + 1)st
domino falls backward). It is also given that P(1) is true (the first domino falls backward).
Thus by the principle of mathematical induction, P(n) (the nth domino falls backward)
is true for every integer n ≥ 1.
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The validity of proof by mathematical induction is generally taken as an axiom.
That is why it is referred to as the principle of mathematical induction rather than as a
theorem. It is equivalent to the following property of the integers, which is easy to accept
on intuitive grounds:

Suppose S is any set of integers satisfying (1) a ∈ S, and (2) for all
integers k ≥ a, if k ∈ S then k + 1 ∈ S. Then S must contain every integer
greater than or equal to a.

To understand the equivalence of this formulation and the one given earlier, just let S be
the set of all integers for which P(n) is true.

Proving a statement by mathematical induction is a two-step process. The first step is
called the basis step, and the second step is called the inductive step.

Method of Proof by Mathematical Induction

Consider a statement of the form, “For all integers n ≥ a, a property P(n) is true.”
To prove such a statement, perform the following two steps:

Step 1 (basis step): Show that P(a) is true.

Step 2 (inductive step): Show that for all integers k ≥ a, if P(k) is true then
P(k + 1) is true. To perform this step,

suppose that P(k) is true, where k is any
particular but arbitrarily chosen integer with k ≥ a.

[This supposition is called the inductive hypothesis.]
Then

show that P(k + 1) is true.

Here is a formal version of the proof about coins previously developed informally.

Proposition 5.2.1

For all integers n ≥ 8, nc/ can be obtained using 3c/ and 5c/ coins.

Proof (by mathematical induction):

Let the property P(n) be the sentence

nc/ can be obtained using 3c/ and 5c/ coins. ← P(n)

Show that P(8) is true:
P(8) is true because 8c/ can be obtained using one 3c/ coin and one 5c/ coin.

Show that for all integers k ≥ 8, if P(k) is true then P(k+1) is also true:

[Suppose that P(k) is true for a particular but arbitrarily chosen integer k ≥ 8. That is:]
Suppose that k is any integer with k ≥ 8 such that

kc/ can be obtained using 3c/ and 5c/ coins. ← P(k)
inductive hypothesis

[We must show that P(k + 1) is true. That is:] We must show that

(k + 1)c/ can be obtained using 3c/ and 5c/ coins. ← P(k + 1)

Case 1 (There is a 5c/ coin among those used to make up the kc/.): In this case
replace the 5c/ coin by two 3c/ coins; the result will be (k + 1)c/.

continued on page 248
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248 Chapter 5 Sequences, Mathematical Induction, and Recursion

Case 2 (There is not a 5c/ coin among those used to make up the kc/.): In this case,
because k ≥ 8, at least three 3c/ coins must have been used. So remove three 3c/ coins
and replace them by two 5c/ coins; the result will be (k + 1)c/.

Thus in either case (k + 1)c/ can be obtained using 3c/ and 5c/ coins [as was to be
shown].

[Since we have proved the basis step and the inductive step, we conclude that the propo-
sition is true.]

The following example shows how to use mathematical induction to prove a formula
for the sum of the first n integers.

Example 5.2.1 Sum of the First n Integers

Use mathematical induction to prove that

1+ 2+ · · · + n = n(n + 1)

2
for all integers n ≥ 1.

Solution To construct a proof by induction, you must first identify the property P(n). In
this case, P(n) is the equation

1+ 2+ · · · + n = n(n + 1)

2
. ← the property (P(n))

[To see that P(n) is a sentence, note that its subject is “the sum of the integers from 1
to n” and its verb is “equals.”]

In the basis step of the proof, you must show that the property is true for n = 1, or,
in other words that P(1) is true. Now P(1) is obtained by substituting 1 in place of n in
P(n). The left-hand side of P(1) is the sum of all the successive integers starting at 1 and
ending at 1. This is just 1. Thus P(1) is

1 = 1(1+ 1)

2
. ← basis (P(1))

Note To write P(1),
just copy P(n) and
replace each n by 1.

Of course, this equation is true because the right-hand side is

1(1+ 1)

2
= 1 ·2

2
= 1,

which equals the left-hand side.

Note To write P(k),
just copy P(n) and
replace each n by k.

In the inductive step, you assume that P(k) is true, for a particular but arbitrarily cho-
sen integer k with k ≥ 1. [This assumption is the inductive hypothesis.]You must then show
that P(k + 1) is true. What are P(k) and P(k + 1)? P(k) is obtained by substituting k
for every n in P(n). Thus P(k) is

1+ 2+ · · · + k = k(k + 1)

2
. ← inductive hypothesis (P(k))
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Similarly, P(k + 1) is obtained by substituting the quantity (k + 1) for every n that
appears in P(n). Thus P(k + 1) is

1+ 2+ · · · + (k + 1) = (k + 1)((k + 1)+ 1)

2
,

or, equivalently,

1+ 2+ · · · + (k + 1) = (k + 1)(k + 2)

2
. ← to show (P(k + 1))

Note To write
P(k + 1), just copy P(n)
and replace each n by
(k + 1).

Now the inductive hypothesis is the supposition that P(k) is true. How can this sup-
position be used to show that P(k + 1) is true? P(k + 1) is an equation, and the truth of
an equation can be shown in a variety of ways. One of the most straightforward is to use
the inductive hypothesis along with algebra and other known facts to transform separately
the left-hand and right-hand sides until you see that they are the same. In this case, the
left-hand side of P(k + 1) is

1+ 2+ · · · + (k + 1),
which equals

(1+ 2+ · · · + k)+ (k + 1)
The next-to-last term is k because the terms are

successive integers and the last term is k + 1.

But by substitution from the inductive hypothesis,

(1+ 2+· · · + k)+ (k + 1)

= k(k + 1)

2
+ (k + 1)

since the inductive hypothesis says

that 1+ 2+ · · · + k = k(k + 1)

2

= k(k + 1)

2
+ 2(k + 1)

2

by multiplying the numerator and

denominator of the second term by 2

to obtain a common denominator

= k2 + k

2
+ 2k + 2

2
by multiplying out the two numerators

k2 + 3k + 1

2
by adding fractions with the same

denominator and combining like terms.

So the left-hand side of P(k + 1) is
k2 + 3k + 1

2
. Now the right-hand side of P(k + 1) is

(k + 1)(k + 2)

2
= k2 + 3k + 1

2
by multiplying out the numerator.

Thus the two sides of P(k + 1) are equal to each other, and so the equation P(k + 1) is
true.

This discussion is summarized as follows:

Theorem 5.2.2 Sum of the First n Integers

For all integers n ≥ 1,

1+ 2+ · · · + n = n(n + 1)

2
.

Proof (by mathematical induction):

Let the property P(n) be the equation

1+ 2+ 3+ · · · + n = n(n + 1)

2
. ← P(n)

continued on page 250
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Show that P(1) is true:

To establish P(1), we must show that

1 = 1(1+ 1)

2
← P(1)

But the left-hand side of this equation is 1 and the right-hand side is

1(1+ 1)

2
= 2

2
= 1

also. Hence P(1) is true.

Show that for all integers k ≥ 1, if P(k) is true then P(k + 1) is also true:
[Suppose that P(k) is true for a particular but arbitrarily chosen integer k ≥ 1.
That is:] Suppose that k is any integer with k ≥ 1 such that

1+ 2+ 3+ · · · + k = k(k + 1)

2
← P(k)
inductive hypothesis

[We must show that P(k + 1) is true. That is:] We must show that

1+ 2+ 3+ · · · + (k + 1) = (k + 1)[(k + 1)+ 1]
2

,

or, equivalently, that

1+ 2+ 3+ · · · + (k + 1) = (k + 1)(k + 2)

2
. ← P(k + 1)

[We will show that the left-hand side and the right-hand side of P(k + 1) are equal to
the same quantity and thus are equal to each other.]

The left-hand side of P(k + 1) is

1+ 2+ 3+ · · · + (k + 1)

= 1+ 2+ 3+ · · · + k + (k + 1) by making the next-to-last
term explicit

= k(k + 1)

2
+ (k + 1) by substitution from the

inductive hypothesis

= k(k + 1)

2
+ 2(k + 1)

2

= k2 + k

2
+ 2k + 2

2

= k2 + 3k + 1

2
by algebra.

And the right-hand side of P(k + 1) is

(k + 1)(k + 2)

2
= k2 + 3k + 1

2
.

Thus the two sides of P(k + 1) are equal to the same quantity and so they are equal
to each other. Therefore the equation P(k + 1) is true [as was to be shown].
[Since we have proved both the basis step and the inductive step, we conclude that the
theorem is true.]

■
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The story is told that one of the greatest mathematicians of all time, Carl Friedrich
Gauss (1777–1855), was given the problem of adding the numbers from 1 to 100 by his
teacher when he was a young child. The teacher had asked his students to compute the
sum, supposedly to gain himself some time to grade papers. But after just a few moments,
Gauss produced the correct answer. Needless to say, the teacher was dumbfounded. How
could young Gauss have calculated the quantity so rapidly? In his later years, Gauss
explained that he had imagined the numbers paired according to the following schema.

1 2 3 . . . . . . 50 51 . . . . . . 98 99 100

→ →

sum is 101

→ →

sum is 101

→ →

sum is 101

→ →

sum is 101

The sum of the numbers in each pair is 101, and there are 50 pairs in all; hence the total
sum is 50 ·101 = 5,050.

• Definition Closed Form

If a sum with a variable number of terms is shown to be equal to a formula that does
not contain either an ellipsis or a summation symbol, we say that it is written in
closed form.

For example, writing 1+ 2+ 3+ · · · + n = n(n + 1)

2
expresses the sum 1+ 2+

3+ · · · + n in closed form.

Example 5.2.2 Applying the Formula for the Sum of the First n Integers

a. Evaluate 2+ 4+ 6+ · · · + 500.

b. Evaluate 5+ 6+ 7+ 8+ · · · + 50.

c. For an integer h ≥ 2, write 1+ 2+ 3+ · · · + (h − 1) in closed form.

Solution

a. 2+ 4+ 6+ · · · + 500 = 2 ·(1+ 2+ 3+ · · · + 250)

= 2 ·
(
250 ·251

2

)
by applying the formula for the sum
of the first n integers with n = 250

= 62,750.

b. 5+ 6+ 7+ 8+ · · · + 50 = (1+ 2+ 3+ · · · + 50)− (1+ 2+ 3+ 4)

= 50 ·51
2
− 10 by applying the formula for the sum

of the first n integers with n = 50

= 1,265

c. 1+ 2+ 3+ · · · + (h − 1) = (h − 1) · [(h − 1)+ 1]
2

by applying the formula for the sum
of the first n integers with
n = h − 1

= (h − 1) ·h
2

since (h − 1)+ 1 = h. ■
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The next example asks for a proof of another famous and important formula in
mathematics—the formula for the sum of a geometric sequence. In a geometric sequence,
each term is obtained from the preceding one by multiplying by a constant factor. If the
first term is 1 and the constant factor is r , then the sequence is 1, r, r2, r3, . . . , rn, . . . .
The sum of the first n terms of this sequence is given by the formula

n∑
i = 0

r i = rn+ 1 − 1

r − 1

for all integers n ≥ 0 and real numbers r not equal to 1. The expanded form of the
formula is

r0 + r1 + r2 + · · · + rn = rn+1 − 1

r − 1
,

and because r0 = 1 and r1 = r , the formula for n ≥ 1 can be rewritten as

1+ r + r2 + · · · + rn = rn+1 − 1

r − 1
.

Example 5.2.3 Sum of a Geometric Sequence

Prove that
n∑

i=0
r i = rn+1 − 1

r − 1
, for all integers n ≥ 0 and all real numbers r except 1.

Solution In this example the property P(n) is again an equation, although in this case it
contains a real variable r :.

n∑
i=0

r i = rn+1 − 1

r − 1
. ← the property (P(n))

Because r can be any real number other than 1, the proof begins by supposing that r is a
particular but arbitrarily chosen real number not equal to 1. Then the proof continues by
mathematical induction on n, starting with n = 0. In the basis step, you must show that
P(0) is true; that is, you show the property is true for n = 0. So you substitute 0 for each
n in P(n):

0∑
i=0

r i = r0+1 − 1

r − 1
. ← basis (P(0))

In the inductive step, you suppose k is any integer with k ≥ 0 for which P(k) is true; that
is, you suppose the property is true for n = k. So you substitute k for each n in P(n):

k∑
i=0

r i = rk+1 − 1

r − 1
. ← inductive hypothesis (P(k))

Then you show that P(k + 1) is true; that is, you show the property is true for n = k + 1.
So you substitute k + 1 for each n in P(n):
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k+1∑
i=0

r i = r (k+1)+1 − 1

r − 1
,

or, equivalently,

k+1∑
i=0

r i = rk+2 − 1

r − 1
· ← to show (P(k + 1))

In the inductive step for this proof we use another common technique for showing
that an equation is true: We start with the left-hand side and transform it step-by-step
into the right-hand side using the inductive hypothesis together with algebra and other
known facts.

Theorem 5.2.3 Sum of a Geometric Sequence

For any real number r except 1, and any integer n ≥ 0,

n∑
i=0

r i = rn+1 − 1

r − 1
.

Proof (by mathematical induction):

Suppose r is a particular but arbitrarily chosen real number that is not equal to 1,
and let the property P(n) be the equation

n∑
i = 0

r i = r i+1 − 1

r − 1
← P(n)

We must show that P(n) is true for all integers n ≥ 0. We do this by mathematical
induction on n.

Show that P(0) is true:

To establish P(0), we must show that

0∑
i = 0

r i = r0+ 1 − 1

r − 1
← P(0)

The left-hand side of this equation is r0 = 1 and the right-hand side is

r0+ 1 − 1

r − 1
= r − 1

r − 1
= 1

also because r1 = r and r �= 1. Hence P(0) is true.

Show that for all integers k ≥ 0, if P(k) is true then P(k+ 1) is also true:
[Suppose that P(k) is true for a particular but arbitrarily chosen integer k ≥ 0. That is:]
Let k be any integer with k ≥ 0, and suppose that

k∑
i = 0

r i = rk+ 1 − 1

r − 1
← P(k)
inductive hypothesis

continued on page 254
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[We must show that P(k + 1) is true. That is:] We must show that

k+1∑
i= 0

r i = r (k+ 1)+ 1 − 1

r − 1
,

or, equivalently, that

k+ 1∑
i = 0

r i = rk+ 2 − 1

r − 1
. ← P(k + 1)

[We will show that the left-hand side of P(k + 1) equals the right-hand side.]
The left-hand side of P(k + 1) is

k+1∑
i= 0

r i =
k∑

i= 0

r i + rk+1 by writing the (k + 1)st term
separately from the first k terms

= rk+1 − 1

r − 1
+ rk+1 by substitution from the

inductive hypothesis

= rk+1 − 1

r − 1
+ rk+1(r − 1)

r − 1

by multiplying the numerator and denominator
of the second term by (r − 1) to obtain a
common denominator

= (rk+1 − 1)+ rk+1(r − 1)

r − 1
by adding fractions

= rk+1 − 1+ rk+2 − rk+1

r − 1
by multiplying out and using the fact
that rk+1 ·r = rk+1 ·r1 = rk+2

= rk+2 − 1

r − 1
by canceling the rk+1’s.

which is the right-hand side of P(k + 1) [as was to be shown.]
[Since we have proved the basis step and the inductive step, we conclude that the theorem
is true.]

Proving an Equality
The proofs of the basis and inductive steps in Examples 5.2.1 and 5.2.3 illustrate two
different ways to show that an equation is true: (1) transforming the left-hand side and
the right-hand side independently until they are seen to be equal, and (2) transforming
one side of the equation until it is seen to be the same as the other side of the equation.

Sometimes people use a method that they believe proves equality but that is
actually invalid. For example, to prove the basis step for Theorem 5.2.3, they perform
the following steps:

!
Caution! Don’t do this!

0∑
i = 0

r i = r0+ 1 − 1

r − 1

r0 = r1 − 1

r − 1

1 = r − 1

r − 1
1 = 1

The problem with this method is that starting from a statement and deducing a true con-
clusion does not prove that the statement is true. A true conclusion can also be deduced
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from a false statement. For instance, the steps below show how to deduce the true con-
clusion that 1= 1 from the false statement that 1= 0:

1 = 0 ← false

0 = 1

1+ 0 = 0+ 1

1 = 1 ← true

When using mathematical induction to prove formulas, be sure to use a method that
avoids invalid reasoning, both for the basis step and for the inductive step.

Deducing Additional Formulas
The formula for the sum of a geometric sequence can be thought of as a family of different
formulas in r , one for each real number r except 1.

Example 5.2.4 Applying the Formula for the Sum of a Geometric Sequence

In each of (a) and (b) below, assume that m is an integer that is greater than or equal to 3.
Write each of the sums in closed form.

a. 1+ 3+ 32 + · · · + 3m−2

b. 32 + 33 + 34 + · · · + 3m

Solution

a. 1+ 3+ 32 + · · · + 3m−2 = 3(m−2)+1 − 1

3− 1

by applying the formula for the sum of a
geometric sequence with r = 3 and
n = m − 2

= 3m−1 − 1

2
.

b. 32 + 33 + 34 + · · · + 3m = 32 ·(1+ 3+ 32 + · · · + 3m−2) by factoring out 32

= 9 ·
(
3m−1 − 1

2

)
by part (a). ■

As with the formula for the sum of the first n integers, there is a way to think of the
formula for the sum of the terms of a geometric sequence that makes it seem simple and
intuitive. Let

Sn = 1+ r + r2 + · · · + rn.

Then

r Sn = r + r2 + r3 + · · · + rn+1,

and so

r Sn − Sn = (r + r2 + r3 + · · · + rn+1)− (1+ r + r2 + · · · + rn)

= rn+1 − 1. 5.2.1

But

r Sn − Sn = (r − 1)Sn. 5.2.2
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Equating the right-hand sides of equations (5.2.1) and (5.2.2) and dividing by r − 1 gives

Sn = rn+1 − 1

r − 1
.

This derivation of the formula is attractive and is quite convincing. However, it is
not as logically airtight as the proof by mathematical induction. To go from one step to
another in the previous calculations, the argument is made that each term among those
indicated by the ellipsis (. . .) has such-and-such an appearance and when these are can-
celed such-and-such occurs. But it is impossible actually to see each such term and each
such calculation, and so the accuracy of these claims cannot be fully checked. With math-
ematical induction it is possible to focus exactly on what happens in the middle of the
ellipsis and verify without doubt that the calculations are correct.

Test Yourself
1. Mathematical induction is a method for proving that a prop-

erty defined for integers n is true for all values of n that are
_____.

2. Let P(n) be a property defined for integers n and consider
constructing a proof by mathematical induction for the state-
ment “P(n) is true for all n ≥ a.”

(a) In the basis step one must show that _____.

(b) In the inductive step one supposes that _____ for some
particular but arbitrarily chosen value of an integer
k ≥ a. This supposition is called the _____. One then
has to show that _____.

Exercise Set 5.2
1. Use mathematical induction (and the proof of Proposi-

tion 5.2.1 as a model) to show that any amount of money
of at least 14c/ can be made up using 3c/ and 8c/ coins.

2. Use mathematical induction to show that any postage of at
least 12c/ can be obtained using 3c/ and 7c/ stamps.

3. For each positive integer n, let P(n) be the formula

12 + 22 + · · · + n2 = n(n + 1)(2n + 1)

6
.

a. Write P(1). Is P(1) true?
b. Write P(k).
c. Write P(k + 1).
d. In a proof by mathematical induction that the formula

holds for all integers n ≥ 1, what must be shown in the
inductive step?

4. For each integer n with n ≥ 2, let P(n) be the formula

n−1∑
i=1

i(i + 1) = n(n − 1)(n + 1)

3
.

a. Write P(2). Is P(2) true?
b. Write P(k).
c. Write P(k + 1).
d. In a proof by mathematical induction that the formula

holds for all integers n ≥ 2, what must be shown in the
inductive step?

5. Fill in the missing pieces in the following proof that

1+ 3+ 5+ · · · + (2n − 1) = n2

for all integers n ≥ 1.

Proof: Let the property P(n) be the equation

1+ 3+ 5+ · · · + (2n − 1) = n2. ← P(n)

Show that P(1) is true: To establish P(1), we must show
that when 1 is substituted in place of n, the left-hand side
equals the right-hand side. But when n = 1, the left-hand
side is the sum of all the odd integers from 1 to 2 ·1− 1,
which is the sum of the odd integers from 1 to 1, which is
just 1. The right-hand side is (a) , which also equals 1. So
P(1) is true.

Show that for all integers k ≥ 1, if P(k) is true then
P(k + 1) is true: Let k be any integer with k ≥ 1.

[Suppose P(k) is true. That is:]

Suppose 1+ 3+ 5+ · · · + (2k − 1) = (b) . ← P(k)

[This is the inductive hypothesis.]

[We must show that P(k + 1) is true. That is:]

We must show that

(c) = (d) . ← P(k + 1)

But the left-hand side of P(k + 1) is

1+ 3+ 5+ · · · + (2(k + 1)− 1)

= 1+ 3+ 5+ · · · + (2k + 1) by algebra

= [1+ 3+ 5+ · · · + (2k − 1)] + (2k + 1)
the next-to-last term is 2k − 1 because (e)

= k2 + (2k + 1) by (f)

= (k + 1)2 by algebra
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which is the right-hand side of P(k + 1) [as was to be
shown.]
[Since we have proved the basis step and the inductive step, we
conclude that the given statement is true.]
The previous proof was annotated to help make its logical
flow more obvious. In standard mathematical writing, such
annotation is omitted.

Prove each statement in 6–9 using mathematical induction. Do
not derive them from Theorem 5.2.2 or Theorem 5.2.3.

6. For all integers n ≥ 1, 2+ 4+ 6+ · · · + 2n = n2 + n.

7. For all integers n ≥ 1,

1+ 6+ 11+ 16+ · · · + (5n − 4) = n(5n − 3)

2
.

8. For all integers n ≥ 0, 1+ 2+ 22 + · · · + 2n = 2n+1 − 1.

9. For all integers n ≥ 3,

43 + 44 + 45 + · · · + 4n = 4(4n − 16)

3
.

Prove each of the statements in 10–17 by mathematical
induction.

10. 12 + 22 + · · · + n2 = n(n + 1)(2n + 1)

6
, for all integers

n ≥ 1.

11. 13 + 23 + · · · + n3 =
[
n(n + 1)

2

]2

, for all integers n ≥ 1.

12.
1

1 ·2 +
1

2 ·3 + · · · +
1

n(n + 1)
= n

n + 1
, for all integers

n ≥ 1.

13.
n−1∑
i=1

i(i + 1) = n(n − 1)(n + 1)

3
, for all integers n ≥ 2.

14.
n+1∑
i=1

i ·2i = n ·2n+2 + 2, for all integers n ≥ 0.

15.H
n∑

i=1
i(i !) = (n + 1)! − 1, for all integers n ≥ 1.

16.

(
1− 1

22

)(
1− 1

32

)
· · ·

(
1− 1

n2

)
= n + 1

2n
, for all inte-

gers n ≥ 2.

17.
n∏

i=0

(
1

2i + 1
· 1

2i + 2

)
= 1

(2n + 2)! , for all integers n ≥ 0.

18.✶H If x is a real number not divisible by π , then for all integers
n ≥ 1,

sin x + sin 3x + sin 5x + · · · + sin (2n − 1)x

= 1− cos 2nx

2 sin x
.

19. (For students who have studied calculus) Use mathemati-
cal induction, the product rule from calculus, and the facts

that
d(x)

dx
= 1 and that xk+ 1 = x · xk to prove that for all

integers n ≥ 1,
d(xn)

dx
= nxn− 1.

Use the formula for the sum of the first n integers and/or the for-
mula for the sum of a geometric sequence to evaluate the sums
in 20–29 or to write them in closed form.

20. 4+ 8+ 12+ 16+ · · · + 200

21. 5+ 10+ 15+ 20+ · · · + 300

22. 3+ 4+ 5+ 6+ · · · + 1000

23. 7+ 8+ 9+ 10+ · · · + 600

24. 1+ 2+ 3+ · · · + (k − 1), where k is an integer and k ≥ 2.

25. a. 1+ 2+ 22 + · · · + 225

b. 2+ 22 + 23 + · · · + 226

26. 3+ 32 + 33 + · · · + 3n , where n is an integer with n ≥ 1

27. 53 + 54 + 55 + · · · + 5k , where k is any integer with k ≥ 3.

28. 1+ 1

2
+ 1

22
+ · · · + 1

2n
, where n is a positive integer

29. 1− 2+ 22 − 23 + · · · + (−1)n2n , where n is a positive
integer

30.H Find a formula in n, a,m, and d for the sum (a + md)+
(a + (m + 1)d)+ (a + (m + 2)d)+ · · · + (a + (m + n)d),
where m and n are integers, n ≥ 0, and a and d are real
numbers. Justify your answer.

31. Find a formula in a, r,m, and n for the sum

arm + arm+1 + arm+2 + · · · + arm+n

where m and n are integers, n ≥ 0, and a and r are real
numbers. Justify your answer.

32. You have two parents, four grandparents, eight great-
grandparents, and so forth.
a. If all your ancestors were distinct, what would be

the total number of your ancestors for the past 40
generations (counting your parents’ generation as num-
ber one)? (Hint: Use the formula for the sum of a geo-
metric sequence.)

b. Assuming that each generation represents 25 years, how
long is 40 generations?

c. The total number of people who have ever lived is
approximately 10 billion, which equals 1010 people.
Compare this fact with the answer to part (a). What do
you deduce?
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Find the mistakes in the proof fragments in 33–35.

33.H Theorem: For any integer n ≥ 1,

12 + 22 + · · · + n2 = n(n + 1)(2n + 1)

6
.

“Proof (by mathematical induction): Certainly the
theorem is true for n = 1 because 12 = 1 and

1(1+ 1)(2 ·1+ 1)

6
= 1. So the basis step is true.

For the inductive step, suppose that for some integer k ≥ 1,

k2 = k(k + 1)(2k + 1)

6
. We must show that

(k + 1)2 = (k + 1)((k + 1)+ 1)(2(k + 1)+ 1)

6
.”

34.H Theorem: For any integer n ≥ 0,

1+ 2+ 22 + · · · + 2n = 2n+ 1 − 1.

“Proof (by mathematical induction): Let the property
P(n) be 1+ 2+ 22 + · · · + 2n = 2n+ 1 − 1.
Show that P(0) is true:
The left-hand side of P(0) is 1+ 2+ 22 + · · · + 20 = 1
and the right-hand side is 20+ 1 − 1 = 2− 1 = 1 also. So
P(0) is true.”

35.H Theorem: For any integer n ≥ 1,

n∑
i=1

i(i !) = (n + 1)! − 1.

“Proof (by mathematical induction): Let the property

P(n) be
n∑

i=1
i(i !) = (n + 1)! − 1.

Show that P(1) is true: When n = 1

1∑
i=1

i(i !) = (1+ 1)! − 1

So 1(1!) = 2! − 1

and 1 = 1

Thus P(1) is true.”

36.✶ Use Theorem 5.2.2 to prove that if m and n are any positive
integers and m is odd, then

∑m−1
k=0 (n + k) is divisible by m.

Does the conclusion hold if m is even? Justify your answer.

37.✶H Use Theorem 5.2.2 and the result of exercise 10 to prove
that if p is any prime number with p ≥ 5, then the sum of
squares of any p consecutive integers is divisible by p.

Answers for Test Yourself
1. greater than or equal to some initial value 2. (a) P(a) is true (b) P(k) is true; inductive hypothesis; P(k + 1) is true

5.3 Mathematical Induction II
A good proof is one which makes us wiser.— I. Manin, A Course in Mathematical Logic, 1977

In natural science courses, deduction and induction are presented as alternative modes
of thought—deduction being to infer a conclusion from general principles using the
laws of logical reasoning, and induction being to enunciate a general principle after
observing it to hold in a large number of specific instances. In this sense, then,
mathematical induction is not inductive but deductive. Once proved by mathematical
induction, a theorem is known just as certainly as if it were proved by any other mathe-
matical method. Inductive reasoning, in the natural sciences sense, is used in mathemat-
ics, but only to make conjectures, not to prove them. For example, observe that

1− 1

2
= 1

2(
1− 1

2

)(
1− 1

3

)
= 1

3(
1− 1

2

)(
1− 1

3

)(
1− 1

4

)
= 1

4

This pattern seems so unlikely to occur by pure chance that it is reasonable to conjecture
(though it is by no means certain) that the pattern holds true in general. In a case like
this, a proof by mathematical induction (which you are asked to write in exercise 1 at
the end of this section) gets to the essence of why the pattern holds in general. It reveals
the mathematical mechanism that necessitates the truth of each successive case from the
previous one. For instance, in this example observe that if
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(
1− 1

2

)(
1− 1

3

)
· · ·

(
1− 1

k

)
= 1

k
,

then by substitution(
1− 1

2

)(
1− 1

3

)
· · ·

(
1− 1

k

)(
1− 1

k + 1

)

= 1

k

(
1− 1

k + 1

)
= 1

k

(
k + 1− 1

k + 1

)
= 1

k

(
k

k + 1

)
= 1

k + 1
.

Thus mathematical induction makes knowledge of the general pattern a matter of
mathematical certainty rather than vague conjecture.

In the remainder of this section we show how to use mathematical induction to
prove additional kinds of statements such as divisibility properties of the integers and
inequalities. The basic outlines of the proofs are the same in all cases, but the details of
the basis and inductive steps differ from one to another.

Example 5.3.1 Proving a Divisibility Property

Use mathematical induction to prove that for all integers n ≥ 0, 22n − 1 is divisible by 3.

Solution As in the previous proofs by mathematical induction, you need to identify the
property P(n). In this example, P(n) is the sentence

22n − 1 is divisible by 3. ← the property (P(n))

By substitution, the statement for the basis step, P(0), is

22 ·0 − 1 is divisible by 3. ← basis (P(0))

The supposition for the inductive step, P(k), is

22k − 1 is divisible by 3, ← inductive hypothesis (P(k))

and the conclusion to be shown, P(k + 1), is

22(k+1) − 1 is divisible by 3. ← to show (P(k + 1))

Recall that an integer m is divisible by 3 if, and only if, m = 3r for some integer r .
Now the statement P(0) is true because 22 ·0 − 1 = 20 − 1 = 1− 1 = 0, which is divis-
ible by 3 because 0 = 3 ·0.

To prove the inductive step, you suppose that k is any integer greater than or equal to 0
such that P(k) is true. This means that 22k − 1 is divisible by 3. You must then prove the
truth of P(k + 1). Or, in other words, you must show that 22(k+1) − 1 is divisible by 3. But

22(k+1) − 1 = 22k+2 − 1

= 22k·22 − 1 by the laws of exponents

= 22k·4− 1.
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The aim is to show that this quantity, 22k·4− 1, is divisible by 3. Why should that be so?
By the inductive hypothesis, 22k − 1 is divisible by 3, and 22k·4− 1 resembles 22k − 1.
Observe what happens, if you subtract 22k − 1 from 22k·4− 1:

22k·4− 1︸ ︷︷ ︸ − (22k − 1)︸ ︷︷ ︸ = 22k·3.︸ ︷︷ ︸,⏐ ,⏐ ,⏐
divisible by 3? divisible by 3 divisible by 3

Adding 22k − 1 to both sides gives

22k·4− 1︸ ︷︷ ︸ = 22k ·3︸ ︷︷ ︸ + 22k − 1.︸ ︷︷ ︸,⏐ ,⏐ ,⏐
divisible by 3? divisible by 3 divisible by 3

Both terms of the sum on the right-hand side of this equation are divisible by 3; hence
the sum is divisible by 3. (See exercise 15 of Section 4.3.) Therefore, the left-hand side
of the equation is also divisible by 3, which is what was to be shown.

This discussion is summarized as follows:

Proposition 5.3.1

For all integers n ≥ 0, 22n − 1 is divisible by 3.

Proof (by mathematical induction):

Let the property P(n) be the sentence “22n − 1 is divisible by 3.”

22n − 1 is divisible by 3. ← P(n)

Show that P(0) is true:
To establish P(0), we must show that

22 ·0 − 1 is divisible by 3. ← P(0)

But

22 ·0 − 1 = 20 − 1 = 1− 1 = 0

and 0 is divisible by 3 because 0 = 3 ·0. Hence P(0) is true.

Show that for all integers k ≥ 0, if P(k) is true then P(k+ 1) is also true:
[Suppose that P(k) is true for a particular but arbitrarily chosen integer k ≥ 0. That is:]
Let k be any integer with k ≥ 0, and suppose that

22k − 1 is divisible by 3. ← P(k)
inductive hypothesis

By definition of divisibility, this means that

22k − 1 = 3r for some integer r .

[We must show that P(k + 1) is true. That is:] We must show that

22(k+ 1) − 1 is divisible by 3. ← P(k + 1)
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But

22(k+1) − 1 = 22k+ 2 − 1

= 22k ·22 − 1 by the laws of exponents

= 22k ·4− 1

= 22k(3+ 1)− 1

= 22k ·3+ (22k − 1) by the laws of algebra

= 22k ·3+ 3r by inductive hypothesis

= 3(22k + r) by factoring out the 3.

But 22k + r is an integer because it is a sum of products of integers, and so, by
definition of divisibility, 22(k+1) − 1 is divisible by 3 [as was to be shown].
[Since we have proved the basis step and the inductive step, we conclude that the propo-
sition is true.]

■

The next example illustrates the use of mathematical induction to prove an inequality.

Example 5.3.2 Proving an Inequality

Use mathematical induction to prove that for all integers n ≥ 3,

2n + 1 < 2n.

Solution In this example the property P(n) is the inequality

2n + 1 < 2n. ← the property (P(n))

By substitution, the statement for the basis step, P(3), is

2 ·3+ 1 < 23. ← basis (P(3))

The supposition for the inductive step, P(k), is

2k + 1 < 2k, ← inductive hypothesis (P(k))

and the conclusion to be shown is

2(k + 1)+ 1 < 2k+1. ← to show (P(k + 1))

To prove the basis step, observe that the statement P(3) is true because 2 ·3+ 1 = 7,
23 = 8, and 7 < 8.

To prove the inductive step, suppose the inductive hypothesis, that P(k) is true for an
integer k ≥ 3. This means that 2k + 1 < 2k is assumed to be true for a particular but arbi-
trarily chosen integer k ≥ 3. Then derive the truth of P(k + 1). Or, in other words, show
that the inequality 2(k + 1)+ 1 < 2k+1 is true. But by multiplying out and regrouping,

2(k + 1)+ 1 = 2k + 3 = (2k + 1)+ 2, 5.3.1
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and by substitution from the inductive hypothesis,

(2k + 1)+ 2 < 2k + 2. 5.3.2

Hence

2(k + 1)+ 1 < 2k + 2 The left-most part of equation (5.3.1) is less
than the right-most part of inequality (5.3.2).

Note Properties of
order are listed in
Appendix A.

If it can be shown that 2k + 2 is less than 2k+1, then the desired inequality will have been
proved. But since the quantity 2k can be added to or subtracted from an inequality without
changing its direction,

2k + 2 < 2k+1 ⇔ 2 < 2k+1 − 2k = 2k(2− 1) = 2k .

And since multiplying or dividing an inequality by 2 does not change its direction,

2 < 2k ⇔ 1 = 2

2
<

2k

2
= 2k−1 by the laws of exponents.

This last inequality is clearly true for all k ≥ 2. Hence it is true that 2(k + 1)+ 1 < 2k+1.
This discussion is made more flowing (but less intuitive) in the following formal

proof:

Proposition 5.3.2

For all integers n ≥ 3, 2n + 1 < 2n .

Proof (by mathematical induction):

Let the property P(n) be the inequality

2n + 1 < 2n. ← P(n)

Show that P(3) is true:
To establish P(3), we must show that

2 ·3+ 1 < 23. ← P(3)

But

2 ·3+ 1 = 7 and 23 = 8 and 7 < 8.

Hence P(3) is true.

Show that for all integers k ≥ 3, if P(k) is true then P(k+ 1) is also true:
[Suppose that P(k) is true for a particular but arbitrarily chosen integer k ≥ 3. That is:]
Suppose that k is any integer with k ≥ 3 such that

2k + 1 < 2k . ← P(k)
inductive hypothesis

[We must show that P(k + 1) is true. That is:] We must show that

2(k + 1)+ 1 < 2(k+1),

or, equivalently,

2k + 3 < 2(k+1). ← P(k + 1)
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But

2k + 3 = (2k + 1)+ 2 by algebra

< 2k + 2k because 2k + 1 < 2k by the inductive hypothesis
and because 2 < 2k for all integers k ≥ 2

∴ 2k + 3 < 2 ·2k = 2k+1 by the laws of exponents.

[This is what we needed to show.]
[Since we have proved the basis step and the inductive step, we conclude that the propo-
sition is true.]

■

The next example demonstrates how to use mathematical induction to show that the
terms of a sequence satisfy a certain explicit formula.

Example 5.3.3 Proving a Property of a Sequence

Define a sequence a1, a2, a3, . . . as follows.∗

a1 = 2

ak = 5ak−1 for all integers k ≥ 2.

a. Write the first four terms of the sequence.

b. It is claimed that for each integer n ≥ 0, the nth term of the sequence has the same
value as that given by the formula 2 ·5n− 1. In other words, the claim is that the terms
of the sequence satisfy the equation an = 2 ·5n− 1. Prove that this is true.

Solution

a. a1 = 2.
a2 = 5a2−1 = 5a1 = 5 ·2 = 10
a3 = 5a3−1 = 5a2 = 5 ·10 = 50
a4 = 5a4−1 = 5a3 = 5 ·50 = 250.

b. To use mathematical induction to show that every term of the sequence satisfies the
equation, begin by showing that the first term of the sequence satisfies the equation.
Then suppose that an arbitrarily chosen term ak satisfies the equation and prove that
the next term ak+ 1 also satisfies the equation.

Proof:

Let a1, a2, a3, . . . be the sequence defined by specifying that a1 = 2 and ak = 5ak−1 for
all integers k ≥ 2, and let the property P(n) be the equation

an = 2 ·5n−1. ← P(n)

We will use mathematical induction to prove that for all integers n ≥ 1, P(n) is true.

Show that P(1) is true:
To establish P(1), we must show that

a1 = 2 ·51−1. ← P(1)

∗This is another example of a recursive definition. The general subject of recursion is discussed in
Section 5.6.
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But the left-hand side of P(1) is

a1 = 2 by definition of a1, a2, a3, . . .,

and the right-hand side of P(1) is

2 ·51−1 = 2 ·50 = 2 ·1 = 2.

Thus the two sides of P(1) are equal to the same quantity, and hence P(1) is true.

Show that for all integers k ≥ 1, if P(k) is true then P(k + 1) is also true:
[Suppose that P(k) is true for a particular but arbitrarily chosen integer k ≥ 1. That is:] Let
k be any integer with k ≥ 0, and suppose that

ak = 2 ·5k−1. ← P(k)
inductive hypothesis

By definition of divisibility, this means that

ak = 2 ·5k−1.
[We must show that P(k + 1) is true. That is:] We must show that

ak+1 = 2 ·5(k+1)−1,

or, equivalently,

ak+1 = 2 ·5k . ← P(k + 1)

But the left-hand side of P(k + 1) is

ak+1 = 5a(k+1)−1 by definition of a1, a2, a3, . . .

= 5ak since (k + 1)− 1 = k

= 5 ·(2 ·5k−1) by inductive hypothesis

= 2 ·(5 ·5k−1) by regrouping

= 2 ·5k by the laws of exponents

which is the right-hand side of the equation [as was to be shown.]

[Since we have proved the basis step and the inductive step, we conclude that the formula
holds for all terms of the sequence.] ■

A Problem with Trominoes
The word polyomino, a generalization of domino, was introduced by Solomon Golomb in
1954 when he was a 22-year-old student at Harvard. Subsequently, he and others proved
many interesting properties about them, and they became the basis for the popular com-
puter game Tetris. A particular type of polyomino, called a tromino, is made up of three
attached squares, which can be of two types:

straight and L-shaped

Call a checkerboard that is formed using m squares on a side an m × m (“m by m”)
checkerboard. Observe that if one square is removed from a 4× 4 checkerboard, the
remaining squares can be completely covered by L-shaped trominoes. For instance, a
covering for one such board is illustrated in the figure to the left.
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In his first article about polyominoes, Golomb included a proof of the following theorem.
It is a beautiful example of an argument by mathematical induction.

Theorem Covering a Board with Trominoes

For any integer n ≥ 1, if one square is removed from a 2n × 2n checkerboard, the
remaining squares can be completely covered by L-shaped trominoes.

The main insight leading to a proof of this theorem is the observation that because
2k+ 1 = 2 ·2k , when a 2k+ 1 × 2k+ 1 board is split in half both vertically and hori-
zontally, each half side will have length 2k and so each resulting quadrant will be a
2k × 2k checkerboard.

Proof (by mathematical induction):

Let the property P(n) be the sentence

If any square is removed from a 2n × 2n checkerboard,
then the remaining squares can be completely covered.
by L-shaped trominoes

← P(n)

Show that P(1) is true:
A 21 × 21 checkerboard just consists of four squares. If one square is removed, the
remaining squares form an L, which can be covered by a single L-shaped tromino,
as illustrated in the figure to the left. Hence P(1) is true.

Show that for all integers k ≥ 1, if P(k) is true then P(k+ 1) is also true:

[Suppose that P(k) is true for a particular but arbitrarily chosen integer k ≥ 3. That is:]
Let k be any integer such that k ≥ 1, and suppose that

If any square is removed from a 2k × 2kcheckerboard,
then the remaining squares can be completely covered
by L-shaped trominoes.

← P(k)

P(k) is the inductive hypothesis.
[We must show that P (k + 1) is true. That is:] We must show that

If any square is removed from a 2k+1 × 2k+1 checkerboard,
then the remaining squares can be completely covered
by L-shaped trominoes.

← P(k + 1)

2k 2k

2k + 2k = 2k + 1 Consider a 2k+ 1 × 2k+ 1 checkerboard with one square removed. Divide it into four
equal quadrants: Each will consist of a 2k × 2k checkerboard. In one of the quad-
rants, one square will have been removed, and so, by inductive hypothesis, all the
remaining squares in this quadrant can be completely covered by L-shaped tromi-
noes. The other three quadrants meet at the center of the checkerboard, and the
center of the checkerboard serves as a corner of a square from each of those quad-
rants. An L-shaped tromino can, therefore, be placed on those three central squares.
This situation is illustrated in the figure to the left. By inductive hypothesis, the
remaining squares in each of the three quadrants can be completely covered by L-
shaped trominoes. Thus every square in the 2k+ 1 × 2k+ 1 checkerboard except the
one that was removed can be completely covered by L-shaped trominoes [as was to
be shown].
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Test Yourself
1. Mathematical induction differs from the kind of induction

used in the natural sciences because it is actually a form of
____ reasoning.

2. Mathematical induction can be used to _____ conjectures
that have been made using inductive reasoning.

Exercise Set 5.3
1. Based on the discussion of the product

(
1− 1

2

) (
1− 1

3

)(
1− 1

4

) · · · (1− 1
n

)
at the beginning of this section, con-

jecture a formula for general n. Prove your conjecture by
mathematical induction.

2. Experiment with computing values of the product(
1+ 1

1

) (
1+ 1

2

) (
1+ 1

3

) · · · (1+ 1
n

)
for small values of n

to conjecture a formula for this product for general n. Prove
your conjecture by mathematical induction.

3. Observe that

1

1 ·3 =
1

3

1

1 ·3 +
1

3 ·5 =
2

5

1

1 ·3 +
1

3 ·5 +
1

5 ·7 =
3

7

1

1 ·3 +
1

3 ·5 +
1

5 ·7 +
1

7 ·9 =
4

9

Guess a general formula and prove it by mathematical
induction.

4.H Observe that

1 = 1,

1− 4 = −(1+ 2),

1− 4+ 9 = 1+ 2+ 3,

1− 4+ 9− 16 = −(1+ 2+ 3+ 4),

1− 4+ 9− 16+ 25 = 1+ 2+ 3+ 4+ 5.

Guess a general formula and prove it by mathematical
induction.

5. Evaluate the sum
n∑

k=1

k

(k + 1)! for n = 1, 2, 3, 4, and 5.

Make a conjecture about a formula for this sum for general
n, and prove your conjecture by mathematical induction.

6. For each positive integer n, let P(n) be the property

5n − 1 is divisible by 4.

a. Write P(0). Is P(0) true?
b. Write P(k).
c. Write P(k + 1).
d. In a proof by mathematical induction that this divisibil-

ity property holds for all integers n ≥ 0, what must be
shown in the inductive step?

7. For each positive integer n, let P(n) be the property

2n < (n + 1)!.
a. Write P(2). Is P(2) true?
b. Write P(k).
c. Write P(k + 1).
d. In a proof by mathematical induction that this inequality

holds for all integers n ≥ 2, what must be shown in the
inductive step?

Prove each statement in 8–23 by mathematical induction.

8. 5n − 1 is divisible by 4, for each integer n ≥ 0.

9. 7n − 1 is divisible by 6, for each integer n ≥ 0.

10. n3 − 7n + 3 is divisible by 3, for each integer n ≥ 0.

11. 32n − 1 is divisible by 8, for each integer n ≥ 0.

12. For any integer n ≥ 0, 7n − 2n is divisible by 5.

13.H For any integer n ≥ 0, xn − yn is divisible by x − y, where
x and y are any integers with x �= y.

14.H n3 − n is divisible by 6, for each integer n ≥ 0.

15. n(n2 + 5) is divisible by 6, for each integer n ≥ 0.

16. 2n < (n + 1)!, for all integers n ≥ 2.

17. 1+ 3n ≤ 4n , for every integer n ≥ 0.

18. 5n + 9 < 6n , for all integers n ≥ 2.

19. n2 < 2n , for all integers n ≥ 5.

20. 2n < (n + 2)!, for all integers n ≥ 0.

21.
√
n <

1√
1
+ 1√

2
+ · · · + 1√

n
, for all integers n ≥ 2.

22. 1+ nx ≤ (1+ x)n , for all real numbers x > −1 and
integers n ≥ 2.

23. a. n3 > 2n + 1, for all integers n ≥ 2.
b. n! > n2, for all integers n ≥ 4.

24. A sequence a1, a2, a3, . . . is defined by letting a1 = 3 and
ak = 7ak−1 for all integers k ≥ 2. Show that an = 3 ·7n−1
for all integers n ≥ 1.

25. A sequence b0, b1, b2, . . . is defined by letting b0 = 5 and
bk = 4+ bk−1 for all integers k ≥ 1. Show that bn > 4n for
all integers n ≥ 0.
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26. A sequence c0, c1, c2, . . . is defined by letting c0 = 3 and
ck = (ck−1)2 for all integers k ≥ 1. Show that cn = 32

n
for

all integers n ≥ 0.

27. A sequence d1, d2, d3, . . . is defined by letting d1 = 2 and

dk = dk−1
k

for all integers k ≥ 2. Show that for all integers

n ≥ 1, dn = 2

n! .
28. Prove that for all integers n ≥ 1,

1

3
= 1+ 3

5+ 7
= 1+ 3+ 5

7+ 9+ 11
= · · ·

= 1+ 3+ · · · + (2n − 1)

(2n + 1)+ · · · + (4n − 1)
.

29. As each of a group of businesspeople arrives at a meeting,
each shakes hands with all the other people present. Use
mathematical induction to show that if n people come to
the meeting then [n(n − 1)]/2 handshakes occur.

In order for a proof by mathematical induction to be valid, the
basis statement must be true for n = a and the argument of
the inductive step must be correct for every integer k ≥ a. In
30 and 31 find the mistakes in the “proofs” by mathematical
induction.

30. “Theorem:” For any integer n ≥ 1, all the numbers in a
set of n numbers are equal to each other.

“Proof (by mathematical induction): It is obviously true
that all the numbers in a set consisting of just one number
are equal to each other, so the basis step is true. For the
inductive step, let A = {a1, a2, . . . , ak, ak+1} be any set of
k + 1 numbers. Form two subsets each of size k:

B = {a1, a2, a3, . . . , ak} and

C = {a1, a3, a4, . . . , ak+1}.

(B consists of all the numbers in A except ak+1, and C
consists of all the numbers in A except a2.) By induc-
tive hypothesis, all the numbers in B equal a1 and all
the numbers in C equal a1 (since both sets have only k
numbers). But every number in A is in B or C , so all
the numbers in A equal a1; hence all are equal to each
other.”

31.H “Theorem:” For all integers n ≥ 1, 3n − 2 is even.

“Proof (by mathematical induction): Suppose the
theorem is true for an integer k, where k ≥ 1. That is,
suppose that 3k − 2 is even. We must show that 3k+1 − 2 is
even. But

3k+1 − 2 = 3k ·3− 2 = 3k(1+ 2)− 2

= (3k − 2)+ 3k ·2.

Now 3k − 2 is even by inductive hypothesis and 3k ·2 is
even by inspection. Hence the sum of the two quantities is
even (by Theorem 4.1.1). It follows that 3k+1 − 2 is even,
which is what we needed to show.”

32.H Some 5× 5 checkerboards with one square removed can be
completely covered by L-shaped trominoes, whereas other
5× 5 checkerboards cannot. Find examples of both kinds
of checkerboards. Justify your answers.

33. Consider a 4× 6 checkerboard. Draw a covering of the
board by L-shaped trominoes.

34.H a. Use mathematical induction to prove that any checker-
board with dimensions 3× 2n can be completely
covered with L-shaped trominoes for any integer n ≥ 1.

b. Let n be any integer greater than or equal to 1. Use the
result of part (a) to prove by mathematical induction
that for all integers m, any checkerboard with dimen-
sions 2m × 3n can be completely covered with L-shaped
trominoes.

35. Let m and n be any integers that are greater than or equal
to 1.
a. Prove that a necessary condition for an m × n checker-

board to be completely coverable by L-shaped trominoes
is that mn be divisible by 3.

H b. Prove that having mn be divisible by 3 is not a sufficient
condition for an m × n checkerboard to be completely
coverable by L-shaped trominoes.

36. In a round-robin tournament each team plays every other
team exactly once. If the teams are labeled T1, T2, . . . , Tn,
then the outcome of such a tournament can be represented
by a drawing, called a directed graph, in which the teams
are represented as dots and an arrow is drawn from one
dot to another if, and only if, the team represented by the
first dot beats the team represented by the second dot. For
example, the directed graph below shows one outcome of
a round-robin tournament involving five teams, A, B, C, D,
and E.

A
B

C

D
E

Use mathematical induction to show that in any round-
robin tournament involving n teams, where n ≥ 2, it is
possible to label the teams T1, T2, . . . , Tn so that Ti beats
Ti+1 for all i = 1, 2, . . . , n − 1. (For instance, one such
labeling in the example above is T1 = A, T2 = B, T3 =
C, T4 = E, T5 = D.) (Hint: Given k + 1 teams, pick one—
say T ′—and apply the inductive hypothesis to the remain-
ing teams to obtain an ordering T1, T2, . . . , Tk . Consider
three cases: T

′
beats T1, T

′
loses to the firstm teams (where

1 ≤ m ≤ k − 1) and beats the (m + 1)st team, and T
′
loses

to all the other teams.)

37.✶H On the outside rim of a circular disk the integers from
1 through 30 are painted in random order. Show that no
matter what this order is, there must be three successive
integers whose sum is at least 45.
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38.H Suppose that n a’s and n b’s are distributed around the out-
side of a circle. Use mathematical induction to prove that
for all integers n ≥ 1, given any such arrangement, it is
possible to find a starting point so that if one travels around
the circle in a clockwise direction, the number of a’s one
has passed is never less than the number of b’s one has
passed. For example, in the diagram shown below, one
could start at the a with an asterisk.

a
a

a

b

b

b
b

b

a*

a

a

b

39. For a polygon to be convex means that all of its inte-
rior angles are less than 180 degrees. Use mathematical
induction to prove that for all integers n ≥ 3, the angles
of any n-sided convex polygon add up to 180(n − 2)
degrees.

40. a. Prove that in an 8× 8 checkerboard with alternating
black and white squares, if the squares in the top right
and bottom left corners are removed the remaining board
cannot be covered with dominoes. (Hint: Mathematical
induction is not needed for this proof.)

b. Use mathematical induction to prove that for all
integers n, if a 2n × 2n checkerboard with alternat-
ing black and white squares has one white square
and one black square removed anywhere on the
board, the remaining squares can be covered with
dominoes.

Answers for Test Yourself
1. deductive 2. prove

5.4 Strong Mathematical Induction
and the Well-Ordering Principle for the Integers
Mathematics takes us still further from what is human into the region of absolute
necessity, to which not only the actual world, but every possible world, must conform.
—Bertrand Russell, 1902

Strong mathematical induction is similar to ordinary mathematical induction in that it is
a technique for establishing the truth of a sequence of statements about integers. Also,
a proof by strong mathematical induction consists of a basis step and an inductive step.
However, the basis step may contain proofs for several initial values, and in the inductive
step the truth of the predicate P(n) is assumed not just for one value of n but for all
values through k, and then the truth of P(k + 1) is proved.

Principle of Strong Mathematical Induction

Let P(n) be a property that is defined for integers n, and let a and b be fixed integers
with a ≤ b. Suppose the following two statements are true:

1. P(a), P(a + 1), . . . , and P(b) are all true. (basis step)

2. For any integer k ≥ b, if P(i) is true for all integers i from a through k, then
P(k + 1) is true. (inductive step)

Then the statement
for all integers n ≥ a, P(n)

is true. (The supposition that P(i) is true for all integers i from a through k is called
the inductive hypothesis. Another way to state the inductive hypothesis is to say
that P(a), P(a + 1), . . . , P(k) are all true.)
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Any statement that can be proved with ordinary mathematical induction can be proved
with strong mathematical induction. The reason is that given any integer k ≥ b, if the
truth of P(k) alone implies the truth of P(k + 1), then certainly the truth of P(a),
P(a + 1), . . . , and P(k) implies the truth of P(k + 1). It is also the case that any
statement that can be proved with strong mathematical induction can be proved with
ordinary mathematical induction. A proof is sketched in exercise 27 at the end of this
section.

Strictly speaking, the principle of strong mathematical induction can be written with-
out a basis step if the inductive step is changed to “∀k ≥ a − 1, if P(i) is true for all
integers i from a through k, then P(k + 1) is true.” The reason for this is that the state-
ment “P(i) is true for all integers i from a through k” is vacuously true for k = a−1.
Hence, if the implication in the inductive step is true, then the conclusion P(a) must also
be true,∗ which proves the basis step. However, in many cases the proof of the implica-
tion for k > b does not work for a ≤ k ≤ b. So it is a good idea to get into the habit of
thinking separately about the cases where a ≤ k ≤ b by explicitly including a basis step.

The principle of strong mathematical induction is known under a variety of different
names including the second principle of induction, the second principle of finite induc-
tion, and the principle of complete induction.

Applying Strong Mathematical Induction
The divisibility-by-a-prime theorem states that any integer greater than 1 is divisible by a
prime number. We prove this theorem using strong mathematical induction.

Example 5.4.1 Divisibility by a Prime

Prove Theorem 4.3.4: Any integer greater than 1 is divisible by a prime number.

Solution The idea for the inductive step is this: If a given integer greater than 1 is not
itself prime, then it is a product of two smaller positive integers, each of which is greater
than 1. Since you are assuming that each of these smaller integers is divisible by a prime
number, by transitivity of divisibility, those prime numbers also divide the integer you
started with.

Proof (by strong mathematical induction):

Let the property P(n) be the sentence

n is divisible by a prime number. ← P(n)

Show that P(2) is true:
To establish P(2), we must show that

2 is divisible by a prime number. ← P(2)

But this is true because 2 is divisible by 2 and 2 is a prime number.

Show that for all integers k ≥ 2, if P(i) is true for all integers i from 2 through k,
then P(k + 1) is also true:

continued on page 270

∗If you have proved that a certain if-then statement is true and if you also know that the hypothesis
is true, then the conclusion must be true.
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Let k be any integer with k ≥ 2 and suppose that

i is divisible by a prime number for all integers
i from 2 through k. ← inductive hypothesis

We must show that

k + 1 is divisible by a prime number. ← P(k + 1)

Case 1 (k + 1 is prime): In this case k + 1 is divisible by a prime number, namely
itself.

Case 2 (k + 1 is not prime): In this case k + 1 = ab where a and b are inte-
gers with 1 < a < k + 1 and 1 < b < k + 1. Thus, in particular, 2 ≤ a ≤ k, and
so by inductive hypothesis, a is divisible by a prime number p. In addition because
k + 1 = ab, we have that k + 1 is divisible by a. Hence, since k + 1 is divisible by a
and a is divisible by p, by transitivity of divisibility, k + 1 is divisible by the prime
number p.

Therefore, regardless of whether k + 1 is prime or not, it is divisible by a prime
number [as was to be shown].
[Since we have proved both the basis and the inductive step of the strong mathematical
induction, we conclude that the given statement is true.]

■

Both ordinary and strong mathematical induction can be used to show that the terms
of certain sequences satisfy certain properties. The next example shows how this is done
using strong induction.

Example 5.4.2 Proving a Property of a Sequence with Strong Induction

Define a sequence s0, s1, s2, . . . as follows:

s0 = 0, s1 = 4, sk = 6ak−1 − 5ak−2 for all integers k ≥ 2.

a. Find the first four terms of this sequence.

b. It is claimed that for each integer n ≥ 0, the nth term of the sequence has the same
value as that given by the formula 5n − 1. In other words, the claim is that all the terms
of the sequence satisfy the equation sn = 5n − 1. Prove that this is true.

Solution

a. s0 = 0, s1 = 4, s2 = 6s1 − 5s0 = 6 ·4− 5 ·0 = 24,
s3 = 6s2 − 5s1 = 6 ·24− 5 ·4 = 144− 20 = 124

b. To use strong mathematical induction to show that every term of the sequence satis-
fies the equation, the basis step must show that the first two terms satisfy it. This is
necessary because, according to the definition of the sequence, computing values of
later terms requires knowing the values of the two previous terms. So if the basis step
only shows that the first term satisfies the equation, it would not be possible to use
the inductive step to deduce that the second term satisfies the equation. In the induc-
tive step you suppose that for an arbitrarily chosen integer k ≥ 1, all the terms of the
sequence from s0 through sk satisfy the given equation and you then deduce that sk+1
must also satisfy the equation.
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Proof:

Let s0, s1, s2, . . . be the sequence defined by specifying that s0 = 0, s1 = 4, and
sk = 6ak−1 − 5ak−2 for all integers k ≥ 2, and let the property P(n) be the formula

sn = 5n − 1 ← P(n)

We will use strong mathematical induction to prove that for all integers n ≥ 0, P(n)
is true.

Show that P(0) and P(1) are true:
To establish P(0) and P(1), we must show that

s0 = 50 − 1 and s1 = 51 − 1. ← P(0) and P(1)

But, by definition of s0, s1, s2, . . ., we have that s0 = 0 and s1 = 4. Since 50 − 1 =
1− 1 = 0 and 51 − 1 = 5− 1 = 4, the values of s0 and s1 agree with the values
given by the formula.

Show that for all integers k ≥ 1, if P(i) is true for all integers i from 0 through k,
then P(k+ 1) is also true:
Let k be any integer with k ≥ 1 and suppose that

si = 5i − 1 for all integers i with 0 ≤ i ≤ k. ← inductive hypothesis

We must show that

sk+1 = 5k+1 − 1. ← P(k + 1)

But since k ≥ 1, we have that k + 1 ≥ 2, and so

sk+1 = 6sk − 5sk−1 by definition of s0, s1, s2, . . .

= 6(5k − 1)− 5(5k−1 − 1) by definition hypothesis

= 6 ·5k − 6− 5k + 5 by multiplying out and applying

a law of exponents

= (6− 1)5k − 1 by factoring out 6 and arithmetic

= 5 ·5k − 1 by arithmetic

= 5k+1 − 1 by applying a law of exponents,

[as was to be shown].

[Since we have proved both the basis and the inductive step of the strong mathematical
induction, we conclude that the given statement is true.]

■

Another use of strong induction concerns the computation of products. A product
of four numbers may be computed in a variety of different ways as indicated by the
placement of parentheses. For instance,

((x1x2)x3)x4 means multiply x1 and x2, multiply the result by x3,
and then multiply that number by x4.

And

(x1x2)(x3x4) means multiply x1 and x2, multiply x3 and x4,
and then take the product of the two.

Note that in both examples above, although the factors are multiplied in a different order,
the number of multiplications—three—is the same. Strong mathematical induction is
used to prove a generalization of this fact.
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Note Like many
definitions, for extreme
cases this may look
strange but it makes
things work out nicely.

Convention

Let us agree to say that a single number x1 is a product with one factor and can be
computed with zero multiplications.

Example 5.4.3 The Number of Multiplications Needed to Multiply n Numbers

Prove that for any integer n ≥ 1, if x1, x2, . . . , xn are n numbers, then no matter how the
parentheses are inserted into their product, the number of multiplications used to compute
the product is n − 1.

Solution The truth of the basis step follows immediately from the convention about a prod-
uct with one factor. The inductive step is based on the fact that when several numbers are
multiplied together, each step of the process involves multiplying two individual quanti-
ties. For instance, the final step for computing ((x1x2)x3)(x4x5) is to multiply (x1x2)x3
and x4x5. In general, if k + 1 numbers are multiplied, the two quantities in the final step
each consist of fewer than k + 1 factors. This is what makes it possible to use the induc-
tive hypothesis.

Proof (by strong mathematical induction):

Let the property P(n) be the sentence

If x1, x2, . . . , xn are n numbers, then
no matter how parentheses are inserted into their
product, the number of multiplications used to ← P(n)

compute the product is n − 1.

Show that P(1) is true:
To establish P(1), we must show that

The number of multiplications needed to compute
the product of x1 is 1− 1. ← P(1)

This is true because, by convention, x1 is a product that can be computed with 0
multiplications, and 0 = 1− 1.

Show that for all integers k ≥ 1, if P(i) is true for all integers i from 1 through k,
then P(k+ 1) is also true:
Let k by any integer with k ≥ 1 and suppose that

For all integers i from 1 through k, if x1, x2, . . . , xi
are numbers, then no matter how parentheses
are inserted into their product, the number
of multiplications used to compute the
product is i − 1.

← inductive hypothesis

We must show that

If x1, x2, . . . , xk+ 1 are k + 1 numbers, then no
matter how parentheses are inserted into their
product, the number of multiplications used to
compute the product is (k + 1)− 1 = k.

← P(k + 1)

Consider a product of k + 1 factors: x1, x2 . . . , xk+ 1. When parentheses are inserted
in order to compute the product, some multiplication is the final one and each of
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the two factors making up the final multiplication is a product of fewer than k + 1
factors. Let L be the product of the left-hand factors and R be the product of the
right-hand factors, and suppose that L is composed of l factors and R is composed
of r factors. Then l + r = k + 1, the total number of factors in the product, and

1 ≤ l ≤ k and 1 ≤ r ≤ k.

By inductive hypothesis, evaluating L takes l − 1 multiplications and evaluating R
takes r − 1 multiplications. Because one final multiplication is needed to evaluate
L ·R, the number of multiplications needed to evaluate the product of all k + 1 fac-
tors is

(l − 1)+ (r − 1)+ 1 = (l + r)− 1 = (k + 1)− 1 = k.

[This is what was to be shown.]
[Since we have proved the basis step and the inductive step of the strong mathematical
induction, we conclude that the given statement is true.]

■

Strong mathematical induction makes possible a proof of the fact used frequently in com-
puter science that every positive integer n has a unique binary integer representation. The
proof looks complicated because of all the notation needed to write down the various
steps. But the idea of the proof is simple. It is that if smaller integers than n have unique
representations as sums of powers of 2, then the unique representation for n as a sum of
powers of 2 can be found by taking the representation for n/2 (or for (n − 1)/2 if n is
odd) and multiplying it by 2.

Theorem 5.4.1 Existence and Uniqueness of Binary Integer Representations

Given any positive integer n, n has a unique representation in the form

n = cr ·2r + cr−1 ·2r−1 + · · · + c2 ·22 + c1 ·2+ c0,

where r is a nonnegative integer, cr = 1, and c j = 1 or 0 for all j = 0, 1, 2, . . . , r − 1.

Proof:

We give separate proofs by strong mathematical induction to show first the existence
and second the uniqueness of the binary representation.

Existence (proof by strong mathematical induction): Let the property P(n) be the
equation

n = cr ·2r + cr−1 ·2r−1 + · · · + c2 ·22 + c1 ·2+ c0, ← P(n)

where r is a nonnegative integer, cr = 1, and c j = 1 or 0 for all j = 0, 1, 2, . . . , r − 1.

Show that P(1) is true:
Let r = 0 and c0 = 1. Then 1 = cr ·2r , and so n = 1 can be written in the required
form.

Show that for all integers k ≥ 1, if P(i) is true for all integers i from 1 through k,
then P(k+ 1) is also true:

continued on page 274
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Let k be an integer with k ≥ 1. Suppose that for all integers i from 1 through k,

i = cr ·2r + cr−1 ·2r−1 + · · · + c2 ·22 + c1 ·2+ c0, ← inductive hypothesis

where r is a nonnegative integer, cr = 1, and c j = 1 or 0 for all j = 0, 1, 2, . . . , r − 1.
We must show that k + 1 can be written as a sum of powers of 2 in the required
form.

Case 1 (k + 1 is even): In this case (k + 1)/2 is an integer, and by inductive hypoth-
esis, since 1 ≤ (k + 1)/2 ≤ k, then,

k + 1

2
= cr ·2r + cr−1 ·2r−1 + · · · + c2 ·22 + c1 ·2+ c0,

where r is a nonnegative integer, cr = 1, and c j = 1 or 0 for all j = 0, 1, 2, . . . , r − 1.
Multiplying both sides of the equation by 2 gives

k + 1 = cr ·2r+1 + cr−1 ·2r + · · · + c2 ·23 + c1 ·22 + c0 ·2,
which is a sum of powers of 2 of the required form.

Case 2 (k + 1 is odd): In this case k/2 is an integer, and by inductive hypothesis,
since 1 ≤ k/2 ≤ k, then

k

2
= cr ·2r + cr−1 ·2r−1 + · · · + c2 ·22 + c1 ·2+ c0,

where r is a nonnegative integer, cr = 1, and c j = 1 or 0 for all j = 0, 1, 2, . . . , r − 1.
Multiplying both sides of the equation by 2 and adding 1 gives

k + 1 = cr ·2r+1 + cr−1 ·2r + · · · + c2 ·23 + c1 ·22 + c0 ·2+ 1,

which is also a sum of powers of 2 of the required form.

The preceding arguments show that regardless of whether k + 1 is even or odd, k + 1
has a representation of the required form. [Or, in other words, P(k + 1) is true as was
to be shown.]

[Since we have proved the basis step and the inductive step of the strong mathematical
induction, the existence half of the theorem is true.]

Uniqueness: To prove uniqueness, suppose that there is an integer n with two dif-
ferent representations as a sum of nonnegative integer powers of 2. Equating the two
representations and canceling all identical terms gives

2r + cr−1 ·2r−1 + · · · + c1 ·2+ c0 = 2s + ds−1 ·2s−1 + · · · + d1 ·2+ d0 5.4.1

where r and s are nonnegative integers, and each ci and each di equal 0 or 1. Without
loss of generality, we may assume that r < s. But by the formula for the sum of a
geometric sequence (Theorem 5.2.3) and because r < s,

2r + cr−1 ·2r−1 + · · · + c1 ·2+ c0 ≤ 2r + 2r−1 + · · · + 2+ 1 = 2r+1 − 1

< 2s .

Thus

2r + cr−1 ·2r−1 + · · · + c1 ·2+ c0 < 2s + ds−1 ·2s−1 + · · · + d1 ·2+ d0,

which contradicts equation (5.4.1). Hence the supposition is false, so any integer n
has only one representation as a sum of nonnegative integer powers of 2.
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The Well-Ordering Principle for the Integers
The well-ordering principle for the integers looks very different from both the ordinary
and the strong principles of mathematical induction, but it can be shown that all three
principles are equivalent. That is, if any one of the three is true, then so are both of the
others.

Well-Ordering Principle for the Integers

Let S be a set of integers containing one or more integers all of which are greater
than some fixed integer. Then S has a least element.

Note that when the context makes the reference clear, we will write simply “the well-
ordering principle” rather than “the well-ordering principle for the integers.”

Example 5.4.4 Finding Least Elements

In each case, if the set has a least element, state what it is. If not, explain why the well-
ordering principle is not violated.

a. The set of all positive real numbers.

b. The set of all nonnegative integers n such that n2 < n.

c. The set of all nonnegative integers of the form 46− 7k, where k is an integer.

Solution

a. There is no least positive real number. For if x is any positive real number, then x/2 is
a positive real number that is less than x . No violation of the well-ordering principle
occurs because the well-ordering principle refers only to sets of integers, and this set
is not a set of integers.

b. There is no least nonnegative integer n such that n2 < n because there is no nonneg-
ative integer that satisfies this inequality. The well-ordering principle is not violated
because the well-ordering principle refers only to sets that contain at least one element.

c. The following table shows values of 46− 7k for various values of k.

k 0 1 2 3 4 5 6 7 · · · −1 −2 −3 · · ·
46 − 7k 46 39 32 25 18 11 4 −3 · · · 53 60 67 · · ·

The table suggests, and you can easily confirm, that 46− 7k < 0 for k ≥ 7 and that
46− 7k ≥ 46 for k ≤ 0. Therefore, from the other values in the table it is clear that 4
is the least nonnegative integer of the form 46− 7k. This corresponds to k = 6. ■

Another way to look at the analysis of Example 5.4.4(c) is to observe that subtracting
six 7’s from 46 leaves 4 left over and this is the least nonnegative integer obtained by
repeated subtraction of 7’s from 46. In other words, 6 is the quotient and 4 is the remainder
for the division of 46 by 7. More generally, in the division of any integer n by any positive
integer d, the remainder r is the least nonnegative integer of the form n − dk. This is
the heart of the following proof of the existence part of the quotient-remainder theorem
(the part that guarantees the existence of a quotient and a remainder of the division of an
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integer by a positive integer). For a proof of the uniqueness of the quotient and remainder,
see exercise 18 of Section 4.6.

Quotient-Remainder Theorem (Existence Part)

Given any integer n and any positive integer d, there exist integers q and r such that

n = dq + r and 0 ≤ r < d.

Proof:

Let S be the set of all nonnegative integers of the form

n − dk,

where k is an integer. This set has at least one element. [For if n is nonnegative, then

n − 0 ·d = n ≥ 0,

and so n − 0 ·d is in S. And if n is negative, then

n − nd = n(1− d)︸ ︷︷ ︸ ≥ 0,,⏐ →

<0 ≤0 since d is a positive integer

and so n − nd is in S.] It follows by the well-ordering principle for the integers that
S contains a least element r . Then, for some specific integer k = q,

n − dq = r

[because every integer in S can be written in this form]. Adding dq to both sides gives

n = dq + r.

Furthermore, r < d. [For suppose r ≥ d. Then

n − d(q + 1) = n − dq − d = r − d ≥ 0,

and so n − d(q + 1) would be a nonnegative integer in S that would be smaller than r.
But r is the smallest integer in S. This contradiction shows that the supposition r ≥ d
must be false.] The preceding arguments prove that there exist integers r and q for
which

n = dq + r and 0 ≤ r < d.

[This is what was to be shown.]

Another consequence of the well-ordering principle is the fact that any strictly decreas-
ing sequence of nonnegative integers is finite. That is, if r1, r2, r3, . . . is a sequence of
nonnegative integers satisfying

ri > ri+1

for all i ≥ 1, then r1, r2, r3, . . . is a finite sequence. [For by the well-ordering principle such
a sequence would have to have a least element rk . It follows that rk must be the final term of
the sequence because if there were a term rk+1, then since the sequence is strictly decreasing,
rk+1 < rk , which would be a contradiction.] This fact is frequently used in computer science
to prove that algorithms terminate after a finite number of steps.
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Test Yourself
1. In a proof by strong mathematical induction the basis step

may require checking a property P(n) for more _____ value
of n.

2. Suppose that in the basis step for a proof by strong math-
ematical induction the property P(n) was checked for all
integers n from a through b. Then in the inductive step one

assumes that for any integer k ≥ b, the property P(n) is true
for all values of i from _____ through _____ and one shows
that _____ is true.

3. According to the well-ordering principle for the integers, if a
set S of integers contains at least _____ and if there is some
integer that is less than or equal to every _____, then _____.

Exercise Set 5.4
1. Suppose a1, a2, a3, . . . is a sequence defined as follows:

a1 = 1, a2 = 3,

ak = ak−2 + 2ak−1 for all integers k ≥ 3.

Prove that an is odd for all integers n ≥ 1.

2. Suppose b1, b2, b3, . . . is a sequence defined as follows:

b1 = 4, b2 = 12

bk = bk−2 + bk−1 for all integers k ≥ 3.

Prove that bn is divisible by 4 for all integers n ≥ 1.

3. Suppose that c0, c1, c2, . . . is a sequence defined as follows:

c0 = 2, c1 = 2, c2 = 6,

ck = 3ck−3 for all integers k ≥ 3.

Prove that cn is even for all integers n ≥ 0.

4. Suppose that d1, d2, d3, . . . is a sequence defined as follows:

d1 = 9

10
, d2 = 10

11
,

dk = dk−1 ·dk−2 for all integers k ≥ 3.

Prove that 0 < dn ≤ 1 for all integers n ≥ 0.

5. Suppose that e0, e1, e2, . . . is a sequence defined as follows:

e0 = 12, e1 = 29

ek = 5ek−1 − 6ek−2 for all integers k ≥ 2.

Prove that en = 5 ·3n + 7 ·2n for all integers n ≥ 0.

6. Suppose that f0, f1, f2, . . . is a sequence defined as fol-
lows:

f0 = 5, f1 = 16

fk = 7 fk−1 − 10 fk−2 for all integers k ≥ 2.

Prove that fn = 3 ·2n + 2 ·5n for all integers n ≥ 0.

7. Suppose that g1, g2, g3, . . . is a sequence defined as fol-
lows:

g1 = 3, g2 = 5

gk = 3gk−1 − 2gk−2 for all integers k ≥ 3.

Prove that gn = 2n + 1 for all integers n ≥ 1.

8. Suppose that h0, h1, h2, . . . is a sequence defined as fol-
lows:

h0 = 1, h1 = 2, h2 = 3,

hk = hk−1 + hk−2 + hk−3 for all integers k ≥ 3.

a. Prove that hn ≤ 3n for all integers n ≥ 0.
b. Suppose that s is any real number such that

s3 ≥ s2 + s + 1. (This implies that s > 1.83.) Prove that
hn ≤ sn for all n ≥ 2.

9. Define a sequence a1, a2, a3, . . . as follows: a1 = 1, a2 = 3,
and ak = ak−1 + ak−2 for all integers k ≥ 3. (This sequence
is known as the Lucas sequence.) Use strong mathematical

induction to prove that an ≤
(
7
4

)n
for all integers n ≥ 1.

10.H The problem that was used to introduce ordinary mathe-
matical induction in Section 5.2 can also be solved using
strong mathematical induction. Let P(n) be “any collec-
tion of n coins can be obtained using a combination of 3c/
and 5c/ coins.” Use strong mathematical induction to prove
that P(n) is true for all integers n ≥ 14.

11. You begin solving a jigsaw puzzle by finding two pieces
that match and fitting them together. Each subsequent step
of the solution consists of fitting together two blocks made
up of one or more pieces that have previously been assem-
bled. Use strong mathematical induction to prove that the
number of steps required to put together all n pieces of a
jigsaw puzzle is n − 1.

12.H The sides of a circular track contain a sequence of cans of
gasoline. The total amount in the cans is sufficient to enable
a certain car to make one complete circuit of the track, and
it could all fit into the car’s gas tank at one time. Use mathe-
matical induction to prove that it is possible to find an initial
location for placing the car so that it will be able to traverse
the entire track by using the various amounts of gasoline in
the cans that it encounters along the way.

13.H Use strong mathematical induction to prove the existence
part of the unique factorization of integers (Theorem 4.3.5):
Every integer greater than 1 is either a prime number or a
product of prime numbers.

14. Any product of two or more integers is a result of succes-
sive multiplications of two integers at a time. For instance,
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here are a few of the ways in which a1a2a3a4 might be com-
puted: (a1a2)(a3a4) or ((a1a2)a3)a4) or a1((a2a3)a4). Use
strong mathematical induction to prove that any product of
two or more odd integers is odd.

15. Any sum of two or more integers is a result of successive
additions of two integers at a time. For instance, here are a
few of the ways in which a1 + a2 + a3 + a4 might be com-
puted: (a1 + a2)+ (a3 + a4) or ((a1 + a2)+ a3)+ a4) or
a1 + ((a2 + a3)+ a4). Use strong mathematical induction
to prove that any sum of two or more even integers is even.

16.H Use strong mathematical induction to prove that for any
integer n ≥ 2, if n is even, then any sum of n odd integers
is even, and if n is odd, then any sum of n odd integers is
odd.

17. Compute 41, 42, 43, 44, 45, 46, 47, and 48. Make a conjec-
ture about the units digit of 4n where n is a positive
integer. Use strong mathematical induction to prove your
conjecture.

18. Compute 90, 91, 92, 93, 94, and 95. Make a conjecture about
the units digit of 9n where n is a positive integer. Use strong
mathematical induction to prove your conjecture.

19. Find the mistake in the following “proof” that purports
to show that every nonnegative integer power of every
nonzero real number is 1.

“Proof: Let r be any nonzero real number and let the prop-
erty P(n) be the equation rn = 1.

Show that P(0) is true: P(0) is true because r 0 = 1 by def-
inition of zeroth power.
Show that for all integers k ≥ 0, if P(i) is true for all inte-
gers i from 0 through k, then P(k+ 1) is also true: Let k
be any integer with k ≥ 0 and suppose that r i = 1 for all
integers i from 0 through k. This is the inductive hypothe-
sis. We must show that rk+1 = 1. Now

rk+1 = rk+k−(k−1) because k + k − (k − 1)
= k + k − k + 1 = k + 1

= rk ·rk
r k−1

by the laws of exponents

= 1 ·1
1

by inductive hypothesis

= 1.

Thus rk+1 = 1 [as was to be shown].

[Since we have proved the basis step and the inductive step of
the strong mathematical induction, we conclude that the given
statement is true.]”

20. Use the well-ordering principle for the integers to prove
Theorem 4.3.4: Every integer greater than 1 is divisible by
a prime number.

21. Use the well-ordering principle for the integers to prove the
existence part of the unique factorization of integers theo-
rem: Every integer greater than 1 is either prime or a prod-
uct of prime numbers.

22. a. The Archimedean property for the rational numbers
states that for all rational numbers r , there is an integer
n such that n > r . Prove this property.

b. Prove that given any rational number r , the number −r
is also rational.

c. Use the results of parts (a) and (b) to prove that given
any rational number r , there is an integer m such that
m < r .

23.H Use the results of exercise 22 and the well-ordering prin-
ciple for the integers to show that given any rational num-
ber r , there is an integer m such that m ≤ r < m + 1.

24. Use the well-ordering principle to prove that given any inte-
ger n ≥ 1, there exists an odd integer m and a nonnegative
integer k such that n = 2k ·m.

25. Imagine a situation in which eight people, numbered con-
secutively 1–8, are arranged in a circle. Starting from per-
son #1, every second person in the circle is eliminated.
The elimination process continues until only one person
remains. In the first round the people numbered 2, 4, 6, and
8 are eliminated, in the second round the people numbered
3 and 7 are eliminated, and in the third round person #5 is
eliminated. So after the third round only person #1 remains,
as shown below.

1

Initial State After the 1st Round After the 2nd Round After the 3rd Round

2

3

4
5

6

7

8
1

3

5

7

1

5

1

a. Given a set of sixteen people arranged in a circle and
numbered, consecutively 1–16, list the numbers of the
people who are eliminated in each round if every second
person is eliminated and the elimination process contin-
ues until only one person remains. Assume that the start-
ing point is person #1.

b. Use mathematical induction to prove that for all integers
n ≥ 1, given any set of 2n people arranged in a circle and
numbered consecutively 1 through 2n , if one starts from
person #1 and goes repeatedly around the circle succes-
sively eliminating every second person, eventually only
person #1 will remain.

c. Use the result of part (b) to prove that for any non-
negative integers n and m with 2n ≤ 2n + m < 2n+1, if
r = 2n + m, then given any set of r people arranged
in a circle and numbered consecutively 1 through r , if
one starts from person #1 and goes repeatedly around
the circle successively eliminating every second person,
eventually only person #(2m + 1) will remain.
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26. Suppose P(n) is a property such that
1. P(0), P(1), P(2) are all true,
2. for all integers k ≥ 0, if P(k) is true, then P(3k) is true.

Must it follow that P(n) is true for all integers n ≥ 0? If
yes, explain why; if no, give a counterexample.

27. Prove that if a statement can be proved by strong mathe-
matical induction, then it can be proved by ordinary mathe-
matical induction. To do this, let P(n) be a property that is
defined for integers n, and suppose the following two state-
ments are true:
1. P(a), P(a + 1), P(a + 2), . . . , P(b).
2. For any integer k ≥ b, if P(i) is true for all integers i

from a through k, then P(k + 1) is true.
The principle of strong mathematical induction would
allow us to conclude immediately that P(n) is true for all
integers n ≥ a. Can we reach the same conclusion using the
principle of ordinary mathematical induction? Yes! To see
this, let Q(n) be the property

P( j) is true for all integers j with a ≤ j ≤ n.

Then use ordinary mathematical induction to show that
Q(n) is true for all integers n ≥ b. That is, prove
1. Q(b) is true.
2. For any integer k ≥ b, if Q(k) is true then Q(k + 1) is

true.

28. Give examples to illustrate the proof of Theorem 5.4.1.

29.H It is a fact that every integer n ≥ 1 can be written in the
form

cr ·3r + cr−1 ·3r−1 + · · · + c2 ·32 + c1 ·3+ c0,

where cr = 1 or 2 and ci = 0, 1, or 2 for all integers i =
0, 1, 2, . . . , r − 1. Sketch a proof of this fact.

30.✶H Use mathematical induction to prove the existence part of
the quotient-remainder theorem for integers n ≥ 0.

31.✶H Prove that if a statement can be proved by ordinary math-
ematical induction, then it can be proved by the well-
ordering principle.

32.H Use the principle of ordinary mathematical induction to
prove the well-ordering principle for the integers.

Answers for Test Yourself
1. than one 2. a; k; P(k + 1) 3. one integer; integer in S; S contains a least element

5.5 Application: Correctness of Algorithms
[P]rogramming reliably—must be an activity of an undeniably mathematical nature
. . . . You see, mathematics is about thinking, and doing mathematics is always trying to
think as well as possible. — Edsger W. Dijkstra (1981)
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Edsger W. Dijkstra
(1930–2002)

What does it mean for a computer program to be correct? Each program is designed to do
a specific task—calculate the mean or median of a set of numbers, compute the size of the
paychecks for a company payroll, rearrange names in alphabetical order, and so forth. We
will say that a program is correct if it produces the output specified in its accompanying
documentation for each set of input data of the type specified in the documentation.∗

Most computer programmers write their programs using a combination of logical
analysis and trial and error. In order to get a program to run at all, the programmer must
first fix all syntax errors (such as writing ik instead of if, failing to declare a variable,
or using a restricted keyword for a variable name). When the syntax errors have been
removed, however, the program may still contain logical errors that prevent it from pro-
ducing correct output. Frequently, programs are tested using sets of sample data for which
the correct output is known in advance. And often the sample data are deliberately cho-
sen to test the correctness of the program under extreme circumstances. But for most
programs the number of possible sets of input data is either infinite or unmanageably
large, and so no amount of program testing can give perfect confidence that the program
will be correct for all possible sets of legal input data.

∗Consumers of computer programs want an even more stringent definition of correctness. If a user
puts in data of the wrong type, the user wants a decent error message, not a system crash.
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Robert W. Floyd
(1936–2002)

Since 1967, with the publication of a paper by Robert W. Floyd,∗ considerable effort
has gone into developing methods for proving programs correct at the time they are com-
posed. One of the pioneers in this effort, Edsger W. Dijkstra, asserted that “we now take
the position that it is not only the programmer’s task to produce a correct program but
also to demonstrate its correctness in a convincing manner.”† Another leader in the field,
David Gries, went so far as to say that “a program and its proof should be developed
hand-in-hand, with the proof usually leading the way.”∗∗ If such methods can eventually
be used to write large scientific and commercial programs, the benefits to society will be
enormous.

As with most techniques that are still in the process of development, methods for
proving program correctness are somewhat awkward and unwieldy. In this section we
give an overview of the general format of correctness proofs and the details of one crucial
technique, the loop invariant procedure. At this point, we switch from using the term
program, which refers to a particular programming language, to the more general term
algorithm.

Assertions
Consider an algorithm that is designed to produce a certain final state from a certain
initial state. Both the initial and final states can be expressed as predicates involving the
input and output variables. Often the predicate describing the initial state is called the
pre-condition for the algorithm, and the predicate describing the final state is called the
post-condition for the algorithm.

Example 5.5.1 Algorithm Pre-Conditions and Post-Conditions

Here are pre- and post-conditions for some typical algorithms.

a. Algorithm to compute a product of nonnegative integers

Pre-condition: The input variables m and n are nonnegative integers.

Post-condition: The output variable p equals mn.

b. Algorithm to find quotient and remainder of the division of one positive integer by
another

Pre-condition: The input variables a and b are positive integers.

Post-condition: The output variables q and r are integers such that
a = bq + r and 0 ≤ r < b.

c. Algorithm to sort a one-dimensional array of real numbers

Pre-condition: The input variable A[1], A[2], . . . , A[n] is a one-dimensional
array of real numbers.

Post-condition: The output variable B[1], B[2], . . . , B[n] is a one-dimensional
array of real numbers with same elements as A[1], A[2], . . . ,
A[n] but with the property that B[i] ≤ B[ j] whenever i ≤ j. ■

∗R. W. Floyd, “Assigning meanings to programs,” Proc. Symp. Appl. Math., Amer. Math. Soc. 19
(1967), 19–32.
†Edsger Dijkstra in O. J. Dahl, E. W. Dijkstra, and C. A. R. Hoare, Structured Programming
(London: Academic Press, 1972), p. 5.
∗∗David Gries, The Science of Programming (New York: Springer-Verlag, 1981), p. 164.
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A proof of algorithm correctness consists of showing that if the pre-condition for the
algorithm is true for a collection of values for the input variables and if the statements of
the algorithms are executed, then the post-condition is also true.

The divide-and-conquer principle has been useful in many aspects of computer pro-
gramming, and proving algorithm correctness is no exception. The steps of an algorithm
are divided into sections with assertions about the current state of algorithm variables
inserted at strategically chosen points:

[Assertion 1: pre-condition for the algorithm]
{Algorithm statements}
[Assertion 2]
{Algorithm statements}

...

[Assertion k − 1]
{Algorithm statements}
[Assertion k: post-condition for the algorithm]

Successive pairs of assertions are then treated as pre- and post-conditions for the algo-
rithm statements between them. For each i = 1, 2, . . . , k − 1, one proves that if Asser-
tion i is true and all the algorithm statements between Assertion i and Assertion (i + 1)
are executed, then Assertion (i + 1) is true. Once all these individual proofs have been
completed, one knows that Assertion k is true. And since Assertion 1 is the same as the
pre-condition for the algorithm and Assertion k is the same as the post-condition for the
algorithm, one concludes that the entire algorithm is correct with respect to its pre- and
post-conditions.

Loop Invariants
The method of loop invariants is used to prove correctness of a loop with respect to
certain pre- and post-conditions. It is based on the principle of mathematical induction.
Suppose that an algorithm contains a while loop and that entry to this loop is restricted
by a condition G, called the guard. Suppose also that assertions describing the current
states of algorithm variables have been placed immediately preceding and immediately
following the loop. The assertion just preceding the loop is called the pre-condition
for the loop and the one just following is called the post-condition for the loop. The
annotated loop has the following appearance:

[Pre-condition for the loop]
while (G)

[Statements in the body of the loop.
None contain branching statements
that lead outside the loop.]

end while

[Post-condition for the loop]

• Definition

A loop is defined as correct with respect to its pre- and post-conditions if, and
only if, whenever the algorithm variables satisfy the pre-condition for the loop and
the loop terminates after a finite number of steps, the algorithm variables satisfy the
post-condition for the loop.
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C. A. R. Hoare
(born 1934)

Establishing the correctness of a loop uses the concept of loop invariant. A loop
invariant is a predicate with domain a set of integers, which satisfies the condition: For
each iteration of the loop, if the predicate is true before the iteration, the it is true after the
iteration. Furthermore, if the predicate satisfies the following two additional conditions,
the loop will be correct with respect to it pre- and post-conditions:

1. It is true before the first iteration of the loop.

2. If the loop terminates after a finite number of iterations, the truth of the loop invariant
ensures the truth of the post-condition of the loop.

The following theorem, called the loop invariant theorem, formalizes these ideas. It was
first developed by C. A. R. Hoare in 1969.

Theorem 5.5.1 Loop Invariant Theorem

Let a while loop with guard G be given, together with pre- and post-conditions that
are predicates in the algorithm variables. Also let a predicate I (n), called the loop
invariant, be given. If the following four properties are true, then the loop is correct
with respect to its pre- and post-conditions.

I. Basis Property: The pre-condition for the loop implies that I (0) is true before
the first iteration of the loop.

II. Inductive Property: For all integers k ≥ 0, if the guard G and the loop invari-
ant I (k) are both true before an iteration of the loop, then I (k + 1) is true after
iteration of the loop.

III. Eventual Falsity of Guard: After a finite number of iterations of the loop, the
guard G becomes false.

IV. Correctness of the Post-Condition: If N is the least number of iterations after
which G is false and I (N ) is true, then the values of the algorithm variables will
be as specified in the post-condition of the loop.

Proof: The loop invariant theorem follows easily from the principle of mathematical
induction. Assume that I (n) is a predicate that satisfies properties I–IV of the loop
invariant theorem. [We will prove that the loop is correct with respect to its pre- and
post-conditions.] Properties I and II are the basis and inductive steps needed to prove
the truth of the following statement:

For all integers n ≥ 0, if the while loop
iterates n times, then I (n) is true. 5.5.1

Thus, by the principle of mathematical induction, since both I and II are true, state-
ment (5.5.1) is also true.

Property III says that the guard G eventually becomes false. At that point the
loop will have been iterated some number, say N , of times. Since I (n) is true after
the nth iteration for every n ≥ 0, then I (n) is true after the N th iteration. That is,
after the N th iteration the guard is false and I (N ) is true. But this is the hypothesis of
property IV, which is an if-then statement. Since statement IV is true (by assumption)
and its hypothesis is true (by the argument just given), it follows (by modus ponens)
that its conclusion is also true. That is, the values of all algorithm variables after
execution of the loop are as specified in the post-condition for the loop.
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The loop invariant in the procedure for proving loop correctness may seem like a
rabbit in a hat. Where does it come from? The fact is that developing a good loop invariant
is a tricky process. Although learning how to do it is beyond the scope of this book, it is
worth pursuing in a more advanced course. People who have become good at the process
claim it has significantly altered their outlook on programming and has greatly improved
their ability to write good code.

Another tricky aspect of handling correctness proofs arises from the fact that execu-
tion of an algorithm is a dynamic process—it takes place in time. As execution progresses,
the values of variables keep changing, yet often their names stay the same. In the follow-
ing discussion, when we need to make a distinction between the values of a variable just
before execution of an algorithm statement and just after execution of the statement, we
will attach the subscripts old and new to the variable name.

Example 5.5.2 Correctness of a Loop to Compute a Product

The following loop is designed to compute the product mx for a nonnegative integer
m and a real number x , without using a built-in multiplication operation. Prior to the
loop, variables i and product have been introduced and given initial values i = 0 and
product = 0.

[Pre-condition: m is a nonnegative integer,
x is a real number, i = 0, and product = 0.]

while (i �= m)

1. product := product+ x
2. i := i + 1

end while

[Post-condition: product = mx]

Let the loop invariant be

I (n): i = n and product = nx

The guard condition G of the while loop is

G: i �= m

Use the loop invariant theorem to prove that the while loop is correct with respect to the
given pre- and post-conditions.

Solution

I. Basis Property: [I (0) is true before the first iteration of the loop.]
I (0) is “i = 0 and product = 0 ·x”, which is true before the first iteration of the

loop because 0 ·x = 0.

II. Inductive Property: [If G ∧ I (k) is true before a loop iteration (where k ≥ 0), then
I (k + 1) is true after the loop iteration.]

Suppose k is a nonnegative integer such that G ∧ I (k) is true before an iteration
of the loop. Then as execution reaches the top of the loop, i �= m, product = kx , and
i = k. Since i �= m, the guard is passed and statement 1 is executed. Before execution
of statement 1,

productold = kx .
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Thus execution of statement 1 has the following effect:

productnew = productold + x = kx + x = (k + 1)x .

Similarly, before statement 2 is executed,

iold = k,

so after execution of statement 2,

inew = iold + 1 = k + 1.

Hence after the loop iteration, the statement I (k + 1) , namely, (i = k + 1 and
product = (k + 1)x), is true. This is what we needed to show.

III. Eventual Falsity of Guard: [After a finite number of iterations of the loop, G becomes
false.]

The guard G is the condition i �= m, and m is a nonnegative integer. By I and II,
it is known that

for all integers n ≥ 0, if the loop is iterated
n times, then i = n and product = nx .

So after m iterations of the loop, i = m. Thus G becomes false after m iterations of
the loop.

IV. Correctness of the Post-Condition: [If N is the least number of iterations after which
G is false and I (N ) is true, then the value of the algorithm variables will be as specified
in the post-condition of the loop.]

According to the post-condition, the value of product after execution of the loop
should be mx . But if G becomes false after N iterations, i = m. And if I (N ) is
true, i = N and product = Nx . Since both conditions (G false and I (N ) true) are
satisfied, m = i = N and product = mx as required. ■

In the remainder of this section, we present proofs of the correctness of the crucial
loops in the division algorithm and the Euclidean algorithm. (These algorithms were
given in Section 4.8.)

Correctness of the Division Algorithm
The division algorithm is supposed to take a nonnegative integer a and a positive integer d
and compute nonnegative integers q and r such that a = dq + r and 0 ≤ r < d. Initially,
the variables r and q are introduced and given the values r = a and q = 0. The crucial
loop, annotated with pre- and post-conditions, is the following:

[Pre-condition: a is a nonnegative integer
and d is a positive integer, r = a, and q = 0.]

while (r ≥ d)

1. r := r − d
2. q := q + 1

end while

[Post-condition: q and r are nonnegative integers
with the property that a = qd + r and 0 ≤ r < d.]

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



5.5 Application: Correctness of Algorithms 285

Proof:

To prove the correctness of the loop, let the loop invariant be

I (n): r = a − nd ≥ 0 and n = q.

The guard of the while loop is

G: r ≥ d

I. Basis property: [I (0) is true before the first iteration of the loop.]
I (0) is “r = a − 0 ·d ≥ 0 and q = 0.” But by the pre-condition, r = a, a ≥ 0,

and q = 0. So since a = a − 0 ·d, then r = a − 0 ·d and I (0) is true before the first
iteration of the loop.

II. Inductive Property: [If G ∧ I (k) is true before an iteration of the loop (where
k ≥ 0), then I (k + 1) is true after iteration of the loop.]

Suppose k is a nonnegative integer such that G ∧ I (k) is true before an iteration
of the loop. Since G is true, r ≥ d and the loop is entered. Also since I (k) is true,
r = a − kd ≥ 0 and k = q. Hence, before execution of statements 1 and 2,

rold ≥ d and rold = a − kd and qold = k.

When statements 1 and 2 are executed, then,

rnew = rold − d = (a − kd)− d = a − (k + 1)d 5.5.2

and qnew = qold + 1 = k + 1 5.5.3

In addition, since rold ≥ d before execution of statements 1 and 2, after execution of
these statements,

rnew = rold − d ≥ d − d ≥ 0. 5.5.4

Putting equations (5.5.2), (5.5.3), and (5.5.4) together shows that after iteration of
the loop,

rnew ≥ 0 and rnew = a − (k + 1)d and qnew = k + 1.

Hence I (k + 1) is true.

III. Eventual Falsity of the Guard: [After a finite number of iterations of the loop,
G becomes false.]

The guard G is the condition r ≥ d. Each iteration of the loop reduces the value
of r by d and yet leaves r nonnegative. Thus the values of r form a decreasing
sequence of nonnegative integers, and so (by the well-ordering principle) there must
be a smallest such r , say rmin. Then rmin < d. [If rmin were greater than d, the loop
would iterate another time, and a new value of r equal to rmin − d would be obtained.
But this new value would be smaller than rmin which would contradict the fact that rmin

is the smallest remainder obtained by repeated iteration of the loop.] Hence as soon as
the value r = rmin is computed, the value of r becomes less than d, and so the guard
G is false.

IV. Correctness of the Post-Condition: [If N is the least number of iterations after which
G is false and I (N ) is true, then the values of the algorithm variables will be as specified
in the post-condition of the loop.]
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Suppose that for some nonnegative integer N ,G is false and I (N ) is true. Then
r < d, r = a − Nd, r ≥ 0, and q = N . Since q = N , by substitution,

r = a − qd.

Or, adding qd to both sides,

a = qd + r.

Combining the two inequalities involving r gives

0 ≤ r < d.

But these are the values of q and r specified in the post-condition, so the proof is
complete. ■

Correctness of the Euclidean Theorem
The Euclidean algorithm is supposed to take integers A and B with A > B ≥ 0 and com-
pute their greatest common divisor. Just before the crucial loop, variables a, b, and r
have been introduced with a = A, b = B, and r = B. The crucial loop, annotated with
pre- and post-conditions, is the following:

[Pre-condition: A and B are integers
with A > B ≥ 0, a = A, b = B, r = B.]

while (b �= 0)

1. r := a mod b
2. a := b
3. b := r

end while

[Post-condition: a = gcd(A, B)]

Proof:

To prove the correctness of the loop, let the invariant be

I (n): gcd(a, b) = gcd(A, B) and 0 ≤ b < a.

The guard of the while loop is

G: b �= 0.

I. Basis Property: [I (0) is true before the first iteration of the loop.]
I (0) is

gcd(A, B) = gcd(a, b) and 0 ≤ b < a.

According to the pre-condition,

a = A, b = B, r = B, and 0 ≤ B < A.

Hence gcd(A, B) = gcd(a, b). Since 0 ≤ B < A, b = B, and a = A then
0 ≤ b < a. Hence I (0) is true.

II. Inductive Property: [If G ∧ I (k) is true before an iteration of the loop (where k ≥ 0),
then I (k + 1) is true after iteration of the loop.]
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Suppose k is a nonnegative integer such that G ∧ I (k) is true before an iteration
of the loop. [We must show that I (k + 1) is true after iteration of the loop.] Since G
is true, bold �= 0 and the loop is entered. And since I (k) is true, immediately before
statement 1 is executed,

gcd(aold, bold) = gcd(A, B) and 0 ≤ bold < aold. 5.5.5

After execution of statement 1,

rnew = aold mod bold.

Thus, by the quotient-remainder theorem,

aold = bold ·q + rnew for some integer q

and rnew has the property that

0 ≤ rnew < bold. 5.5.6

By Lemma 4.8.2,

gcd(aold, bold) = gcd(bold, rnew).

So by the equation of (5.5.5),

gcd(bold, rnew) = gcd(A, B). 5.5.7

When statements 2 and 3 are executed,

anew = bold and bnew = rnew. 5.5.8

Substituting equations (5.5.8) into equation (5.5.7) yields

gcd(anew, bnew) = gcd(A, B). 5.5.9

And substituting the values from the equations in (5.5.8) into inequality (5.5.6) gives

0 ≤ bnew < anew. 5.5.10

Hence after the iteration of the loop, by equation (5.5.9) and inequality (5.5.10),

gcd(a, b) = gcd(A, B) and 0 ≤ b < a,

which is I (k + 1). [This is what we needed to show.]

III. Eventual Falsity of the Guard: [After a finite number of iterations of the loop, G
becomes false.]

Each value of b obtained by repeated iteration of the loop is nonnegative and
less than the previous value of b. Thus, by the well-ordering principle, there is a
least value bmin. The fact is that bmin = 0. [If bmin is not 0, then the guard is true, and
so the loop is iterated another time. In this iteration a value of r is calculated that is
less than the previous value of b, bmin. Then the value of b is changed to r , which is less
than bmin. This contradicts the fact that bmin is the least value of b obtained by repeated
iteration of the loop. Hence bmin = 0.] Since bmin = 0, the guard is false immediately
following the loop iteration in which bmin is calculated.

IV. Correctness of the Post-Condition: [If N is the least number of iterations after
which G is false and I (N ) is true, then the values of the algorithm variables will be
as specified in the post-condition.]

Suppose that for some nonnegative integer N ,G is false and I (N ) is true. [We
must show the truth of the post-condition: a = gcd(A, B).] Since G is false, b = 0,
and since I (N ) is true,

gcd(a, b) = gcd(A, B). 5.5.11
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Substituting b = 0 into equation (5.5.11) gives

gcd(a, 0) = gcd(A, B).

But by Lemma 4.8.1,

gcd(a, 0) = a.

Hence a = gcd(A, B) [as was to be shown].

Test Yourself
1. A pre-condition for an algorithm is _____ and a post-

condition for an algorithm is _____.

2. A loop is defined as correct with respect to its pre- and post-
conditions if, and only if, whenever the algorithm variables
satisfy the pre-condition for the loop and the loop terminates
after a finite number of steps, then _____.

3. For each iteration of a loop, if a loop invariant is true before
iteration of the loop, then _____.

4. Given a while loop with guard G and a predicate I (n) if the
following four properties are true, then the loop is correct

with respect to its pre- and post-conditions:

(a) The pre-condition for the loop implies that _____ before
the first iteration of the loop;

(b) For all integers k ≥ 0, if the guard G and the predicate
I (k) are both true before an iteration of the loop, then
_____;

(c) After a finite number of iterations of the loop, _____;

(d) If N is the least number of iterations after which G is
false and I (N ) is true, then the values of the algorithm
variables will be as specified _____.

Exercise Set 5.5
Exercises 1–5 contain a while loop and a predicate. In each case
show that if the predicate is true before entry to the loop, then it
is also true after exit from the loop.

1. loop: while (m ≥ 0 and m ≤ 100)

m := m + 1

n := n − 1

end while

predicate: m + n = 100

2. loop: while (m ≥ 0 and m ≤ 100)

m := m + 4

n := n − 2

end while

predicate: m + n is odd

3. loop: while (m ≥ 0 and m ≤ 100)

m := 3 ·m
n := 5 ·n

end while

predicate: m3 > n2

4. loop: while (n ≥ 0 and n ≤ 100)

n := n + 1

end while

predicate: 2n < (n + 2)!

5. loop: while (n ≥ 3 and n ≤ 100)

n := n + 1

end while

predicate: 2n + 1 ≤ 2n

Exercises 6–9 each contain a while loop annotated with a pre-
and a post-condition and also a loop invariant. In each case, use
the loop invariant theorem to prove the correctness of the loop
with respect to the pre- and post-conditions.

6. [Pre-condition: m is a nonnegative integer, x is a real number,
i = 0, and exp = 1.]

while (i �= m)

1. exp := exp · x
2. i := i + 1

end while

[Post-condition: exp = xm]
loop invariant: I (n) is “exp = xn and i = n.”

7. [Pre-condition: largest = A[1] and i = 1]

while (i �= m)

1. i := i + 1
2. ifA[i] > largest then largest := A[i]

end while

[Post-condition: largest = maximum value of A[1], A[2],
. . . , A[m]]
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loop invariant: I (n) is “largest = maximum value of A[1],
A[2], . . . , A[n + 1] and i = n + 1.”

8. [Pre-condition: sum = A[1] and i = 1]

while (i �= m)

1. i := i + 1
2. sum: = sum+ A[i]

end while

[Post-condition: sum = A[1] + A[2] + · · · + A[m]]
loop invariant: I (n) is “i = n + 1 and sum = A[1] +
A[2] + · · · + A[n + 1].”

9. [Pre-condition: a = A and A is a positive integer.]

while (a > 0)

1. a := a − 2

end while

[Post-condition: a = 0 if A is even and a = −1 if A is odd.]
loop invariant: I (n) is “Both a and A are even integers or
both are odd integers and a ≥ −1.”

10.✶H Prove correctness of the while loop of Algorithm 4.8.3 (in
exercise 24 of Exercise Set 4.8) with respect to the follow-
ing pre- and post-conditions:

Pre-condition: A and B are positive integers,
a = A, and b = B.

Post-condition: One of a or b is zero and the other
is nonzero. Whichever is nonzero
equals gcd(A, B).

Use the loop invariant

I (n) “(1) a and b are nonnegative integers with
gcd(a, b) = gcd(A, B).

(2) at most one of a and b equals 0,
(3) 0 ≤ a + b ≤ A + B − n.”

11. The following while loop implements a way to multiply
two numbers that was developed by the ancient Egyptians.

[Pre-condition: A and B are positive integers, x = A,
y = B, and product = 0.]

while (y �= 0)

r := y mod 2

if r = 0

then do x := 2 · x
y := y div 2

end do

if r = 1

then do product := product+ x

y := y − 1

end do

end while

[Post-condition: product = A · B]
Prove the correctness of this loop with respect to its pre-
and post-conditions by using the loop invariant

I (n): “xy + product = A · B.”

12.✶ The following sentence could be added to the loop invariant
for the Euclidean algorithm:

There exist integers u, v, s, and t such that
a = uA + vB and b = s A + t B. 5.5.12

a. Show that this sentence is a loop invariant for

while (b �= 0)

r := a mod b

a := b

b := r

end while

b. Show that if initially a = A and b = B, then sentence
(5.5.12) is true before the first iteration of the loop.

c. Explain how the correctness proof for the Euclidean
algorithm together with the results of (a) and (b) above
allow you to conclude that given any integers A and B
with A > B ≥ 0, there exist integers u and v so that
gcd(A, B) = uA + vB.

d. By actually calculating u, v, s, and t at each stage of exe-
cution of the Euclidean algorithm, find integers u and v

so that gcd(330, 156) = 330u + 156v.

Answers for Test Yourself
1. a predicate that describes the initial state of the input variables for the algorithm; a predicate that describes the final state of the
output variables for the algorithm 2. the algorithm variables satisfy the post-condition for the loop 3. it is true after iteration of the
loop 4. (a) I (0) is true (b) I (k + 1) is true after the iteration of the loop (c) the guard G becomes false (d) in the post-condition
of the loop
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5.6 Defining Sequences Recursively

So, Nat’ralists observe, a Flea/Hath smaller Fleas that on him prey,/And these have
smaller Fleas to bite ’em,/And so proceed ad infinitum. — Jonathan Swift, 1733

A sequence can be defined in a variety of different ways. One informal way is to write
the first few terms with the expectation that the general pattern will be obvious. We might
say, for instance, “consider the sequence 3, 5, 7, . . ..” Unfortunately, misunderstandings
can occur when this approach is used. The next term of the sequence could be 9 if we
mean a sequence of odd integers, or it could be 11 if we mean the sequence of odd prime
numbers.

The second way to define a sequence is to give an explicit formula for its nth term.
For example, a sequence a0, a1, a2 . . . can be specified by writing

an = (−1)n
n + 1

for all integers n ≥ 0.

The advantage of defining a sequence by such an explicit formula is that each term of the
sequence is uniquely determined and can be computed in a fixed, finite number of steps,
by substitution.

The third way to define a sequence is to use recursion, as was done in Examples 5.3.3
and 5.4.2. This requires giving both an equation, called a recurrence relation, that defines
each later term in the sequence by reference to earlier terms and also one or more initial
values for the sequence.

Sometimes it is very difficult or impossible to find an explicit formula for a sequence,
but it is possible to define the sequence using recursion. Note that defining sequences
recursively is similar to proving theorems by mathematical induction. The recurrence
relation is like the inductive step and the initial conditions are like the basis step. Indeed,
the fact that sequences can be defined recursively is equivalent to the fact that mathemat-
ical induction works as a method of proof.

• Definition

A recurrence relation for a sequence a0, a1, a2, . . . is a formula that relates each
term ak to certain of its predecessors ak−1, ak−2, . . . , ak−i , where i is an integer with
k − i ≥ 0. The initial conditions for such a recurrence relation specify the values
of a0, a1, a2, . . . , ai−1, if i is a fixed integer, or a0, a1, . . . , am , where m is an integer
with m ≥ 0, if i depends on k.

Example 5.6.1 Computing Terms of a Recursively Defined Sequence

Define a sequence c0, c1, c2, . . . recursively as follows: For all integers k ≥ 2,

(1) ck = ck−1 + kck−2 + 1 recurrence relation

(2) c0 = 1 and c1 = 2 initial conditions.

Find c2, c3, and c4.

Solution c2 = c1 + 2c0 + 1
= 2+ 2 ·1+ 1

by substituting k = 2 into (1)
since c1 = 2 and c0 = 1 by (2)
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(3) ∴ c2 = 5
c3 = c2 + 3c1 + 1
= 5+ 3 ·2+ 1

by substituting k = 3 into (1)
since c2 = 5 by (3) and c1 = 2 by (2)

(4) ∴ c3 = 12
c4 = c3 + 4c2 + 1
= 12+ 4 ·5+ 1

(5) ∴ c4 = 33

by substituting k = 4 into (1)
since c3 = 12 by (4) and c2 = 5 by (3)

■

A given recurrence relation may be expressed in several different ways.

Example 5.6.2 Writing a Recurrence Relation in More Than One Way

Let s0, s1, s2, . . . be a sequence that satisfies the following recurrence relation:

for all integers k ≥ 1, sk = 3sk−1 − 1.

Explain why the following statement is true:

for all integers k ≥ 0, sk+1 = 3sk − 1.

Note Think of the
recurrence relation as
s�= 3s�−1 − 1, where
any positive integer
expression may be placed
in the box.

Solution In informal language, the recurrence relation says that any term of the sequence
equals 3 times the previous term minus 1. Now for any integer k ≥ 0, the term previous
to sk+1 is sk . Thus for any integer k ≥ 0, sk+1 = 3sk − 1. ■

A sequence defined recursively need not start with a subscript of zero. Also, a given
recurrence relation may be satisfied by many different sequences; the actual values of the
sequence are determined by the initial conditions.

Example 5.6.3 Sequences That Satisfy the Same Recurrence Relation

Let a1, a2, a3, . . . and b1, b2, b3, . . . satisfy the recurrence relation that the kth term equals
3 times the (k − 1)st term for all integers k ≥ 2:

(1) ak = 3ak−1 and bk = 3bk−1.

But suppose that the initial conditions for the sequences are different:

(2) a1 = 2 and b1 = 1.

Find (a) a2, a3, a4 and (b) b2, b3, b4.

Solution

a. a2 = 3a1 = 3 ·2 = 6
a3 = 3a2 = 3 ·6 = 18
a4 = 3a3 = 3 ·18 = 54

b. b2 = 3b1 = 3 ·1 = 3
b3 = 3b2 = 3 ·3 = 9
b4 = 3b3 = 3 ·9 = 27

Thus a1, a2, a3, . . . begins 2, 6, 18, 54, . . . and

b1, b2, b3, . . . begins 1, 3, 9, 27, . . . .

■
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Example 5.6.4 Showing That a Sequence Given by an Explicit Formula Satisfies a Certain
Recurrence Relation

The sequence of Catalan numbers, named after the Belgian mathematician Eugène
Catalan (1814–1894), arises in a remarkable variety of different contexts in discrete math-
ematics. It can be defined as follows: For each integer n ≥ 1,

Cn = 1

n + 1

(
2n
n

)
.

a. Find C1,C2, and C3.

b. Show that this sequence satisfies the recurrence relation Ck = 4k − 2

k + 1
Ck−1 for all

integers k ≥ 2
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Eugène Catalan
(1814–1894)

Solution

a. C1 = 1

2

(
2
1

)
= 1

2
·2 = 1, C2 = 1

3

(
4
2

)
= 1

3
·6 = 2, C3 = 1

4

(
6
3

)
= 1

4
·20 = 5

b. To obtain the kth and (k − 1)st terms of the sequence, just substitute k and k − 1 in
place of n in the explicit formula for C1,C2,C3, . . . .

Ck = 1

k + 1

(
2k
k

)

Ck+1 = 1

(k − 1)+ 1

(
2(k − 1)
k − 1

)
= 1

k

(
2k − 2)
k − 1

)
.

Then start with the right-hand side of the recurrence relation and transform it into the
left-hand side: For each integer k ≥ 2,

4k − 2

k + 1
Ck−1 = 4k − 2

k + 1

[
1

k

(
2k − 2)
k − 1

)]
by substituting

= 2(2k − 1)

k + 1
· 1
k
· (2k − 2)!
(k − 1)!(2k − 2− (k − 1))! by the formula for n choose r

= 1

k + 1
·(2(2k − 1)) · (2k − 2)!

(k(k − 1)!)(k − 1)! by rearranging the factors

= 1

k + 1
·(2(2k − 1)) · 1

k!(k − 1)! ·(2k − 2)! · 1
2
· 1
k
·2k. because 1

2 · 1k ·2k = 1

= 1

k + 1
· 2
2
· 1
k! ·

1

(k − 1)! ·
1

k
·(2k) ·(2k − 1) ·(2k − 2)! by rearranging the factors

= 1

k + 1
· (2k)!
k!k!

because k(k − 1)! = k!,
2
2 = 1, and
2k · (2k − 1) · (2k − 2)! = (2k)!

= 1

k + 1

(
2k
k

)
by the formula for n choose r

= Ck by defintion of C1,C2,C3, . . . .

■

Examples of Recursively Defined Sequences
Recursion is one of the central ideas of computer science. To solve a problem recursively
means to find a way to break it down into smaller subproblems each having the same form
as the original problem—and to do this in such a way that when the process is repeated
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5.6 Defining Sequences Recursively 293

many times, the last of the subproblems are small and easy to solve and the solutions of
the subproblems can be woven together to form a solution to the original problem.

Probably the most difficult part of solving problems recursively is to figure out how
knowing the solution to smaller subproblems of the same type as the original problem
will give you a solution to the problem as a whole. You suppose you know the solutions
to smaller subproblems and ask yourself how you would best make use of that knowledge
to solve the larger problem. The supposition that the smaller subproblems have already
been solved has been called the recursive paradigm or the recursive leap of faith. Once
you take this leap, you are right in the middle of the most difficult part of the prob-
lem, but generally, the path to a solution from this point, though difficult, is short. The
recursive leap of faith is similar to the inductive hypothesis in a proof by mathematical
induction.

Example 5.6.5 The Tower of Hanoi

In 1883 a French mathematician, Édouard Lucas, invented a puzzle that he called The
Tower of Hanoi (La Tour D’Hanoï). The puzzle consisted of eight disks of wood with
holes in their centers, which were piled in order of decreasing size on one pole in a row
of three. A facsimile of the cover of the box is shown in Figure 5.6.1. Those who played
the game were supposed to move all the disks one by one from one pole to another, never
placing a larger disk on top of a smaller one. The directions to the puzzle claimed it was
based on an old Indian legend:
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Édouard Lucas
(1842–1891)

On the steps of the altar in the temple of Benares, for many, many years Brahmins
have been moving a tower of 64 golden disks from one pole to another; one by one, never
placing a larger on top of a smaller. When all the disks have been transferred the Tower
and the Brahmins will fall, and it will be the end of the world.

Figure 5.6.1
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The puzzle offered a prize of ten thousand francs (about $34,000 US today) to anyone
who could move a tower of 64 disks by hand while following the rules of the game. (See
Figure 5.6.2 on the following page.) Assuming that you transferred the disks as efficiently
as possible, how many moves would be required to win the prize?
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64
golden
disks

B CA

Figure 5.6.2

Solution An elegant and efficient way to solve this problem is to think recursively. Suppose
that you, somehow or other, have found the most efficient way possible to transfer a tower
of k − 1 disks one by one from one pole to another, obeying the restriction that you never
place a larger disk on top of a smaller one. What is the most efficient way to transfer a
tower of k disks from one pole to another? The answer is sketched in Figure 5.6.3, where
pole A is the initial pole and pole C is the target pole, and is described as follows:

Step 1 : Transfer the top k − 1 disks from pole A to pole B. If k > 2, execution of this
step will require a number of moves of individual disks among the three poles. But
the point of thinking recursively is not to get caught up in imagining the details of
how those moves will occur.

Step 2 : Move the bottom disk from pole A to pole C .

Step 3 : Transfer the top k − 1 disks from pole B to pole C . (Again, if k > 2, execution
of this step will require more than one move.)

To see that this sequence of moves is most efficient, observe that to move the bottom
disk of a stack of k disks from one pole to another, you must first transfer the top k − 1
disks to a third pole to get them out of the way. Thus transferring the stack of k disks from
pole A to pole C requires at least two transfers of the top k − 1 disks: one to transfer them
off the bottom disk to free the bottom disk so that it can be moved and another to transfer
them back on top of the bottom disk after the bottom disk has been moved to pole C . If
the bottom disk were not moved directly from pole A to pole C but were moved to pole
B first, at least two additional transfers of the top k − 1 disks would be necessary: one to
move them from pole A to pole C so that the bottom disk could be moved from pole A
to pole B and another to move them off pole C so that the bottom disk could be moved
onto pole C . This would increase the total number of moves and result in a less efficient
transfer.

Thus the minimum sequence of moves must include going from the initial position
(a) to position (b) to position (c) to position (d). It follows that

⎡
⎢⎢⎢⎢⎢⎢⎣

the minimum
number of moves
needed to transfer
a tower of k disks
from pole A to
pole C

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

the minimum
number of
moves needed
to go from
position (a)
to position (b)

⎤
⎥⎥⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎢⎢⎣

The minimum
number of
moves needed
to go from
position (b)
to position (c)

⎤
⎥⎥⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎢⎢⎣

the minimum
number of
moves needed
to go from
position (c)
to position (d)

⎤
⎥⎥⎥⎥⎥⎥⎦ 5.6.1

Note Defining the
sequence is a crucial step
in solving the problem.
The recurrence relation
and initial conditions are
specified in terms of the
sequence.

For each integer n ≥ 1, let

mn =
[

the minimum number of moves needed to transfer
a tower of n disks from one pole to another

]
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Tower of
k disks

B

Position after Transferring k – 1 Disks from B to C

(d)

CA

Tower of k – 1
disks

B

Position after Moving the Bottom Disk from A to C

(c)

CA

Tower of k – 1
disks

Bottom
disk

B

Position after Transferring k – 1 Disks from A to B

(b)

CA

Bottom
disk

Tower of
k disks

B

Initial Position

(a)

CA

Figure 5.6.3 Moves for the Tower of Hanoi
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Note that the numbers mn are independent of the labeling of the poles; it takes the
same minimum number of moves to transfer n disks from pole A to pole C as to transfer
n disks from pole A to pole B, for example. Also the values of mn are independent of
the number of larger disks that may lie below the top n, provided these remain stationary
while the top n are moved. Because the disks on the bottom are all larger than the ones
on the top, the top disks can be moved from pole to pole as though the bottom disks were
not present.

Going from position (a) to position (b) requires mk−1 moves, going from position (b)
to position (c) requires just one move, and going from position (c) to position (d) requires
mk−1 moves. By substitution into equation (5.6.1), therefore,

mk = mk−1 + 1+ mk−1
= 2mk−1 + 1 for all integers k ≥ 2.

The initial condition, or base, of this recursion is found by using the definition of the
sequence. Because just one move is needed to move one disk from one pole to another,

m1 =
[

the minimum number of moves needed to move
a tower of one disk from one pole to another

]
= 1.

Hence the complete recursive specification of the sequence m1,m2,m3, . . . is as follows:
For all integers k ≥ 2,

(1) mk = 2mk−1 + 1 recurrence relation

(2) m1 = 1 initial conditions

Here is a computation of the next five terms of the sequence:

(3) m2 = 2m1 + 1 = 2 ·1+ 1 = 3 by (1) and (2)

(4) m3 = 2m2 + 1 = 2 ·3+ 1 = 7 by (1) and (3)

(5) m4 = 2m3 + 1 = 2 ·7+ 1 = 15 by (1) and (4)

(6) m5 = 2m4 + 1 = 2 ·15+ 1 = 31 by (1) and (5)

(7) m6 = 2m5 + 1 = 2 ·31+ 1 = 63 by (1) and (6)

Going back to the legend, suppose the priests work rapidly and move one disk every
second. Then the time from the beginning of creation to the end of the world would be
m64 seconds. In the next section we derive an explicit formula for mn . Meanwhile, we
can compute m64 on a calculator or a computer by continuing the process started above
(Try it!). The approximate result is

1.844674× 1019 seconds ∼= 5.84542× 1011 years
∼= 584.5 billion years,

which is obtained by the estimate of

60 · 60 · 24 · (365.25) = 31, 557, 600

↑ ↑ ↖ ↖ ↑

seconds per

minute

minutes

per

hour

hours

per

day

days

per

year

seconds

per

year

seconds in a year (figuring 365.25 days in a year to take leap years into account). Surpris-
ingly, this figure is close to some scientific estimates of the life of the universe! ■
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Example 5.6.6 The Fibonacci Numbers

One of the earliest examples of a recursively defined sequence arises in the writings
of Leonardo of Pisa, commonly known as Fibonacci, who was the greatest European
mathematician of the Middle Ages. In 1202 Fibonacci posed the following problem:

A single pair of rabbits (male and female) is born at the beginning of a year. Assume
the following conditions:

1. Rabbit pairs are not fertile during their first month of life but thereafter give birth to
one new male/female pair at the end of every month.

2. No rabbits die.

How many rabbits will there be at the end of the year?

B
et

tm
an

n/
C

O
R

B
IS

Fibonacci (Leonardo of Pisa)
(ca. 1175–1250)

Solution One way to solve this problem is to plunge right into the middle of it using recur-
sion. Suppose you know howmany rabbit pairs there were at the ends of previous months.
How many will there be at the end of the current month?

The crucial observation is that the number of rabbit pairs born at the end of month k
is the same as the number of pairs alive at the end of month k − 2. Why? Because it is
exactly the rabbit pairs that were alive at the end of month k − 2 that were fertile during
month k. The rabbits born at the end of month k − 1 were not.

month k − 2 k − 1 k
———————|———————-|—————–

Each pair alive here ↑ gives birth to a pair here ↑
Now the number of rabbit pairs alive at the end of month k equals the ones alive at the
end of month k − 1 plus the pairs newly born at the end of the month. Thus⎡

⎢⎢⎢⎢⎣
the number
of rabbit
pairs alive
at the end
of month k

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

the number
of rabbit
pairs alive
at the end
of month k − 1

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣

the number
of rabbit
pairs born
at the end
of month k

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

the number
of rabbit
pairs alive
at the end
of month k − 1

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣

the number
of rabbit
pairs alive
at the end
of month k − 2

⎤
⎥⎥⎥⎥⎦ 5.6.2

Note It is essential to
rephrase this observation
in terms of a sequence.

For each integer n ≥ 1, let

Fn =
[

the number of rabbit pairs
alive at the end of month n

]
and let

F0 = the initial number of rabbit pairs

= 1.

Then by substitution into equation (5.6.2), for all integers k ≥ 2,

Fk = Fk−1 + Fk−2.

Now F0 = 1, as already noted, and F1 = 1 also, because the first pair of rabbits is not
fertile until the second month. Hence the complete specification of the Fibonacci sequence
is as follows: For all integers k ≥ 2,
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(1) Fk = Fk−1 + Fk−2 recurrence relation

(2) F0 = 1, F1 = 1 initial conditions.

To answer Fibonacci’s question, compute F2, F3, and so forth through F12:

(3) F2 = F1 +F0 = 1+ 1 = 2 by (1) and (2)

(4) F3 = F2 +F1 = 2+ 1 = 3 by (1), (2) and (3)

(5) F4 = F3 +F2 = 3+ 2 = 5 by (1), (3) and (4)

(6) F5 = F4 +F3 = 5+ 3 = 8 by (1), (4) and (5)

(7) F6 = F5 +F4 = 8+ 5 = 13 by (1), (5) and (6)

(8) F7 = F6 +F5 = 13+ 8 = 21 by (1), (6) and (7)

(9) F8 = F7 +F6 = 21+ 13 = 34 by (1), (7) and (8)

(10) F9 = F8 +F7 = 34+ 21 = 55 by (1), (8) and (9)

(11) F10= F9 +F8 = 55+ 34 = 89 by (1), (9) and (10)

(12) F11= F10+F9 = 89+ 55 = 144 by (1), (10) and (11)

(13) F12= F11+F10= 144+ 89= 233 by (1), (11) and (12)

At the end of the twelfth month there are 233 rabbit pairs, or 466 rabbits in all. ■

Example 5.6.7 Compound Interest

On your twenty-first birthday you get a letter informing you that on the day you were
born an eccentric rich aunt deposited $100,000 in a bank account earning 4% interest
compounded annually and she now intends to turn the account over to you, provided you
can figure out how much it is worth. What is the amount currently in the account?

Solution To approach this problem recursively, observe that⎡
⎢⎢⎣

the amount in
the account at
the end of any
particular year

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

the amount in
the account at
the end of the
previous year

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

the interest
earned on the
account during
the year

⎤
⎥⎥⎦.

Now the interest earned during the year equals the interest rate, 4% = 0.04 times the
amount in the account at the end of the previous year. Thus⎡

⎢⎢⎣
the amount in
the account at
the end of any
particular year

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

the amount in
the account at
the end of the
previous year

⎤
⎥⎥⎦+ (0.04) ·

⎡
⎢⎢⎣

the amount in
the account at
the end of the
previous year

⎤
⎥⎥⎦. 5.6.3

For each positive integer n, let

An =
[

the amount in the account
at the end of year n

]
and let

Note Again, a crucial
step is to define the
sequence explicitly.

A0 =
[

the initial amount
in the account

]
= $100, 000.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



5.6 Defining Sequences Recursively 299

Then for any particular year k, substitution into equation (5.6.3) gives

Ak = Ak−1 + (0.04) · Ak−1
= (1+ 0.04) · Ak−1 = (1.04) · Ak−1 by factoring out Ak−1.

Consequently, the values of the sequence A0, A1, A2, . . . are completely specified as
follows: for all integers k ≥ 1,

(1) Ak = (1.04) · Ak−1 recurrence relation

(2) A0 = $100, 000 initial condition.

The number 1.04 is called the growth factor of the sequence.
In the next section we derive an explicit formula for the value of the account in any

year n. The value on your twenty-first birthday can also be computed by repeated substi-
tution as follows:

(3) A1 = 1.04 · A0 = (1.04) ·$100, 000 = $104, 000 by (1) and (2)

(4) A2 = 1.04 · A1 = (1.04) ·$104, 000 = $108, 160 by (1) and (3)

(5) A3 = 1.04 · A2 = (1.04) ·$108, 160 = $112, 486.40 by (1) and (4)

...
...

(22) A20 = 1.04 · A19
∼= (1.04) ·$210, 684.92 ∼= $219, 112.31 by (1) and (21)

(23) A21 = 1.04 · A20
∼= (1.04) ·$219, 112.31 ∼= $227, 876.81 by (1) and (22)

The amount in the account is $227,876.81 (to the nearest cent). Fill in the dots (to check
the arithmetic) and collect your money! ■

Example 5.6.8 Compound Interest with Compounding Several Times a Year

When an annual interest rate of i is compounded m times per year, the interest rate paid
per period is i/m. For instance, if 3% = 0.03 annual interest is compounded quarterly,
then the interest rate paid per quarter is 0.03/4 = 0.0075.

For each integer k ≥ 1, let Pk = the amount on deposit at the end of the kth period,
assuming no additional deposits or withdrawals. Then the interest earned during the kth
period equals the amount on deposit at the end of the (k − 1)st period times the interest
rate for the period:

interest earned during kth period = Pk−1
(
i

m

)
.

The amount on deposit at the end of the kth period, Pk , equals the amount at the end of
the (k − 1)st period, Pk−1, plus the interest earned during the kth period:

Pk = Pk−1 + Pk−1
(
i

m

)
= Pk−1

(
1+ i

m

)
. 5.6.4

Suppose $10,000 is left on deposit at 3% compounded quarterly.

a. How much will the account be worth at the end of one year, assuming no additional
deposits or withdrawals?

b. The annual percentage rate (APR) is the percentage increase in the value of the
account over a one-year period. What is the APR for this account?

Solution

a. For each integer n ≥ 1, let Pn = the amount on deposit after n consecutive quarters,
assuming no additional deposits or withdrawals, and let P0 be the initial $10,000. Then
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by equation (5.6.4) with i = 0.03 and m = 4, a recurrence relation for the sequence
P0, P1, P2, . . . is

(1) Pk = Pk−1(1+ 0.0075) = (1.0075) · Pk−1 for all integers k≥ 1.

The amount on deposit at the end of one year (four quarters), P4, can be found by
successive substitution:

(2) P0 = $10, 000

(3) P1 = 1.0075 · P0 = (1.0075) ·$10, 000.00 = $10, 075.00 by (1) and (2)

(4) P2 = 1.0075 · P1 = (1.0075) ·$10, 075.00 = $10, 150.56 by (1) and (3)

(5) P3 = 1.0075 · P2 ∼= (1.0075) ·$10, 150.56 = $10, 226.69 by (1) and (4)

(6) P4 = 1.0075 · P3 ∼= (1.0075) ·$10, 226.69 = $10, 303.39 by (1) and (5)

Hence after one year there is $10,303.39 (to the nearest cent) in the account.

b. The percentage increase in the value of the account, or APR, is

10303.39− 10000

10000
= 0.03034 = 3.034%. ■

Recursive Definitions of Sum and Product
Addition and multiplication are called binary operations because only two numbers can
be added or multiplied at a time. Careful definitions of sums and products of more than
two numbers use recursion.

• Definition

Given numbers a1, a2, . . . , an , where n is a positive integer, the summation from
i = 1 to n of the ai, denoted

∑n
i=1 ai , is defined as follows:

1∑
i=1

ai = a1 and
n∑

i=1
ai =

(
n−1∑
i=1

ai

)
+ an, if n > 1.

The product from i = 1 to n of the ai, denoted
∏n

i=1 ai , is defined by

1∏
i=1

ai = a1 and
n∏

i=1
ai =

(
n−1∏
i=1

ai

)
·an, if n > 1.

The effect of these definitions is to specify an order in which sums and products of
more than two numbers are computed. For example,

4∑
i=1

ai =
(

3∑
i=1

ai

)
+ a4 =

((
2∑

i=1
ai

)
+ a3

)
+ a4 = ((a1 + a2)+ a3)+ a4.

The recursive definitions are used with mathematical induction to establish various
properties of general finite sums and products.
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Example 5.6.9 A Sum of Sums

Prove that for any positive integer n, if a1, a2, . . . , an and b1, b2, . . . , bn are real numbers,
then

n∑
i=1

(ai + bi ) =
n∑

i=1
ai +

n∑
i=1

bi .

Solution The proof is by mathematical induction. Let the property P(n) be the equation
n∑

i = 1

(ai + bi ) =
n∑

i = 1

ai +
n∑

i = 1

bi . ← P(n)

We must show that P(n) is true for all integers n ≥ 0. We do this by mathematical induc-
tion on n.

Show that P(1) is true: To establish P(1), we must show that

1∑
i = 1

(ai + bi ) =
1∑

i = 1

ai +
1∑

i = 1

bi . ← P(1)

But
1∑

i=1
(ai + bi ) = a1 + b1 by definition of �

=
1∑

i=1
ai +

1∑
i=1

bi also by definition of �.

Hence P(1) is true.

Show that for all integers k ≥ 1, if P(k) is true then P(k+ 1) is also true:
Suppose a1, a2, . . . , ak, ak+1 and b1, b2, . . . , bk, bk+1 are real numbers and that for some
k ≥ 1

k∑
i=1

(ai + bi ) =
k∑

i=1
ai +

k∑
i=1

bi .
← P(k)
inductive hypothesis

We must show that
k+1∑
i=1

(ai + bi ) =
k+1∑
i=1

ai +
k+1∑
i=1

bi . ← P(k + 1)

[We will show that the left-hand side of this equation equals the right-hand side.]

But the left-hand side of the equation is

k+1∑
i=1

(ai + bi ) =
k∑

i=1
(ai + bi )+ (ak+1 + bk+1) by definition of �

=
(

k∑
i=1

ai +
k∑

i=1
bi

)
+ (ak+1 + bk+1) by inductive hypothesis

=
(

k∑
i=1

ai + ak+1
)
+
(

k∑
i=1

bi + bk+1
)

by the associative and cummutative
laws of algebra

=
k+1∑
i=1

ai +
k+1∑
i=1

bi by definition of �

which equals the right-hand side of the equation. [This is what was to be shown.] ■
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Test Yourself
1. A recursive definition for a sequence consists of a

_____ and _____.

2. A recurrence relation is an equation that defines each
later term of a sequence by reference to _____ in the
sequence.

3. Initial conditions for a recursive definition of a sequence con-
sist of one or more of the _____ of the sequence.

4. To solve a problem recursively means to divide the prob-
lem into smaller subproblems of the same type as the initial
problem, to suppose _____, and to figure out how to use the
supposition to _____.

5. A crucial step for solving a problem recursively is to define
a _____ in terms of which the recurrence relation and initial
conditions can be specified.

Exercise Set 5.6
Find the first four terms of each of the recursively defined
sequences in 1–8.

1. ak = 2ak−1 + k, for all integers k ≥ 2
a1 = 1

2. bk = bk−1 + 3k, for all integers k ≥ 2
b1 = 1

3. ck = k(ck−1)2, for all integers k ≥ 1
c0 = 1

4. dk = k(dk−1)2, for all integers k ≥ 1
d0 = 3

5. sk = sk−1 + 2sk−2, for all integers k ≥ 2
s0 = 1, s1 = 1

6. tk = tk−1 + 2tk−2, for all integers k ≥ 2
t0 = −1, t1 = 2

7. uk = kuk−1 − uk−2, for all integers k ≥ 3
u1 = 1, u2 = 1

8. vk = vk−1 + vk−2 + 1, for all integers k ≥ 3
v1 = 1, v2 = 3

9. Let a0, a1, a2, . . . be defined by the formula an = 3n + 1,
for all integers n ≥ 0. Show that this sequence satisfies the
recurrence relation ak = ak−1 + 3, for all integers k ≥ 1.

10. Let b0, b1, b2, . . . be defined by the formula bn = 4n , for all
integers n ≥ 0. Show that this sequence satisfies the recur-
rence relation bk = 4bk−1, for all integers k ≥ 1.

11. Let c0, c1, c2, . . . be defined by the formula cn = 2n − 1
for all integers n ≥ 0. Show that this sequence satisfies the
recurrence relation

ck = 2ck−1 + 1.

12. Let s0, s1, s2, . . . be defined by the formula sn = (−1)n
n!

for all integers n ≥ 0. Show that this sequence satisfies the
recurrence relation

sk = −sk−1
k

.

13. Let t0, t1, t2, . . . be defined by the formula tn = 2+ n for
all integers n ≥ 0. Show that this sequence satisfies the
recurrence relation

tk = 2tk−1 − tk−2.

14. Let d0, d1, d2, . . . be defined by the formula dn = 3n − 2n

for all integers n ≥ 0. Show that this sequence satisfies the
recurrence relation

dk = 5dk−1 − 6dk−2.

15.H For the sequence of Catalan numbers defined in
Example 5.6.4, prove that for all integers n ≥ 1,

Cn = 1

4n + 2

(
2n + 2
n + 1

)
.

16. Use the recurrence relation and values for the Tower
of Hanoi sequence m1,m2,m3, . . . discussed in Exam-
ple 5.6.5 to compute m7 and m8.

17. Tower of Hanoi with Adjacency Requirement: Suppose that
in addition to the requirement that they never move a larger
disk on top of a smaller one, the priests who move the disks
of the Tower of Hanoi are also allowed only to move disks
one by one from one pole to an adjacent pole. Assume
poles A and C are at the two ends of the row and pole B is
in the middle. Let

an =
⎡
⎣ the minimum number of moves

needed to transfer a tower of n
disks from pole A to pole C

⎤
⎦ .

a. Find a1, a2, and a3. b. Find a4.
c. Find a recurrence relation for a1, a2, a3, . . . .

18. Tower of Hanoi with Adjacency Requirement: Suppose the
same situation as in exercise 17. Let

bn =
⎡
⎣ the minimum number of moves

needed to transfer a tower of n
disks from pole A to pole B

⎤
⎦ .

a. Find b1, b2, and b3. b. Find b4.
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c. Show that bk = ak−1 + 1+ bk−1 for all integers k ≥
2, where a1, a2, a3, . . . is the sequence defined in
exercise 17.

d. Show that bk ≤ 3bk−1 + 1 for all integers k ≥ 2.
e.✶H Show that bk = 3bk−1 + 1 for all integers k ≥ 2.

19. Four-Pole Tower of Hanoi: Suppose that the Tower of
Hanoi problem has four poles in a row instead of three.
Disks can be transferred one by one from one pole to any
other pole, but at no time may a larger disk be placed on
top of a smaller disk. Let sn be the minimum number of
moves needed to transfer the entire tower of n disks from
the left-most to the right-most pole.
a. Find s1, s2, and s3. b. Find s4.
c. Show that sk ≤ 2sk−2 + 3 for all integers k ≥ 3.

20. Tower of Hanoi Poles in a Circle: Suppose that instead of
being lined up in a row, the three poles for the original
Tower of Hanoi are placed in a circle. The monks move
the disks one by one from one pole to another, but they may
only move disks one over in a clockwise direction and they
may never move a larger disk on top of a smaller one. Let
cn be the minimum number of moves needed to transfer a
pile of n disks from one pole to the next adjacent pole in
the clockwise direction.
a. Justify the inequality ck ≤ 4ck−1 + 1 for all integers

k ≥ 2.
b. The expression 4ck−1 + 1 is not the minimum number

of moves needed to transfer a pile of k disks from one
pole to another. Explain, for example, why
c3 �= 4c2 + 1.

21. Double Tower of Hanoi: In this variation of the Tower of
Hanoi there are three poles in a row and 2n disks, two of
each of n different sizes, where n is any positive integer.
Initially one of the poles contains all the disks placed on
top of each other in pairs of decreasing size. Disks are
transferred one by one from one pole to another, but at
no time may a larger disk be placed on top of a smaller
disk. However, a disk may be placed on top of one of
the same size. Let tn be the minimum number of moves
needed to transfer a tower of 2n disks from one pole to
another.
a. Find t1 and t2. b. Find t3.
c. Find a recurrence relation for t1, t2, t3, . . . .

22. Fibonacci Variation: A single pair of rabbits (male and
female) is born at the beginning of a year. Assume
the following conditions (which are more realistic than
Fibonacci’s):
(1) Rabbit pairs are not fertile during their first month of

life but thereafter give birth to four new male/female
pairs at the end of every month.

(2) No rabbits die.
a. Let rn = the number of pairs of rabbits alive at the end

of month n, for each integer n ≥ 1, and let r0 = 1. Find
a recurrence relation for r0, r1, r2, . . . .

b. Compute r0, r1, r2, r3, r4, r5, and r6.
c. How many rabbits will there be at the end of the year?

23. Fibonacci Variation: A single pair of rabbits (male and
female) is born at the beginning of a year. Assume the fol-
lowing conditions:
(1) Rabbit pairs are not fertile during their first two

months of life, but thereafter give birth to three new
male/female pairs at the end of every month.

(2) No rabbits die.
a. Let sn = the number of pairs of rabbits alive at the end

of month n, for each integer n ≥ 1, and let s0 = 1. Find
a recurrence relation for s0, s1, s2, . . . .

b. Compute s0, s1, s2, s3, s4, and s5.
c. How many rabbits will there be at the end of the year?

In 24–34, F0, F1, F2, . . . is the Fibonacci sequence.

24. Use the recurrence relation and values for F0, F1, F2, . . .

given in Example 5.6.6 to compute F13 and F14.

25. The Fibonacci sequence satisfies the recurrence relation
Fk = Fk−1 + Fk−2, for all integers k ≥ 2.
a. Explain why the following is true:

Fk+1 = Fk + Fk−1 for all integers k ≥ 1.

b. Write an equation expressing Fk+2 in terms of Fk+1
and Fk .

c. Write an equation expressing Fk+3 in terms of Fk+2 and
Fk+1

26. Prove that Fk = 3Fk−3 + 2Fk−4 for all integers k ≥ 4.

27. Prove that F2
k − F2

k−1 = Fk Fk−1 − Fk+1Fk−1, for all
integers k ≥ 1.

28. Prove that F2
k+1 − F2

k − F2
k−1 = 2Fk Fk−1, for all integers

k ≥ 1.

29. Prove that F2
k+1 − F2

k = Fk−1Fk+2, for all integers k ≥ 1.

30. Use mathematical induction to prove that for all integers
n ≥ 0, Fn+2Fn − F2

n+1 = (−1)n .
31.✶ Use strong mathematical induction to prove that Fn < 2n

for all integers n ≥ 1.

32.✶H Let F0, F1, F2, . . . be the Fibonacci sequence defined
in Section 5.6. Prove that for all integers n ≥ 0,
gcd (Fn+1, Fn) = 1.

33. It turns out that the Fibonacci sequence satisfies the fol-
lowing explicit formula: For all integers Fn ≥ 0,

Fn = 1√
5

⎡
⎣(1+√5

2

)n+1
−
(
1−√5

2

)n+1⎤⎦
Verify that the sequence defined by this formula satisfies
the recurrence relation Fk = Fk−1 + Fk−2 for all integers
k ≥ 2.

34.H (For students who have studied calculus) Find

lim
n→∞

(
Fn+1
Fn

)
, assuming that the limit exists.
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35.✶H (For students who have studied calculus) Prove that

lim
n→∞

(
Fn+1
Fn

)
exists.

36. (For students who have studied calculus) Define
x0, x1, x2, . . . as follows:

xk =
√
2+ xk−1 for all integers k ≥ 1

x0 = 0

Find limn→∞ xn . (Assume that the limit exists.)

37. Compound Interest: Suppose a certain amount of money
is deposited in an account paying 4% annual interest
compounded quarterly. For each positive integer n, let
Rn = the amount on deposit at the end of the nth quarter,
assuming no additional deposits or withdrawals, and let R0

be the initial amount deposited.
a. Find a recurrence relation for R0, R1, R2, . . . .
b. If R0 = $5000, find the amount of money on deposit at

the end of one year.
c. Find the APR for the account.

38. Compound Interest: Suppose a certain amount of money
is deposited in an account paying 3% annual interest com-
pounded monthly. For each positive integer n, let Sn = the
amount on deposit at the end of the nth month, and let S0
be the initial amount deposited.
a. Find a recurrence relation for S0, S1, S2, . . ., assum-

ing no additional deposits or withdrawals during the
year.

b. If S0 = $10, 000, find the amount of money on deposit
at the end of one year.

c. Find the APR for the account.

39. With each step you take when climbing a staircase, you can
move up either one stair or two stairs. As a result, you can
climb the entire staircase taking one stair at a time, taking
two at a time, or taking a combination of one- and two-stair
increments. For each integer n ≥ 1, if the staircase consists
of n stairs, let cn be the number of different ways to climb
the staircase. Find a recurrence relation for c1, c2, c3, . . . .

40. A set of blocks contains blocks of heights 1, 2, and 4 cen-
timeters. Imagine constructing towers by piling blocks of
different heights directly on top of one another. (A tower of
height 6 cm could be obtained using six 1-cm blocks, three
2-cm blocks one 2-cm block with one 4-cm block on top,
one 4-cm block with one 2-cm block on top, and so forth.)
Let t be the number of ways to construct a tower of height
n cm using blocks from the set. (Assume an unlimited sup-
ply of blocks of each size.) Find a recurrence relation for
t1, t2, t3, . . ..

41. Use the recursive definition of summation, together with
mathematical induction, to prove the generalized distribu-
tive law that for all positive integers n, if a1, a2, . . . , an and
c are real numbers, then

n∑
i=1

cai = c

(
n∑

i=1
ai

)
.

42. Use the recursive definition of product, together with math-
ematical induction, to prove that for all positive integers n,
if a1, a2, . . . , an and b1, b2, . . . , bn are real numbers, then

n∏
i=1

(aibi ) =
(

n∏
i=1

ai

)(
n∏

i=1
bi

)
.

43. Use the recursive definition of product, together with math-
ematical induction, to prove that for all positive integers n,
if a1, a2, . . . , an and c are real numbers, then

n∏
i=1

(cai ) = cn
(

n∏
i=1

ai

)
.

44.H The triangle inequality for absolute value states that for all
real numbers a and b, |a + b| ≤ |a| + |b|. Use the recur-
sive definition of summation, the triangle inequality, the
definition of absolute value, and mathematical induction to
prove that for all positive integers n, if a1, a2, . . . , an are
real numbers, then ∣∣∣∣∣

n∑
i=1

ai

∣∣∣∣∣ ≤
n∑

i=1
|ai |.

Answers for Test Yourself
1. recurrence relation; initial conditions 2. earlier terms 3. values of the first few terms 4. that the smaller subproblems have
already been solved; solve the initial problem 5. sequence

5.7 Solving Recurrence Relations by Iteration

The keener one’s sense of logical deduction, the less often one makes hard and fast
inferences. — Bertrand Russell, 1872–1970

Suppose you have a sequence that satisfies a certain recurrence relation and initial
conditions. It is often helpful to know an explicit formula for the sequence, especially if
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5.7 Solving Recurrence Relations by Iteration 305

you need to compute terms with very large subscripts or if you need to examine general
properties of the sequence. Such an explicit formula is called a solution to the recur-
rence relation. In this section, we discuss methods for solving recurrence relations. For
example, in the text and exercises of this section, we will show that the Tower of Hanoi
sequence of Example 5.6.5 satisfies the formula

mn = 2n − 1,

and that the compound interest sequence of Example 5.6.7 satisfies

An = (1.04)n ·$100, 000.

The Method of Iteration
The most basic method for finding an explicit formula for a recursively defined sequence
is iteration. Iteration works as follows: Given a sequence a0, a1, a2, . . . defined by a
recurrence relation and initial conditions, you start from the initial conditions and calcu-
late successive terms of the sequence until you see a pattern developing. At that point you
guess an explicit formula.

Example 5.7.1 Finding an Explicit Formula

Let a0, a1, a2, . . . be the sequence defined recursively as follows: For all integers k ≥ 1,

(1) ak = ak−1 + 2 recurrence relation

(2) a0 = 1 initial condition.

Use iteration to guess an explicit formula for the sequence.

Solution Recall that to say

ak = ak−1 + 2 for all integers k ≥ 1

means

a� = a�−1 + 2 no matter what positive integer is
placed into the box �.

In particular,

a1 = a0 + 2,

a2 = a1 + 2,

a3 = a2 + 2,

and so forth. Now use the initial condition to begin a process of successive substitutions
into these equations, not just of numbers (as was done in Section 5.6) but of numerical
expressions.

The reason for using numerical expressions rather than numbers is that in these prob-
lems you are seeking a numerical pattern that underlies a general formula. The secret of
success is to leave most of the arithmetic undone. However, you do need to eliminate
parentheses as you go from one step to the next. Otherwise, you will soon end up with
a bewilderingly large nest of parentheses. Also, it is nearly always helpful to use short-
hand notations for regrouping additions, subtractions, and multiplications of numbers that
repeat. Thus, for instance, you would write

5 ·2 instead of 2+ 2+ 2+ 2+ 2

and 25 instead of 2 ·2 ·2 ·2 ·2.
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Notice that you don’t lose any information about the number patterns when you use these
shorthand notations.

Here’s how the process works for the given sequence:

a0 = 1 the initial condition

a1 = a0 + 2 = 1+ 2︸ ︷︷ ︸ by substitution

a2 = a1 + 2 =
︷ ︸︸ ︷
(1+ 2)+ 2 = 1+ 2+ 2︸ ︷︷ ︸ eliminate parentheses

a3 = a2 + 2 =
︷ ︸︸ ︷
(1+ 2+ 2)+ 2 = 1+ 2+ 2+ 2︸ ︷︷ ︸ eliminate parentheses again; write

3 ·2 instead of 2+ 2+ 2?

a4 = a3 + 2 =
︷ ︸︸ ︷
(1+ 2+ 2+ 2)+ 2 = 1+ 2+ 2+ 2+ 2 eliminate parentheses again;

definitely write 4 ·2 instead of
2+ 2+ 2+ 2—the length of the
string of 2’s is getting out of hand.

Tip Do no
arithmetic except

• replace n ·1 and
1 ·n by n

• reformat repeated
numbers

• get rid of
parentheses

Since it appears helpful to use the shorthand k ·2 in place of 2+ 2+ · · · + 2 (k times),
we do so, starting again from a0.

a0 = 1 = 1+ 0 ·2 the initial condition

a1 = a0 + 2 = 1+ 2︸ ︷︷ ︸ = 1+ 1 ·2 by substitution

a2 = a1 + 2 =
︷ ︸︸ ︷
(1+ 2)+ 2 = 1+ 2 ·2︸ ︷︷ ︸

a3 = a2 + 2 =
︷ ︸︸ ︷
(1+ 2 ·2)+ 2 = 1+ 3 ·2︸ ︷︷ ︸

a4 = a3 + 2 =
︷ ︸︸ ︷
(1+ 3 ·2)+ 2 = 1+ 4 ·2︸ ︷︷ ︸ At this point it certainly seems likely that

the general pattern is 1+ n ·2; check
whether the next calculation supports this.

a5 = a4 + 2 =
︷ ︸︸ ︷
(1+ 4 ·2)+ 2 = 1+ 5 ·2 It does! So go ahead and write an answer.

It’s only a guess, after all.
...

Guess: an = 1+ n ·2 = 1+ 2n

The answer obtained for this problem is just a guess. To be sure of the correctness of this
guess, you will need to check it by mathematical induction. Later in this section, we will
show how to do this. ■

A sequence like the one in Example 5.7.1, in which each term equals the previous
term plus a fixed constant, is called an arithmetic sequence. In the exercises at the end
of this section you are asked to show that the nth term of an arithmetic sequence always
equals the initial value of the sequence plus n times the fixed constant.
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• Definition

A sequence a0, a1, a2, . . . is called an arithmetic sequence if, and only if, there is
a constant d such that

ak = ak−1 + d for all integers k ≥ 1.

It follows that,

an = a0 + dn for all integers n ≥ 0.

Example 5.7.2 An Arithmetic Sequence

Under the force of gravity, an object falling in a vacuum falls about 9.8 meters per second
(m/sec) faster each second than it fell the second before. Thus, neglecting air resistance,
a skydiver’s speed upon leaving an airplane is approximately 9.8m/sec one second after
departure, 9.8+ 9.8 = 19.6m/sec two seconds after departure, and so forth. If air resis-
tance is neglected, how fast would the skydiver be falling 60 seconds after leaving the
airplane?

Solution Let sn be the skydiver’s speed in m/sec n seconds after exiting the airplane if
there were no air resistance. Thus s0 is the initial speed, and since the diver would travel
9.8m/sec faster each second than the second before,

sk = sk−1 + 9.8 m/sec for all integers k ≥ 1.

It follows that s0, s1, s2, . . . is an arithmetic sequence with a fixed constant of 9.8, and thus

sn = s0 + (9.8)n for each integer n ≥ 0.

Hence sixty seconds after exiting and neglecting air resistance, the skydiver would travel
at a speed of

s60 = 0+ (9.8)(60) = 588 m/sec.

Note that 588m/sec is over half a kilometer per second or over a third of a mile per
second, which is very fast for a human being to travel. Happily for the skydiver, taking
air resistance into account cuts the speed considerably. ■

In an arithmetic sequence, each term equals the previous term plus a fixed constant. In
a geometric sequence, each term equals the previous term times a fixed constant. Geomet-
ric sequences arise in a large variety of applications, such as compound interest certain
models of population growth, radioactive decay, and the number of operations needed to
execute certain computer algorithms.

Example 5.7.3 The Explicit Formula for a Geometric Sequence

Let r be a fixed nonzero constant, and suppose a sequence a0, a1, a2, . . . is defined
recursively as follows:

ak = rak−1 for all integers k ≥ 1,

a0 = a.

Use iteration to guess an explicit formula for this sequence.
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In the exercises at the end of this section, you are asked to prove that this formula is
correct. ■

• Definition

A sequence a0, a1, a2, . . . is called a geometric sequence if, and only if, there is a
constant r such that

ak = rak−1 for all integers k ≥ 1.

It follows that,

an = a0r
′′ for all integers n ≥ 0.

Example 5.7.4 A Geometric Sequence

As shown in Example 5.6.7, if a bank pays interest at a rate of 4% per year compounded
annually and An denotes the amount in the account at the end of year n, then Ak =
(1.04)Ak−1, for all integers k ≥ 1, assuming no deposits or withdrawals during the year.
Suppose the initial amount deposited is $100,000, and assume that no additional deposits
or withdrawals are made.

a. How much will the account be worth at the end of 21 years?

b. In how many years will the account be worth $1,000,000?

Solution

a. A0, A1, A2, . . . is a geometric sequence with initial value 100,000 and constant
multiplier 1.04. Hence,

An = $100,000 ·(1.04)n for all integers n ≥ 0.

After 21 years, the amount in the account will be

A21 = $100,000 ·(1.04)21 ∼= $227, 876.81.

This is the same answer as that obtained in Example 5.6.7 but is computed much more
easily (at least if a calculator with a powering key, such as ∧ or x y , is used).
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b. Let t be the number of years needed for the account to grow to $1,000,000. Then

$1,000,000 = $100,000 ·(1.04)t .
Dividing both sides by 100,000 gives

10 = (1.04)t ,

and taking natural logarithms of both sides results in

ln(10) = ln(1.04)t .Note Properties of
logarithms are reviewed
in Section 7.2. Then

ln(10) ∼= t ln(1.04) because logb(x
a) = a logb(x)

(see exercise 35 of Section 7.2)

and so

t = ln(10)

ln(1.04)
∼= 58.7

Hence the account will grow to $1,000,000 in approximately 58.7 years. ■

An important property of a geometric sequence with constant multiplier greater than
1 is that its terms increase very rapidly in size as the subscripts get larger and larger.
For instance, the first ten terms of a geometric sequence with a constant multiplier of
10 are

1, 10, 102, 103, 104, 105, 106, 107, 108, 109.

Thus, by its tenth term, the sequence already has the value 109 = 1,000,000,000 = 1
billion. The following box indicates some quantities that are approximately equal to cer-
tain powers of 10.

107 ∼= number of seconds in a year

109 ∼= number of bytes of memory in a personal computer

1011 ∼= number of neurons in a human brain

1017 ∼= age of the universe in seconds (according to one theory)

1031 ∼= number of seconds to process all possible positions of a checkers game if
moves are processed at a rate of 1 per billionth of a second

1081 ∼= number of atoms in the universe

10111 ∼= number of seconds to process all possible positions of a chess game if moves
are processed at a rate of 1 per billionth of a second

Using Formulas to Simplify Solutions Obtained by Iteration
Explicit formulas obtained by iteration can often be simplified by using formulas such
as those developed in Section 5.2. For instance, according to the formula for the sum
of a geometric sequence with initial term 1 (Theorem 5.2.3), for each real number r
except r = 1,

1+ r + r2 + · · · + rn = rn+1 − 1

r − 1
for all integers n ≥ 0.

And according to the formula for the sum of the first n integers (Theorem 5.2.2),

1+ 2+ 3+ · · · + n = n(n + 1)

2
for all integers n ≥ 1.
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Example 5.7.5 An Explicit Formula for the Tower of Hanoi Sequence

Recall that the Tower of Hanoi sequence m1, m2, m3, . . . of Example 5.6.5 satisfies the
recurrence relation

mk = 2mk−1 + 1 for all integers k ≥ 2

and has the initial condition

m1 = 1.

Use iteration to guess an explicit formula for this sequence, and make use of a formula
from Section 5.2 to simplify the answer.

Solution By iteration

m1 = 1

m 2© = 2m1 + 1 = 2 ·1+ 1 = 2 1© + 1︸ ︷︷ ︸,
m 3© = 2m2 + 1 = 2

︷ ︸︸ ︷
(2+ 1) + 1 = 2 2© + 2+ 1︸ ︷︷ ︸,

m 4© = 2m3 + 1 = 2
︷ ︸︸ ︷
(22 + 2+ 1) + 1 = 2 3© + 22 + 2+ 1︸ ︷︷ ︸,

m 5© = 2m4 + 1 = 2
︷ ︸︸ ︷
(23 + 22 + 2+ 1) + 1 = 2 4© + 23 + 22 + 2+ 1.

These calculations show that each term up to m5 is a sum of successive powers of 2,
starting with 20 = 1 and going up to 2k , where k is 1 less than the subscript of the term.
The pattern would seem to continue to higher terms because each term is obtained from
the preceding one by multiplying by 2 and adding 1; multiplying by 2 raises the exponent
of each component of the sum by 1, and adding 1 adds back the 1 that was lost when the
previous 1 was multiplied by 2. For instance, for n = 6,

m6 = 2m5 + 1 = 2(24 + 23 + 22 + 2+ 1)+ 1 = 25 + 24 + 23 + 22 + 2+ 1.

Thus it seems that, in general,

mn = 2n−1 + 2n−2 + · · · + 22 + 2+ 1.

By the formula for the sum of a geometric sequence (Theorem 5.2.3),

2n−1 + 2n−2 + · · · + 22 + 2+ 1 = 2n − 1

2− 1
= 2n − 1.

Hence the explicit formula seems to be

mn = 2n − 1 for all integers n ≥ 1. ■

!
Caution! It is not true
that

2 · (2+ 1)+ 1 = 22 + 1+ 1.

This is crossed out
because it is false.

A common mistake people make when doing problems such as this is to misuse the laws
of algebra. For instance, by the distributive law,

a ·(b + c) = a ·b + a ·c for all real numbers a, b, and c.

Thus, in particular, for a = 2, b = 2, and c = 1,

2 ·(2+ 1) = 2 ·2+ 2 ·1 = 22 + 2.

It follows that

2 ·(2+ 1)+ 1 = (22 + 2)+ 1 = 22 + 2+ 1.
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Example 5.7.6 Using the Formula for the Sum of the First n Positive Integers

Let Kn be the picture obtained by drawing n dots (which we call vertices) and join-
ing each pair of vertices by a line segment (which we call an edge). (In Chapter 10
we discuss these objects in a more general context.) Then K1, K2, K3, and K4 are as
follows:

K1 K2 K3 K4

Observe that K5 may be obtained from K4 by adding one vertex and drawing edges
between this new vertex and all the vertices of K4 (the old vertices). The reason this
procedure gives the correct result is that each pair of old vertices is already joined by an
edge, and adding the new edges joins each pair of vertices consisting of an old one and
the new one.

New vertex

K5

Thus the number of edges of K5 = 4+ the number of edges of K4.

By the same reasoning, for all integers k ≥ 2, the number of edges of Kk is k − 1 more
than the number of edges of Kk−1. That is, if for each integer n ≥ 1

sn = the number of edges of Kn,

then sk = sk−1 + (k − 1) for all integers k ≥ 2.

Note that s1, is the number of edges in K1, which is 0, and use iteration to find an explicit
formula for s1, s2, s3, . . . .

Solution Because

sk = sk−1 + (k − 1) for all integers k ≥ 2

and

s 1© =
�
�

�
�0

→ 1 − 1

then, in particular,

s 2© = s1 + 1 = 0+ �
�

�
�1︸ ︷︷ ︸ ,

→ 2 − 1

s 3© = s2 + 2 =
︷ ︸︸ ︷
(0+ 1)+ 2 = 0+ 1+ �

�
�
�2︸ ︷︷ ︸ ,

→ 3 − 1

s 4© = s3 + 3 =
︷ ︸︸ ︷
(0+ 1+ 2)+ 3 = 0+ 1+ 2+ �

�
�
�3︸ ︷︷ ︸ ,

→ 4 − 1

s 5© = s4 + 4 =
︷ ︸︸ ︷
(0+ 1+ 2+ 3)+ 4 = 0+ 1+ 2+ 3+ �

�
�
�4 ,

→ 5 − 1

...

Guess: s n© = 0+ 1+ 2+ · · · + (n − 1) .
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But by Theorem 5.2.2,

0+ 1+ 2+ 3+ · · · + (n − 1) = (n − 1)n

2
= n(n − 1)

2
.

Hence it appears that

sn = n(n − 1)

2
.

■

Checking the Correctness of a Formula by Mathematical
Induction

As you can see from some of the previous examples, the process of solving a recurrence
relation by iteration can involve complicated calculations. It is all too easy to make a
mistake and come up with the wrong formula. That is why it is important to confirm your
calculations by checking the correctness of your formula. The most common way to do
this is to use mathematical induction.

Example 5.7.7 Using Mathematical Induction to Verify the Correctness of a Solution
to a Recurrence Relation

In Example 5.6.5 we obtained a formula for the Tower of Hanoi sequence. Use
mathematical induction to show that this formula is correct.

Solution What does it mean to show the correctness of a formula for a recursively defined
sequence? Given a sequence of numbers that satisfies a certain recurrence relation and
initial condition, your job is to show that each term of the sequence satisfies the proposed
explicit formula. In this case, you need to prove the following statement:

If m1,m2,m3, . . . is the sequence defined by

mk = 2mk−1 + 1 for all integers k ≥ 2, and

m1 = 1,

then mn = 2n − 1 for all integers n ≥ 1.

Proof of Correctness:

Letm1, m2, m3, . . . be the sequence defined by specifying thatm1 = 1 andmk = 2mk+1 + 1
for all integers k ≥ 2, and let the property P(n) be the equation

mn = 2n − 1 ← P(n)

We will use mathematical induction to prove that for all integers n ≥ 1, P(n) is true.

Show that P(1) is true:
To establish P(1), we must show that

m1 = 21 − 1. ← P(1)

But the left-hand side of P(1) is

m1 = 1 by definition of m1,m2,m3, . . .,

and the right-hand side of P(1) is

21 − 1 = 2− 1 = 1.
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Thus the two sides of P(1) equal the same quantity, and hence P(1) is true.

Show that for all integers k ≥ 1, if P(k) is true then P (k+ 1) is also true:
[Suppose that P(k) is true for a particular but arbitrarily chosen integer k ≥ 1. That is:]
Suppose that k is any integer with k ≥ 1 such that

mk = 2k − 1. ← P(k)
inductive hypothesis

[We must show that P(k + 1) is true. That is:] We must show that

mk+1 = 2k+1 − 1. ← P(k + 1)

But the left-hand side of P(k + 1) is

mk+1 = 2m(k+1)−1 + 1 by definition of m1, m2, m3, . . .

= 2mk + 1

= 2(2k − 1)+ 1 by substitution from the inductive hypothesis

= 2k+1 − 2+ 1 by the distributive law and the fact that 2 ·2k = 2k−1

= 2k+1 − 1 by basic algebra

which equals the right-hand side of P(k + 1). [Since the basis and inductive steps have been
proved, it follows by mathematical induction that the given formula holds for all integers
n ≥ 1.] ■

Discovering That an Explicit Formula Is Incorrect
The following example shows how the process of trying to verify a formula by
mathematical induction may reveal a mistake.

Example 5.7.8 Using Verification by Mathematical Induction to Find a Mistake

Let c0, c1, c2, . . . be the sequence defined as follows:

ck = 2ck−1 + k for all integers k ≥ 1,

c0 = 1.

Suppose your calculations suggest that c0, c1, c2, . . . satisfies the following explicit
formula:

cn = 2n + n for all integers n ≥ 0.

Is this formula correct?

Solution Start to prove the statement by mathematical induction and see what develops.
The proposed formula passes the basis step of the inductive proof with no trouble, for on
the one hand, c0 = 1 by definition and on the other hand, 20 + 0 = 1+ 0 = 1 also.

In the inductive step, you suppose

ck = 2k + k for some integer k ≥ 0 This is the inductive hypothesis.

and then you must show that

ck+1 = 2k+1 + (k + 1).
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To do this, you start with ck+1, substitute from the recurrence relation, and then use the
inductive hypothesis as follows:

ck+1= 2ck + (k + 1) by the recurrence relation

= 2(2k + k)+ (k + 1) by substitution from the inductive hypothesis

= 2(k+1) + 3k + 1 by basic algebra

To finish the verification, therefore, you need to show that

2k+1 + 3k + 1 = 2k+1 + (k + 1).

Now this equation is equivalent to

2k = 0 by subtracting 2k+1 + k + 1 from both sides.

which is equivalent to

k = 0 by dividing both sides by 2.

But this is false since k may be any nonnegative integer.
Observe that when k = 0, then k + 1 = 1, and

c1 = 2 ·1+ 1 = 3 and 21 + 1 = 3.

Thus the formula gives the correct value for c1. However, when k = 1, then k + 1 = 2, and

c2 = 2 ·3+ 2 = 8 whereas 22 + 2 = 4+ 2 = 6.

So the formula does not give the correct value for c2. Hence the sequence c0, c1, c2, . . .
does not satisfy the proposed formula. ■

Once you have foud a proposed formula to be false, you should look back at your
calculations to see where you made a mistake, correct it, and try again.

Test Yourself
1. To use iteration to find an explicit formula for a recursively

defined sequence, start with the _____ and use successive
substitution into the _____ to look for a numerical pattern.

2. At every step of the iteration process, it is important
to eliminate _____.

3. If a single number, say a, is added to itself k times in one of
the steps of the iteration, replace the sum by the expression
_____.

4. If a single number, say a, is multiplied by itself k times in
one of the steps of the iteration, replace the product by the
expression _____.

5. A general arithmetic sequence a0, a1, a2, . . . with initial
value a0 and fixed constant d satisfies the recurrence rela-
tion _____ and has the explicit formula _____.

6. A general geometric sequence a0, a1, a2, . . . with initial
value a0 and fixed constant r satisfies the recurrence rela-
tion _____ and has the explicit formula _____.

7. When an explicit formula for a recursively defined sequence
has been obtained by iteration, its correctness can be
checked by _____.

Exercise Set 5.7
1. The formula

1+ 2+ 3+ · · · + n = n(n + 1)

2

is true for all integers n ≥ 1. Use this fact to solve each of
the following problems:
a. If k is an integer and k ≥ 2, find a formula for the

expression 1+ 2+ 3+ · · · + (k − 1).

b. If n is an integer and n ≥ 1, find a formula for the
expression 3+ 2+ 4+ 6+ 8+ · · · + 2n.

c. If n is an integer and n ≥ 1, find a formula for the
expression 3+ 3 ·2+ 3 ·3+ · · · + 3 ·n + n.

2. The formula

1+ r + r2 + · · · + rn = rn+1 − 1

r − 1
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5.7 Solving Recurrence Relations by Iteration 315

is true for all real numbers r except r = 1 and for all inte-
gers n ≥ 0. Use this fact to solve each of the following
problems:
a. If i is an integer and i ≥ 1, find a formula for the

expression 1+ 2+ 22 + · · · + 2i−1.
b. If n is an integer and n ≥ 1, find a formula for the

expression 3n−1 + 3n−2 + · · · + 32 + 3+ 1.
c. If n is an integer and n ≥ 2, find a formula for the expres-

sion 2n + 2n−2 ·3+ 2n−3 ·3+ · · · + 22 ·3+ 2 ·3+ 3
d. If n is an integer and n ≥ 1, find a formula for the

expression

2n − 2n−1 + 2n−2 − 2n−3 + · · · + (−1)n−1 ·2+ (−1)n .
In each of 3–15 a sequence is defined recursively. Use iteration
to guess an explicit formula for the sequence. Use the formulas
from Section 5.2 to simplify your answers whenever possible.

3. ak = kak−1, for all integers k ≥ 1
a0 = 1

4. bk = bk−1
1 + bk−1

, for all integers k ≥ 1

b0 = 1

5. ck = 3ck−1 + 1, for all integers k ≥ 2
c1 = 1

6.H dk = 2dk−1 + 3, for all integers k ≥ 2
dt = 2

7. ek = 4ek−1 + 5, for all integers k ≥ 1
e0 = 2

8. fk = fk−1 + 2k , for all integers k ≥ 2
f1 = 1

9.H gk = gk−1
gk−1 + 2

, for all integers k ≥ 2

g1 = 1

10. hk = 2k − hk−1, for all integers k ≥ 1
h0 = 1

11. pk = pk−1 + 2 ·3k
p1 = 2

12. sk = sk−1 + 2k, for all integers k ≥ 1
s0 = 3

13. tk = tk−1 + 3k + 1, for all integers k ≥ 1
t0 = 0

14.✶ xk = 3xk−1 + k, for all integers k ≥ 2
x1 = 1

15. yk = yk−1 + k2, for all integers k ≥ 2
y1 = 1

16. Solve the recurrence relation obtained as the answer to
exercise 18(c) of Section 5.6.

17. Solve the recurrence relation obtained as the answer to
exercise 21(c) of Section 5.6.

18. Suppose d is a fixed constant and a0, a1, a2, . . . is a sequence
that satisfies the recurrence relation ak = ak−1 + d, for all
integers k ≥ 1. Use mathematical induction to prove that
an = a0 + nd, for all integers n ≥ 0.

19. A worker is promised a bonus if he can increase his produc-
tivity by 2 units a day every day for a period of 30 days. If
on day 0 he produces 170 units, how many units must he
produce on day 30 to qualify for the bonus?

20. A runner targets herself to improve her time on a certain
course by 3 seconds a day. If on day 0 she runs the course
in 3 minutes, how fast must she run it on day 14 to stay on
target?

21. Suppose r is a fixed constant and a0, a1, a2 . . . is a sequence
that satisfies the recurrence relation ak = rak−1, for all
integers k ≥ 1 and a0 = a. Use mathematical induction to
prove that an = arn , for all integers n ≥ 0.

22. As shown in Example 5.6.8, if a bank pays interest at a
rate of i compounded m times a year, then the amount of
money Pk at the end of k time periods (where one time
period = 1/mth of a year) satisfies the recurrence relation
Pk = [1+ (i/m)]Pk−1 with initial condition P0 = the initial
amount deposited. Find an explicit formula for Pn .

23. Suppose the population of a country increases at a steady rate
of 3% per year. If the population is 50 million at a certain
time, what will it be 25 years later?

24. A chain letter works as follows: One person sends a copy of
the letter to five friends, each of whom sends a copy to five
friends, each of whom sends a copy to five friends, and so
forth. How many people will have received copies of the let-
ter after the twentieth repetition of this process, assuming no
person receives more than one copy?

25. A certain computer algorithm executes twice as many oper-
ations when it is run with an input of size k as when it
is run with an input of size k − 1 (where k is an integer
that is greater than 1). When the algorithm is run with an
input of size 1, it executes seven operations. How many
operations does it execute when it is run with an input of
size 25?

26. A person saving for retirement makes an initial deposit of
$1,000 to a bank account earning interest at a rate of 3%
per year compounded monthly, and each month she adds an
additional $200 to the account.
a. For each nonnegative integer n, let An be the amount in

the account at the end of n months. Find a recurrence rela-
tion relating Ak to Ak−1.

b.H Use iteration to find an explicit formula for An .

c. Use mathematical induction to prove the correctness of
the formula you obtained in part (b).

d. How much will the account be worth at the end of 20
years? At the end of 40 years?

e.H In how many years will the account be worth $10,000?
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27. A person borrows $3,000 on a bank credit card at a nominal
rate of 18% per year, which is actually charged at a rate of
1.5% per month.
a.H What is the annual percentage rate (APR) for the card?

(See Example 5.6.8 for a definition of APR.)
b. Assume that the person does not place any additional

charges on the card and pays the bank $150 each
month to pay off the loan. Let Bn be the balance owed
on the card after n months. Find an explicit formula
for Bn .

c.H How long will be required to pay off the debt?
d. What is the total amount of money the person will have

paid for the loan?

In 28–42 use mathematical induction to verify the correctness
of the formula you obtained in the referenced exercise.

28. Exercise 3 29. Exercise 4 30. Exercise 5

31. Exercise 6 32. Exercise 7 33. Exercise 8

34. Exercise 9 35.H Exercise 10 36. Exercise 11

37.H Exercise 12 38. Exercise 13 39. Exercise 14

40. Exercise 15 41. Exercise 16 42. Exercise 17

In each of 43–49 a sequence is defined recursively. (a) Use itera-
tion to guess an explicit formula for the sequence. (b) Use strong
mathematical induction to verify that the formula of part (a) is
correct.

43. ak = ak−1
2ak−1 − 1

, for all integers k ≥ 1

a0 = 2

44. bk = 2

bk−1
, for all integers k ≥ 2

b1 = 1

45. vk = v�k/2� + v�(k+1)/2� + 2, for all integers k ≥ 2,
v1 = 1.

46.H sk = 2sk−2, for all integers k ≥ 2,
s0 = 1, s1 = 2.

47. tk = k − tk−1, for all integers k ≥ 1,
t0 = 0.

48.H wk = wk−2 + k, for all integers k ≥ 3,
w1 = 1, w2 = 2.

49.H uk = uk−2 ·uk−1, for all integers k ≥ 2,
u0 = u1 = 2.

In 50 and 51 determine whether the given recursively defined
sequence satisfies the explicit formula an = (n − 1)2, for all
integers n ≥ 1.

50. ak = 2ak−1 + k − 1, for all integers k ≥ 2
a1 = 0

51. ak = (ak−1 + 1)2, for all integers k ≥ 2
a1 = 0

52. A single line divides a plane into two regions. Two lines (by
crossing) can divide a plane into four regions; three lines
can divide it into seven regions (see the figure). Let Pn be
the maximum number of regions into which n lines divide a
plane, where n is a positive integer.

Line 3

Line 2

Line 1

5
1 2

3 4

6

7

a. Derive a recurrence relation for Pk in terms of Pk−1, for
all integers k ≥ 2.

b. Use iteration to guess an explicit formula for Pn .

53. Compute

[
1 1
1 0

]n

for small values of n (up to about 5 or 6).

Conjecture explicit formulas for the entries in this matrix,
and prove your conjecture using mathematical induction.

54. In economics the behavior of an economy from one period to
another is often modeled by recurrence relations. Let Yk be
the income in period k and Ck be the consumption in period
k. In one economic model, income in any period is assumed
to be the sum of consumption in that period plus investment
and government expenditures (which are assumed to be con-
stant from period to period), and consumption in each period
is assumed to be a linear function of the income of the pre-
ceding period. That is,

Yk = Ck + E where E is the sum of investment
plus government expenditures

Ck = c + mYk−1 where c and m are constants.

Substituting the second equation into the first gives
Yk = E + c + mYk−1.
a. Use iteration on the above recurrence relation to obtain

Yn = (E + c)

(
mn − 1

m − 1

)
+ mnY0

for all integers n≥1.
b. (For students who have studied calculus) Show that if

0 < m < 1, then lim
n→∞ Yn = E + c

1− m
.

Answers for Test Yourself
1. initial conditions; recurrence relation 2. parentheses 3. k·a 4. ak 5. ak = ak−1 + d; an = a0 + dn 6. ak = rak−1;
an = a0rn 7. mathematical induction
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5.8 Second-Order Linear Homogeneous
Recurrence Relations with Constant Coefficients

Genius is 1% inspiration and 99% perspiration. — Thomas Alva Edison, 1932

In section 5.7 we discussed finding explicit formulas for recursively defined sequences
using iteration. This is a basic technique that does not require any special tools beyond
the ability to discern patterns. In many cases, however, a pattern is not readily discernible
and other methods must be used. A variety of techniques are available for finding explicit
formulas for special classes of recursively defined sequences. The method explained in
this section is one that works for the Fibonacci and other similarly defined sequences.

• Definition

A second-order linear homogeneous recurrence relation with constant coeffi-
cients is a recurrence relation of the form

ak = Aak−1 + Bak−2 for all integers k ≥ some fixed integer,

where A and B are fixed real numbers with B �= 0.

“Second-order” refers to the fact that the expression for ak contains the two previous
terms ak−1 and ak−2, “linear” to the fact that ak−1 and ak−2 appear in separate terms and
to the first power, “homogeneous” to the fact that the total degree of each term is the same
(thus there is no constant term), and “constant coefficients” to the fact that A and B are
fixed real numbers that do not depend on k.

Example 5.8.1 Second-Order Linear Homogeneous Recurrence Relations with Constant
Coefficients

State whether each of the following is a second-order linear homogeneous recurrence
relation with constant coefficients:

a. ak = 3ak−1 + 2ak−2 b. bk = bk−1 + bk−2 + bk−3

c. ck = 1
2ck−1 − 3

7ck−2 d. dk = d2
k−1 + dk−1 ·dk−2

e. ek = 2ek−2 f. fk = 2 fk−1 + 1

g. gk = gk−1 + gk−2 h. hk = (−1)hk−1 + (k − 1)hk−2

Solution

a. Yes; A = 3 and B = 2

b. No; not second-order

c. Yes; A = 1
2 and B = −3

7

d. No; not linear

e. Yes; A = 0 and B = 2

f. No; not homogeneous

g. Yes; A = 1 and B = 1

h. No; nonconstant coefficients ■
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The Distinct-Roots Case
Consider a second-order linear homogeneous recurrence relation with constant
coefficients:

ak = Aak−1 + Bak−2 for all integers k ≥ 2, 5.8.1

where A and B are fixed real numbers. Relation (5.8.1) is satisfied when all the ai = 0,
but it has nonzero solutions as well. Suppose that for some number t with t �= 0, the
sequence

1, t, t2, t3, . . . , tn, . . .

satisfies relation (5.8.1). This means that each term of the sequence equals A times the
previous term plus B times the term before that. So for all integers k ≥ 2,

t k = Atk−1 + Btk−2.

In particular, when k = 2, the equation becomes

t2 = At + B,

or, equivalently,

t2 − At − B = 0. 5.8.2

This is a quadratic equation, and the values of t that make it true can be found either by
factoring or by using the quadratic formula.

Now work backward. Suppose t is any number that satisfies equation (5.8.2). Does the
sequence 1, t, t2, t3, . . . , tn, . . . satisfy relation (5.8.1)? To answer this question, multiply
equation (5.8.2) by t k−2 to obtain

t k−2· t2 − t k−2· At − t k−2·B = 0.

This is equivalent to

t k − Atk−1 − Btk−2 = 0

or

t k = Atk−1 + Btk−2.

Hence the answer is yes: 1, t, t2, t3, . . . , tn, . . . satisfies relation (5.8.1).
This discussion proves the following lemma.

Lemma 5.8.1

Let A and B be real numbers. A recurrence relation of the form

ak = Aak−1 + Bak−2 for all integers k ≥ 2 5.8.1

is satisfied by the sequence

1, t, t2, t3, . . . , tn, . . . ,

where t is a nonzero real number, if, and only if, t satisfies the equation

t2 − At − B = 0 5.8.2

Equation (5.8.2) is called the characteristic equation of the recurrence relation.
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• Definition

Given a second-order linear homogeneous recurrence relation with constant coeffi-
cients:

ak = Aak−1 + Bak−2 for all integers k ≥ 2, 5.8.1

the characteristic equation of the relation is

t2 − At − B = 0. 5.8.2

Example 5.8.2 Using the Characteristic Equation to Find Solutions to a Recurrence Relation

Consider the recurrence relation that specifies that the kth term of a sequence equals the
sum of the (k − 1)st term plus twice the (k − 2)nd term. That is,

ak = ak−1 + 2ak−2 for all integers k ≥ 2. 5.8.3

Find all sequences that satisfy relation (5.8.3) and have the form

1, t, t2, t3, . . . , tn, . . . ,

where t is nonzero.

Solution By Lemma 5.8.1, relation (5.8.3) is satisfied by a sequence 1, t, t2, t3, . . . , tn, . . .
if, and only if, t satisfies the characteristic equation

t2 − t − 2 = 0.

Since

t2 − t − 2 = (t − 2)(t + 1),

the only possible values of t are 2 and −1. It follows that the sequences
1, 2, 22, 23, . . . , 2n, . . . and 1, −1, (−1)2, (−1)3, . . . , (−1)n, . . . .

are both solutions for relation (5.8.3) and there are no other solutions of this form. Note
that these sequences can be rewritten more simply as

1, 2, 22, 23, . . . , 2n, . . . and 1, −1, 1,−1, . . . , (−1)n, . . . . ■

The example above shows how to find two distinct sequences that satisfy a given
second-order linear homogeneous recurrence relation with constant coefficients. It turns
out that any linear combination of such sequences produces another sequence that also
satisfies the relation.

Lemma 5.8.2

If r0, r1, r2, . . . and s0, s1, s2, . . . are sequences that satisfy the same second-order
linear homogeneous recurrence relation with constant coefficients, and if C and D
are any numbers, then the sequence a0, a1, a2, . . . defined by the formula

an = Crn + Dsn for all integers n ≥ 0

also satisfies the same recurrence relation.
continued on page 320
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Proof: Suppose r0, r1, r2, . . . and s0, s1, s2, . . . are sequences that satisfy the same
second-order linear homogeneous recurrence relation with constant coefficients. In
other words, suppose that for some real numbers A and B,

rk = Ark−1 + Brk−2 and sk = Ask−1 + Bsk−2 5.8.4

for all integers k ≥ 2. Suppose also that C and D are any numbers. Let a0, a1, a2, . . .
be the sequence defined by

an = Crn + Dsn for all integers n ≥ 0. 5.8.5

[We must show that a0, a1, a2, . . . satisfies the same recurrence relation as r0, r1, r2, . . .
and s0, s1, s2, . . .. That is, we must show that ak = Aak−1 + Bak−2, for all integers]
k ≥ 2.
For all integers k ≥ 2,

Aak−1 + Bak−2 = A(Crk−1 + Dsk−1)+ B(Crk−2 + Dsk−2)
by substitution
from (5.8.5)

= C(Ark−1 + Brk−2)+ D(Ask−1 + Bsk−2) by basic algebra

= Crk + Dsk
by substitution
from (5.8.4)

= ak
by substitution
from (5.8.5)

Hence a0, a1, a2, . . . satisfies the same recurrence relation as r0, r1, r2, . . . and s0, s1,
s2, . . . [as was to be shown].

Given a second-order linear homogeneous recurrence relation with constant coeffi-
cients, if the characteristic equation has two distinct roots, then Lemmas 5.8.1 and 5.8.2
can be used together to find a particular sequence that satisfies both the recurrence relation
and two specific initial conditions.

Example 5.8.3 Finding the Linear Combination That Satisfies the Initial Conditions

Find a sequence that satisfies the recurrence relation of Example 5.8.2,

ak = ak−1 + 2ak−2 for all integers k ≥ 2, 5.8.3

and that also satisfies the initial conditions

a0 = 1 and a1 = 8.

Solution Example 5.8.2, the sequences

1, 2, 22, 23, . . . , 2n, . . . and 1, −1, 1,−1, . . . , (−1)n, . . .
both satisfy relation (5.8.3) (though neither satisfies the given initial conditions). By
Lemma 5.8.2, therefore, any sequence a0, a1, a2, . . . that satisfies an explicit formula of
the form

an = C ·2n + D(−1)n 5.8.6

where C and D are numbers, also satisfies relation (5.8.3). You can find C and D so that
a0, a1, a2, . . . satisfies the specified initial conditions by substituting n = 0 and n = 1
into equation (5.8.6) and solving for C and D:

a0 = 1 = C ·20 + D(−1)0,
a1 = 8 = C ·21 + D(−1)1.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



5.8 Second-Order Linear Homogeneous Recurrence Relations with Constant Coefficients 321

When you simplify, you obtain the system

1 = C + D

8 = 2C − D,

which can be solved in various ways. For instance, if you add the two equations, you get

9 = 3C,

and so C = 3.

Then, by substituting into 1 = C + D, you get

D = −2.
It follows that the sequence a0, a1, a2, . . . given by

an = 3 ·2n + (−2)(−1)n = 3 ·2n − 2(−1)n,
for integers n ≥ 0, satisfies both the recurrence relation and the given initial
conditions. ■

The techniques of Examples 5.8.2 and 5.8.3 can be used to find an explicit formula for
any sequence that satisfies a second-order linear homogeneous recurrence relation with
constant coefficients for which the characteristic equation has distinct roots, provided that
the first two terms of the sequence are known. This is made precise in the next theorem.

Theorem 5.8.3 Distinct-Roots Theorem

Suppose a sequence a0, a1, a2, . . . satisfies a recurrence relation

ak = Aak−1 + Bak−2 5.8.1

for some real numbers A and B with B �= 0 and all integers k ≥ 2. If the character-
istic equation

t2 − At − B = 0 5.8.2

has two distinct roots r and s, then a0, a1, a2, . . . is given by the explicit formula

an = Crn + Dsn,

whereC and D are the numbers whose values are determined by the values a0 and a1.

Note: To say “C and D are determined by the values of a0 and a1” means that C and D
are the solutions to the system of simultaneous equations

a0 = Cr0 + Ds0 and a1 = Cr1 + Ds1,

or, equivalently,

a0 = C + D and a1 = Cr + Ds.

In exercise 19 at the end of this section you are asked to verify that this system always
has a solution when r �= s.
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Proof: Suppose that for some real numbers A and B, a sequence a0, a1, a2, . . . satis-
fies the recurrence relation ak = Aak−1 + Bak−2, for all integers k ≥ 2, and suppose
the characteristic equation t2 − At − B = 0 has two distinct roots r and s. We will
show that

for all integers n ≥ 0, an = Crn + Dsn,

where C and D are numbers such that

a0 = Cr0 + Ds0 and a1 = Cr1 + Ds1.

Let P(n) be the equation

an = Crn + Dsn. ← P(n)

We use strong mathematical induction to prove that P(n) is true for all integers
n ≥ 0. In the basis step, we prove that P(0) and P(1) are true. We do this because
in the inductive step we need the equation to hold for n = 0 and n = 1 in order to
prove that it holds for n = 2.

Show that P(0) and P(1) are true: The truth of P(0) and P(1) is automatic because
C and D are exactly those numbers that make the following equations true:

a0 = Cr0 + Ds0 and a1 = Cr1 + Ds1.

Show that for all integers k ≥ 1, if P(i) is true for all integers i from 0 through k,
then P(k + 1) is also true: Suppose that k ≥ 1 and for all integers i from 0 through k,

ai = Cri + Dsi . inductive hypothesis

We must show that

ak+1 = Crk+1 + Dsk+1. ← P(k + 1)

Now by the inductive hypothesis,

ak = Crk + Dsk and ak−1 = Crk−1 + Dsk−1,

so

ak+1 = Aak + Bak−1 by definition of a0, a1, a2, . . .

= A(Crk + Dsk)+ B(Crk−1 + Dsk−1) by inductive hypothesis

= C(Ark + Brk−1)+ D(Ask + Bsk−1) by combining like terms

= Crk+1 + Dsk+1 by Lemma 5.8.1.

This is what was to be shown.

[The reason the last equality follows from Lemma 5.8.1 is that since r and s satisfy the
characteristic equation (5.8.2), the sequences r0, r1, r2, . . . and s0, s1, s2, . . . satisfy the
recurrence relation (5.8.1).]

Remark The t of Lemma 5.8.1 and the C and D of Lemma 5.8.2 and Theorem 5.8.3 are
referred to simply as numbers. This is to allow for the possibility of complex as well as
real number values. If both roots of the characteristic equation of the recurrence relation
are real numbers, thenC and D will be real. But if the roots are nonreal complex numbers,
then C and D will be nonreal complex numbers.

The next example shows how to use the distinct-roots theorem to find an explicit
formula for the Fibonacci sequence.
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Example 5.8.4 A Formula for the Fibonacci Sequence

The Fibonacci sequence F0, F1, F2, . . . satisfies the recurrence relation

Fk = Fk−1 + Fk−2 for all integers k ≥ 2

with initial conditions
F0 = F1 = 1.

Find an explicit formula for this sequence.

Solution The Fibonacci sequence satisfies part of the hypothesis of the distinct-roots
theorem since the Fibonacci relation is a second-order linear homogeneous recurrence
relation with constant coefficients (A = 1 and B = 1). Is the second part of the hypothe-
sis also satisfied? Does the characteristic equation

t2 − t − 1 = 0

have distinct roots? By the quadratic formula, the roots are

t = 1±√1− 4(−1)
2

=

⎧⎪⎪⎨
⎪⎪⎩
1+√5

2
1−√5

2

and so the answer is yes. It follows from the distinct-roots theorem that the Fibonacci
sequence is given by the explicit formula

Fn = C

(
1+√5

2

)n

+ D

(
1−√5

2

)n

for all integers n ≥ 0, 5.8.7

whereC and D are the numbers whose values are determined by the fact that F0 = F1 = 1.
To find C and D, write

F0 = 1 = C

(
1+√5

2

)0

+ D

(
1−√5

2

)0

= C ·1+ D ·1 = C + D

and

F1 = 1 = C

(
1+√5

2

)1

+ D

(
1−√5

2

)1

= C

(
1+√5

2

)
+ D

(
1−√5

2

)

Thus the problem is to find numbers C and D such that

C + D = 1

and

C

(
1+√5

2

)
+ D

(
1−√5

2

)
= 1.

This may look complicated, but in fact it is just a system of two equations in two unknowns.
In exercise 7 at the end of this section, you are asked to show that

C = 1+√5
2
√
5

and D = −(1−√5)
2
√
5

.
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Substituting these values for C and D into formula (5.8.7) gives

Fn =
(
1+√5
2
√
5

)(
1+√5

2

)n

+
(
−(1−√5)

2
√
5

)(
1−√5

2

)n

,

or, simplifying,

Fn = 1√
5

(
1+√5

2

)n+1
− 1√

5

(
1−√5

2

)n+1
5.8.8

for all integers n ≥ 0. Remarkably, even though the formula for Fn involves
√
5, all of

the values of the Fibonacci sequence are integers. ■

Note The numbers
(1+√5)/2 and
(1−√5)/2 are related to
the golden ratio of Greek
mathematics. See exercise
24 at the end of this
section.

The Single-Root Case
Consider again the recurrence relation

ak = Aak−1 + Bak−2 for all integers k ≥ 2, 5.8.1

where A and B are real numbers, but suppose now that the characteristic equation

t2 − At − B = 0 5.8.2

has a single real root r . By Lemma 5.8.1, one sequence that satisfies the recurrence
relation is

1, r, r2, r3, . . . , rn, . . .

But another sequence that also satisfies the relation is

0, r, 2r2, 3r3, . . . , nrn, . . .

To see why this is so, observe that since r is the unique root of t2 − At − B = 0, the
left-hand side of the equation can be factored as (t − r)2, and so

t2 − At − B = (t − r)2 = t2 = t2 − 2r t + r2. 5.8.9

Equating coefficients in equation (5.8.9) gives

A = 2r and B = −r2. 5.8.10

Let s0, s1, s2, . . . be the sequence defined by the formula

Sn = nrn for all integers n ≥ 0.

Then

Ask−1 + Bsk−2 = A(k − 1)rk−1 + B(k − 2)rk−2 by definition

= 2r(k − 1)rk−1 − r2(k − 2)rk−2 by substitution from 5.8.10

= 2(k − 1)rk − (k − 2)rk

= (2k − 2− k + 2)rk

= krk by basic algebra

= sk by definition.

Thus s0, s1, s2, . . . satisfies the recurrence relation. This argument proves the follow-
ing lemma.
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Lemma 5.8.4

Let A and B be real numbers and suppose the characteristic equation

t2 − At − B = 0

has a single root r . Then the sequences 1, r1, r2, r3, . . . , rn, . . . and 0, r, 2r2,
3r3, . . . , nrn, . . . both satisfy the recurrence relation

ak = Aak−1 + Bak−2

for all integers k ≥ 2.

Lemmas 5.8.2 and 5.8.4 can be used to establish the single-root theorem, which tells
how to find an explicit formula for any recursively defined sequence satisfying a second-
order linear homogeneous recurrence relation with constant coefficients for which the
characteristic equation has just one root. Taken together, the distinct-roots and single-root
theorems cover all second-order linear homogeneous recurrence relations with constant
coefficients. The proof of the single-root theorem is very similar to that of the distinct-
roots theorem and is left as an exercise.

Theorem 5.8.5 Single-Root Theorem

Suppose a sequence a0, a1, a2, . . . satisfies a recurrence relation

ak = Aak−1 + Bak−2

for some real numbers A and B with B �= 0 and for all integers k ≥ 2. If the char-
acteristic equation t2 − At − B = 0 has a single (real) root r , then a0, a1, a2, . . . is
given by the explicit formula

an = Crn + Dnrn,

where C and D are the real numbers whose values are determined by the values of
a0 and any other known value of the sequence.

Example 5.8.5 Single-Root Case

Suppose a sequence b0, b1, b2, . . . satisfies the recurrence relation

bk = 4bk−1 − 4bk−2 for all integers k ≥ 2, 5.8.11

with initial conditions

b0 = 1 and b1 = 3.

Find an explicit formula for b0, b1, b2, . . ..

Solution This sequence satisfies part of the hypothesis of the single-root theorem because it
satisfies a second-order linear homogeneous recurrence relation with constant coefficients
(A = 4 and B = −4). The single-root condition is also met because the characteristic
equation

t2 − 4t + 4 = 0

has the unique root r = 2 [since t2 − 4t + 4 = (t − 2)2].
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It follows from the single-root theorem that b0, b1, b2, . . . is given by the explicit
formula

bn = C ·2n + Dn2n for all integers n ≥ 0, 5.8.12

where C and D are the real numbers whose values are determined by the fact that b0 = 1
and b1 = 3. To find C and D, write

b0 = 1 = C ·20 + D ·0 ·20 = C

and b1 = 3 = C ·21 + D ·1 ·21 = 2C + 2D.

Hence the problem is to find numbers C and D such that

C = 1

and 2C + 2D = 3.

Substitute C = 1 into the second equation to obtain

2+ 2D = 3,

and so D = 1

2
.

Now substitute C = 1 and D = 1
2 into formula (5.8.12) to conclude that

bn = 2n + 1

2
n2n = 2n

(
1+ n

2

)
for all integers n ≥ 0. ■

Test Yourself
1. A second-order linear homogeneous recurrence relation

with constant coefficients is a recurrence relation of the form
_____ for all integers k ≥ _____, where _____.

2. Given a recurrence relation of the form ak = Aak−1 +
Bak−2 for all integers k ≥ 2, the characteristic equation of
the relation is _____.

3. If a sequence a1, a2, a3, . . . is defined by a second-order lin-
ear homogeneous recurrence relation with constant coeffi-

cients and the characteristic equation for the relation has
two distinct roots r and s (which could be complex num-
bers), then the sequence is given by an explicit formula of
the form _____.

4. If a sequence a1, a2, a3, . . . is defined by a second-order lin-
ear homogeneous recurrence relation with constant coeffi-
cients and the characteristic equation for the relation has
only a single root r , then the sequence is given by an explicit
formula of the form _____.

Exercise Set 5.8
1. Which of the following are second-order linear homoge-

neous recurrence relations with constant coefficients?
a. ak = 2ak−1 − 5ak−2 b. bk = kbk−1 + bk−2
c. ck = 3ck−1 ·c2k−2 d. dk = 3dk−1 + dk−2
e. rk = rk−1 − rk−2 − 2 f. sk = 10sk−2

2. Which of the following are second-order linear homoge-
neous recurrence relations with constant coefficients?
a. ak = (k − 1)ak−1 + 2kak−2
b. bk = −bk−1 + 7bk−2
c. ck = 3ck−1 + 1
d. dk = 3d2

k−1 + dk−2
e. rk = rk−1 − 6rk−3
f. sk = sk−1 + 10sk−2

3. Let a0, a1, a2, . . . be the sequence defined by the explicit
formula

an = C ·2n + D for all integers n ≥ 0,

where C and D are real numbers.
a. Find C and D so that a0 = 1 and a1 = 3. What is a2 in

this case?
b. Find C and D so that a0 = 0 and a1 = 2. What is a2 in

this case?
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4. Let b0, b1, b2, . . . be the sequence defined by the explicit
formula

bn = C ·3n + D(−2)n for all integers n ≥ 0,

where C and D are real numbers.
a. Find C and D so that b0 = 0 and b1 = 5. What is b2 in

this case?
b. Find C and D so that b0 = 3 and b1 = 4. What is b2 in

this case?

5. Let a0, a1, a2, . . . be the sequence defined by the explicit
formula

an = C ·2n + D for all integers n ≥ 0,

where C and D are real numbers. Show that for any choice
of C and D,

ak = 3ak−1 − 2ak−2 for all integers k ≥ 2.

6. Let b0, b1, b2, . . . be the sequence defined by the explicit
formula

bn = C ·3n + D(−2)n for all integers n ≥ 0,

where C and D are real numbers. Show that for any choice
of C and D,

bk = bk−1 + 6bk−2 for all integers k ≥ 2.

7. Solve the system of equations in Example 5.8.4 to obtain

C = 1+√5
2
√
5

and D = −(1−√5)
2
√
5

.

In each of 8–10: (a) suppose a sequence of the form
1.t.t2.t3 . . . tn . . . where t �= 0, satisfies the given recurrence
relation (but not necessarily the initial conditions), and find all
possible values of t : (b) suppose a sequence satisfies the given
initial conditions as well as the recurrence relation, and find an
explicit formula for the sequence.

8. ak = 2ak−1 + 3ak−2, for all integers k ≥ 2
a0 = 1, a1 = 2

9. bk = 7bk−1 − 10bk−2, for all integers k ≥ 2
b0 = 2, b1 = 2

10. ck = ck−1 + 6ck−2, for all integers k ≥ 2
c0 = 0, c1 = 3

In each of 11–16 suppose a sequence satisfies the given recur-
rence relation and initial conditions. Find an explicit formula for
the sequence.

11. dk = 4dk−2, for all integers k ≥ 2
d0 = 1, d1 = −1

12. ek = 9ek−2, for all integers k ≥ 2
e0 = 0, e1 = 2

13. rk = 2rk−1 − rk−2, for all integers k ≥ 2
r0 = 1, r1 = 4

14. sk = −4sk−1 − 4sk−2, for all integers k ≥ 2
s0 = 0, s1 = −1

15. tk = 6tk−1 − 9tk−2, for all integers k ≥ 2
t0 = 1, t1 = 3

16.H sk = 2sk−1 + 2sk−2, for all integers k ≥ 2
s0 = 1, s1 = 3

17. Find an explicit formula for the sequence of exercise 39 in
Section 5.6

18. Suppose that the sequences s0, s1, s2, . . . and t0, t1, t2, . . .
both satisfy the same second-order linear homogeneous
recurrence relation with constant coefficients:

sk = 5sk−1 − 4sk−2 for all integers k ≥ 2,

tk = 5tk−1 − 4tk−2 for all integers k ≥ 2.

Show that the sequence 2s0 + 3t0, 2s1 + 3t1, 2s2 + 3t2, . . .
also satisfies the same relation. In other words, show that

2sk + 3tk = 5(2sk−1 + 3tk−1)− 4(2sk−2 + 3tk−2)

for all integers k ≥ 2. Do not use Lemma 5.8.2.

19. Show that if r, s, a0, and a1 are numbers with r �= s, then
there exist unique numbers C and D so that

C + D = a0

Cr + Ds = a1.

20. Show that if r is a nonzero real number, k and m are dis-
tinct integers, and ak and am are any real numbers, then
there exist unique real numbers C and D so that

Crk + kDrk = ak

Crm + lDrm = am .

21.H Prove Theorem 5.8.5 for the case where the values of C and
D are determined by a0 and a1.

Exercises 22 and 23 are intended for students who are familiar
with complex numbers.

22. Find an explicit formula for a sequence a0, a1, a2, . . . that
satisfies

ak = 2ak−1 − 2ak−2 for all integers k ≥ 2

with initial conditions a0 = 1 and a1 = 2.

23. Find an explicit formula for a sequence b0, b1, b2, . . . that
satisfies

bk = 2bk−1 − 5bk−2 for all integers k ≥ 2

with initial conditions b0 = 1 and b1 = 1.
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24. The numbers
1+√5

2
and

1−√5
2

that appear in the

explicit formula for the Fibonacci sequence are related to
a quantity called the golden ratio in Greek mathematics.
Consider a rectangle of length φ units and height 1, where
φ > 1.

1

1

  – 1

Divide the rectangle into a rectangle and a square as shown
in the preceding diagram. The square is 1 unit on each
side, and the rectangle has sides of lengths 1 and φ − 1.

The ancient Greeks considered the outer rectangle to be
perfectly proportioned (saying that the lengths of its sides
were in a golden ratio to each other) if the ratio of the
length to the width of the outer rectangle equaled the
ratio of the length to the width of the inner rectangle.
That is,

φ

1
= 1

φ − 1
.

a. Show that φ satisfies the following quadratic equation:
t2 − t − 1 = 0.

b. Find the two solutions of t2 − t − 1 = 0 and call them
φ1 and φ2.

c. Express the explicit formula for the Fibonacci sequence
in terms of φ1 and φ2.

Answers for Test Yourself
1. ak = Aak−1 + Bak−2; 2; A and B are fixed real numbers with B �= 0 2. t2 − At − B = 0 3. an = Crn + Dsn , where C and D
are real or complex numbers 4. an = Crn + Dnrn , where C and D are real numbers

5.9 General Recursive Definitions and Structural
Induction

GENTE: Oh, aren’t you acquainted with recursive acronyms? I thought everybody knew
about them. You see, “GOD” stands for “GOD Over Djinn”—which can be expanded as
“GOD Over Djinn, Over Djinn”—and that can, in turn, be expanded to “GOD Over
Djinn, Over Djinn, Over Djinn”—which can, in its turn, be further expanded.. . . You can
go as far as you like.
ACHILLES: But I’ll never finish!
GENIE: Of course not. You can never totally expand GOD.
—Douglas Hofstadter, Gödel, Escher, Bach, 1979

Sequences of numbers are not the only objects that can be defined recursively. In this sec-
tion we discuss recursive definitions for sets and functions. We also introduce structural
induction, which is a version of mathematical induction that is used to prove properties
of recursively defined sets.

Recursively Defined Sets
To define a set of objects recursively, you identify a few core objects as belonging to the
set and give rules showing how to build new set elements from old. More formally, a
recursive definition for a set consists of the following three components:

I. BASE: A statement that certain objects belong to the set.

II. RECURSION: A collection of rules indicating how to form new set objects from
those already known to be in the set.

III. RESTRICTION: A statement that no objects belong to the set other than those com-
ing from I and II.
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Note An example of
“legal” expression is
p ∧ (q∨ ∼r), and an
example of an “illegal”
one is ∧ ∼pqr∨.

Example 5.9.1 Recursive Definition of Boolean Expressions

The set of Boolean expressions was introduced in Section 2.4 as “legal” expressions
involving letters from the alphabet such as p, q, and r , and the symbols ∧, ∨, and ∼. To
make precise which expressions are legal, the set of Boolean expressions over a general
alphabet is defined recursively.

I. BASE: Each symbol of the alphabet is a Boolean expression.

II. RECURSION: If P and Q are Boolean expressions, then so are

(a) (P ∧ Q) and (b) (P ∨ Q) and (c) ∼P.

III. RESTRICTION: There are no Boolean expressions over the alphabet other than
those obtained from I and II.

Derive the fact that the following is a Boolean expression over the English alphabet
{a, b, c, . . . , x, y, z}:

(∼(p ∧ q) ∨ (∼r ∧ p)).

Solution (1) By I, p, q, and r are Boolean expressions.

(2) By (1) and II(a) and (c), (p ∧ q) and ∼r are Boolean expressions.

(3) By (2) and II(c) and (a), ∼(p ∧ q) and (∼r ∧ p) are Boolean expressions.

(4) By (3) and II(b), (∼(p ∧ q) ∨ (∼r ∧ p)) is a Boolean expression. ■

• Definition

Let S be a finite set with at least one element. A string over S is a finite sequence
of elements from S. The elements of S are called characters of the string, and the
length of a string is the number of characters it contains. The null string over S is
defined to be the “string” with no characters. It is usually denoted ε and is said to
have length 0.

Example 5.9.2 The Set of Strings over an Alphabet

Consider the set S of all strings in a’s and b’s. S is defined recursively as follows:

I. BASE: ε is in S, where ε is the null string.

II. RECURSION: If s ∈ S, then

(a) sa ∈ S and (b) sb ∈ S,

where sa and sb are the concatenations of s with a and b respectively.

III. RESTRICTION: Nothing is in S other than objects defined in I and II above. Derive
the fact that ab ∈ S.

Solution (1) By I, ε ∈ S.

(2) By (1) and II(a), εa ∈ S. But εa is the concatenation of the null string and a,
which equals a. So a ∈ S.

(3) By (2) and II(b), ab ∈ S. ■
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Example 5.9.3 Sets of Strings with Certain Properties

In Gödel, Escher, Bach, Douglas Hofstadter introduces the following recursively defined
set of strings of M’s, I ’s, and U ’s, which he calls theMIU-system.∗

I. BASE: MI is in theMIU-system.

II. RECURSION:

a. If x I is in theMIU-system, where x is a string, then x I U is in theMIU-system.
(In other words, you can add a U to any string that ends in I . For example, since
MI is in the system, so isMIU.)

b. If Mx is in the MIU-system, where x is a string, then Mx x is in the MIU-
system. (In other words, you can repeat all the characters in a string that follow
an initial M . For example, ifMUI is in the system, so isMU IU I.)

c. If x I I I y is in the MIU-system, where x and y are strings (possibly null), then
xU y is also in the MIU-system. (In other words, you can replace I I I by U . For
example, if MI I I I is in the system, so areMIU and MUI.)

d. If xUU y is in the MIU-system, where x and y are strings (possibly null), then
xU y is also in theMIU-system. (In other words, you can replace UU by U . For
example, if MI IUU is in the system, so isMI IU.)

III. RESTRICTION: No strings other than those derived from I and II are in the MIU-
system.

Derive the fact that MU IU is in theMIU-system.

Solution (1) By I,MI is in the MIU-system.

(2) By (1) and II(b),MI I is in the MIU-system.

(3) By (2) and II(b),MI I I I is in theMIU-system.

(4) By (3) and II(c),MUI is in theMIU-system.

(5) By (4) and II(a),MU IU is in theMIU-system. ■

Example 5.9.4 Parenthesis Structures

Certain configurations of parentheses in algebraic expressions are “legal” [such as(())()
and()()()], whereas others are not [such as)())) and()))(((]. Here is a recursive definition to
generate the set P of legal configurations of parentheses.

I. BASE: () is in P.

II. RECURSION:

a. If E is in P , so is (E).

b. If E and F are in P , so is EF.

III. RESTRICTION: No configurations of parentheses are in P other than those derived
from I and II above.

Derive the fact that (())() is in P .

Solution (1) By I, () is in P .

(2) By (1) and II(a), (()) is in P .

(3) By (2), (1), and II(b), (())() is in P . ■

∗Douglas Hofstadter, Gödel, Escher, Bach (New York: Basic Books), pp. 33–35.
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Proving Properties about Recursively Defined Sets
When a set has been defined recursively, a version of mathematical induction, called
structural induction, can be used to prove that every object in the set satisfies a given
property.

Structural Introduction for Recursively Defined Sets

Let S be a set that has been defined recursively, and consider a property that objects in
S may or may not satisfy. To prove that every object in S satisfies the
property:

1. Show that each object in the BASE for S satisfies the property;

2. Show that for each rule in the RECURSION, if the rule is applied to objects in
S that satisfy the property, then the objects defined by the rule also satisfy the
property.

Because no objects other than those obtained through the BASE and RECURSION
conditions are contained in S, it must be the case that every object in S satisfies the
property.

Example 5.9.5 A Property of the Set of Parenthesis Structures

Consider the set P of all grammatical configurations of parentheses defined in
Example 5.9.4. Prove that every configuration in P contains an equal number of left
and right parentheses.

Solution

Proof (by structural induction): Given any parenthesis configuration, let the property
be the claim that it has an equal number of left and right parentheses.

Show that each object in the BASE for P satisfies the property: The only object in the
base for P is (), which has one left parenthesis and one right parenthesis, so it has an
equal number of left and right parentheses.

Show that for each rule in the RECURSION for P, if the rule is applied to an object in P
that satisfies the property, then the object defined by the rule also satisfies the property:
The recursion for P consists of two rules denoted II(a) and II(b).

Suppose E is a parenthesis configuration that has an equal number of left and right
parentheses. When rule II(a) is applied to E , the result is (E), so both the number of
left parentheses and the number of right parentheses are increased by one. Since these
numbers were equal to start with, they remain equal when each is increased by one.

Suppose E and F are parenthesis configurations with equal numbers of left and right
parentheses. Say E has m left and right parentheses, and F has n left and right paren-
theses. When rule II(b) is applied, the result is EF , which has an equal number, namely
m + n, of left and right parentheses.

Thus when each rule in the RECURSION is applied to a configuration of parentheses
in P with an equal number of left and right parentheses, the result is a configuration with
an equal number of left and right parentheses.

Therefore, every structure in P has an equal number of left and right parentheses. ■
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Recursive Functions
A function is said to be defined recursively or to be a recursive function if its rule
of definition refers to itself. Because of this self-reference, it is sometimes difficult to
tell whether a given recursive function is well defined. Recursive functions are of great
importance in the theory of computation in computer science.

Example 5.9.6 McCarthy’s 91 Function

The following function M : Z+ → Z was defined by John McCarthy, a pioneer in the
theory of computation and in the study of artificial intelligence:

M(n) =
{
n − 10 if n > 100

M(M(n + 11)) if n ≤ 100

for all positive integers n. Find M(99).
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John McCarthy
(born 1927)

Solution By repeated use of the definition of M ,

M(99)= M(M(110)) since 99 ≤ 100

= M(100) since 110 > 100

= M(M(111)) since 100 ≤ 100

= M(101) since 111 > 100

= 91 since 101 > 100

The remarkable thing about this function is that it takes the value 91 for all positive
integers less than or equal to 101. (You are asked to show this in exercise 20 at the
end of this section.) Of course, for n > 101, M(n) is well defined because it equals
n − 10. ■

Example 5.9.7 The Ackermann Function

In the 1920s the German logician and mathematician Wilhelm Ackermann first defined
a version of the function that now bears his name. This function is important in com-
puter science because it helps answer the question of what can and what cannot be
computed on a computer. It is defined on the set of all pairs of nonnegative integers as
follows:

A(0, n) = n + 1 for all nonnegative integers n 5.9.1

A(m, 0) = A(m − 1, 1) for all positive integers m 5.9.2

A(m, n) = A(m − 1, A(m, n − 1)) for all positive integers m and n 5.9.3

Find A(1, 2).
Wilhelm Ackermann
(1896–1962) Solution

A(1, 2)= A(0, A(1, 1)) by (5.9.3) with m = 1 and n = 2

= A(0, A(0, A(1, 0))) by (5.9.3) with m = 1 and n = 1

= A(0, A(0, A(0, 1))) by (5.9.2) with m = 1

= A(0, A(0, 2)) by (5.9.1) with n = 1

= A(0, 3) by (5.9.1) with n = 2

= 4 by (5.9.1) with n = 3.
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The special properties of the Ackermann function are a consequence of its phenomenal
rate of growth. While the values of A(0, 0) = 1, A(1, 1) = 3, A(2, 2) = 7, and
A(3, 3) = 61 are not especially impressive,

A(4, 4) ∼= 22
265536

and the values of A(n, n) continue to increase with extraordinary rapidity thereafter. ■

The argument is somewhat technical, but it is not difficult to show that the Ackermann
function is well defined. The following is an example of a recursive “definition” that does
not define a function.

Example 5.9.8 A Recursive “Function” That Is Not Well Defined

Consider the following attempt to define a recursive function G from Z+ to Z. For all
integers n ≥ 1,

G(n) =

⎧⎪⎪⎨
⎪⎪⎩
1 if n is 1

1+ G
(n
2

)
if n is even

G(3n − 1) if n is odd and n > 1.

Is G well defined? Why?

Solution Suppose G is a function. Then by definition of G,

G(1) = 1,

G(2) = 1+ G(1) = 1+ 1 = 2,

G(3) = G(8) = 1+ G(4) = 1+ (1+ G(2)) = 1+ (1+ 2) = 4,

G(4) = 1+ G(2) = 1+ 2 = 3.

However,
G(5) = G(14) = 1+ G(7) = 1+ G(20)

= 1+ (1+ G(10)) = 1+ (1+ (1+ G(5))) = 3+ G(5).

Subtracting G(5) from both sides gives 0 = 3, which is false. Since the supposition that
G is a function leads logically to a false statement, it follows that G is not a function. ■

A slight modification of the formula of Example 5.9.8 produces a “function” whose
status of definition is unknown. Consider the following formula: For all integers
n ≥ 1,

T (n) =

⎧⎪⎪⎨
⎪⎪⎩
1 if n is 1

T
(n
2

)
if n is even

T (3n + 1) if n is odd.

In the 1930s, a student, Luther Collatz, became interested in the behavior of a related
function g, which is defined as follows: g(n) = n/2 if n is even, and g(n) = 3n + 1 if
n is odd. Collatz conjectured that for any initial positive number n, computation of suc-
cessive values of g(n), g2(n), g3(n), . . . would eventually produce the number 1. Deter-
mining whether this conjecture is true or false is called the 3n+ 1 problem (or the
3x+ 1 problem). If Collatz’s conjecture is true, the formula for T defines a function; if
the conjecture is false, T is not well defined. As of the publication of this book the answer
is not known, although computer calculation has established that it holds for extremely
large values of n.
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Test Yourself
1. The BASE for a recursive definition of a set is _____.

2. The RECURSION for a recursive definition of a set is
_____.

3. The RESTRICTION for a recursive definition of a set is
_____.

4. One way to show that a given element is in a recursively
defined set is to start with an element or elements in the
_____ and apply the rules from the _____ until you obtain
the given element.

5. Another way to show that a given element is in a recursively
defined set is to use _____ to characterize all the elements
of the set and then observe that the given element satisfies
the characterization.

6. To prove that every element in a recursively defined set S
satisfies a certain property, you show that _____ and that,
for each rule in the RECURSION, if _____ then _____.

7. A function is said to be defined recursively if, and only if,
_____.

Exercise Set 5.9
1. Consider the set of Boolean expressions defined in Exam-

ple 5.9.1. Give derivations showing that each of the fol-
lowing is a Boolean expression over the English alphabet
{a, b, c, . . . , x, y, z}.
a. (∼p ∨ (q ∧ (r∨ ∼s)))
b. ((p ∨ q)∨ ∼((p∧ ∼s) ∧ r))

2. Let S be defined as in Example 5.9.2. Give derivations
showing that each of the following is in S.
a. aab b. bb

3. Consider the MIU-system discussed in Example 5.9.3.
Give derivations showing that each of the following is in
the MIU-system.
a. MIU I
b. MU I IU

4. The set of arithmetic expressions over the real numbers can
be defined recursively as follows:
I. BASE: Each real number r is an arithmetic expression.
II. RECURSION: If u and v are arithmetic expressions,

then the following are also arithmetic expressions:
a. (+u) b. (−u)
c. (u + v) d. (u − v)

e. (u ·v) f.
(u
v

)
III. RESTRICTION: There are no arithmetic expressions

over the real numbers other than those obtained from I
and II.

(Note that the expression
(u
v

)
is legal even though the

value of v may be 0.) Give derivations showing that each
of the following is an arithmetic expression.

a. ((2 ·(0.3–4.2))+ (−7)) b.

(
(9 ·(6.1+ 2))

((4–7) ·6)
)

5. Define a set S recursively as follows:
I. BASE: 1 ∈ S
II. RECURSION: If s ∈ S, then

a. 0s ∈ S b. 1s ∈ S
III. RESTRICTION: Nothing is in S other than objects

defined in I and II above.
Use structural induction to prove that every string in S ends
in a 1.

6. Define a set S recursively as follows:
I. BASE: a ∈ S
II. RECURSION: If s ∈ S, then,

a. sa ∈ S b. sb ∈ S
III. RESTRICTION: Nothing is in S other than objects

defined in I and II above.
Use structural induction to prove that every string in S
begins with an a.

7. Define a set S recursively as follows:
I. BASE: ε ∈ S
II. RECURSION: If s ∈ S, then

a. bs ∈ S b. sb ∈ S
c. saa ∈ S d. aas ∈ S

III. RESTRICTION: Nothing is in S other than objects
defined in I and II above.

Use structural induction to prove that every string in S con-
tains an even number of a’s.
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8. Define a set S recursively as follows:
I. BASE: 1 ∈ S, 2 ∈ S, 3 ∈ S, 4 ∈ S, 5 ∈ S, 6 ∈

S, 7 ∈ S, 8 ∈ S, 9 ∈ S
II. RECURSION: If s ∈ S and t ∈ S, then

a. s0 ∈ S b. st ∈ S
III. RESTRICTION: Nothing is in S other than objects

defined in I and II above.
Use structural induction to prove that no string in S repre-
sents an integer with a leading zero.

9.H Define a set S recursively as follows:
I. BASE: 1 ∈ S, 3 ∈ S, 5 ∈ S, 7 ∈ S, 9 ∈ S
II. RECURSION: If s ∈ S and t ∈ S then

a. st ∈ S b. 2s ∈ S
c. 4s ∈ S d. 6s ∈ S
e. 8s ∈ S

III. RESTRICTION: Nothing is in S other than objects
defined in I and II above.

Use structural induction to prove that every string in S rep-
resents an odd integer.

10.H Define a set S recursively as follows:
I. BASE: 0 ∈ S, 5 ∈ S
II. RECURSION: If s ∈ S and t ∈ S then

a. s + t ∈ S b. s − t ∈ S
III. RESTRICTION: Nothing is in S other than objects

defined in I and II above.
Use structural induction to prove that every integer in S is
divisible by 5.

11. Define a set S recursively as follows:
I. BASE: 0 ∈ S
II. RECURSION: If s ∈ S, then

a. s + 3 ∈ S b. s − 3 ∈ S
III. RESTRICTION: Nothing is in S other than objects

defined in I and II above.
Use structural induction to prove that every integer in S is
divisible by 3.

12.✶H Is the stringMU in theMIU-system? Use structural induc-
tion to prove your answer.

13. Consider the set P of parenthesis structures defined in
Example 5.9.4. Give derivations showing that each of the
following is in P .
a. ()(()) b. (())(())

14.✶ Determine whether either of the following parenthesis
structures is in the set P defined in Example 5.9.4. Use
structural induction to prove your answers.

a. ()(() b. (()()))(()

15. Give a recursive definition for the set of all strings of 0’s
and 1’s that have the same number of 0’s as 1’s.

16. Give a recursive definition for the set of all strings of 0’s
and 1’s for which all the 0’s precede all the 1’s.

17. Give a recursive definition for the set of all strings of a’s
and b’s that contain an odd number of a’s.

18. Give a recursive definition for the set of all strings of a’s
and b’s that contain exactly one a.

19. Use the definition of McCarthy’s 91 function in
Example 5.9.6 to show the following:
a. M(86) = M(91) b. M(91) = 91

20.✶ Prove that McCarthy’s 91 function equals 91 for all positive
integers less than or equal to 101.

21. Use the definition of the Ackermann function in
Example 5.9.7 to compute the following:
a. A(1, 1) b. A(2, 1)

22. Use the definition of the Ackermann function to show the
following:
a. A(1, n) = n + 2, for all nonnegative integers n.
b. A(2, n) = 3+ 2n, for all nonnegative integers n.
c. A(3, n) = 8 ·2n − 3, for all nonnegative integers n.

23. Compute T (2), T (3), T (4), T (5), T (6), and T (7) for the
“function” T defined after Example 5.9.8.

24. Student A tries to define a function F : Z+ → Z by the rule

F(n) =

⎧⎪⎪⎨
⎪⎪⎩
1 if n is 1

F
(n
2

)
if n is even

1+ F(5n − 9) if n is odd and n > 1

for all integers n ≥ 1. Student B claims that F is not well
defined. Justify student B’s claim.

25. Student C tries to define a function G : Z+ → Z by the rule

G(n) =

⎧⎪⎪⎨
⎪⎪⎩
1 if n is 1

G
(n
2

)
if n is even

2+ G(3n − 5) if n is odd and n > 1

for all integers n ≥ 1. Student D claims that G is not well
defined. Justify student D’s claim.

Answers for Test Yourself
1. a statement that certain objects belong to the set 2. a collection of rules indicating how to form new set objects from those
already known to be in the set 3. a statement that no objects belong to the set other than those coming from either the BASE or
the RECURSION 4. BASE; RECURSION 5. structural induction 6. each object in the BASE satisfies the property; the rule is
applied to objects in the BASE; the objects defined by the rule also satisfy the property 7. its rule of definition refers to itself
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Georg Cantor
(1845–1918)

In the late nineteenth century, Georg Cantor was the first to realize the potential usefulness
of investigating properties of sets in general as distinct from properties of the elements
that comprise them. Many mathematicians of his time resisted accepting the validity of
Cantor’s work. Now, however, abstract set theory is regarded as the foundation of math-
ematical thought. All mathematical objects (even numbers!) can be defined in terms of
sets, and the language of set theory is used in every mathematical subject.

In this chapter we add to the basic definitions and notation of set theory introduced in
Chapter 1 and show how to establish properties of sets through the use of proofs and coun-
terexamples. We also introduce the notion of a Boolean algebra, explain how to derive
its properties, and discuss their relationships to logical equivalencies and set identities.
The chapter ends with a discussion of a famous “paradox” of set theory and its relation
to computer science.

6.1 Set Theory: Definitions and the Element
Method of Proof
The introduction of suitable abstractions is our only mental aid to organize and master
complexity. —E. W. Dijkstra, 1930–2002

The words set and element are undefined terms of set theory just as sentence, true, and
false are undefined terms of logic. The founder of set theory, Georg Cantor, suggested
imagining a set as a “collection into a whole M of definite and separate objects of our
intuition or our thought. These objects are called the elements of M.” Cantor used the
letter M because it is the first letter of the German word for set:Menge.

!
Caution! Don’t forget
to include the words “the
set of all.”

Following the spirit of Cantor’s notation (though not the letter), let S denote a set and
a an element of S. Then, as indicated in Section 1.2, a ∈ S means that a is an element of
S, a /∈ S means that a is not an element of S, {1, 2, 3} refers to the set whose elements
are 1, 2, and 3, and {1, 2, 3, . . .} refers to the set of all positive integers. If S is a set and
P(x) is a property that elements of S may or may not satisfy, then a set A may be defined
by writing

A = {x ∈ S | P(x)},
↗ ↖

the set of all such that

which is read “the set of all x in S such that P of x .”
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6.1 Set Theory: Definitions and the Element Method of Proof 337

Subsets: Proof and Disproof
We begin by rewriting what it means for a set A to be a subset of a set B as a formal
universal conditional statement:

A ⊆ B ⇔ ∀x, if x ∈ A then x ∈ B.

The negation is, therefore, existential:

A�B ⇔ ∃x such that x ∈ A and x �∈ B.

A proper subset of a set is a subset that is not equal to its containing set. Thus

A is a proper subset of B ⇔
(1) A⊆ B, and
(2) there is at least one element in B that is not in A.

Example 6.1.1 Testing Whether One Set Is a Subset of Another

Let A = {1} and B = {1, {1}}.
a. Is A ⊆ B?

b. If so, is A a proper subset of B?

Solution

a. Because A = {1}, A has only one element, namely the symbol 1. This element is also
one of the elements in set B. Hence every element in A is in B, and so A ⊆ B.

b. B has two distinct elements, the symbol 1 and the set {1} whose only element is 1.
Since 1 �= {1}, the set {1} is not an element of A, and so there is an element of B that
is not an element of A. Hence A is a proper subset of B. ■

Note A set like {1},
with just one element, is
called a singleton set.

Because we define what it means for one set to be a subset of another by means of a
universal conditional statement, we can use the method of direct proof to establish a
subset relationship. Such a proof is called an element argument and is the fundamental
proof technique of set theory.

Element Argument: The Basic Method for Proving That
One Set Is a Subset of Another

Let sets X and Y be given. To prove that X ⊆ Y ,

1. suppose that x is a particular but arbitrarily chosen element of X ,

2. show that x is an element of Y .
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Example 6.1.2 Proving and Disproving Subset Relations

Define sets A and B as follows:

A = {m ∈ Z |m = 6r + 12 for some r ∈ Z}
B = {n ∈ Z | n = 3s for some s ∈ Z}.

a. Outline a proof that A ⊆ B. b. Prove that A ⊆ B. c. Disprove that B ⊆ A.

Solution

a. Proof Outline:
Suppose x is a particular but arbitrarily chosen element of A.

.

.

.

Therefore, x is an element of B.

b. Proof:
Suppose x is a particular but arbitrarily chosen element of A.

[We must show that x ∈ B. By definition of B, this means
we must show that x = 3 · (some integer).]

By definition of A, there is an integer r such that x = 6r + 12.
[Given that x = 6r + 12, can we express x as 3 ·(some integer)?
I.e., does 6r + 12 = 3 ·(some integer)? Yes, 6r + 12 = 3 ·(2r + 4).]

Let s = 2r + 4.
[We must check that s is an integer.]

Then s is an integer because products and sums of integers are integers.
[Now we must check that x = 3s.]

Also 3s = 3(2r + 4) = 6r + 12 = x ,
Thus, by definition of B, x is an element of B,

[which is what was to be shown].

c. To disprove a statement means to show that it is false, and to show it is false that
B ⊆ A, you must find an element of B that is not an element of A. By the definitions
of A and B, this means that you must find an integer x of the form 3 · (some integer)
that cannot be written in the form 6 · (some integer) + 12. A little experimentation
reveals that various numbers do the job. For instance, you could let x = 3. Then x ∈ B
because 3 = 3·1, but x �∈ A because there is no integer r such that 3 = 6r + 12. For
if there were such an integer, then

Note Recall that the
notation P(x)⇒ Q(x)
means that every element
that makes P(x) true also
makes Q(x) true.

⇒
⇒
⇒

6r + 12 = 3
2r + 4 = 1

2r = 3
r = 3/2

by assumption

by dividing both sides by 3

by subtracting 4 from both sides

by dividing both sides by 2,

but 3/2 is not an integer. Thus 3 ∈ B but 3∈/ A, and so B � A. ■
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Set Equality
Recall that by the axiom of extension, sets A and B are equal if, and only if, they have
exactly the same elements. We restate this as a definition that uses the language of subsets.

• Definition

Given sets A and B, A equals B, written A = B, if, and only if, every element of A
is in B and every element of B is in A.

Symbolically:

A = B ⇔ A ⊆ B and B ⊆ A.

This version of the definition of equality implies the following:

To know that a set A equals a set B, you must know
that A ⊆ B and you must also know that B ⊆ A.

Example 6.1.3 Set Equality

Define sets A and B as follows:

A = {m ∈ Z | m = 2a for some integer a}
B = {n ∈ Z | n = 2b − 2 for some integer b}

Is A = B?

Solution Yes. To prove this, both subset relations A ⊆ B and B ⊆ A must be proved.

Part 1, Proof That A ⊆ B:
Suppose x is a particular but arbitrarily chosen element of A.

[We must show that x ∈ B. By definition of B, this means
we must show that x = 2 · (some integer)− 2.]

By definition of A, there is an integer a such that x = 2a.
[Given that x = 2a, can x also be expressed as 2 · (some integer)− 2?
I.e., is there an integer, say b, such that 2a = 2b − 2? Solve for b to
obtain b = (2a + 2)/2 = a + 1. Check to see if this works.]

Let b = a + 1.
[First check that b is an integer.]

Then b is an integer because it is a sum of integers.
[Then check that x= 2b − 2.]

Also 2b − 2 = 2(a + 1)− 2 = 2a + 2− 2 = 2a = x ,
Thus, by definition of B, x is an element of B

[which is what was to be shown].

Part 2, Proof That B ⊆ A: This part of the proof is left as exercise 2 at the end of this
section. ■
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Venn Diagrams
If sets A and B are represented as regions in the plane, relationships between A and B
can be represented by pictures, calledVenn diagrams, that were introduced by the British
mathematician John Venn in 1881. For instance, the relationship A ⊆ B can be pictured
in one of two ways, as shown in Figure 6.1.1.
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(1834–1923)

A B A = B

(a) (b)

Figure 6.1.1 A ⊆ B

The relationship A � B can be represented in three different ways with Venn
diagrams, as shown in Figure 6.1.2.

A B

(a)

A B

(b)

A

B

(c)

Figure 6.1.2 A �⊆ B

If we allow the possibility that some subregions of Venn diagrams do not contain any
points, then in Figure 6.1.1 diagram (b) can be viewed as a special case of diagram (a) by
imagining that the part of B outside A does not contain any points. Similarly, diagrams
(a) and (c) of Figure 6.1.2 can be viewed as special cases of diagram (b). To obtain (a)
from (b), imagine that the region of overlap between A and B does not contain any points.
To obtain (c), imagine that the part of B that lies outside A does not contain any points.
However, in all three diagrams it would be necessary to specify that there is a point in A
that is not in B.

Example 6.1.4 Relations among Sets of Numbers

Since Z,Q, andR denote the sets of integers, rational numbers, and real numbers, respec-
tively, Z is a subset of Q because every integer is rational (any integer n can be written
in the form n

1 ), and Q is a subset of R because every rational number is real (any ratio-
nal number can be represented as a length on the number line). Z is a proper subset of
Q because there are rational numbers that are not integers (for example, 1

2 ), and Q is a

proper subset of R because there are real numbers that are not rational (for example,
√
2).

This is shown diagrammatically in Figure 6.1.3. ■

Z Q R

Figure 6.1.3
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Operations on Sets
Most mathematical discussions are carried on within some context. For example, in a cer-
tain situation all sets being considered might be sets of real numbers. In such a situation,
the set of real numbers would be called a universal set or a universe of discourse for the
discussion.

• Definition

Let A and B be subsets of a universal set U .

1. The union of A and B, denoted A ∪ B, is the set of all elements that are in at least
one of A or B.

2. The intersection of A and B, denoted A ∩ B, is the set of all elements that are
common to both A and B.

3. The difference of B minus A (or relative complement of A in B), denoted
B − A, is the set of all elements that are in B and not A.

4. The complement of A, denoted Ac, is the set of all elements in U that are
not in A.

Symbolically: A ∪ B = {x ∈ U | x ∈ A or x ∈ B},
A ∩ B = {x ∈ U | x ∈ A and x ∈ B},
B − A = {x ∈ U | x ∈ B and x /∈ A},

Ac = {x ∈ U | x /∈ A}.

The symbols ∈,∪, and ∩ were introduced in 1889 by the Italian mathematician
Giuseppe Peano.

S
to

ck
M

on
ta

ge

Giuseppe Peano
(1858–1932)

Venn diagram representations for union, intersection, difference, and complement are
shown in Figure 6.1.4.

U U

A B A B

Shaded region
represents B – A. 

Shaded region
represents Ac. 

U U

A B A B

Shaded region
represents A � B. 

Shaded region
represents A � B. 

Figure 6.1.4

Example 6.1.5 Unions, Intersections, Differences, and Complements

Let the universal set be the set U = {a, b, c, d, e, f, g} and let A = {a, c, e, g} and
B = {d, e, f, g}. Find A ∪ B, A ∩ B, B − A, and Ac.

Solution A ∪ B = {a, c, d, e, f, g} A ∩ B = {e, g}
B − A = {d, f } Ac = {b, d, f } ■
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There is a convenient notation for subsets of real numbers that are intervals.

• Notation

Given real numbers a and b with a ≤ b:

(a, b) = {x ∈ R | a < x < b} [a, b] = {x ∈ R | a ≤ x ≤ b}
(a, b] = {x ∈ R | a < x ≤ b} [a, b) = {x ∈ R | a ≤ x < b}.

The symbols∞ and −∞ are used to indicate intervals that are unbounded either on
the right or on the left:

(a,∞)={x ∈ R | x > a} [a,∞) ={x ∈ R | x ≥ a}
(−∞, b)={x ∈ R | x < b} [−∞, b)={x ∈ R | x ≤ b}.

Note The symbol∞
does not represent a
number. It just indicates
the unboundedness of the
interval.

Observe that the notation for the interval (a, b) is identical to the notation for the ordered
pair (a, b). However, context makes it unlikely that the two will be confused.

Example 6.1.6 An Example with Intervals

Let the universal set be the set R of all real numbers and let

A = (−1, 0] = {x ∈ R | −1 < x ≤ 0} and B = [0, 1) = {x ∈ R | 0 ≤ x < 1}.
These sets are shown on the number lines below.

–2 –1 0 1 2

A

–2 –1 0 1 2

B

Find A ∪ B, A ∩ B, B − A, and Ac.

Solution

A ∪ B = {x ∈ R | x ∈ (−1, 0] or x ∈ [0, 1)} = {x ∈ R | x ∈ (−1, 1)} = (−1, 1).–2 –1 0 1 2

A � B

A ∩ B = {x ∈ R | x ∈ (−1, 0] and x ∈ [0, 1)} = {0}.–2 –1 0 1 2

A � B

–2 –1 0 1 2

B � A
B − A = {x ∈ R | x ∈ [0, 1) and x �∈ (−1, 0]} = {x ∈ R | 0 < x < 1} = (0, 1)

Ac = {x ∈ R | it is not the case that x ∈ (−1, 0]}
= {x ∈ R | it is not the case that (−1 < x and x ≤ 0)}

by definition of the
double inequality

by De Morgan’s
law

= {x ∈ R | x ≤ −1 or x > 0} = (−∞, −1] ∪ (0, ∞)
–2 –1 0 1 2

Ac
■

The definitions of unions and intersections for more than two sets are very similar to
the definitions for two sets.
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• Definition

Unions and Intersections of an Indexed Collection of Sets
Given sets A0, A1, A2, . . . that are subsets of a universal set U and given a nonneg-
ative integer n,

n⋃
i=0

Ai = {x ∈ U | x ∈ Ai for at least one i = 0, 1, 2, . . . , n}

∞⋃
i=0

Ai = {x ∈ U | x ∈ Ai for at least one nonnegative integer i}

n⋂
i=0

Ai = {x ∈ U | x ∈ Ai for all i = 0, 1, 2, . . . , n}

∞⋂
i=0

Ai = {x ∈ U | x ∈ Ai for all nonnegative integers i}.

Note
n⋃

i=0
Ai is read “the

union of the A-sub-i from
i equals zero to n.”

An alternative notation for
n⋃

i=0
Ai is A0 ∪ A1 ∪ . . . ∪ An , and an alternative notation for

n⋂
i=0

Ai is A0 ∩ A1 ∩ . . . ∩ An .

Example 6.1.7 Finding Unions and Intersections of More than Two Sets

For each positive integer i , let Ai =
{
x ∈ R | − 1

i < x <
1
i

}
= Ai =

(
−1

i ,
1
i

)
.

a. Find A1 ∪ A2 ∪ A3 and A1 ∩ A2 ∩ A3. b. Find
∞⋃
i=1

Ai and
∞⋂
i=1

Ai .

Solution

a. A1 ∪ A2 ∪ A3={x ∈ R | x is in at least one of the intervals (−1, 1),
or

(
−1

2 ,
1
2

)
, or

(
−1

3 ,
1
3

)}
={x ∈ R | − 1 < x < 1} because all the elements in

(
−1
2 ,

1
2

)
and

(
−1
3 ,

1
3

)
are in (−1, 1)= (−1, 1)

A1 ∩ A2 ∩ A3={x ∈ R | x is in all of the intervals (−1, 1),

and
(
−1

2 ,
1
2

)
, and

(
−1

3 ,
1
3

)}
=
{
x ∈ R | − 1

3 < x <
1
3

}
because

(
−1
3 ,

1
3

)
⊆

(
−1
2 ,

1
2

)
⊆ (−1, 1)

=
(
−1

3 ,
1
3

)
b.

∞⋃
i=1

Ai ={x ∈ R | x is in at least one of the intervals
(
− 1

i ,
1
i

)
,

where i is a positive integer}
= {x ∈ R | − 1 < x < 1} because all the elements in every interval(

−1
i ,

1
i

)
are in (−1, 1)= (−1, 1)

∞⋂
i=1

Ai ={x ∈ R | x is in all of the intervals
(
−1

i ,
1
i

)
,where i is a positive integer}

= {0} because the only element in every interval is 0

■
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The Empty Set
We have stated that a set is defined by the elements that compose it. This being so, can
there be a set that has no elements? It turns out that it is convenient to allow such a
set. Otherwise, every time we wanted to take the intersection of two sets or to define a
set by specifying a property, we would have to check that the result had elements and
hence qualified for “sethood.” For example, if A = {1, 3} and B = {2, 4}, then A ∩ B
has no elements. Neither does {x ∈ R | x2 = −1} because no real numbers have negative
squares.

It is somewhat unsettling to talk about a set with no elements, but it often happens in
mathematics that the definitions formulated to fit one set of circumstances are satisfied
by some extreme cases not originally anticipated. Yet changing the definitions to exclude
those cases would seriously undermine the simplicity and elegance of the theory taken as
a whole.

In Section 6.2 we will show that there is only one set with no elements. Because it is
unique, we can give it a special name. We call it the empty set (or null set) and denote it
by the symbol ∅. Thus {1, 3} ∩ {2, 4} = ∅ and {x ∈ R | x2 = −1} = ∅.

Example 6.1.8 A Set with No Elements

Describe the set D = {x ∈ R | 3 < x < 2}.
Solution Recall that a < x < b means that a < x and x < b. So D consists of all real

numbers that are both greater than 3 and less than 2. Since there are no such numbers,
D has no elements and so D = ∅. ■

Partitions of Sets
In many applications of set theory, sets are divided up into nonoverlapping (or disjoint)
pieces. Such a division is called a partition.

• Definition

Two sets are called disjoint if, and only if, they have no elements in common.
Symbolically:

A and B are disjoint ⇔ A ∩ B = ∅.

Example 6.1.9 Disjoint Sets

Let A = {1, 3, 5} and B = {2, 4, 6}. Are A and B disjoint?

Solution Yes. By inspection A and B have no elements in common, or, in other words,
{1, 3, 5} ∩ {2, 4, 6} = ∅. ■
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• Definition

Sets A1, A2, A3 . . . aremutually disjoint (or pairwise disjoint or nonoverlapping)
if, and only if, no two sets Ai and A j with distinct subscripts have any elements in
common. More precisely, for all i, j = 1, 2, 3, . . .

Ai ∩ A j = ∅ whenever i �= j.

Example 6.1.10 Mutually Disjoint Sets

a. Let A1 = {3, 5}, A2 = {1, 4, 6}, and A3 = {2}. Are A1, A2, and A3 mutually disjoint?

b. Let B1 = {2, 4, 6}, B2 = {3, 7}, and B3 = {4, 5}. Are B1, B2, and B3 mutually
disjoint?

Solution

a. Yes. A1 and A2 have no elements in common, A1 and A3 have no elements in common,
and A2 and A3 have no elements in common.

A

A2

A4A3

A1

Figure 6.1.5 A Partition
of a Set

b. No. B1 and B3 both contain 4. ■

Suppose A, A1, A2, A3, and A4 are the sets of points represented by the regions shown
in Figure 6.1.5. Then A1, A2, A3, and A4 are subsets of A, and A = A1 ∪ A2 ∪ A3 ∪ A4.
Suppose further that boundaries are assigned to the regions representing A2, A3, and
A4 in such a way that these sets are mutually disjoint. Then A is called a union of
mutually disjoint subsets, and the collection of sets {A1, A2, A3, A4} is said to be a
partition of A.

• Definition

A finite or infinite collection of nonempty sets {A1, A2, A3 . . .} is a partition of a
set A if, and only if,

1. A is the union of all the Ai

2. The sets A1, A2, A3, . . . are mutually disjoint.

Example 6.1.11 Partitions of Sets

a. Let A = {1, 2, 3, 4, 5, 6}, A1 = {1, 2}, A2 = {3, 4}, and A3 = {5, 6}. Is {A1, A2, A3}
a partition of A?

b. Let Z be the set of all integers and let

T0 = {n ∈ Z | n = 3k, for some integer k},
T1 = {n ∈ Z | n = 3k + 1, for some integer k}, and
T2 = {n ∈ Z | n = 3k + 2, for some integer k}.

Is {T0, T1, T2} a partition of Z?
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Solution

a. Yes. By inspection, A = A1 ∪ A2 ∪ A3 and the sets A1, A2, and A3 are mutually
disjoint.

b. Yes. By the quotient-remainder theorem, every integer n can be represented in exactly
one of the three forms

n = 3k or n = 3k + 1 or n = 3k + 2,

for some integer k. This implies that no integer can be in any two of the sets T0, T1, or
T2. So T0, T1, and T2 are mutually disjoint. It also implies that every integer is in one
of the sets T0, T1, or T2. So Z = T0 ∪ T1 ∪ T2. ■

Power Sets
There are various situations in which it is useful to consider the set of all subsets of a
particular set. The power set axiom guarantees that this is a set.

• Definition

Given a set A, the power set of A, denoted PP (A), is the set of all subsets of A.

Example 6.1.12 Power Set of a Set

Find the power set of the set {x, y}. That is, find P({x, y}).
Solution P({x, y}) is the set of all subsets of {x, y}. In Section 6.2 we will show that
∅ is a subset of every set, and so ∅ ∈P({x, y}). Also any set is a subset of itself, so
{x, y} ∈P({x, y}). The only other subsets of {x, y} are {x} and {y}, so

P({x, y}) = {∅, {x}, {y}, {x, y}}. ■

Cartesian Products
Recall that the definition of a set is unaffected by the order in which its elements are listed
or the fact that some elements may be listed more than once. Thus {a, b}, {b, a}, and
{a, a, b} all represent the same set. The notation for an ordered n-tuple is a generalization
of the notation for an ordered pair. (See Section 1.2.) It takes both order and multiplicity
into account.

• Definition

Let n be a positive integer and let x1, x2, . . . , xn be (not necessarily distinct)
elements. The ordered n-tuple, (x1, x2, . . . , xn), consists of x1, x2, . . . , xn together
with the ordering: first x1, then x2, and so forth up to xn . An ordered 2-tuple is called
an ordered pair, and an ordered 3-tuple is called an ordered triple.

Two ordered n-tuples (x1, x2, . . . , xn) and (y1, y2, . . . , yn) are equal if, and only
if, x1 = y1, x2 = y2, . . . , xn = yn .

Symbolically:

(x1, x2, . . . , xn) = (y1, y2, . . . , yn) ⇔ x1 = y1, x2 = y2, . . . , xn = yn.

In particular,

(a, b) = (c, d) ⇔ a = c and b = d.
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Example 6.1.13 Ordered n-tuples

a. Is (1, 2, 3, 4) = (1, 2, 4, 3)?

b. Is
(
3, (−2)2, 1

2

)
= (√

9, 4, 3
6

)
?

Solution

a. No. By definition of equality of ordered 4-tuples,

(1, 2, 3, 4) = (1, 2, 4, 3)⇔ 1 = 1, 2 = 2, 3 = 4, and 4 = 3

But 3 �= 4, and so the ordered 4-tuples are not equal.

b. Yes. By definition of equality of ordered triples,(
3, (−2)2, 1

2

)
=

(√
9, 4, 3

6

)
⇔ 3 = √9 and (−2)2 = 4 and 1

2 = 3
6 .

Because these equations are all true, the two ordered triples are equal. ■

• Definition

Given sets A1, A2, . . . , An , the Cartesian product of A1, A2, . . . , An denoted
A1 × A2 × . . .× An, is the set of all ordered n-tuples (a1, a2, . . . , an) where
a1 ∈ A1, a2 ∈ A2, . . . , an ∈ An .

Symbolically:

A1 × A2 × · · · × An = {(a1, a2, . . . , an) | a1 ∈ A1, a2 ∈ A2, . . . , an ∈ An}.
In particular,

A1 × A2 = {(a1, a2) | a1 ∈ A1 and a2 ∈ A2}
is the Cartesian product of A1 and A2.

Example 6.1.14 Cartesian Products

Let A1 = {x, y}, A2 = {1, 2, 3}, and A3 = {a, b}.
a. Find A1 × A2. b. Find (A1 × A2)× A3. c. Find A1 × A2 × A3.

Solution

a. A1 × A2 = {(x, 1), (x, 2), (x, 3), (y, 1), (y, 2), (y, 3)}
b. The Cartesian product of A1 and A2 is a set, so it may be used as one of the sets

making up another Cartesian product. This is the case for (A1 × A2)× A3.

(A1 × A2)× A3 = {(u, v) | u ∈ A1 × A2 and v ∈ A3} by definition of Cartesian product

= {((x, 1), a), ((x, 2), a), ((x, 3), a), ((y, 1), a),
((y, 2), a), ((y, 3), a), ((x, 1), b), ((x, 2), b), ((x, 3), b),

((y, 1), b), ((y, 2), b), ((y, 3), b)}
c. The Cartesian product A1 × A2 × A3 is superficially similar to, but is not quite the

same mathematical object as, (A1 × A2)× A3. (A1 × A2)× A3 is a set of ordered

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



348 Chapter 6 Set Theory

pairs of which one element is itself an ordered pair, whereas A1 × A2 × A3 is a set of
ordered triples. By definition of Cartesian product,

A1 × A2 × A3 = {(u, v, w) | u ∈ A1, v ∈ A2, and w ∈ A3}
= {(x, 1, a), (x, 2, a), (x, 3, a), (y, 1, a), (y, 2, a),

(y, 3, a), (x, 1, b), (x, 2, b), (x, 3, b), (y, 1, b),

(y, 2, b), (y, 3, b)}. ■

An Algorithm to Check Whether One Set Is a Subset
of Another (Optional)

You may get some additional insight into the concept of subset by considering an algo-
rithm for checking whether one finite set is a subset of another. Order the elements of
both sets and successively compare each element of the first set with each element of
the second set. If some element of the first set is not found to equal any element of the
second, then the first set is not a subset of the second. But if each element of the first set
is found to equal an element of the second set, then the first set is a subset of the second.
The following algorithm formalizes this reasoning.

Algorithm 6.1.1 Testing Whether A ⊆ B

[Input sets A and B are represented as one-dimensional arrays a[1], a[2], . . . , a[m] and
b[1], b[2], . . . , b[n], respectively. Starting with a[1] and for each successive a[i] in A,
a check is made to see whether a[i] is in B. To do this, a[i] is compared to successive
elements of B. If a[i] is not equal to any element of B, then answer is given the value
“A � B.” If a[i] equals some element of B, the next successive element in A is checked
to see whether it is in B. If every successive element of A is found to be in B, then answer
never changes from its initial value “A ⊆ B.”]

Input: m [a positive integer], a[1], a[2], . . . , a[m] [a one-dimensional array
representing the set A], n [a positive integer], b[1], b[2], . . . , b[n] [a one-dimensional
array representing the set B]

Algorithm Body:

i := 1, answer := “A ⊆ B”

while (i ≤ m and answer = “A ⊆ B”)

j := 1, found := “no”

while ( j ≤ n and found = “no”)

if a[i] = b[ j] then found := “yes”

j := j + 1

end while

[If found has not been given the value “yes” when execution reaches this
point, then a[i] /∈ B.]

if found = “no” then answer := “A � B”

i := i + 1

end while

Output: answer [a string]
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Example 6.1.15 Tracing Algorithm 6.1.1

Trace the action of Algorithm 6.1.1 on the variables i, j , found, and answer for
m = 3, n = 4, and sets A and B represented as the arrays a[1] = u, a[2] = v, a[3] = w,

b[1] = w, b[2] = x, b[3] = y, and b[4] = u.

Solution

i 1 2 3

j 1 2 3 4 5 1 2 3 4 5

found no yes no

answer A ⊆ B A � B

■

In the exercises at the end of this section, you are asked to write an algorithm to check
whether a given element is in a given set. To do this, you can represent the set as a one-
dimensional array and compare the given element with successive elements of the array
to determine whether the two elements are equal. If they are, then the element is in the
set; if the given element does not equal any element of the array, then the element is not
in the set.

Test Yourself
Answers to Test Yourself questions are located at the end of each section.

1. The notation A ⊆ B is read “_____” and means that _____.

2. To use an element argument for proving that a set X is a
subset of a set Y , you suppose that _____ and show that
_____.

3. To disprove that a set X is a subset of a set Y , you show that
there is _____.

4. An element x is in A ∪ B if, and only if, _____.

5. An element x is in A ∩ B if, and only if, _____.

6. An element x is in B − A if, and only if, _____.

7. An element x is in Ac if, and only if, _____.

8. The empty set is a set with _____.

9. The power set of a set A is _____.

10. Sets A and B are disjoint if, and only if, _____.

11. A collection of nonempty sets A1, A2, A3, . . . is a partition
of a set A if, and only if, _____.

12. Given sets A1, A2, . . . , An , the Cartesian product
A1 × A2 × . . .× An is _____.

Exercise Set 6.1*
1. In each of (a)–(f), answer the following questions: Is

A ⊆ B? Is B ⊆ A? Is either A or B a proper subset of the
other?

a. A = {2, {2}, (
√
2)2}, B = {2, {2}, {{2}}}

b. A = {3, √52 − 42, 24mod 7}, B = {8mod 5}
c. A = {{1, 2}, {2, 3}}, B = {1, 2, 3}
d. A = {a, b, c}, B = {{a}, {b}, {c}}
e. A = {√16, {4}}, B = {4}
f. A = {x ∈ R | cos x ∈ Z}, B = {x ∈ R | sin x ∈ Z}

2. Complete the proof from Example 6.1.3: Prove that B ⊆ A
where

A = {m ∈ Z |m = 2a for some integer a}
and

B = {n ∈ Z | n = 2b − 2 for some integer b}

∗ For exercises with blue numbers or letters, solutions are given in Appendix B. The symbolH indicates that only a hint or a partial
solution is given. The symbol ✶ signals that an exercise is more challenging than usual.
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3. Let sets R, S, and T be defined as follows:

R = {x ∈ Z | x is divisible by 2}
S = {y ∈ Z | y is divisible by 3}
T = {z ∈ Z | z is divisible by 6}

a. Is R ⊆ T ? Explain.
b. Is T ⊆ R? Explain.
c. Is T ⊆ S? Explain.

4. Let A = {n ∈ Z | n = 5r for some integer r} and
B = {m ∈ Z |m = 20s for some integer s}.
a. Is A ⊆ B? Explain. b. Is B ⊆ A? Explain.

5. Let C = {n ∈ Z | n = 6r − 5 for some integer r} and
D = {m ∈ Z |m = 3s + 1 for some integer s}.
Prove or disprove each of the following statements.
a. C ⊆ D b. D ⊆ C

6. Let A = {x ∈ Z | x = 5a + 2 for some integer a},
B = {y ∈ Z | y = 10b − 3 for some integer b}, and
C = {z ∈ Z | z = 10c + 7 for some integer c}.
Prove or disprove each of the following statements.
a. A ⊆ B b. B ⊆ A H c. B = C

7. Let A = {x ∈ Z | x = 6a + 4 for some integer a},
B = {y ∈ Z | y = 18b − 2 for some integer b}, and
C = {z ∈ Z | z = 18c + 16 for some integer c}.
Prove or disprove each of the following statements.
a. A ⊆ B b. B ⊆ A c. B = C

8. Write in words how to read each of the following out loud.
Then write the shorthand notation for each set.
a. {x ∈ U | x ∈ A and x ∈ B}
b. {x ∈ U | x ∈ A or x ∈ B}
c. {x ∈ U | x ∈ A and x /∈ B}
d. {x ∈ U | x /∈ A}

9. Complete the following sentences without using the
symbols ∪, ∩, or −.
a. x /∈ A ∪ B if, and only if, _____.
b. x /∈ A ∩ B if, and only if, _____.
c. x /∈ A − B if, and only if, _____.

10. Let A = {1, 3, 5, 7, 9}, B = {3, 6, 9}, and C = {2, 4, 6, 8}.
Find each of the following:
a. A ∪ B b. A ∩ B c. A ∪ C d. A ∩ C
e. A − B f. B − A g. B ∪ C h. B ∩ C

11. Let the universal set be the set R of all real numbers and let
A = {x ∈ R | 0 < x ≤ 2}, B = {x ∈ R | 1 ≤ x < 4}, and
C = {x ∈ R | 3 ≤ x < 9}. Find each of the following:
a. A ∪ B b. A ∩ B c. Ac d. A ∪ C
e. A ∩ C f. Bc g. Ac ∩ Bc

h. Ac ∪ Bc i. (A ∩ B)c j. (A ∪ B)c

12. Let the universal set be the set R of all real numbers and
let A = {x ∈ R | −3 ≤ x ≤ 0}, B = {x ∈ R | −1 < x < 2},
and C = {x ∈ R | 6 < x ≤ 8}. Find each of the following:
a. A ∪ B b. A ∩ B c. Ac d. A ∪ C
e. A ∩ C f. Bc g. Ac ∩ Bc

h. Ac ∪ Bc i. (A ∩ B)c j. (A ∪ B)c

13. Indicate which of the following relationships are true and
which are false:
a. Z+ ⊆ Q b. R− ⊆ Q
c. Q ⊆ Z d. Z− ∪ Z+ = Z
e. Z− ∩ Z+ = ∅ f. Q ∩ R = Q
g. Q ∪ Z = Q h. Z+ ∩ R = Z+

i. Z ∪Q = Z

14. In each of the following, draw a Venn diagram for sets A,
B, and C that satisfy the given conditions:
a. A ⊆ B;C ⊆ B; A ∩ C = ∅
b. C ⊆ A; B ∩ C = ∅

15. Draw Venn diagrams to describe sets A, B, and C that
satisfy the given conditions.
a. A ∩ B = ∅, A ⊆ C,C ∩ B �= ∅
b. A ⊆ B,C ⊆ B, A ∩ C �= ∅
c. A ∩ B �= ∅, B ∩ C �= ∅, A ∩ C = ∅, A � B,C � B

16. Let A = {a, b, c}, B = {b, c, d}, and C = {b, c, e}.
a. Find A ∪ (B ∩ C), (A ∪ B) ∩ C , and

(A ∪ B) ∩ (A ∪ C). Which of these sets are equal?
b. Find A ∩ (B ∪ C), (A ∩ B) ∪ C , and

(A ∩ B) ∪ (A ∩ C). Which of these sets are equal?
c. Find (A − B)− C and A − (B − C). Are these sets

equal?

17. Consider the Venn diagram shown below. For each of (a)–(f),
copy the diagram and shade the region corresponding to the
indicated set.
a. A ∩ B b. B ∪ C c. Ac

d. A − (B ∪ C) e. (A ∪ B)c f. Ac ∩ Bc

A B

C

U

18. a. Is the number 0 in ∅? Why? b. Is ∅ = {∅}? Why?
c. Is ∅ ∈ {∅}? Why? d. Is ∅ ∈ ∅? Why?

19. Let Ai = {i, i2} for all integers i = 1, 2, 3, 4.
a. A1 ∪ A2 ∪ A3 ∪ A4 =?
b. A1 ∩ A2 ∩ A3 ∩ A4 =?
c. Are A1, A2, A3, and A4 mutually disjoint? Explain.

20. Let Bi = {x ∈ R | 0 ≤ x ≤ i} for all integers i = 1, 2, 3, 4.
a. B1 ∪ B2 ∪ B3 ∪ B4 =?
b. B1 ∩ B2 ∩ B3 ∩ B4 =?
c. Are B1, B2, B3, and B4 mutually disjoint? Explain.

21. Let Ci = {i,−i} for all nonnegative integers i .
a.

4⋃
i=0

Ci =? b.
4⋂

i=0
Ci =?
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c. Are C0,C1,C2, . . . mutually disjoint? Explain.

d.
n⋃

i=0
Ci =? e.

n⋂
i=0

Ci =?

f.
∞⋃
i=0

Ci =? g.
∞⋂
i=0

Ci =?

22. Let Di = {x ∈ R | − i ≤ x ≤ i} = [−i, i] for all nonnega-
tive integers i .

a.
4⋃

i=0
Di =? b.

4⋂
i=0

Di =?
c. Are D0, D1, D2, . . . mutually disjoint? Explain.

d.
n⋃

i=0
Di =? e.

n⋂
i=0

Di =?

f.
∞⋃
i=0

Di =? g.
∞⋂
i=0

Di =?

23. Let Vi =
{
x ∈ R | − 1

i ≤ x ≤ 1
i

}
=

[
−1

i ,
1
i

]
for all pos-

itive integers i .

a.
4⋃

i=1
Vi =? b.

4⋂
i=1

Vi =?
c. Are V1, V2, V3, . . . mutually disjoint? Explain.

d.
n⋃

i=1
Vi =? e.

n⋂
i=1

Vi =?

f.
∞⋃
i=1

Vi =? g.
∞⋂
i=1

Vi =?

24. Let Wi = {x ∈ R | x > i} = (i,∞) for all nonnegative
integers i .

a.
4⋃

i=0
Wi =? b.

4⋂
i=0

Wi =?
c. Are W0,W1,W2, . . . mutually disjoint? Explain.

d.
n⋃

i=0
Wi =? e.

n⋂
i=0

Wi =?

f.
∞⋃
i=0

Wi =? g.
∞⋂
i=0

Wi =?

25. Let Ri =
{
x ∈ R | 1 ≤ x ≤ 1+ 1

i

}
=

[
1, 1+ 1

i

]
for all

positive integers i .

a.
4⋃

i=1
Ri =? b.

4⋂
i=1

Ri =?
c. Are R1, R2, R3, . . . mutually disjoint? Explain.

d.
n⋃

i=1
Ri =? e.

n⋂
i=1

Ri =?

f.
∞⋃
i=1

Ri =? g.
∞⋂
i=1

Ri =?

26. Let Si =
{
x ∈ R | 1 < x < 1+ 1

i

}
=

(
1, 1+ 1

i

)
for all

positive integers i .

a.
4⋃

i=1
Si =? b.

4⋂
i=1

Si =?
c. Are S1, S2, S3, . . . mutually disjoint? Explain.

d.
n⋃

i=1
Si =? e.

n⋂
i=1

Si =?

f.
∞⋃
i=1

Si =? g.
∞⋂
i=1

Si =?

27. a. Is {{a, d, e}, {b, c}, {d, f }} a partition of
{a, b, c, d, e, f }?

b. Is {{w, x, v}, {u, y, q}, {p, z}} a partition of
{p, q, u, v, w, x, y, z}?

c. Is {{5, 4}, {7, 2}, {1, 3, 4}, {6, 8}} a partition of
{1, 2, 3, 4, 5, 6, 7, 8}?

d. Is {{3, 7, 8}, {2, 9}, {1, 4, 5}} a partition of
{1, 2, 3, 4, 5, 6, 7, 8, 9}?

e. Is {{1, 5}, {4, 7}, {2, 8, 6, 3}} a partition of
{1, 2, 3, 4, 5, 6, 7, 8}?

28. Let E be the set of all even integers and O the set of all odd
integers. Is {E, O} a partition of Z, the set of all integers?
Explain your answer.

29. Let R be the set of all real numbers. Is {R+,R−, {0}} a par-
tition of R? Explain your answer.

30. Let Z be the set of all integers and let

A0 = {n ∈ Z | n = 4k, for some integer k},
A1 = {n ∈ Z | n = 4k + 1, for some integer k},
A2 = {n ∈ Z | n = 4k + 2, for some integer k}, and
A3 = {n ∈ Z | n = 4k + 3, for some integer k}.

Is {A0, A1, A2, A3} a partition of Z? Explain your answer.

31. Suppose A = {1, 2} and B = {2, 3}. Find each of the
following:
a. P(A ∩ B) b.P(A)

c. P(A ∪ B) d.P(A × B)

32. a. Suppose A = {1} and B = {u, v}. Find P(A × B).
b. Suppose X = {a, b} and Y = {x, y}. Find P(X × Y ).

33. a. Find P(∅). b. Find P(P(∅)).
c. Find P(P(P(∅))).

34. Let A1 = {1, 2, 3}, A2 = {u, v}, and A3 = {m, n}. Find
each of the following sets:

a. A1 × (A2 × A3) b. (A1 × A2)× A3

c. A1 × A2 × A3

35. Let A = {a, b}, B = {1, 2}, and C = {2, 3}. Find each of
the following sets.

a. A × (B ∪ C) b. (A × B) ∪ (A × C)

c. A × (B ∩ C) d. (A × B) ∩ (A × C)

36. Trace the action of Algorithm 6.1.1 on the variables i, j ,
found, and answer for m = 3, n = 3, and sets A and B
represented as the arrays a[1] = u, a[2] = v, a[3] = w,

b[1] = w, b[2] = u, and b[3] = v.

37. Trace the action of Algorithm 6.1.1 on the variables i, j ,
found, and answer for m = 4, n = 4, and sets A and B
represented as the arrays a[1] = u, a[2] = v, a[3] = w,

a[4] = x, b[1] = r , b[2] = u, b[3] = y, b[4] = z.

38. Write an algorithm to determine whether a given element
x belongs to a given set, which is represented as an array
a[1], a[2], . . . , a[n].
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352 Chapter 6 Set Theory

Answers for Test Yourself
1. the set A is a subset of the set B; for all x , if x ∈ A then x ∈ B (Or : every element of A is also an element of B) 2. x is any
[particular but arbitrarily chosen] element of X; x is an element of Y 3. an element in X that is not in Y 4. x is in A or x is in B
(Or : x is in at least one of the sets A and B) 5. x is in A and x is in B (Or : x is in both A and B) 6. x is in B and x is not in
A 7. x is in the universal set and is not in A 8. no elements 9. the set of all subsets of A 10. A ∩ B = ∅ (Or : A and B have no
elements in common) 11. A is the union of all the sets A1, A2, A3, . . . and Ai ∩ A j = ∅ whenever i �= j. 12. the set of all ordered
n-tuples (a1, a2, . . . , an), where ai is in Ai for all i = 1, 2, . . . , n

6.2 Properties of Sets

. . . only the last line is a genuine theorem here—everything else is in the fantasy.
—Douglas Hofstadter, Gödel, Escher, Bach, 1979

It is possible to list many relations involving unions, intersections, complements, and
differences of sets. Some of these are true for all sets, whereas others fail to hold in
some cases. In this section we show how to establish basic set properties using element
arguments, and we discuss a variation used to prove that a set is empty. In the next section
we will show how to disprove a proposed set property by constructing a counterexample
and how to use an algebraic technique to derive new set properties from set properties
already known to be true.

We begin by listing some set properties that involve subset relations. As you read
them, keep in mind that the operations of union, intersection, and difference take prece-
dence over set inclusion. Thus, for example, A ∩ B ⊆ C means (A ∩ B) ⊆ C .

Theorem 6.2.1 Some Subset Relations

1. Inclusion of Intersection: For all sets A and B,

(a) A ∩ B ⊆ A and (b) A ∩ B ⊆ B.

2. Inclusion in Union: For all sets A and B,

(a) A ⊆ A ∪ B and (b) B ⊆ A ∪ B.

3. Transitive Property of Subsets: For all sets A, B, and C ,

if A ⊆ B and B ⊆ C, then A ⊆ C.

The conclusion of each part of Theorem 6.2.1 states that one set x is a subset of
another set Y and so to prove them, you suppose that x is any [particular but arbitrarily
chosen] element of X and you show that x is an element of Y .

In most proofs of set properties, the secret of getting from the assumption that x is in
X to the conclusion that x is in Y is to think of the definitions of basic set operations in
procedural terms. For example, the union of sets X and Y , X ∪ Y , is defined as

X ∪ Y = {x | x ∈ X or x ∈ Y }.
This means that any time you know an element x is in X ∪ Y , you can conclude that x
must be in X or x must be in Y . Conversely, any time you know that a particular x is in
some set X or is in some set Y , you can conclude that x is in X ∪ Y . Thus, for any sets X
and Y and any element x ,

x ∈ X ∪ Y if, and only if, x ∈ X or x ∈ Y.
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Procedural versions of the definitions of the other set operations are derived similarly
and are summarized below.

Procedural Versions of Set Definitions

Let X and Y be subsets of a universal set U and suppose x and y are elements of U .

1. x ∈ X ∪ Y ⇔ x ∈ X or x ∈ Y

2. x ∈ X ∩ Y ⇔ x ∈ X and x ∈ Y

3. x ∈ X − Y ⇔ x ∈ X and x /∈ Y

4. x ∈ Xc ⇔ x /∈ X

5. (x, y) ∈ X × Y ⇔ x ∈ X and y ∈ Y

Example 6.2.1 Proof of a Subset Relation

Prove Theorem 6.2.1(1)(a): For all sets A and B, A ∩ B ⊆ A.

Solution We start by giving a proof of the statement and then explain how you can obtain
such a proof yourself.

Proof:

Suppose A and B are any sets and suppose x is any element of A ∩ B.
Then x ∈ A and x ∈ B by definition of intersection. In particular, x ∈ A.
Thus A ∩ B ⊆ A.

The underlying structure of this proof is not difficult, but it is more complicated than
the brevity of the proof suggests. The first important thing to realize is that the state-
ment to be proved is universal (it says that for all sets A and B, A ∩ B ⊆ A). The proof,
therefore, has the following outline:

Starting Point: Suppose A and B are any (particular but arbitrarily chosen) sets.

To Show: A ∩ B ⊆ A

Now to prove that A ∩ B ⊆ A, you must show that

∀x, if x ∈ A ∩ B then x ∈ A.

But this statement also is universal. So to prove it, you

suppose x is an element in A ∩ B

and then you

show that x is in A.

Filling in the gap between the “suppose” and the “show” is easy if you use the
procedural version of the definition of intersection: To say that x is in A ∩ B means
that

x is in A and x is in B.

This allows you to complete the proof by deducing that, in particular,

x is in A,
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354 Chapter 6 Set Theory

as was to be shown. Note that this deduction is just a special case of the valid argument
form

p ∧ q

∴ p. ■

In his book Gödel, Escher, Bach,∗ Douglas Hofstadter introduces the fantasy rule for
mathematical proof. Hofstadter points out that when you start a mathematical argument
with if, let, or suppose, you are stepping into a fantasy world where not only are all
the facts of the real world true but whatever you are supposing is also true. Once you
are in that world, you can suppose something else. That sends you into a subfantasy
world where not only is everything in the fantasy world true but also the new thing you
are supposing. Of course you can continue stepping into new subfantasy worlds in this
way indefinitely. You return one level closer to the real world each time you derive a
conclusion that makes a whole if-then or universal statement true. Your aim in a proof is
to continue deriving such conclusions until you return to the world from which you made
your first supposition.

Occasionally, mathematical problems are stated in the following form:

Suppose (statement 1). Prove that (statement 2).

When this phrasing is used, the author intends the reader to add statement 1 to his or her
general mathematical knowledge and not to make explicit reference to it in the proof. In
Hofstadter’s terms, the author invites the reader to enter a fantasy world where statement 1
is known to be true and to prove statement 2 in this fantasy world. Thus the solver of such
a problem would begin a proof with the starting point for a proof of statement 2. Consider,
for instance, the following restatement of Example 6.2.1:

Suppose A and B are arbitrarily chosen sets.
Prove that A ∩ B ⊆ A.

The proof would begin “Suppose x ∈ A ∩ B,” it being understood that sets A and B have
already been chosen arbitrarily.

The proof of Example 6.2.1 is called an element argument because it shows one set
to be a subset of another by demonstrating that every element in the one set is also
an element in the other. In higher mathematics, element arguments are the standard
method of establishing relations among sets. High school students are often allowed to
justify set properties by using Venn diagrams. This method is appealing, but for it to be
mathematically rigorous may be more complicated than you might expect. Appropriate
Venn diagrams can be drawn for two or three sets, but the verbal explanations needed to
justify conclusions inferred from them are normally as long as a straightforward element
proof.

In general, Venn diagrams are not very helpful when the number of sets is four or
more. For instance, if the requirement is made that a Venn diagram must show every
possible intersection of the sets, it is impossible to draw a symmetric Venn diagram
for four sets, or, in fact, for any nonprime number of sets. In 2002, computer scien-
tists/mathematicians Carla Savage and Jerrold Griggs and undergraduate student Charles
Killian solved a longstanding open problem by proving that it is possible to draw such a
symmetric Venn diagram for any prime number of sets. For n > 5, however, the resulting
pictures are very complicated! The existence of such symmetric diagrams has applica-
tions in the area of computer science called coding theory.

∗Gödel, Escher, Bach: An Eternal Golden Braid (New York: Basic Books, 1979).
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Set Identities
An identity is an equation that is universally true for all elements in some set. For exam-
ple, the equation a + b = b + a is an identity for real numbers because it is true for
all real numbers a and b. The collection of set properties in the next theorem consists
entirely of set identities. That is, they are equations that are true for all sets in some
universal set.

Theorem 6.2.2 Set Identities

Let all sets referred to below be subsets of a universal set U .

1. Commutative Laws: For all sets A and B,

(a) A ∪ B = B ∪ A and (b) A ∩ B = B ∩ A.

2. Associative Laws: For all sets A, B, and C ,

(a) (A ∪ B) ∪ C = A ∪ (B ∪ C) and

(b) (A ∩ B) ∩ C = A ∩ (B ∩ C).

3. Distributive Laws: For all sets, A, B, and C ,

(a) A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) and

(b) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).

4. Identity Laws: For all sets A,

(a) A ∪ ∅ = A and (b) A ∩U = A.

5. Complement Laws:

(a) A ∪ Ac = U and (b) A ∩ Ac = ∅.
6. Double Complement Law: For all sets A,

(Ac)c = A.

7. Idempotent Laws: For all sets A,

(a) A ∪ A = A and (b) A ∩ A = A.

8. Universal Bound Laws: For all sets A,

(a) A ∪U = U and (b) A ∩ ∅ = ∅.
9. De Morgan’s Laws: For all sets A and B,

(a) (A ∪ B)c = Ac ∩ Bc and (b) (A ∩ B)c = Ac ∪ Bc.

10. Absorption Laws: For all sets A and B,

(a) A ∪ (A ∩ B) = A and (b) A ∩ (A ∪ B) = A.

11. Complements of U and ∅:
(a) Uc = ∅ and (b) ∅c = U.

12. Set Difference Law: For all sets A and B,

A − B = A ∩ Bc.
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Proving Set Identities
The conclusion of each part of Theorem 6.2.2 is that one set equals another set. As we
noted in Section 6.1,

Two sets are equal ⇔ each is a subset of the other.

The method derived from this fact is the most basic way to prove equality of sets.

Basic Method for Proving That Sets Are Equal

Let sets X and Y be given. To prove that X = Y :

1. Prove that X ⊆ Y .

2. Prove that Y ⊆ X .

Example 6.2.2 Proof of a Distributive Law

Prove that for all sets A, B, and C ,

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C).

Solution The proof of this fact is somewhat more complicated than the proof in
Example 6.2.1, so we first derive its logical structure, then find the core arguments, and
end with a formal proof as a summary. As in Example 6.2.1, the statement to be proved
is universal, and so, by the method of generalizing from the generic particular, the proof
has the following outline:

Starting Point: Suppose A, B, and C are arbitrarily chosen sets.

To Show: A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C).

Now two sets are equal if, and only if, each is a subset of the other. Hence, the following
two statements must be proved:

A ∪ (B ∩ C) ⊆ (A ∪ B) ∩ (A ∪ C)

and (A ∪ B) ∩ (A ∪ C) ⊆ A ∪ (B ∩ C).

Showing the first containment requires showing that

∀x, if x ∈ A ∪ (B ∩ C) then x ∈ (A ∪ B) ∩ (A ∪ C).

Showing the second containment requires showing that

∀x, if x ∈ (A ∪ B) ∩ (A ∪ C) then x ∈ A ∪ (B ∩ C).

Note that both of these statements are universal. So to prove the first containment, you

suppose you have any element x in A ∪ (B ∩ C),

and then you show that x ∈ (A ∪ B) ∩ (A ∪ C).

And to prove the second containment, you

suppose you have any element x in (A ∪ B) ∩ (A ∪ C),

and then you show that x ∈ A ∪ (B ∩ C).
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In Figure 6.2.1, the structure of the proof is illustrated by the kind of diagram that is
often used in connection with structured programs. The analysis in the diagram reduces
the proof to two concrete tasks: filling in the steps indicated by dots in the two center
boxes of Figure 6.2.1.

Suppose A, B, and C are sets. [Show A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C). That is,
show A ∪ (B ∩ C) ⊆ (A ∪ B) ∩ (A ∪ C) and
(A ∪ B) ∩ (A ∪ C) ⊆ A ∪ (B ∩ C).]

Show A ∪ (B ∩ C) ⊆ (A ∪ B) ∩ (A ∪ C). [That is, show ∀x, if
x ∈ A ∪ (B ∩ C) then
x ∈ (A ∪ B) ∩ (A ∪ C).]

Suppose x ∈ A ∪ (B ∩ C). [Show x ∈ (A ∪ B) ∩ (A ∪ C).]
...

Thus x ∈ (A ∪ B) ∩ (A ∪ C).

Hence A ∪ (B ∩ C) ⊆ (A ∪ B) ∩ (A ∪ C).

Show (A ∪ B) ∩ (A ∪ C) ⊆ A ∪ (B ∩ C). [That is, show ∀x, if
x ∈ (A ∪ B) ∩ (A ∪ C)

then x ∈ A ∪ (B ∩ C).]

Suppose x ∈ (A ∪ B) ∩ (A ∪ C). [Show x ∈ A ∪ (B ∩ C).]
...

Thus x ∈ A ∪ (B ∩ C).

Hence (A ∪ B) ∩ (A ∪ C) ⊆ A ∪ (B ∩ C).

Thus (A ∪ B) ∩ (A ∪ C) = A ∪ (B ∩ C).

Figure 6.2.1

Filling in the missing steps in the top box:
To fill in these steps, you go from the supposition that x ∈ A ∪ (B ∩ C) to the con-

clusion that x ∈ (A ∪ B) ∩ (A ∪ C).
Now when x ∈ A ∪ (B ∩ C), then by definition of union, x ∈ A or x ∈ B ∩ C . But

either of these possibilities might be the case because x is assumed to be chosen arbi-
trarily from the set A ∪ (B ∩ C). So you have to show you can reach the conclusion that
x ∈ (A ∪ B) ∩ (A ∪ C) regardless of whether x happens to be in A or x happens to be in
B ∩ C . This leads you to break your analysis into two cases: x ∈ A and x ∈ B ∩ C .

In case x ∈ A, your goal is to show that x ∈ (A ∪ B) ∩ (A ∪ C), which means that
x ∈ A ∪ B and x ∈ A ∪ C (by definition of intersection). But when x ∈ A, both
statements x ∈ A ∪ B and x ∈ A ∪ C are true by virtue of x’s being in A.

Similarly, in case x ∈ B ∩ C , your goal is also to show that x ∈ (A ∪ B) ∩ (A ∪ C),
which means that x ∈ A ∪ B and x ∈ A ∪ C . But when x ∈ B ∩ C , then x ∈ B and
x ∈ C (by definition of intersection), and so x ∈ A ∪ B (by virtue of being in B) and
x ∈ A ∪ C (by virtue of being in C).
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358 Chapter 6 Set Theory

This analysis shows that regardless of whether x ∈ A or x ∈ B ∩ C , the conclusion
x ∈ (A ∪ B) ∩ (A ∪ C) follows. So you can fill in the steps in the top inner box.

Filling in the missing steps in the bottom box:
To fill in these steps, you need to go from the supposition that x ∈ (A ∪ B) ∩ (A ∪ C)

to the conclusion that x ∈ A ∪ (B ∩ C).
When x ∈ (A ∪ B) ∩ (A ∪ C) it is natural to consider the two cases x ∈ A and x �∈ A

because when x happens to be in A, then the statement “x ∈ A or x ∈ B ∩ C” is certainly
true, and so x is in A ∪ (B ∩ C) by definition of union. Thus it remains only to show that
even in the case when x is not in A, and x ∈ (A ∪ B) ∩ (A ∪ C), then x ∈ A ∪ (B ∩ C).

So suppose x is not in A. Now to say that x ∈ (A ∪ B) ∩ (A ∪ C) means that
x ∈ A ∪ B and x ∈ A ∪ C (by definition of intersection). But when x ∈ A ∪ B, then x is
in at least one of A or B, so since x is not in A, then x must be in B. Similarly, when
x ∈ A ∪ C , then x is in at least one of A or C , so since x is not in A, then x must be in C .
Thus, when x is not in A and x ∈ (A ∪ B) ∩ (A ∪ C), then x is in both B and C , which
means that x ∈ B ∩ C . It follows that the statement “x ∈ A or x ∈ B ∩ C” is true, and so
x ∈ A ∪ (B ∩ C) by definition of union.

This analysis shows that if x ∈ (A ∪ B) ∩ (A ∪ C), then regardless of whether x ∈ A
or x /∈ A, you can conclude that x ∈ A ∪ (B ∩ C). Hence you can fill in the steps of the
bottom inner box.

A formal proof is shown below.

Theorem 6.2.2(3)(a) A Distributive Law for Sets

For all sets A, B, and C ,

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C).

Proof:

Suppose A and B are sets.

Proof that A ∪ (B ∩ C) ⊆ (A ∪ B) ∩ (A ∪ C):

Suppose x ∈ A ∪ (B ∩ C). By definition of union, x ∈ A or x ∈ B ∩ C .

Case 1 (x ∈ A): Since x ∈ A, then x ∈ A ∪ B by definition of union and also
x ∈ A ∪ C by definition of union. Hence x ∈ (A ∪ B) ∩ (A ∪ C) by definition of
intersection.

Case 2 (x ∈ B ∩ C): Since x ∈ B ∩ C , then x ∈ B and x ∈ C by definition of inter-
section. Since x ∈ B, x ∈ A ∪ B and since x ∈ C, x ∈ A ∪ C , both by definition of
union. Hence x ∈ (A ∪ B) ∩ (A ∪ C) by definition of intersection.

In both cases, x ∈ (A ∪ B) ∩ (A ∪ C). Hence A ∪ (B ∩ C) ⊆ (A ∪ B) ∩ (A ∪ C)

by definition of subset.

Proof that (A ∪ B) ∩ (A ∪ C) ⊆ A ∪ (B ∩ C):

Suppose x ∈ (A ∪ B) ∩ (A ∪ C). By definition of intersection, x ∈ A ∪ B and
x ∈ A ∪ C . Consider the two cases x ∈ A and x /∈ A.

Case 1 (x ∈ A): Since x ∈ A, we can immediately conclude that x ∈ A ∪ (B ∩ C)

by definition of union.
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6.2 Properties of Sets 359

Case 2 (x /∈ A): Since x ∈ A ∪ B, x is in at least one of A or B. But x is not in
A; hence x is in B. Similarly, since x ∈ A ∪ C, x is in at least one of A or C . But
x is not in A; hence x is in C . We have shown that both x ∈ B and x ∈ C , and
so by definition of intersection, x ∈ B ∩ C . It follows by definition of union that
x ∈ A ∪ (B ∩ C).

In both cases x ∈ A ∪ (B ∩ C). Hence, by definition of subset, (A ∪ B) ∩ (A ∪ C)

⊆ A ∪ (B ∩ C).

Conclusion: Since both subset relations have been proved, it follows by definition
of set equality that A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C).

■

In the study of artificial intelligence, the types of reasoning used previously to derive
the proof of the distributive law are called forward chaining and backward chaining.
First what is to be shown is viewed as a goal to be reached starting from a certain initial
position: the starting point. Analysis of this goal leads to the realization that if a certain
job is accomplished, then the goal will be reached. Call this job subgoal 1: SG1. (For
instance, if the goal is to show that A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C), then SG1 would
be to show that each set is a subset of the other.) Analysis of SG1 shows that when yet
another job is completed, SG1 will be reached. Call this job subgoal 2: SG2. Continuing
in this way, a chain of argument leading backward from the goal is constructed.

starting point → SG3→ SG2→ SG1→ goal

At a certain point, backward chaining becomes difficult, but analysis of the current
subgoal suggests it may be reachable by a direct line of argument, called forward chain-
ing, beginning at the starting point. Using the information contained in the starting point,
another piece of information, I1, is deduced; from that another piece of information, I2,
is deduced; and so forth until finally one of the subgoals is reached. This completes the
chain and proves the theorem. A completed chain is illustrated below.

starting point → I1→ I2→ I3→ I4→ SG3→ SG2→ SG1→ goal

Since set complement is defined in terms of not, and since unions and intersections
are defined in terms of or and and, it is not surprising that there are analogues of De
Morgan’s laws of logic for sets.

Example 6.2.3 Proof of a De Morgan’s Law for Sets

Prove that for all sets A and B, (A ∪ B)c = Ac ∩ Bc.

Solution As in previous examples, the statement to be proved is universal, and so the start-
ing point of the proof and the conclusion to be shown are as follows:

Starting Point: Suppose A and B are arbitrarily chosen sets.

To Show: (A ∪ B)c = Ac ∩ Bc

To do this, you must show that (A ∪ B)c ⊆ Ac ∩ Bc and that Ac ∩ Bc ⊆ (A ∪ B)c. To
show the first containment means to show that

∀x, if x ∈ (A ∪ B)c then x ∈ Ac ∩ Bc.
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And to show the second containment means to show that

∀x, if x ∈ Ac ∩ Bc then x ∈ (A ∪ B)c.

Since each of these statements is universal and conditional, for the first containment, you

suppose x ∈ (A ∪ B)c,

and then you show that x ∈ Ac ∩ Bc.

And for the second containment, you

suppose x ∈ Ac ∩ Bc,

and then you show that x ∈ (A ∪ B)c.

To fill in the steps of these arguments, you use the procedural versions of the definitions
of complement, union, and intersection, and at crucial points you use De Morgan’s laws
of logic.

Theorem 6.2.2(9)(a) A De Morgan’s Law for Sets

For all sets A and B, (A ∪ B)c = Ac ∩ Bc.

Proof:
Suppose A and B are sets.

Proof that (A ∪ B)c ⊆ Ac ∩ Bc:
[We must show that ∀x, if x ∈ (A ∪ B)c then x ∈ Ac ∩ Bc.]

Suppose x ∈ (A ∪ B)c. [We must show that x ∈ Ac ∩ Bc.] By definition of
complement,

x /∈ A ∪ B.

But to say that x /∈ A ∪ B means that

it is false that (x is in A or x is in B).

By De Morgan’s laws of logic, this implies that

x is not in A and x is not in B,

which can be written x /∈ A and x /∈ B.

Hence x ∈ Ac and x ∈ Bc by definition of complement. It follows, by definition
of intersection, that x ∈ Ac ∩ Bc [as was to be shown]. So (A ∪ B)c ⊆ Ac ∩ Bc by
definition of subset.

Proof that Ac ∩ Bc ⊆ (A ∪ B)c:
[We must show that ∀x, if x ∈ Ac ∩ Bc then x ∈ (A ∪ B)c.]

Suppose x ∈ Ac ∩ Bc. [We must show that x ∈ (A ∪ B)c.] By definition of
intersection, x ∈ Ac and x ∈ Bc, and by definition of complement,

x /∈ A and x /∈ B.

In other words, x is not in A and x is not in B.
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By De Morgan’s laws of logic this implies that

it is false that (x is in A or x is in B),

which can be written x /∈ A ∪ B

by definition of union. Hence, by definition of complement, x ∈ (A ∪ B)c [as was to
be shown]. It follows that Ac ∩ Bc ⊆ (A ∪ B)c by definition of subset.

Conclusion: Since both set containments have been proved, (A ∪ B)c = Ac ∩ Bc

by definition of set equality.

The set property given in the next theorem says that if one set is a subset of another,
then their intersection is the smaller of the two sets and their union is the larger of the two
sets.

Theorem 6.2.3 Intersection and Union with a Subset

For any sets A and B, if A ⊆ B, then

(a) A ∩ B = A and (b) A ∪ B = B.

Proof:

Part (a): Suppose A and B are sets with A ⊆ B. To show part (a) we must show
both that A ∩ B ⊆ A and that A ⊆ A ∩ B. We already know that A ∩ B ⊆ A by
the inclusion of intersection property. To show that A ⊆ A ∩ B, let x ∈ A. [We must
show that x ∈ A ∩ B.] Since A ⊆ B, then x ∈ B also. Hence

x ∈ A and x ∈ B,

and thus x ∈ A ∩ B

by definition of intersection [as was to be shown].

Proof:

Part (b): The proof of part (b) is left as an exercise.

■

The Empty Set
In Section 6.1 we introduced the concept of a set with no elements and promised that in
this section we would show that there is only one such set. To do so, we start with the
most basic—and strangest—property of a set with no elements: It is a subset of every
set. To see why this is true, just ask yourself, “Could it possibly be false? Could there
be a set without elements that is not a subset of some given set?” The crucial fact is that
the negation of a universal statement is existential: If a set B is not a subset of a set A,
then there exists an element in B that is not in A. But if B has no elements, then no such
element can exist.
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Theorem 6.2.4 A Set with No Elements Is a Subset of Every Set

If E is a set with no elements and A is any set, then E ⊆ A.

Proof (by contradiction):

Suppose not. [We take the negation of the theorem and suppose it to be true.] Suppose
there exists a set E with no elements and a set A such that E � A. [We must deduce a
contradiction.] Then there would be an element of E that is not an element of A [by
definition of subset]. But there can be no such element since E has no elements. This
is a contradiction. [Hence the supposition that there are sets E and A, where E has no
elements and E � A, is false, and so the theorem is true.]

The truth of Theorem 6.2.4 can also be understood by appeal to the notion of vacuous
truth. If E is a set with no elements and A is any set, then to say that E ⊆ A is the same
as saying that

∀x, if x ∈ E, then x ∈ A.

But since E has no elements, this conditional statement is vacuously true.
How many sets with no elements are there? Only one.

Corollary 6.2.5 Uniqueness of the Empty Set

There is only one set with no elements.

Proof:

Suppose E1 and E2 are both sets with no elements. By Theorem 6.2.4, E1 ⊆ E2

since E1 has no elements. Also E2 ⊆ E1 since E2 has no elements. Thus E1 = E2

by definition of set equality.

It follows from Corollary 6.2.5 that the set of pink elephants is equal to the set of all
real numbers whose square is −1 because each set has no elements! Since there is only
one set with no elements, we are justified in calling it by a special name, the empty set
(or null set) and in denoting it by the special symbol ∅.

Note that whereas ∅ is the set with no elements, the set {∅} has one element, the empty
set. This is similar to the convention in the computer programming languages LISP and
Scheme, in which ( ) denotes the empty list and (( )) denotes the list whose one element
is the empty list.

Suppose you need to show that a certain set equals the empty set. By Corollary 6.2.5
it suffices to show that the set has no elements. For since there is only one set with no
elements (namely ∅), if the given set has no elements, then it must equal ∅.

Element Method for Proving a Set Equals the Empty Set

To prove that a set X is equal to the empty set ∅, prove that X has no elements. To
do this, suppose X has an element and derive a contradiction.
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Example 6.2.4 Proving That a Set Is Empty

Prove Theorem 6.2.2(8)(b). That is, prove that for any set A, A ∩ ∅ = ∅.
Solution Let A be a [particular, but arbitrarily chosen] set. To show that A ∩ ∅ = ∅, it suf-

fices to show that A ∩ ∅ has no elements [by the element method for proving a set equals
the empty set]. Suppose not. That is, suppose there is an element x such that x ∈ A ∩ ∅.
Then, by definition of intersection, x ∈ A and x ∈ ∅. In particular, x ∈ ∅. But this is
impossible since ∅ has no elements. [This contradiction shows that the supposition that
there is an element x in A ∩ ∅ is false. So A ∩ ∅ has no elements, as was to be shown.]
Thus A ∩ ∅ = ∅. ■

Example 6.2.5 A Proof for a Conditional Statement

Prove that for all sets A, B, and C , if A ⊆ B and B ⊆ Cc, then A ∩ C = ∅.
Solution Since the statement to be proved is both universal and conditional, you start with

the method of direct proof:

Suppose A, B, and C are arbitrarily chosen sets
that satisfy the condition: A ⊆ B and B ⊆ Cc.

Show that A ∩ C = ∅.
Since the conclusion to be shown is that a certain set is empty, you can use the principle
for proving that a set equals the empty set. A complete proof is shown below.

Proposition 6.2.6

For all sets A, B, and C , if A ⊆ B and B ⊆ Cc, then A ∩ C = ∅.

Proof:

Suppose A, B, and C are any sets such that A ⊆ B and B ⊆ Cc. We must show
that A ∩ C = ∅. Suppose not. That is, suppose there is an element x in A ∩ C . By
definition of intersection, x ∈ A and x ∈ C . Then, since A ⊆ B, x ∈ B by definition
of subset. Also, since B ⊆ Cc, then x ∈ Cc by definition of subset again. It follows
by definition of complement that x /∈ C . Thus x ∈ C and x /∈ C , which is a con-
tradiction. So the supposition that there is an element x in A ∩ C is false, and thus
A ∩ C = ∅ [as was to be shown].

■

Example 6.2.6 A Generalized Distributive Law

Prove that for all sets A and B1, B2, B3, . . . , Bn ,

A ∪
(

n⋂
i=1

Bi

)
=

n⋂
i=1

(A ∪ Bi ).

Solution Compare this proof to the one given in Example 6.2.2. Although the notation is
more complex, the basic ideas are the same.

Proof:

Suppose A and B1, B2, B3, . . . , Bn are any sets.
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Part 1, Proof that A ∪
(

n⋂
i=1

Bi

)
⊆

n⋂
i=1

(A ∪ Bi):

Suppose x is any element in A ∪
(

n⋂
i=1

Bi

)
. [We must show that x is in

n⋂
i=1

(A ∪ Bi ).]

By definition of union, x ∈ A or x ∈
n⋂

i=1
Bi .

Case 1, x ∈ A: In this case, it is true by definition of union that for all i = 1, 2, . . . , n, x ∈
A ∪ Bi . Hence x ∈

n⋂
i=1

(A ∪ Bi ).

Case 2, x ∈
n⋂

i=1
Bi: In this case, by definition of the general intersection, we have that for

all integers i = 1, 2, . . . , n, x ∈ Bi . Hence, by definition of union, for all integers i = 1,

2, . . . , n, x ∈ A ∪ Bi , and so, by definition of general intersection, x ∈
n⋂

i=1
(A∪ Bi ).

Thus, in either case, x ∈
n⋂

i=1
(A ∪ Bi ) [as was to be shown].

Part 2, Proof that
n⋂

i=1
(A ∪ Bi ) ⊆ A ∪

(
n⋂

i=1
Bi

)
:

Suppose x is any element in
n⋂

i=1
(A ∪ Bi ). [We must show that x is in A ∪

(
n⋂

i=1
Bi

)
.]

By definition of intersection, x ∈ A ∪ Bi for all integers i = 1, 2, . . . , n. Either x ∈ A
or x �∈ A.

Case 1, x ∈ A: In this case, x ∈ A ∪
(

n⋂
i=1

Bi

)
by definition of union.

Case 2, x �∈ A: By definition of intersection, x ∈ A ∪ Bi for all integers i = 1, 2, . . . , n.
Since x �∈ A, xmust be in each Bi for every integer i = 1, 2, . . . , n. Hence, by definition

of intersection, x ∈
n⋂

i=1
Bi , and so, by definition of union, x ∈ A ∪

(
n⋂

i=1
Bi

)
.

Conclusion: Since both set containments have been proved, it follows by definition of set

equality that A ∪
(

n⋂
i=1

Bi

)
=

n⋂
i=1

(A ∪ Bi ). ■

Test Yourself
1. To prove that a set X is a subset of a set A ∩ B, you suppose

that x is any element of X and you show that x ∈ A _____
x ∈ B.

2. To prove that a set X is a subset of a set A ∪ B, you suppose
that x is any element of X and you show that x ∈ A _____
x ∈ B.

3. To prove that a set A ∪ B is a subset of a set X , you start
with any element x in A ∪ B and consider the two cases
_____ and _____. You then show that in either case _____.

4. To prove that a set A ∩ B is a subset of a set X , you suppose
that _____ and you show that _____.

5. To prove that a set X equals a set Y , you prove that _____
and that _____.

6. To prove that a set X does not equal a set Y , you need to
find an element that is in _____ and not _____ or that is in
_____ and not _____.

Exercise Set 6.2
1. a. To say that an element is in A ∩ (B ∪ C) means that it is

in (1) and in (2) .
b. To say that an element is in (A ∩ B) ∪ C means that it is

in (1) or in (2) .
c. To say that an element is in A − (B ∩ C) means that it

is in (1) and not in (2) .

2. The following are two proofs that for all sets A and B,

A − B ⊆ A. The first is less formal, and the second is more
formal. Fill in the blanks.

a. Proof: Suppose A and B are any sets. To show that
A − B ⊆ A, we must show that every element in (1)

is in (2) . But any element in A − B is in (3) and not
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in (4) (by definition of A − B). In particular, such an
element is in A.

b. Proof: Suppose A and B are any sets and x ∈ A − B.
[We must show that (1) .] By definition of set difference,
x ∈ (2) and x /∈ (3) . In particular, x ∈ (4) [which
is what was to be shown].

3. The following is a proof that for all sets A, B, and C , if
A ⊆ B and B ⊆ C , then A ⊆ C . Fill in the blanks.

Proof: Suppose A, B, and C are sets and A ⊆ B and
B ⊆ C . To show that A ⊆ C , we must show that every ele-
ment in (a) is in (b) . But given any element in A, that
element is in (c) (because A ⊆ B), and so that element is
also in (d) (because (e) ). Hence A ⊆ C .

4. The following is a proof that for all sets A and B, if A ⊆ B,
then A ∪ B ⊆ B. Fill in the blanks.

Proof: Suppose A and B are any sets and A ⊆ B. [We
must show that (a) .] Let x ∈ (b) . [We must show that
(c) .] By definition of union, x ∈ (d) (e) x ∈ (f ) . In
case x ∈ (g) , then since A ⊆ B, x ∈ (h) . In case x ∈ B,
then clearly x ∈ B. So in either case, x ∈ (i) [as was to
be shown].

5. Prove that for all sets A and B, (B − A) = B ∩ Ac.

6.H The following is a proof that for any sets A, B, and C ,
A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C). Fill in the blanks.

Proof: Suppose A, B, and C are any sets.

(1) Proof that A ∩ (B ∪ C) ⊆ (A ∩ B) ∪ (A ∩ C):
Let x ∈ A ∩ (B ∪ C). [We must show that x ∈ (a) .] By
definition of intersection, x ∈ (b) and x ∈ (c) . Thus
x ∈ A and, by definition of union, x ∈ B or (d) .

Case 1 (x ∈ A and x ∈ B): In this case, by definition
of intersection, x ∈ (e) , and so, by definition of union,
x ∈ (A ∩ B) ∪ (A ∩ C).

Case 2 (x ∈ A and x ∈ C): In this case, (f ) .
Hence in either case, x ∈ (A ∩ B) ∪ (A ∩ C) [as was to be
shown].
[So A ∩ (B ∪ C) ⊆ (A ∩ B) ∪ (A ∩ C) by definition of
subset.]

(2) (A ∩ B) ∪ (A ∩ C) ⊆ A ∩ (B ∪ C):
Let x ∈ (A ∩ B) ∪ (A ∩ C). [We must show that (a) .] By
definition of union, x ∈ A ∩ B (b ) x ∈ A ∩ C .

Case 1 (x ∈ A ∩ B): In this case, by definition of intersec-
tion, x ∈ A (c ) x ∈ B. Since x ∈ B, then by definition of
union, x ∈ B ∪ C . Hence x ∈ A and x ∈ B ∪ C , and so,
by definition of intersection, x ∈ (d ) .

Case 2 (x ∈ A ∩ C): In this case, (e) .
In either case, x ∈ A ∩ (B ∪ C) [as was to be shown]. [Thus
(A ∩ B) ∪ (A ∩ C) ⊆ A ∩ (B ∪ C) by definition of subset.]

(3) Conclusion: [Since both subset relations have been
proved, it follows, by definition of set equality, that (a) .]

Use an element argument to prove each statement in 7–19.
Assume that all sets are subsets of a universal set U .

7.H For all sets A and B, (A ∩ B)c = Ac ∪ Bc.

8. For all sets A and B, (A ∩ B) ∪ (A ∩ Bc) = A.

9.H For all sets A, B, and C ,

(A − B) ∪ (C − B) = (A ∪ C)− B.

10. For all sets A, B, and C ,

(A − B) ∩ (C − B) = (A ∩ C)− B.

11.H For all sets A and B, A ∪ (A ∩ B) = A.

12. For all sets A, A ∪ ∅ = A.

13. For all sets A, B, and C , if A ⊆ B then A ∩ C ⊆ B ∩ C .

14. For all sets A, B, and C , if A ⊆ B then A ∪ C ⊆ B ∪ C .

15. For all sets A and B, if A ⊆ B then Bc ⊆ Ac.

16.H For all sets A, B, and C , if A ⊆ B and A ⊆ C then
A ⊆ B ∩ C.

17. For all sets A, B, and C , if A ⊆ C and B ⊆ C then
A ∪ B ⊆ C .

18. For all sets A, B, and C ,

A × (B ∪ C) = (A × B) ∪ (A × C).

19. For all sets A, B, and C ,

A × (B ∩ C) = (A × B) ∩ (A × C).

20. Find the mistake in the following “proof” that for all sets
A, B, and C , if A ⊆ B and B ⊆ C then A ⊆ C .

“Proof: Suppose A, B, andC are sets such that A ⊆ B and
B ⊆ C . Since A ⊆ B, there is an element x such that x ∈ A
and x ∈ B. Since B ⊆ C , there is an element x such that
x ∈ B and x ∈ C . Hence there is an element x such that
x ∈ A and x ∈ C and so A ⊆ C .”

21.H Find the mistake in the following “proof.”

“Theorem:” For all sets A and B, Ac ∪ Bc ⊆ (A ∪ B)c.

“Proof: Suppose A and B are sets, and x ∈ Ac ∪ Bc. Then
x ∈ Ac or x ∈ Bc by definition of union. It follows that
x /∈ A or x /∈ B by definition of complement, and so
x /∈ A ∪ B by definition of union. Thus x ∈ (A ∪ B)c

by definition of complement, and hence Ac ∪ Bc ⊆
(A ∪ B)c.”

22. Find the mistake in the following “proof” that for all sets A
and B, (A − B) ∪ (A ∩ B) ⊆ A.

“Proof: Suppose A and B are sets, and suppose x ∈
(A − B) ∪ (A ∩ B). If x ∈ A then x ∈ A − B. Then,
by definition of difference, x ∈ A and x /∈ B. Hence
x ∈ A, and so (A − B) ∪ (A ∩ B) ⊆ A by definition of
subset.”
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23. Consider the Venn diagram below.

A B

C

U

a. Illustrate one of the distributive laws by shading in the
region corresponding to A ∪ (B ∩ C) on one copy of the
diagram and (A ∪ B) ∩ (A ∪ C) on another.

b. Illustrate the other distributive law by shading in the
region corresponding to A ∩ (B ∪ C) on one copy of the
diagram and (A ∩ B) ∪ (A ∩ C) on another.

c. Illustrate one of De Morgan’s laws by shading in the
region corresponding to (A ∪ B)c on one copy of the
diagram and Ac ∩ Bc on the other. (Leave the set C out
of your diagrams.)

d. Illustrate the other De Morgan’s law by shading in the
region corresponding to (A ∩ B)c on one copy of the
diagram and Ac ∪ Bc on the other. (Leave the set C out
of your diagrams.)

24. Fill in the blanks in the following proof that for all sets A
and B, (A − B) ∩ (B − A) = ∅.
Proof: Let A and B be any sets and supppose (A − B) ∩
(B − A) �= ∅. That is, suppose there were an element x
in (a) . By definition of (b) , x ∈ A − B and x ∈ (c) .
Then by definition of set difference, x ∈ A and x /∈ B and
x ∈ (d) and x /∈ (e) . In particular x ∈ A and x /∈ (f ) ,
which is a contradiction. Hence [the supposition that

(A − B) ∩ (B − A) �= ∅ is false, and so] (g) .

Use the element method for proving a set equals the empty set to
prove each statement in 25–35. Assume that all sets are subsets
of a universal set U .

25. For all sets A and B, (A ∩ B) ∩ (A ∩ Bc) = ∅.
26. For all sets A, B, and C,

(A − C) ∩ (B − C) ∩ (A − B) = ∅.

27. For all subsets A of a universal set U, A ∩ Ac = ∅.

28. If U denotes a universal set, then Uc = ∅.
29. For all sets A, A × ∅ = ∅.
30. For all sets A and B, if A ⊆ B then A ∩ Bc = ∅.
31. For all sets A and B, if B ⊆ Ac then A ∩ B = ∅.
32. For all sets A, B, and C , if A ⊆ B and B ∩ C = ∅ then

A ∩ C = ∅.
33. For all sets A, B, and C , if C ⊆ B − A, then A ∩ C = ∅.
34. For all sets A, B, and C ,

if B ∩ C ⊆ A, then (C − A) ∩ (B − A) = ∅.
35. For all sets A, B,C , and D,

if A ∩ C = ∅ then (A × B) ∩ (C × D) = ∅.
Prove each statement in 36–41.

36.H For all sets A and B,
a. (A − B) ∪ (B − A) ∪ (A ∩ B) = A ∪ B
b. The sets (A − B), (B − A), and (A ∩ B) are mutually

disjoint.

37. For all integers n ≥ 1, if A and B1, B2, B3, . . . are any
sets, then

A ∩
(

n⋃
i=1

Bi

)
=

n⋃
i=1

(A ∩ Bi ).

38.H For all integers n ≥ 1, if A1, A2, A3, . . . and B are any
sets, then

n⋃
i=1

(Ai − B) =
(

n⋃
i=1

Ai

)
− B.

39. For all integers n ≥ 1, if A1, A2, A3, . . . and B are any
sets, then

n⋂
i=1

(Ai − B) =
(

n⋂
i=1

Ai

)
− B.

40. For all integers n ≥ 1, if A and B1, B2, B3, . . . are any
sets, then

n⋃
i=1

(A × Bi ) = A ×
(

n⋃
i=1

Bi

)
.

41. For all integers n ≥ 1, if A and B1, B2, B3, . . . are any
sets, then

n⋂
i=1

(A × Bi ) = A ×
(

n⋂
i=1

Bi

)
.

Answers for Test Yourself
1. and 2. or 3. x ∈ A; x ∈ B; x ∈ X 4. x ∈ A ∩ B (Or: x is an element of both A and B); x ∈ X 5. X ⊆ Y ;
Y ⊆ X 6. X; in Y ; Y ; in X
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6.3 Disproofs, Algebraic Proofs, and Boolean Algebras
If a fact goes against common sense, and we are nevertheless compelled to accept and
deal with this fact, we learn to alter our notion of common sense.
—Phillip J. Davis and Reuben Hersh, The Mathematical Experience, 1981

In Section 6.2 we gave examples only of set properties that were true. Occasionally,
however, a proposed set property is false. We begin this section by discussing how to
disprove such a proposed property. Then we prove an important theorem about the power
set of a set and go on to discuss an “algebraic” method for deriving new set properties
from set properties already known to be true. We finish the section with an introduction
to Boolean algebras.

Disproving an Alleged Set Property
Recall that to show a universal statement is false, it suffices to find one example (called a
counterexample) for which it is false.

Example 6.3.1 Finding a Counterexample for a Set Identity

Is the following set property true?

For all sets A, B, andC, (A − B) ∪ (B − C) = A − C.

Solution Observe that the property is true if, and only if,

the given equality holds for all sets A, B, and C.

So it is false if, and only if,

there are sets A, B, and C for which the equality does not hold.

One way to solve this problem is to picture sets A, B, and C by drawing a Venn
diagram such as that shown in Figure 6.3.1. If you assume that any of the eight regions
of the diagram may be empty of points, then the diagram is quite general.

U

A B

C

Figure 6.3.1

Find and shade the region corresponding to (A − B) ∪ (B − C). Then shade the
region corresponding to A − C . These are shown in Figure 6.3.2 on the next page.

Comparing the shaded regions seems to indicate that the property is false. For instance,
if there is an element in B that is not in either A or C then this element would be in
(A − B) ∪ (B − C) (because of being in B and not C) but it would not be in A − C
since A − C contains nothing outside A. Similarly, an element that is in both A and C
but not B would be in (A − B) ∪ (B − C) (because of being in A and not B), but it would
not be in A − C (because of being in both A and C).
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U U

A B

C

A B

C

Figure 6.3.2

Construct a concrete counterexample in order to confirm your answer and make sure
that you did not make a mistake either in drawing or analyzing your diagrams. One way
is to put one of the integers from 1–7 into each of the seven subregions enclosed by the
circles representing A, B, and C . If the proposed set property had involved set comple-
ments, it would also be helpful to label the region outside the circles, and so we place the
number 8 there. (See Figure 6.3.3.) Then define discrete sets A, B, and C to consist of all
the numbers in their respective subregions.

1 2 3

4 6
5

7
8

U

A B

C

Figure 6.3.3

Counterexample 1: Let A = {1, 2, 4, 5}, B = {2, 3, 5, 6}, and C = {4, 5, 6, 7}.
Then

A − B = {1, 4}, B − C = {2, 3}, and A − C = {1, 2}.
Hence

(A − B) ∪ (B − C) = {1, 4} ∪ {2, 3} = {1, 2, 3, 4}, whereas A − C = {1, 2}.
Since {1, 2, 3, 4} �= {1, 2}, we have that (A − B) ∪ (B − C) �= A − C .

A more economical counterexample can be obtained by observing that as long as
the set B contains an element, such as 3, that is not in A, then regardless of whether B
contains any other elements and regardless of whether A and C contain any elements at
all, (A − B) ∪ (B − C) �= A − C .

Counterexample 2: Let A = ∅, B = {3}, and C = ∅. Then
A − B = ∅, B − C = {3}, and A − C = ∅.

Hence (A − B) ∪ (B − C) = ∅ ∪ {3} = {3}, whereas A − C = ∅.
Since {3} �= ∅, we have that (A − B) ∪ (B − C) �= A − C .

Note Check that when
A = C = {4} and B = ∅,
(A − B) ∪ (B − C) �= A − C .

Another economical counterexample requires only that A = C = a singleton set, such
as {4}, while B is the empty set.
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Problem-Solving Strategy
How can you discover whether a given universal statement about sets is true or false?

There are two basic approaches: the optimistic and the pessimistic. In the optimistic
approach, you simply plunge in and start trying to prove the statement, asking yourself,
“What do I need to show?” and “How do I show it?” In the pessimistic approach, you
start by searching your mind for a set of conditions that must be fulfilled to construct a
counterexample. With either approach you may have clear sailing and be immediately
successful or you may run into difficulty. The trick is to be ready to switch to the other
approach if the one you are trying does not look promising. For more difficult questions,
you may alternate several times between the two approaches before arriving at the correct
answer.

The Number of Subsets of a Set
The following theorem states the important fact that if a set has n elements, then its power
set has 2n elements. The proof uses mathematical induction and is based on the following
observations. Suppose X is a set and z is an element of X .

1. The subsets of X can be split into two groups: those that do not contain z and those
that do contain z.

2. The subsets of X that do not contain z are the same as the subsets of X − {z}.
3. The subsets of X that do not contain z can be matched up one for one with the subsets

of X that do contain z by matching each subset A that does not contain z to the subset
A ∪ {z} that contains z. Thus there are as many subsets of X that contain z as there are
subsets of X that do not contain z. For instance, if X = {x, y, z}, the following table
shows the correspondence between subsets of X that do not contain z and subsets of
X that contain z.

Subsets of X That Subsets of X That
Do Not Contain z Contain z

∅ ←→ ∅ ∪ {z} = {z}
{x} ←→ {x} ∪ {z} = {x, z}
{y} ←→ {y} ∪ {z} = {y, z}
{x, y} ←→ {x, y} ∪ {z} = {x, y, z}

Theorem 6.3.1

For all integers n ≥ 0, if a set X has n elements, then P(X) has 2n elements.

Proof (by mathematical induction):

Let the property P(n) be the sentence

Any set with n elements has 2n subsets. ← P(n)

Show that P(0) is true:
To establish P(0), we must show that

Any set with 0 elements has 20 subsets. ← P(0)

continued on page 370
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But the only set with zero elements is the empty set, and the only subset of the empty
set is itself. Thus a set with zero elements has one subset. Since 1 = 20, we have that
P(0) is true.

Show that for all integers k ≥ 0, if P(k) is true then P(k+ 1) is also true:
[Suppose that P(k) is true for a particular but arbitrarily chosen integer k ≥ 0. That is:]
Suppose that k is any integer with k ≥ 0 such that

Any set with k elements has 2k subsets. ← P(k)
inductive hypothesis

[We must show that P(k + 1) is true. That is:] We must show that

Any set with k + 1 elements has 2k+1 subsets. ← P(k + 1)

Let X be a set with k + 1 elements. Since k + 1 ≥ 1, we may pick an element z
in X . Observe that any subset of X either contains z or not. Furthermore, any subset
of X that does not contain z is a subset of X − {z}. And any subset A of X − {z} can
be matched up with a subset B, equal to A ∪ {z}, of X that contains z. Consequently,
there are as many subsets of X that contain z as do not, and thus there are twice
as many subsets of X as there are subsets of X − {z}. But X − {z} has k elements,
and so

the number of subsets of X − {z} = 2k by inductive hypothesis.

Therefore,

the number of subsets of X = 2 ·(the number of subsets of X − {z})
= 2 ·(2k) by substitution

= 2k+1 by basic algebra.

[This is what was to be shown.]
[Since we have proved both the basis step and the inductive step, we conclude that the
theorem is true.]

“Algebraic” Proofs of Set Identities
Let U be a universal set and consider the power set of U,P(U ). The set identities given
in Theorem 6.2.2 hold for all elements of P(U ). Once a certain number of identities and
other properties have been established, new properties can be derived from them alge-
braically without having to use element method arguments. It turns out that only identi-
ties (1–5) of Theorem 6.2.2 are needed to prove any other identity involving only unions,
intersections, and complements. With the addition of identity (12), the set difference law,
any set identity involving unions, intersections, complements, and set differences can be
established.

To use known properties to derive new ones, you need to use the fact that such
properties are universal statements. Like the laws of algebra for real numbers, they apply
to a wide variety of different situations. Assume that all sets are subsets of P(U ), then,
for instance, one of the distributive laws states that

for all sets A, B, and C, A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).
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This law can be viewed as a general template into which any three particular sets can be
placed. Thus, for example, if A1, A2, and A3 represent particular sets, then

A1︸︷︷︸ ∩ ( A2︸︷︷︸∪ A3︸︷︷︸)=( A1︸︷︷︸∩ A2︸︷︷︸) ∪ ( A1︸︷︷︸∩ A3︸︷︷︸),
A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

where A1 plays the role of A, A2 plays the role of B, and A3 plays the role ofC . Similarly,
if W, X, Y , and Z are any particular sets, then, by the distributive law,

(W ∩ X︸ ︷︷ ︸) ∩ (Y ∪ Z) = ((W ∩ X︸ ︷︷ ︸) ∩ Y ) ∪ ((W ∩ X︸ ︷︷ ︸) ∩ Z),

( ( ( ( ( ( (
A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

where W ∩ X plays the role of A, Y plays the role of B, and Z plays the role of C .

Example 6.3.2 Deriving a Set Difference Property

Construct an algebraic proof that for all sets A, B, and C ,

(A ∪ B)− C = (A − C) ∪ (B − C).

Cite a property from Theorem 6.2.2 for every step of the proof.

Solution Let A, B, and C be any sets. Then

(A ∪ B)− C = (A ∪ B) ∩ Cc by the set difference law

= Cc ∩ (A ∪ B) by the commutative law for ∩
= (Cc ∩ A) ∪ (Cc ∩ B) by the distributive law

= (A ∩ Cc) ∪ (B ∩ Cc) by the commutative law for ∩
= (A − C) ∪ (B − C) by the set difference law. ■

Example 6.3.3 Deriving a Set Identity Using Properties of ∅
Construct an algebraic proof that for all sets A and B,

A − (A ∩ B) = A − B.

Cite a property from Theorem 6.2.2 for every step of the proof.

Solution Suppose A and B are any sets. Then

A − (A ∩ B) = A ∩ (A ∩ B)c by the set difference law

= A ∩ (Ac ∪ Bc) by De Morgan’s laws

= (A ∩ Ac) ∪ (A ∩ Bc) by the distributive law

= ∅ ∪ (A ∩ Bc) by the complement law

= (A ∩ Bc) ∪ ∅ by the commutative law for ∪
= A ∩ Bc by the identity law for ∪
= A − B by the set difference law. ■

To many people an algebraic proof seems more attractive than an element proof,
but often an element proof is actually simpler. For instance, in Example 6.3.3 above,
you could see immediately that A − (A ∩ B) = A − B because for an element to be in
A − (A ∩ B) means that it is in A and not in both A and B, and this is equivalent to
saying that it is in A and not in B.
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Example 6.3.4 Deriving a Generalized Associative Law

Prove that for any sets A1, A2, A3, and A4,

((A1 ∪ A2) ∪ A3) ∪ A4 = A1 ∪ ((A2 ∪ A3) ∪ A4).

Cite a property from Theorem 6.2.2 for every step of the proof.

!
Caution! When doing
problems similar to
Examples 6.3.2–6.3.4, be
sure to use the set
properties exactly as they
are stated. Solution Let A1, A2, A3, and A4 be any sets. Then

((A1 ∪ A2) ∪ A3) ∪ A4 = (A1 ∪ (A2 ∪ A3)) ∪ A4 by the associative law for ∪ with A1

playing the role of A, A2 playing the role
of B, and A3 playing the role of C

= A1 ∪ ((A2 ∪ A3) ∪ A4) by the associative law for ∪ with A1

playing the role of A, A2 ∪ A3 playing
the role of B, and A4 playing the role of C .

■

Test Yourself
1. Given a proposed set identity involving set variables A, B,

andC , the most common way to show that the equation does
not hold in general is to find concrete sets A, B, and C that,
when substituted for the set variables in the equation, _____.

2. When using the algebraic method for proving a set identity,
it is important to _____ for every step.

3. When applying a property from Theorem 6.2.2, it must be
used _____ as it is stated.

Exercise Set 6.3
For each of 1–4 find a counterexample to show that the state-
ment is false. Assume all sets are subsets of a universal set U .

1. For all sets A, B, and C, (A ∩ B) ∪ C = A ∩ (B ∪ C).

2. For all sets A and B, (A ∪ B)c = Ac ∪ Bc.

3. For all sets A, B, and C , if A � B and B � C then A � C .

4. For all sets A, B, and C , if B ∩ C ⊆ A then
(A − B) ∩ (A − C) = ∅.

For each of 5–21 prove each statement that is true and find a
counterexample for each statement that is false. Assume all sets
are subsets of a universal set U .

5. For all sets A, B, and C, A − (B − C) = (A − B)− C .

6. For all sets A and B, A ∩ (A ∪ B) = A.

7. For all sets A, B, and C ,

(A − B) ∩ (C − B) = A − (B ∪ C).

8. For all sets A and B, if Ac ⊆ B then A ∪ B = U .

9. For all sets A, B, and C , if A ⊆ C and B ⊆ C then
A ∪ B ⊆ C .

10. For all sets A and B, if A ⊆ B then A ∩ Bc = ∅.
11.H For all sets A, B, and C , if A ⊆ B then A ∩ (B ∩ C)c = ∅.
12.H For all sets A, B, and C ,

A ∩ (B − C) = (A ∩ B)− (A ∩ C).

13. For all sets A, B, and C ,

A ∪ (B − C) = (A ∪ B)− (A ∪ C).

14.H For all sets A, B, and C , if A ∩ C ⊆ B ∩ C and
A ∪ C ⊆ B ∪ C , then A ⊆ B.

15.H For all sets A, B, and C , if A ∩ C = B ∩ C and
A ∪ C = B ∪ C , then A = B.

16. For all sets A and B, if A ∩ B = ∅ then A × B = ∅.
17. For all sets A and B, if A ⊆ B then P(A) ⊆P(B).

18. For all sets A and B, P(A ∪ B) ⊆P(A) ∪P(B).

19.H For all sets A and B, P(A) ∪P(B) ⊆P(A ∪ B).

20. For all sets A and B, P(A ∩ B) =P(A) ∩P(B).

21. For all sets A and B, P(A × B) =P(A)×P(B).

22. Write a negation for each of the following statements. Indi-
cate which is true, the statement or its negation. Justify your
answers.
a. ∀ sets S, ∃ a set T such that S ∩ T = ∅.
b. ∃ a set S such that ∀ sets T, S ∪ T = ∅.

23.H Let S = {a, b, c} and for each integer i = 0, 1, 2, 3, let Si
be the set of all subsets of S that have i elements. List the
elements in S0, S1, S2, and S3. Is {S0, S1, S2, S3} a partition
of P(S)?

24. Let S = {a, b, c} and let Sa be the set of all subsets of S that
contain a, let Sb be the set of all subsets of S that contain
b, let Sc be the set of all subsets of S that contain c, and let
S∅ be the set whose only element is ∅. Is {Sa, Sb, Sc, S∅} a
partition of P(S)?
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25. Let A = {t, u, v, w} and let S1 be the set of all subsets of A
that do not contain w and S2 the set of all subsets of A that
contain w.
a. Find S1. b. Find S2. c. Are S1 and S2 disjoint?
d. Compare the sizes of S1 and S2.
e. How many elements are in S1 ∪ S2?
f. What is the relation between S1 ∪ S2 and P(A)?

26.✶H The following problem, devised by Ginger Bolton,
appeared in the January 1989 issue of the College Math-
ematics Journal (Vol. 20, No. 1, p. 68): Given a positive
integer n ≥ 2, let S be the set of all nonempty subsets of
{2, 3, . . . , n}. For each Si ∈ S, let Pi be the product of the
elements of Si . Prove or disprove that

2n−1−1∑
i=1

Pi = (n + 1)!
2

− 1.

In 27 and 28 supply a reason for each step in the derivation.

27. For all sets A, B, and C ,

(A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C).

Proof: Suppose A, B, and C are any sets. Then

(A ∪ B) ∩ C = C ∩ (A ∪ B) by (a)

= (C ∩ A) ∪ (C ∩ B) by (b)

= (A ∩ C) ∪ (B ∩ C) by (c) .

28.H For all sets A, B, and C,

(A ∪ B)− (C − A) = A ∪ (B − C).

Proof: Suppose A, B, and C are any sets. Then

(A ∪ B)− (C − A) = (A ∪ B) ∩ (C − A)c by (a)

= (A ∪ B) ∩ (C ∩ Ac)c by (b)

= (A ∪ B) ∩ (Ac ∩ C)c by (c)

= (A ∪ B) ∩ ((Ac)c ∪ Cc) by (d)

= (A ∪ B) ∩ (A ∪ Cc) by (e)

= A ∪ (B ∩ Cc) by (f )

= A ∪ (B − C) by (g) .

29.H Some steps are missing from the following proof that for
all sets (A ∪ B)− C = (A − C) ∪ (B − C). Indicate what
they are, and then write the proof correctly.

Proof: Let A, B, and C be any sets. Then

(A ∪ B)− C = (A ∪ B) ∩ Cc by the set difference law

= (A ∩ Cc) ∪ (B ∩ Cc) by the distributive law

= (A − C) ∪ (B − C) by the set difference law

In 30–40, construct an algebraic proof for the given statement.
Cite a property from Theorem 6.2.2 for every step.

30. For all sets A, B, and C ,

(A ∩ B) ∪ C = (A ∪ C) ∩ (B ∪ C).

31. For all sets A and B, A ∪ (B − A) = A ∪ B.

32. For all sets A and B, (A − B) ∪ (A ∩ B) = A.

33. For all sets A and B, (A − B) ∩ (A ∩ B) = ∅.
34. For all sets A, B, and C ,

(A − B)− C = A − (B ∪ C).

35. For all sets A and B, A − (A − B) = A ∩ B.

36. For all sets A and B, ((Ac ∪ Bc)− A)c = A.

37. For all sets A and B, (Bc ∪ (Bc − A))c = B.

38. For all sets A and B, A − (A ∩ B) = A − B.

39.H For all sets A and B,

(A − B) ∪ (B − A) = (A ∪ B)− (A ∩ B).

40. For all sets A, B, and C ,

(A − B)− (B − C) = A − B.

In 41–43 simplify the given expression. Cite a property from
Theorem 6.2.2 for every step.

41.H A ∩ ((B ∪ Ac) ∩ Bc)

42. (A − (A ∩ B)) ∩ (B − (A ∩ B))

43. ((A ∩ (B ∪ C)) ∩ (A − B)) ∩ (B ∪ Cc)

44. Consider the following set property: For all sets A and B,
A − B and B are disjoint.

a. Use an element argument to derive the property.
b. Use an algebraic argument to derive the property (by

applying properties from Theorem 6.2.2).
c. Comment on which method you found easier.

45. Consider the following set property: For all sets A, B, and
C, (A − B) ∪ (B − C) = (A ∪ B)− (B ∩ C).

a. Use an element argument to derive the property.
b. Use an algebraic argument to derive the property (by

applying properties from Theorem 6.2.2).
c. Comment on which method you found easier.

Definition: Given sets A and B, the symmetric difference
of A and B, denoted A) B, is

A) B = (A − B) ∪ (B − A).

46. Let A = {1, 2, 3, 4}, B = {3, 4, 5, 6}, and C = {5, 6, 7, 8}.
Find each of the following sets:
a. A) B b. B)C
c. A)C d. (A) B))C

Refer to the definition of symmetric difference given above.
Prove each of 47–52, assuming that A, B, and C are all sub-
sets of a universal set U .

47. A) B = B) A 48. A)∅ = A

49. A) Ac = U 50. A) A = ∅
51.H If A)C = B)C , then A = B.
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52.H (A) B))C = A) (B)C).

53.H Derive the set identity A ∪ (A ∩ B) = A from the
properties listed in Theorem 6.2.2(1)–(9). Start by show-
ing that for all subsets B of a universal set U , U ∪ B = U .
Then intersect both sides with A and deduce the identity.

54. Derive the set identity A ∩ (A ∪ B) = A from the prop-
erties listed in Theorem 6.2.2(1)–(9). Start by showing
that for all subsets B of a universal set U, ∅ = ∅ ∩ B.
Then take the union of both sides with A and deduce the
identity.

Answers for Test Yourself
1. make the left-hand side unequal to the right-hand side (Or: result in different values on the two sides of the equation) 2. cite one
of the properties from Theorem 6.2.2 (Or: give a reason) 3. exactly

6.4 Boolean Algebras, Russell’s Paradox, and the
Halting Problem
From the paradise created for us by Cantor, no one will drive us out.
— David Hilbert (1862–1943)

Table 6.4.1 summarizes the main features of the logical equivalences from Theorem 2.1.1
and the set properties from Theorem 6.2.2. Notice how similar the entries in the two
columns are.

Logical Equivalences Set Properties

For all statement variables p, q, and r : For all sets A, B, and C :

a. p ∨ q ≡ q ∨ p a. A ∪ B = B ∪ A

b. p ∧ q ≡ q ∧ p b. A ∩ B = B ∩ A

a. p ∧ (q ∧ r) ≡ p ∧ (q ∧ r) a. A ∪ (B ∪ C) ≡ A ∪ (B ∪ C)

b. p ∨ (q ∨ r) ≡ p ∨ (q ∨ r) b. A ∩ (B ∩ C) ≡ A ∩ (B ∩ C)

a. p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r) a. A ∩ (B ∪ C) ≡ (A ∩ B) ∪ (A ∩ C)

b. p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r) b. A ∪ (B ∩ C) ≡ (A ∪ B) ∩ (A ∪ C)

a. p ∨ c ≡ p a. A ∪ ∅ = A

b. p ∧ t ≡ p b. A ∩U = A

a. p∨ ∼p ≡ t a. A ∪ Ac = U

b. p∧ ∼p ≡ c b. A ∩ Ac = ∅
∼(∼p) ≡ p (Ac)c = A

a. p ∨ p ≡ p a. A ∪ A = A

b. p ∧ p ≡ p b. A ∩ A = A

a. p ∨ t ≡ t a. A ∪U = U

b. p ∧ c ≡ c b. A ∩ ∅ = ∅
a. ∼(p ∨ q) ≡∼p∧ ∼q a. (A ∪ B)c = Ac ∩ Bc

b. ∼(p ∧ q) ≡∼p∨ ∼q b. (A ∩ B)c = Ac ∪ Bc

a. p ∨ (p ∧ q) ≡ p a. A ∪ (A ∩ B) ≡ A

b. p ∧ (p ∨ q) ≡ p b. A ∩ (A ∪ B) ≡ A

a. ∼t ≡ c a. Uc = ∅
b. ∼c ≡ t b. ∅c = U

Table 6.4.1
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6.4 Boolean Algebras, Russell’s Paradox, and the Halting Problem 375

If you let ∨ (or) correspond to ∪ (union), ∧ (and) correspond to ∩ (intersection),
t (a tautology) correspond to U (a universal set), c (a contradiction) correspond to ∅ (the
empty set), and ∼ (negation) correspond to c (complementation), then you can see that
the structure of the set of statement forms with operations ∨ and ∧ is essentially iden-
tical to the structure of the set of subsets of a universal set with operations ∪ and ∩. In
fact, both are special cases of the same general structure, known as a Boolean algebra.
The essential idea of a Boolean algebra was introduced by the self-taught English math-
ematician/logician George Boole in 1847 in a book entitled The Mathematical Analysis
of Logic. During the remainder of the nineteenth century, Boole and others amplified and
clarified the concept until it reached the form in which we use it today.

In this section we show how to derive the various properties associated with a Boolean
algebra from a set of just five axioms.

• Definition: Boolean Algebra

A Boolean algebra is a set B together with two operations, generally denoted +
and ·, such that for all a and b in B both a + b and a ·b are in B and the following
properties hold:

1. Commutative Laws: For all a and b in B,

(a) a + b = b + a and (b) a ·b = b ·a.
2. Associative Laws: For all a, b, and c in B,

(a) (a + b)+ c = a + (b + c) and (b) (a ·b) ·c = a ·(b ·c).
3. Distributive Laws: For all a, b, and c in B,

(a) a + (b ·c) = (a + b) ·(a + c) and (b) a ·(b + c) = (a ·b)+ (a ·c).
4. Identity Laws: There exist distinct elements 0 and 1 in B such that for all a in B,

(a) a + 0 = a and (b) a ·1 = a.

5. Complement Laws: For each a in B, there exists an element in B, denoted a and
called the complement or negation of a, such that

(a) a + a = 1 and (b) a ·a = 0.

In any Boolean algebra, the complement of each element is unique, the quantities
0 and 1 are unique, and identities analogous to those in Theorem 2.1.1 and Theorem
6.2.2 can be deduced.

Theorem 6.4.1 Properties of a Boolean Algebra

Let B be any Boolean algebra.

1. Uniqueness of the Complement Law: For all a and x in B, if a + x = 1 and
a ·x = 0 then x = a.

2. Uniqueness of 0 and 1: If there exists x in B such that a + x = a for all a in B,
then x = 0, and if there exists y in B such that a · y = a for all a in B, then y = 1.

3. Double Complement Law: For all a ∈ B, (a) = a.
continued on page 376
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4. Idempotent Law: For all a ∈ B,

(a) a + a = a and (b) a ·a = a.

5. Universal Bound Law: For all a ∈ B,

(a) a + 1 = 1 and (b) a ·0 = 0.

6. De Morgan’s Laws: For all a and b ∈ B,

(a) a + b = a ·b and (b) a ·b = a + b.

7. Absorption Laws: For all a and b ∈ B,

(a) (a + b) ·a = a and (b) (a ·b)+ a = a.

8. Complements of 0 and 1:

(a) 0 = 1 and (b) 1 = 0.

Proof:

Part 1: Uniqueness of the Complement Law
Suppose a and x are particular, but arbitrarily chosen, elements of B that satisfy the
following hypothesis: a + x = 1 and a ·x = 0. Then

x = x ·1 because 1 is an identity for ·
= x ·(a + a) by the complement law for +
= x ·a + x ·a by the distributive law for · over +
= a ·x + x ·a by the commutative law for ·
= 0+ x ·a by hypothesis

= a ·a + x ·a by the complement law for ·
= (a ·a)+ (a ·x) by the commutative law for ·
= a ·(a + x) by the distributive law for · over +
= a ·1 by hypothesis

= a because 1 is an identity for ·.
Proofs of the other parts of the theorem are discussed in the examples that follow
and in the exercises.

You may notice that all parts of the definition of a Boolean algebra and most parts of
Theorem 6.4.1 contain paired statements. For instance, the distributive laws state that for
all a, b, and c in B,

(a) a + (b ·c) = (a + b) ·(a + c) and (b) a ·(b + c) = (a ·b)+ (a ·c),
and the identity laws state that for all a in B,

(a) a + 0 = a and (b) a ·1 = a.

Note that each of the paired statements can be obtained from the other by interchanging
all the+ and · signs and interchanging 1 and 0. Such interchanges transform any Boolean
identity into its dual identity. It can be proved that the dual of any Boolean identity is also
an identity. This fact is often called the duality principle for a Boolean algebra.
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Example 6.4.1 Proof of the Double Complement Law

Prove that for all elements a in a Boolean algebra B, (a) = a.

Solution Start by supposing that B is a Boolean algebra and a is any element of B. The
basis for the proof is the uniqueness of the complement law: that each element in B has a
unique complement that satisfies certain equations with respect to it. So if a can be shown
to satisfy those equations with respect to a, then a must be the complement of a.

Theorem 6.4.1(3) Double Complement Law

For all elements a in a Boolean algebra B, (a) = a.

Proof:

Suppose B is a Boolean algebra and a is any element of B. Then

a + a = a + a by the commutative law

= 1 by the complement law for 1

and

a ·a = a ·a by the commutative law

= 0 by the complement law for 0.

Thus a satisfies the two equations with respect to a that are satisfied by the complement
of a. From the fact that the complement of a is unique, we conclude that (a) = a.

■

Example 6.4.2 Proof of an Idempotent Law

Fill in the blanks in the following proof that for all elements a in a Boolean algebra B,
a + a = a.

Proof:

Suppose B is a Boolean algebra and a is any element of B. Then

a = a + 0 (a)

= a + (a ·a) (b)

= (a + a) ·(a + a) (c)

= (a + a) ·1 (d)

= a + a (e)
.

Solution

a. because 0 is an identity for +
b. by the complement law for ·
c. by the distributive law for + over ·
d. by the complement law for +
e. because 1 is an identity for · ■
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Russell’s Paradox
By the beginning of the twentieth century, abstract set theory had gained such wide accep-
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Bertrand Russell
(1872–1970)

tance that a number of mathematicians were working hard to show that all of mathematics
could be built upon a foundation of set theory. In the midst of this activity, the English
mathematician and philosopher Bertrand Russell discovered a “paradox” (really a gen-
uine contradiction) that seemed to shake the very core of the foundation. The paradox
assumes Cantor’s definition of set as “any collection into a whole of definite and separate
objects of our intuition or our thought.”

Russell’s Paradox: Most sets are not elements of themselves. For instance, the set of all
integers is not an integer and the set of all horses is not a horse. However, we can imagine
the possibility of a set’s being an element of itself. For instance, the set of all abstract
ideas might be considered an abstract idea. If we are allowed to use any description of a
property as the defining property of a set, we can let S be the set of all sets that are not
elements of themselves:

S = {A | A is a set and A /∈ A}.
Is S an element of itself?

The answer is neither yes nor no. For if S ∈ S, then S satisfies the defining property
for S, and hence S /∈ S. But if S /∈ S, then S is a set such that S /∈ S and so S satisfies
the defining property for S, which implies that S ∈ S. Thus neither is S ∈ S nor is S /∈ S,
which is a contradiction.

To help explain his discovery to laypeople, Russell devised a puzzle, the barber
puzzle, whose solution exhibits the same logic as his paradox.

Example 6.4.3 The Barber Puzzle

In a certain town there is a male barber who shaves all those men, and only those men,
who do not shave themselves. Question: Does the barber shave himself?

Solution Neither yes nor no. If the barber shaves himself, he is a member of the class of
men who shave themselves. But no member of this class is shaved by the barber, and so
the barber does not shave himself. On the other hand, if the barber does not shave himself,
he belongs to the class of men who do not shave themselves. But the barber shaves every
man in this class, so the barber does shave himself. ■

But how can the answer be neither yes nor no? Surely any barber either does or does
not shave himself. You might try to think of circumstances that would make the paradox
disappear. For instance, maybe the barber happens to have no beard and never shaves.
But a condition of the puzzle is that the barber is a man who shaves all those men who
do not shave themselves. If he does not shave, then he does not shave himself, in which
case he is shaved by the barber and the contradiction is as present as ever. Other attempts
at resolving the paradox by considering details of the barber’s situation are similarly
doomed to failure.

So let’s accept the fact that the paradox has no easy resolution and see where that
thought leads. Since the barber neither shaves himself nor doesn’t shave himself, the
sentence “The barber shaves himself” is neither true nor false. But the sentence arose in
a natural way from a description of a situation. If the situation actually existed, then the
sentence would have to be true or false. Thus we are forced to conclude that the situation
described in the puzzle simply cannot exist in the world as we know it.

In a similar way, the conclusion to be drawn from Russell’s paradox itself is that the
object S is not a set. Because if it actually were a set, in the sense of satisfying the general
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properties of sets that we have been assuming, then it either would be an element of itself
or not.

In the years following Russell’s discovery, several ways were found to define the basic
concepts of set theory so as to avoid his contradiction. The way used in this text requires
that, except for the power set whose existence is guaranteed by an axiom, whenever a set
is defined using a predicate as a defining property, the stipulation must also be made that
the set is a subset of a known set. This method does not allow us to talk about “the set
of all sets that are not elements of themselves.” We can speak only of “the set of all sets
that are subsets of some known set and that are not elements of themselves.” When this
restriction is made, Russell’s paradox ceases to be contradictory. Here is what happens:

Let U be a universal set and suppose that all sets under discussion are subsets of
U . Let

S = {A | A ⊆ U and A /∈ A}.
In Russell’s paradox, both implications

S ∈ S→ S /∈ S and S /∈ S→ S ∈ S

are proved, and the contradictory conclusion

neither S ∈ S nor S /∈ S

is therefore deduced. In the situation in which all sets under discussion are subsets
of U , the implication S ∈ S→ S /∈ S is proved in almost the same way as it is for
Russell’s paradox: (Suppose S ∈ S. Then by definition of S, S ⊆ U and S /∈ S. In
particular, S /∈ S.) On the other hand, from the supposition that S /∈ S we can only
deduce that the statement “S ⊆ U and S /∈ S” is false. By one of De Morgan’s laws,
this means that “S � U or S ∈ S.” Since S ∈ S would contradict the supposition that
S /∈ S, we eliminate it and conclude that S � U . In other words, the only conclusion
we can draw is that the seeming “definition” of S is faulty—that is, that S is not a
set in U .

Russell’s discovery had a profound impact on mathematics because even though his

Kurt Gödel
(1906–1978)

contradiction could be made to disappear by more careful definitions, its existence caused
people to wonder whether other contradictions remained. In 1931 Kurt Gödel showed that
it is not possible to prove, in a mathematically rigorous way, that mathematics is free of
contradictions. You might think that Gödel’s result would have caused mathematicians to
give up their work in despair, but that has not happened. On the contrary, there has been
more mathematical activity since 1931 than in any other period in history.

The Halting Problem
Well before the actual construction of an electronic computer, Alan M. Turing (1912–
1954) deduced a profound theorem about how such computers would have to work. The
argument he used is similar to that in Russell’s paradox. It is also related to those used by
Gödel to prove his theorem and by Cantor to prove that it is impossible to write all the
real numbers in an infinitely long list, even given an infinitely long period of time (see
Section 7.4 and Chapter 12).

If you have some experience programming computers, you know how badly an infi-
nite loop can tie up a computer system. It would be useful to be able to preprocess a pro-
gram and its data set by running it through a checking program that determines whether
execution of the given program with the given data set would result in an infinite loop.
Can an algorithm for such a program be written? In other words, can an algorithm be
written that will accept any algorithm X and any data set D as input and will then print
“halts” or “loops forever” to indicate whether X terminates in a finite number of steps or
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loops forever when run with data set D? In the 1930s, Turing proved that the answer to
this question is no.

Theorem 6.4.2

There is no computer algorithm that will accept any algorithm X and data set D as
input and then will output “halts” or “loops forever” to indicate whether or not X
terminates in a finite number of steps when X is run with data set D.

Proof (by contradiction):

Suppose there is an algorithm, CheckHalt, such that if an algorithm X and a data set
D are input, then

CheckHalt(X, D) prints

“halts” if X terminates in a finite number of steps
when run with data set D

or

“loops forever” if X does not terminate in a finite number of
steps when run with data set D.

[To show that no algorithm such as CheckHalt can exist, we will deduce a contradiction.]

Observe that the sequence of characters making up an algorithm X can be regarded
as a data set itself. Thus it is possible to consider running CheckHalt with input
(X, X). Define a new algorithm, Test, as follows: For any input algorithm X ,

Test(X)

loops forever if CheckHalt(X, X) prints “halts”

or

stops if CheckHalt(X, X) prints “loops forever”.

Now run algorithm Test with input Test. If Test(Test) terminates after a finite
number of steps, then the value of CheckHalt(Test, Test) is “halts” and so Test(Test)
loops forever.

On the other hand, if Test(Test) does not terminate after a finite number of steps,
then CheckHalt(Test, Test) prints “loops forever” and so Test(Test) terminates.

The two paragraphs above show that Test(Test) loops forever and also that it
terminates. This is a contradiction. But the existence of Test follows logically from
the supposition of the existence of an algorithm CheckHalt that can check any algo-
rithm and data set for termination. [Hence the supposition must be false, and there is
no such algorithm.]

In recent years, the axioms for set theory that guarantee that Russell’s paradox will not
arise have been found inadequate to deal with the full range of recursively defined objects
in computer science, and a new theory of “non-well-founded” sets has been developed.
In addition, computer scientists and logicians working on programs to enable computers
to process natural language have seen the importance of exploring further the kinds of
semantic issues raised by the barber puzzle and are developing new theories of logic to
deal with them.
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Test Yourself
1. In the comparison between the structure of the set of state-

ment forms and the set of subsets of a universal set, the or
operation ∨ corresponds to _____, the and operation ∧ cor-
responds to _____, a tautology t corresponds to _____, a
contradiction c corresponds to _____, and the negation oper-
ation, denoted ∼ , corresponds to _____.

2. The operations of + and · in a Boolean algebra are general-

izations of the operations of _____ and _____ in the set of
all statement forms in a given finite number of variables and
the operations of _____ and _____ in the set of all subsets
of a given set.

3. Russell showed that the following proposed “set definition”
could not actually define a set: _____.

Exercise Set 6.4
In 1–3 assume that B is a Boolean algebra with operations +
and ·. Give the reasons needed to fill in the blanks in the proofs,
but do not use any parts of Theorem 6.4.1 unless they have
already been proved. You may use any part of the definition of a
Boolean algebra and the results of previous exercises, however.

1. For all a in B, a ·a = a.

Proof: Let a be any element of B. Then

a = a ·1 (a)

= a ·(a + a) (b)

= (a ·a)+ (a ·a) (c)

= (a ·a)+ 0 (d)

= a ·a (e) .

2. For all a in B, a + 1 = 1.

Proof: Let a be any element of B. Then

a + 1 = a + (a + a) (a)

= (a + a)+ a (b)

= a + a by Example 6.4.2

= 1 (c) .

3. For all a and b in B, (a + b) ·a = a.

Proof: Let a and b be any elements of B. Then

(a + b) ·a = a · (a + b) (a)

= a ·a + a ·b (b)

= a + a ·b (c)

= a ·1+ a ·b (d)

= a · (1+ b) (e)

= a · (b + 1) (f)

= a ·1 by exercise 2

= a (g ) .

In 4–10 assume that B is a Boolean algebra with operations +
and ·. Prove each statement without using any parts of Theo-
rem 6.4.1 unless they have already been proved. You may use
any part of the definition of a Boolean algebra and the results of
previous exercises, however.

4. For all a in B, a ·0 = 0.

5. For all a and b in B, (a ·b)+ a = a.

6. a. 0 = 1.
b. 1 = 0

7. a. There is only one element of B that is an identity for +.
b.H There is only one element of B that is an identity for · .

8. For all a and b in B, a ·b = a + b. (Hint: Prove that
(a ·b)+ (a + b) = 1 and that (a ·b) ·(a + b) = 0, and use
the fact that a ·b has a unique complement.)

9. For all a and b in B, a + b = a · b.
10.H For all x, y, and z in B, if x + y = x + z and x · y = x · z,

then y = z.

11. Let S = {0, 1}, and define operations + and · on S by the
following tables:

+ 0 1

0 0 1
1 1 1

· 0 1

0 0 0
1 0 1

a. Show that the elements of S satisfy the following
properties:
(i) the commutative law for +
(ii) the commutative law for ·
(iii) the associative law for +
(iv) the associative law for ·
(v)H the distributive law for + over ·
(vi) the distributive law for · over +

b.H Show that 0 is an identity element for + and that 1 is an
identity element for ·.

c. Define 0 = 1 and 1 = 0. Show that for all a in S,
a + a = 1 and a ·a = 0. It follows from parts (a)–(c)
that S is a Boolean algebra with the operations + and ·.

12.✶H Prove that the associative laws for a Boolean algebra can
be omitted from the definition. That is, prove that the asso-
ciative laws can be derived from the other laws in the
definition.

In 13–18 determine whether each sentence is a statement.
Explain your answers.

13. This sentence is false.

14. If 1+ 1 = 3, then 1 = 0.

15. The sentence in this box is a lie.
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16. All positive integers with negative squares are prime.

17. This sentence is false or 1+ 1 = 3.

18. This sentence is false and 1+ 1 = 2.

19. a. Assuming that the following sentence is a statement,
prove that 1+ 1 = 3:

If this sentence is true, then 1+ 1 = 3.

b. What can you deduce from part (a) about the status of
“This sentence is true”? Why? (This example is known
as Löb’s paradox.)

20.H The following two sentences were devised by the logician
Saul Kripke. While not intrinsically paradoxical, they could
be paradoxical under certain circumstances. Describe such
circumstances.

(i) Most of Nixon’s assertions about Watergate are false.

(ii) Everything Jones says about Watergate is true.

(Hint: Suppose Nixon says (ii) and the only utterance Jones
makes about Watergate is (i).)

21. Can there exist a computer program that has as output a list
of all the computer programs that do not list themselves in
their output? Explain your answer.

22. Can there exist a book that refers to all those books and
only those books that do not refer to themselves? Explain
your answer.

23. Some English adjectives are descriptive of themselves (for
instance, the word polysyllabic is polysyllabic) whereas
others are not (for instance, the word monosyllabic is not
monosyllabic). The word heterological refers to an adjec-
tive that does not describe itself. Is heterological heterolog-
ical? Explain your answer.

24. As strange as it may seem, it is possible to give a precise-
looking verbal definition of an integer that, in fact, is not a
definition at all. The following was devised by an English
librarian, G. G. Berry, and reported by Bertrand Russell.
Explain how it leads to a contradiction. Let n be “the
smallest integer not describable in fewer than 12 English
words.” (Note that the total number of strings consisting of
11 or fewer English words is finite.)

25.H Is there an algorithm which, for a fixed quantity a and any
input algorithm X and data set D, can determine whether X
prints a when run with data set D? Explain. (This problem
is called the printing problem.)

26. Use a technique similar to that used to derive Russell’s
paradox to prove that for any set A,P(A) � A.

Answers for Test Yourself
1. the operation of union ∪; the operation of intersection ∩; a universal set U ; the empty set ∅; the operation of complementation,
denoted c 2. ∨; ∧; ∪; ∩ 3. the set of all sets that are not elements of themselves
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CHAPTER 7

FUNCTIONS

Functions are ubiquitous in mathematics and computer science. That means you can
hardly take two steps in these subjects without running into one. In this book we have pre-
viously discussed truth tables and input/output tables (which can be regarded as Boolean
functions), sequences (which are functions defined on sets of integers), mod and div
(which are functions defined on Cartesian products of integers), and floor and ceiling
(which are functions from R to Z).

In this chapter we consider an additional wide variety of functions, focusing on those
defined on discrete sets (such as finite sets or sets of integers). We then look at properties
of functions such as one-to-one and onto, existence of inverse functions, and the interac-
tion of composition of functions and the properties of one-to-one and onto. We end the
chapter with the surprising result that there are different sizes of infinite sets and give an
application to computability.

7.1 Functions Defined on General Sets

The theory that has had the greatest development in recent times is without any doubt
the theory of functions. — Vito Volterra, 1888

As used in ordinary language, the word function indicates dependence of one varying
quantity on another. If your teacher tells you that your grade in a course will be a function
of your performance on the exams, you interpret this to mean that the teacher has some
rule for translating exam scores into grades. To each collection of exam scores there
corresponds a certain grade.

In Section 1.3 we defined a function as a certain type of relation. In this chapter we
focus on the more dynamic way functions are used in mathematics. The following is a
restatement of the definition of function that includes additional terminology associated
with the concept.
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• Definition

A function f from a set X to a set Y, denoted f : X → Y , is a relation from X , the
domain, to Y , the co-domain, that satisfies two properties: (1) every element in X
is related to some element in Y , and (2) no element in X is related to more than one
element in Y . Thus, given any element x in X , there is a unique element in Y that
is related to x by f . If we call this element y, then we say that “ f sends x to y” or

“ f maps x to y” and write x
f→ y or f : x → y. The unique element to which f sends

x is denoted

f (x) and is called f of x, or
the output of f for the input x, or
the value of f at x, or
the image of x under f .

The set of all values of f taken together is called the range of f or the image of X
under f. Symbolically,

range of f = image of X under f = {y ∈ Y | y = f (x), for some x in X}.

Given an element y in Y , there may exist elements in X with y as their image. If
f (x) = y, then x is called a preimage of y or an inverse image of y. The set of all
inverse images of y is called the inverse image of y. Symbolically,

the inverse image of y = {x ∈ X | f (x) = y}.

!
Caution! Use f (x) to
refer to the value of the
function f at x . Generally
avoid using f (x) to refer
to the function f itself.

In some mathematical contexts, the notation f (x) is used to refer both to the value
of f at x and to the function f itself. Because using the notation this way can lead to
confusion, we avoid it whenever possible. In this book, unless explicitly stated otherwise,
the symbol f (x) always refers to the value of the function f at x and not to the function
f itself.
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Johann Peter Gustav
Lejeune Dirichlet
(1805–1859)

The concept of function was developed over a period of centuries. A definition similar
to that given above was first formulated for sets of numbers by the German mathematician
Lejeune Dirichlet (DEER-ish-lay) in 1837.

Arrow Diagrams
Recall from Section 1.3 that if X and Y are finite sets, you can define a function f from
X to Y by drawing an arrow diagram. You make a list of elements in X and a list of
elements in Y , and draw an arrow from each element in X to the corresponding element
in Y , as shown in Figure 7.1.1.

x1

x2

x3

x4

y1

y2

y3

y4

y5

X Yf

Figure 7.1.1

This arrow diagram does define a function because

1. Every element of X has an arrow coming out of it.

2. No element of X has two arrows coming out of it
that point to two different elements of Y .
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Example 7.1.1 Functions and Nonfunctions

Which of the arrow diagrams in Figure 7.1.2 define functions from X = {a, b, c} to
Y = {1, 2, 3, 4}?

a
b
c

1
2
3
4

a
b
c

1
2
3
4

a
b
c

1
2
3
4

(a) (b) (c)

Figure 7.1.1

Solution Only (c) defines a function. In (a) there is an element of X , namely b, that is not
sent to any element of Y ; that is, there is no arrow coming out of b. And in (b) the element
c is not sent to a unique element of Y ; that is, there are two arrows coming out of c, one
pointing to 2 and the other to 3. ■

Example 7.1.2 A Function Defined by an Arrow Diagram

Let X = {a, b, c} and Y = {1, 2, 3, 4}. Define a function f from X to Y by the arrow
diagram in Figure 7.1.3.

a
b
c

1
2
3
4

X Yf

Figure 7.1.1

a. Write the domain and co-domain of f .

b. Find f (a), f (b), and f (c).

c. What is the range of f ?

d. Is c an inverse image of 2? Is b an inverse image of 3?

e. Find the inverse images of 2, 4, and 1.

f. Represent f as a set of ordered pairs.

Solution

a. domain of f = {a, b, c}, co-domain of f = {1, 2, 3, 4}
b. f (a) = 2, f (b) = 4, f (c) = 2

c. range of f = {2, 4}
d. Yes, No

e. inverse image of 2 = {a, c}
inverse image of 4 = {b}
inverse image of 1 = ∅ (since no arrows point to 1)

f. {(a, 2), (b, 4), (c, 2)} ■

In Example 7.1.2 there are no arrows pointing to the 1 or the 3. This illustrates the
fact that although each element of the domain of a function must have an arrow pointing
out from it, there can be elements of the co-domain to which no arrows point. Note also
that there are two arrows pointing to the 2—one coming from a and the other from c.

In Section 1.3 we gave a test for determining whether two functions with the same
domain and co-domain are equal, saying that the test results from the definition of a
function as a binary relation. We formalize this justification in Theorem 7.1.1.
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Theorem 7.1.1 A Test for Function Equality

If F : X → Y andG: X → Y are functions, then F = G if, and only if, F(x) = G(x)
for all x ∈ X .

Proof:

Suppose F : X → Y and G: X → Y are functions, that is, F and G are binary rela-
tions from X to Y that satisfy the two additional function properties. Then F and G
are subsets of X × Y , and for (x, y) to be in F means that y is the unique element
related to x by F , which we denote as F(x). Similarly, for (x, y) to be in G means
that y is the unique element related to x by G, which we denote as G(x).

Now suppose that F(x) = G(x) for all x ∈ X . Then if x is any element of X ,

(x, y) ∈ F ⇔ y = F(x)⇔ y = G(x)⇔ (x, y) ∈ G because F(x) = G(x)

So F and G consist of exactly the same elements and hence F = G.

Conversely, if F = G, then for all x ∈ X ,

y = F(x)⇔ (x, y) ∈ F ⇔ (x, y) ∈ G ⇔ y = G(x) because F and G consist
of exactly the same
elementsThus, since both F(x) and G(x) equal y, we have that

F(x) = G(x).

Note So (x, y) ∈ F
⇔ y = F(x) and
(x, y) ∈ G ⇔ y = G(x).

Example 7.1.3 Equality of Functions

a. Let J3 = {0, 1, 2}, and define functions f and g from J3 to J3 as follows: For all x
in J3,

f (x) = (x2 + x + 1) mod 3 and g(x) = (x + 2)2 mod 3.

Does f = g?

b. Let F: R→ R and G: R→ R be functions. Define new functions F + G: R→ R
and G + F: R→ R as follows: For all x ∈ R,

(F + G)(x) = F(x)+ G(x) and (G + F)(x) = G(x)+ F(x).

Does F + G = G + F?

Solution

a. Yes, the table of values shows that f (x) = g(x) for all x in J3.

x x2 + x + 1 f (x) = (x2 + x + 1) mod 3 (x + 2)2 g(x) = (x + 2)2 mod 3

0 1 1 mod 3 = 1 4 4 mod 3 = 1
1 3 3 mod 3 = 0 9 9 mod 3 = 0
2 7 7 mod 3 = 1 16 16 mod 3 = 1

b. Again the answer is yes. For all real numbers x ,

(F + G)(x) = F(x)+ G(x) by definition of F + G

= G(x)+ F(x) by the commutative law for addition of real numbers

= (G + F)(x) by definition of G + F

Hence F + G = G + F . ■
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Examples of Functions
The following examples illustrate some of the wide variety of different types of functions.

Example 7.1.4 The Identity Function on a Set

Given a set X , define a function IX from X to X by

IX (x) = x for all x in X.

The function IX is called the identity function on X because it sends each element of
X to the element that is identical to it. Thus the identity function can be pictured as a
machine that sends each piece of input directly to the output chute without changing it in
any way.

Let X be any set and suppose that aki j and φ(z) are elements of X . Find IX
(
aki j

)
and

IX (φ(z)).

Solution Whatever is input to the identity function comes out unchanged, so IX
(
aki j

)
= aki j

and IX (φ(z)) = φ(z). ■

Example 7.1.5 Sequences

The formal definition of sequences specifies that an infinite sequence is a function defined
on the set of integers that are greater than or equal to a particular integer. For example,
the sequence denoted

1,−1

2
,
1

3
,−1

4
,
1

5
, . . . ,

(−1)n
n + 1

, . . .

can be thought of as the function f from the nonnegative integers to the real numbers

that associates 0→ 1, 1→−1
2 , 2→ 1

3 , 3→− 1
4 , 4→ 1

5 , and, in general, n→
(−1)n
n + 1 .

In other words, f : Znonneg → R is the function defined as follows:

Send each integer n ≥ 0 to f (n) = (−1)n
n + 1

.

In fact, there are many functions that can be used to define a given sequence. For
instance, express the sequence above as a function from the set of positive integers to the
set of real numbers.

Solution Define g: Z+ → R by g(n) = (−1)n+1
n , for each n ∈ Z+. Then g(1) = 1,

g(2) = − 1
2 , g(3) = 1

3 , and in general

g(n + 1) = (−1)n+2
n + 1

= (−1)n
n + 1

= f (n). ■

Example 7.1.6 A Function Defined on a Power Set

Recall from Section 6.1 that P(A) denotes the set of all subsets of the set A. Define a
function F:P({a, b, c})→ Znonneg as follows: For each X ∈P({a, b, c}),

F(X) = the number of elements in X.

Draw an arrow diagram for F .

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



388 Chapter 7 Functions

Solution

∅
{a}

{b}

{c}

{a, b}

{a, c}

0

1

2

3

4

5

{b, c}

{a, b, c}

({a, b, c}) Znonneg

■

Note It is customary to
omit one set of
parentheses when
referring to functions
defined on Cartesian
products. For example,
we write M(a, b) rather
than M((a, b)).

Example 7.1.7 Functions Defined on a Cartesian Product

Define functions M : R× R→ R and R: R× R→ R× R as follows: For all ordered
pairs (a, b) of integers,

M(a, b) = ab and R(a, b) = (−a, b).
Then M is the multiplication function that sends each pair of real numbers to the product
of the two, and R is the reflection function that sends each point in the plane that corre-
sponds to a pair of real numbers to the mirror image of the point across the vertical axis.
Find the following:

a. M(−1,−1) b. M
(
1
2 ,

1
2

)
c. M(

√
2,
√
2)

d. R(2, 5) e. R(−2, 5) f. R(3,−4)
Solution

a. (−1)(−1) = 1 b. (1/2)(1/2) = 1/4 c.
√
2 ·√2 = 2

d. (−2, 5) e. (−(−2), 5) = (2, 5) f. (−3,−4) ■

• Definition Logarithms and Logarithmic Functions

Let b be a positive real number with b �= 1. For each positive real number x , the
logarithm with base b of x, written logb x, is the exponent to which b must be
raised to obtain x . Symbolically,

logb x = y ⇔ by = x .

The logarithmic function with base b is the function from R+ to R that takes each
positive real number x to logb x .

Note It is not obvious,
but it is true, that for any
positive real number x
there is a unique real
number y such that
by = x . Most calculus
books contain a
discussion of this result.

Example 7.1.8 The Logarithmic Function with Base b

Find the following:

a. log3 9 b. log2
(
1
2

)
c. log10(1) d. log2(2

m) (m is any real number)

e. 2log2 m(m > 0)
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Solution

a. log3 9 = 2 because 32 = 9. b. log2
(
1
2

)
= −1 because 2−1 = 1

2 .

c. log10(1) = 0 because 100 = 1.

d. log2(2
m) = m because the exponent to which 2 must be raised to obtain 2m is m.

e. 2log2 m = m because log2 m is the exponent to which 2 must be raised to obtain m. ■

Recall from Section 5.9 that if S is a nonempty, finite set of characters, then a string over
S is a finite sequence of elements of S. The number of characters in a string is called the
length of the string. The null string over S is the “string” with no characters. It is usually
denoted ε and is said to have length 0.

Example 7.1.9 Encoding and Decoding Functions

Digital messages consist of finite sequences of 0’s and 1’s. When they are communicated
across a transmission channel, they are frequently coded in special ways to reduce the
possibility that they will be garbled by interfering noise in the transmission lines. For
example, suppose a message consists of a sequence of 0’s and 1’s. A simple way to
encode the message is to write each bit three times. Thus the message

00101111

would be encoded as

000000111000111111111111.

The receiver of the message decodes it by replacing each section of three identical bits
by the one bit to which all three are equal.

Let A be the set of all strings of 0’s and 1’s, and let T be the set of all strings of 0’s
and 1’s that consist of consecutive triples of identical bits. The encoding and decoding
processes described above are actually functions from A to T and from T to A. The
encoding function E is the function from A to T defined as follows: For each string s ∈ A,

E(s) = the string obtained from s by replacing each
bit of s by the same bit written three times.

The decoding function D is defined as follows: For each string t ∈ T ,

D(t) = the string obtained from t by replacing each consecutive
triple of three identical bits of t by a single copy of that bit.

The advantage of this particular coding scheme is that it makes it possible to do a
certain amount of error correction when interference in the transmission channels has
introduced errors into the stream of bits. If the receiver of the coded message observes
that one of the sections of three consecutive bits that should be identical does not consist
of identical bits, then one bit differs from the other two. In this case, if errors are rare, it
is likely that the single bit that is different is the one in error, and this bit is changed to
agree with the other two before decoding. ■

Example 7.1.10 The Hamming Distance Function

The Hamming distance function, named after the computer scientist RichardW. Hamming,
is very important in coding theory. It gives a measure of the “difference” between two
strings of 0’s and 1’s that have the same length. Let Sn be the set of all strings of 0’s
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and 1’s of length n. Define a function H : Sn × Sn → Znonneg as follows: For each pair of
strings (s, t) ∈ Sn × Sn ,

H(s, t) = the number of positions in which s and t have different values.
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Richard Hamming
(1915–1998)

Thus, letting n = 5, H(11111, 00000) = 5

because 11111 and 00000 differ in all five positions, whereas

H(11000, 00000) = 2

because 11000 and 00000 differ only in the first two positions.

a. Find H(00101, 01110). b. Find H(10001, 01111).

Solution

a. 3 b. 4 ■

Boolean Functions
In Section 2.4 we showed how to find input/output tables for certain digital logic
circuits. Any such input/output table defines a function in the following way: The ele-
ments in the input column can be regarded as ordered tuples of 0’s and 1’s; the set of all
such ordered tuples is the domain of the function. The elements in the output column are
all either 0 or 1; thus {0, 1} is taken to be the co-domain of the function. The relation-
ship is that which sends each input element to the output element in the same row. Thus,
for instance, the input/output table of Figure 7.1.4(a) defines the function with the arrow
diagram shown in Figure 7.1.4(b).

More generally, the input/output table corresponding to a circuit with n input wires
has n input columns. Such a table defines a function from the set of all n-tuples of 0’s and
1’s to the set {0, 1}.

Input Output

P Q R S

1 1 1 1

1 1 0 1

1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 1

0 0 1 0

0 0 0 0

(a)

(1, 1, 1)
(1, 1, 0)
(1, 0, 1)
(1, 0, 0)
(0, 1, 1)
(0, 1, 0)
(0, 0, 1)
(0, 0, 0)

1

0

(b)
Figure 7.1.2 Two Representations of a Boolean Function

• Definition

An (n-place) Boolean function f is a function whose domain is the set of all ordered
n-tuples of 0’s and 1’s and whose co-domain is the set {0, 1}. More formally, the
domain of a Boolean function can be described as the Cartesian product of n copies
of the set {0, 1}, which is denoted {0, 1}n . Thus f : {0, 1}n → {0, 1}.
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Example 7.1.11 A Boolean Function

Consider the three-place Boolean function defined from the set of all 3-tuples of 0’s and
1’s to {0, 1} as follows: For each triple (x1, x2, x3) of 0’s and 1’s,

f (x1, x2, x3) = (x1 + x2 + x3) mod 2.

Describe f using an input/output table.

Solution f (1, 1, 1) = (1+ 1+ 1) mod 2 = 3 mod 2 = 1

f (1, 1, 0) = (1+ 1+ 0) mod 2 = 2 mod 2 = 0

The rest of the values of f can be calculated similarly to obtain the following table.

Input Output

x1 x2 x3 (x1 + x2 + x3) mod 2

1 1 1 1

1 1 0 0

1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 1

0 0 1 1

0 0 0 0
■

Checking Whether a Function Is Well Defined
It can sometimes happen that what appears to be a function defined by a rule is not really
a function at all. To give an example, suppose we wrote, “Define a function f : R→ R
by specifying that for all real numbers x ,

f (x) is the real number y such that x2 + y2 = 1.

There are two distinct reasons why this description does not define a function. For almost
all values of x , either (1) there is no y that satisfies the given equation or (2) there are
two different values of y that satisfy the equation. For instance, when x = 2, there is no
real number y such that 22 + y2 = 1, and when x = 0, both y = −1 and y = 1 satisfy
the equation 02 + y2 = 1. In general, we say that a “function” is not well defined if it
fails to satisfy at least one of the requirements for being a function.

Example 7.1.12 A Function That Is Not Well Defined

Recall that Q represents the set of all rational numbers. Suppose you read that a function
f : Q→ Z is to be defined by the formula

f
(m
n

)
= m for all integers m and n with n �= 0.

That is, the integer associated by f to the number m
n is m. Is f well defined? Why?

Solution The function f is not well defined. The reason is that fractions have more than
one representation as quotients of integers. For instance, 12 = 3

6 . Now if f were a function,
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then the definition of a function would imply that f
(
1
2

)
=
(
3
6

)
since 1

2 = 3
6 . But applying

the formula for f , you find that

f
(
1
2

)
= 1 and f

(
3
6

)
= 3,

and so

f
(
1
2

)
�= f

(
3
6

)
.

This contradiction shows that f is not well defined and, therefore, is not a function. ■

Note that the phrase well-defined function is actually redundant; for a function to be
well defined really means that it is worthy of being called a function.

Functions Acting on Sets
Given a function from a set X to a set Y , you can consider the set of images in Y of all
the elements in a subset of X and the set of inverse images in X of all the elements in a
subset of Y .

Note For y ∈ Y,
f −1(y) = f −1({y}).

• Definition

If f : X → Y is a function and A ⊆ X and C ⊆ Y , then

f (A) = {y ∈ Y | y = f (x) for some x in A}
and f −1(C) = {x ∈ X | f (x) ∈ C}.
f (A) is called the image of A, and f −1(C) is called the inverse image of C.

Example 7.1.13 The Action of a Function on Subsets of a Set

Let X = {1, 2, 3, 4} and Y = {a, b, c, d, e}, and define F : X → Y by the following
arrow diagram:

a
b
c
d
e

1

2

3

4

Let A = {1, 4},C = {a, b}, and D = {c, e}. Find F(A), F(X), F−1(C), and F−1(D).

Solution

F(A) = {b} F(X) = {a, b, d} F−1(C) = {1, 2, 4} F−1(D) = ∅ ■

Example 7.1.14 Interaction of a Function with Union

Let X and Y be sets, let F be a function from X to Y , and let A and B be any subsets of
X . Prove that F(A ∪ B) ⊆ F(A) ∪ F(B).

Solution

The fact that X, Y, F, A, and B were formally introduced prior to the word “Prove” allows
you to regard their existence and relationships as part of your background knowledge.
Thus to prove that F(A ∪ B) ⊆ F(A) ∪ F(B), you only need show that if y is any ele-
ment in F(A ∪ B), then y is an element of F(A) ∪ F(B).
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Proof:

Suppose y ∈ F(A ∪ B). [We must show that y ∈ F(A) ∪ F(B).] By definition of function,
y = F(x) for some x ∈ A ∪ B. By definition of union, x ∈ A or x ∈ B.

Case 1, x ∈ A: In this case, y = F(x) for some x in A. Hence y ∈ F(A), and so by
definition of union, y ∈ F(A) ∪ F(B).

Case 2, x ∈ B: In this case, y = F(x) for some x in B. Hence y ∈ F(B), and so by
definition of union, y ∈ F(A) ∪ F(B).

Thus in either case y ∈ F(A) ∪ F(B) [as was to be shown]. ■

Exercise 38 asks you to prove the opposite containment from the one in example
7.1.14. Taken together, the example and the solution to the exercise establish the full
equality that F(A ∪ B) = F(A) ∪ F(B).

Test Yourself
Answers to Test Yourself questions are located at the end of each section.

1. Given a function f from a set X to a set Y, f (x) is _____.

2. Given a function f from a set X to a set Y , if f (x) = y,
then y is called _____ or _____ or _____.

3. Given a function f from a set X to a set Y , the range of f
(or the image of X under f ) is _____.

4. Given a function f from a set X to a set Y , if f (x) = y,
then x is called _____ or _____.

5. Given a function f from a set X to a set Y , if y ∈ Y , then
f −1(y) = _____ and is called _____.

6. Given functions f and g from a set X to a set Y, f = g
if, and only if, _____.

7. Given positive real numbers x and b with b �= 1,
logb x = _____.

8. Given a function f from a set X to a set Y and a subset A of
X, f (A) = _____.

9. Given a function f from a set X to a set Y and a subset C
of Y, f −1(C) = _____.

Exercise Set 7.1∗
1. Let X = {1, 3, 5} and Y = {s, t, u, v}. Define f : X → Y

by the following arrow diagram.

1
3
5

X Y

s
t
u
v

f

a. Write the domain of f and the co-domain of f .
b. Find f (1), f (3), and f (5).
c. What is the range of f ?
d. Is 3 an inverse image of s? Is 1 an inverse image of u?
e. What is the inverse image of s? of u? of v?
f. Represent f as a set of ordered pairs.

2. Let X = {1, 3, 5} and Y = {a, b, c, d}. Define g: X → Y
by the following arrow diagram.

1
3
5

X Y

a
b
c
d

g

a. Write the domain of g and the co-domain of g.
b. Find g(1), g(3), and g(5).
c. What is the range of g?
d. Is 3 an inverse image of a? Is 1 an inverse image

of b?
e. What is the inverse image of b? of c?
f. Represent g as a set of ordered pairs.

∗For exercises with blue numbers or letters, solutions are given in Appendix B. The symbol H indicates that only a hint or a partial
solution is given. The symbol ✶ signals that an exercise is more challenging than usual.
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3. Indicate whether the statements in parts (a)–(d) are true or
false. Justify your answers.
a. If two elements in the domain of a function are equal,

then their images in the co-domain are equal.
b. If two elements in the co-domain of a function are equal,

then their preimages in the domain are also equal.
c. A function can have the same output for more than one

input.
d. A function can have the same input for more than one

output.

4. a. Find all functions from X = {a, b} to Y = {u, v}.
b. Find all functions from X = {a, b, c} to Y = {u}.
c. Find all functions from X = {a, b, c} to Y = {u, v}.

5. Let IZ be the identity function defined on the set of all inte-
gers, and suppose that e, b jk

i , K (t), and ukj all represent
integers. Find

a. IZ(e) b. IZ
(
b jk
i

)
c. IZ(K (t)) d. IZ(ukj )

6. Find functions defined on the set of nonnegative integers
that define the sequences whose first six terms are given
below.

a. 1,−1

3
,
1

5
,−1

7
,
1

9
,− 1

11
b. 0,−2, 4,−6, 8,−10

7. Let A = {1, 2, 3, 4, 5} and define a function
F:P(A)→Z as follows: For all sets X in P(A),

F(X) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0 if X has an even

number of elements

1 if X has an odd
number of elements.

Find the following:
a. F({1, 3, 4}) b. F(∅)
c. F({2, 3}) d. F({2, 3, 4, 5})

8. Let J5 = {0, 1, 2, 3, 4}, and define a function F : J5→ J5
as follows: For each x ∈ J5, F(x) = (x3 + 2x + 4) mod 5.

Find the following:
a. F(0) b. F(1) c. F(2) d. F(3) e. F(4)

9. Define a function S : Z+ → Z+ as follows: For each
positive integer n,

S(n) = the sum of the positive divisors of n.

Find the following:
a. S(1) b. S(15) c. S(17)
d. S(5) e. S(18) f. S(21)

10. Let D be the set of all finite subsets of positive integers.
Define a function T : Z+ → D as follows: For each positive
integer n, T (n) = the set of positive divisors of n.

Find the following:
a. T (1) b. T (15) c. T (17)
d. T (5) e. T (18) f. T (21)

11. Define F : Z× Z→Z× Z as follows: For all ordered
pairs (a, b) of integers, F(a, b) = (2a + 1, 3b − 2).

Find the following:
a. F(4, 4) b. F(2, 1) c. F(3, 2) d. F(1, 5)

12. Define G : J5 × J5 → J5 × J5 as follows: For all (a, b) ∈
J5 × J5,

G(a, b) = ((2a + 1) mod 5, (3b − 2) mod 5).

Find the following:
a. G(4, 4) b. G(2, 1) c. G(3, 2) d. G(1, 5)

13. Let J5 = {0, 1, 2, 3, 4}, and define functions f : J5→ J5
and g : J5→ J5 as follows: For each x ∈ J5,

f (x)=(x + 4)2 mod 5 and g(x)=(x2 + 3x + 1) mod 5.

Is f = g? Explain.

14. Let J5 = {0, 1, 2, 3, 4}, and define functions h : J5→ J5
and k : J5→ J5 as follows: For each x ∈ J5,

h(x)=(x+3)3 mod 5 and k(x)=(x3+4x2+2x+2)mod 5.

Is h = k? Explain.

15. Let F and G be functions from the set of all real numbers
to itself. Define the product functions F ·G: R→ R and
G ·F: R→ R as follows: For all x ∈ R,

(F ·G)(x) = F(x) ·G(x)

(G ·F)(x) = G(x) ·F(x)

Does F ·G = G ·F? Explain.
16. Let F and G be functions from the set of all real num-

bers to itself. Define new functions F − G: R→ R and
G − F: R→ R as follows: For all x ∈ R,

(F − G)(x) = F(x)− G(x)

(G − F)(x) = G(x)− F(x)

Does F − G = G − F? Explain.

17. Use the definition of logarithm to fill in the blanks below.
a. log2 8 = 3 because .

b. log5
(

1
25

)
= 2 because .

c. log4 4 = 1 because .
d. log3(3

n) = n because .
e. log4 1 = 0 because .

18. Find exact values for each of the following quantities. Do
not use a calculator.
a. log3 81 b. log2 1024 c. log3

(
1
27

)
d. log2 1

e. log10
(

1
10

)
f. log3 3 g. log2(2

k)

19. Use the definition of logarithm to prove that for any positive
real number b with b �= 1, logb b = 1.

20. Use the definition of logarithm to prove that for any positive
real number b with b �= 1, logb 1 = 0.

21. If b is any positive real number with b �= 1 and x is any

real number, b−x is defined as follows: b−x = 1

bx
. Use

this definition and the definition of logarithm to prove that

logb

(
1

u

)
= − logb(u) for all positive real numbers u and

b, with b �= 1.
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22.H Use the unique factorization for the integers theorem
(Section 4.3) and the definition of logarithm to prove that
log3(7) is irrational.

23. If b and y are positive real numbers such that logb y = 3,
what is log1/b(y)? Why?

24. If b and y are positive real numbers such that logb y = 2,
what is logb2(y)? Why?

25. Let A = {2, 3, 5} and B = {x, y}. Let p1 and p2 be the
projections of A × B onto the first and second coordi-
nates. That is, for each pair (a, b) ∈ A × B, p1(a, b) = a
and p2(a, b) = b.

a. Find p1(2, y) and p1(5, x). What is the range of p1?
b. Find p2(2, y) and p2(5, x). What is the range of p2?

26. Observe that mod and div can be defined as functions from
Znonneg × Z+ to Z. For each ordered pair (n, d) consist-
ing of a nonnegative integer n and a positive integer d,
let

mod(n, d) = n mod d (the nonnegative remainder
obtained when n is divided by d).

div(n, d) = n div d (the integer quotient
obtained when n is divided by d).

Find each of the following:

a. mod (67, 10) and div (67, 10)
b. mod (59, 8) and div (59, 8)
c. mod (30, 5) and div (30, 5)

27. Let S be the set of all strings of a’s and b’s.

a. Define f : S→ Z as follows: For each string s in S

f (s)

⎧⎪⎨
⎪⎩
the number of b’s to the left
of the left-most a in s

0 if s contains no a’s.

Find f (aba), f (bbab) and f (b). What is the range
of f ?

b. Define g: S→ S as follows: For each string s in S,

g(s) = the string obtained by writing the characters
of s in reverse order.

Find g(aba), g(bbab), and g(b). What is the range
of g?

28. Consider the coding and decoding functions E and D
defined in Example 7.1.9.

a. Find E(0110) and D(111111000111).
b. Find E(1010) and D(000000111111).

29. Consider the Hamming distance function defined in
Example 7.1.10.

a. Find H(10101, 00011)
b. Find H(00110, 10111).

30. Draw arrow diagrams for the Boolean functions defined by
the following input/output tables.

a.
Input Output

P Q R

1 1 0

1 0 1

0 1 0

0 0 1

b.
Input Output

P Q R S

1 1 1 1

1 1 0 0

1 0 1 1

1 0 0 1

0 1 1 0

0 1 0 0

0 0 1 0

0 0 0 1

31. Fill in the following table to show the values of all possible
two-place Boolean functions.

Input f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16

1 1

1 0

0 1

0 0

32. Consider the three-place Boolean function f defined by the
following rule: For each triple (x1, x2, x3) of 0’s and 1’s,

f (x1, x2, x3) = (4x1 + 3x2 + 2x3) mod 2.

a. Find f (1, 1, 1) and f (0, 0, 1).
b. Describe f using an input/output table.

33. Student A tries to define a function g: Q→ Z by the rule

g
(m
n

)
= m − n, for all integers m and n with n �= 0.

Student B claims that g is not well defined. Justify student
B’s claim.

34. Student C tries to define a function h: Q→ Q by the rule

h
(m
n

)
= m2

n
, for all integers m and n with n �= 0.

Student D claims that h is not well defined. Justify student
D’s claim.
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35. Let J5 = {0, 1, 2, 3, 4}. Then J5 − {0}= {1, 2, 3, 4}.
Student A tries to define a function R : J5 − {0}→ J5 − {0}
as follows: For each x ∈ J5 − {0},

R(x) is the number y so that (xy) mod 5 = 1.

Student B claims that R is not well defined. Who is right:
student A or student B? Justify your answer.

36. Let J4 = {0, 1, 2, 3}. Then J4 − {0} = {1, 2, 3}. Student C
tries to define a function S : J4 − {0} → J4 − {0} as fol-
lows: For each x ∈ J4 − {0},

S(x) is the number y so that (xy) mod 4 = 1.

Student F claims that S is not well defined. Who is right:
student C or student D? Justify your answer.

37. On certain computers the integer data type goes from
−2, 147, 483, 648 through 2, 147, 483, 647. Let S be the
set of all integers from −2, 147, 483, 648 through 2, 147,
483, 647. Try to define a function f : S→ S by the rule
f (n) = n2 for each n in S. Is f well defined? Why?

38. Let X = {a, b, c} and Y = {r, s, t, u, v, w}. Define
f : X → Y as follows: f (a) = v, f (b) = v, and f (c) = t .
a. Draw an arrow diagram for f .
b. Let A = {a, b},C = {t}, D = {u, v}, and E = {r, s}.

Find f (A), f (X), f −1(C), f −1(D), f −1(E), and
f −1(Y ).

39. Let X = {1, 2, 3, 4} and Y = {a, b, c, d, e}. Define
g: X → Y as follows: g(1) = a, g(2) = a, g(3) = a,
and g(4) = d.
a. Draw an arrow diagram for g.
b. Let A = {2, 3},C = {a}, and D = {b, c}. Find g(A),

g(X), g−1(C), g−1(D), and g−1(Y ).

40.H Let X and Y be sets, let A and B be any subsets of X , and
let F be a function from X to Y . Fill in the blanks in the
following proof that F(A) ∪ F(B) ⊆ F(A ∪ B).

Proof: Let y be any element in F(A) ∪ F(B). [We must
show that y is in F(A ∪ B).] By definition of union, (a).

Case 1, y ∈ F(A): In this case, by definition of F(A),

y = F(x) for (b) x ∈ A. Since A ⊆ A ∪ B, it follows from
the definition of union that x ∈ (c). Hence, y = F(x) for
some x ∈ A ∪ B, and thus, by definition of F(A ∪ B),

y ∈ (d).

Case 2, y ∈ F(B): In this case, by definition of F(B), (e)
x ∈ B. Since B ⊆ A ∪ B it follows from the definition of
union that ( f ).

Therefore, regardless of whether y ∈ F(A) or y ∈ F(B),
we have that y ∈ F(A ∪ B) [as was to be shown].

In 41–49 let X and Y be sets, let A and B be any subsets of X ,
and let C and D be any subsets of Y . Determine which of the
properties are true for all functions F from X to Y and which
are false for at least one function F from X to Y . Justify your
answers.

41. If A ⊆ B then F(A) ⊆ F(B).

42. F(A ∩ B) ⊆ F(A) ∩ F(B)

43. F(A) ∩ F(B) ⊆ F(A ∩ B)

44. For all subsets A and B of X, F(A − B) = F(A)− F(B).

45. For all subsets C and D of Y , if C ⊆ D, then

F−1(C) ⊆ F−1(D).

46.H For all subsets C and D of Y ,

F−1(C ∪ D) = F−1(C) ∪ F−1(D).

47. For all subsets C and D of Y ,

F−1(C ∩ D) = F−1(C) ∩ F−1(D).

48. For all subsets C and D of Y ,

F−1(C − D) = F−1(C)− F−1(D).

49. F(F−1(C)) ⊆ C

50. Given a set S and a subset A, the characteristic function
of A, denoted χA, is the function defined from S to Z with
the property that for all u ∈ S,

χA(u) =
{
1 if u ∈ A
0 if u /∈ A.

Show that each of the following holds for all subsets A and
B of S and all u ∈ S.
a. χA∩B(u) = χA(u) ·χB(u)
b. χA∪B(u) = χA(u)+ χB(u)− χA(u) ·χB(u)

Each of exercises 51–53 refers to the Euler phi function,
denoted φ, which is defined as follows: For each integer
n ≥ 1, φ(n) is the number of positive integers less than or equal
to n that have no common factors with n except ±1. For exam-
ple, φ(10) = 4 because there are four positive integers less than
or equal to 10 that have no common factors with 10 except ±1;
namely, 1, 3, 7, and 9.

51. Find each of the following:
a. φ(15) b.φ(2) c. φ(5)

d. φ(12) e. φ(11) f. φ(1)

52.✶ Prove that if p is a prime number and n is an integer with
n ≥ 1, then φ(pn) = pn − pn−1.

53.H Prove that there are infinitely many integers n for which
φ(n) is a perfect square.
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Answers for Test Yourself
1. the unique output element in Y that is related to x by f 2. the value of f at x ; the image of x under f ; the out-
put of f for the input x 3. the set of all y in Y such that f (x) = y 4. an inverse image of y under f ; a preimage of y
5. {x ∈ X | f (x) = y}; the inverse image of y 6. f (x) = g(x) for all x ∈ X 7. the exponent to which b must be raised to obtain x
(Or: the real number y such that x = by) 8. {y ∈ Y | y = f (x) for some x ∈ A} (Or: { f (x) | x ∈ A}) 9. {x ∈ X | f (x) ∈ C}

7.2 One-to-One and Onto, Inverse Functions
Don’t accept a statement just because it is printed. — Anna Pell Wheeler, 1883–1966

In this section we discuss two important properties that functions may satisfy: the
property of being one-to-one and the property of being onto. Functions that satisfy both
properties are called one-to-one correspondences or one-to-one onto functions. When a
function is a one-to-one correspondence, the elements of its domain and co-domain match
up perfectly, and we can define an inverse function from the co-domain to the domain that
“undoes” the action of the function.

One-to-One Functions
In Section 7.1 we noted that a function may send several elements of its domain to the
same element of its co-domain. In terms of arrow diagrams, this means that two or more
arrows that start in the domain can point to the same element in the co-domain. On
the other hand, if no two arrows that start in the domain point to the same element of
the co-domain then the function is called one-to-one or injective. For a one-to-one func-
tion, each element of the range is the image of at most one element of the domain.

• Definition

Let F be a function from a set X to a set Y . F is one-to-one (or injective) if, and
only if, for all elements x1 and x2 in X ,

if F(x1) = F(x2), then x1 = x2,

or, equivalently, if x1 �= x2, then F(x1) �= F(x2).

Symbolically,

F: X → Y is one-to-one ⇔ ∀x1, x2 ∈ X, if F(x1) = F(x2) then x1 = x2.

To obtain a precise statement of what it means for a function not to be one-to-one,
take the negation of one of the equivalent versions of the definition above. Thus:

A function F: X → Y is not one-to-one ⇔ ∃ elements x1 and x2 in X with
F(x1) = F(x2) and x1 �= x2.

That is, if elements x1 and x2 can be found that have the same function value but are
not equal, then F is not one-to-one.

In terms of arrow diagrams, a one-to-one function can be thought of as a function that
separates points. That is, it takes distinct points of the domain to distinct points of the
co-domain. A function that is not one-to-one fails to separate points. That is, at least two
points of the domain are taken to the same point of the co-domain. This is illustrated in
Figure 7.2.1 on the next page.
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x1

x2

F(x1)

F(x2)

Any two distinct elements
of X are sent to two
distinct elements of Y.

X = domain of F Y = co-domain of FF

Figure 7.2.1(a) A One-to-One Function Separates Points

x1

x2
F(x1) = F(x2)

Two distinct elements
of X are sent to
the same element of Y.

X = domain of F Y = co-domain of FF

Figure 7.2.1(b) A Function That Is Not One-to-One Collapses Points Together

Example 7.2.1 Identifying One-to-One Functions Defined on Finite Sets

a. Do either of the arrow diagrams in Figure 7.2.2 define one-to-one functions?

a
b
c
d

F
u
v
w
x
y

Domain of F Co-domain of F

X Y

a
b
c
d

G
u
v
w
x
y

Domain of G Co-domain of G

X Y

Figure 7.2.2

b. Let X = {1, 2, 3} and Y = {a, b, c, d}. Define H : X → Y as follows: H(1) = c,
H(2) = a, and H(3) = d. Define K : X → Y as follows: K (1) = d, K (2) = b, and
K (3) = d. Is either H or K one-to-one?

Solution

a. F is one-to-one but G is not. F is one-to-one because no two different elements of X
are sent by F to the same element of Y . G is not one-to-one because the elements a
and c are both sent by G to the same element of Y : G(a) = G(c) = w but a �= c.

b. H is one-to-one but K is not. H is one-to-one because each of the three elements of
the domain of H is sent by H to a different element of the co-domain: H(1) �= H(2),
H(1) �= H(3), and H(2) �= H(3). K , however, is not one-to-one because K (1) =
K (3) = d but 1 �= 3. ■

Consider the problem of writing a computer algorithm to check whether a function
F is one-to-one. If F is defined on a finite set and there is an independent algorithm to
compute values of F , then an algorithm to check whether F is one-to-one can be written
as follows: Represent the domain of F as a one-dimensional array a[1], a[2], . . . , a[n]
and use a nested loop to examine all possible pairs (a[i], a[ j]), where i < j . If there
is a pair (a[i], a[ j]) for which F(a[i]) = F(a[ j]) and a[i] �= a[ j], then F is not one-
to-one. If, however, all pairs have been examined without finding such a pair, then F is
one-to-one. You are asked to write such an algorithm in exercise 57 at the end of this
section.
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One-to-One Functions on Infinite Sets
Now suppose f is a function defined on an infinite set X . By definition, f is one-to-one
if, and only if, the following universal statement is true:

∀x1, x2 ∈ X, if f (x1) = f (x2) then x1 = x2.

Thus, to prove f is one-to-one, you will generally use the method of direct proof:

suppose x1 and x2 are elements of X such that f (x1) = f (x2)

and show that x1 = x2.

To show that f is not one-to-one, you will ordinarily

find elements x1 and x2 in X so that f (x1) = f (x2) but x1 �= x2.

Example 7.2.2 Proving or Disproving That Functions Are One-to-One

Define f : R→ R and g: Z→ Z by the rules

f (x) = 4x − 1 for all x ∈ R

and g(n) = n2 for all n ∈ Z.

a. Is f one-to-one? Prove or give a counterexample.

b. Is g one-to-one? Prove or give a counterexample.

Solution It is usually best to start by taking a positive approach to answering questions
like these. Try to prove the given functions are one-to-one and see whether you run into
difficulty. If you finish without running into any problems, then you have a proof. If
you do encounter a problem, then analyzing the problem may lead you to discover a
counterexample.

a. The function f : R→ R is defined by the rule

f (x) = 4x − 1 for all real numbers x .

To prove that f is one-to-one, you need to prove that

∀ real numbers x1 and x2, if f (x1) = f (x2) then x1 = x2.

Substituting the definition of f into the outline of a direct proof, you

suppose x1 and x2 are any real numbers such that 4x1 − 1 = 4x2 − 1,

and show that x1 = x2.

Can you reach what is to be shown from the supposition? Of course. Just add 1 to both
sides of the equation in the supposition and then divide both sides by 4.

This discussion is summarized in the following formal answer.
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Answer to (a):

If the function f : R→ R is defined by the rule f (x) = 4x − 1, for all real
numbers x , then f is one-to-one.

Proof:

Suppose x1 and x2 are real numbers such that f (x1) = f (x2). [We must show that
x1 = x2.] By definition of f ,

4x1 − 1 = 4x2 − 1.

Adding 1 to both sides gives

4x1 = 4x2,

and dividing both sides by 4 gives

x1 = x2,

which is what was to be shown.

b. The function g: Z→ Z is defined by the rule

g(n) = n2 for all integers n.

As above, you start as though you were going to prove that g is one-to-one. Substitut-
ing the definition of g into the outline of a direct proof, you

suppose n1 and n2 are integers such that n21 = n22,

and try to show that n1 = n2.

Can you reach what is to be shown from the supposition? No! It is quite pos-
sible for two numbers to have the same squares and yet be different. For example,
22 = (−2)2 but 2 �= −2.

Thus, in trying to prove that g is one-to-one, you run into difficulty. But analyzing
this difficulty leads to the discovery of a counterexample, which shows that g is not
one-to-one.

This discussion is summarized as follows:

Answer to (b):

If the function g: Z→ Z is defined by the rule g(n) = n2, for all n ∈ Z, then g
is not one-to-one.

Counterexample:

Let n1 = 2 and n2 = −2. Then by definition of g,

g(n1) = g(2) = 22 = 4 and also

g(n2) = g(−2) = (−2)2 = 4.

Hence g(n1) = g(n2) but n1 �= n2,

and so g is not one-to-one.

■
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Application: Hash Functions
Imagine a set of student records, each of which includes the student’s social security
number, and suppose the records are to be stored in a table in which a record can be
located if the social security number is known. One way to do this would be to place the
record with social security number n into position n of the table. However, since social
security numbers have nine digits, this method would require a table with 999,999,999
positions. The problem is that creating such a table for a small set of records would be
very wasteful of computer memory space. Hash functions are functions defined from
larger to smaller sets of integers, frequently using the mod function, which provide part
of the solution to this problem. We illustrate how to define and use a hash function with
a very simple example.

Example 7.2.3 A Hash Function

Suppose there are no more than seven student records. Define a function Hash from
the set of all social security numbers (ignoring hyphens) to the set {0, 1, 2, 3, 4, 5, 6} as
follows:

Hash(n) = n mod 7 for all social security numbers n.

To use your calculator to find n mod 7, use the formula n mod 7 = n − 7 · (n div 7). (See
Section 4.4.) In other words, divide n by 7, multiply the integer part of the result by 7,
and subtract that number from n. For instance, since 328343419/7 = 46906202.71 . . . ,

Hash(328-34-3419) = 328343419− (7 ·46906202) = 5.

As a first approximation to solving the problem of storing the records, try to place the
record with social security number n in position Hash(n). For instance, if the social
security numbers are 328-34-3419, 356-63-3102, 223-79-9061, and 513-40-8716, the
positions of the records are as shown in Table 7.2.1.

Table 7.2.1

0 356-63-3102

1

2 513-40-8716

3 223-79-9061

4

5 328-34-3419

6

The problem with this approach is that Hash may not be one-to one; Hash might
assign the same position in the table to records with different social security numbers.
Such an assignment is called a collision. When collisions occur, various collision res-
olution methods are used. One of the simplest is the following: If, when the record
with social security number n is to be placed, position Hash(n) is already occupied,
start from that position and search downward to place the record in the first empty posi-
tion that occurs, going back up to the beginning of the table if necessary. To locate
a record in the table from its social security number, n, you compute Hash(n) and
search downward from that position to find the record with social security number n.
If there are not too many collisions, this is a very efficient way to store and locate
records.

Suppose the social security number for another record to be stored is 908-37-1011.
Find the position in Table 7.2.1 into which this record would be placed.

Solution When you compute Hash you find that Hash(908-37-1011)= 2, which is already
occupied by the record with social security number 513-40-8716. Searching downward
from position 2, you find that position 3 is also occupied but position 4 is free.

Hash
908-37-1011 −→ 2 → 3 → 4

↑ ↑ ↑
occupied occupied free

Therefore, you place the record with social security number n into position 4. ■
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Onto Functions
It was noted in Section 7.1 that there may be an element of the co-domain of a function
that is not the image of any element in the domain. On the other hand, every element
of a function’s co-domain may be the image of some element of its domain. Such a
function is called onto or surjective. When a function is onto, its range is equal to its
co-domain.

• Definition

Let F be a function from a set X to a set Y . F is onto (or surjective) if, and only if,
given any element y in Y , it is possible to find an element x in X with the property
that y = F(x).

Symbolically:

F: X → Y is onto ⇔ ∀y ∈ Y, ∃x ∈ X such that F(x) = y.

To obtain a precise statement of what it means for a function not to be onto, take the
negation of the definition of onto:

F: X → Y is not onto ⇔ ∃y in Y such that ∀x ∈ X, F(x) �= y.

That is, there is some element in Y that is not the image of any element in X .
In terms of arrow diagrams, a function is onto if each element of the co-domain has

an arrow pointing to it from some element of the domain. A function is not onto if at least
one element in its co-domain does not have an arrow pointing to it. This is illustrated in
Figure 7.2.3.

X = domain of F Y = co-domain of FF

y = F(x)

Each element y in
Y equals F(x) for
at least one x in X.

x

Figure 7.2.3(a) A Function That Is Onto

X = domain of F Y = co-domain of FF

At least one element in Y
does not equal F(x)
for any x in X.

Figure 7.2.3(b) A Function That Is Not Onto
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Example 7.2.4 Identifying Onto Functions Defined on Finite Sets

a. Do either of the arrow diagrams in Figure 7.2.4 define onto functions?

a
b
c
d

1
2
3
4
5

Domain of F Co-domain of F

F
a
b
c
d

1
2
3
4
5

Domain of G Co-domain of G

X Y X Y
G

Figure 7.2.4

b. Let X = {1, 2, 3, 4} and Y = {a, b, c}. Define H : X → Y as follows: H(1) = c,
H(2) = a, H(3) = c, H(4) = b. Define K : X → Y as follows: K (1) = c, K (2) = b,
K (3) = b, and K (4) = c. Is either H or K onto?

Solution

a. F is not onto because b �= F(x) for any x in X . G is onto because each element of Y
equals G(x) for some x in X: a = G(3), b = G(1), c = G(2) = G(4), and d = G(5).

b. H is onto but K is not. H is onto because each of the three elements of the co-domain
of H is the image of some element of the domain of H : a = H(2), b = H(4), and
c = H(1) = H(3). K , however, is not onto because a �= K (x) for any x in {1, 2, 3, 4}.

■

It is possible to write a computer algorithm to check whether a function F is onto,
provided F is defined from a finite set X to a finite set Y and there is an indepen-
dent algorithm to compute values of F . Represent X and Y as one-dimensional arrays
a[1], a[2], . . . , a[n] and b[1], b[2], . . . , b[m], respectively, and use a nested loop to pick
each element y of Y in turn and search through the elements of X to find an x such that
y is the image of x . If any search is unsuccessful, then F is not onto. If each such search
is successful, then F is onto. You are asked to write such an algorithm in exercise 58 at
the end of this section.

Onto Functions on Infinite Sets
Now suppose F is a function from a set X to a set Y , and suppose Y is infinite. By
definition, F is onto if, and only if, the following universal statement is true:

∀y ∈ Y, ∃x ∈ X such that F(x) = y.

Thus to prove F is onto, you will ordinarily use the method of generalizing from the
generic particular:

suppose that y is any element of Y

and show that there is an element X of X with F(x) = y.

To prove F is not onto, you will usually

find an element y of Y such that y �= F(x) for any x in X .

Example 7.2.5 Proving or Disproving That Functions Are Onto

Define f : R→ R and h: Z→ Z by the rules

f (x) = 4x − 1 for all x ∈ R

and h(n) = 4n − 1 for all n ∈ Z.

a. Is f onto? Prove or give a counterexample.

b. Is h onto? Prove or give a counterexample.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



404 Chapter 7 Functions

Solution

a. The best approach is to start trying to prove that f is onto and be alert for difficulties
that might indicate that it is not. Now f : R→ R is the function defined by the rule

f (x) = 4x − 1 for all real numbers x .

To prove that f is onto, you must prove

∀y ∈ Y, ∃x ∈ X such that f (x) = y.

Substituting the definition of f into the outline of a proof by the method of generaliz-
ing from the generic particular, you

suppose y is a real number

and show that there exists a real number x such that y = 4x − 1.

Scratch Work: If such a real number x exists, then

4x − 1 = y

4x = y + 1 by adding 1 to both sides

x = y + 1

4
by dividing both sides by 4.

Thus if such a number x exists, it must equal (y + 1)/4. Does such a number exist?
Yes. To show this, let x = (y + 1)/4, and then made sure that (1) x is a real number
and that (2) f really does send x to y. The following formal answer summarizes this
process.

!
Caution! This scratch
work only proves what x
has to be if it exists. The
scratch work does not
prove that x exists.

Answer to (a):

If f : R→ R is the function defined by the rule f (x) = 4x − 1 for all real
numbers x , then f is onto.

Proof:

Let y ∈ R. [We must show that ∃x in R such that f (x) = y.] Let x = (y + 1)/4.
Then x is a real number since sums and quotients (other than by 0) of real num-
bers are real numbers. It follows that

f (x) = f

(
y + 1

4

)
by substitution

= 4 ·
(
y + 1

4

)
− 1 by definition of f

= (y + 1)− 1 = y by basic algebra.

[This is what was to be shown.]

b. The function h: Z→ Z is defined by the rule

h(n) = 4n − 1 for all integers n.
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To prove that h is onto, it would be necessary to prove that

∀ integers m, ∃ an integer n such that h(n) = m.

Substituting the definition of h into the outline of a proof by the method of generalizing
from the generic particular, you

suppose m is any integer

and try to show that there is an integer n with 4n − 1 = m.

Can you reach what is to be shown from the supposition? No! If 4n − 1 = m, then

n = m + 1

4
by adding 1 and dividing by 4.

But n must be an integer. And when, for example, m = 0, then

n = 0+ 1

4
= 1

4
,

which is not an integer.
Thus, in trying to prove that h is onto, you run into difficulty, and this difficulty

reveals a counterexample that shows h is not onto.
This discussion is summarized in the following formal answer.

Answer to (b):

If the function h: Z→ Z is defined by the rule h(n) = 4n − 1 for all integers n,
then h is not onto.

Counterexample:

The co-domain of h is Z and 0 ∈ Z. But h(n) �= 0 for any integer n. For if
h(n) = 0, then

4n − 1 = 0 by definition of h

which implies that

4n = 1 by adding 1 to both sides

and so

n = 1

4
by dividing both sides by 4.

But 1/4 is not an integer. Hence there is no integer n for which f (n) = 0, and
thus f is not onto.

■

Note That the quantity
bx is a real number for
any real number x follows
from the least-upper-
bound property of the real
number system. (See
Appendix A.)

Relations between Exponential and Logarithmic Functions
For positive numbers b �= 1, the exponential function with base b, denoted expb, is the
function from R to R+ defined as follows: For all real numbers x ,

expb(x) = bx

where b0 = 1 and b−x = 1/bx .
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When working with the exponential function, it is useful to recall the laws of expo-
nents from elementary algebra.

Laws of Exponents

If b and c are any positive real numbers and u and v are any real numbers, the
following laws of exponents hold true:

bubv = bu+v 7.2.1

(bu)v = buv 7.2.2

bu

bv
= bu−v 7.2.3

(bc)u = bucu 7.2.4

In Section 7.1 the logarithmic function with base b was defined for any positive num-
ber b �= 1 to be the function from R+ to R with the property that for each positive real
number x ,

logb(x) = the exponent to which b must be raised to obtain x .

Or, equivalently, for each positive real number x and real number y,

logb x = y ⇔ by = x .

It can be shown using calculus that both the exponential and logarithmic functions are
one-to-one and onto. Therefore, by definition of one-to-one, the following properties hold
true:

For any positive real number b with b �= 1,

if bu = bv then u = v for all real numbers u and v, 7.2.5

and

if logb u = logb v then u = v for all positive real numbers u and v. 7.2.6

These properties are used to derive many additional facts about exponents and logarithms.
In particular we have the following properties of logarithms.

Theorem 7.2.1 Properties of Logarithms

For any positive real numbers b, c and x with b �= 1 and c �= 1:

a. logb(xy) = logb x + logb y

b. logb

(
x

y

)
= logb x − logb y

c. logb(x
a) = a logb x

d. logc x =
logb x

logb c

Theorem 7.2.1(d) is proved in the next example. You are asked to prove the remainder
of the theorem in exercises 33–35 at the end of this section.
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Example 7.2.6 Using the One-to-Oneness of the Exponential Function

Use the definition of logarithm, the laws of exponents, and the one-to-oneness of the
exponential function (property 7.2.5) to prove part (d) of Theorem 7.2.1: For any positive
real numbers b, c, and x , with b �= 1 and c �= 1,

logc x =
logb x

logb c
.

Solution Suppose positive real numbers b, c, and x are given. Let

(1) u = logb c (2) v = logc x (3) w = logb x .

Then, by definition of logarithm,

(1′) c = bu (2′) x = cv (3′) x = bw.

Substituting (1′) into (2′) and using one of the laws of exponents gives

x = cv = (bu)v = buv by 7.2.2

But by (3), x = bw also. Hence

buv = bw,

and so by the one-to-oneness of the exponential function (property 7.2.5),

uv = w.

Substituting from (1), (2), and (3) gives that

(logb c)(logc x) = logb x .

And dividing both sides by logb c (which is nonzero because c �= 1) results in

logc x =
logb x

logb c
. ■

Example 7.2.7 Computing Logarithms with Base 2 on a Calculator

In computer science it is often necessary to compute logarithms with base 2. Most calcu-
lators do not have keys to compute logarithms with base 2 but do have keys to compute
logarithms with base 10 (called common logarithms and often denoted simply log) and
logarithms with base e (called natural logarithms and usually denoted ln). Suppose
your calculator shows that ln 5 ∼= 1.609437912 and ln 2 ∼= 0.6931471806. Use
Theorem 7.2.1(d) to find an approximate value for log2 5.

Solution By Theorem 7.2.1(d),

log2 5 =
ln 5

ln 2
∼= 1.609437912

0.6931471806
∼= 2.321928095. ■

One-to-One Correspondences
Consider a function F: X → Y that is both one-to-one and onto. Given any element x in
X , there is a unique corresponding element y = F(x) in Y (since F is a function). Also
given any element y in Y , there is an element x in X such that F(x) = y (since F is onto)
and there is only one such x (since F is one-to-one). Thus, a function that is one-to-one
and onto sets up a pairing between the elements of X and the elements of Y that matches
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408 Chapter 7 Functions

each element of X with exactly one element of Y and each element of Y with exactly one
element of X . Such a pairing is called a one-to-one correspondence or bijection and is
illustrated by the arrow diagram in Figure 7.2.5. One-to-one correspondences are often
used as aids to counting. The pairing of Figure 7.2.5, for example, shows that there are
five elements in the set X .

a
b
c
d
e

1
2
3
4
5

X = domain of F Y = co-domain of F
F

Figure 7.2.5 An Arrow Diagram for a One-to-One Correspondence

• Definition

A one-to-one correspondence (or bijection) from a set X to a set Y is a function
F: X → Y that is both one-to-one and onto.

Example 7.2.8 A Function from a Power Set to a Set of Strings

LetP({a, b}) be the set of all subsets of {a, b} and let S be the set of all strings of length 2
made up of 0’s and 1’s. Then P({a, b}) = {∅, {a}, {b}, {a, b}} and S = {00, 01, 10, 11}.
Define a function h from P({a, b}) to S as follows: Given any subset A of {a, b}, a is
either in A or not in A, and b is either in A or not in A. If a is in A, write a 1 in the first
position of the string h(A). If a is not in A, write a 0 in the first position of the string
h(A). Similarly, if b is in A, write a 1 in the second position of the string h(A). If b is not
in A, write a 0 in the second position of the string h(A). This definition is summarized in
the following table.

h

Subset of {a, b} Status of a Status of b String in S

∅ not in not in 00
{a} in not in 10
{b} not in in 01
{a, b} in in 11

Is h a one-to-one correspondence?

Solution The arrow diagram shown in Figure 7.2.6 shows clearly that h is a one-to-one
correspondence. It is onto because each element of S has an arrow pointing to it. It is
one-to-one because each element of S has no more than one arrow pointing to it.

∅
{a}
{b}

{a, b}

00
10
01
11

S
h

({a, b})

Figure 7.2.6 ■
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Example 7.2.9 A String-Reversing Function

Let T be the set of all finite strings of x’s and y’s. Define g: T → T by the rule:
For all strings s ∈ T ,

g(s) = the string obtained by writing the
characters of s in reverse order.

Is g a one-to-one correspondence from T to itself?

Solution The answer is yes. To show that g is a one-to-one correspondence, it is necessary
to show that g is one-to-one and onto.

To see that g is one-to-one, suppose that for some strings s1 and s2 in T , g(s1) = g(s2).
[We must show that s1 = s2.] Now to say that g(s1) = g(s2) is the same as saying that the
string obtained by writing the characters of s1 in reverse order equals the string obtained
by writing the characters of s2 in reverse order. But if s1 and s2 are equal when written in
reverse order, then they must be equal to start with. In other words, s1 = s2 [as was to be
shown].

To show that g is onto, suppose t is a string in T . [We must find a string s in T such that
g(s) = t .] Let s = g(t). By definition of g, s = g(t) is the string in T obtained by writing
the characters of t in reverse order. But when the order of the characters of a string is
reversed once and then reversed again, the original string is recovered. Thus

g(s) = g(g(t)) = the string obtained by writing the characters
of t in reverse order and then writing those
characters in reverse order again

= t.

This is what was to be shown. ■

Example 7.2.10 A Function of Two Variables

Define a function F : R× R→ R× R as follows: For all (x, y) ∈ R× R,

F(x, y) = (x + y, x − y).

Is F a one-to-one correspondence from R× R to itself?

Solution The answer is yes. To show that F is a one-to-one correspondence, you need to
show both that F is one-to-one and that F is onto.

Proof that F is one-to-one: Suppose that (x1, y1) and (x2, y2) are any ordered pairs in
R× R such that

F(x1, y1) = F(x2, y2).

[We must show that (x1, y1) = (x2, y2).] By definition of F ,

(x1 + y1, x1 − y1) = (x2 + y2, x2 − y2).

For two ordered pairs to be equal, both the first and second components must be equal.
Thus x1, y1, x2, and y2 satisfy the following system of equations:

x1 + y1 = x2 + y2 (1)

x1 − y1 = x2 − y2 (2)

Adding equations (1) and (2) gives that

2x1 = 2x2, and so x1 = x2.
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Substituting x1 = x2 into equation (1) yields

x1 + y1 = x1 + y2, and so y1 = y2.

Thus, by definition of equality of ordered pairs, (x1, y1) = (x2, y2) [as was to be shown].!
Caution! This scratch
work only shows what
(r, s) has to be if it exists.
The scratch work does not
prove that (r, s) exists.

Scratch Work for the Proof that F is onto: To prove that F is onto, you suppose you
have any ordered pair in the co-domain R× R, say (u, v), and then you show that there
is an ordered pair in the domain that is sent to (u, v) by F . To do this, you suppose
temporarily that you have found such an ordered pair, say (r, s). Then

F(r, s) = (u, v) because you are supposing that
F sends(r, s) to (u, v),

and
F(r, s) = (r + s, r − s) by definition of F .

Equating the right-hand sides gives

(r + s, r − s) = (u, v).

By definition of equality of ordered pairs this means that

r + s = u (1)

r − s = v (2)

Adding equations (1) and (2) gives

2r = u + v, and so r = u+v

2 .

Subtracting equation (2) from equation (1) yields

2s = u − v, and so s = u−v

2 .

Thus, if F sends (r, s) to (u, v), then r = (u + v)/2 and s = (u − v)/2. To turn this

scratch work into a proof, you need to make sure that (1)
(
u+v

2 ,
u−v

2

)
is in the domain

of F , and (2) that F really does send
(
u+v

2 ,
u−v

2

)
to (u, v).

Proof that F is onto: Suppose (u, v) is any ordered pair in the co-domain of F . [We will
show that there is an ordered pair in the domain of F that is sent to (u, v) by F.] Let

r = u+v

2 and s = u−v

2 .

Then (r, s) is an ordered pair of real numbers and so is in the domain of F . In addition:

F(r, s) = F
(
u+v

2 ,
u−v

2

)
by definition of F

=
(
u+v

2 + u−v

2 ,
u+v

2 − u−v

2

)
by substitution

=
(
u+v+u−v

2 ,
u+v−u+v

2

)
=

(
2u
2 ,

2v
2

)
= (u, v) by algebra.

[This is what was to be shown.] ■

Inverse Functions
If F is a one-to-one correspondence from a set X to a set Y , then there is a function from
Y to X that “undoes” the action of F; that is, it sends each element of Y back to the
element of X that it came from. This function is called the inverse function for F .
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Theorem 7.2.2

Suppose F: X → Y is a one-to-one correspondence; that is, suppose F is one-to-one
and onto. Then there is a function F−1: Y → X that is defined as follows:

Given any element y in Y,

F−1(y) = that unique element x in X such that F(x) equals y.

In other words,

F−1(y) = x ⇔ y = F(x).

The proof of Theorem 7.2.2 follows immediately from the definition of one-to-one
and onto. Given an element y in Y , there is an element x in X with F(x) = y because F
is onto; x is unique because F is one-to-one.

• Definition

The function F−1 of Theorem 7.2.2 is called the inverse function for F .

Note that according to this definition, the logarithmic function with base b > 0 is the
inverse of the exponential function with base b.

The diagram that follows illustrates the fact that an inverse function sends each ele-
ment back to where it came from.

x = F –1( y) F(x) = y

X = domain of F Y = co-domain of F

F

F –1

Example 7.2.11 Finding an Inverse Function for a Function Given by an Arrow Diagram

Define the inverse function for the one-to-one correspondence h given in Example 7.2.8.

Solution The arrow diagram for h−1 is obtained by tracing the h-arrows back from S to
P({a, b}) as shown below.

∅
{a}
{b}

{a, b}

00
10
01
11

S
h–1({a, b})

h–1(00) = ∅  h–1(10) = {a}

h–1(01) = {b}  h–1(11) = {a, b}
■

Example 7.2.12 Finding an Inverse Function for a Function Given in Words

Define the inverse function for the one-to-one correspondence g given in Example 7.2.9.

Solution The function g: T → T is defined by the rule

For all strings t in T ,

g(t) = the string obtained by writing the
characters of t in reverse order.
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Now if the characters of t are written in reverse order and then written in reverse order
again, the original string is recovered. Thus given any string t in T ,

g−1(t) = the unique string that, when written
in reverse order, equals t

= the string obtained by writing the
characters of t in reverse order

= g(t).

Hence g−1: T → T is the same as g, or, in other words, g−1 = g. ■

Example 7.2.13 Finding an Inverse Function for a Function Given by a Formula

The function f : R→ R defined by the formula

f (x) = 4x − 1 for all real numbers x

was shown to be one-to-one in Example 7.2.2 and onto in Example 7.2.5. Find its inverse
function.

Solution For any [particular but arbitrarily chosen] y in R, by definition of f −1,

f −1(y) = that unique real number x such that f (x) = y.

But f (x) = y

⇔ 4x − 1 = y by definition of f

⇔ x = y + 1

4
by algebra.

Hence f −1(y) = y + 1

4
. ■

The following theorem follows easily from the definitions.

Theorem 7.2.3

If X and Y are sets and F: X → Y is one-to-one and onto, then F−1: Y → X is also
one-to-one and onto.

Proof:

F−1 is one-to-one: Suppose y1 and y2 are elements of Y such that F−1(y1) =
F−1(y2). [We must show that y1 = y2.] Let x = F−1(y1) = F−1(y2). Then x ∈ X ,
and by definition of F−1,

F(x) = y1 since x = F−1(y1)

and F(x) = y2 since x = F−1(y2).

Consequently, y1 = y2 since each is equal to F(x). This is what was to be shown.

F−1 is onto: Suppose x ∈ X . [We must show that there exists an element y in Y such
that F−1(y) = x .] Let y = F(x). Then y ∈ Y , and by definition of F−1, F−1(y) =
x . This is what was to be shown.
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Example 7.2.14 Finding an Inverse Function for a Function of Two Variables

Define the inverse function F−1 : R× R→ R× R for the one-to-one correspondence
given in Example 7.2.10.

Solution

The solution to Example 7.2.10 shows that F
(
u+v

2 ,
u−v

2

)
= (u, v). Because F is one-

to-one, this means that(
u+v

2 ,
u−v

2

)
is the unique ordered pair in the domain of F that is sent to (u, v) by F.

Thus, F−1 is defined as follows: For all (u, v) ∈ R× R,

F−1(u, v) =
(
u + v

2
,
u − v

2

)
.

■

Test Yourself
1. If F is a function from a set X to a set Y , then F is one-to-

one if, and only if, _____.

2. If F is a function from a set X to a set Y , then F is not
one-to-one if, and only if, _____.

3. If F is a function from a set X to a set Y , then F is onto if,
and only if, _____.

4. If F is a function from a set X to a set Y , then F is not onto
if, and only if, _____.

5. The following two statements are _____:

∀ u, v ∈ U, if H(u) = H(v) then u = v.

∀ u, v ∈ U, if u �= v then H(u) �= H(v).

6. Given a function F : X → Y and an infinite set X , to prove
that F is one-to-one, you suppose that _____ and then you
show that _____.

7. Given a function F : X → Y and an infinite set X , to prove
that F is onto, you suppose that _____ and then you show
that _____.

8. Given a function F : X → Y , to prove that F is not one-to-
one, you _____.

9. Given a function F : X → Y , to prove that F is not onto,
you _____.

10. A one-to-one correspondence from a set X to a set Y is a
_____ that is _____.

11. If F is a one-to-one correspondence from a set X to a set Y
and y is in Y , then F−1(y) is _____.

Exercise Set 7.2
1. The definition of one-to-one is stated in two ways:

∀x1, x2 ∈ X, if F(x1) = F(x2) then x1 = x2

and ∀x1, x2 ∈ X, if x1 �= x2 then F(x1) �= F(x2).

Why are these two statements logically equivalent?

2. Fill in each blank with the word most or least.
a. A function F is one-to-one if, and only if, each element

in the co-domain of F is the image of at one
element in the domain of F .

b. A function F is onto if, and only if, each element in the
co-domain of F is the image of at one element
in the domain of F .

3.H When asked to state the definition of one-to-one, a student
replies, “A function f is one-to-one if, and only if, every
element of X is sent by f to exactly one element of Y .”
Give a counterexample to show that the student’s reply is
incorrect.

4.H Let f : X → Y be a function. True or false? A sufficient
condition for f to be one-to-one is that for all elements y
in Y , there is at most one x in X with f (x) = y.

5.H All but two of the following statements are correct ways to
express the fact that a function f is onto. Find the two that
are incorrect.
a. f is onto⇔ every element in its co-domain is the image

of some element in its domain.
b. f is onto ⇔ every element in its domain has a corre-

sponding image in its co-domain.
c. f is onto⇔ ∀y ∈ Y, ∃x ∈ X such that f (x) = y.
d. f is onto⇔ ∀x ∈ X, ∃y ∈ Y such that f (x) = y.
e. f is onto⇔ the range of f is the same as the co-domain

of f .

6. Let X = {1, 5, 9} and Y = {3, 4, 7}.
a. Define f : X → Y by specifying that

f (1) = 4, f (5) = 7, f (9) = 4.

Is f one-to-one? Is f onto? Explain your answers.
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414 Chapter 7 Functions

b. Define g: X → Y by specifying that

g(1) = 7, g(5) = 3, g(9) = 4.

Is g one-to-one? Is g onto? Explain your answers.

7. Let X = {a, b, c, d} and Y = {e, f, g}. Define functions F
and G by the arrow diagrams below.

X Y

Domain of F Co-domain of F

F

a
b
c
d

e
f
g

X Y

Domain of G Co-domain of G

G

a
b
c
d

e
f
g

a. Is F one-to-one? Why or why not? Is it onto? Why or
why not?

b. Is G one-to-one? Why or why not? Is it onto? Why or
why not?

8. Let X = {a, b, c} and Y = {w, x, y, z}. Define functions H
and K by the arrow diagrams below.

X Y

Domain of H Co-domain of H

H

w

x
y
z

a
b
c

X Y

Domain of K Co-domain of K

K

w

x
y
z

a
b
c

a. Is H one-to-one? Why or why not? Is it onto? Why or
why not?

b. Is K one-to-one? Why or why not? Is it onto? Why or
why not?

9. Let X = {1, 2, 3}, Y = {1, 2, 3, 4}, and Z = {1, 2}.
a. Define a function f : X → Y that is one-to-one but not

onto.
b. Define a function g: X → Z that is onto but not one-

to-one.
c. Define a function h: X → X that is neither one-to-one

nor onto.
d. Define a function k: X → X that is one-to-one and onto

but is not the identity function on X .

10. a. Define f : Z→ Z by the rule f (n) = 2n, for all
integers n.
(i) Is f one-to-one? Prove or give a counterexample.
(ii) Is f onto? Prove or give a counterexample.

b. Let 2Z denote the set of all even integers. That is,
2Z = {n ∈ Z | n = 2k, for some integer k}. Define
h: Z→ 2Z by the rule h(n) = 2n, for all integers n. Is
h onto? Prove or give a counterexample.

11.H a. Define g: Z→ Z by the rule g(n) = 4n − 5, for all
integers n.
(i) Is g one-to-one? Prove or give a counterexample.
(ii) Is g onto? Prove or give a counterexample.

b. Define G: R→ R by the rule G(x) = 4x − 5 for all
real numbers x . Is G onto? Prove or give a counterex-
ample.

12. a. Define F : Z→ Z by the rule F(n) = 2− 3n, for all
integers n.
(i) Is F one-to-one? Prove or give a counterexample.
(ii) Is F onto? Prove or give a counterexample.

b. Define G: R→ R by the rule G(x) = 2− 3x for
all real numbers x . Is G onto? Prove or give a
counterexample.

13. a. Define H: R→ R by the rule H(x) = x2, for all real
numbers x .
(i) Is H one-to-one? Prove or give a counterexample.
(ii) Is H onto? Prove or give a counterexample.

b. Define K: Rnonneg → Rnonneg by the rule K (x) = x2, for
all nonnegative real numbers x . Is K onto? Prove or give
a counterexample.

14. Explain the mistake in the following “proof.”

Theorem: The function f : Z→ Z defined by the formula
f (n) = 4n + 3, for all integers n, is one-to-one.

“Proof: Suppose any integer n is given. Then by definition
of f , there is only one possible value for f (n), namely,
4n + 3. Hence f is one-to-one.”

In each of 15–18 a function f is defined on a set of real num-
bers. Determine whether or not f is one-to-one and justify your
answer.

15. f (x) = x + 1

x
, for all real numbers x �= 0

16. f (x) = x

x2 + 1
, for all real numbers x

17. f (x) = 3x − 1

x
, for all real numbers x �= 0

18. f (x) = x + 1

x − 1
, for all real numbers x �= 1

19. Referring to Example 7.2.3, assume that records with the
following social security numbers are to be placed in
sequence into Table 7.2.1. Find the position into which each
record is placed.
a. 417-30-2072 b. 364-98-1703 c. 283-09-0787
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20. Define Floor: R→ Z by the formula Floor(x) = �x�, for
all real numbers x .
a. Is Floor one-to-one? Prove or give a counterexample.
b. Is Floor onto? Prove or give a counterexample.

21. Let S be the set of all strings of 0’s and 1’s, and define
l: S→ Znonneg by

l(s) = the length of s, for all strings s in S.

a. Is l one-to-one? Prove or give a counterexample.
b. Is l onto? Prove or give a counterexample.

22. Let S be the set of all strings of 0’s and 1’s, and define
D: S→ Z as follows: For all s ∈ S,

D(s) = the number of 1’s in s minus the number of 0’s in s.

a. Is D one-to-one? Prove or give a counterexample.
b. Is D onto? Prove or give a counterexample.

23. Define F:P({a, b, c})→ Z as follows: For all A in
P({a, b, c}),

F(A) = the number of elements in A.

a. Is F one-to-one? Prove or give a counterexample.
b. Is F onto? Prove or give a counterexample.

24. Let S be the set of all strings of a’s and b’s, and define
N: S→ Z by

N (s) = the number of a’s in s, for all s ∈ S.

a. Is N one-to-one? Prove or give a counterexample.
b. Is N onto? Prove or give a counterexample.

25. Let S be the set of all strings in a’s and b’s, and define
C: S→ S by

C(s) = as, for all s ∈ S.

(C is called concatenation by a on the left.)
a. Is C one-to-one? Prove or give a counterexample.
b. Is C onto? Prove or give a counterexample.

26. Define S: Z+ − Z+ by the rule: For all integers n,
S(n) = the sum of the positive divisors of n.
a. Is S one-to-one? Prove or give a counterexample.
b. Is S onto? Prove or give a counterexample.

27.H Let D be the set of all finite subsets of positive integers, and
define T : Z+ → D by the rule: For all integers n,
T (n) = the set of all of the positive divisors of n.
a. Is T one-to-one? Prove or give a counterexample.
b. Is T onto? Prove or give a counterexample.

28. Define G: R× R→ R× R as follows:
G(x, y) = (2y,−x) for all (x, y) ∈ R× R.
a. Is G one-to-one? Prove or give a counterexample.
b. Is G onto? Prove or give a counterexample.

29. Define H : R× R→ R× R as follows:
H(x, y) = (x + 1, 2− y) for all (x, y) ∈ R× R.
a. Is H one-to-one? Prove or give a counterexample.
b. Is H onto? Prove or give a counterexample.

30. Define J : Q×Q→ R by the rule J (r, s) = r +√2s for
all (r, s) ∈ Q×Q.
a. Is J one-to-one? Prove or give a counterexample.
b. Is J onto? Prove or give a counterexample.

31.✶ Define F: Z+ × Z+ → Z+ and G: Z+ × Z+ → Z+ as
follows: For all (n,m) ∈ Z+ × Z+,

F(n,m) = 3n5m and G(n,m) = 3n6m .

H a. Is F one-to-one? Prove or give a counterexample.
b. Is G one-to-one? Prove or give a counterexample.

32. a. Is log8 27 = log2 3? Why or why not?
b. Is log16 9 = log4 3? Why or why not?

The properties of logarithm established in 33–35 are used in
Sections 11.4 and 11.5.

33. Prove that for all positive real numbers b, x , and y with
b �= 1,

logb

(
x

y

)
= logb x − logb y.

34. Prove that for all positive real numbers b, x , and y with
b �= 1,

logb(xy) = logb x + logb y.

35.H Prove that for all real numbers a, b, and x with b and x
positive and b �= 1,

logb(x
a) = a logb x .

Exercises 36 and 37 use the following definition: If f : R→ R
and g: R→ R are functions, then the function ( f + g): R→ R
is defined by the formula ( f + g)(x) = f (x)+ g(x) for all real
numbers x .

36. If f : R→ R and g: R→ R are both one-to-one, is f + g
also one-to-one? Justify your answer.

37. If f : R→ R and g: R→ R are both onto, is f + g also
onto? Justify your answer.

Exercises 38 and 39 use the following definition: If f : R→ R
is a function and c is a nonzero real number, the function
(c · f ): R→ R is defined by the formula (c · f )(x) = c · f (x)
for all real numbers x .

38. Let f : R→ R be a function and c a nonzero real num-
ber. If f is one-to-one, is c · f also one-to-one? Justify your
answer.

39. Let f : R→ R be a function and c a nonzero real number.
If f is onto, is c · f also onto? Justify your answer.

40.H Suppose F : X → Y is one-to-one.
a. Prove that for all subsets A ⊆ X, F−1(F(A)) = A.
b. Prove that for all subsets A1 and A2 in X,

F(A1 ∩ A2) = F(A1) ∩ F(A2).
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416 Chapter 7 Functions

41. Suppose F :X → Y is onto. Prove that for all subsets
B ⊆ Y, F(F−1(B)) = B.

Let X = {a, b, c, d, e} and Y = {s, t, u, v, w}. In each of 42
and 43 a one-to-one correspondence F: X → Y is defined by
an arrow diagram. In each case draw an arrow diagram for F−1.

42.

a
b
c
d
e

X YF

s
t
u
v

w

43.

a
b
c
d
e

X YF

s
t
u
v

w

In 44–55 indicate which of the functions in the referenced
exercise are one-to-one correspondences. For each function that
is a one-to-one correspondence, find the inverse function.

44. Exercise 10a 45. Exercise 10b

46. Exercise 11a 47. Exercise 11b

48. Exercise 12a 49. Exercise 12b

50. Exercise 21 51. Exercise 22

52. Exercise 15 with the co-domain taken to be the set of all
real numbers not equal to 1.

53.H Exercise 16 with the co-domain taken to be the set of all
real numbers.

54. Exercise 17 with the co-domain taken to be the set of all
real numbers not equal to 3.

55. Exercise 18 with the co-domain taken to be the set of all
real numbers not equal to 1.

56. In Example 7.2.8 a one-to-one correspondence was defined
from the power set of {a, b} to the set of all strings of 0’s
and 1’s that have length 2. Thus the elements of these two
sets can be matched up exactly, and so the two sets have the
same number of elements.
a. Let X = {x1, x2, . . . , xn} be a set with n elements. Use

Example 7.2.8 as a model to define a one-to-one corre-
spondence from P(X), the set of all subsets of X , to the
set of all strings of 0’s and 1’s that have length n.

b. Use the one-to-one correspondence of part (a) to deduce
that a set with n elements has 2n subsets. (This provides
an alternative proof of Theorem 6.3.1.)

57.H Write a computer algorithm to check whether a function
from one finite set to another is one-to-one. Assume the
existence of an independent algorithm to compute values
of the function.

58.H Write a computer algorithm to check whether a function
from one finite set to another is onto. Assume the exis-
tence of an independent algorithm to compute values of the
function.

Answers for Test Yourself
1. for all x1 and x2 in X , if F(x1) = F(x2) then x1 = x2 2. there exist elements x1 and x2 in X such that F(x1) = F(x2) and
x1 �= x2 3. for all y in Y , there exists at least one element x in X such that f (x) = y 4. there exists an element y in Y such that
for all elements x in X, f (x) �= y 5. logically equivalent ways of expressing what it means for a function H to be one-to-one (The
second is the contrapositive of the first.) 6. x1 and x2 are any [particular but arbitrarily chosen] elements in X with the property that
F(x1) = F(x2); x1 = x2 7. y is any [particular but arbitrarily chosen] element in Y ; there exists at least one element x in X such
that F(x) = y 8. show that there are concrete elements x1 and x2 in X with the property that F(x1) = F(x2) and x1 �= x2 9. show
that there is a concrete element y in Y with the property that F(x) �= y for any element x in X 10. function from X to Y ; both
one-to-one and onto 11. the unique element x in X such that F(x) = y (in other words, F−1(y) is the unique preimage of y in X )

7.3 Composition of Functions
It is no paradox to say that in our most theoretical moods we may be nearest to our most
practical applications. —Alfred North Whitehead

Consider two functions, the successor function and the squaring function, defined from
Z (the set of integers) to Z, and imagine that each is represented by a machine. If the two
machines are hooked up so that the output from the successor function is used as input
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7.3 Composition of Functions 417

to the squaring function, then they work together to operate as one larger machine. In
this larger machine, an integer n is first increased by 1 to obtain n + 1; then the quantity
n + 1 is squared to obtain (n + 1)2. This is illustrated in the following drawing.

successor function

n

n + 1

squaring function

(n + 1)2

Combining functions in this way is called composing them; the resulting function is
called the composition of the two functions. Note that the composition can be formed
only if the output of the first function is acceptable input to the second function. That is,
the range of the first function must be contained in the domain of the second function.

Note We put the f first
when we say “the
composition of f and g”
because an element x is
acted upon first by f and
then by g.

• Definition

Let f : X → Y ′ and g: Y → Z be functions with the property that the range of f is
a subset of the domain of g. Define a new function g◦ f : X → Z as follows:

(g◦ f )(x) = g( f (x)) for all x ∈ X,

where g◦ f is read “g circle f ” and g( f (x)) is read “g of f of x .” The function g◦ f
is called the composition of f and g.

This definition is shown schematically below.

Y ZX
f

x
f (x)

g( f (x)) =
(g * f )(x)Y'

g * f

g

!
Caution! Be careful not
to confuse g ◦ f and
g( f (x)): g ◦ f is the name
of the function whereas
g( f (x)) is the value of
the function at x .

Example 7.3.1 Composition of Functions Defined by Formulas

Let f : Z→ Z be the successor function and let g: Z→ Z be the squaring function. Then
f (n)= n + 1 for all n ∈ Z and g(n) = n2 for all n ∈ Z.

a. Find the compositions g◦ f and f ◦g.
b. Is g◦ f = f ◦g? Explain.

Solution

a. The functions g◦ f and f ◦g are defined as follows:

(g◦ f )(n) = g( f (n)) = g(n + 1) = (n + 1)2 for all n ∈ Z,

and

( f ◦g)(n) = f (g(n)) = f (n2) = n2 + 1 for all n ∈ Z.
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418 Chapter 7 Functions

b. Two functions from one set to another are equal if, and only if, they always take the
same values. In this case,

(g◦ f )(1) = (1+ 1)2 = 4,whereas ( f ◦g)(1) = 12 + 1 = 2.

Thus the two functions g◦ f and f ◦g are not equal:

g◦ f �= f ◦g. ■

Example 7.3.1 illustrates the important fact that composition of functions is not a
commutative operation: For general functions F and G, F ◦G need not necessarily equal
G ◦F (although the two may be equal).

Example 7.3.2 Composition of Functions Defined on Finite Sets

Let X = {1, 2, 3}, Y ′ = {a, b, c, d}, Y = {a, b, c, d, e}, and Z = {x, y, z}. Define func-
tions f : X → Y ′ and g: Y → Z by the arrow diagrams below.

X

1

2

3

a

b

d

c

e

ZY

x

y

zY'

f g

Draw the arrow diagram for g◦ f . What is the range of g◦ f ?
Solution To find the arrow diagram for g◦ f , just trace the arrows all the way across from

X to Z through Y . The result is shown below.

X

1

2

3

Z

x

y

z

g * f

(g◦ f )(1) = g( f (1)) = g(c) = z

(g◦ f )(2) = g( f (2)) = g(b) = y

(g◦ f )(3) = g( f (3)) = g(a) = y

The range of g◦ f is {y, z}. ■

Recall that the identity function on a set X, IX , is the function from X to X defined
by the formula

IX (x) = x for all x ∈ X.

That is, the identity function on X sends each element of X to itself. What happens when
an identity function is composed with another function?

Example 7.3.3 Composition with the Identity Function

Let X = {a, b, c, d} and Y = {u, v, w}, and suppose f : X → Y is given by the arrow
diagram shown on the next page.
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X Yf

a
b
c
d

u

v

w

Find f ◦ IX and IY ◦ f .
Solution The values of f ◦ IX are obtained by tracing through the arrow diagram shown

below.

X Y
fIX

a

b

c

d

X

a

b

c

d

u

v

w

( f ◦ IX )(a) = f (IX (a)) = f (a) = u

( f ◦ IX )(b) = f (IX (b)) = f (b) = v

( f ◦ IX )(c) = f (IX (c)) = f (c) = v

( f ◦ IX )(d) = f (IX (d)) = f (d) = u

Note that for all elements x in X ,

( f ◦ IX )(x) = f (x).

By definition of equality of functions, this means that f ◦ IX = f .
Similarly, the equality IY ◦ f = f can be verified by tracing through the arrow dia-

gram below for each x in X and noting that in each case, (IY ◦ f )(x) = f (x).

Y Y
f IY

X

u

v

w

u

v

w

a

b

c

d
■

More generally, the composition of any function with an identity function equals the
function.

Theorem 7.3.1 Composition with an Identity Function

If f is a function from a set X to a set Y , and IX is the identity function on X , and
IY is the identity function on Y , then

(a) f ◦ IX = f and (b) IY ◦ f = f.

Proof:

Part (a): Suppose f is a function from a set X to a set Y and IX is the identity
function on X . Then, for all x in X ,

( f ◦ IX )(x) = f (IX (x)) = f (x).

Hence, by definition of equality of functions, f ◦ IX = f , as was to be shown.

Part (b): This is exercise 13 at the end of this section.
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420 Chapter 7 Functions

Now let f be a function from a set X to a set Y , and suppose f has an inverse function
f −1. Recall that f −1 is the function from Y to X with the property that

f −1(y) = x ⇔ f (x) = y.

What happens when f is composed with f −1? Or when f −1 is composed with f ?

Example 7.3.4 Composing a Function with Its Inverse

Let X = {a, b, c} and Y = {x, y, z}. Define f : X → Y by the following arrow diagram.

X Yf

x
y
z

a
b
c

Then f is one-to-one and onto. Thus f −1 exists and is found by tracing the arrows back-
wards, as shown below.

Y Xf –1

a
b
c

x
y
z

Now f −1 ◦ f is found by following the arrows from X to Y by f and back to X by f −1.
If you do this, you will see that

( f −1◦ f )(a) = f −1( f (a)) = f −1(z) = a

( f −1 ◦ f )(b) = f −1( f (b)) = f −1(x) = b

and ( f −1 ◦ f )(c) = f −1( f (c)) = f −1(y) = c.

Thus the composition of f and f −1 sends each element to itself. So by definition of the
identity function,

f −1◦ f = IX .

In a similar way, you can see that

f ◦ f −1 = IY . ■

More generally, the composition of any function with its inverse (if it has one) is an
identity function. Intuitively, the function sends an element in its domain to an element in
its co-domain and the inverse function sends it back again, so the composition of the two
sends each element to itself. This reasoning is formalized in Theorem 7.3.2.
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Theorem 7.3.2 Composition of a Function with Its Inverse

If f : X → Y is a one-to-one and onto function with inverse function f −1: Y → X ,
then

(a) f −1◦ f = IX and (b) f ◦ f −1 = IY .

Proof:

Part (a): Suppose f : X → Y is a one-to-one and onto function with inverse func-
tion f −1: Y → X . [To show that f −1 ◦ f = IX , we must show that for all x ∈ X,

( f −1 ◦ f )(x) = x .] Let x be any element in X . Then

( f −1 ◦ f )(x) = f −1( f (x))

by definition of composition of functions. Now the inverse function f −1 satisfies the
condition

f −1(b) = a ⇔ f (a) = b for all a ∈ X and b ∈ Y. 7.3.1

Let

x ′ = f −1( f (x)). 7.3.2

Apply property (7.3.1) with x ′ playing the role of a and f (x) playing the role of b.
Then

f (x ′) = f (x).

But since f is one-to-one, this implies that x ′ = x . Substituting x for x ′ in equation
(7.3.2) gives

x = f −1( f (x)).

Then by definition of composition of functions,

( f −1 ◦ f )(x) = x,

as was to be shown.

Part (b): This is exercise 14 at the end of this section.

Composition of One-to-One Functions
The composition of functions interacts in interesting ways with the properties of being
one-to-one and onto. What happens, for instance, when two one-to-one functions are
composed? Must their composition be one-to-one? For example, let X = {a, b, c},
Y = {w, x, y, z}, and Z = {1, 2, 3, 4, 5}, and define one-to-one functions f : X → Y
and g: Y → Z as shown in the arrow diagrams of Figure 7.3.1.

X

1

2

4

5

3

ZY

a

b

c

w

x

z

y

f g

Figure 7.3.1
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422 Chapter 7 Functions

Then g◦ f is the function with the arrow diagram shown in Figure 7.3.2.

X

1

2

4

5

3

Z

a

b

c

g * f

Figure 7.3.2

From the diagram it is clear that for these particular functions, the composition is one-
to-one. This result is no accident. It turns out that the compositions of two one-to-one
functions is always one-to-one.

Theorem 7.3.3

If f : X → Y and g: Y → Z are both one-to-one functions, then g◦ f is one-to-one.

By the method of direct proof, the proof of Theorem 7.3.3 has the following starting point
and conclusion to be shown.

Starting Point: Suppose f is a one-to-one function from X to Y and g is a one-to-one
function from Y to Z .

To Show: g◦ f is a one-to-one function from X to Z .
The conclusion to be shown says that a certain function is one-to-one. How do you show
that? The crucial step is to realize that if you substitute g◦ f into the definition of one-to-
one, you see that

g◦ f is one-to-one ⇔ ∀x1, x2 ∈ X, if (g◦ f )(x1) = (g◦ f )(x2) then x1 = x2.

By the method of direct proof, then, to show g◦ f is one-to-one, you
suppose x1 and x2 are elements of X such that (g◦ f )(x1) = (g◦ f )(x2),

and you

show that x1 = x2.

Now the heart of the proof begins. To show that x1 = x2, you work forward from the
supposition that (g◦ f )(x1) = (g◦ f )(x2), using the fact that f and g are both one-to-
one. By definition of composition,

(g◦ f )(x1) = g( f (x1)) and (g◦ f )(x2) = g( f (x2)).

Since the left-hand sides of the equations are equal, so are the right-hand sides. Thus

g( f (x1)) = g( f (x2)).

Now just stare at the above equation for a moment. It says that

g(something) = g(something else).
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Because g is a one-to-one function, any time g of one thing equals g of another thing,
those two things are equal. Hence

f (x1) = f (x2).

But f is also a one-to-one function. Any time f of one thing equals f of another thing,
those two things are equal. Therefore,

x1 = x2.

This is what was to be shown!
This discussion is summarized in the following formal proof.

Proof of Theorem 7.3.3:

Suppose f : X → Y and g: Y → Z are both one-to-one functions. [We must show
that g◦ f is one-to-one.] Suppose x1 and x2 are elements of X such that

(g◦ f )(x1) = (g◦ f )(x2).
[We must show that x1 = x2.] By definition of composition of functions,

g( f (x1)) = g( f (x2)).

Since g is one-to-one, f (x1) = f (x2).

And since f is one-to-one, x1 = x2.

[This is what was to be shown.] Hence g◦ f is one-to-one.

Composition of Onto Functions
Now consider what happens when two onto functions are composed. For example, let
X = {a, b, c, d, e}, Y = {w, x, y, z}, and Z = {1, 2, 3}. Define onto functions f and g
by the following arrow diagrams.

X

a

b

d

e

c

ZY

1

2

3

w

x

z

y

f g

Then g◦ f is the function with the arrow diagram shown below.
It is clear from the diagram that g◦ f is onto.

X

a

b

d
e

c

Z

1

2

3

g * f

It turns out that the composition of any two onto functions (that can be composed) is
onto.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



424 Chapter 7 Functions

Theorem 7.3.4

If f : X → Y and g: Y → Z are both onto functions, then g◦ f is onto.

!
Caution! To show that a
function is onto, you must
start with on arbitrary
element of the co-domain
and deduce that it is the
image of some element in
the domain.

A direct proof of Theorem 7.3.4 has the following starting point and conclusion to be
shown:

Starting Point: Suppose f is an onto function from X to Y , and g is an onto function
from Y to Z .

To Show: g◦ f is an onto function from X to Z .

The conclusion to be shown says that a certain function is onto. How do you show that?
The crucial step is to realize that if you substitute g◦ f into the definition of onto, you see
that

g◦ f : X → Z is onto ⇔ given any element z of Z , it is possible to find an
element x of X such that (g◦ f )(x) = z.

Since this statement is universal, to prove it you

suppose z is a [particular but arbitrarily chosen] element of Z

and show that there is an element x in X such that (g◦ f )(x) = z.

Hence you must start the proof by supposing you are given a particular but arbitrarily
chosen element in Z . Let us call it z. Your job is to find an element x in X such that
(g◦ f )(x) = z.

To find x , reason from the supposition that z is in Z , using the fact that both g and f
are onto. Imagine arrow diagrams for the functions f and g.

Y Z

z

X

gf

g * f

You have a particular element z in Z , and you need to find an element x in X such that
when x is sent over to Z by g◦ f , its image will be z. Since g is onto, z is at the tip of
some arrow coming from Y . That is, there is an element y in Y such that

g(y) = z. 7.3.3

This means that the arrow diagrams can be drawn as follows:

Y Z

z

X

y
gf

g * f
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But f also is onto, so every element in Y is at the tip of an arrow coming from X . In
particular, y is at the tip of some arrow. That is, there is an element x in X such that

f (x) = y. 7.3.4

The diagram, therefore, can be drawn as shown below.

Y Z

z

X

y
gf

x

g * f

Now just substitute equation (7.3.4) into equation (7.3.3) to obtain

g( f (x)) = z.

But by definition of g◦ f ,
g( f (x)) = (g◦ f )(x).

Hence

(g◦ f )(x) = z.

Thus x is an element of X that is sent by g◦ f to z, and so x is the element you were
supposed to find.

This discussion is summarized in the following formal proof.

Proof of Theorem 7.3.4:

Suppose f : X → Y and g: Y → Z are both onto functions. [We must show that g◦ f
is onto.] Let z be a [particular but arbitrarily chosen] element of Z . [We must show
the existence of an element x in X such that (g◦ f )(x) = z.] Since g is onto, there is an
element y in Y such that g(y) = z. And since f is onto, there is an element x in X
such that f (x) = y. Hence there exists an element x in X such that

(g◦ f )(x) = g( f (x)) = g(y) = z

[as was to be shown]. It follows that g◦ f is onto.

Example 7.3.5 An Incorrect “Proof” That a Function Is Onto

To prove that a composition of onto functions is onto, a student wrote,

“Suppose f : X → Y and g: Y → Z are both onto. Then

∀y ∈ Y, ∃x ∈ X such that f (x) = y (*)

and

∀z ∈ Z , ∃y ∈ Y such that f (y) = z.

So

(g◦ f )(x) = g( f (x)) = g(y) = z,

and thus g◦ f is onto.”
Explain the mistakes in this “proof.”
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Solution To show that g◦ f is onto, you must be able to meet the following challenge: If
someone gives you an element z in Z (over which you have no control), you must be able
to explain how to find an element x in X such that (g◦ f )(x) = z. Thus a proof that g◦ f
is onto must start with the assumption that you have been given a particular but arbitrarily
chosen element of Z . This proof does not do that.

Moreover, note that statement (*) simply asserts that f is onto. An informal version
of (*) is the following: Given any element in the co-domain of f , there is an element in
the domain of f that is sent by f to the given element. Use of the symbols x and y to
denote these elements is arbitrary. Any other two symbols could equally well have been
used. Thus, if we replace the x and y in (*) by u and v, we obtain a logically equivalent
statement, and the “proof” becomes the following:

“Suppose f : X → Y and g: Y → Z are both onto. Then

∀v ∈ Y, ∃u ∈ X such that f (u) = v

and

∀z ∈ Z , ∃y ∈ Y such that f (y) = z.

So (??!)

(g◦ f )(x) = g( f (x)) = g(y) = z,

and thus g◦ f is onto.”
From this logically equivalent version of the “proof,” you can see that the statements

leading up to the word So do not provide a rationale for the statement that follows it.
The original reason for writing So was based on a misinterpretation of the meaning of the
notation. ■

Test Yourself
1. If f is a function from X to Y ′, g is a function from Y to

Z , and Y ′ ⊆ Y , then g◦ f is a function from _____ to _____,
and (g◦ f )(x) = _____ for all x in X .

2. If f is a function from X to Y and Ix and Iy are the identity
functions from X to X and Y to Y , respectively, then f ◦ Ix =
_____ and Iy ◦ f = _____.

3. If f is a one-to-one correspondence from X to Y , then
f −1 ◦ f = _____ and f ◦ f −1 = _____.

4. If f is a one-to-one function from X to Y and g is a one-to-
one function from Y to Z , you prove that g◦ f is one-to-one
by supposing that _____ and then showing that _____.

5. If f is an onto function from X to Y and g is an onto func-
tion from Y to Z , you prove that g◦ f is onto by supposing
that _____ and then showing that _____.

Exercise Set 7.3
In each of 1 and 2, functions f and g are defined by arrow
diagrams. Find G ◦F and f ◦g and determine whether G ◦F
equals f ◦g.

1.

1
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X
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X
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2.

1
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1
3
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f

1
3
5

X

1
3
5

X
g

In 3 and 4, functions F and G are defined by formulas. Find
G ◦F and F ◦G and determine whether G ◦F equals F ◦G.

3. F(x) = x3 and G(x) = x − 1, for all real numbers x .

4. F(x) = x5 and G(x) = x1/5 for all real numbers x .
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7.3 Composition of Functions 427

5. Define f :R→ R by the rule f (x) = −x for all real num-
bers x . Find ( f ◦ f )(x).

6. Define F :Z→ Z and G:Z→ Z by the rules F(a) = 7a
and G(a) = a mod 5 for all integers a. Find (G ◦F)(0),
(G ◦F)(1), (G ◦F)(2), (G ◦F)(3), and (G ◦F)(4).

7. Define H :Z→ Z and K :Z→ Z by the rules H(a) = 6a
and K (a) = a mod 4 for all integers a. Find (K ◦H)(0),
(K ◦H)(1), (K ◦H)(2), and (K ◦H)(3).

8. Define L:Z→ Z and M :Z→ Z by the rules L(a) = a2

and M(a) = a mod 5 for all integers a.
a. Find (L ◦M)(12), (M ◦ L)(12), (L ◦M)(9), and

(M ◦ L)(9).
b. Is L ◦M = M ◦L?

The functions of each pair in 9–11 are inverse to each other. For
each pair, check that both compositions give the identity func-
tion.

9. F: R→ R and F−1: R→ R are defined by

F(x) = 3x + 2 and F−1(y) = y − 2

3
,

for all y ∈ R.

10. G: R+ → R+ and G−1: R+ → R+ are defined by

G(x) = x2 and G−1(x) = √x,

for all x ∈ R+.

11. H and H−1 are both defined from R− {1} to R− {1} by
the formula

H(x) = H−1(x) = x + 1

x − 1
, for all x ∈ R− {1}.

12. Explain how it follows from the definition of logarithm that
a. logb(b

x ) = x , for all real numbers x .
b. blogb x = x , for all positive real numbers x .

13.H Prove Theorem 7.3.1(b): If f is any function from a set X
to a set Y , then IY ◦ f = f , where IY is the identity function
on Y .

14. Prove Theorem 7.3.2(b): If f : X → Y is a one-to-one
and onto function with inverse function f −1: Y → X , then
f ◦ f −1 = IY , where IY is the identity function on Y .

15. Suppose Y and Z are sets and g: Y → Z is a one-to-one
function. This means that if g takes the same value on any
two elements of Y , then those elements are equal. Thus, for
example, if a and b are elements of Y and g(a) = g(b),
then it can be inferred that a = b. What can be inferred in
the following situations?

a. sk and sm are elements of Y and g(sk) = g(sm).
b. z/2 and t/2 are elements of Y and g(z/2) = g(t/2).
c. f (x1) and f (x2) are elements of Y and g( f (x1)) =

g( f (x2)).

16. If f : X → Y and g: Y → Z are functions and g◦ f
is one-to-one, must g be one-to-one? Prove or give a
counterexample.

17. If f : X → Y and g: Y → Z are functions and g◦ f is onto,
must f be onto? Prove or give a counterexample.

18.H If f : X → Y and g: Y → Z are functions and g◦ f is
one-to-one, must f be one-to-one? Prove or give a
counterexample.

19.H If f : X → Y and g: Y → Z are functions and g◦ f is onto,
must g be onto? Prove or give a counterexample.

20. Let f : W → X, g: X → Y , and h: Y → Z be func-
tions. Must h ◦(g◦ f ) = (h ◦g)◦ f ? Prove or give a
counterexample.

21. True or False? Given any set X and given any functions
f : X → X, g: X → X , and h: X → X , if h is one-to-one
and h ◦ f = h ◦g, then f = g. Justify your answer.

22. True or False? Given any set X and given any functions
f : X → X, g: X → X , and h: X → X , if h is one-to-one
and f ◦h = g◦h, then f = g. Justify your answer.

In 23 and 24 find g◦ f, (g◦ f )−1, g−1, f −1, and f −1 ◦g−1, and
state how (g◦ f )−1 and f −1 ◦g−1 are related.
23. Let X = {a, c, b}, Y = {x, y, z}, and Z = {u, v, w}. Define

f : X → Y and g: Y → Z by the arrow diagrams below.

X

a

b

c

Z

u

v

w

Y

x

y

z

f g

24. Define f : R→ R and g: R→ R by the formulas

f (x) = x + 3 and g(x) = −x for all x ∈ R.

25. Prove or give a counterexample: If f : X → Y and
g: Y → X are functions such that g◦ f = IX and f ◦g =
IY , then f and g are both one-to-one and onto and g = f −1.

26.H Suppose f : X → Y and g: Y → Z are both one-to-one
and onto. Prove that (g◦ f )−1 exists and that (g◦ f )−1 =
f −1 ◦g−1.

27. Let f : X → Y and g: Y → Z . Is the following prop-
erty true or false? For all subsets C in Z , (g◦ f )−1(C) =
( f −1(g−1(C)). Justify your answer.

Answers for Test Yourself
1. X; Z; g( f (x)) 2. f ; f 3. IX ; IY 4. x1 and x2 are any [particular but arbitrarily chosen] elements in X with the property that
(g◦ f )(x1) = (g◦ f )(x2); x1 = x2 5. z is any [particular but arbitrarily chosen] element in Z ; there exists at least one element x in X
such that (g◦ f )(x) = z
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428 Chapter 7 Functions

7.4 Cardinality with Applications to Computability
There are as many squares as there are numbers because they are just as numerous as
their roots. —Galileo Galilei, 1632

Historically, the term cardinal number was introduced to describe the size of a set (“This
set has eight elements”) as distinguished from an ordinal number that refers to the order
of an element in a sequence (“This is the eighth element in the row”). The definition of
cardinal number derives from the primitive technique of representing numbers by fingers
or tally marks. Small children, when asked how old they are, will often answer by holding
up a certain number of fingers, each finger being paired with a year of their life. As was
discussed in Section 7.2, a pairing of the elements of two sets is called a one-to-one
correspondence. We say that two finite sets whose elements can be paired by a one-to-one
correspondence have the same size. This is illustrated by the following diagram.

A

a
b
c
d

B

u
v

w

x

The elements of set A can
be put into one-to-one
correspondence with the
elements of B.

iS
to

ck
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n

W
yn

n

Galileo Galilei
(1564–1642)

Now a finite set is one that has no elements at all or that can be put into one-to-
one correspondence with a set of the form {1, 2, . . . , n} for some positive integer n.
By contrast, an infinite set is a nonempty set that cannot be put into one-to-one
correspondence with {1, 2, . . . , n} for any positive integer n. Suppose that, as suggested
by the quote from Galileo at the beginning of this section, we extend the concept of size to
infinite sets by saying that one infinite set has the same size as another if, and only if, the
first set can be put into one-to-one correspondence with the second. What consequences
follow from such a definition? Do all infinite sets have the same size, or are some infinite
sets larger than others? These are the questions we address in this section. The answers
are sometimes surprising and have the interesting consequence that there are functions
defined on the set of integers whose values cannot be computed on a computer.

• Definition

Let A and B be any sets. A has the same cardinality as B if, and only if, there is a
one-to-one correspondence from A to B. In other words, A has the same cardinality
as B if, and only if, there is a function f from A to B that is one-to-one and onto.

The following theorem gives some basic properties of cardinality, most of which fol-
low from statements proved earlier about one-to-one and onto functions.

Theorem 7.4.1 Properties of Cardinality

For all sets A, B, and C :

a. Reflexive property of cardinality: A has the same cardinality as A.

b. Symmetric property of cardinality: If A has the same cardinality as B, then B
has the same cardinality as A.

c. Transitive property of cardinality: If A has the same cardinality as B and B has
the same cardinality as C , then A has the same cardinality as C .
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7.4 Cardinality with Applications to Computability 429

Proof:

Part (a), Reflexivity: Suppose A is any set. [To show that A has the same cardinality
as A, we must show there is a one-to-one correspondence from A to A.] Consider the
identity function IA from A to A. This function is one-to-one because if x1 and x2
are any elements in A with IA(x1) = IA(x2), then, by definition of IA, x1 = x2. The
identity function is also onto because if y is any element of A, then y = IA(y) by
definition of IA. Hence IA is a one-to-one correspondence from A to A. [So there
exists a one-to-one correspondence from A to A, as was to be shown.]

Part (b), Symmetry: Suppose A and B are any sets and A has the same cardinality
as B. [We must show that B has the same cardinality as A.] Since A has the same
cardinality as B, there is a function f from A to B that is one-to-one and onto.
But then, by Theorems 7.2.2 and 7.2.3, there is a function f −1 from B to A that
is also one-to-one and onto. Hence B has the same cardinality as A [as was to be
shown].

Part (c), Transitivity: Suppose A, B, and C are any sets and A has the same cardi-
nality as B and B has the same cardinality as C . [We must show that A has the same
cardinality as C.] Since A has the same cardinality as B, there is a function f from
A to B that is one-to-one and onto, and since B has the same cardinality as C , there
is a function g from B to C that is one-to-one and onto. But then, by Theorems 7.3.3
and 7.3.4, g◦ f is a function from A to C that is one-to-one and onto. Hence A has
the same cardinality as C [as was to be shown].

Note that Theorem 7.4.1(b) makes it possible to say simply that two sets have the
same cardinality instead of always having to say that one set has the same cardinality as
another. That is, the following definition can be made.

• Definition

A and B have the same cardinality if, and only if, A has the same cardinality as B
or B has the same cardinality as A.

The following example illustrates a very important property of infinite sets—namely,
that an infinite set can have the same cardinality as a proper subset of itself. This property
is sometimes taken as the definition of infinite set. The example shows that even though
it may seem reasonable to say that there are twice as many integers as there are even
integers, the elements of the two sets can be matched up exactly, and so, according to the
definition, the two sets have the same cardinality.

Example 7.4.1 An Infinite Set and a Proper Subset Can Have the Same Cardinality

Let 2Z be the set of all even integers. Prove that 2Z and Z have the same cardinality.

Solution Consider the function H from Z to 2Z defined as follows:

H(n) = 2n for all n ∈ Z.
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430 Chapter 7 Functions

A (partial) arrow diagram for H is shown below.

Z 2Z
H

3
2
1
0

–1
–2
–3

6
4
2
0
–2
–4
–6

To show that H is one-to-one, suppose H(n1) = H(n2) for some integers n1 and n2.
Then 2n1 = 2n2 by definition of H , and dividing both sides by 2 gives n1 = n2. Hence h
is one-to-one.

To show that H is onto, suppose m is any element of 2Z. Then m is an even integer,
and so m = 2k for some integer k. It follows that H(k) = 2k = m. Thus there exists k in
Z with H(k) = m, and hence H is onto.

Therefore, by definition of cardinality, Z and 2Z have the same cardinality. ■Note So there are “as
many” even integers as
there are integers!

In Section 9.4 we will show that a function from one finite set to another set of the
same size is one-to-one if, and only if, it is onto. This result does not hold for infinite sets.
Although it is true that for two infinite sets to have the same cardinality there must exist a
function from one to the other that is both one-to-one and onto, it is also always the case
that:

If A and B are infinite sets with the same cardinality, then there
exist functions from A to B that are one-to-one but not onto and
functions from A to B that are onto but not one-to-one.

For instance, since the function H in Example 7.4.1 is one-to-one and onto,Z and 2Z have
the same cardinality. But the “inclusion function” I from 2Z to Z, given by I (n) = n for
all even integers n, is one-to-one but not onto. And the function J from Z to 2Z defined
by J (n) = 2�n/2�, for all integers n, is onto but not one-to-one. (See exercise 6 at the
end of this section.)

Countable Sets
The set Z+ of counting numbers {1, 2, 3, 4, . . .} is, in a sense, the most basic of all infinite
sets. A set A having the same cardinality as this set is called countably infinite. The reason
is that the one-to-one correspondence between the two sets can be used to “count” the
elements of A: If F is a one-to-one and onto function from Z+ to A, then F(1) can be
designated as the first element of A, F(2) as the second element of A, F(3) as the third
element of A, and so forth. This is illustrated graphically in Figure 7.4.1 on the next page.
Because F is one-to-one, no element is ever counted twice, and because it is onto, every
element of A is counted eventually.
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1
2
3

“First” element of A
“Second” element of A
“Third” element of A

Z+ A
F

Figure 7.4.1 “Counting” a Countably Infinite Set

• Definition

A set is called countably infinite if, and only if, it has the same cardinality as the
set of positive integers Z+. A set is called countable if, and only if, it is finite or
countably infinite. A set that is not countable is called uncountable.

Example 7.4.2 Countability of Z, the Set of All Integers

Show that the set Z of all integers is countable.

Solution The set Z of all integers is certainly not finite, so if it is countable, it must be
because it is countably infinite. To show that Z is countably infinite, find a function from
the positive integers Z+ to Z that is one-to-one and onto. Looked at in one light, this
contradicts common sense; judging from the diagram below, there appear to be more
than twice as many integers as there are positive integers.

· · · − 5 − 4 − 3 − 2 − 1 0

positive integers︷ ︸︸ ︷
1 2 3 4 5 · · ·︸ ︷︷ ︸

all integers

But you were alerted that results in this section might be surprising. Try to think of a
way to “count” the set of all integers anyway.

The trick is to start in the middle and work outward systematically. Let the first integer
be 0, the second 1, the third −1, the fourth 2, the fifth −2, and so forth as shown in
Figure 7.4.2, starting at 0 and swinging outward in back-and-forth arcs from positive to
negative integers and back again, picking up one additional integer at each swing.

11 9 7 5 3 1 2 4 6 8 10

–5 –4 –3 –2 –1 0 1 2 3 4 5Integers:
The “count ” of each integer:

Figure 7.4.2 “Counting” the Set of All Integers

It is clear from the diagram that no integer is counted twice (so the function is one-to-
one) and every integer is counted eventually (so the function is onto). Consequently, this
diagram defines a function from Z+ to Z that is one-to-one and onto. Even though in one
sense there seem to be more integers than positive integers, the elements of the two sets
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432 Chapter 7 Functions

can be paired up one for one. It follows by definition of cardinality that Z+ has the same
cardinality as Z. Thus Z is countably infinite and hence countable.

The diagrammatic description of the previous function is acceptable as given. You
can check, however, that the function can also be described by the explicit formula

F(n) =

⎧⎪⎪⎨
⎪⎪⎩

n

2
if n is an even positive integer

−n − 1

2
if n is an odd positive integer. ■

Example 7.4.3 Countability of 2Z, the Set of All Even Integers

Show that the set 2Z of all even integers is countable.

Solution Example 7.4.2 showed that Z+ has the same cardinality as Z, and Example 7.4.1
showed that Z has the same cardinality as 2Z. Thus, by the transitive property of cardin-
ality, Z+ has the same cardinality as 2Z. It follows by definition of countably infinite that
2Z is countably infinite and hence countable. ■

The Search for Larger Infinities:
The Cantor Diagonalization Process

Every infinite set we have discussed so far has been countably infinite. Do any larger
infinities exist? Are there uncountable sets? Here is one candidate.

Imagine the number line as shown below.

· · · −4 −3 −2 −1 0 1 2 3 4 · · ·
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

As noted in Section 1.2, the integers are spread along the number line at discrete intervals.
The rational numbers, on the other hand, are dense: Between any two rational numbers,
no matter how close, lies another rational number (the average of the two numbers, for
instance; see exercise 17). This suggests the conjecture that the infinity of the set of
rational numbers is larger than the infinity of the set of integers.

Amazingly, this conjecture is false. Despite the fact that the rational numbers are
crowded onto the number line whereas the integers are quite separated, the set of all
rational numbers can be put into one-to-one correspondence with the set of integers. The
next example gives part of a proof of this fact. It shows that the set of all positive rational
numbers can be put into one-to-one correspondence with the set of all positive integers.
In exercise 16 at the end of this section you are asked to use this result, together with a
technique similar to that of Example 7.4.2, to show that the set of all rational numbers is
countable.

Example 7.4.4 The Set of All Positive Rational Numbers Is Countable

Show that the set Q+ of all positive rational numbers is countable.

Solution Display the elements of the setQ+ of positive rational numbers in a grid as shown
in Figure 7.4.3 on the next page.
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Figure 7.4.3

Define a function F from Z+ to Q+ by starting to count at 1
1 and following the arrows as

indicated, skipping over any number that has already been counted.
To be specific: Set F(1) = 1

1 , F(2) = 1
2 , F(3) = 2

1 and F(4) = 3
1 . Then skip

2
2 since

2
2 = 1

1 , which was counted first. After that, set F(5) = 1
3 , F(6) = 1

4 , F(7) = 2
3 ,

F(8) = 3
2 , F(9) = 4

1 , and F(10) = 5
1 . Then skip 4

2 ,
3
3 , and

2
4 (since 4

2 = 2
1 ,

3
3 = 1

1 ,
and 2

4 = 1
2 ) and set F(11) = 1

5 . Continue in this way, defining F(n) for each positive
integer n.

Note that every positive rational number appears somewhere in the grid, and the
counting procedure is set up so that every point in the grid is reached eventually. Thus
the function F is onto. Also, skipping numbers that have already been counted ensures
that no number is counted twice. Thus F is one-to-one. Consequently, F is a function
from Z+ to Q+ that is one-to-one and onto, and so Q+ is countably infinite and hence
countable. ■

al-Kashi
(1380–1429)

In 1874 the German mathematician Georg Cantor achieved success in the search for
a larger infinity by showing that the set of all real numbers is uncountable. His method of
proof was somewhat complicated, however. We give a proof of the uncountability of the
set of all real numbers between 0 and 1 using a simpler technique introduced by Cantor
in 1891 and now called the Cantor diagonalization process. Over the intervening years,
this technique and variations on it have been used to establish a number of important
results in logic and the theory of computation.

Before stating and proving Cantor’s theorem, we note that every real number, which
is a measure of location on a number line, can be represented by a decimal expansion of
the form

a0.a1a2a3 . . . ,

where a0 is an integer (positive, negative, or zero) and for each i ≥ 1, ai is an integer
from 0 through 9.
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Simon Stevin
(1548–1620)

This way of thinking about numbers was developed over several centuries by math-
ematicians in the Chinese, Hindu, and Islamic worlds, culminating in the work of Ghiyāth
al-Dı̄n Jamshı̄d al-Kashi in 1427. In Europe it was first clearly formulated and successfully
promoted by the Flemish mathematician Simon Stevin in 1585. We illustrate the concept
with an example.
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Consider the point P in Figure 7.4.4. Figure 7.4.4(a) shows P located between 1
and 2. When the interval from 1 to 2 is divided into ten equal subintervals (see
Figure 7.4.4(b)) P is seen to lie between 1.6 and 1.7. If the interval from 1.6 to 1.7 is itself
divided into ten equal subintervals (see Figure 7.4.4(c)), the P is seen to lie between 1.62
and 1.63 but closer to 1.62 than to 1.63. So the first three digits of the decimal expansion
for P are 1.62.

–3 –1–2 0 1 2 3

1.0

1.60 1.62 1.63 1.65 1.70

1.5 1.6 1.7 2.0

P

P

P

(b)

(a)

(c)

Figure 7.4.4

Assuming that any interval of real numbers, no matter how small, can be divided into
ten equal subintervals, the process of obtaining additional digits in the decimal expansion
for P can, in theory, be repeated indefinitely. If at any stage P is seen to be a subdivision
point, then all further digits in the expansion may be taken to be 0. If not, then the process
gives an expansion with an infinite number of digits.

The resulting decimal representation for P is unique except for numbers that end in
infinitely repeating 9’s or infinitely repeating 0’s. For example (see exercise 25 at the end
of this section),

0.199999 . . . = 0.200000 . . . .

Let us agree to express any such decimal in the form that ends in all 0’s so that we will
have a unique representation for every real number.

Theorem 7.4.2 (Cantor)

The set of all real numbers between 0 and 1 is uncountable.

Proof (by contradiction):

Suppose the set of all real numbers between 0 and 1 is countable. Then the decimal
representations of these numbers can be written in a list as follows:

0.a11a12a13 · · · a1n · · ·
0.a21a22a23 · · · a2n · · ·
0.a31a32a33 · · · a3n · · ·

...

0.an1an2an3 · · · ann · · ·
...

[We will derive a contradiction by showing that there is a number between 0 and 1 that
does not appear on this list.]

For each pair of positive integers i and j , the j th decimal digit of the i th number
on the list is ai j . In particular, the first decimal digit of the first number on the list is
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7.4 Cardinality with Applications to Computability 435

a11, the second decimal digit of the second number on the list is a22, and so forth. As
an example, suppose the list of real numbers between 0 and 1 starts out as follows:

0.
�
�

�
�2 0 1 4 8 8 0 2 . . .

0. 1
�
�

�
�1 6 6 6 0 2 1 . . .

0. 0 3
�
�

�
�3 5 3 3 2 0 . . .

0. 9 6 7
�
�

�
�7 6 8 0 9 . . .

0. 0 0 0 3
�
�

�
�1 0 0 2 . . .

...

The diagonal elements are circled: a11 is 2, a22 is 1, a33 is 3, a44 is 7, a55 is 1, and so
forth.

Construct a new decimal number d = 0.d1d2d3 · · · dn · · · as follows:

dn =
{
1 if ann �= 1
2 if ann = 1

.

In the previous example,

d1 is 1 because a11 = 2 �= 1,

d2 is 2 because a22 = 1,

d3 is 1 because a33 = 3 �= 1,

d4 is 1 because a44 = 7 �= 1,

d5 is 2 because a55 = 1,

and so forth. Hence d would equal 0.12112 . . . .

The crucial observation is that for each integer n, d differs in the nth decimal
position from the nth number on the list. But this implies that d is not on the list!
In other words, d is a real number between 0 and 1 that is not on the list of all real
numbers between 0 and 1. This contradiction shows the falseness of the supposition
that the set of all numbers between 0 and 1 is countable. Hence the set of all real
numbers between 0 and 1 is uncountable.

Along with demonstrating the existence of an uncountable set, Cantor developed a
whole arithmetic theory of infinite sets of various sizes. One of the most basic theorems
of the theory states that any subset of a countable set is countable.

Theorem 7.4.3

Any subset of any countable set is countable.

Proof:

Let A be a particular but arbitrarily chosen countable set and let B be any subset
of A. [We must show that B is countable.] Either B is finite or it is infinite. If B is
finite, then B is countable by definition of countable, and we are done. So suppose
B is infinite. Since A is countable, the distinct elements of A can be represented as
a sequence

a1, a2, a3, . . . .

Define a function g: Z+ → B inductively as follows:
continued on page 436
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436 Chapter 7 Functions

1. Search sequentially through elements of a1, a2, a3, . . . until an element of B
is found. [This must happen eventually since B ⊆ A and B �= ∅.] Call that ele-
ment g(1).

2. For each integer k ≥ 2, suppose g(k − 1) has been defined. Then g(k − 1) = ai
for some ai in {a1, a2, a3, . . .}. Starting with ai+1, search sequentially through
ai+1, ai+2, ai+3, . . . trying to find an element of B. One must be found eventu-
ally because B is infinite, and {g(1), g(2), . . . , g(k − 1)} is a finite set. When an
element of B is found, define it to be g(k).

By (1) and (2) above, the function g is defined for each positive integer.
Since the elements of a1, a2, a3, . . . are all distinct, g is one-to-one. Furthermore,

the searches for elements of B are sequential: Each picks up where the previous one
left off. Thus every element of A is reached during some search. But all the elements
of B are located somewhere in the sequence a1, a2, a3, . . . , and so every element of
B is eventually found and made the image of some integer. Hence g is onto. These
remarks show that g is a one-to-one correspondence fromZ+ to B. So B is countably
infinite and thus countable.

Note If g(k − 1) = ai ,
then g(k) could also be
defined by applying the
well-ordering principle
for the integers to the set
{n ∈ Z | n > i and
ai ∈ B}.

An immediate consequence of Theorem 7.4.3 is the following corollary.

Corollary 7.4.4

Any set with an uncountable subset is uncountable.

Proof:

Consider the following equivalent phrasing of Theorem 7.4.3: For all sets S and for
all subsets A of S, if S is countable, then A is countable. The contrapositive of this
statement is logically equivalent to it and states: For all sets S and for all subsets
A of S, if A is uncountable then S is uncountable. But this is an equivalent phrasing
for the corollary. So the corrollary is proved.

Corollary 7.4.4 implies that the set of all real numbers is uncountable because the
subset of numbers between 0 and 1 is uncountable. In fact, as Example 7.4.5 shows, the
set of all real numbers has the same cardinality as the set of all real numbers between 0
and 1! This fact is further explored in exercises 13 and 14 at the end of this section.

Example 7.4.5 The Cardinality of the Set of All Real Numbers

Show that the set of all real numbers has the same cardinality as the set of real numbers
between 0 and 1.

Solution Let S be the open interval of real numbers between 0 and 1:

S = {x ∈ R | 0 < x < 1}.
Imagine picking up S and bending it into a circle as shown below. Since S does not
include either endpoint 0 or 1, the top-most point of the circle is omitted from the drawing.

7
8

3
4

1
2

3
8

5
8

1
4

1
8
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Define a function F: S→ R as follows:
Draw a number line and place the interval, S, somewhat enlarged and bent into a

circle, tangent to the line above the point 0. This is shown below.

Number line

0–1–2–3 1 2 3

x

L

F(x)

For each point x on the circle representing S, draw a straight line L through the top-
most point of the circle and x . Let F(x) be the point of intersection of L and the number
line. (F(x) is called the projection of x onto the number line.)

It is clear from the geometry of the situation that distinct points on the circle go to
distinct points on the number line, so F is one-to-one. In addition, given any point y on
the number line, a line can be drawn through y and the top-most point of the circle. This
line must intersect the circle at some point x , and, by definition, y = F(x). Thus F is
onto. Hence F is a one-to-one correspondence from S to R, and so S and R have the
same cardinality. ■

You know that every positive integer is a real number, so putting Example 7.4.5
together with Cantor’s theorem (Theorem 7.4.2) shows that the infinity of the set of all
real numbers is “greater” than the infinity of the set of all positive integers. In exercise 35,
you are asked to show that any set and its power set have different cardinalities. Because
there is a one-to-one function from any set to its power set (the function that takes each
element a to the singleton set {a}), this implies that the cardinality of any set is “less
than” the cardinality of its power set. As a result, you can create an infinite sequence of
larger and larger infinities! For example, you could begin with Z, the set of all integers,
and take Z, P(Z), P(P(Z)), P(P(P(Z))), and so forth.

Application: Cardinality and Computability
Knowledge of the countability and uncountability of certain sets can be used to answer a
question of computability. We begin by showing that a certain set is countable.

Example 7.4.6 Countability of the Set of Computer Programs in a Computer Language

Show that the set of all computer programs in a given computer language is countable.

Solution This result is a consequence of the fact that any computer program in any
language can be regarded as a finite string of symbols in the (finite) alphabet of the lan-
guage.

Given any computer language, let P be the set of all computer programs in the lan-
guage. Either P is finite or P is infinite. If P is finite, then P is countable and we are
done. If P is infinite, set up a binary code to translate the symbols of the alphabet of
the language into strings of 0’s and 1’s. (For instance, either the seven-bit American
Standard Code for Information Interchange, known as ASCII, or the eight-bit Extended
Binary-Coded Decimal Interchange Code, known as EBCDIC, might be used.)

For each program in P , use the code to translate all the symbols in the program into
0’s and 1’s. Order these strings by length, putting shorter before longer, and order all
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strings of a given length by regarding each string as a binary number and writing the
numbers in ascending order.

Define a function F: Z+ → P by specifying that

F(n) = the nth program in the list for each n ∈ Z+.

By construction, F is one-to-one and onto, and so P is countably infinite and hence
countable. As a simple example, suppose the following are all the programs in P that
translate into bit strings of length less than or equal to 5:

10111, 11, 0010, 1011, 01, 00100, 1010, 00010.

Ordering these by length gives

length 2: 11, 01

length 4: 0010, 1011, 1010

length 5: 10111, 00100, 00010

And ordering those of each given length by the size of the binary number they repre-
sent gives

01 = F(1)

11 = F(2)

0010 = F(3)

1010 = F(4)

1011 = F(5)

00010 = F(6)

00100 = F(7)

10111 = F(8)

Note that when viewed purely as numbers, ignoring leading zeros, 0010 = 00010.
This shows the necessity of first ordering the strings by length before arranging them in
ascending numeric order. ■

The final example of this section shows that a certain set is uncountable and hence
that there must exist a noncomputable function.

Example 7.4.7 The Cardinality of a Set of Functions and Computability

a. Let T be the set of all functions from the positive integers to the set {0, 1, 2, 3, 4,
5, 6, 7, 8, 9}. Show that T is uncountable.

b. Derive the consequence that there are noncomputable functions. Specifically, show
that for any computer language there must be a function F from Z+ to {0, 1, 2, 3, 4,
5, 6, 7, 8, 9}with the property that no computer program can be written in the language
to take arbitrary values as input and output the corresponding function values.

Solution

a. Let S be the set of all real numbers between 0 and 1. As noted before, any number in
S can be represented in the form

0.a1a2a3 . . . an . . . ,

where each ai is an integer from 0 to 9. This representation is unique if decimals that
end in all 9’s are omitted.
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Define a function F from S to a subset of T (the set of all functions from Z+ to
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}) as follows:

F(0.a1a2a3 . . . an . . .) = the function that sends each
positive integer n to an.

Choose the co-domain of F to be exactly that subset of T that makes F onto. That is,
define the co-domain of F to equal the image of F . Note that F is one-to-one because
if F(x1) = F(x2), then each decimal digit of x1 equals the corresponding decimal digit
of x2, and so x1 = x2. Thus F is a one-to-one correspondence from S to a subset of T .
But S is uncountable by Theorem 7.4.2. Hence T has an uncountable subset, and so,
by Corollary 7.4.4, T is uncountable.

b. Part (a) shows that the set T of all functions from Z+ to {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} is
uncountable. But Example 7.4.6 shows that given any computer language, the set of
all programs in that language is countable. Consequently, in any computer language
there are not enough programs to compute values of every function in T . There must
exist functions that are not computable! ■

Test Yourself
1. A set is finite if, and only if, _____.

2. To prove that a set A has the same cardinality as a set B you
must _____.

3. The reflexive property of cardinality says that given any set
A, _____.

4. The symmetric property of cardinality says that given any
sets A and B, _____.

5. The transitive property of cardinality says that given any sets
A, B, and C , _____.

6. A set is called countably infinite if, and only if, _____.

7. A set is called countable if, and only if, _____.

8. In each of the following, fill in the blank with the word
countable or the word uncountable.

(a) The set of all integers is _____.

(b) The set of all rational numbers is _____.

(c) The set of all real numbers between 0 and 1 is _____.

(d) The set of all real numbers is _____.

9. The Cantor diagonalization process is used to prove that
_____.

Exercise Set 7.4
1. When asked what it means to say that set A has the same

cardinality as set B, a student replies, “A and B are one-to-
one and onto.” What should the student have replied? Why?

2. Show that “there are as many squares as there are num-
bers” by exhibiting a one-to-one correspondence from the
positive integers, Z+, to the set S of all squares of positive
integers:

S = {n ∈ Z+ | n = k2, for some positive integer k}.

3. Let 3Z = {n ∈ Z | n = 3k, for some integer k}. Prove that
Z and 3Z have the same cardinality.

4. Let O be the set of all odd integers. Prove that O has the
same cardinality as 2Z, the set of all even integers.

5. Let 25Z be the set of all integers that are multiples of 25.
Prove that 25Z has the same cardinality as 2Z, the set of all
even integers.

6.H Use the functions I and J defined in the paragraph following
Example 7.4.1 to show that even though there is a one-to-one
correspondence, H , from 2Z to Z, there is also a function
from 2Z to Z that is one-to-one but not onto and a function
fromZ to 2Z that is onto but not one-to-one. In other words,
show that I is one-to-one but not onto, and show that J is
onto but not one-to-one.

7. a. Check that the formula for F given at the end of Example
7.4.2 produces the correct values for n = 1, 2, 3, and 4.

b. Use the floor function to write a formula for F as a single
algebraic expression for all positive integers n.

8. Use the result of exercise 3 to prove that 3Z is countable.

9. Show that the set of all nonnegative integers is countable
by exhibiting a one-to-one correspondence between Z+ and
Znonneg .
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In 10–14, S denotes the set of real numbers strictly between
0 and 1. That is, S = {x ∈ R | 0 < x < 1}.

10. Let U = {x ∈ R | 0 < x < 2}. Prove that S and U have the
same cardinality.

11.H Let V = {x ∈ R | 2 < x < 5}. Prove that S and V have the
same cardinality.

12. Let a and b be real numbers with a < b, and suppose that
W = {x ∈ R | a < x < b}. Prove that S and W have the
same cardinality.

13. Draw the graph of the function f defined by the following
formula:

For all real numbers x with 0 < x < 1,

f (x) = tan
(
πx − π

2

)
·

Use the graph to explain why S and R have the same
cardinality.

14.✶ Define a function g from the set of real numbers to S by the
following formula:

For all real numbers x ,

g(x) = 1

2
·
(

x

1+ |x |
)
+ 1

2
·

Prove that g is a one-to-one correspondence. (It is possible
to prove this statement either with calculus or without it.)
What conclusion can you draw from this fact?

15. Show that the set of all bit strings (strings of 0’s and 1’s) is
countable.

16. Show that Q, the set of all rational numbers, is countable.

17. Show that the set Q of all rational numbers is dense along
the number line by showing that given any two rational
numbers r1 and r2 with r1 < r2, there exists a rational num-
ber x such that r1 < x < r2.

18.H Must the average of two irrational numbers always be
irrational? Prove or give a counterexample.

19.✶H Show that the set of all irrational numbers is dense along the
number line by showing that given any two real numbers,
there is an irrational number in between.

20. Give two examples of functions from Z to Z that are one-
to-one but not onto.

21. Give two examples of functions from Z to Z that are onto
but not one-to-one.

22.H Define a function g: Z+ × Z+ → Z+ by the formula
g(m, n) = 2m3n for all (m, n) ∈ Z+ × Z+. Show that g is
one-to-one and use this result to prove that Z+ × Z+ is
countable.

23. a. Explain how to use the following diagram to show that
Znonneg × Znonneg and Znonneg have the same cardinality.

(0, 0)

(0, 1)

(0, 2)

(0, 3)

(1, 0)

(1, 1)

(1, 2)

(1, 3)

(1, 4)

(2, 0)

(2, 1)

(2, 2)

(2, 3)

(2, 4)

(3, 0)

(3, 1)

(3, 2)

(3, 3)

(3, 4)

(4, 0)

(4, 1)

(4, 2)

(4, 3)

(4, 4)(0, 4)

...
...

...
...

...

. . .

. . .

. . .

. . .

. . .

b.✶H Define a function H: Znonneg × Znonneg → Znonneg by the
formula

H(m, n) = n + (m + n)(m + n + 1)

2

for all nonnegative integers m and n. Interpret the action
of H geometrically using the diagram of part (a).

24.✶ Prove that the function H defined analytically in exercise
23b is a one-to-one correspondence.

25.H Prove that 0.1999 . . . = 0.2.

26. Prove that any infinite set contains a countably infinite
subset.

27. If A is any countably infinite set, B is any set, and
g: A→ B is onto, then B is countable.

28. Prove that a disjoint union of any finite set and any count-
ably infinite set is countably infinite.

29.H Prove that a union of any two countably infinite sets is
countably infinite.

30.H Use the result of exercise 29 to prove that the set of all irra-
tional numbers is uncountable.

31.H Use the results of exercises 28 and 29 to prove that a union
of any two countable sets is countable.

32.H Prove that Z × Z, the Cartesian product of the set of inte-
gers with itself, is countably infinite.

33. Use the results of exercises 27, 31, and 32 to prove the fol-
lowing: If R is the set of all solutions to all equations of the
form x2 + bx + c = 0, where b and c are integers, then R
is countable.

34.H Let P(S) be the set of all subsets of set S, and let T be the
set of all functions from S to {0, 1}. Show that P(S) and T
have the same cardinality.

35.H Let S be a set and let P(S) be the set of all subsets of S.
Show that S is “smaller than” P(S) in the sense that there
is a one-to-one function from S to P(S) but there is no
onto function from P(S) to S.
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36.✶ The Schroeder–Bernstein theorem states the following: If
A and B are any sets with the property that there is a one-
to-one function from A to B and a one-to-one function from
B to A, then A and B have the same cardinality. Use this
theorem to prove that there are as many functions from Z+

to {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} as there are functions from Z+

to {0, 1}.
37.H Prove that if A and B are any countably infinite sets, then

A × B is countably infinite.

38.✶ Suppose A1, A2, A3, . . . is an infinite sequence of countable
sets. Recall that

∞⋃
i=1

Ai = {x | x ∈ Ai for some positive integer i}.

Prove that
⋃∞

i=1 Ai is countable. (In other words, prove that
a countably infinite union of countable sets is countable.)

Answers for Test Yourself
1. it is the empty set or there is a one-to-one correspondence from {1, 2, . . . , n} to it, where n is a positive integer 2. show that
there exists a function from A to B that is one-to-one and onto (Or: show that there exists a one-to-one correspondence from A to B)
3. A has the same cardinality as A. 4. if A has the same cardinality as B, then B has the same cardinality as A 5. if A has the same
cardinality as B and B has the same cardinality as C , then A has the same cardinality as C 6. it has the same cardinality as the set
of all positive integers 7. it is finite or countably infinite 8. countable; countable; uncountable; uncountable 9. the set of all real
numbers between 0 and 1 is uncountable
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CHAPTER 8

RELATIONS

In this chapter we discuss the mathematics of relations defined on sets, focusing on ways
to represent relations and exploring various properties they may have. The concept of
equivalence relation is introduced in Section 8.3 and applied in Section 8.4 to modular
arithmetic and cryptography. Partial order relations are discussed in Section 8.5, and an
application is given showing how to use these relations to help coordinate and guide the
flow of individual tasks that must be performed to accomplish a complex, large-scale
project.

8.1 Relations on Sets
Strange as it may sound, the power of mathematics rests on its evasion of all
unnecessary thought and on its wonderful saving of mental operations. — Ernst Mach,

1838–1916

A more formal way to refer to the kind of relation defined in Section 1.3 is to call it a
binary relation because it is a subset of a Cartesian product of two sets. At the end of
this section we define an n-ary relation to be a subset of a Cartesian product of n sets,
where n is any integer greater than or equal to two. Such a relation is the fundamental
structure used in relational databases. However, because we focus on binary relations in
this text, when we use the term relation by itself, we will mean binary relation.

Example 8.1.1 The Less-than Relation for Real Numbers

Define a relation L from R to R as follows: For all real numbers x and y,

x L y ⇔ x < y.

a. Is 57 L 53? b. Is (−17) L (−14)? c. Is 143 L 143? d. Is (−35) L 1?

e. Draw the graph of L as a subset of the Cartesian plane R× R

Solution

a. No, 57 > 53 b. Yes, −17 < −14 c. No, 143 = 143 d. Yes, −35 < 1

e. For each value of x , all the points (x, y) with y > x are on the graph. So the graph
consists of all the points above the line x = y.

y

x

■
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Example 8.1.2 The Congruence Modulo 2 Relation

Define a relation E from Z to Z as follows: For all (m, n) ∈ Z × Z,

m E n ⇔ m − n is even.

a. Is 4 E 0? Is 2 E 6? Is 3 E (−3)? Is 5 E 2?

b. List five integers that are related by E to 1.

c. Prove that if n is any odd integer, then n E 1.

Solution

a. Yes, 4 E 0 because 4− 0 = 4 and 4 is even.
Yes, 2 E 6 because 2− 6 = −4 and −4 is even.
Yes, 3 E (−3) because 3− (−3) = 6 and 6 is even.
No, 5 E/ 2 because 5− 2 = 3 and 3 is not even.

b. There are many such lists. One is

1 because 1− 1 = 0 is even,
3 because 3− 1 = 2 is even,
5 because 5− 1 = 4 is even,
−1 because −1− 1 = −2 is even,
−3 because −3− 1 = −4 is even.

c. Proof: Suppose n is any odd integer. Then n = 2k + 1 for some integer k. Now by
definition of E, n E 1 if, and only if, n − 1 is even. But by substitution,

n − 1 = (2k + 1)− 1 = 2k,

and since k is an integer, 2k is even. Hence n E 1 [as was to be shown].

It can be shown (see exercise 2 at the end of this section) that integers m and n are related
by E if, and only if, m mod 2 = n mod 2 (that is, both are even or both are odd). When
this occurs m and n are said to be congruent modulo 2. ■

Example 8.1.3 A Relation on a Power Set

Let X = {a, b, c}. ThenP(X) = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}. Define
a relation S from P(X) to Z as follows: For all sets A and B in P(X) (i.e., for all subsets
A and B of X ),

A S B⇔ A has at least as many elements as B.

a. Is {a, b} S {b, c}? b. Is {a} S ∅? c. Is {b, c} S {a, b, c}? d. Is {c} S {a}?
Solution

a. Yes, both sets have two elements.

b. Yes, {a} has one element and ∅ has zero elements, and 1 ≥ 0.

c. No, {b, c} has two elements and {a, b, c} has three elements and 2 < 3.

d. Yes, both sets have one element. ■
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The Inverse of a Relation
If R is a relation from A to B, then a relation R−1 from B to A can be defined by
interchanging the elements of all the ordered pairs of R.

• Definition

Let R be a relation from A to B. Define the inverse relation R−1 from B to A as
follows:

R−1 = {(y, x) ∈ B × A | (x, y) ∈ R}.

This definition can be written operationally as follows:

For all x ∈ A and y ∈ B, (y, x) ∈ R−1 ⇔ (x, y) ∈ R.

Example 8.1.4 The Inverse of a Finite Relation

Let A = {2, 3, 4} and B = {2, 6, 8} and let R be the “divides” relation from A to B: For
all (x, y) ∈ A × B,

x R y ⇔ x | y x divides y.

a. State explicitly which ordered pairs are in R and R−1, and draw arrow diagrams for R
and R−1.

b. Describe R−1 in words.

Solution

a. R = {(2, 2), (2, 6), (2, 8), (3, 6), (4, 8)}
R−1 = {(2, 2), (6, 2), (8, 2), (6, 3), (8, 4)}

BR

2

6

8

A

2

3

4

To draw the arrow diagram for R−1, you can copy the arrow diagram for R but reverse
the directions of the arrows.

B
R–1

2

6

8

A

2

3

4
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Or you can redraw the diagram so that B is on the left.

AR–1

2

3

4

B

2

6

8

b. R−1 can be described in words as follows: For all (y, x) ∈ B × A,

y R−1 x ⇔ y is a multiple of x . ■

Example 8.1.5 The Inverse of an Infinite Relation

Define a relation R from R to R as follows: For all (x, y) ∈ R× R,

x R y ⇔ y = 2|x |.
Draw the graphs of R and R−1 in the Cartesian plane. Is R−1 a function?

Solution A point (v, u) is on the graph of R−1 if, and only if, (u, v) is on the graph of R.
Note that if x ≥ 0, then the graph of y = 2|x | = 2x is a straight line with slope 2. And if
x < 0, then the graph of y = 2|x | = 2(−x) = −2x is a straight line with slope−2. Some
sample values are tabulated and the graphs are shown below.

R = {(x, y) | y = 2|x |}
x y

0 0
1 2
−1 2
2 4
−2 4→ →

1st coordinate 2nd coordinate

R−1 = {(y, x) | y = 2|x |}
y x

0 0
2 1
2 −1
4 2
4 −2
→ →

1st coordinate 2nd coordinate

Graph of R

u

v

(u, v)

Graph of R–1

u

v

(v, u)

R−1 is not a function because, for instance, both (2, 1) and (2,−1) are in R−1. ■
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Directed Graph of a Relation
In the remaining sections of this chapter, we discuss important properties of relations that
are defined from a set to itself.

Note It is important to
distinguish clearly
between a relation and the
set on which it is defined.

• Definition

A relation on a set A is a relation from A to A.

When a relation R is defined on a set A, the arrow diagram of the relation can be modified
so that it becomes a directed graph. Instead of representing A as two separate sets of
points, represent A only once, and draw an arrow from each point of A to each related
point. As with an ordinary arrow diagram,

For all points x and y in A,

there is an arrow from x to y ⇔ x R y ⇔ (x, y) ∈ R.

If a point is related to itself, a loop is drawn that extends out from the point and goes
back to it.

Example 8.1.6 Directed Graph of a Relation

Let A = {3, 4, 5, 6, 7, 8} and define a relation R on A as follows: For all x, y ∈ A,

x R y ⇔ 2 | (x − y).

Draw the directed graph of R.

Solution Note that 3 R 3 because 3− 3 = 0 and 2 | 0 since 0 = 2 · 0. Thus there is a loop
from 3 to itself. Similarly, there is a loop from 4 to itself, from 5 to itself, and so forth,
since the difference of each integer with itself is 0, and 2 | 0.

Note also that 3 R 5 because 3− 5 = −2 = 2 · (−1). And 5 R 3 because 5− 3 =
2 = 2 · 1. Hence there is an arrow from 3 to 5 and also an arrow from 5 to 3. The other
arrows in the directed graph, as shown below, are obtained by similar reasoning.

5

4

6

7

8
3

■

N-ary Relations and Relational Databases
N -ary relations form the mathematical foundation for relational database theory. A binary
relation is a subset of a Cartesian product of two sets, similarly, an n-ary relation is a
subset of a Cartesian product of n sets.
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• Definition

Given sets A1, A2, . . . , An , an n-ary relation R on A1 × A2 × · · · × An is a subset
of A1 × A2 × · · · × An . The special cases of 2-ary, 3-ary, and 4-ary relations are
called binary, ternary, and quaternary relations, respectively.

Example 8.1.7 A Simple Database

The following is a radically simplified version of a database that might be used in a
hospital. Let A1 be a set of positive integers, A2 a set of alphabetic character strings, A3

a set of numeric character strings, and A4 a set of alphabetic character strings. Define a
quaternary relation R on A1 × A2 × A3 × A4 as follows:

(a1, a2, a3, a4) ∈ R ⇔ a patient with patient ID number a1, named a2, was
admitted on date a3, with primary diagnosis a4.

At a particular hospital, this relation might contain the following 4-tuples:

(011985, John Schmidt, 020710, asthma)

(574329, Tak Kurosawa, 0114910, pneumonia)

(466581, Mary Lazars, 0103910, appendicitis)

(008352, Joan Kaplan, 112409, gastritis)

(011985, John Schmidt, 021710, pneumonia)

(244388, Sarah Wu, 010310, broken leg)

(778400, Jamal Baskers, 122709, appendicitis)

In discussions of relational databases, the tuples are normally thought of as being
written in tables. Each row of the table corresponds to one tuple, and the header for each
column gives the descriptive attribute for the elements in the column.

Operations within a database allow the data to be manipulated in many different ways.
For example, in the database language SQL, if the above database is denoted S, the result
of the query

SELECT Patient−ID#,Name FROM S WHERE

Admission−Date = 010310

would be a list of the ID numbers and names of all patients admitted on 01-03-10:

466581 Mary Lazars,

244388 Sarah Wu.

This is obtained by taking the intersection of the set A1 × A2 × {010310} × A4 with the
database and then projecting onto the first two coordinates. (See exercise 25 of
Section 7.1.) Similarly, SELECT can be used to obtain a list of all admission dates of
a given patient. For John Schmidt this list is

02-07-10 and

02-17-10

Individual entries in a database can be added, deleted, or updated, and most databases
can sort data entries in various ways. In addition, entire databases can be merged, and the
entries common to two databases can be moved to a new database. ■

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



448 Chapter 8 Relations

Test Yourself
Answers to Test Yourself questions are located at the end of each section.

1. If R is a relation from A to B, x ∈ A, and y ∈ B, the
notation x R y means that _____.

2. If R is a relation from A to B, x ∈ A, and y ∈ B, the
notation x R y means that _____.

3. If R is a relation from A to B, x ∈ A, and y ∈ B, then
(y, x) ∈ R−1 if, and only if, _____.

4. A relation on a set A is a relation from _____ to _____.

5. If R is a relation on a set A, the directed graph of R has an
arrow from x to y if, and only if, _____.

Exercise Set 8.1*
1. As in Example 8.1.2, the congruence modulo 2 relation E

is defined from Z to Z as follows: For all integers m and n,

m E n ⇔ m − n is even.

a. Is 0 E 0? Is 5 E 2? Is (6, 6) ∈ E? Is (−1, 7) ∈ E?
b. Prove that for any even integer n, n E 0.

2.H Prove that for all integers m and n,m − n is even if, and
only if, both m and n are even or both m and n are odd.

3. The congruence modulo 3 relation, T , is defined from Z
to Z as follows: For all integers m and n,

m T n ⇔ 3 | (m − n).

a. Is 10 T 1? Is 1 T 10? Is (2, 2) ∈ T ? Is (8, 1) ∈ T ?
b. List five integers n such that n T 0.
c. List five integers n such that n T 1.
d. List five integers n such that n T 2.
e.H Make and prove a conjecture about which integers are

related by T to 0, which integers are related by T to 1,
and which integers are related by T to 2.

4. Define a relation P on Z as follows: For all m, n ∈ Z,

m P n ⇔ m and n have a common prime factor.

a. Is 15 P 25? b. 22 P 27?
c. Is 0 P 5? d. Is 8 P 8?

5. Let X = {a, b, c}. Recall that P(X) is the power set of X .
Define a relation R on P(X) as follows:
For all A, B ∈P(X),

A R B ⇔ A has the same number of elements as B.

a. Is {a, b} R {b, c}? b. Is {a} R {a, b}?
c. Is {c} R {b}?

6. Let X = {a, b, c}. Define a relation J on P(X) as follows:
For all A, B ∈P(X),

A J B ⇔ A ∩ B �= ∅.
a. Is {a} J {c}? b. Is {a, b} J {b, c}?
c. Is {a, b} J {a, b, c}?

7. Define a relation R on Z as follows: For all integers m
and n,

m R n ⇔ 5 | (m2 − n2).

a. Is 1 R (−9)? b. Is 2 R 13?
c. Is 2 R (−8)? d. Is (−8) R 2?

8. Let A be the set of all strings of a’s and b’s of length 4.
Define a relation R on A as follows: For all s, t ∈ A,

s R t ⇔ s has the same first two characters as t .

a. Is abaa R abba? b. Is aabb R bbaa?
c. Is aaaa R aaab? d. Is baaa R abaa?

9. Let A be the set of all strings of 0’s, 1’s, and 2’s of length
4. Define a relation R on A as follows: For all s, t ∈ A,

s R t ⇔ the sum of the characters in s equals
the sum of the characters in t .

a. Is 0121 R 2200? b. Is 1011 R 2101?
c. Is 2212 R 2121? d. Is 1220 R 2111?

10. Let A = {3, 4, 5} and B = {4, 5, 6} and let R be the “less
than” relation. That is, for all (x, y) ∈ A × B,

x R y ⇔ x < y.

State explicitly which ordered pairs are in R and R−1.

11. Let A = {3, 4, 5} and B = {4, 5, 6} and let S be the
“divides” relation. That is, for all (x, y) ∈ A × B,

x S y ⇔ x | y.
State explicitly which ordered pairs are in S and S−1.

12. a. Suppose a function F: X → Y is one-to-one but not
onto. Is F−1 (the inverse relation for F) a function?
Explain your answer.

b. Suppose a function F: X → Y is onto but not one-to-
one. Is F−1 (the inverse relation for F) a function?
Explain your answer.

∗For exercises with blue numbers or letters, solutions are given in Appendix B. The symbolH indicates that only a hint or a partial
solution is given. The symbol ✶ signals that an exercise is more challenging than usual.
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Draw the directed graphs of the relations defined in 13–18.

13. Define a relation R on A = {0, 1, 2, 3} by R = {(0, 0),
(1, 2), (2, 2)}.

14. Define a relation S on B = {a, b, c, d} by S = {(a, b),
(a, c), (b, c), (d, d)}.

15. Let A = {2, 3, 4, 5, 6, 7, 8} and define a relation R on A as
follows: For all x, y ∈ A,

x R y ⇔ x | y.

16.H Let A = {5, 6, 7, 8, 9, 10} and define a relation S on A as
follows: For all x, y ∈ A,

x S y ⇔ 2 | (x − y).

17. Let A = {2, 3, 4, 5, 6, 7, 8} and define a relation T on A as
follows: For all x, y ∈ A,

x T y ⇔ 3 | (x − y).

18. Let A = {0, 1, 2, 3, 4, 5, 6, 7, 8} and define a relation
V on A as follows: For all x, y ∈ A,

x V y ⇔ 5 | (x2 − y2).

Exercises 19–20 refer to unions and intersections of relations.
Since relations are subsets of Cartesian products, their unions
and intersections can be calculated as for any subsets. Given
two relations R and S from A to B,

R ∪ S = {(x, y) ∈ A × B | (x, y) ∈ R or (x, y) ∈ S}
R ∩ S = {(x, y) ∈ A × B | (x, y) ∈ R and (x, y) ∈ S}.

19. Let A = {2, 4} and B = {6, 8, 10} and define relations R
and S from A to B as follows: For all (x, y) ∈ A × B,

x R y ⇔ x | y and

x S y ⇔ y − 4 = x .

State explicitly which ordered pairs are in A × B, R, S,
R ∪ S, and R ∩ S.

20. Let A = {−1, 1, 2, 4} and B = {1, 2} and define
relations R and S from A to B as follows: For all
(x, y) ∈ A × B,

x R y ⇔ |x | = |y| and

x S y ⇔ x − y is even.

State explicitly which ordered pairs are in A × B, R, S,
R ∪ S, and R ∩ S.

21. Define relations R and S on R as follows:

R = {(x, y) ∈ R× R | x < y} and

S = {(x, y) ∈ R× R | x = y}.
That is, R is the “less than” relation and S is the “equals”
relation on R. Graph R, S, R ∪ S, and R ∩ S in the Carte-
sian plane.

22. Define relations R and S on R as follows:

R = {(x, y) ∈ R× R | x2 + y2 = 4} and

S = {(x, y) ∈ R× R | x = y}.
Graph R, S, R ∪ S, and R ∩ S in the Cartesian plane.

23. Define relations R and S on R as follows:

R = {(x, y) ∈ R× R | y = |x |} and

S = {(x, y) ∈ R× R | y = 1}.
Graph R, S, R ∪ S, and R ∩ S in the Cartesian plane.

24. In Example 8.1.7 the result of the query SELECT
Patient−ID#, Name FROM S WHERE Primary−Diagnosis
= X is the projection onto the first two coordinates of
the intersection of the set A1 × A2 × A3 × {X} with the
database.
a. Find the result of the query SELECT Patient−ID#, Name

FROM S WHERE Primary−Diagnosis = pneumonia.
b. Find the result of the query SELECT Patient−ID#, Name

FROM S WHERE Primary−Diagnosis = appendicitis.

Answers for Test Yourself
1. x is related to y by R 2. x is not related to y by R 3. (x, y) ∈ R 4. A; A 5. x is related to y by R

8.2 Reflexivity, Symmetry, and Transitivity
Mathematics is the tool specially suited for dealing with abstract concepts of any kind
and there is no limit to its power in this field. — P. A. M. Dirac, 1902–1984

Let A = {2, 3, 4, 6, 7, 9} and define a relation R on A as follows: For all x, y ∈ A,

x R y ⇔ 3 | (x − y).
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Then 2 R 2 because 2− 2 = 0, and 3 | 0. Similarly, 3 R 3, 4 R 4, 6 R 6, 7 R 7, and
9 R 9. Also 6 R 3 because 6− 3 = 3, and 3 | 3. And 3 R 6 because 3− 6 = −(6− 3) =
−3, and 3 | (−3). Similarly, 3 R 9, 9 R 3, 6 R 9, 9 R 6, 4 R 7, and 7 R 4. Thus the directed
graph for R has the appearance shown below.

3
4

7

2

6
9

Note For reference:
x R y ⇔ 3 | (x − y).

This graph has three important properties:

1. Each point of the graph has an arrow looping around from it back to itself.

2. In each case where there is an arrow going from one point to a second, there is an
arrow going from the second point back to the first.

3. In each case where there is an arrow going from one point to a second and from the
second point to a third, there is an arrow going from the first point to the third. That
is, there are no “incomplete directed triangles” in the graph.

Properties (1), (2), and (3) correspond to properties of general relations called reflex-
ivity, symmetry, and transitivity.

• Definition

Let R be a relation on a set A.

1. R is reflexive if, and only if, for all x ∈ A, x R x .

2. R is symmetric if, and only if, for all x, y ∈ A, if x R y then y R x .

3. R is transitive if, and only if, for all x, y, z ∈ A, if x R y and y R z then x R z.

Because of the equivalence of the expressions x R y and (x, y) ∈ R for all x and y
in A, the reflexive, symmetric, and transitive properties can also be written as follows:

!
Caution! The definition
of symmetric does not say
that x is related to y by R;
only that if it happens that
x is related to y, then y
must be related to x .

1. R is reflexive ⇔ for all x in A, (x, x) ∈ R.

2. R is symmetric ⇔ for all x and y in A, if (x, y) ∈ R then (y, x) ∈ R.

3. R is transitive ⇔ for all x, y and z in A, if (x, y) ∈ R and (y, z) ∈ R
then (x, z) ∈ R.

!
Caution! The “first,”
“second,” and “third”
elements in the informal
versions need not all be
distinct. This is a
disadvantage of
informality: It may mask
nuances that a formal
definition makes clear.

In informal terms, properties (1)–(3) say the following:

1. Reflexive: Each element is related to itself.

2. Symmetric: If any one element is related to any other element, then the second ele-
ment is related to the first.

3. Transitive: If any one element is related to a second and that second element is
related to a third, then the first element is related to the third.
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Note that the definitions of reflexivity, symmetry, and transitivity are universal state-
ments. This means that to prove a relation has one of the properties, you use either the
method of exhaustion or the method of generalizing from the generic particular.

Now consider what it means for a relation not to have one of the properties defined
previously. Recall that the negation of a universal statement is existential. Hence if R is a
relation on a set A, then

1. R is not reflexive ⇔ there is an element x in A such that x R x [that is, such that
(x, x) /∈ R].

2. R is not symmetric ⇔ there are elements x and y in A such that x R y but y R x
[that is, such that (x, y) ∈ R but (y, x) /∈ R].

3. R is not transitive ⇔ there are elements x, y and z in A such that x R y and y R z
but x R z [that is, such that (x, y) ∈ R and (y, z) ∈ R but
(x, z) /∈ R].

It follows that you can show that a relation does not have one of the properties by finding
a counterexample.

Example 8.2.1 Properties of Relations on Finite Sets

Let A = {0, 1, 2, 3} and define relations R, S, and T on A as follows:

R = {(0, 0), (0, 1), (0, 3), (1, 0), (1, 1), (2, 2), (3, 0), (3, 3)},
S = {(0, 0), (0, 2), (0, 3), (2, 3)},
T = {(0, 1), (2, 3)}.

a. Is R reflexive? symmetric? transitive?

b. Is S reflexive? symmetric? transitive?

c. Is T reflexive? symmetric? transitive?

Solution

a. The directed graph of R has the appearance shown below.

0

3

1

2

R is reflexive: There is a loop at each point of the directed graph. This means that
each element of A is related to itself, so R is reflexive.

R is symmetric: In each case where there is an arrow going from one point of the
graph to a second, there is an arrow going from the second point back to the first. This
means that whenever one element of A is related by R to a second, then the second is
related to the first. Hence R is symmetric.

R is not transitive: There is an arrow going from 1 to 0 and an arrow going from 0 to
3, but there is no arrow going from 1 to 3. This means that there are elements of A—0,
1, and 3—such that 1 R 0 and 0 R 3 but 1 R 3. Hence R is not transitive.
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b. The directed graph of S has the appearance shown below.

0

3 2

1

S is not reflexive: There is no loop at 1, for example. Thus (1, 1) /∈ S, and so S is not
reflexive.

S is not symmetric: There is an arrow from 0 to 2 but not from 2 to 0. Hence (0, 2) ∈ S
but (2, 0) /∈ S, and so S is not symmetric.

S is transitive: There are three cases for which there is an arrow going from one point
of the graph to a second and from the second point to a third: Namely, there are arrows
going from 0 to 2 and from 2 to 3; there are arrows going from 0 to 0 and from 0 to 2;
and there are arrows going from 0 to 0 and from 0 to 3. In each case there is an arrow
going from the first point to the third. (Note again that the “first,” “second,” and “third”
points need not be distinct.) This means that whenever (x, y) ∈ S and (y, z) ∈ S, then
(x, z) ∈ S, for all x, y, z ∈ {0, 1, 2, 3}, and so S is transitive.

c. The directed graph of T has the appearance shown below.

0 1

3 2

T is not reflexive: There is no loop at 0, for example. Thus (0, 0) /∈ T , so T is not
reflexive.

T is not symmetric: There is an arrow from 0 to 1 but not from 1 to 0. Thus (0, 1) ∈ T
but (1, 0) /∈ T , and so T is not symmetric.

Note T is transitive by
default because it is not
not transitive!

T is transitive: The transitivity condition is vacuously true for T . To see this, observe
that the transitivity condition says that

For all x, y, z ∈ A, if (x, y) ∈ T and (y, z) ∈ T then (x, z) ∈ T .

The only way for this to be false would be for there to exist elements of A that make
the hypothesis true and the conclusion false. That is, there would have to be elements
x, y, and z in A such that

(x, y) ∈ T and (y, z) ∈ T and (x, z) /∈ T .

In other words, there would have to be two ordered pairs in T that have the potential to
“link up” by having the second element of one pair be the first element of the other pair.
But the only elements in T are (0, 1) and (2, 3), and these do not have the potential to
link up. Hence the hypothesis is never true. It follows that it is impossible for T not to
be transitive, and thus T is transitive. ■
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When a relation R is defined on a finite set A, it is possible to write computer algo-
rithms to check whether R is reflexive, symmetric, and transitive. One way to do this is to
represent A as a one-dimensional array, (a[1], a[2], . . . , a[n]) and use a modification of
the algorithm of exercise 38 in Section 6.1 to check whether an ordered pair in A × A is
in R. Checking whether R is reflexive can be done with a loop that examines each element
a[i] of A in turn. If, for some i, (a[i], a[i]) /∈ R, then R is not reflexive. Otherwise, R is
reflexive. Checking for symmetry can be done with a nested loop that examines each pair
(a[i], a[ j]) of A × A in turn. If, for some i and j, (a[i], a[ j]) ∈ R and (a[ j], a[i]) /∈ R,
then R is not symmetric. Otherwise, R is symmetric. Checking whether R is transitive can
be done with a triply nested loop that examines each triple (a[i], a[ j], a[k]) of A × A ×
A in turn. If, for some triple, (a[i], a[ j]) ∈ R, (a[ j], a[k]) ∈ R, and (a[i], a[k]) /∈ R,
then R is not transitive. Otherwise, R is transitive. In the exercises for this section, you
are asked to formalize these algorithms.

Properties of Relations on Infinite Sets
Suppose a relation R is defined on an infinite set A. To prove the relation is reflexive,
symmetric, or transitive, first write down what is to be proved. For instance, for symmetry
you need to prove that

∀x, y ∈ A, if x R y then y R x .

Then use the definitions of A and R to rewrite the statement for the particular case in
question. For instance, for the “equality” relation on the set of real numbers, the rewritten
statement is

∀x, y ∈ R, if x = y then y = x .

Sometimes the truth of the rewritten statement will be immediately obvious (as it is here).
At other times you will need to prove it using the method of generalizing from the generic
particular. We give examples of both cases in this section. We begin with the relation of
equality, one of the simplest and yet most important relations.

Example 8.2.2 Properties of Equality

Define a relation R on R (the set of all real numbers) as follows: For all real numbers
x and y.

x R y ⇔ x = y.

a. Is R reflexive? b. Is R symmetric? c, Is R transitive?

Solution

a. R is reflexive: R is reflexive if, and only if, the following statement is true:

For all x ∈ R, x R x .

Since x R x just means that x = x , this is the same as saying

For all x ∈ R, x = x .

But this statement is certainly true; every real number is equal to itself.

b. R is symmetric: R is symmetric if, and only if, the following statement is true:

For all x, y ∈ R, if x R y then y R x .
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By definition of R, x R y means that x = y and y R x means that y = x . Hence R is
symmetric if, and only if,

For all x, y ∈ R, if x = y then y = x .

But this statement is certainly true; if one number is equal to a second, then the second
is equal to the first.

c. R is transitive: R is transitive if, and only if, the following statement is true:

For all x, y, z ∈ R, if x R y and y R z then x R z.

By definition of R, x R y means that x = y, y R z means that y = z, and x R z means
that x = z. Hence R is transitive if, and only if, the following statement is true:

For all x, y, z ∈ R, if x = y and y = z then x = z.

But this statement is certainly true: If one real number equals a second and the second
equals a third, then the first equals the third. ■

Example 8.2.3 Properties of “Less Than”

Define a relation R on R (the set of all real numbers) as follows: For all x, y ∈ R,

x R y ⇔ x < y.

a. Is R reflexive? b. Is R symmetric? c. Is R transitive?

Solution

a. R is not reflexive: R is reflexive if, and only if, ∀x ∈ R, x R x . By definition of
R, this means that ∀x ∈ R, x < x . But this is false: ∃x ∈ R such that x ≮ x . As a
counterexample, let x = 0 and note that 0 ≮ 0. Hence R is not reflexive.

b. R is not symmetric: R is symmetric if, and only if, ∀x, y ∈ R, if x R y then y R x .
By definition of R, this means that ∀x, y ∈ R, if x < y then y < x . But this is false:
∃x, y ∈ R such that x < y and y ≮ x . As a counterexample, let x = 0 and y = 1 and
note that 0 < 1 but 1 ≮ 0. Hence R is not symmetric.

c. R is transitive: R is transitive if, and only if, for all x, y, z ∈ R, if x R y and y R z
then x R z. By definition of R, this means that for all x, y, z ∈ R, if x < y and y < z,
then x < z. But this statement is true by the transitive law of order for real numbers
(Appendix A, T18). Hence R is transitive. ■

Sometimes a property is “universally false” in the sense that it is false for every ele-
ment of its domain. It follows immediately, of course, that the property is false for each
particular element of the domain and hence counterexamples abound. In such a case, it
may seem more natural to prove the universal falseness of the property rather than to give
a single counterexample. In the example above, for instance, you might find it natural to
answer (a) and (b) as follows:

Alternative Answer to (a): R is not reflexive because x ≮ x for all real numbers x (by
the trichotomy law—Appendix A, T17).

Alternative Answer to (b): R is not symmetric because for all x and y in A, if x < y,
then y ≮ x (by the trichotomy law).

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



8.2 Reflexivity, Symmetry, and Transitivity 455

Example 8.2.4 Properties of Congruence Modulo 3

Define a relation T on Z (the set of all integers) as follows: For all integers m and n,

m T n ⇔ 3 | (m − n).

This relation is called congruence modulo 3.

a. Is T reflexive? b. Is T symmetric? c. Is T transitive?

Solution

a. T is reflexive: To show that T is reflexive, it is necessary to show that

For all m ∈ Z, m T m.

By definition of T , this means that

For all m ∈ Z, 3 | (m − m).

Or, since m − m = 0, For all m ∈ Z, 3 | 0.
But this is true: 3 | 0 since 0 = 3 · 0. Hence T is reflexive. This reasoning is formalized
in the following proof.

Proof of Reflexivity: Suppose m is a particular but arbitrarily chosen integer.
[We must show that m T m.] Now m − m = 0. But 3 | 0 since 0 = 3 · 0. Hence
3 | (m − m). Thus, by definition of T,m T m [as was to be shown].

b. T is symmetric: To show that T is symmetric, it is necessary to show that

For all m, n ∈ Z, if m T n then n T m.

By definition of T this means that

For all m, n ∈ Z, if 3 | (m − n) then 3 | (n − m).

Is this true? Suppose m and n are particular but arbitrarily chosen integers such that
3 | (m − n). Must it follow that 3 | (n − m)? [In other words, can we find an integer so
that n − m = 3 · (that integer)?] By definition of “divides,” since

3 | (m − n),

then m − n = 3k for some integer k.

The crucial observation is that n − m = −(m − n). Hence, you can multiply both
sides of this equation by −1 to obtain

−(m − n) = −3k,
which is equivalent to n − m = 3(−k).
[Thus we have found an integer, namely −k, so that n − m = 3 · (that integer).]
Since −k is an integer, this equation shows that

3 | (n − m).

It follows that T is symmetric.
The reasoning above is formalized in the following proof.
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Proof of Symmetry: Suppose m and n are particular but arbitrarily chosen inte-
gers that satisfy the condition m T n. [We must show that n T m.] By definition
of T , since m T n then 3 | (m − n). By definition of “divides,” this means that
m − n = 3k, for some integer k. Multiplying both sides by −1 gives n − m =
3(−k). Since −k is an integer, this equation shows that 3 | (n − m). Hence, by
definition of T, n T m [as was to be shown].

c. T is transitive: To show that T is transitive, it is necessary to show that

For all m, n, p ∈ Z, if m T n and n T p then m T p.

By definition of T this means that

For all m, n ∈ Z, if 3 | (m − n) and 3 | (n − p) then 3 | (m − p).

Is this true? Suppose m, n, and p are particular but arbitrarily chosen integers such
that 3 | (m − n) and 3 | (n − p). Must it follow that 3 | (m − p)? [In other words, can
we find an integer so that m − p = 3 · (that integer)?] By definition of “divides,” since

3 | (m − n) and 3 | (n − p),

then m − n = 3r for some integer r,

and n − p = 3s for some integer s.

The crucial observation is that (m − n)+ (n − p) = m − p. Add these two equations
together to obtain

(m − n)+ (n − p) = 3r + 3s,

which is equivalent to m − p = 3(r + s).

[Thus we have found an integer so that m − p = 3 · (that integer).]
Since r and s are integers, r + s is an integer. So this equation shows that

3 | (m − p).

It follows that T is transitive.
The reasoning above is formalized in the following proof.

Proof of Transitivity: Suppose m, n, and p are particular but arbitrarily chosen
integers that satisfy the condition m T n and n T p. [We must show that m T p.]
By definition of T , since m T n and n T p, then 3 | (m − n) and 3 | (n − p). By
definition of “divides,” this means thatm − n = 3r and n − p = 3s, for some inte-
gers r and s. Adding the two equations gives (m − n)+ (n − p) = 3r + 3s, and
simplifying gives that m − p = 3(r + s). Since r + s is an integer, this equation
shows that 3 | (m − p). Hence, by definition of T , m T p [as was to be shown].

■

The Transitive Closure of a Relation
Generally speaking, a relation fails to be transitive because it fails to contain certain
ordered pairs. For example, if (1, 3) and (3, 4) are in a relation R, then the pair (1, 4)
must be in R if R is to be transitive. To obtain a transitive relation from one that is not
transitive, it is necessary to add ordered pairs. Roughly speaking, the relation obtained
by adding the least number of ordered pairs to ensure transitivity is called the transitive
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closure of the relation. In a sense made precise by the formal definition, the transitive
closure of a relation is the smallest transitive relation that contains the relation.

• Definition

Let A be a set and R a relation on A. The transitive closure of R is the relation Rt

on A that satisfies the following three properties:

1. Rt is transitive.

2. R ⊆ Rt .

3. If S is any other transitive relation that contains R, then Rt ⊆ S.

Example 8.2.5 Transitive Closure of a Relation

Let A = {0, 1, 2, 3} and consider the relation R defined on A as follows:

R = {(0, 1), (1, 2), (2, 3)}.
Find the transitive closure of R.

Solution Every ordered pair in R is in Rt , so

{(0, 1), (1, 2), (2, 3)} ⊆ Rt .

Thus the directed graph of R contains the arrows shown below.

0 1

3 2

Since there are arrows going from 0 to 1 and from 1 to 2, Rt must have an arrow going
from 0 to 2. Hence (0, 2) ∈ Rt . Then (0, 2) ∈ Rt and (2, 3) ∈ Rt , so since Rt is transitive,
(0, 3) ∈ Rt . Also, since (1, 2) ∈ Rt and (2, 3) ∈ Rt , then (1, 3) ∈ Rt . Thus Rt contains
at least the following ordered pairs:

{(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)}.
But this relation is transitive; hence it equals Rt . Note that the directed graph of Rt is as
shown below.

0 1

3 2 ■

Test Yourself
1. For a relation R on a set A to be reflexive means that _____.

2. For a relation R on a set A to be symmetric means that
_____.

3. For a relation R on a set A to be transitive means that _____.

4. To show that a relation R on an infinite set A is reflexive,
you suppose that _____ and you show that _____.

5. To show that a relation R on an infinite set A is symmetric,
you suppose that _____ and you show that _____.

6. To show that a relation R on an infinite set A is transitive,
you suppose that _____ and you show that _____.

7. To show that a relation R on a set A is not reflexive, you
_____.
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8. To show that a relation R on a set A is not symmetric, you
_____.

9. To show that a relation R on a set A is not transitive, you
_____.

10. Given a relation R on a set A, the transitive closure of R is
the relation Rt on A that satisfies the following three prop-
erties: _____, _____, and _____.

Exercise Set 8.2
In 1–8 a number of relations are defined on the set A =
{0, 1, 2, 3}. For each relation:
a. Draw the directed graph.
b. Determine whether the relation is reflexive.
c. Determine whether the relation is symmetric.
d. Determine whether the relation is transitive.
Give a counterexample in each case in which the relation does
not satisfy one of the properties.

1. R1 = {(0, 0), (0, 1), (0, 3), (1, 1), (1, 0), (2, 3), (3, 3)}
2. R2 = {(0, 0), (0, 1), (1, 1), (1, 2), (2, 2), (2, 3)}
3. R3 = {(2, 3), (3, 2)}
4. R4 = {(1, 2), (2, 1), (1, 3), (3, 1)}
5. R5 = {(0, 0), (0, 1), (0, 2), (1, 2)}
6. R6 = {(0, 1), (0, 2)}
7. R7 = {(0, 3), (2, 3)}
8. R8 = {(0, 0), (1, 1)}

In 9–33 determine whether the given relation is reflexive, sym-
metric, transitive, or none of these. Justify your answers.

9. R is the “greater than or equal to” relation on the set of real
numbers: For all x, y ∈ R, x R y ⇔ x ≥ y.

10. C is the circle relation on the set of real numbers: For all
x, y ∈ R, x C y ⇔ x2 + y2 = 1.

11. D is the relation defined on R as follows: For all x, y ∈ R,

x D y ⇔ xy ≥ 0.

12. E is the congruence modulo 2 relation on Z: For all
m, n ∈ Z,m E n ⇔ 2 | (m − n).

13. F is the congruence modulo 5 relation on Z: For all
m, n ∈ Z,m F n ⇔ 5 | (m − n).

14. O is the relation defined on Z as follows: For all m, n ∈ Z,

m O n ⇔ m − n is odd.

15. D is the “divides” relation on Z+: For all positive integers
m and n,m D n ⇔ m | n.

16. A is the “absolute value” relation on R: For all real num-
bers x and y, x A y ⇔ |x | = |y|.

17. Recall that a prime number is an integer that is greater
than 1 and has no positive integer divisors other than 1
and itself. (In particular, 1 is not prime.) A relation P is

defined on Z as follows: For all m, n ∈ Z,m P n ⇔ ∃ a
prime number p such that p |m and p | n.

18.H Define a relation Q on R as follows: For all real numbers
x and y, x Q y ⇔ x − y is rational.

19. Define a relation I on R as follows: For all real numbers x
and y, x I y ⇔ x − y is irrational.

20. Let X = {a, b, c} and P(X) be the power set of X (the
set of all subsets of X ). A relation E is defined on P(X)

as follows: For all A, B ∈P(X), A E B⇔ the number of
elements in A equals the number of elements in B.

21. Let X = {a, b, c} and P(X) be the power set of X .
A relation L is defined on P(X) as follows: For all
A, B ∈P(X), A L B⇔ the number of elements in A is
less than the number of elements in B.

22. Let X = {a, b, c} and P(X) be the power set of X .
A relation N is defined on P(X) as follows: For all
A, B ∈P(X), A N B⇔ the number of elements in A is
not equal to the number of elements in B.

23. Let X be a nonempty set and P(X) the power set of X .
Define the “subset” relation S on P(X) as follows: For all
A, B ∈P(X), A S B⇔ A ⊆ B.

24. Let X be a nonempty set and P(X) the power set of X .
Define the “not equal to” relation U on P(X) as follows:
For all A, B ∈P(X), A U B⇔ A �= B.

25. Let A be the set of all strings of a’s and b’s of length 4.
Define a relation R on A as follows: For all s, t ∈ A,

s R t⇔ s has the same first two characters as t .

26. Let A be the set of all strings of 0’s, 1’s and 2’s of
length 4. Define a relation R on A as follows: For all
s, t ∈ A, s R t⇔ the sum of the characters in s equals the
sum of the characters in t .

27. Let A be the set of all English statements. A relation I is
defined on A as follows: For all p, q ∈ A,

p I q ⇔ p→ q is true.

28. Let A = R× R. A relation F is defined on A as follows:
For all (x1, y1) and (x2, y2) in A,

(x1, y1) F (x2, y2)⇔ x1 = x2.

29. Let A = R× R. A relation S is defined on A as follows:
For all (x1, y1) and (x2, y2) in A,

(x1, y1) S (x2, y2)⇔ y1 = y2.
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30. Let A be the “punctured plane”; that is, A is the set of
all points in the Cartesian plane except the origin (0, 0).
A relation R is defined on A as follows: For all p1 and
p2 in A, p1 R p2 ⇔ p1 and p2 lie on the same half line
emanating from the origin.

31. Let A be the set of people living in the world today. A
relation R is defined on A as follows: For all p, q ∈ A,

p R q ⇔ p lives within 100 miles of q.

32. Let A be the set of all lines in the plane. A relation R is
defined on A as follows: For all l1 and l2 in A, l1 R l2 ⇔ l1
is parallel to l2. (Assume that a line is parallel to itself.)

33. Let A be the set of all lines in the plane. A relation R is
defined on A as follows: For all l1 and l2 in A,

l1 R l2 ⇔ l1 is perpendicular to l2.

In 34–36, assume that R is a relation on a set A. Prove or dis-
prove each statement.

34. If R is reflexive, then R−1 is reflexive.

35. If R is symmetric, then R−1 is symmetric.

36. If R is transitive, then R−1 is transitive.

In 37–42, assume that R and S are relations on a set A. Prove or
disprove each statement.

37. If R and S are reflexive, is R ∩ S reflexive? Why?

38.H If R and S are symmetric, is R ∩ S symmetric? Why?

39. If R and S are transitive, is R ∩ S transitive? Why?

40. If R and S are reflexive, is R ∪ S reflexive? Why?

41. If R and S are symmetric, is R ∪ S symmetric? Why?

42. If R and S are transitive, is R ∪ S transitive? Why?

In 43–50 the following definitions are used: A relation on a set
A is defined to be

irreflexive if, and only if, for all x ∈ A, x R x;
asymmetric if, and only if, for all x, y ∈ A, if x R y then
y R x;
intransitive if, and only if, for all x, y, z ∈ A, if x R y and
y R z then x R z.

For each of the relations in the referenced exercise, determine
whether the relation is irreflexive, asymmetric, intransitive, or
none of these.

43. Exercise 1 44. Exercise 2

45. Exercise 3 46. Exercise 4

47. Exercise 5 48. Exercise 6

49. Exercise 7 50. Exercise 8

In 51–53. R. S. and T are relations defined on A = {0, 1, 2, 3}.
51. Let R = {(0, 1), (0, 2), (1, 1), (1, 3), (2, 2), (3, 0)}. Find

R′, the transitive closure of R.

52. Let S = {(0, 0), (0, 3), (1, 0), (1, 2), (2, 0), (3, 2)}. Find
St , the transitive closure of S.

53. Let T = {(0, 2), (1, 0), (2, 3), (3, 1)}. Find T t , the transi-
tive closure of T .

54. Write a computer algorithm to test whether a relation
R defined on a finite set A is reflexive, where
A = {a[1], a[2], . . . , a[n]}.

55. Write a computer algorithm to test whether a relation
R defined on a finite set A is symmetric, where
A = {a[1], a[2], . . . , a[n]}.

56. Write a computer algorithm to test whether a relation
R defined on a finite set A is transitive, where
A = {a[1], a[2], . . . , a[n]}.

Answers for Test Yourself
1. for all x in A, x R x 2. for all x and y in A, if x R y then y R x 3. for all x, y, and z in A, if x R y and y R z then x R z 4. x is any
element of A; x R x 5. x and y are any elements of A such that x R y; y R x 6. x, y, and z are any elements of A such that x R y and
y R z; x R z 7. show that there is an element x in A such that x R x 8. show that there are elements x and y in A such that x R y but
y R x 9. show that there are elements x, y, and z in A such that x R y and y R z but x R z 10. Rt is transitive; R ⊆ Rt ; if S is any
other transitive relation that contains R, then Rt ⊆ S

8.3 Equivalence Relations
“You are sad” the Knight said in an anxious tone: “let me sing you a song to

comfort you.”
“Is it very long?” Alice asked, for she had heard a good deal of poetry that day.
“It’s long,” said the Knight, “but it’s very, very beautiful. Everybody that hears me

sing it—either it brings the tears into the eyes, or else—”
“Or else what?” said Alice, for the Knight had made a sudden pause.
“Or else it doesn’t, you know. The name of the song is called ‘Haddocks’ Eyes.’ ”
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“Oh, that’s the name of the song, is it?” Alice said, trying to feel interested.
“No, you don’t understand,” the Knight said, looking a little vexed. “That’s what

the name is called. The name really is ‘The Aged Aged Man.’ ”
“Then I ought to have said ‘That’s what the song is called’?” Alice corrected

herself.
“No, you oughtn’t: that’s quite another thing! The song is called ‘Ways and

Means’: but that’s only what it’s called, you know!”
“Well, what is the song, then?” said Alice, who was by this time completely

bewildered.
“I was coming to that,” the Knight said. “The song really is ‘A-sitting on a Gate’:

and the tune’s my own invention.”
So saying, he stopped his horse and let the reins fall on its neck: then, slowly beating
time with one hand, and with a faint smile lighting up his gentle foolish face, as if he
enjoyed the music of his song, he began.
— Lewis Carroll, Through the Looking Glass, 1872

You know from your early study of fractions that each fraction has many equivalent
forms. For example,

1

2
,
2

4
,
3

6
,
−1
−2 ,

−3
−6 ,

15

30
, . . . , and so on

are all different ways to represent the same number. They may look different; they may
be called different names; but they are all equal. The idea of grouping together things that
“look different but are really the same” is the central idea of equivalence relations.

The Relation Induced by a Partition
A partition of a set A is a finite or infinite collection of nonempty, mutually disjoint
subsets whose union is A. The diagram of Figure 8.3.1 illustrates a partition of a set A by
subsets A1, A2, . . . , A6.

A2

A4 A5

A6

A3

A1
Ai Aj = ∅, whenever i ≠ j
Ai A2  A6 = A 

Figure 8.3.1 A Partition of a Set

• Definition

Given a partition of a set A, the relation induced by the partition, R, is defined on
A as follows: For all x, y ∈ A,

x R y ⇔ there is a subset Ai of the partition
such that both x and y are in Ai .

Example 8.3.1 Relation Induced by a Partition

Let A = {0, 1, 2, 3, 4} and consider the following partition of A:

{0, 3, 4}, {1}, {2}.
Find the relation R induced by this partition.
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Solution Since {0, 3, 4} is a subset of the partition,
0 R 3 because both 0 and 3 are in {0, 3, 4},
3 R 0 because both 3 and 0 are in {0, 3, 4},
0 R 4 because both 0 and 4 are in {0, 3, 4},
4 R 0 because both 4 and 0 are in {0, 3, 4},
3 R 4 because both 3 and 4 are in {0, 3, 4}, and

4 R 3 because both 4 and 3 are in {0, 3, 4}.

Also, 0 R 0 because both 0 and 0 are in {0, 3, 4}
3 R 3 because both 3 and 3 are in {0, 3, 4}, and

4 R 4 because both 4 and 4 are in {0, 3, 4}.
Since {1} is a subset of the partition,

1 R 1 because both 1 and 1 are in {1},
and since {2} is a subset of the partition,

2 R 2 because both 2 and 2 are in {2}.

Note These statements
may seem strange, but,
after all, they are not
false!

Hence

R = {(0, 0), (0, 3), (0, 4), (1, 1), (2, 2), (3, 0), (3, 3), (3, 4), (4, 0), (4, 3), (4, 4)}. ■

The fact is that a relation induced by a partition of a set satisfies all three properties
studied in Section 8.2: reflexivity, symmetry, and transitivity.

Theorem 8.3.1

Let A be a set with a partition and let R be the relation induced by the partition.
Then R is reflexive, symmetric, and transitive.

Proof:

Suppose A is a set with a partition. In order to simplify notation, we assume that the
partition consists of only a finite number of sets. The proof for an infinite partition
is identical except for notation. Denote the partition subsets by

A1, A2, . . . , An .

Then Ai ∩ A j = ∅ whenever i �= j, and A1 ∪ A2 ∪ · · · ∪ An = A. The relation R
induced by the partition is defined as follows: For all x, y ∈ A,

x R y ⇔ there is a set Ai of the partition
such that x ∈ Ai and y ∈ Ai .

[Idea for the proof of reflexivity: For R to be reflexive means that each element of A
is related by R to itself. But by definition of R, for an element x to be related to itself
means that x is in the same subset of the partition as itself. Well, if x is in some subset of
the partition, then it is certainly in the same subset as itself. But x is in some subset of the

continued on page 462
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partition because the union of the subsets of the partition is all of A. This reasoning is
formalized as follows.]

Proof that R is reflexive: Suppose x ∈ A. Since A1, A2, . . . , An is a partition of A,
it follows that x ∈ Ai for some i . But then the statement

there is a set Ai of the partition such that x ∈ Ai and x ∈ Ai

is true. Thus, by definition of R, x R x .

[Idea for the proof of symmetry: For R to be symmetric means that any time one
element is related to a second, then the second is related to the first. Now for one element
x to be related to a second element y means that x and y are in the same subset of the
partition. But if this is the case, then y is in the same subset of the partition as x, so y is
related to x by definition of R. This reasoning is formalized as follows.]

Proof that R is symmetric: Suppose x and y are elements of A such that x R y. Then

there is a subset Ai of the partition such that x ∈ Ai and y ∈ Ai

by definition of R. It follows that the statement

there is a subset Ai of the partition such that y ∈ Ai and x ∈ Ai

is also true. Hence, by definition of R, y R x .

[Idea for the proof of transitivity: For R to be transitive means that any time one
element of A is related by R to a second and that second is related to a third, then the
first element is related to the third. But for one element to be related to another means that
there is a subset of the partition that contains both. So suppose x, y, and z are elements
such that x is in the same subset as y and y is in the same subset as z. Must x be in the
same subset as z? Yes, because the subsets of the partition are mutually disjoint. Since
the subset that contains x and y has an element in common with the subset that contains
y and z (namely y), the two subsets are equal. But this means that x, y, and z are all in
the same subset, and so in particular, x and z are in the same subset. Hence x is related
by R to z. This reasoning is formalized as follows.]

Proof that R is transitive: Suppose x, y, and z are in A and x R y and y R z. By
definition of R, there are subsets Ai and A j of the partition such that

x and y are in Ai and y and z are in A j .

Suppose Ai �= A j . [We will deduce a contradiction.] Then Ai ∩ A j = ∅ since
{A1, A2, A3, . . . , An} is a partition of A. But y is in Ai and y is in A j also. Hence
Ai ∩ A j �= ∅. [This contradicts the fact that Ai ∩ A j = ∅.] Thus Ai = A j . It follows
that x, y, and z are all in Ai , and so in particular,

x and z are in Ai .

Thus, by definition of R, x R z.

Note The fact that
x ∈ Ai and x ∈ Ai

follows from the logical
equivalence of the
statement forms p and
p ∧ p.

Note The fact that
y ∈ Ai and x ∈ Ai

follows from the logical
equivalence of the
statement forms p ∧ q
and q ∧ p.

Definition of an Equivalence Relation
A relation on a set that satisfies the three properties of reflexivity, symmetry, and transi-
tivity is called an equivalence relation.

• Definition

Let A be a set and R a relation on A. R is an equivalence relation if, and only if, R
is reflexive, symmetric, and transitive.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



8.3 Equivalence Relations 463

Thus, according to Theorem 8.3.1, the relation induced by a partition is an equiva-
lence relation. A variety of additional examples of equivalence relations are given below
and in the exercises.

Example 8.3.2 An Equivalence Relation on a Set of Subsets

Let X be the set of all nonempty subsets of {1, 2, 3}. Then

X = {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}
Define a relation R on X as follows: For all A and B in X ,

A R B⇔ the least element of A equals the least element of B.

Prove that R is an equivalence relation on X .

Solution

R is reflexive: Suppose A is a nonempty subset of {1, 2, 3}. [We must show that A R A.]
It is true to say that the least element of A equals the least element of A. Thus, by definition
of R, A R A.

R is symmetric: Suppose A and B are nonempty subsets of {1, 2, 3} and A R B. [We must
show that B R A.] Since A R B, the least element of A equals the least element of B. But this
implies that the least element of B equals the least element of A, and so, by definition of
R, B R A.

R is transitive: Suppose A, B, and C are nonempty subsets of {1, 2, 3}, A R B, and B R C.
[We must show that A R C.] Since A R B, the least element of A equals the least element
of B and since B R C, the least element of B equals the least element of C. Thus the least
element of A equals the least element of C, and so, by definition of R, A R C. ■

Example 8.3.3 Equivalence of Digital Logic Circuits Is an Equivalence Relation

Let S be the set of all digital logic circuits with a fixed number n of inputs. Define a
relation E on S as follows: For all circuits C1 and C2 in S,

C1 E C2 ⇔ C1 has the same input/output table as C2.

If C1 E C2, then circuit C1 is said to be equivalent to circuit C2. Prove that E is an
equivalence relation on S.

Solution

E is reflexive: Suppose C is a digital logic circuit in S. [We must show that C E C.]
Certainly C has the same input/output table as itself. Thus, by definition of E,C E C
[as was to be shown].

E is symmetric: Suppose C1 and C2 are digital logic circuits in S such that C1 E C2.
[We must show that C2 E C1.] By definition of E, since C1 E C2, then C1 has the same
input/output table as C2. It follows that C2 has the same input/output table as C1. Hence,
by definition of E,C2 E C1 [as was to be shown].
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E is transitive: Suppose C1,C2, and C3 are digital logic circuits in S such that C1 E C2

and C2 E C3. [We must show that C1 E C3.] By definition of E, since C1 E C2 and C2 E C3,
then

C1 has the same input/output table as C2

and C2 has the same input/output table as C3.

It follows that C1 has the same input/output table as C3.

Hence, by definition of E,C1 E C3 [as was to be shown].

Since E is reflexive, symmetric, and transitive, E is an equivalence relation on S. ■

Certain implementations of computer languages do not place a limit on the allow-
able length of an identifier. This permits a programmer to be as precise as necessary in
naming variables without having to worry about exceeding length limitations. However,
compilers for such languages often ignore all but some specified number of initial char-
acters: As far as the compiler is concerned, two identifiers are the same if they have the
same initial characters, even though they may look different to a human reader of the
program. For example, to a compiler that ignores all but the first eight characters of an
identifier, the following identifiers would be the same:

NumberOfScrews NumberOfBolts.

Obviously, in using such a language, the programmer has to be sure to avoid giving
two distinct identifiers the same first eight characters. When a compiler lumps identifiers
together in this way, it sets up an equivalence relation on the set of all possible identifiers
in the language. Such a relation is described in the next example.

Example 8.3.4 A Relation on a Set of Identifiers

Let L be the set of all allowable identifiers in a certain computer language, and define a
relation R on L as follows: For all strings s and t in L ,

s R t ⇔ the first eight characters of s equal the first eight characters of t.

Prove that R is an equivalence relation on L .

Solution

R is reflexive: Let s ∈ L . [We must show that s R s.] Clearly s has the same first eight
characters as itself. Thus, by definition of R, s R s [as was to be shown].

R is symmetric: Let s and t be in L and suppose that s R t . [We must show that t R s.] By
definition of R, since s R t , the first eight characters of s equal the first eight characters
of t . But then the first eight characters of t equal the first eight characters of s. And so,
by definition of R, t R s [as was to be shown].
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R is transitive: Let s, t, and u be in L and suppose that s R t and t R u. [We must show
that s R u.] By definition of R, since s R t and t R u, the first eight characters of s
equal the first eight characters of t , and the first eight characters of t equal the first eight
characters of u. Hence the first eight characters of s equal the first eight characters of u.
Thus, by definition of R, s R u [as was to be shown].

Since R is reflexive, symmetric, and transitive, R is an equivalence relation on L . ■

Equivalence Classes of an Equivalence Relation
Suppose there is an equivalence relation on a certain set. If a is any particular element of
the set, then one can ask, “What is the subset of all elements that are related to a?” This
subset is called the equivalence class of a.

Note Be careful to
distinguish among the
following: a relation on a
set, the (underlying) set
itself, and the equivalence
class for an element of the
(underlying) set.

• Definition

Suppose A is a set and R is an equivalence relation on A. For each element a in A,
the equivalence class of a, denoted [a] and called the class of a for short, is the set
of all elements x in A such that x is related to a by R.

In symbols:

[a] = {x ∈ A | x R a}

When several equivalence relations on a set are under discussion, the notation [a]R is
often used to denote the equivalence class of a under R.

The procedural version of this definition is

for all x ∈ A, x ∈ [a] ⇔ x R a.

Example 8.3.5 Equivalence Classes of a Relation Given as a set of Ordered Pairs

Let A = {0, 1, 2, 3, 4} and define a relation R on A as follows:

R = {(0, 0), (0, 4), (1, 1), (1, 3), (2, 2), (3, 1), (3, 3), (4, 0), (4, 4)}.
The directed graph for R is as shown below. As can be seen by inspection, R is an equiv-
alence relation on A. Find the distinct equivalence classes of R.

0

4
1

3

2
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Solution First find the equivalence class of every element of A.

[0] = {x ∈ A | x R 0} = {0, 4}
[1] = {x ∈ A | x R 1} = {1, 3}
[2] = {x ∈ A | x R 2} = {2}
[3] = {x ∈ A | x R 3} = {1, 3}
[4] = {x ∈ A | x R 4} = {0, 4}

Note that [0] = [4] and [1] = [3]. Thus the distinct equivalence classes of the relation are
{0, 4}, {1, 3}, and {2}. ■

When a problem asks you to find the distinct equivalence classes of an equivalence
relation, you will generally solve the problem in two steps. In the first step you either
explicitly construct (as in Example 8.3.5) or imagine constructing (as in infinite cases)
the equivalence class for every element of the domain A of the relation. Usually several
of the classes will contain exactly the same elements, so in the second step you must
take a careful look at the classes to determine which are the same. You then indicate the
distinct equivalence classes by describing them without duplication.

Example 8.3.6 Equivalence Classes of a Relation on a Set of Subsets

In Example 8.3.2 it was shown that the relation R was an equivalence relation, where for
nonempty subsets A and B of {1, 2, 3} to be related by R means that they have the same
least element. Describe the distinct equivalence classes of R.

Solution The equivalence class of {1} is the set of all the nonempty subsets of {1, 2, 3}
whose least element is 1. Thus

[{1}] = {{1}, {1, 2}, {1, 3}, {1, 2, 3}}.
The equivalence class of {2} is the set of all the nonempty subsets of {1, 2, 3} whose
least element is 2. Thus

[{2}] = {{2}, {2, 3}}.
The equivalence class of {3} is the set of all the nonempty subsets of {1, 2, 3} whose
least element is 3. There is only one such set, namely {3} itself. Thus

[{3}] = {{3}}.
Since all the nonempty subsets of {1, 2, 3} are in one of the equivalence classes, this is a
complete listing. Moreover, these classes are all distinct. ■

Example 8.3.7 Equivalence Classes of Identifiers

In Example 8.3.4 it was shown that the relation R of having the same first eight characters
is an equivalence relation on the set L of allowable identifiers in a computer language.
Describe the distinct equivalence classes of R.

Solution By definition of R, two strings in L are related by R if, and only if, they have the
same first eight characters. Given any string s in L ,

[s] = {t ∈ L | t R s}
= {t ∈ L | the first eight characters of t equal the first eight characters of s}.
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Thus the distinct equivalence classes of R are sets of strings such that (1) each class
consists entirely of strings all of which have the same first eight characters, and (2)
any two distinct classes contain strings that differ somewhere in their first eight
characters.

■

Example 8.3.8 Equivalence Classes of the Identity Relation

Let A be any set and define a relation R on A as follows: For all x and y in A,

x R y ⇔ x = y.

Then R is an equivalence relation. [To prove this, just generalize the argument used in
Example 8.2.2.] Describe the distinct equivalence classes of R.

Solution Given any a in A, the class of a is

[a] = {x ∈ A | x R a}.
But by definition of R, a R x if, and only if, a = x . So

[a] = {x ∈ A | x = a}
= {a} since the only element of A that equals a is a.

Hence, given any a in A,

[a] = {a},
and if x �= a, then {x} �= {a}. Consequently, all the classes of all the elements of A
are distinct, and the distinct equivalence classes of R are all the single-element subsets
of A. ■

In each of Examples 8.3.5, 8.3.6, 8.3.7 and 8.3.8, the set of distinct equivalence
classes of the relation consists of mutually disjoint subsets whose union is the entire
domain A of the relation. This means that the set of equivalence classes of the relation
forms a partition of the domain A. In fact, it is always the case that the equivalence classes
of an equivalence relation partition the domain of the relation into a union of mutually
disjoint subsets. We establish the truth of this statement in stages, first proving two lem-
mas and then proving the main theorem.

The first lemma says that if two elements of A are related by an equivalence rela-
tion R, then their equivalence classes are the same.

Lemma 8.3.2

Suppose A is a set, R is an equivalence relation on A, and a and b are elements of A.
If a R b, then [a] = [b].

This lemma says that if a certain condition is satisfied, then [a] = [b]. Now [a] and
[b] are sets, and two sets are equal if, and only if, each is a subset of the other. Hence the
proof of the lemma consists of two parts: first, a proof that [a] ⊆ [b] and second, a proof
that [b] ⊆ [a]. To show each subset relation, it is necessary to show that every element in
the left-hand set is an element of the right-hand set.
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Proof of Lemma 8.3.2:

Let A be a set, let R be an equivalence relation on A, and suppose

a and b are elements of A such that a R b.

[We must show that [a] = [b].]
Proof that [a] ⊆ [b]: Let x ∈ [a]. [We must show that x ∈ [b].] Since

x ∈ [a]

then x R a

by definition of class. But a R b

by hypothesis. Thus, by transitivity of R,

x R b.

Hence x ∈ [b]
by definition of class. [This is what was to be shown.]

Proof that [b] ⊆ [a]: Let x ∈ [b]. [We must show that x ∈ [a].] Since
x ∈ [b]

then x R b

by definition of class. Now a R b

by hypothesis. Thus, since R is symmetric,

b R a

also. Then, since R is transitive and x R b and b R a,

x R a.

Hence, x ∈ [a]
by definition of class. [This is what was to be shown.]

Since [a] ⊆ [b] and [b] ⊆ [a], it follows that [a] = [b] by definition of set
equality.

The second lemma says that any two equivalence classes of an equivalence relation
are either mutually disjoint or identical.

Lemma 8.3.3

If A is a set, R is an equivalence relation on A, and a and b are elements of A, then

either [a] ∩ [b] = ∅ or [a] = [b].

The statement of Lemma 8.3.3 has the form

if p then (q or r),
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where p is the statement “A is a set, R is an equivalence relation on A, and a and b are
elements of A,” q is the statement “[a] ∩ [b] = ∅,” and r is the statement “[a] = [b].” To
prove the lemma, we will prove the logically equivalent statement

if (p and not q) then r .

That is, we will prove the following:

If A is a set, R is an equivalence relation on A, a and b are
elements of A, and [a] ∩ [b] �= ∅, then [a] = [b].

Note You can always
prove a statement of the
form “if p then (q or r )”
by proving one of the
logically equivalent
statements: “if (p and not
q) then r” or “if (p and
not r ) then q.”∗

Proof of Lemma 8.3.3:

Suppose A is a set, R is an equivalence relation on A, a and b are elements of A, and

[a] ∩ [b] �= ∅.
[We must show that [a] = [b].] Since [a] ∩ [b] �= ∅, there exists an element x in A
such that x ∈ [a] ∩ [b]. By definition of intersection,

x ∈ [a] and x ∈ [b]

and so x R a and x R b

by definition of class. Since R is symmetric [being an equivalence relation] and x R a,
then a R x . But R is also transitive [since it is an equivalence relation], and so, since
a R x and x R b,

a R b.

Now a and b satisfy the hypothesis of Lemma 8.3.2. Hence, by that lemma,

[a] = [b].
[This is what was to be shown.]

Theorem 8.3.4 The Partition Induced by an Equivalence Relation

If A is a set and R is an equivalence relation on A, then the distinct equivalence
classes of R form a partition of A; that is, the union of the equivalence classes is all
of A, and the intersection of any two distinct classes is empty.

The proof of Theorem 8.3.4 is divided into two parts: first, a proof that A is the
union of the equivalence classes of R and second, a proof that the intersection of any two
distinct equivalence classes is empty. The proof of the first part follows from the fact that
the relation is reflexive. The proof of the second part follows from Lemma 8.3.3.

Proof of Theorem 8.3.4:

Suppose A is a set and R is an equivalence relation on A. For notational simplicity,
we assume that R has only a finite number of distinct equivalence classes, which we
denote

A1, A2, . . . , An,

continued on page 470

∗ See exercise 14 in Section 2.2.
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where n is a positive integer. (When the number of classes is infinite, the proof is
identical except for notation.)

Proof that A = A1 ∪ A2 ∪ · · · ∪ An: [We must show that A ⊆ A1 ∪ A2 ∪ · · · ∪ An

and that A1 ∪ A2 ∪ · · · ∪ An ⊆ A.]
To show that A ⊆ A1 ∪ A2 ∪ · · · ∪ An , suppose x is any element of A. [We must

show that x ∈ A1 ∪ A2 ∪ · · · ∪ An .] By reflexivity of R, x R x . But this implies that
x ∈ [x] by definition of class. Since x is in some equivalence class, it must be in one
of the distinct equivalence classes A1, A2, . . . , or An . Thus x ∈ Ai for some index
i , and hence x ∈ A1 ∪ A2 ∪ · · · ∪ An by definition of union [as was to be shown].

To show that A1 ∪ A2 ∪ · · · ∪ An ⊆ A, suppose x ∈ A1 ∪ A2 ∪ · · · ∪ An . [We
must show that x ∈ A.] Then x ∈ Ai for some i = 1, 2, . . . , n, by definition of union.
But each Ai is an equivalence class of R. And equivalence classes are subsets of A.
Hence Ai ⊆ A and so x ∈ A [as was to be shown].

Since A ⊆ A1 ∪ A2 ∪ · · · ∪ An and A1 ∪ A2 ∪ · · · ∪ An ⊆ A, then by definition
of set equality, A = A1 ∪ A2 ∪ · · · ∪ An .

Proof that the distinct classes of R are mutually disjoint: Suppose that Ai and
A j are any two distinct equivalence classes of R. [We must show that Ai and A j

are disjoint.] Since Ai and A j are distinct, then Ai �= A j . And since Ai and A j are
equivalence classes of R, there must exist elements a and b in A such that Ai = [a]
and A j = [b]. By Lemma 8.3.3,

either [a] ∩ [b] = ∅ or [a] = [b].
But [a] �= [b] because Ai �= A j . Hence [a] ∩ [b] = ∅. Thus Ai ∩ A j = ∅, and so Ai

and A j are disjoint [as was to be shown].

Example 8.3.9 Equivalence Classes of Digital Logic Circuits

In Example 8.3.3 it was shown that the relation of equivalence among circuits is an equiv-
alence relation. Let S be the set of all digital logic circuits with exactly two inputs and
one output. The binary relation E is defined on S as follows: For all C1 and C2 in S,

C1 E C2 ⇔ C1 has the same input/output table as C2.

Describe the equivalence classes of this relation. How many distinct equivalence classes
are there? Find two different circuits that are in one of the classes.

Solution Given a circuit C , the equivalence class of C is the set of all circuits with two
input signals and one output signal that have the same input/output table as C . Now each
input/output table has exactly four rows, corresponding to the four possible combinations
of inputs: 11, 10, 01, and 00. A typical input/output table is the following:

Input Output

P Q R

1 1 0

1 0 0

0 1 0

0 0 1
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8.3 Equivalence Relations 471

There are exactly as many such tables as there are binary strings of length 4. The rea-
son is that distinct input/output tables can be formed by changing the pattern of the four
0’s and 1’s in the output column, and there are as many ways to do that as there are strings
of four 0’s and 1’s. But the number of binary strings of length 4 is 24 = 16. Hence there
are 16 distinct input/output tables.

This implies that there are exactly 16 equivalence classes of circuits, one for each
distinct input/output table. However, there are infinitely many circuits that give rise to
each table. For instance, two circuits for the previous input/output table are shown below.

■

AND

NOT

NOTP

Q

R OR NOT
P

Q
R

Congruence Modulo n
Example 8.2.4 showed that the relation of congruence modulo 3 is reflexive, symmetric,
and transitive. Therefore, it is an equivalence relation.

Example 8.3.10 Equivalence Classes of Congruence Modulo 3

Let R be the relation of congruence modulo 3 on the set Z of all integers. That is, for all
integers m and n,

m R n ⇔ 3 | (m − n) ⇔ m ≡ n (mod 3).

Describe the distinct equivalence classes of R.

Solution For each integer a,

[a] = {x ∈ Z | x R a}
= {x ∈ Z | 3 | (x − a)}
= {x ∈ Z | x − a = 3k, for some integer k}.

Therefore,

[a] = {x ∈ Z | x = 3k + a, for some integer k}.

In particular, [0] = {x ∈ Z | x = 3k + 0, for some integer k}
= {x ∈ Z | x = 3k, for some integer k}
= {. . .− 9,−6,−3, 0, 3, 6, 9, . . .},

[1] = {x ∈ Z | x = 3k + 1, for some integer k}
= {. . .− 8,−5,−2, 1, 4, 7, 10, . . .},

[2] = {x ∈ Z | x = 3k + 2, for some integer k}
= {. . .− 7,−4,−1, 2, 5, 8, 11, . . .}.
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Now since 3 R 0, then by Lemma 8.3.2,

[3] = [0].
More generally, by the same reasoning,

[0] = [3] = [−3] = [6] = [−6] = . . . , and so on.

Similarly,

[1] = [4] = [−2] = [7] = [−5] = . . . , and so on.

And

[2] = [5] = �−1� = [8] = [−4] = . . . , and so on.

Notice that every integer is in class [0], [1], or [2]. Hence the distinct equivalence
classes are

{x ∈ Z | x = 3k, for some integer k},
{x ∈ Z | x = 3k + 1, for some integer k}, and

{x ∈ Z | x = 3k + 2, for some integer k}.
In words, the three classes of congruence modulo 3 are (1) the set of all integers that are
divisible by 3, (2) the set of all integers that leave a remainder of 1 when divided by 3,
and (3) the set of all integers that leave a remainder of 2 when divided by 3. ■

Example 8.3.10 illustrates a very important property of equivalence classes, namely
that an equivalence class may have many different names. In Example 8.3.10, for instance,
the class of 0, [0], may also be called the class of 3, [3], or the class of−6, [−6]. But what
the class is is the set

{x ∈ Z | x = 3k, for some integers k}.
(The quote at the beginning of this section refers in a humorous way to the philosophically
interesting distinction between what things are called and what they are.)

• Definition

Suppose R is an equivalence relation on a set A and S is an equivalence class of R.
A representative of the class S is any element a such that [a] = S.

In exercises 36–41 at the end of this section, you are asked to show in effect, that
if a is any element of an equivalence class S, then S = [a]. Hence any element of an
equivalence class is a representative of that class.

B
et

tm
an

n/
C

O
R

B
IS

Carl Friedrich Gauss
(1777–1855)

The following notation is used frequently when referring to congruence relations. It
was introduced by Carl Friedrich Gauss in the first chapter of his book Disquisitiones
Arithmeticae. This work, which was published when Gauss was only 24, laid the founda-
tion for modern number theory.
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• Definition

Let m and n be integers and let d be a positive integer. We say that m is congruent
to n modulo d and write

m ≡ n (mod d)

if, and only if, d | (m − n).

Symbolically: m ≡ n (mod d) ⇔ d | (m − n)

Exercise 17(b) at the end of this section asks you to show that m ≡ n (mod d) if, and
only if, m mod d = n mod d, where m, n, and d are integers and d is positive.

Example 8.3.11 Evaluating Congruences

Determine which of the following congruences are true and which are false.

a. 12 ≡ 7 (mod 5) b. 6 ≡ −8 (mod 4) c. 3 ≡ 3 (mod 7)

Solution

a. True. 12− 7 = 5 = 5 · 1. Hence 5 | (12− 7), and so 12 ≡ 7 (mod 5).

b. False. 6− (−8) = 14, and 4 |/ 14 because 14 �= 4 · k for any integer k. Consequently,
6≡/ −8 (mod 4).

c. True. 3− 3 = 0 = 7 · 0. Hence 7 | (3− 3), and so 3 ≡ 3 (mod 7). ■

A Definition for Rational Numbers
For a moment, forget what you know about fractional arithmetic and look at the numbers

1

3
and

2

6

as symbols. Considered as symbolic expressions, these appear quite different. In fact, if
they were written as ordered pairs

(1, 3) and (2, 6)

they would be different. The fact that we regard them as “the same” is a specific instance
of our general agreement to regard any two numbers

a

b
and

c

d

as equal provided the cross products are equal: ad = bc. This can be formalized as fol-
lows, using the language of equivalence relations.

Example 8.3.12 Rational Numbers Are Really Equivalence Classes

Let A be the set of all ordered pairs of integers for which the second element of the
pair is nonzero. Symbolically,

A = Z× (Z− {0}).
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Define a relation R on A as follows: For all (a, b), (c, d) ∈ A,

(a, b) R (c, d) ⇔ ad = bc.

The fact is that R is an equivalence relation.

a. Prove that R is transitive. (Proofs that R is reflexive and symmetric are left to exercise
42 at the end of the section.)

b. Describe the distinct equivalence classes of R.

Solution

a. [We must show that for all (a, b), (c, d), (e, f ) ∈ A, if (a, b) R (c, d) and (c, d)R (e, f ),
then (a, b) R (e, f ).] Suppose (a, b), (c, d), and (e, f ) are particular but arbitrarily
chosen elements of A such that (a, b) R (c, d) and (c, d) R (e, f ).
[We must show that (a, b) R (e, f ).] By definition of R,

(1) ad = bc and (2) c f = de.

Since the second elements of all ordered pairs in A are nonzero, b �= 0, d �= 0, and
f �= 0. Multiply both sides of equation (1) by f and both sides of equation (2) by b to
obtain

(1′) ad f = bc f and (2′) bc f = bde.

Thus

ad f = bde

and, since d �= 0, it follows from the cancellation law for multiplication (T7 in
Appendix A) that

a f = be.

It follows, by definition of R, that (a, b) R (e, f ) [as was to be shown].

b. There is one equivalence class for each distinct rational number. Each equivalence
class consists of all ordered pairs (a, b) that, if written as fractions a/b, would equal
each other. The reason for this is that the condition for two rational numbers to be
equal is the same as the condition for two ordered pairs to be related. For instance, the
class of (1, 2) is

[(1, 2)] = {(1, 2), (−1,−2), (2, 4), (−2,−4), (3, 6), (−3,−6), . . .}

since
1

2
= −1−2 =

2

4
= −2−4 =

3

6
= −3−6 and so forth. ■

It is possible to expand the result of Example 8.3.12 to define operations of addition
and multiplication on the equivalence classes of R that satisfy all the same properties
as the addition and multiplication of rational numbers. (See exercise 43.) It follows that
the rational numbers can be defined as equivalence classes of ordered pairs of integers.
Similarly (see exercise 44), it can be shown that all integers, negative and zero included,
can be defined as equivalence classes of ordered pairs of positive integers. But in the
late nineteenth century, F. L. G. Frege and Giuseppe Peano showed that the positive
integers can be defined entirely in terms of sets. And just a little earlier, Richard Dedekind
(1848–1916) showed that all real numbers can be defined as sets of rational numbers. All
together, these results show that the real numbers can be defined using logic and set theory
alone.
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Test Yourself
1. For a relation on a set to be an equivalence relation, it must

be _____.

2. The notationm ≡ n (mod d) is read “_____” and means that
_____.

3. Given an equivalence relation R on a set A and given an ele-
ment a in A, the equivalence class of a is denoted _____ and
is defined to be _____.

4. If A is a set, R is an equivalence relation on A, and a and b
are elements of A, then either [a] = [b] or _____.

5. If A is a set and R is an equivalence relation
on A, then the distinct equivalence classes of R
form _____.

6. Let A = Z× (Z− {0}), and define a relation R on A by
specifying that for all (a, b) and (c, d) in A, (a, b) R (c, d)
if, and only if, ad = bc. Then there is exactly one equiva-
lence class of R for each _____.

Exercise Set 8.3
1. Suppose that S = {a, b, c, d, e} and R is a relation on S

such that a R b, b R c, and d R e. List all of the following
that must be true if R is (a) reflexive (but not symmetric or
transitive), (b) symmetric (but not reflexive or transitive),
(c) transitive (but not reflexive or symmetric), and (d) an
equivalence relation.

c R b c R c a R c b R a a R d e R a e R d c R a

2. Each of the following partitions of {0, 1, 2, 3, 4} induces a
relation R on {0, 1, 2, 3, 4}. In each case, find the ordered
pairs in R.
a. {0, 2}, {1}, {3, 4} b. {0}, {1, 3, 4}, {2}
c. {0}, {1, 2, 3, 4}

In each of 3–14, the relation R is an equivalence relation on the
set A. Find the distinct equivalence classes of R.

3. A = {0, 1, 2, 3, 4}
R = {(0, 0), (0, 4), (1, 1), (1, 3), (2, 2), (3, 1), (3, 3),

(4, 0), (4, 4)}
4. A = {a, b, c, d}

R = {(a, a), (b, b), (b, d), (c, c), (d, b), (d, d)}
5. A = {1, 2, 3, 4, . . . , 20}. R is defined on A as follows:

For all x, y ∈ A, x R y ⇔ 4 | (x − y).

6. A = {−4,−3,−2,−1, 0, 1, 2, 3, 4, 5}. R is defined on A
as follows:

For all x, y ∈ A, x R y ⇔ 3 | (x − y).

7. A={(1, 3), (2, 4), (−4,−8), (3, 9), (1, 5), (3, 6)}. R is
defined on A as follows: For all (a, b), (c, d) ∈ A,

(a, b) R (c, d) ⇔ ad = bc.

8. X = {a, b, c} and A =P(X). R is defined on A as fol-
lows: For all sets U and V in P(X),

U R V ⇔ N (U) = N (V).

(That is, the number of elements in U equals the number of
elements in V.)

9. X = {−1, 0, 1} and A =P(X). R is defined on P(X) as
follows: For all sets S and T in P(X),

S R T ⇔ the sum of the elements in S equals the sum
of the elements in T.

10. A = {−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5}. R is defined on
A as follows: For all m, n ∈ Z,

m R n ⇔ 3 | (m2 − n2).

11. A = {−4, −3, −2, −1, 0, 1, 2, 3, 4}. R is defined on
A as follows: For all (m, n) ∈ A,

m R n ⇔ 4 | (m2 − n2).

12. A = {−4, −3, −2, −1, 0, 1, 2, 3, 4}. R is defined on
A as follows: For all (m, n) ∈ A,

m R n ⇔ 5 | (m2 − n2).

13. A is the set of all strings of length 4 in a’s and b’s. R is
defined on A as follows: For all strings s and t in A,

s R t ⇔ s has the same first two characters as t .

14. A is the set of all strings of length 2 in 0’s, 1’s, and 2’s. R
is defined on A as follows: For all strings s and t in A,

s R t ⇔ the sum of the characters in s equals the sum
of the characters in t .

15. Determine which of the following congruence relations are
true and which are false.
a. 17 ≡ 2 (mod 5) b. 4 ≡ −5 (mod 7)
c. −2 ≡ −8 (mod 3) d. −6 ≡ 22 (mod 2)

16. a. Let R be the relation of congruence modulo 3. Which of
the following equivalence classes are equal?

[7], [−4], [−6], [17], [4], [27], [19]
b. Let R be the relation of congruence modulo 7. Which of

the following equivalence classes are equal?

[35], [3], [−7], [12], [0], [−2], [17]
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17. a. Prove that for all integers m and n,m ≡ n (mod 3) if,
and only if, m mod 3 = n mod 3.

b. Prove that for all integers m and n and any positive
integer d,m ≡ n (mod d) if, and only if, m mod d =
n mod d.

18. a. Give an example of two sets that are distinct but not dis-
joint.

b. Find sets A1 and A2 and elements x, y and z such that x
and y are in A1 and y and z are in A2 but x and z are not
both in either of the sets A1 or A2.

In 19–31, (1) prove that the relation is an equivalence relation,
and (2) describe the distinct equivalence classes of each relation.

19. A is the set of all students at your college.
a. R is the relation defined on A as follows: For all x and

y in A,

x R y ⇔ x has the same major (or double
major) as y.

(Assume “undeclared” is a major.)
b. S is the relation defined on A as follows: For all

x, y ∈ A,

x S y ⇔ x is the same age as y.

20.H E is the relation defined on Z as follows:

For all m, n ∈ Z, m E n ⇔ 2 | (m − n).

21. F is the relation defined on Z as follows:

For all m, n ∈ Z, m F n ⇔ 4 | (m − n).

22. Let A be the set of all statement forms in three variables
p, q, and r . R is the relation defined on A as follows: For
all P and Q in A,

P R Q ⇔ P and Q have the same truth table.

23. Let P be a set of parts shipped to a company from various
suppliers. S is the relation defined on P as follows: For all
x, y ∈ P ,

x S y ⇔ x has the same part number and is
shipped from the same supplier as y.

24. Let A be the set of identifiers in a computer program. It is
common for identifiers to be used for only a short part of
the execution time of a program and not to be used again to
execute other parts of the program. In such cases, arranging
for identifiers to share memory locations makes efficient
use of a computer’s memory capacity. Define a relation R
on A as follows: For all identifiers x and y,

x R y ⇔ the values of x and y are stored in the
same memory location during
execution of the program.

25. A is the “absolute value” relation defined on R as follows:

For all x, y ∈ R, x A y ⇔ |x | = |y|.

26.H D is the relation defined on Z as follows: For all m, n ∈ Z,
m D n ⇔ 3 | (m2 − n2).

27. R is the relation defined onZ as follows: For all (m, n) ∈ Z,

m R n ⇔ 4 | (m2 − n2).

28. I is the relation defined on R as follows:

For all x, y ∈ R, x I y ⇔ x − y is an integer.

29. Define P on the set R× R of ordered pairs of real numbers
as follows: For all (w, x), (y, z) ∈ R × R,

(w, x) P (y, z) ⇔ w = y.

30. Define Q on the set R× R as follows: For all
(w, x), (y, z) ∈ R× R,

(w, x) Q (y, z) ⇔ x = z.

31. Let P be the set of all points in the Cartesian plane except
the origin. R is the relation defined on P as follows: For all
p1 and p2 in P ,

p1 R p2 ⇔ p1 and p2 lie on the same half-line
emanating from the origin.

32.H Let A be the set of all straight lines in the Cartesian plane.
Define a relation || on A as follows:

For all l1 and l2 in A, l1 ‖ l2 ⇔ l1 is parallel to l2.

Then ‖ is an equivalence relation on A. Describe the
equivalence classes of this relation.

33. Let A be the set of points in the rectangle with x and y
coordinates between 0 and 1. That is,

A = {(x, y) ∈ R× R | 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1}.
Define a relation R on A as follows: For all (x1, y1) and
(x2, y2) in A,

(x1, y1) R (x2, y2)⇔
(x1, y1) = (x2, y2); or
x1 = 0 and x2 = 1 and y1 = y2; or
x1 = 1 and x2 = 0 and y1 = y2; or
y1 = 0 and y2 = 1 and x1 = x2; or
y1 = 1 and y2 = 0 and x1 = x2.

In other words, all points along the top edge of the rectan-
gle are related to the points along the bottom edge directly
beneath them, and all points directly opposite each other
along the left and right edges are related to each other.
The points in the interior of the rectangle are not related to
anything other than themselves. Then R is an equivalence
relation on A. Imagine gluing together all the points that
are in the same equivalence class. Describe the resulting
figure.
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34. The documentation for the computer language Java rec-
ommends that when an “equals method” is defined for an
object, it be an equivalence relation. That is, if R is defined
as follows:

x R y ⇔ x .equals(y) for all objects in the class,

then R should be an equivalence relation. Suppose that in
trying to optimize some of the mathematics of a graphics
application, a programmer creates an object called a point,
consisting of two coordinates in the plane. The program-
mer defines an equals method as follows: If p and q are
any points, then

p.equals(q) ⇔ the distance from p to q is
less than or equal to c

where c is a small positive number that depends on the res-
olution of the computer display. Is the programmer’s equals
method an equivalence relation? Justify your answer.

35. Find an additional representative circuit for the input/output
table of Example 8.3.9.

Let R be an equivalence relation on a set A. Prove each of
the statements in 36–41 directly from the definitions of equiva-
lence relation and equivalence class without using the results of
Lemma 8.3.2, Lemma 8.3.3, or Theorem 8.3.4.

36. For all a in A, a ∈ [a].
37. For all a and b in A, if b ∈ [a] then a R b.

38. For all a, b and c in A, if b R c and c ∈ [a] then b ∈ [a].
39. For all a and b in A, if [a] = [b] then a R b.

40. For all a, b, and x in A, if a R b and x ∈ [a], then x ∈ [b].
41.H For all a and b in A, if a ∈ [b] then [a] = [b].
42. Let R be the relation defined in Example 8.3.12.

a. Prove that R is reflexive.
b. Prove that R is symmetric.
c. List four distinct elements in [(1, 3)].
d. List four distinct elements in [(2, 5)].

43.✶ In Example 8.3.12, define operations of addition (+) and
multiplication (·) as follows: For all (a, b), (c, d) ∈ A,

[(a, b)] + [(c, d)] = [(ad + bc, bd)]
[(a, b)] · [(c, d)] = [(ac, bd)].

a. Prove that this addition is well defined. That is, show
that if [(a, b)] = [(a′, b′)] and [(c, d)] = [(c′, d ′)], then
[(ad + bc, bd)] = [(a′d ′ + b′c′, b′d ′)].

b. Prove that this multiplication is well defined. That is,
show that if [(a, b)] = [(a′, b′)] and [(c, d)] = [(c′, d ′)],
then [(ac, bd)] = [(a′c′, b′d ′)].

c. Show that [(0, 1)] is an identity element for addition.
That is, show that for any (a, b) ∈ A,

[(a, b)] + [(0, 1)] = [(0, 1)] + [(a, b)] = [(a, b)].
d. Find an identity element for multiplication. That is, find

(i, f ) in A so that for all (a, b) in A. [(a, b)] · [(i, j)] =
[(i, j)] · [(a, b)] = [(a, b)].

e. For any (a, b) ∈ A, show that [(−a, b)] is an inverse
for [(a, b)] for addition. That is, show that [(−a, b)] +
[(a, b)] = [(a, b)] + [(−a, b)] = [(0, 1)].

f. Given any (a, b) ∈ A with a �= 0, find an inverse for
[(a, b)] for multiplication. That is, find (c, d) in A
so that [(a, b)] · [(c, d)] = [(c, d)] − [(a, b)] = [(i, j)],
where [(i, j)] is the identity element you found in part
(d).

44. Let A = Z+× Z+. Define a relation R on A as follows: For
all (a, b) and (c, d) in A,

(a, b) R (c, d) ⇔ a + d = c + b.

a. Prove that R is reflexive.
b. Prove that R is symmetric.
c.H Prove that R is transitive.
d. List five elements in [(1, 1)].
e. List five elements in [(3, 1)].
f. List five elements in [(1, 2)].
g. Describe the distinct equivalence classes of R.

45. The following argument claims to prove that the require-
ment that an equivalence relation be reflexive is redundant.
In other words, it claims to show that if a relation is sym-
metric and transitive, then it is reflexive. Find the mistake
in the argument.

“Proof: Let R be a relation on a set A and suppose R is
symmetric and transitive. For any two elements x and y in
A, if x R y then y R x since R is symmetric. But then it
follows by transitivity that x R x . Hence R is reflexive.”

46. Let R be a relation on a set A and suppose R is symmet-
ric and transitive. Prove the following: If for every x in A
there is a y in A such that x R y, then R is an equivalence
relation.

47. Refer to the quote at the beginning of this section to answer
the following questions.
a. What is the name of the Knight’s song called?
b. What is the name of the Knight’s song?
c. What is the Knight’s song called?
d. What is the Knight’s song?
e. What is your (full, legal) name?
f. What are you called?
g. What are you? (Do not answer this on paper; just think

about it.)

Answers for Test Yourself
1. reflexive, symmetric, and transitive 2. m is congruent to n modulo d; d divides m − n 3. [a]; the set of all x in A such that x R a
4. [a] ∩ [b] = ∅ 5. a partition of A 6. rational number

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



478 Chapter 8 Relations

8.4 Modular Arithmetic with Applications
to Cryptography
The “real” mathematics of the “real” mathematicians, the mathematics of Fermat and
Euler and Gauss and Abel and Riemann, is almost wholly “useless.” . . . It is not
possible to justify the life of any genuine professional mathematician on the ground of
the “utility” of his work. — G. H. Hardy, A Mathematician’s Apology, 1941

Cryptography is the study of methods for sending secret messages. It involves encryp-
tion, in which a message, called plaintext, is converted into a form, called ciphertext,
that may be sent over channels possibly open to view by outside parties. The receiver of
the ciphertext uses decryption to convert the ciphertext back into plaintext.

In the past the primary use of cryptography was for government and military intel-
ligence, and this use continues to be important. In fact, the National Security Agency,
whose main business is cryptography, is the largest employer of mathematicians in the
United States. With the rise of electronic communication systems, however, especially
the Internet, an extremely important current use of cryptography is to make it possible
to send private information, such as credit card numbers, banking data, medical records,
and so forth, over electronic channels.

Many systems for sending secret messages require both the sender and the receiver
to know both the encryption and the decryption procedures. For instance, an encryption
system once used by Julius Caesar, and now called theCaesar cipher, encrypts messages
by changing each letter of the alphabet to the one three places farther along, with X
wrapping around to A, Y to B, and Z to C. In other words, say each letter of the alphabet
is coded by its position relative to the others—so that A = 01,B = 02, . . . ,Z = 26. If
the numerical version of the plaintext for a letter is denoted M and the numeric version
of the ciphertext is denoted C , then

C = (M + 3) mod 26.

The receiver of such a message can easily decrypt it by using the formula

M = (C − 3) mod 26.

For reference, here are the letters of the alphabet, together with their numeric equivalents:

A B C D E F G H I J K L M

01 02 03 04 05 06 07 08 09 10 11 12 13

N O P Q R S T U V W X Y Z

14 15 16 17 18 19 20 21 22 23 24 25 26

Example 8.4.1 Encrypting and Decrypting with the Caesar Cipher

a. Use the Caesar cipher to encrypt the message HOW ARE YOU.

b. Use the Caesar cipher to decrypt the message L DP ILQH.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



8.4 Modular Arithmetic with Applications to Cryptography 479

Solution

a. First translate the letters of HOW ARE YOU into their numeric equivalents:

08 15 23 01 18 05 25 15 21.

Next encrypt the message by adding 3 to each number. The result is

11 18 26 04 21 08 02 18 24.

Finally, substitute the letters that correspond to these numbers. The encrypted message
becomes

KRZ DUH BRX.

b. First translate the letters of L DP ILQH into their numeric equivalents:

12 04 16 09 12 17 08.

Next decrypt the message by subtracting 3 from each number:

09 01 13 06 09 14 05.

Then translate back into letters to obtain the original message: I AM FINE. ■

One problem with the Caesar cipher is that given a sufficient amount of ciphertext a
person with knowledge of letter frequencies in the language can easily figure out the
cipher. Partly for this reason, even Caesar himself did not make extensive use of it.
Another problem with a system like the Caesar cipher is that knowledge of how to encrypt
a message automatically gives knowledge of how to decrypt it. When a potential recipi-
ent of messages passes the encryption information to a potential sender of messages, the
channel over which the information is passed may itself be insecure. Thus the information
may leak out, enabling an outside party to decrypt messages intended to be kept secret.

With public-key cryptography, a potential recipient of encrypted messages openly dis-
tributes a public key containing the encryption information. However, knowledge of the
public key provides virtually no clue about how messages are decrypted. Only the recipi-
ent has that knowledge. Regardless of how many people learn the encryption information,
only the recipient should be able to decrypt messages that are sent.

The first public-key cryptography systemwas developed in 1976–1977 by three young
mathematician/computer scientists working at M.I.T.: Ronald Rivest, Adi Shamir, and

From left to right: Ronald
Rivest (born 1948), Adi
Shamir (born 1952), and
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Leonard Adleman. In their honor it is called the RSA cipher. In order for you to learn
how it works, you need to know some additional properties of congruence modulo n.

Properties of Congruence Modulo n
The first theorem in this section brings together a variety of equivalent ways of express-
ing the same basic arithmetic fact. Sometimes one way is most convenient; sometimes
another way is best. You need to be comfortable moving from one to another, depending
on the nature of the problem you are trying to solve.

Theorem 8.4.1 Modular Equivalences

Let a, b, and n be any integers and suppose n > 1. The following statements are all
equivalent:

1. n | (a − b)

2. a ≡ b (mod n)

3. a = b + kn for some integer k

4. a and b have the same (nonnegative) remainder when divided by n

5. a mod n = b mod n

Proof:

We will show that (1)⇒ (2)⇒ (3)⇒ (4)⇒ (5)⇒ (1). It will follow by the
transitivity of if-then that all five statements are equivalent.

So let a, b, and n be any integers with n > 1.

Proof that (1)⇒ (2): Suppose that n | (a − b). By definition of congruence modulo
n, we can immediately conclude that a ≡ b (mod n).

Proof that (2) ⇒ (3): Suppose that a ≡ b (mod n). By definition of congruence
modulo n, n | (a − b). Thus, by definition of divisibility, a − b = kn, for some
integer k. Adding b to both sides gives that a = b + kn.

Proof that (3)⇒ (4): Suppose that a = b + kn, for some integer k. Use the quotient-
remainder theorem to divide a by n to obtain

a = qn + r where q and r are integers and 0 ≤ r < n.

Substituting b + kn for a in this equation gives that

b + kn = qn + r

and subtracting kn from both sides and factoring out n yields

b = (q − k)n + r.

But since 0 ≤ r < n, the uniqueness property of the quotient-remainder theorem
guarantees that r is also the remainder obtained when b is divided by n. Thus a and
b have the same remainder when divided by n.

Proof that (4) ⇒ (5): Suppose that a and b have the same remainder when divided
by n. It follows immediately from the definition of the mod function that
a mod n = b mod n.
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Proof that (5) ⇒ (1): Suppose that a mod n = b mod n. By definition of the mod
function, a and b have the same remainder when divided by n. Thus, by the quotient-
remainder theorem, we can write

a = q1n + r and b = q2n + r where q1, q2, and r are integers and 0 ≤ r < n.

It follows that

a − b = (q1n + r)− (q2n + r) = (q1 − q2)n.

Therefore, since q1 − q2 is an integer, n | (a − b).

Another consequence of the quotient-remainder theorem is this: When an integer a is
divided by a positive integer n, a unique quotient q and remainder r are obtained with the
property that a = nq + r and 0 ≤ r < n. Because there are exactly n integers that satisfy
the inequality 0 ≤ r < n (the numbers from 0 through n − 1), there are exactly n possible
remainders that can occur. These are called the least nonnegative residues modulo n or
simply the residues modulo n.

• Definition

Given integers a and n with n > 1, the residue of a modulo n is a mod n, the non-
negative remainder obtained when a is divided by n. The numbers 0, 1, 2, . . . , n − 1
are called a complete set of residues modulo n. To reduce a number modulo n
means to set it equal to its residue modulo n. If a modulus n > 1 is fixed throughout
a discussion and an integer a is given, the words “modulo n” are often dropped and
we simply speak of the residue of a.

The following theorem generalizes several examples from Section 8.3.

Theorem 8.4.2 Congruence Modulo n Is an Equivalence Relation

If n is any integer with n > 1, congruence modulo n is an equivalence relation on
the set of all integers. The distinct equivalence classes of the relation are the sets
[0], [1], [2], . . . , [n − 1], where for each a = 0, 1, 2, . . . , n − 1,

[a] = {m ∈ Z |m ≡ a (mod n)},
or, equivalently,

[a] = {m ∈ Z |m = a + kn for some integer k}.

Proof:

Suppose n is any integer with n > 1. We must show that congruence modulo n is
reflexive, symmetric, and transitive.

Proof of reflexivity: Suppose a is any integer. To show that a ≡ a (mod n), we
must show that n | (a − a). But a − a = 0, and n | 0 because 0 = n · 0. Therefore
a ≡ a (mod n).

continued on page 482
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Proof of symmetry: Suppose a and b are any integers such that a ≡ b (mod n). We
must show that b ≡ a (mod n). But since a ≡ b (mod n), then n | (a − b). Thus, by
definition of divisibility, a − b = nk, for some integer k. Multiply both sides of this
equation by −1 to obtain

−(a − b) = −nk,
or, equivalently,

b − a = n(−k).
Thus, by definition of divisibility n | (b − a), and so, by definition of congruence
modulo n, b ≡ a (mod n).

Proof of transitivity: This is left as exercise 5 at the end of the section.

Proof that the distinct equivalence classes are [0], [1], [2], . . . , [n − 1]: This is
left as exercise 6 at the end of the section.

Observe that there is a one-to-one correspondence between the distinct equivalence classes
for congruence modulo n and the elements of a complete set of residues modulo n.

Modular Arithmetic
A fundamental fact about congruence modulo n is that if you first perform an addition,
subtraction, or multiplication on integers and then reduce the result modulo n, you will
obtain the same answer as if you had first reduced each of the numbers modulo n, per-
formed the operation, and then reduced the result modulo n. For instance, instead of
computing

(5 ·8) = 40 ≡ 1 (mod 3)

you will obtain the same answer if you compute

(5 mod 3)(8 mod 3) = 2 ·2 = 4 ≡ 1 (mod 3).

The fact that this process works is a result of the following theorem.

Theorem 8.4.3 Modular Arithmetic

Let a, b, c, d, and n be integers with n > 1, and suppose

a ≡ c (mod n) and b ≡ d (mod n).

Then

1. (a + b) ≡ (c + d) (mod n)[-2pt]

2. (a − b) ≡ (c − d) (mod n)[-2pt]

3. ab ≡ cd (mod n)

4. am ≡ cm (mod n) for all integers m.

Proof:

Because we will make greatest use of part 3 of this theorem, we prove it here and
leave the proofs of the remaining parts of the theorem to exercises 9–11 at the end
of the section.
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Proof of Part 3: Suppose a, b, c, d, and n are integers with n > 1, and suppose
a ≡ b (mod n) and c ≡ d (mod n). By Theorem 8.4.1, there exist integers s and t
such that

a = c + sn and b = d + tn.

Then

ab = (c + sn)(d + tn) by substitution

= cd + ctn + snd + sntn
= cd + n(ct + sd + stn) by algebra.

Let k = ct + sd + stn. Then k is an integer and ab = cd + nk. Thus by Theorem
8.4.1, ab ≡ cd (mod n).

Example 8.4.2 Getting Started with Modular Arithmetic

The most practical use of modular arithmetic is to reduce computations involving large
integers to computations involving smaller ones. For instance, note that 55 ≡ 3 (mod 4)
because 55− 3 = 52, which is divisible by 4, and 26 ≡ 2 (mod 4) because 26− 2 = 24,
which is also divisible by 4. Verify the following statements.

a. 55+ 26 ≡ (3+ 2) (mod 4) b. 55− 26 ≡ (3− 2) (mod 4)

c. 55 ·26 ≡ (3 ·2) (mod 4) d. 552 ≡ 32 (mod 4)

Solution

a. Compute 55+ 26 = 81 and 3+ 2 = 5. By definition of congruence modulo n, to
show that 81 ≡ 5 (mod 4), you need to show that 4 | (81− 5). But this is true because
81− 5 = 76, and 4 | 76 since 76 = 4 ·19.

b. Compute 55− 26 = 29 and 3− 2 = 1. By definition of congruence modulo n, to
show that 29 ≡ 1 (mod 4), you need to show that 4 | (29− 1). But this is true because
29− 1 = 28, and 4 | 28 since 28 = 4 ·7.

c. Compute 55 ·26 = 1430 and 3 ·2 = 6. By definition of congruence modulo n, to show
that 1430 ≡ 6 (mod 4), you need to show that 4 | (1430− 6). But this is true because
1430− 6 = 1424, and 4 | 1424 since 1424 = 4 ·356.

d. Compute 552 = 3025 and 32 = 9. By definition of congruence modulo n, to show
that 3025 ≡ 9 (mod 4), you need to show that 4 | (3025− 9). But this is true because
3025− 9 = 3016, and 4 | 3016 since 3016 = 4 ·754. ■

In order to facilitate the computations performed in this section, it is convenient to
express part 3 of Theorem 8.4.3 in a slightly differently form.

Corollary 8.4.4

Let a, b, and n be integers with n > 1. Then

ab ≡ [(a mod n)(b mod n)] (mod n),

or, equivalently,

ab mod n = [(a mod n)(b mod n)] mod n.

In particular, if m is a positive integer, then

am ≡ [(a mod n)m] (mod n).
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Example 8.4.3 Computing a Product Modulo n

As in Example 8.4.2, note that 55 ≡ 3 (mod 4) and 26 ≡ 2 (mod 4). Because both 3 and 2
are less than 4, each of these numbers is a least nonnegative residue modulo 4. Therefore,
55 mod 4 = 3 and 26 mod 4 = 2. Use the notation of Corollary 8.4.4 to find the residue
of 55 ·26 modulo 4.

Solution Recall that to use a calculator to compute remainders, you can use the formula
n mod d = n − d ·�n/d�. If you are using a hand calculator with an “integer part” feature
and both n and d are positive, then �n/d� is the integer part of the division of n by d.
When you divide a positive integer n by a positive integer d with a more basic calculator,
you can see �n/d� on the calculator display by simply ignoring the digits that follow the
decimal point.

By Corollary 8.4.4,

(55 ·26) mod 4 = {(55 mod 4)(26 mod 4)} mod 4

≡ (3 ·2) mod 4 because 55 mod 4 = 3 and 26 mod 4 = 2

≡ 6 mod 4
≡ 2 because 4 | (6− 2) and 2 < 4. ■

When modular arithmetic is performed with very large numbers, as is the case for
RSA crytography, computations are facilitated by using two properties of exponents. The
first is

x2a = (xa)2 for all real numbers x and a with x ≥ 0. 8.4.1

Thus, for instance, if x is any positive real number, then

x4 mod n = (x2)2 mod n because (x2)2 = x4

= (x2 mod n)2 mod n by Corollary 8.4.4.

Hence you can reduce x4 modulo n by reducing x2 modulo n and then reducing the square
of the result modulo n. Because all the residues are less than n, this process limits the size
of the computations to numbers that are less than n2, which makes them easier to work
with, both for humans (when the numbers are relatively small) and for computers (when
the numbers are very large).

A second useful property of exponents is

xa+b = xaxb for all real numbers x , a, and b with x ≥ 0. 8.4.2

For instance, because 7 = 4+ 2+ 1,

x7 = x4x2x1

Thus, by Corollary 8.4.4,

x7 mod n = {(x4 mod n)(x2 mod n)(x1 mod n)} mod n.

We first show an example that illustrates the application of formula (8.4.1) and then
an example that uses both (8.4.1) and (8.4.2).
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Example 8.4.4 Computing ak mod n When k Is a Power of 2

Find 1444 mod 713.

Solution Use property (8.4.1) to write 1444 = (1442)2. Then

1444 mod 713 = (1442)2 mod 713

= (1442 mod 713)2 mod 713

= (20736 mod 713)2 mod 713 because 1442 = 20736

= 592 mod 713 because 20736 mod 713 = 59

= 3481 mod 713 because 592 = 3481

= 629 because 3481 mod 713 = 629. ■

Example 8.4.5 Computing ak mod n When k Is Not a Power of 2

Find 1243 mod 713.

Solution First write the exponent as a sum of powers of 2:

43 = 25 + 23 + 2+ 1 = 32+ 8+ 2+ 1.

Next compute 122
k
for k = 1, 2, 3, 4, 5.

12 mod 713 = 12

122 mod 713 = 144

124 mod 713 = 1442 mod 713 = 59 by Example 8.4.4

128 mod 713 = 592 mod 713 = 629 by Example 8.4.4

1216 mod 713 = 6292 mod 713 = 639 by the method of Example 8.4.4

1232 mod 713 = 6392 mod 713 = 485 by the method of Example 8.4.4

By property (8.4.2),

1243 = 1232+8+2+1 = 1232 ·128 ·122 ·121.
Thus, by Corollary 8.4.4,

1243 mod 713

= {(1232 mod 713) ·(128 mod 713) ·(122 mod 713) ·(12 mod 713)} mod 713.

By substitution,

1243 mod 713 = (485 ·629 ·144 ·12) mod 713

= 527152320 mod 713

= 48. ■

It is important to understand how to do the computations in Example 8.4.5 by hand
using only a simple electronic calculator, but if you are computing a lot of residues,
especially ones involving large numbers, you may want to write a short computer or
calculator program to do the computations for you.

Extending the Euclidean Algorithm
An extended version of the Euclidean algorithm can be used to find a concrete expression
for the greatest common divisor of integers a and b.
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• Definition

An integer d is said to be a linear combination of integers a and b if, and only if,
there exist integers s and t such that as + bt = d.

Theorem 8.4.5 Writing a Greatest Common Divisor as a Linear Combination

For all integers a and b, not both zero, if d = gcd(a, b), then there exist integers s
and t such that as + bt = d.

Proof:

Given integers a and b, not both zero, and given d = gcd(a, b), let

S = {x | x is a positive integer and x = as + bt for some integers s and t}.
Note that S is a nonempty set because (1) if a > 0 then 1 ·a + 0 ·b ∈ S, (2) if a < 0
then (−1) ·a + 0 ·b ∈ S, and (3) if a = 0, then by assumption b �= 0, and hence
0 ·a + 1 ·b ∈ S or 0 ·a + (−1) ·b ∈ S. Thus, because S is a nonempty subset of pos-
itive integers, by the well-ordering principle for the integers there is a least element
c in S. By definition of S,

c = as + bt for some integers s and t . 8.4.3

We will show that (1) c ≥ d, and (2) c ≤ d, and we will therefore be able to conclude
that c = d = gcd(a, b).

(1) Proof that c ≥ d:
[In this part of the proof, we show that d is a divisor of c and thus that d ≤ c.] Because
d = gcd(a, b), by definition of greatest common divisor, d | a and d | b. Hence
a = dx and b = dy for some integers x and y. Then

c = as + bt by (8.4.3)

= (dx)s + (dy)t by substitution

= d(xs + yt) by factoring out the d.

But xs + yt is an integer because it is a sum of products of integers. Thus, by defi-
nition of divisibility, d | c. Both c and d are positive, and hence, by Theorem 4.3.1,
c ≥ d.

(2) Proof that c ≤ d:
[In this part of the proof, we show that c is a divisor of both a and b and therefore that c
is less than or equal to the greatest common divisor of a and b, which is d.] Apply the
quotient-remainder theorem to the division of a by c to obtain

a = cq + r for some integers q and r with 0 ≤ r < c. 8.4.4

Thus for some integers q and r with 0 ≤ r < c,

r = a − cq

Now c = as + bt . Therefore, for some integers q and r with 0 ≤ r < c,

r = a − (as + bt)q by substitution

= a(1− sq)− btq.
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Thus r is a linear combination of a and b. If r > 0, then r would be in S, and so
r would be a smaller element of S than c, which would contradict the fact that c is
the least element of S. Hence r = 0. By substitution into (8.4.4),

a = cq

and therefore c | a.
An almost identical argument establishes that c | b and is left as exercise 30 at

the end of the section.
Because c | a and c | b, c is a common divisor of a and b. Hence it is less than or

equal to the greatest common divisor of a and b. In other words, c ≤ d.

From (1) and (2), we conclude that c = d. It follows that d, the greatest common
divisor of a and b, is equal to as + bt .

The following example shows a practical method for expressing the greatest common
divisor of two integers as a linear combination of the two.

Example 8.4.6 Expressing a Greatest Common Divisor as a Linear Combination

In Example 4.8.6 we showed how to use the Euclidean algorithm to find that the greatest
common divisor of 330 and 156 is 6. Use the results of those calculations to express
gcd(330, 156) as a linear combination of 330 and 156.

Solution The first four steps of the solution restate and extend results from Example 4.8.6,
which were obtained by successive applications of the quotient-remainder theorem. The
fifth step shows how to find the coefficients of the linear combination by substituting back
through the results of the previous steps.

Step 1: 330 = 156 ·2+ 18, which implies that 18 = 330− 156 ·2.
Step 2: 156 = 18 ·8+ 12, which implies that 12 = 156− 18 ·8.
Step 3: 18 = 12 ·1+ 6, which implies that 6 = 18− 12 ·1.
Step 4: 12 = 6 ·2+ 0, which implies that gcd(330, 156) = 6.

Step 5: By substituting back through steps 3 to 1:

6 = 18− 12 ·1 from step 3

= 18− (156− 8 ·18) ·1 by substitution from step 2

= 9 ·18+ (−1) ·156 by algebra

= 9 ·(330− 156 ·2)+ (−1) ·156 by substitution from step 1

= 9 ·330+ (−19) ·156 by algebra.

Thus gcd(330, 156) = 9 ·330+ (−19) ·156. (It is always a good idea to check the result
of a calculation like this to be sure you did not make a mistake. In this case, you find that
9 ·330+ (−19) ·156 does indeed equal 6.) ■

The Euclidean algorithm given in Section 4.8 can be adapted so as to compute the
coefficients of the linear combination of the gcd at the same time as it computes the gcd
itself. This extended Euclidean algorithm is described in the exercises at the end of the
section.
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Finding an Inverse Modulo n
Suppose you want to solve the following congruence for x :

2x ≡ 3 (mod 5)

Note that 3 ·2 = 6 ≡ 1 (mod 5). So you can think of 3 as a kind of inverse for 2 modulo
5 and multiply both sides of the congruence to be solved by 3 to obtain

6x = 3 ·2x ≡ 3 ·3 (mod 5) ≡ 9 (mod 5) ≡ 4 (mod 5).

But 6 ≡ 1 (mod 5), and so by Theorem 8.4.3(3), 6x ≡ 1x (mod 5) ≡ x (mod 5). Thus,
by the symmetric and transitive properties of modular congruence,

x ≡ 4 (mod 5),

and hence a solution is x = 4. (You can check that 2 ·4 = 8 ≡ 3 (mod 5).)
Unfortunately, it is not always possible to find an “inverse” modulo an integer n. For

instance, observe that

2 ·1 ≡ 2 (mod 4)

2 ·2 ≡ 0 (mod 4)

2 ·3 ≡ 2 (mod 4).

By Theorem 8.4.3, these calculations suffice for us to conclude that the number 2 does
not have an inverse modulo 4.

Describing the circumstances in which inverses exist in modular arithmetic requires
the concept of relative primeness.

• Definition

Integers a and b are relatively prime if, and only if, gcd(a, b) = 1. Integers a1, a2,
a3, . . . , an are pairwise relatively prime if, and only if, gcd(ai , a j ) = 1 for all inte-
gers i and j with 1 ≤ i, j ≤ n, and i �= j .

Given the definition of relatively prime integers, the following corollary is an imme-
diate consequence of Theorem 8.4.5.

Corollary 8.4.6

If a and b are relatively prime integers, then there exist integers s and t such that
as + bt = 1.

Example 8.4.7 Expressing 1 as a Linear Combination of Relatively Prime Integers

Show that 660 and 43 are relatively prime, and find a linear combination of 660 and 43
that equals 1.

Solution

Step 1: Divide 660 by 43 to obtain 660 = 43 ·15+ 15, which implies that 15 =
660− 43 ·15.

Step 2: Divide 43 by 15 to obtain 43 = 15 ·2+ 13, which implies that 13 = 43− 15 ·2.
Step 3: Divide 15 by 13 to obtain 15 = 13 ·1+ 2, which implies that 2 = 15− 13.
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Step 4: Divide 13 by 2 to obtain 13 = 2 ·6+ 1, which implies that 1 = 13− 2 ·6.
Step 5: Divide 2 by 1 to obtain 2 = 1 ·2+ 0, which implies that gcd(660, 43) = 1 and

so 660 and 43 are relatively prime.

Step 6: To express 1 as a linear combination of 660 and 43, substitute back through steps
4 to 1:

1 = 13− 2 ·6 from step 4

= 13− (15− 13) ·6 by substitution from step 3

= 7 ·13− 6 ·15 by algebra

= 7 ·(43− 15 ·2)− 6 ·15 by substitution from step 2

= 7 ·43− 20 ·15 by algebra

= 7 ·43− 20 ·(660− 43 ·15) by substitution from step 1

= 307 ·43− 20 ·660 by algebra.

Thus gcd(660, 43) = 1 = 307 ·43− 20 ·660. (And a check by direct computation con-
firms that 307 ·43− 20 ·660 does indeed equal 1.) ■

A consequence of Corollary 8.4.6 is that under certain circumstances, it is possible to
find an inverse for an integer modulo n.

Corollary 8.4.7 Existence of Inverses Modulo n

For all integers a and n, if gcd(a, n) = 1, then there exists an integer s such that
as ≡ 1 (mod n). The integer s is called the inverse of a modulo n.

Proof:

Suppose a and n are integers and gcd(a, n) = 1. By Corollary 8.4.6, there exist
integers s and t such that

as + nt = 1.

Subtracting nt from both sides gives that

as = 1− nt = 1+ (−t)n.
Thus, by definition of congruence modulo n,

as ≡ 1 (mod n).

Example 8.4.8 Finding an Inverse Modulo n

a. Find an inverse for 43 modulo 660. That is, find an integer s such that 43s ≡ 1 (mod 660).

b. Find a positive inverse for 3 modulo 40. That is, find a positive integer s such that
3s ≡ 1 (mod 40).

Solution

a. By Example 8.4.7,

307 ·43− 20 ·660 = 1.

Adding 20 ·660 to both sides gives that

307 ·43 = 1+ 20 ·660.
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Thus, by definition of congruence modulo 660,

307 ·43 ≡ 1 (mod 660),

so 307 is an inverse for 43 modulo 660.

b. Use the technique of Example 8.4.7 to find a linear combination of 3 and 40 that
equals 1.

Step 1: Divide 40 by 3 to obtain 40 = 3 ·13+ 1. This implies that 1 = 40− 3 ·13.
Step 2: Divide 3 by 1 to obtain 3 = 3 ·1+ 0. This implies that gcd(3, 40) = 1.

Step 3: Use the result of step 1 to write

3 ·(−13) = 1+ (−1)40.

This result implies that −13 is an inverse for 3 modulo 40. In symbols, 3 ·(−13) ≡
1 (mod 40). To find a positive inverse, compute 40− 13. The result is 27, and

27 ≡ −13 (mod 40)

because 27− (−13) = 40. So, by Theorem 8.4.3(3),

3 ·27 ≡ 3 ·(−13) ≡ 1 (mod 40),

and thus by the transitive property of congruence modulo n, 27 is a positive integer that
is an inverse for 3 modulo 40. ■

RSA Cryptography
At this point we have developed enough number theory to explain how to encrypt and
decrypt messages using the RSA cipher. The effectiveness of the system is based on the
fact that although modern computer algorithms make it quite easy to find two distinct
large integers p and q—say on the order of several hundred digits each—that are virtu-
ally certain to be prime, even the fastest computers are not currently able to factor their
product, an integer with approximately twice that many digits. In order to encrypt a mes-
sage using the RSA cipher, a person needs to know the value of pq and of another integer
e, both of which are made publicly available. But only a person who knows the individual
values of p and q can decrypt an encrypted message.

We first give an example to show how the cipher works and then discuss some of the
theory to explain why it works. The example is unrealistic in the sense that because p
and q are so small, it would be easy to figure out what they are just by knowing their
product. But working with small numbers conveys the idea of the system, while keeping
the computations in a range that can be performed with a hand calculator.

Suppose Alice decides to set up an RSA cipher. She chooses two prime numbers, say
p = 5 and q = 11, and computes pq = 55. She then chooses a positive integer e that
is relatively prime to (p − 1)(q − 1). In this case, (p − 1)(q − 1) = 4 · 10 = 40, so she
may take e = 3 because 3 is relatively prime to 40. (In practice, taking e to be small
could compromise the secrecy of the cipher, so she would take a larger number than 3.
However, the mathematics of the cipher works as well for 3 as for a larger number, and
the smaller number makes for easier calculations.)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



8.4 Modular Arithmetic with Applications to Cryptography 491

The two numbers pq = 55 and e = 3 are the public key, which she may distribute
widely. Because the RSA cipher works only on numbers, Alice also informs people how
she will interpret the numbers in the messages they send her. Let us suppose that she
encodes letters of the alphabet the same way as was done for the Caesar cipher:

A = 1, B = 2,C = 3, . . . , Z = 26.

Let us also assume that the messages Alice receives consist of blocks, each of which, for
simplicity, is taken to be a single, numerically encoded letter of the alphabet.

Someone who wants to send Alice a message breaks the message into blocks, each
consisting of a single letter, and finds the numeric equivalent for each block. The plain-
text, M , in a block is converted into ciphertext, C , according to the following formula:

C = Me mod pq. 8.4.5

Note that because both pq and e are public keys, anyone who is given the keys and knows
modular arithmetic can encrypt a message to send to Alice.

Example 8.4.9 Encrypting a Message Using RSA Cryptography

Bob wants to send Alice the message HI. What is the ciphertext for his message?

Solution Bob will send his message in two blocks, one for the H and another for the I.
Because H is the eighth letter in the alphabet, it is encoded as 08, or 8. The corresponding
ciphertext is computed using formula (8.4.5) as follows:

C = 83 mod 55

= 512 mod 55

= 17.

Because I is the ninth letter in the alphabet, it is encoded as 09, or 9. The corresponding
ciphertext is

C = 93 mod 55

= 729 mod 55

= 14.

Accordingly, Bob sends Alice the message: 17 14. ■

To decrypt the message, Alice needs to compute the decryption key, a number d that
is a positive inverse to e modulo (p − 1)(q − 1). She obtains the plaintext M from the
ciphertext C by the formula

M = Cd mod pq. 8.4.6

Note that because M + kpq ≡ M (mod pq), M must be taken to be less than pq, as
in the above example, in order for the decryption to be guaranteed to produce the original
message. But because p and q are normally taken to be so large, this requirement does not
cause problems. Long messages are broken into blocks of symbols to meet the restriction
and several symbols are included in each block to present decryption based on knowledge
of letter frequencies.
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Example 8.4.10 Decrypting a Message Using RSA Cryptography

Imagine that Alice has hired you to help her decrypt messages and has shared with you
the values of p and q. Decrypt the following ciphertext for her: 17 14.

Solution Because p = 5 and q = 11, (p − 1)(q − 1) = 40, and so you first need to find
the decryption key, which is a positive inverse for 3 modulo 40. Knowing that you would
be needing this number, we computed it in Example 8.4.8(b) and found it to be 27. Thus
you need to compute M = 1727mod 55. To do so, note that 27 = 16+ 8+ 2+ 1 = 24 +
23 + 2+ 1. Thus you will find the residues obtained when 17 is raised to successively
higher powers of 2, up to 24 = 16.

17 mod 55 = 17 mod 55 = 17

172 mod 55 = 172 mod 55 = 14

174 mod 55 = (172)2 mod 55 = 142 mod 55 = 31

178 mod 55 = (174)2 mod 55 = 312 mod 55 = 26

1716 mod 55 = (178)2 mod 55 = 262 mod 55 = 16

Then you will use the fact that

1727 = 1716+8+2+1 = 1716 ·178 ·172 ·171

to write

1727 mod 55 = (1716 ·178 ·172 ·17) mod 55

≡ [(1716 mod 55)(178 mod 55)(172 mod 55)(17 mod 55)] (mod 55)
by Corollary 8.4.4

≡ (16 ·26 ·14 ·17) (mod 55)

≡ 99008 (mod 55)

≡ 8 (mod 55).

Hence 1727 mod 55 = 8, and thus the plaintext of the first part of Bob’s message is 8, or
08. In the last step, you find the letter corresponding to 08, which is H . In exercises 14 and
15 at the end of this section, you are asked to show that when you decrypt 14, the result
is 9, which corresponds to the letter I, so you can tell Alice that Bob’s message is HI. ■

Euclid’s Lemma
Another consequence of Theorem 8.4.5 is known as Euclid’s lemma. It is the crucial fact
behind the unique factorization theorem for the integers and is also of great importance
in many other parts of number theory.

Theorem 8.4.8 Euclid’s Lemma

For all integers a, b, and c, if gcd(a, c) = 1 and a | bc, then a | b.

Proof:

Suppose a, b and c are integers, gcd(a, c) = 1, and a | bc. [We must show that a | b.]
By Theorem 8.4.5, there exist integers s and t so that

as + ct = 1.
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Multiply both sides of this equation by b to obtain

bas + bct = b. 8.4.7

Since a | bc, by definition of divisibility there exists an integer k such that

bc = ak. 8.4.8

Substituting (8.4.8) into (8.4.7), rewriting, and factoring out an a gives that

b = bas + (ak)t = a(bs + kt).

Let r = bs + kt . Then r is an integer (because b, s, k, and t are all integers), and
b = ar . Thus a | b by definition of divisibility.

The unique factorization theorem for the integers states that any integer greater than 1
has a unique representation as a product of prime numbers, except possibly for the order
in which the numbers are written. The hint for exercise 13 of Section 3.4 outlined a proof
of the existence part of the proof, and the uniqueness of the representation follows quickly
from Euclid’s lemma. In exercise 41 at the end of this section, we outline a proof for you
to complete.

Another application of Euclid’s lemma is a cancellation theorem for congruence
modulo n. This theorem allows us—under certain circumstances—to divide out a com-
mon factor in a congruence relation.

Theorem 8.4.9 Cancellation Theorem for Modular Congruence

For all integers a, b, c, and n with n>1, if gcd(c, n) = 1 and ac ≡ bc (mod n), then
a ≡ b (mod n).

Proof:

Suppose a, b, c, and n are any integers, gcd(c, n) = 1, and ac ≡ bc (mod n). [We
must show that a ≡ b (mod n).] By definition of congruence modulo n,

n | (ac − bc).

and so, since

ac − bc = (a − b)c,

n | (a − b)c.

Because gcd(c, n) = 1, we may apply Euclid’s lemma to obtain

n | (a − b),

and so, by definition of congruence modulo n,

a ≡ b (mod n).

An alternative proof for Theorem 8.4.9 uses Corollary 8.4.7. Because gcd(c, n) = 1,
the corollary guarantees an inverse for c modulo n. In the proof of Theorem 8.4.9, let d
denote an inverse for c. Apply Theorem 8.4.3(3) repeatedly, first to multiply both sides
of ac ≡ bc (mod n) by d to obtain (ac)d ≡ (bd)d (mod n), and then to use the fact that
cd ≡ 1 (mod n) to simplify the congruence and conclude that a ≡ b (mod n).
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Fermat’s Little Theorem
Fermat’s little theorem was given that name to distinguish it from Fermat’s last theorem,
which we discussed in Section 4.1. It provides the theoretical underpinning for RSA
cryptography.

Theorem 8.4.10 Fermat’s Little Theorem

If p is any prime number and a is any integer such that p � a, then a p−1 ≡ 1 (mod p).

Proof:

Suppose p is any prime number and a is any integer such that p � a. Note that a �= 0
because otherwise p would divide a. Consider the set of integers

S = {a, 2a, 3a, . . . , (p − 1)a}.
We claim that no two elements of S are congruent modulo p. For suppose sa ≡
ra (mod p) for some integers s and r with 1 ≤ r < s ≤ p − 1. Then, by definition
of congruence modulo p,

p | (sa − ra), or, equivalently, p | (s − r)a.

Now p � a by hypothesis, and because p is prime, gcd(a, p) = 1. Thus, by Euclid’s
lemma, p | (s − r). But this is impossible because 0 < s − r < p.

Consider the function F from S to the set T = {1, 2, 3, . . . , (p − 1)} that sends
each element of S to its residue modulo p. Then F is one-to-one because no two
elements of S are congruent modulo p. In Section 9.4 we prove that if a func-
tion from one finite set to another is one-to-one, then it is also onto. Hence F is
onto, and so the p − 1 residues of the p − 1 elements of S are exactly the numbers
1, 2, 3, . . . , (p − 1).

It follows by Theorem 8.4.3(3) that

a ·2a ·3a · · · (p − 1)a ≡ [1 ·2 ·3 · · · (p − 1)] (mod p),

or equivalently,

ap−1(p − 1)! ≡ (p − 1)! (mod p).

But because p is prime, p and (p − 1)! are relatively prime. Thus, by the cancellation
theorem for modular congruence (Theorem 8.4.9),

a p−1 ≡ 1 (mod p).

Why Does the RSA Cipher Work?
For the RSA cryptography method, the formula

M = Cd mod pq

is supposed to produce the original plaintext message, M, when the encrypted message
is C. How can we be sure that it always does so? Recall that we require that M < pq,
and we know that C = Me mod pq. So, by substitution,

Cd mod pq = (Me mod pq)d mod pq.

By Theorem 8.4.3(4),

(Me mod pq)d ≡ Med (mod pq).
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Thus Cd mod pq ≡ Med(mod pq), and so it suffices to show that

M ≡ Med (mod pq).

Recall that d was chosen to be a positive inverse for e modulo (p − 1)(q − 1), which
exists because gcd(e, (p − 1)(q − 1)) = 1. In other words,

ed ≡ 1 (mod (p − 1)(q − 1)),

or, equivalently,

ed = 1+ k(p − 1)(q − 1) for some positive integer k.

Therefore,

Med = M1+k(p−1)(q−1) = M(Mp−1)k(q−1) = M(Mq−1)k(p−1)

If p � M , then by Fermat’s little theorem, Mp−1 ≡ 1 (mod p), and so

Med = M(Mp−1)k(q−1) ≡ M(1)k(q−1) (mod p) = M (mod p).

Similarly, if q � M , then by Fermat’s little theorem, Mq−1 ≡ 1 (mod q), and so

Med = M(Mq−1)k(p−1) ≡ M(1)k(p−1) = M (mod q).

Thus, if M is relatively prime to pq,

Med ≡ M (mod p) and Med ≡ M (mod q).

If M is not relatively prime to pq, then either p |M or q |M . Without loss of generality,
assume p |M . It follows that Med ≡ 0 ≡ M (mod p). Moreover, because M < pq,
q |M , and thus, as above, Med ≡ M (mod q). Therefore, in this case also,

Med ≡ M (mod p) and Med ≡ M (mod q).

By Theorem 8.4.1,

p | (Med − M) and q | (Med − M),

and, by definition of divisibility,

Med − M = pt for some integer t.

By substitution, q | pt,
and since q and p are distinct prime numbers, Euclid’s lemma applies to give

q | t.
Thus t = qu for some integer u

by definition of divisibility. By substitution,

M − Med = pt = p(qu) = (pq)u,

where u is an integer, and so,

pq | (M − Med)

by definition of divisibility. Thus

M − Med ≡ 0 (mod pq)
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by definition of congruence, or, equivalently,

M ≡ Med(mod pq).

Because M < pq, this last congruence implies that

M = Med mod pq,

and thus the RSA cipher gives the correct result.

Additional Remarks on Number Theory and Cryptography
The famous British mathematician G. H. Hardy (1877–1947) was fond of comparing the
beauty of pure mathematics, especially number theory, to the beauty of art. Indeed, the
theorems in this section have many beautiful and striking consequences beyond those we
have had the space to describe, and the subject of number theory extends far beyond these
theorems. Hardy also enjoyed describing pure mathematics as useless. Hence it is ironic
that there are now whole books devoted to applications of number theory to computer
science, RSA cryptography being just one such application. Furthermore, as the need
for public-key cryptography has developed, techniques from other areas of mathematics,
such as abstract algebra and algebraic geometry, have been used to develop additional
cryptosystems.

Test Yourself
1. When letters of the alphabet are encrypted using the Caesar

cipher, the encrypted version of a letter is _____.

2. If a, b, and n are integers with n > 1, all of the following
are different ways to express the fact that n | (a − b): _____,
_____, _____, _____.

3. If a, b, c, d,m, and n are integers with n > 1 and if
a ≡ c (mod n) and b ≡ d (mod n), then a + b ≡ _____,
a − b ≡ _____, ab ≡ _____, and am ≡ _____.

4. If a, n, and k are positive integers with n > 1, an efficient
way to compute ak (mod n) is to write k as a _____ and use
the facts about computing products and powers modulo n.

5. To express a greatest common divisor of two integers as a
linear combination of the integers, use the extended _____
algorithm.

6. To find an inverse for a positive integer a modulo an integer
n with n > 1, you express the number 1 as _____.

7. To encrypt a message M using RSA cryptography with pub-
lic key pq and e, you use the formula _____, and to decrypt
a message C , you use the formula _____, where _____.

8. Euclid’s lemma says that for all integers a, b, and c if
gcd(a, c) = 1 and a | bc, then _____.

9. Format’s little theorem says that if p is any prime number
and a is any integer such that p | a then _____.

10. The crux of the proof that the RSA cipher works is that if
(1) p and q are distinct large prime numbers, (2) M < pq ,
(3) M is relatively prime to pq, (4) e is relatively prime to
(p − 1)(q − 1), and (5) d is a positive inverse for e modulo
(p − 1)(q − 1), then M = _____.

Exercise Set 8.4
1. a. Use the Caesar cipher to encrypt the message WHERE

SHALL WE MEET.
b. Use the Caesar cipher to decrypt the message LQ WKH

FDIHWHULD.

2. a. Use the Caesar cipher to encrypt the message AN
APPLE A DAY.

b. Use the Caesar cipher to decrypt the message NHHSV
WKH GRFWRU DZDB.

3. Let a = 25, b = 19, and n = 3.
a. Verify that 3 | (25− 19).
b. Explain why 25 ≡ 19 (mod 3).
c. What value of k has the property that 25 = 19+ 3k?
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d. What is the (nonnegative) remainder obtained when 25
is divided by 3? When 19 is divided by 3?

e. Explain why 25 mod 3 = 19 mod 3.

4. Let a = 67, b = 32, and n = 7.
a. Verify that 7 | (68− 33).
b. Explain why 68 ≡ 33 (mod 7).
c. What value of k has the property that 68 = 33+ 7k?
d. What is the (nonnegative) remainder obtained when 68

is divided by 7? When 33 is divided by 7?
e. Explain why 68 mod 7 = 33 mod 7.

5. Prove the transitivity of modular congruence. That is,
prove that for all integers a, b, c, and n with n > 1, if
a ≡ b(mod n) and b ≡ c (mod n) then a ≡ c (mod n).

6.H Prove that the distinct equivalence classes of the relation of
congruence modulo n are the sets [0], [1], [2], . . . , [n − 1],
where for each a = 0, 1, 2, . . . , n − 1,

[a] = {m ∈ Z |m ≡ a (mod n)}.
7. Verify the following statements.

a. 128 ≡ 2 (mod 7) and 61 ≡ 5 (mod 7)
b. (128+ 61) ≡ (2+ 5) (mod 7)
c. (128− 61) ≡ (2− 5) (mod 7)
d. (128 ·61) ≡ (2 ·5) (mod 7)
e. 1282 ≡ 22 (mod 7)

8. Verify the following statements.
a. 45 ≡ 3 (mod 6) and 104 ≡ 2 (mod 6)
b. (45+ 104) ≡ (3+ 2) (mod 6)
c. (45− 104) ≡ (3− 2) (mod 6)
d. (45 ·104) ≡ (3 ·2) (mod 6)
e. 452 ≡ 32 (mod 6)

In 9–11, prove each of the given statements, assuming that
a, b, c, d, and n are integers with n > 1 and that a ≡ c (mod n)
and b ≡ d (mod n).

9. a. (a + b) ≡ (c + d) (mod n)
b. (a − b) ≡ (c − d) (mod n)

10. a2 ≡ c2 (mod n)

11. am ≡ cm (mod n) for all integers m ≥ 1 (Use mathematical
induction on m.)

12. a. Prove that for all integers n ≥ 0, 10n ≡ 1 (mod 9).
b. Use part (a) to prove that a positive integer is divisible

by 9 if, and only if, the sum of its digits is divisible by 9.

13. a. Prove that for all integers n ≥ 1, 10n ≡ (−1)n (mod 11).
b. Use part (a) to prove that a positive integer is divisi-

ble by 11 if, and only if, the alternating sum of its dig-
its is divisible by 11. (For instance, the alternating sum
of the digits of 82,379 is 8− 2+ 3− 7+ 9 = 11 and
82,379 = 11 · 7489.)

14. Use the technique of Example 8.4.4 to find 142 mod 55,
144 mod 55, 148 mod 55, and 1416 mod 55.

15. Use the result of exercise 14 and the technique of Example
8.4.5 to find 1427 mod 55.

In 16–18, use the techniques of Example 8.4.4 and Example
8.4.5 to find the given numbers.

16. 675307 mod 713 17. 89307 mod 713

18. 48307 mod 713

In 19–24, use the RSA cipher from Examples 8.4.9 and 8.4.10.
In 19–21, translate the message into its numeric equivalent and
encrypt it. In 22–24, decrypt the ciphertext and translate the
result into letters of the alphabet to discover the message.

19. HELLO 20. WELCOME 21. EXCELLENT

22. 13 20 20 09 23. 08 05 15 24. 51 14 49 15

25.H Use Theorem 5.2.3 to prove that if a and n are positive inte-
gers and an − 1 is prime, then a = 2 and n is prime.

In 26 and 27, use the extended Euclidean algorithm to find the
greatest common divisor of the given numbers and express it as
a linear combination of the two numbers.

26. 6664 and 765 27. 4158 and 1568

Exercises 28 and 29 refer to the following formal version of the
extended Euclidean algorithm.

Algorithm 8.4.1 Extended Euclidean Algorithm
[Given integers A and B with A > B > 0, this algorithm com-
putes gcd(A, B) and finds integers s and t such that s A + t B =
gcd(A, B).]

Input: A, B [integers with A > B > 0]

Algorithm Body:
a := A, b := B, s := 1, t := 0, u := 0, v := 1,
[pre-condition: a = s A + t B and b = uA + vB]

while (b �= 0)
[loop invariant: a = s A + t B and b = uA + vB,
gcd(a, b) = gcd(A, B)]

r := a mod b, q := a div b

a := b, b := r

newu := s − uq, newv := t − vq

s := u, t := v

u := newu, v := newv

end while

gcd := a
[post-condition: gcd(A, B) = a = s A + t B]

Output: gcd[a positive integer], s, t [integers]

In 28 and 29, for the given values of A and B, make a table
showing the value of s, t, and s A + t B before the start of the
while loop and after each iteration of the loop.

28. A = 330, B = 156 29. A = 284, B = 168

30. Finish the proof of Theorem 8.4.5 by proving that if a, b
and c are as in the proof, then c | b.
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31. a. Find an inverse for 210 modulo 13.
b. Find a positive inverse for 210 modulo 13.
c. Find a positive solution for the congruence 210x ≡ 8

(mod 13).

32. a. Find an inverse for 41 modulo 660.
b. Find the least positive solution for the following congru-

ence: 41x ≡ 125 (mod 660).

33.H Use Theorem 8.4.5 to prove that for all integers a, b, and c,
if gcd(a, b) = 1 and a | c and b | c, then ab | c.

34. Give a counterexample to show that the converse of exer-
cise 33 is false.

35. Corollary 8.4.7 guarantees the existence of an inverse mod-
ulo n for an integer a when a and n are relatively prime. Use
Euclid’s lemma to prove that the inverse is unique mod-
ulo n. In other words, show that any two integers whose
product with a is congruent to 1 modulo n are congruent to
each other modulo n.

In 36, 37, 39, and 40, use the RSA cipher with public key
n = 713 = 23 · 31 and e = 43. In 36 and 37, encode the mes-
sages into their numeric equivalents and encrypt them. In 39 and
40, decrypt the given ciphertext and find the original messages.

36. HELP 37. COME

38. Find the least positive inverse for 43 modulo 660.

39. 675 089 089 048

40. 028 018 675 129

41.H a. Use mathematical induction and Euclid’s lemma to
prove that for all positive integers s, if p and
q1, q2, . . . , qs are prime numbers and p | q1q2 · · · qs,
then p = qi for some i with 1 ≤ i ≤ s.

b. The uniqueness part of the unique factorization theorem
for the integers says that given any integer n, if

n = p1 p2 · · · pr = q1q2 · · · qs
for some positive integers r and s and prime numbers
p1 ≤ p2 ≤ · · · ≤ pr and q1 ≤ q2 ≤ · · · ≤ qs, then r = s
and pi = qi for all integers i with 1 ≤ i ≤ r .

Use the result of part (a) to fill in the details
of the following sketch of a proof: Suppose that
n is an integer with two different prime factor-
izations: n = p1 p2 · · · pt = q1q2 · · · qu . All the prime
factors that appear on both sides can be cancelled (as
many times as they appear on both sides) to arrive
at the situation where p1 p2 · · · pr = q1q2 · · · qs, p1 ≤
p2 ≤ · · · ≤ pr , q1 ≤ q2 ≤ · · · ≤ qs , and pi �= q j for any
integers i and j . Then use part (a) to deduce a contra-
diction, and so the prime factorization of n is unique
except, possibly, for the order in which the prime fac-
tors are written.

42. According to Fermat’s little theorem, if p is a prime number
and a and p are relatively prime, then ap−1 ≡ 1 (mod p).
Verify that this theorem gives correct results for
a. a = 15 and p = 7 b. a = 8 and p = 11

43. Fermat’s little theorem can be used to show that a number is
not prime by finding a number a relatively prime to p with
the property that ap−1 ≡/ 1 (mod p). However, it cannot be
used to show that a number is prime. Find an example to
illustrate this fact. That is, find integers a and p such that a
and p are relatively prime and ap−1 ≡ 1 (mod p) but p is
not prime.

Answers for Test Yourself
1. three places in the alphabet to the right of the letter, with X wrapped around to A, Y to B, and Z to C
2. a ≡ b (mod n); a = b + kn for some integer k; a and b have the same nonnegative remainder when divided by n; a mod n = b
mod n 3. (c + d) (mod n); (c − d) (mod n); (cd) (mod n); cm (mod n) 4. sum of powers of 2 5. version of the Euclidean 6. a
linear combination of a and n 7. C = Mc mod pq; M = Cd mod pq; d is a positive inverse for e modulo (p − 1)(q − 1) 8. a | b
9. ap−1 ≡ 1 (mod p) 10. Med mod pq

8.5 Partial Order Relations
There is no branch of mathematics, however abstract, which may not some day be
applied to phenomena of the real world. —Nicolai Ivanovitch Lobachevsky, 1792–1856

In order to obtain a degree in computer science at a certain university, a student must
take a specified set of required courses, some of which must be completed before others
can be started. Given the prerequistite structure of the program, one might ask what is
the least number of school terms needed to fulfill the degree requirements, or what is
the maximum number of courses that can be taken in the same term, or whether there
is a sequence in which a part-time student can take the courses one per term. Later in
this section, we will show how representing the prerequisite structure of the program as
a partial order relation makes it relatively easy to answer such questions.
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Antisymmetry
In Section 8.2 we defined three properties of relations: reflexivity, symmetry, and transi-
tivity. A fourth property of relations is called antisymmetry. In terms of the arrow diagram
of a relation, saying that a relation is antisymmetric is the same as saying that whenever
there is an arrow going from one element to another distinct element, there is not an arrow
going back from the second to the first.

• Definition

Let R be a relation on a set A. R is antisymmetric if, and only if,

for all a and b in A, if a R b and b R a then a = b.

By taking the negation of the definition, you can see that a relation R is not antisym-
metric if, and only if,

there are elements a and b in A such that a R b and b R a but a �= b.

Example 8.5.1 Testing for Antisymmetry of Finite Relations

Let R1 and R2 be the relations on {0, 1, 2} defined as follows: Draw the directed graphs
for R1 and R2 and indicate which relations are antisymmetric.

a. R1 = {(0, 2), (1, 2), (2, 0)}
b. R2 = {(0, 0), (0, 1), (0, 2), (1, 1), (1, 2)}

Solution

a. R1 is not antisymmetric.

0 1

2

Since 0 R1 2 and 2 R1 0 but 0 � 2,
R1 is not antisymmetric.

b. R2 is antisymmetric.

In order for R2 not to be antisymmetric, there
would have to exist a pair of distinct elements
of A such that each is related to the other
by R2 .  But you can see by inspection that
no such pair exists.

0 1

2 ■

Example 8.5.2 Testing for Antisymmetry of “Divides” Relations

Let R1 be the “divides” relation on the set of all positive integers, and let R2 be the
“divides” relation on the set of all integers.

For all a, b ∈ Z+, a R1 b ⇔ a | b.
For all a, b ∈ Z , a R2 b ⇔ a | b.
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a. Is R1 antisymmetric? Prove or give a counterexample.

b. Is R2 antisymmetric? Prove or give a counterexample.

Solution

a. R1 is antisymmetric.

Proof:
Suppose a and b are positive integers such that a R1 b and b R1 a. [We must show that
a = b.] By definition of R1, a | b and b | a. Thus, by definition of divides, there are
integers k1 and k2 with b = k1a and a = k2b. It follows that

b = k1a = k1(k2b) = (k1k2)b.

Dividing both sides by b gives

k1k2 = 1.

Now since a and b are both integers k1 and k2 are both positive integers also. But the
only product of two positive integers that equals 1 is 1 · 1. Thus

k1 = k2 = 1

and so a = k2b = 1 · b = b.

[This is what was to be shown.]

b. R2 is not antisymmetric.

Counterexample:
Let a = 2 and b = −2. Then a | b [since−2 = (−1) · 2] and b | a [since 2 = (−1)(−2)].
Hence a R2 b and b R2 a but a �= b. ■

Example 8.5.2 illustrates the fact that a relation may be antisymmetric on a subset of
a set but not antisymmetric on the set itself.

Partial Order Relations
A relation that is reflexive, antisymmetric, and transitive is called a partial order.

• Definition

Let R be a relation defined on a set A. R is a partial order relation if, and only if,
R is reflexive, antisymmetric, and transitive.

Two fundamental partial order relations are the “less than or equal to” relation on a
set of real numbers and the “subset” relation on a set of sets. These can be thought of as
models, or paradigms, for general partial order relations.

Example 8.5.3 The “Subset” Relation

Let A be any collection of sets and define the “subset” relation, ⊆, on A as follows: For
all U, V ∈ A ,

U ⊆ V ⇔ for all x , if x ∈ U then x ∈ V .
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By an argument almost identical to that of the solution for exercise 23 of Section 8.2, ⊆
is reflexive and transitive. Finish the proof that ⊆ is a partial order relation by proving
that ⊆ is antisymmetric.

Solution For ⊆ to be antisymmetric means that for all sets U and V in A if U ⊆ V and
V ⊆ U then U = V . But this is true by definition of equality of sets. ■

Example 8.5.4 A “Divides” Relation on a Set of Positive Integers

Let | be the “divides” relation on a set A of positive integers. That is, for all a, b ∈ A,

a | b ⇔ b = ka for some integer k.

Prove that | is a partial order relation on A.

Solution

| is reflexive: [We must show that for all a ∈ A, a | a.] Suppose a ∈ A. Then a = 1 · a, so
a | a by definition of divisibility.

| is antisymmetric: [We must show that for all a, b ∈ A, if a | b and b | a then a = b.] The
proof of this is virtually identical to that of Example 8.5.2(a).

| is transitive: To show transitivity means to show that for all a, b, c ∈ A, if a | b and b | c
then a | c. But this was proved as Theorem 4.3.3.

Since | is reflexive, antisymmetric, and transitive, | is a partial order relation on A.

■

Example 8.5.5 The “Less Than or Equal to” Relation

Let S be a set of real numbers and define the “less than or equal to” relation, ≤, on S as
follows: For all real numbers x and y in S,

x ≤ y ⇔ x < y or x = y.

Show that ≤ is a partial order relation.

Solution

≤ is reflexive: For ≤ to be reflexive means that x ≤ x for all real numbers x in S. But
x ≤ x means that x < x or x = x , and x = x is always true.

≤ is antisymmetric: For ≤ to be antisymmetric means that for all real numbers x and
y in S, if x ≤ y and y ≤ x then x = y. This follows immediately from the definition
of ≤ and the trichotomy property (see Appendix A, T17), which says that given any real
numbers, x and y, exactly one of the following holds: x < y or x = y or x > y.

≤ is transitive: For ≤ to be transitive means that for all real numbers x, y, and z in S
if x ≤ y and y ≤ z then x ≤ z. This follows from the definition of ≤ and the transitivity
property of order (see Appendix A, T18), which says that given any real numbers x, y,
and z, if x < y and y < z then x < z.

Because ≤ is reflexive, antisymmetric, and transitive, it is a partial order relation. ■
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• Notation

Because of the special paradigmatic role played by the ≤ relation in the study of
partial order relations, the symbol � is often used to refer to a general partial order
relation, and the notation x � y is read “x is less than or equal to y” or “y is greater
than or equal to x .”

Lexicographic Order
To figure out which of two words comes first in an English dictionary, you compare their
letters one by one from left to right. If all letters have been the same to a certain point
and one word runs out of letters, that word comes first in the dictionary. For example,
play comes before playhouse. If all letters up to a certain point are the same and the next
letters differ, then the word whose next letter is located earlier in the alphabet comes first
in the dictionary. For instance, playhouse comes before playmate.

More generally, if A is any set with a partial order relation, then a dictionary or
lexicographic order can be defined on a set of strings over A as indicated in the following
theorem.

Theorem 8.5.1

Let A be a set with a partial order relation R, and let S be a set of strings over A.
Define a relation � on S as follows:

For any two strings in S, a1a2 · · · am and b1b2 · · · bn , where m and n are positive
integers,

1. If m ≤ n and ai = bi for all i = 1, 2, . . . ,m, then

a1a2 · · · am � b1b2 · · · bn.
2. If for some integer k with k ≤ m, k ≤ n, and k ≥ 1, ai = bi for all i = 1,

2, . . . , k − 1, and ak �= bk , but ak R bk then

a1a2 · · · am � b1b2 · · · bn.
3. If ε is the null string and s is any string in S, then ε � s.

If no strings are related other than by these three conditions, then � is a partial order
relation.

The proof of Theorem 8.5.1 is technical but straightforward. It is left for the exercises.

• Definition

The partial order relation of Theorem 8.5.1 is called the lexicographic order for S
that corresponds to the partial order R on A.

Example 8.5.6 A Lexicographic Order

Let A = {x, y} and let R be the following partial order relation on A:

R = {(x, x), (x, y), (y, y)}.
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Let S be the set of all strings over A, and denote by � the lexicographic order for S that
corresponds to R.

a. Is x � xx? x � xy? xx � xxx? yxy � yxyxxx?

b. Is x � y? xx � xyx? xxxy � xy? yxyxxyy � yxyxy?

c. Is ε � x? ε � xy? ε � yyxy?

Solution

a. Yes in all cases, by property (1) of the definition of �.
b. Yes in all cases, by property (2) of the definition of �.
c. Yes in all cases, by property (3) of the definition of �. ■

Hasse Diagrams
Let A = {1, 2, 3, 9, 18} and consider the “divides” relation on A: For all a, b ∈ A,

a | b ⇔ b = ka for some integer k.

The directed graph of this relation has the following appearance:

18

9

3

1

2

Note that there is a loop at every vertex, all other arrows point in the same direction
(upward), and any time there is an arrow from one point to a second and from the second
point to a third, there is an arrow from the first point to the third. Given any partial order
relation defined on a finite set, it is possible to draw the directed graph in such a way
that all of these properties are satisfied. This makes it possible to associate a somewhat
simpler graph, called aHasse diagram (after Helmut Hasse, a twentieth-century German
number theorist), with a partial order relation defined on a finite set. To obtain a Hasse
diagram, proceed as follows:

Start with a directed graph of the relation, placing vertices on the page so that all
arrows point upward. Then eliminate

1. the loops at all the vertices,

2. all arrows whose existence is implied by the transitive property,

3. the direction indicators on the arrows.
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For the relation given previously, the Hasse diagram is as follows:

2

1

3

9

18

Example 8.5.7 Constructing a Hasse Diagram

Consider the “subset” relation, ⊆, on the set P({a, b, c}). That is, for all sets U and V
in P({a, b, c}),

U ⊆ V ⇔ ∀x, if x ∈ U then x ∈ V .

Construct the Hasse diagram for this relation.

Solution Draw the directed graph of the relation in such a way that all arrows except loops
point upward.

{c}{b}{a}

{a, b, c}

{a, c}

∅

{b, c}{a, b}

Then strip away all loops, unnecessary arrows, and direction indicators to obtain the
Hasse diagram.

{c}

{b}

{a}

{a, b}

{a, b, c}

{a, c} {b, c}

∅ ■
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To recover the directed graph of a relation from the Hasse diagram, just reverse the
instructions given previously, using the knowledge that the original directed graph was
sketched so that all arrows pointed upward:

1. Reinsert the direction markers on the arrows making all arrows point upward.

2. Add loops at each vertex.

3. For each sequence of arrows from one point to a second and from that second point to
a third, add an arrow from the first point to the third.

Example 8.5.8 Obtaining the Directed Graph of a Partial Order Relation
from the Hasse Diagram of the Relation

A partial order relation R has the following Hasse diagram. Find the directed graph of R.

a

d

f

g

e

c
b

Solution

a

d

b

e

c

f

g

■

Partially and Totally Ordered Sets
Given any two real numbers x and y, either x ≤ y or y ≤ x . In a situation like this,
the elements x and y are said to be comparable. On the other hand, given two subsets
A and B of {a, b, c}, it may be the case that neither A ⊆ B nor B ⊆ A. For instance, let
A = {a, b} and B = {b, c}. Then A � B and B � A. In such a case, A and B are said to
be noncomparable.

• Definition

Suppose � is a partial order relation on a set A. Elements a and b of A are said to
be comparable if, and only if, either a � b or b � a. Otherwise, a and b are called
noncomparable.
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When all the elements of a partial order relation are comparable, the relation is called
a total order.

• Definition

If R is a partial order relation on a set A, and for any two elements a and b in A
either a R b or b R a, then R is a total order relation on A.

Both the “less than or equal to” relation on sets of real numbers and the lexicographic
order of the set of words in a dictionary are total order relations. Note that the Hasse
diagram for a total order relation can be drawn as a single vertical “chain.”

Many important partial order relations have elements that are not comparable and
are, therefore, not total order relations. For instance, the subset relation on P({a, b, c})
is not a total order relation because, as shown previously, the subsets {a, b} and {a, c} of
{a, b, c} are not comparable. In addition, a “divides” relation is not a total order relation
unless the elements are all powers of a single integer. (See exercise 21 at the end of this
section.)

A set A is called a partially ordered set (or poset) with respect to a relation � if,
and only if, � is a partial order relation on A. For instance, the set of real numbers is a
partially ordered set with respect to the “less than or equal to” relation≤, and a set of sets
is partially ordered with respect to the “subset” relation ⊆. It is entirely straightforward
to show that any subset of a partially ordered set is partially ordered. (See exercise 35 at
the end of this section.) This, of course, assumes the “same definition” for the relation on
the subset as for the set as a whole. A set A is called a totally ordered set with respect to
a relation � if, and only if, A is partially ordered with respect to � and � is a total order.

A set that is partially ordered but not totally ordered may have totally ordered subsets.
Such subsets are called chains.

• Definition

Let A be a set that is partially ordered with respect to a relation �. A subset B of
A is called a chain if, and only if, the elements in each pair of elements in B is
comparable. In other words, a � b or b � a for all a and b in A. The length of a
chain is one less than the number of elements in the chain.

Observe that if B is a chain in A, then B is a totally ordered set with respect to the
“restriction” of � to B.

Example 8.5.9 A Chain of Subsets

The set P({a, b, c}) is partially ordered with respect to the subset relation. Find a chain
of length 3 in P({a, b, c}).

Solution Since ∅ ⊆ {a} ⊆ {a, b, } ⊆ {a, b, c}, the set
S = {∅, {a}, {a, b}, {a, b, c}}

is a chain of length 3 in P({a, b, c}). ■

In exercise 39 at the end of this section, you are asked to show that a set that is
partially ordered with respect to a relation � is totally ordered with respect to � if, and
only if, it is a chain.
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Amaximal element in a partially ordered set is an element that is greater than or equal
to every element to which it is comparable. (There may be many elements to which it is
not comparable.) A greatest element in a partially ordered set is an element that is greater
than or equal to every element in the set (so it is comparable to every element in the set).
Minimal and least elements are defined similarly.

• Definition

Let a set A be partially ordered with respect to a relation �.
1. An element a in A is called a maximal element of A if, and only if, for all b in

A, either b � a or b and a are not comparable.

2. An element a in A is called a greatest element of A if, and only if, for all b in
A, b � a.

3. An element a in A is called a minimal element of A if, and only if, for all b in
A, either a � b or b and a are not comparable.

4. An element a in A is called a least element of A if, and only if, for all b in
A, a � b.

A greatest element is maximal, but a maximal element need not be a greatest element.
However, every finite subset of a totally ordered set has both a least element and a greatest
element. (See exercise 40 at the end of the section.) Similarly, a least element is minimal,
but a minimal element need not be a least element. Furthermore, a set that is partially
ordered with respect to a relation can have at most one greatest element and one least
element (see exercise 42 at the end of the section), but it may have more than one maximal
or minimal element. The next example illustrates some of these facts.

Example 8.5.10 Maximal, Minimal, Greatest, and Least Elements

Let A = {a, b, c, d, e, f, g, h, i} have the partial ordering � defined by the following
Hasse diagram. Find all maximal, minimal, greatest, and least elements of A.

a

b

c d

e

f

g

h

i

Solution There is just one maximal element, g, which is also the greatest element. The
minimal elements are c, d, and i , and there is no least element. ■

Topological Sorting
Is it possible to input the sets of P({a, b, c}) into a computer in a way that is compatible
with the subset relation ⊆ in the sense that if set U is a subset of set V , then U is input
before V ? The answer, as it turns out, is yes. For instance, the following input order
satisfies the given condition:

∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}.
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Another input order that satisfies the condition is

∅, {a}, {b}, {a, b}, {c}, {b, c}, {a, c}, {a, b, c}.

• Definition

Given partial order relations � and �′ on a set A,�′ is compatible with � if, and
only if, for all a and b in A, if a � b then a �′ b.

Given an arbitrary partial order relation � on a set A, is there a total order �′ on A
that is compatible with�? If the set on which the partial order is defined is finite, then the
answer is yes. A total order that is compatible with a given order is called a topological
sorting.

• Definition

Given partial order relations � and �′ on a set A,�′ is a topological sorting for �
if, and only if, �′ is a total order that is compatible with �.

The construction of a topological sorting for a general finite partially ordered set is
based on the fact that any partially ordered set that is finite and nonempty has a minimal
element. (See exercise 41 at the end of the section.) To create a total order for a partially
ordered set, simply pick any minimal element and make it number one. Then consider
the set obtained when this element is removed. Since the new set is a subset of a partially
ordered set, it is partially ordered. If it is empty, stop the process. If not, pick a minimal
element from it and call that element number two. Then consider the set obtained when
this element also is removed. If this set is empty, stop the process. If not, pick a minimal
element and call it number three. Continue in this way until all the elements of the set
have been used up.

Here is a somewhat more formal version of the algorithm:

Constructing a Topological Sorting

Let� be a partial order relation on a nonempty finite set A. To construct a topological
sorting,

1. Pick any minimal element x in A. [Such an element exists since A is nonempty.]

2. Set A′ := A − {x}.
3. Repeat steps a–c while A′ �= ∅.

a. Pick any minimal element y in A′.
b. Define x �′ y.
c. Set A′ := A′ − {y} and x := y.
[Completion of steps 1–3 of this algorithm gives enough information to construct the
Hasse diagram for the total ordering�′. We have already shown how to use the Hasse
diagram to obtain a complete directed graph for a relation.]

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
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Example 8.5.11 A Topological Sorting

Consider the set A = {2, 3, 4, 6, 18, 24} ordered by the “divides” relation |. The Hasse
diagram of this relation is the following:

24

4

2

18

6

3

The ordinary “less than or equal to” relation ≤ on this set is a topological sorting for it
since for positive integers a and b, if a | b then a ≤ b. Find another topological sorting
for this set.

Solution The set has two minimal elements: 2 and 3. Either one may be chosen; say you
pick 3. The beginning of the total order is

total order: 3.

Set A′ = A − {3}. You can indicate this by removing 3 from the Hasse diagram as shown
below.

24

4

18

6

2

Next choose minimal element from A′ − {3}. Only 2 is minimal, so you must pick it. The
total order thus far is

total order: 3 � 2.

Set A′ = (A − {3})− {2} = A − {3, 2}. You can indicate this by removing 2 from the
Hasse diagram, as is shown below.

24

4

18

6

Choose a minimal element from A′ − {3, 2}. Again you have two choices: 4 and 6. Say
you pick 6. The total order for the elements chosen thus far is

total order: 3 � 2 � 6.

You continue in this way until every element of A has been picked. One possible sequence
of choices gives

total order: 3 � 2 � 6 � 18 � 4 � 24.

You can verify that this order is compatible with the “divides” partial order by checking
that for each pair of elements a and b in A such that a | b, then a � b. Note that it is not
the case that if a � b then a | b. ■
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An Application
To return to the example that introduced this section, note that the following defines a
partial order relation on the set of courses required for a university degree: For all required
courses x and y,

x � y ⇔ x = y or x is a prerequisite for y

If the Hasse diagram for the relation is drawn, then the questions raised at the beginning
of this section can be answered easily. For instance, consider the Hasse diagram for the
requirements at a particular university, which is shown in Figure 8.5.1.

CS 390

CS 360

CS 300

CS 225

CS 250

CS 340

CS 345

CS 301

CS 230

CS 200

CS 155

CS 150

CS 350

MA 140

MA 141

Figure 8.5.1

The minimum number of school terms needed to complete the requirements is the
size of a longest chain, which is 7 (150, 155, 225, 300, 340, 360, 390, for example). The
maximum number of courses that could be taken in the same term (assuming the uni-
versity allows it) is the maximum number of noncomparable courses, which is 6 (350,
360, 345, 301, 230, 200, for example). A part-time student could take the courses in a
sequence determined by constructing a topological sorting for the set. (One such sorting
is 140, 150, 141, 155, 200, 225, 230, 300, 250, 301, 340, 345, 350, 360, 390. There are
many others.)

PERT and CPM
Two important and widely used applications of partial order relations are PERT (Program
Evaluation and Review Technique) and CPM (Critical Path Method). These techniques
came into being in the 1950s as planners came to grips with the complexities of schedul-
ing the individual activities needed to complete very large projects, and although they
are very similar, their developments were independent. PERT was developed by the U.S.
Navy to help organize the construction of the Polaris submarine, and CPMwas developed
by the E. I. Du Pont de Nemours company for scheduling chemical plant maintenance.
Here is a somewhat simplified example of the way the techniques work.
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Example 8.5.12 A Job Scheduling Problem

At an automobile assembly plant, the job of assembling an automobile can be broken
down into these tasks:

1. Build frame.

2. Install engine, power train components, gas tank.

3. Install brakes, wheels, tires.

4. Install dashboard, floor, seats.

5. Install electrical lines.

6. Install gas lines.

7. Install brake lines.

8. Attach body panels to frame.

9. Paint body.

Certain of these tasks can be carried out at the same time, whereas some cannot be started
until other tasks are finished. Table 8.5.1 summarizes the order in which tasks can be
performed and the time required to perform each task.

Table 8.5.1

Time Needed to
Task Immediately Preceding Tasks Perform Task

1 7 hours
2 1 6 hours
3 1 3 hours
4 2 6 hours
5 2, 3 3 hours
6 4 1 hour
7 2, 3 1 hour
8 4, 5 2 hours
9 6, 7, 8 5 hours

Let T be the set of all tasks, and consider the partial order relation � defined on T as
follows: For all tasks x and y in T ,

x � y ⇔ x = y or x precedes y.

If the Hasse diagram of this relation is turned sideways (as is customary in PERT and
CPM analysis), it has the appearance shown below.

Task 4
6 hours Task 6

1 hour

Task 8
2 hours Task 9

5 hours
Task 1
7 hours

Task 5
3 hours

Task 2
6 hours

Task 7
1 hour

Task 3
3 hours
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What is the minimum time required to assemble a car? You can determine this by
working from left to right across the diagram, noting for each task (say, just above the
box representing that task) the minimum time needed to complete that task starting from
the beginning of the assembly process. For instance, you can put a 7 above the box for
task 1 because task 1 requires 7 hours. Task 2 requires completion of task 1 (7 hours)
plus 6 hours for itself, so the minimum time required to complete task 2, starting at the
beginning of the assembly process, is 7+ 6 = 13 hours. You can put a 13 above the box
for task 2. Similarly, you can put a 10 above the box for task 3 because 7+ 3 = 10. Now
consider what number you should write above the box for task 5. The minimum times to
complete tasks 2 and 3, starting from the beginning of the assembly process, are 13 and
10 hours respectively. Since both tasks must be completed before task 5 can be started,
the minimum time to complete task 5, starting from the beginning, is the time needed for
task 5 itself (3 hours) plus the maximum of the times to complete tasks 2 and 3 (13 hours),
and this equals 3+ 13 = 16 hours. Thus you should place the number 16 above the box
for task 5. The same reasoning leads you to place a 14 above the box for task 7. Similarly,
you can place a 19 above the box for task 4, a 20 above the box for task 6, a 21 above the
box for task 8, and a 26 above the box for task 9, as shown below.

Task 4
6 hours Task 6

1 hour

Task 8
2 hours Task 9

5 hours
Task 1
7 hours

Task 5
3 hours

Task 2
6 hours

Task 7
1 hour

Task 3
3 hours

7

10

13 16

14

19
20

21
26

This analysis shows that at least 26 hours are required to complete task 9 starting from
the beginning of the assembly process. When task 9 is finished, the assembly is complete,
so 26 hours is the minimum time needed to accomplish the whole process.

Note that the minimum time required to complete tasks 1, 2, 4, 8, and 9 in sequence
is exactly 26 hours. This means that a delay in performing any one of these tasks causes a
delay in the total time required for assembly of the car. For this reason, the path through
tasks 1, 2, 4, 8, and 9 is called a critical path. ■

Test Yourself
1. For a relation R on a set A to be antisymmetric means that

_____.

2. To show that a relation R on an infinite set A is antisymmet-
ric, you suppose that _____ and you show that _____.

3. To show that a relation R on a set A is not antisymmetric,
you _____.

4. To construct a Hasse diagram for a partial order relation,
you start with a directed graph of the relation in which all
arrows point upward and you eliminate _____, _____, and
_____.

5. If A is a set that is partially ordered with respect to a relation
� and if a and b are elements of A, we say that a and b are
comparable if, and only if, _____ or _____.

6. A relation� on a set A is a total order if, and only if, _____.

7. If A is a set that is partially ordered with respect to a relation
�, and if B is a subset of A, then B is a chain if, and only
if, for all a and b in B, _____.
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8.5 Partial Order Relations 513

8. Let A be a set that is partially ordered with respect to a rela-
tion �, and let a be an element of �.

(a) a is maximal if, and only if, _____.

(b) a is a greatest element of A if, and only if, _____.

(c) a is minimal if, and only if, _____.

(d) a is a least element of A if, and only if, _____.

9. Given a set A that is partially ordered with respect to a rela-
tion �, the relation �′ is a topological sorting for �, if, and
only if, �′ is a _____ and for all a and b in A if a � b then
_____.

10. PERT and CPM are used to produce efficient _____.

Exercise Set 8.5
1. Each of the following is a relation on {0, 1, 2, 3}. Draw

directed graphs for each relation, and indicate which rela-
tions are antisymmetric.
a. R1 = {(0, 0), (0, 2), (1, 0), (1, 3), (2, 2), (3, 0), (3, 1)}
b. R2 = {(0, 1), (0, 2), (1, 1), (1, 2), (1, 3), (2, 2), (3, 2)}
c. R3 = {(0, 0), (0, 3), (1, 0), (1, 3), (2, 2), (3, 3), (3, 2)}
d. R4 = {(0, 0), (1, 0), (1, 2), (1, 3), (2, 0), (2, 1), (3, 2),

(3, 0)}
2. Let P be the set of all people in the world and define a

relation R on P as follows: For all x, y ∈ P ,

x R y ⇔ x is no older than y.

Is R antisymmetric? Prove or give a counterexample.

3. Let S be the set of all strings of a’s and b’s. Define a relation
R on S as follows: For all t ∈ S,

s R t ⇔ l(s) ≤ l(t),

where l(x) denotes the length of a string x . Is R antisym-
metric? Prove or give a counterexample.

4. Let R be the “less than” relation on the set R of all real
numbers: For all x, y ∈ R,

x R y ⇔ x < y.

Is R antisymmetric? Prove or give a counterexample.

5. Let R be the set of all real numbers and define a relation R
on R× R as follows: For all (a, b) and (c, d) in R× R,

(a, b) R (c, d) ⇔ either a < c or both a = c
and b ≤ d.

Is R a partial order relation? Prove or give a counter-
example.

6. Let P be the set of all people who have ever lived and define
a relation R on P as follows: For all r, s ∈ P ,

r R s ⇔ r is an ancestor of s or r = s.

Is R a partial order relation? Prove or give a counter-
example.

7. Define a relation R on the set Z of all integers as follows:
For all m, n ∈ Z,

m R n ⇔ every prime factor of m
is a prime factor of n.

Is R a partial order relation? Prove or give a counter-
example.

8. Define a relation R on the set Z of all integers as follows:
For all m, n ∈ Z,

m R n ⇔ m + n is even.

Is R a partial order relation? Prove or give a counter-
example.

9. Define a relation R on the set of all real numbers R as
follows: For all x, y ∈ R,

x R y ⇔ x2 ≤ y2.

Is R a partial order relation? Prove or give a counter-
example.

10. Suppose R and S are antisymmetric relations on a set A.
Must R ∪ S also be antisymmetric? Explain.

11. Let A = {a, b}, and suppose A has the partial order rela-
tion R where R = {(a, a), (a, b), (b, b)}. Let S be the set
of all strings in a’s and b’s and let � be the corresponding
lexicographic order on S. Indicate which of the following
statements are true, and for each true statement cite as a
reason part (1), (2), or (3) of the definition of lexicographic
order given in Theorem 8.5.1.
a. aab � aaba b. bbab � bba
c. ε � aba d. aba � abb
e. bbab � bbaa f. ababa � ababaa
g. bbaba � bbabb

12. Prove Theorem 8.5.1.

13. Let A = {a, b}. Describe all partial order relations on A.

14. Let A = {a, b, c}.
a. Describe all partial order relations on A for which a is a

maximal element.
b. Describe all partial order relations on A for which a is a

minimal element.

15.H Suppose a relation R on a set A is reflexive, symmetric,
transitive, and antisymmetric. What can you conclude about
R? Prove your answer.

16. Consider the “divides” relation on each of the following
sets A. Draw the Hasse diagram for each relation.
a. A = {1, 2, 4, 5, 10, 15, 20}
b. A = {2, 3, 4, 6, 8, 9, 12, 18}

17. Consider the “subset” relation on P(S) for each of the fol-
lowing sets S. Draw the Hasse diagram for each relation.
a. S = {0, 1} b. S = {0, 1, 2}
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18. Let S = {0, 1} and consider the partial order relation R
defined on S × S as follows: For all ordered pairs (a, b)
and (c, d) in S × S,

(a, b) R (c, d) ⇔ either a < c or both a = c and b ≤ d,

where < denotes the usual “less than” and ≤ denotes the
usual “less than or equal to” relation for real numbers. Draw
the Hasse diagram for R.

19. Let S = {0, 1} and consider the partial order relation R
defined on S × S as follows: For all ordered pairs (a, b)
and (c, d) in S × S,

(a, b) R (c, d) ⇔ a ≤ c and b ≤ d,

where ≤ denotes the usual “less than or equal to” relation
for real numbers. Draw the Hasse diagram for R.

20. Let S = {0, 1} and consider the partial order relation R
defined on S × S × S as follows: For all ordered triples
(a, b, c) and (d, e, f ) in S × S × S,

(a, b, c) R (d, e, f ) ⇔ a ≤ d, b ≤ e, and c ≤ f,

where ≤ denotes the usual “less than or equal to” relation
for real numbers. Draw the Hasse diagram for R.

21. Consider the “divides” relation defined on the set
A={1, 2, 22, 23, . . . , 2n}, where n is a nonnegative integer.

a. Prove that this relation is a total order relation on A.
b. Draw the Hasse diagram for this relation for n = 4.

In 22–29, find all greatest, least, maximal, and minimal ele-
ments for the relations in each of the referenced exercises.

22. Exercise 16(a) 23. Exercise 16(b)

24. Exercise 17(a) 25. Exercise 17(b)

26. Exercise 18 27. Exercise 19

28. Exercise 20 29. Exercise 21

30. Each of the following sets is partially ordered with respect
to the “less than or equal to” relation, ≤, for real numbers.
In each case, determine whether the set has a greatest or
least element.
a. R b. {x ∈ R | 0 ≤ x ≤ 1}
c. {x ∈ R | 0 < x < 1} d. {x ∈ Z | 0 < x < 10}

31. Let A = {a, b, c, d}, and let R be the relation

R = {(a, a), (b, b), (c, c), (d, d), (c, a), (a, d),
(c, d), (b, c), (b, d), (b, a)}.

Is R a total order on A? Justify your answer.

32. Let A = {a, b, c, d}, and let R be the relation

R = {(a, a), (b, b), (c, c), (d, d), (c, b), (a, d),
(b, a), (b, d), (c, d), (c, a)}.

Is R a total order on A? Justify your answer.

33. Consider the set A = {12, 24, 48, 3, 9} ordered by the
“divides” relation. Is A totally ordered with respect to the
relation? Justify your answer.

34.H Suppose that R is a partial order relation on a set A and that
B is a subset of A. The restriction of R to B is defined as
follows:

The restriction of R to B

= {(x, y) | x ∈ B, y ∈ B, and (x, y) ∈ R}.
In other words, two elements of B are related by the restric-
tion of R to B if, and only if, they are related by R. Prove
that the restriction of R to B is a partial order relation on B.
(In less formal language, this says that a subset of a partially
ordered set is partially ordered.)

35. The set P({w, x, y, z}) is partially ordered with respect
to the “subset” relation ⊆. Find a chain of length 4 in
P({w, x, y, z}).

36. The set A = {2, 4, 3, 6, 12, 18, 24} is partially ordered with
respect to the “divides” relation. Find a chain of length
3 in A.

37. Find a chain of length 2 for the relation defined in
exercise 19.

38. Prove that a partially ordered set is totally ordered if, and
only if, it is a chain.

39. Suppose that A is a totally ordered set. Use mathematical
induction to prove that for any integer n ≥ 1, every subset
of A with n elements has both a least element and a greatest
element.

40. Prove that a nonempty finite partially ordered set has
a. at least one minimal element,
b. at least one maximal element.

41. Prove that a finite partially ordered set has
a. at most one greatest element,
b. at most one least element.

42. Draw a Hasse diagram for a partially ordered set that has
two maximal elements and two minimal elements and is
such that each element is comparable to exactly two other
elements.

43. Draw a Hasse diagram for a partially ordered set that has
three maximal elements and three minimal elements and is
such that each element is either greater than or less than
exactly two other elements.

44. Use the algorithm given in the text to find a topological sort-
ing for the relation of exercise 16(a) that is different from
the “less than or equal to” relation ≤.

45. Use the algorithm given in the text to find a topological sort-
ing for the relation of exercise 16(b) that is different from
the “less than or equal to” relation ≤.
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46. Use the algorithm given in the text to find a topological
sorting for the relation of exercise 19.

47. Use the algorithm given in the text to find a topological
sorting for the relation of exercise 20.

48. Use the algorithm given in the text to find a topological
sorting for the “subset” relation on P({a, b, c, d}).

49. Refer to the prerequisite structure shown in Figure 8.5.1.
a. Find a list of six noncomparable courses that is different

from the list given in the text.
b. Find two topological sortings that are different from the

one given in the text.

50. A set S of jobs can be ordered by writing x � y to mean
that either x = y or x must be done before y, for all x and
y in S. The following is a Hasse diagram for this relation
for a particular set S of jobs.

3

7

10 6

91 2

8

5

4

a. If one person is to perform all the jobs, one after another,
find an order in which the jobs can be done.

b. Suppose enough people are available to perform any
number of jobs simultaneously.
(i) If each job requires one day to perform, what is the

least number of days needed to perform all ten jobs?
(ii) What is the maximum number of jobs that can be

performed at the same time?

51. Suppose the tasks described in Example 8.5.12 require the
following performance times:

Time Needed to
Task Perform Task

1 9 hours
2 7 hours
3 4 hours
4 5 hours
5 7 hours
6 3 hours
7 2 hours
8 4 hours
9 6 hours

a. What is the minimum time required to assemble a car?
b. Find a critical path for the assembly process.

Answers for Test Yourself
1. for all a and b in A, if a R b and b R a then a = b 2. a and b are any elements of A with a R b and b R a; a = b 3. show that there
are elements a and b in A such that a R b and b R a and a �= b 4. all loops; all arrows whose existence is implied by the transitive
property; the direction indicators on the arrows 5. a � b; b � a 6. for any two elements a and b in A, either a � b or b � a 7.
a and b are comparable 8. (a) for all b in A either b � a or b and a are not comparable (b) for all b in A, b � a (c) for all b in
A either a � b or b and a are not comparable (d) for all b in A, a �′ b 9. total order; a �′ b 10. scheduling of tasks

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



516

CHAPTER 9

COUNTING AND PROBABILITY

“It’s as easy as 1–2–3.”
That’s the saying. And in certain ways, counting is easy. But other aspects of counting

aren’t so simple. Have you ever agreed to meet a friend “in three days” and then realized
that you and your friend might mean different things? For example, on the European
continent, to meet in eight days means to meet on the same day as today one week hence;
on the other hand, in English-speaking countries, to meet in seven days means to meet
one week hence. The difference is that on the continent, all days including the first and
the last are counted. In the English-speaking world, it’s the number of 24-hour periods
that are counted.

Continental countries 1 2 3 4 5 6 7 8
( ( ( ( ↓ ( ( (
Sun Mon Tue Wed Thu Fri Sat Sun︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸

English-speaking countries 1 2 3 4 5 6 7

The English convention for counting days follows the almost universal convention
for counting hours. If it is 9 A.M. and two people anywhere in the world agree to meet in
three hours, they mean that they will get back together again at 12 noon.

Musical intervals, on the other hand, are universally reckoned the way the Conti-
nentals count the days of a week. An interval of a third consists of two tones with a
single tone in between, and an interval of a second consists of two adjacent tones. (See
Figure 9.1.1.)

C E C D

Interval of a third Interval of a second

Figure 9.1.1

Of course, the complicating factor in all these examples is not how to count but rather
what to count. And, indeed, in the more complex mathematical counting problems dis-
cussed in this chapter, it is what to count that is the central issue. Once one knows exactly
what to count, the counting itself is as easy as 1–2–3.
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9.1 Introduction
Imagine tossing two coins and observing whether 0, 1, or 2 heads are obtained. It would
be natural to guess that each of these events occurs about one-third of the time, but in
fact this is not the case. Table 9.1.1 below shows actual data obtained from tossing two
quarters 50 times.

Table 9.1.1 Experimental Data Obtained from Tossing Two Quarters 50 Times

Frequency Relative Frequency
(Number of times (Fraction of times

Event Tally the event occurred) the event occurred)

2 heads obtained |||| |||| | 11 22%

1 head obtained |||| |||| |||| |||| |||| || 27 54%

0 heads obtained |||| |||| || 12 24%

As you can see, the relative frequency of obtaining exactly 1 head was roughly twice
as great as that of obtaining either 2 heads or 0 heads. It turns out that the mathematical
theory of probability can be used to predict that a result like this will almost always occur.
To see how, call the two coins A and B, and suppose that each is perfectly balanced.
Then each has an equal chance of coming up heads or tails, and when the two are tossed
together, the four outcomes pictured in Figure 9.1.2 are all equally likely.

A B A B A B A B

2 heads obtained 1 head obtained 0 heads obtained

Figure 9.1.2 Equally Likely Outcomes from Tossing Two Balanced Coins

Figure 9.1.2 shows that there is a 1 in 4 chance of obtaining two heads and a 1 in
4 chance of obtaining no heads. The chance of obtaining one head, however, is 2 in 4
because either A could come up heads and B tails or B could come up heads and A tails.
So if you repeatedly toss two balanced coins and record the number of heads, you should
expect relative frequencies similar to those shown in Table 9.1.1.

To formalize this analysis and extend it to more complex situations, we introduce the
notions of random process, sample space, event and probability. To say that a process
is random means that when it takes place, one outcome from some set of outcomes is
sure to occur, but it is impossible to predict with certainty which outcome that will be.
For instance, if an ordinary person performs the experiment of tossing an ordinary coin
into the air and allowing it to fall flat on the ground, it can be predicted with certainty
that the coin will land either heads up or tails up (so the set of outcomes can be denoted
{heads, tails}), but it is not known for sure whether heads or tails will occur. We restricted
this experiment to ordinary people because a skilled magician can toss a coin in a way
that appears random but is not, and a physicist equipped with first-rate measuring devices
may be able to analyze all the forces on the coin and correctly predict its landing position.
Just a few of many examples of random processes or experiments are choosing winners
in state lotteries, selecting respondents in public opinion polls, and choosing subjects to
receive treatments or serve as controls in medical experiments. The set of outcomes that
can result from a random process or experiment is called a sample space.
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• Definition

A sample space is the set of all possible outcomes of a random process or experiment.
An event is a subset of a sample space.

In case an experiment has finitely many outcomes and all outcomes are equally likely
to occur, the probability of an event (set of outcomes) is just the ratio of the number
of outcomes in the event to the total number of outcomes. Strictly speaking, this result
can be deduced from a set of axioms for probability formulated in 1933 by the Russian
mathematician A. N. Kolmogorov. In Section 9.8 we discuss the axioms and show how to
derive their consequences formally. At present, we take a naïve approach to probability
and simply state the result as a principle.

Equally Likely Probability Formula

If S is a finite sample space in which all outcomes are equally likely and E is an
event in S, then the probability of E, denoted P(E), is

P(E) = the number of outcomes in E

the total number of outcomes in S
.

• Notation

For any finite set A, N (A) denotes the number of elements in A.

With this notation, the equally likely probability formula becomes

P(E) = N (E)

N (S)
.

Example 9.1.1 Probabilities for a Deck of Cards

An ordinary deck of cards contains 52 cards divided into four suits. The red suits are
diamonds (�) and hearts ( ) and the black suits are clubs (♣) and spades (♠). Each
suit contains 13 cards of the following denominations: 2, 3, 4, 5, 6, 7, 8, 9, 10, J (jack),
Q (queen), K (king), and A (ace). The cards J, Q, and K are called face cards.

Mathematician Persi Diaconis, working with David Aldous in 1986 and Dave Bayer
in 1992, showed that seven shuffles are needed to “thoroughly mix up” the cards in an
ordinary deck. In 2000 mathematician Nick Trefethen, working with his father, Lloyd
Trefethen, a mechanical engineer, used a somewhat different definition of “thoroughly
mix up” to show that six shuffles will nearly always suffice. Imagine that the cards in a
deck have become—by some method—so thoroughly mixed up that if you spread them
out face down and pick one at random, you are as likely to get any one card as any other.

a. What is the sample space of outcomes?

b. What is the event that the chosen card is a black face card?

c. What is the probability that the chosen card is a black face card?
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Solution

a. The outcomes in the sample space S are the 52 cards in the deck.

b. Let E be the event that a black face card is chosen. The outcomes in E are the jack,
queen, and king of clubs and the jack, queen, and king of spades. Symbolically,

E = {J♣,Q♣,K♣, J♠,Q♠,K♠}.
c. By part (b), N (E) = 6, and according to the description of the situation, all 52 out-

comes in the sample space are equally likely. Therefore, by the equally likely proba-
bility formula, the probability that the chosen card is a black face card is

P(E) = N (E)

N (S)
= 6

52
∼= 11.5%. ■

Example 9.1.2 Rolling a Pair of Dice

A die is one of a pair of dice. It is a cube with six sides, each containing from one to six
dots, called pips. Suppose a blue die and a gray die are rolled together, and the numbers
of dots that occur face up on each are recorded. The possible outcomes can be listed as
follows, where in each case the die on the left is blue and the one on the right is gray.

A more compact notation identifies, say, with the notation 24, with 53,
and so forth.

a. Use the compact notation to write the sample space S of possible outcomes.

b. Use set notation to write the event E that the numbers showing face up have a sum of
6 and find the probability of this event.

Solution

a. S = {11, 12, 13, 14, 15, 16, 21, 22, 23, 24, 25, 26, 31, 32, 33, 34, 35, 36, 41, 42, 43,
44, 45, 46, 51, 52, 53, 54, 55, 56, 61, 62, 63, 64, 65, 66}.

b. E = {15, 24, 33, 42, 51}.
The probability that the sum of the numbers is 6 = P(E) = N (E)

N (S)
= 5

36
. ■

The next example is called the Monty Hall problem after the host of an old game
show, “Let’s Make A Deal.” When it was originally publicized in a newspaper column
and on a radio show, it created tremendous controversy. Many highly educated people,
even some with Ph.D.’s, submitted incorrect solutions or argued vociferously against the
correct solution. Before you read the answer, think about what your own response to the
situation would be.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
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Example 9.1.3 The Monty Hall Problem

There are three doors on the set for a game show. Let’s call them A, B, and C . If you pick
the right door you win the prize. You pick door A. The host of the show, Monty Hall,
then opens one of the other doors and reveals that there is no prize behind it. Keeping
the remaining two doors closed, he asks you whether you want to switch your choice to
the other closed door or stay with your original choice of door A. What should you do if
you want to maximize your chance of winning the prize: stay with door A or switch—or
would the likelihood of winning be the same either way?

B C B C B C

Case 1 Case 2 Case 3

Solution At the point just before the host opens one of the closed doors, there is no
information about the location of the prize. Thus there are three equally likely possi-
bilities for what lies behind the doors: (Case 1) the prize is behind A (i.e., it is not behind
either B or C), (Case 2) the prize is behind B; (Case 3) the prize is behind C .

Since there is no prize behind the door the host opens, in Case 1 the host could open
either door and you would win by staying with your original choice: door A. In Case 2
the host must open door C , and so you would win by switching to door B. In Case 3 the
host must open door B, and so you would win by switching to door C . Thus, in two of the
three equally likely cases, you would win by switching from A to the other closed door.
In only one of the three equally likely cases would you win by staying with your original
choice. Therefore, you should switch.

A reality note: The analysis used for this solution applies only if the host always opens
one of the closed doors and offers the contestant the choice of staying with the original
choice or switching. In the original show, Monty Hall made this offer only occasionally—
most often when he knew the contestant had already chosen the correct door. ■

Many of the fundamental principles of probability were formulated in the mid-1600s
in an exchange of letters between Pierre de Fermat and Blaise Pascal in response to ques-
tions posed by a French nobleman interested in games of chance. In 1812, Pierre-Simon
Laplace published the first general mathematical treatise on the subject and extended the
range of applications to a variety of scientific and practical problems.
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Pierre-Simon Laplace
(1749–1827)

Counting the Elements of a List
Some counting problems are as simple as counting the elements of a list. For instance,
how many integers are there from 5 through 12? To answer this question, imagine going
along the list of integers from 5 to 12, counting each in turn.

list: 5 6 7 8 9 10 11 12
( ( ( ( ( ( ( (

count: 1 2 3 4 5 6 7 8

So the answer is 8.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



9.1 Introduction 521

More generally, if m and n are integers and m ≤ n, how many integers are there from
m through n? To answer this question, note that n = m + (n − m), where n − m ≥ 0
[since n ≥ m]. Note also that the elementm + 0 is the first element of the list, the element
m + 1 is the second element, the element m + 2 is the third, and so forth. In general, the
element m + i is the (i + 1)st element of the list.

list: m(= m + 0) m + 1 m + 2 . . . n (= m + (n − m))
( ( ( (

count: 1 2 3 . . . (n − m)+ 1

And so the number of elements in the list is n − m + 1.
This general result is important enough to be restated as a theorem, the formal proof of

which uses mathematical induction. (See exercise 28 at the end of this section.) The heart
of the proof is the observation that if the list m,m + 1, . . . , k has k − m + 1 numbers,
then the list m,m + 1, . . . , k, k + 1 has (k − m + 1)+ 1 = (k + 1)− m + 1 numbers.

Theorem 9.1.1 The Number of Elements in a List

If m and n are integers and m ≤ n, then there are n − m + 1 integers from m to n
inclusive.

Example 9.1.4 Counting the Elements of a Sublist

a. How many three-digit integers (integers from 100 to 999 inclusive) are divisible by 5?

b. What is the probability that a randomly chosen three-digit integer is divisible by 5?

Solution

a. Imagine writing the three-digit integers in a row, noting those that are multiples of 5
and drawing arrows between each such integer and its corresponding multiple of 5.

100 101 102 103 104 105 106 107 108 109 110 · · · 994 995 996 997 998 999
( ( ( (

5 ·20 5 ·21 5 ·22 5 ·199

From the sketch it is clear that there are as many three-digit integers that are multi-
ples of 5 as there are integers from 20 to 199 inclusive. By Theorem 9.1.1, there are
199− 20+ 1, or 180, such integers. Hence there are 180 three-digit integers that are
divisible by 5.

b. By Theorem 9.1.1 the total number of integers from 100 through 999 is 999− 100+
1 = 900. By part (a), 180 of these are divisible by 5. Hence the probability that a
randomly chosen three-digit integer is divisible by 5 is 180/900 = 1/5. ■

Example 9.1.5 Application: Counting Elements of a One-Dimensional Array

Analysis of many computer algorithms requires skill at counting the elements of a
one-dimensional array. Let A[1], A[2], . . . , A[n] be a one-dimensional array, where n
is a positive integer.

a. Suppose the array is cut at a middle value A[m] so that two subarrays are formed:

(1) A[1], A[2], . . . , A[m] and (2) A[m + 1], A[m + 2], . . . , A[n].
How many elements does each subarray have?

b. What is the probability that a randomly chosen element of the array has an even
subscript

(i) if n is even? (ii) if n is odd?
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Solution

a. Array (1) has the same number of elements as the list of integers from 1 through m. So
by Theorem 9.1.1, it has m, or m − 1+ 1, elements. Array (2) has the same number
of elements as the list of integers from m + 1 through n. So by Theorem 9.1.1, it has
n − m, or n − (m + 1)+ 1, elements.

b. (i) If n is even, each even subscript starting with 2 and ending with n can be matched
up with an integer from 1 to n/2.

1 2 3 4 5 6 7 8 9 10 · · · n
( ( ( ( ( (

2 ·1 2 ·2 2 ·3 2 ·4 2 ·5 2 ·n/2

So there are n/2 array elements with even subscripts. Since the entire array has n
elements, the probability that a randomly chosen element has an even subscript is
n/2

n
= 1

2
.

(ii) If n is odd, then the greatest even subscript of the array is n − 1. So there are as
many even subscripts between 1 and n as there are from 2 through n − 1. Then the
reasoning of (i) can be used to conclude that there are (n − 1)/2 array elements
with even subscripts.

1 2 3 4 5 6 · · · n − 1 n
( ( ( (

2 ·1 2 ·2 2 ·3 · · · 2 ·(n − 1)/2

Since the entire array has n elements, the probability that a randomly chosen

element has an even subscript is
(n − 1)/2

n
= n − 1

2n
. Observe that as n gets larger

and larger, this probability gets closer and closer to 1/2.

Note that the answers to (i) and (ii) can be combined using the floor notation. By
Theorem 4.5.2, the number of array elements with even subscripts is �n/2�, so the prob-

ability that a randomly chosen element has an even subscript is
�n/2�
n

. ■

Test Yourself
Answers to Test Yourself questions are located at the end of each section.

1. A sample space of a random process or experiment is _____.

2. An event in a sample space is _____.

3. To compute the probability of an event using the equally
likely probability formula, you take the ratio of the _____ to
the _____.

4. If m ≤ n, the number of integers from m to n inclusive is
_____.
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Exercise Set 9.1*
1. Toss two coins 30 times and make a table showing the rel-

ative frequencies of 0, 1, and 2 heads. How do your values
compare with those shown in Table 9.1.1?

2. In the example of tossing two quarters, what is the probabil-
ity that at least one head is obtained? that coin A is a head?
that coins A and B are either both heads or both tails?

In 3–6 use the sample space given in Example 9.1.1. Write each
event as a set, and compute its probability.

3. The event that the chosen card is red and is not a face card.

4. The event that the chosen card is black and has an even
number on it.

5. The event that the denomination of the chosen card is at
least 10 (counting aces high).

6. The event that the denomination of the chosen card is at
most 4 (counting aces high).

In 7–10, use the sample space given in Example 9.1.2. Write
each of the following events as a set and compute its probability.

7. The event that the sum of the numbers showing face up is 8.

8. The event that the numbers showing face up are the same.

9. The event that the sum of the numbers showing face up is
at most 6.

10. The event that the sum of the numbers showing face up is
at least 9.

11. Suppose that a coin is tossed three times and the side show-
ing face up on each toss is noted. Suppose also that on each
toss heads and tails are equally likely. Let HHT indicate the
outcome heads on the first two tosses and tails on the third,
THT the outcome tails on the first and third tosses and heads
on the second, and so forth.
a. List the eight elements in the sample space whose out-

comes are all the possible head–tail sequences obtained
in the three tosses.

b. Write each of the following events as a set and find its
probability:
(i) The event that exactly one toss results in a head.
(ii) The event that at least two tosses result in a head.
(iii) The event that no head is obtained.

12. Suppose that each child born is equally likely to be a boy
or a girl. Consider a family with exactly three children. Let
BBG indicate that the first two children born are boys and
the third child is a girl, let GBG indicate that the first and
third children born are girls and the second is a boy, and so
forth.
a. List the eight elements in the sample space whose out-

comes are all possible genders of the three children.
b. Write each of the events in the next column as a set and

find its probability.

(i) The event that exactly one child is a girl.
(ii) The event that at least two children are girls.
(iii) The event that no child is a girl.

13. Suppose that on a true/false exam you have no idea at all
about the answers to three questions. You choose answers
randomly and therefore have a 50–50 chance of being
correct on any one question. Let CCW indicate that you
were correct on the first two questions and wrong on the
third, let WCW indicate that you were wrong on the first
and third questions and correct on the second, and so
forth.
a. List the elements in the sample space whose outcomes

are all possible sequences of correct and incorrect
responses on your part.

b. Write each of the following events as a set and find its
probability:
(i) The event that exactly one answer is correct.
(ii) The event that at least two answers are correct.
(iii) The event that no answer is correct.

14. Three people have been exposed to a certain illness. Once
exposed, a person has a 50–50 chance of actually becom-
ing ill.
a. What is the probability that exactly one of the people

becomes ill?
b. What is the probability that at least two of the people

become ill?
c. What is the probability that none of the three people

becomes ill?

15. When discussing counting and probability, we often con-
sider situations that may appear frivolous or of little practi-
cal value, such as tossing coins, choosing cards, or rolling
dice. The reason is that these relatively simple examples
serve as models for a wide variety of more complex situ-
ations in the real world. In light of this remark, comment
on the relationship between your answer to exercise 11 and
your answers to exercises 12–14.

16. Two faces of a six-sided die are painted red, two are painted
blue, and two are painted yellow. The die is rolled three
times, and the colors that appear face up on the first, second,
and third rolls are recorded.
a. Let BBR denote the outcome where the color appearing

face up on the first and second rolls is blue and the color
appearing face up on the third roll is red. Because there
are as many faces of one color as of any other, the out-
comes of this experiment are equally likely. List all 27
possible outcomes.

b. Consider the event that all three rolls produce different
colors. One outcome in this event is RBY and another
RYB. List all outcomes in the event. What is the proba-
bility of the event?

∗For exercises with blue numbers or letters, solutions are given in Appendix B. The symbolH indicates that only a hint or a partial
solution is given. The symbol ✶ signals that an exercise is more challenging than usual.
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c. Consider the event that two of the colors that appear face
up are the same. One outcome in this event is RRB and
another is RBR. List all outcomes in the event. What is
the probability of the event?

17. Consider the situation described in exercise 16.
a. Find the probability of the event that exactly one of the

colors that appears face up is red.
b. Find the probability of the event that at least one of the

colors that appears face up is red.

18. An urn contains two blue balls (denoted B1 and B2) and
one white ball (denoted W ). One ball is drawn, its color is
recorded, and it is replaced in the urn. Then another ball is
drawn, and its color is recorded.
a. Let B1W denote the outcome that the first ball drawn

is B1 and the second ball drawn is W . Because the first
ball is replaced before the second ball is drawn, the out-
comes of the experiment are equally likely. List all nine
possible outcomes of the experiment.

b. Consider the event that the two balls that are drawn are
both blue. List all outcomes in the event. What is the
probability of the event?

c. Consider the event that the two balls that are drawn are
of different colors. List all outcomes in the event. What
is the probability of the event?

19. An urn contains two blue balls (denoted B1 and B2) and
three white balls (denoted W1,W2, and W3). One ball is
drawn, its color is recorded, and it is replaced in the urn.
Then another ball is drawn and its color is recorded.
a. Let B1W2 denote the outcome that the first ball drawn

is B1 and the second ball drawn is W2. Because the first
ball is replaced before the second ball is drawn, the out-
comes of the experiment are equally likely. List all 25
possible outcomes of the experiment.

b. Consider the event that the first ball that is drawn is blue.
List all outcomes in the event. What is the probability of
the event?

c. Consider the event that only white balls are drawn. List
all outcomes in the event. What is the probability of the
event?

20. Refer to Example 9.1.3. Suppose you are appearing on a
game show with a prize behind one of five closed doors:
A, B,C, D, and E . If you pick the right door, you win the
prize. You pick door A. The game show host then opens one
of the other doors and reveals that there is no prize behind
it. Then the host gives you the option of staying with your
original choice of door A or switching to one of the other
doors that is still closed.
a. If you stick with your original choice, what is the prob-

ability that you will win the prize?
b. If you switch to another door, what is the probability that

you will win the prize?

21. a. Howmany positive two-digit integers are multiples of 3?
b. What is the probability that a randomly chosen positive

two-digit integer is a multiple of 3?
c. What is the probability that a randomly chosen positive

two-digit integer is a multiple of 4?

22. a. How many positive three-digit integers are multiples
of 6?

b. What is the probability that a randomly chosen positive
three-digit integer is a multiple of 6?

c. What is the probability that a randomly chosen positive
three-digit integer is a multiple of 7?

23. Suppose A[1], A[2], A[3], . . . , A[n] is a one-dimensional
array and n ≥ 50.
a. How many elements are in the array?
b. How many elements are in the subarray

A[4], A[5], . . . , A[39]?
c. If 3 ≤ m ≤ n, what is the probability that a randomly

chosen array element is in the subarray

A[3], A[4], . . . , A[m]?
d. What is the probability that a randomly chosen array ele-

ment is in the subarray shown below if n = 39?

A[�n/2�], A[�n/2� + 1], . . . , A[n]
24. Suppose A[1], A[2], . . . , A[n] is a one-dimensional array

and n ≥ 2. Consider the subarray

A[1], A[2], . . . , A[�n/2�].
a. How many elements are in the subarray (i) if n is even?

and (ii) if n is odd?
b. What is the probability that a randomly chosen array

element is in the subarray (i) if n is even? and (ii) if n
is odd?

25. Suppose A[1], A[2], . . . , A[n] is a one-dimensional array
and n ≥ 2. Consider the subarray

A[�n/2�], A[�n/2� + 1], . . . , A[n].
a. How many elements are in the subarray (i) if n is even?

and (ii) if n is odd?
b. What is the probability that a randomly chosen array

element is in the subarray (i) if n is even? and (ii) if n
is odd?

26. What is the 27th element in the one-dimensional array
A[42], A[43], . . . , A[100]?

27. What is the 62nd element in the one-dimensional array
B[29], B[30], . . . , B[100]?

28. If the largest of 56 consecutive integers is 279, what is the
smallest?

29. If the largest of 87 consecutive integers is 326, what is the
smallest?

30. How many even integers are between 1 and 1,001?

31. How many integers that are multiples of 3 are between 1
and 1,001?

32. A certain non-leap year has 365 days, and January 1 occurs
on a Monday.
a. How many Sundays are in the year?
b. How many Mondays are in the year?

33.✶ Prove Theorem 9.1.1. (Let m be any integer and prove the
theorem by mathematical induction on n.)
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Answers for Test Yourself
1. the set of all outcomes of the random process or experiment 2. a subset of the sample space 3. number of outcomes in the
event; total number of outcomes 4. n − m + 1

9.2 Possibility Trees and the Multiplication Rule
Don’t believe anything unless you have thought it through for yourself.
—Anna Pell Wheeler, 1883–1966

A tree structure is a useful tool for keeping systematic track of all possibilities in situa-
tions in which events happen in order. The following example shows how to use such a
structure to count the number of different outcomes of a tournament.

Example 9.2.1 Possibilities for Tournament Play

Teams A and B are to play each other repeatedly until one wins two games in a row or a
total of three games. One way in which this tournament can be played is for A to win the
first game, B to win the second, and A to win the third and fourth games. Denote this by
writing A–B–A–A.

a. How many ways can the tournament be played?

b. Assuming that all the ways of playing the tournament are equally likely, what is the
probability that five games are needed to determine the tournament winner?

Solution

a. The possible ways for the tournament to be played are represented by the distinct
paths from “root” (the start) to “leaf” (a terminal point) in the tree shown sideways in
Figure 9.2.1. The label on each branching point indicates the winner of the game. The
notations in parentheses indicate the winner of the tournament.

Start

Winner of
game 1

Winner of
game 2

Winner of
game 3

Winner of
game 4

Winner of
game 5

A

B

A

B

(A wins)

A

B (B wins)

(B wins)

(A wins)

A

B

(B wins)

(B wins)

A

B

A

(A wins)A

B
(A wins)A

B

(B wins)

(A wins)A

BB

Figure 9.2.1 The Outcomes of a Tournament

The fact that there are ten paths from the root of the tree to its leaves shows that
there are ten possible ways for the tournament to be played. They are (moving from
the top down): A–A, A–B–A–A, A–B–A–B–A, A–B–A–B–B, A–B–B, B–A–A,
B–A–B–A–A, B–A–B–A–B, B–A–B–B, and B–B. In five cases A wins, and in the
other five B wins. The least number of games that must be played to determine a
winner is two, and the most that will need to be played is five.
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b. Since all the possible ways of playing the tournament listed in part (a) are assumed
to be equally likely, and the listing shows that five games are needed in four different
cases (A–B–A–B–A, A–B–A–B–B, B–A–B–A–B, and B–A–B–A–A), the proba-
bility that five games are needed is 4/10 = 2/5 = 40%. ■

The Multiplication Rule
Consider the following example. Suppose a computer installation has four input/output
units (A, B,C, and D) and three central processing units (X, Y, and Z ). Any input/output
unit can be paired with any central processing unit. How many ways are there to pair an
input/output unit with a central processing unit?

To answer this question, imagine the pairing of the two types of units as a two-step
operation:

Step 1: Choose the input/output unit.

Step 2: Choose the central processing unit.

The possible outcomes of this operation are illustrated in the possibility tree of
Figure 9.2.2.

Start

Step 1: Choose the
input/output unit.

Step 2: Choose the
central processing unit.

A

B

C

D

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

Figure 9.2.2 Pairing Objects Using a Possibility Tree

The topmost path from “root” to “leaf” indicates that input/output unit A is to be
paired with central processing unit X . The next lower branch indicates that input/output
unit A is to be paired with central processing unit Y. And so forth.

Thus the total number of ways to pair the two types of units is the same as the number
of branches of the tree, which is

3+ 3+ 3+ 3 = 4 ·3 = 12.

The idea behind this example can be used to prove the following rule. A formal proof
uses mathematical induction and is left to the exercises.
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Theorem 9.2.1 The Multiplication Rule

If an operation consists of k steps and

the first step can be performed in n1 ways,

the second step can be performed in n2 ways [regardless of how the first
step was performed],

...

the kth step can be performed in nk ways [regardless of how the preceding
steps were performed],

then the entire operation can be performed in n1n2 · · · nk ways.

To apply the multiplication rule, think of the objects you are trying to count as the
output of a multistep operation. The possible ways to perform a step may depend on how
preceding steps were performed, but the number of ways to perform each step must be
constant regardless of the action taken in prior steps.

Example 9.2.2 Number of Personal Identification Numbers (PINs)

A typical PIN (personal identification number) is a sequence of any four symbols chosen
from the 26 letters in the alphabet and the ten digits, with repetition allowed. How many
different PINs are possible?

Solution Typical PINs are CARE, 3387, B32B, and so forth. You can think of forming a
PIN as a four-step operation to fill in each of the four symbols in sequence.

4321

Pool of available
symbols: A, B, C, D, E, F, G,
H, I, J, K, L, M, N, O, P, Q, R,
S, T, U, V, W, X, Y, Z,
0, 1, 2, 3, 4, 5, 6, 7, 8, 9,

36
 ch

oices

36
 ch

oice
s

36
 ch

oic
es

36
 ch

oi
ce

s

Step 1: Choose the first symbol.

Step 2: Choose the second symbol.

Step 3: Choose the third symbol.

Step 4: Choose the fourth symbol.

There is a fixed number of ways to perform each step, namely 36, regardless of how
preceding steps were performed. And so, by the multiplication rule, there are
36 ·36 ·36 ·36 = 364 = 1,679,616 PINs in all. ■

Another way to look at the PINs of Example 9.2.2 is as ordered 4-tuples. For example,
you can think of the PIN M2ZM as the ordered 4-tuple (M, 2, Z, M). Therefore, the total
number of PINs is the same as the total number of ordered 4-tuples whose elements are
either letters of the alphabet or digits. One of the most important uses of the multiplication
rule is to derive a general formula for the number of elements in any Cartesian product
of a finite number of finite sets. In Example 9.2.3, this is done for a Cartesian product of
four sets.
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Example 9.2.3 The Number of Elements in a Cartesian Product

Suppose A1, A2, A3, and A4 are sets with n1, n2, n3, and n4 elements, respectively. Show
that the set A1 × A2 × A3 × A4 has n1n2n3n4 elements.

Solution Each element in A1 × A2 × A3 × A4 is an ordered 4-tuple of the form
(a1, a2, a3, a4), where a1 ∈ A1, a2 ∈ A2, a3 ∈ A3, and a4 ∈ A4. Imagine the process of
constructing these ordered tuples as a four-step operation:

Step 1: Choose the first element of the 4-tuple.

Step 2: Choose the second element of the 4-tuple.

Step 3: Choose the third element of the 4-tuple.

Step 4: Choose the fourth element of the 4-tuple.

There are n1 ways to perform step 1, n2 ways to perform step 2, n3 ways to perform step 3,
and n4 ways to perform step 4. Hence, by the multiplication rule, there are n1n2n3n4
ways to perform the entire operation. Therefore, there are n1n2n3n4 distinct 4-tuples in
A1 × A2 × A3 × A4. ■

Example 9.2.4 Number of PINs without Repetition

In Example 9.2.2 we formed PINs using four symbols, either letters of the alphabet or
digits, and supposing that letters could be repeated. Now suppose that repetition is not
allowed.

a. How many different PINs are there?

b. If all PINs are equally likely, what is the probability that a PIN chosen at random
contains no repeated symbol?

Solution

a. Again think of forming a PIN as a four-step operation: Choose the first symbol, then
the second, then the third, and then the fourth. There are 36 ways to choose the first
symbol, 35 ways to choose the second (since the first symbol cannot be used again), 34
ways to choose the third (since the first two symbols cannot be reused), and 33 ways
to choose the fourth (since the first three symbols cannot be reused). Thus, the mul-
tiplication rule can be applied to conclude that there are 36 ·35 ·34 ·33 = 1,413,720
different PINs with no repeated symbol.

b. By part (a) there are 1,413,720 PINs with no repeated symbol, and by Example 9.2.2
there are 1,679,616 PINs in all. Thus the probability that a PIN chosen at random
contains no repeated symbol is 1,413,720

1,679,616
∼= .8417. In other words, approximately 84%

of PINs have no repeated symbol. ■

Any circuit with two input signals P and Q has an input/output table consisting
of four rows corresponding to the four possible assignments of values to P and Q :
11, 10, 01, and 00. The next example shows that there are only 16 distinct ways in which
such a circuit can function.

Example 9.2.5 Number of Input/Output Tables for a Circuit with Two Input Signals

Consider the set of all circuits with two input signals P and Q. For each such circuit an
input/output table can be constructed, but, as shown in Section 2.4, two such input/output
tables may have the same values. How many distinct input/output tables can be con-
structed for circuits with input/output signals P and Q?
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Solution Fix the order of the input values for P and Q. Then two input/output tables are
distinct if their output values differ in at least one row. For example, the input/output
tables shown below are distinct, because their output values differ in the first row.

P Q Output

1 1 1

1 0 0

0 1 1

0 0 0

P Q Output

1 1 0

1 0 0

0 1 1

0 0 0

For a fixed ordering of input values, you can obtain a complete input/output table by
filling in the entries in the output column. You can think of this as a four-step operation:

Step 1: Fill in the output value for the first row.

Step 2: Fill in the output value for the second row.

Step 3: Fill in the output value for the third row.

Step 4: Fill in the output value for the fourth row.

Each step can be performed in exactly two ways: either a 1 or a 0 can be filled in. Hence,
by the multiplication rule, there are

2 ·2 ·2 ·2 = 16

ways to perform the entire operation. It follows that there are 24 = 16 distinct input/output
tables for a circuit with two input signals P and Q. This means that such a circuit can
function in only 16 distinct ways. ■

Recall from Section 5.9 that if S is a nonempty, finite set of characters, then a string over
S is a finite sequence of elements of S. The number of characters in a string is called the
length of the string. The null string over S is the “string” with no characters. It is usually
denoted ε and is said to have length 0.

Observe that in Examples 9.2.2 and 9.2.4, the set of all PINs of length 4 is the same
as the set of all strings of length 4 over the set

S = {x | x is a letter of the alphabet or x is a digit}.
Also observe that another way to think of Example 9.2.5 is to realize that there are as
many input/output tables for a circuit with two input signals as there are bit strings
of length 4 (written vertically) that can be used to fill in the output values. As another
example, here is a listing of all bit strings of length 3:

000, 001, 010, 100, 011, 101, 110, 111.

Example 9.2.6 Counting the Number of Iterations of a Nested Loop

Consider the following nested loop:

for i := 1 to 4

for j := 1 to 3
[Statements in body of inner loop.
None contain branching statements
that lead out of the inner loop.]

next j

next i

How many times will the inner loop be iterated when the algorithm is implemented
and run?
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Solution The outer loop is iterated four times, and during each iteration of the outer loop,
there are three iterations of the inner loop. Hence by the multiplication rule, the total
number of iterations of the inner loop is 4 ·3 = 12. This is illustrated by the trace table
below.

→ → → →i 1 2 3 4

j 1 2 3 1 2 3 1 2 3 1 2 3︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸
3 + 3 + 3 + 3 = 12 ■

When the Multiplication Rule Is Difficult
or Impossible to Apply

Consider the following problem:

Three officers—a president, a treasurer, and a secretary—are to be chosen
from among four people: Ann, Bob, Cyd, and Dan. Suppose that, for various
reasons, Ann cannot be president and either Cyd or Dan must be secretary.
How many ways can the officers be chosen?

It is natural to try to solve this problem using the multiplication rule. A person might
answer as follows:

There are three choices for president (all except Ann), three choices for trea-
surer (all except the one chosen as president), and two choices for secretary
(Cyd or Dan). Therefore, by the multiplication rule, there are 3 ·3 ·2 = 18
choices in all.

Unfortunately, this analysis is incorrect. The number of ways to choose the secretary
varies depending on who is chosen for president and treasurer. For instance, if Bob is
chosen for president and Ann for treasurer, then there are two choices for secretary: Cyd
and Dan. But if Bob is chosen for president and Cyd for treasurer, then there is just one
choice for secretary: Dan. The clearest way to see all the possible choices is to construct
the possibility tree, as is shown in Figure 9.2.3.

Step 3: Choose
the secretary.

Step 2: Choose
the treasurer.

Start

Bob

Cyd

Dan

Ann

Ann

Ann

Bob

Bob

Cyd

Dan

Cyd

Cyd

Cyd

Cyd

Dan

Dan

Dan

Dan

Step 1: Choose
the president.

Figure 9.2.3

From the tree it is easy to see that there are only eight ways to choose a president,
treasurer, and secretary so as to satisfy the given conditions.
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Another way to solve this problem is somewhat surprising. It turns out that the steps
can be reordered in a slightly different way so that the number of ways to perform each
step is constant regardless of the way previous steps were performed.

Example 9.2.7 A More Subtle Use of the Multiplication Rule

Reorder the steps for choosing the officers in the previous example so that the total num-
ber of ways to choose officers can be computed using the multiplication rule.

Solution

Step 1: Choose the secretary.

Step 2: Choose the president.

Step 3: Choose the treasurer.

There are exactly two ways to perform step 1 (either Cyd or Dan may be chosen), two
ways to perform step 2 (neither Ann nor the person chosen in step 1 may be chosen but
either of the other two may), and two ways to perform step 3 (either of the two people
not chosen as secretary or president may be chosen as treasurer). Thus, by the multipli-
cation rule, the total number of ways to choose officers is 2 ·2 ·2 = 8. A possibility tree
illustrating this sequence of choices is shown in Figure 9.2.4. Note how balanced this tree
is compared with the one in Figure 9.2.3.

Start

Step 1: Choose
the secretary.

Step 2: Choose
the president.

Step 3: Choose
the treasurer.

Cyd

Dan

Dan

Dan

Bob

Bob

Ann

Ann

Ann

Ann

Cyd

Bob

Bob

Cyd

Figure 9.2.4 ■

Permutations
A permutation of a set of objects is an ordering of the objects in a row. For example, the
set of elements a, b, and c has six permutations.

abc acb cba bac bca cab

In general, given a set of n objects, how many permutations does the set have? Imag-
ine forming a permutation as an n-step operation:

Step 1: Choose an element to write first.

Step 2: Choose an element to write second.
...

...

Step n: Choose an element to write nth.
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Any element of the set can be chosen in step 1, so there are n ways to perform step 1.
Any element except that chosen in step 1 can be chosen in step 2, so there are n − 1 ways
to perform step 2. In general, the number of ways to perform each successive step is one
less than the number of ways to perform the preceding step. At the point when the nth
element is chosen, there is only one element left, so there is only one way to perform step
n. Hence, by the multiplication rule, there are

n(n − 1)(n − 2) · · · 2 ·1 = n!
ways to perform the entire operation. In other words, there are n! permutations of a set of
n elements. This reasoning is summarized in the following theorem. A formal proof uses
mathematical induction and is left as an exercise.

Theorem 9.2.2

For any integer n with n ≥ 1, the number of permutations of a set with n
elements is n!.

Example 9.2.8 Permutations of the Letters in a Word

a. How many ways can the letters in the word COMPUTER be arranged in a row?

b. How many ways can the letters in the word COMPUTER be arranged if the letters CO
must remain next to each other (in order) as a unit?

c. If letters of the word COMPUTER are randomly arranged in a row, what is the proba-
bility that the letters CO remain next to each other (in order) as a unit?

Solution

a. All the eight letters in the word COMPUTER are distinct, so the number of ways in
which we can arrange the letters equals the number of permutations of a set of eight
elements. This equals 8! = 40,320.

b. If the letter group CO is treated as a unit, then there are effectively only seven objects
that are to be arranged in a row.

CO M P U T E R

Hence there are as many ways to write the letters as there are permutations of a set of
seven elements, namely 7! = 5,040.

c. When the letters are arranged randomly in a row, the total number of arrangements is
40,320 by part (a), and the number of arrangements with the letters CO next to each
other (in order) as a unit is 5,040. Thus the probability is

5,040

40,320
= 1

8
= 12.5%. ■

Example 9.2.9 Permutations of Objects Around a Circle

At a meeting of diplomats, the six participants are to be seated around a circular table.
Since the table has no ends to confer particular status, it doesn’t matter who sits in which
chair. But it does matter how the diplomats are seated relative to each other. In other
words, two seatings are considered the same if one is a rotation of the other. How many
different ways can the diplomats be seated?
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Solution Call the diplomats by the letters A, B,C, D, E , and F . Since only relative posi-
tion matters, you can start with any diplomat (say A), place that diplomat anywhere (say
in the top seat of the diagram shown in Figure 9.2.5), and then consider all arrangements
of the other diplomats around that one. B through F can be arranged in the seats around
diplomat A in all possible orders. So there are 5! = 120 ways to seat the group.

Five  other
diplomats
to be seated:
B, C, D, E, F

A

Figure 9.2.5 ■

Permutations of Selected Elements
Given the set {a, b, c}, there are six ways to select two letters from the set and write them
in order.

ab ac ba bc ca cb

Each such ordering of two elements of {a, b, c} is called a 2-permutation of {a, b, c}.

• Definition

An r-permutation of a set of n elements is an ordered selection of r elements taken
from the set of n elements. The number of r -permutations of a set of n elements is
denoted P(n, r).

Theorem 9.2.3

If n and r are integers and 1 ≤ r ≤ n, then the number of r -permutations of a set of
n elements is given by the formula

P(n, r) = n(n − 1)(n − 2) · · · (n − r + 1) first version

or, equivalently,

P(n, r) = n!
(n − r)! second version.

A formal proof of this theorem uses mathematical induction and is based on the mul-
tiplication rule. The idea of the proof is the following.

Suppose a set of n elements is given. Formation of an r -permutation can be thought
of as an r -step process. Step 1 is to choose the element to be first. Since the set has
n elements, there are n ways to perform step 1. Step 2 is to choose the element to be
second. Since the element chosen in step 1 is no longer available, there are n − 1 ways
to perform step 2. Step 3 is to choose the element to be third. Since neither of the two
elements chosen in the first two steps is available, there are n − 2 choices for step 3. This
process is repeated r times, as shown on the next page.
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Position 2 Position rPosition 3Position 1

n choices

n – 1 choices

n – 2 choices
n – (r – 1) choices

Pool of available
elements: x1, x2, . . . , xn

The number of ways to perform each successive step is one less than the number of ways
to perform the preceding step. Step r is to choose the element to be r th. At the point just
before step r is performed, r − 1 elements have already been chosen, and so there are

n − (r − 1) = n − r + 1

left to choose from. Hence there are n − r + 1 ways to perform step r . It follows by the
multiplication rule that the number of ways to form an r -permutation is

P(n, r) = n(n − 1)(n − 2) · · · (n − r + 1).

Note that

n!
(n − r)! =

n(n − 1)(n − 2) · · · (n − r + 1)(n − r)(n − r − 1) · · · 3 ·2 ·1
(n − r)(n − r − 1) · · · 3 ·2 ·1

= n(n − 1)(n − 2) · · · (n − r + 1).

Thus the formula can be written as

P(n, r) = n!
(n − r)! .

The second version of the formula is easier to remember. When you actually use it,
however, first substitute the values of n and r and then immediately cancel the numerical
value of (n − r)! from the numerator and denominator. Because factorials become so
large so fast, direct use of the second version of the formula without cancellation can
overload your calculator’s capacity for exact arithmetic even when n and r are quite
small. For instance, if n = 15 and r = 2, then

n!
(n − r)! =

15!
13! =

1,307,674,368,000

6,227,020,800
.

But if you cancel (n − r)! = 13! from numerator and denominator before multiplying
out, you obtain

n!
(n − r)! =

15!
13! =

15 ·14 ·13!
13! = 15 ·14 = 210.

In fact, many scientific calculators allow you to compute P(n, r) simply by entering the
values of n and r and pressing a key or making a menu choice. Alternative notations for
P(n, r) that you may see in your calculator manual are n Pr , Pn,r and n Pr .

Example 9.2.10 Evaluating r-Permutations

a. Evaluate P(5, 2).

b. How many 4-permutations are there of a set of seven objects?

c. How many 5-permutations are there of a set of five objects?
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Solution

a. P(5, 2) = 5!
(5− 2)! =

5 ·4 ·3 ·2 ·1
3 ·2 ·1 = 20

b. The number of 4-permutations of a set of seven objects is

P(7, 4) = 7!
(7− 4)! =

7 ·6 ·5 ·4 ·3 ·2 ·1
3 ·2 ·1 = 7 ·6 ·5 ·4 = 840.

c. The number of 5-permutations of a set of five objects is

P(5, 5) = 5!
(5− 5)! =

5!
0! =

5!
1
= 5! = 120.

Note that the definition of 0! as 1 makes this calculation come out as it should, for the
number of 5-permutations of a set of five objects is certainly equal to the number of
permutations of the set. ■

Example 9.2.11 Permutations of Selected Letters of a Word

a. How many different ways can three of the letters of the word BYTES be chosen and
written in a row?

b. How many different ways can this be done if the first letter must be B?

Solution

a. The answer equals the number of 3-permutations of a set of five elements. This equals

P(5, 3) = 5!
(5− 3)! =

5 ·4 ·3 ·2 ·1
2 ·1 = 5 ·4 ·3 = 60.

b. Since the first letter must be B, there are effectively only two letters to be chosen and
placed in the other two positions. And since the B is used in the first position, there
are four letters available to fill the remaining two positions.

Position 2 Position 3Position 1

B

Pool of available
letters: Y, T, E, S

Hence the answer is the number of 2-permutations of a set of four elements, which is

P(4, 2) = 4!
(4− 2)! =

4 ·3 ·2 ·1
2 ·1 = 4 ·3 = 12. ■

In many applications of the mathematics of counting, it is necessary to be skillful
in working algebraically with quantities of the form P(n, r). The next example shows a
kind of problem that gives practice in developing such skill.

Example 9.2.12 Proving a Property of P(n, r)

Prove that for all integers n ≥ 2,

P(n, 2)+ P(n, 1) = n2.
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Solution Suppose n is an integer that is greater than or equal to 2. By Theorem 9.2.3,

P(n, 2) = n!
(n − 2)! =

n(n − 1)(n − 2)!
(n − 2)! = n(n − 1)

and

P(n, 1) = n!
(n − 1)! =

n ·(n − 1)!
(n − 1)! = n.

Hence

P(n, 2)+ P(n, 1) = n ·(n − 1)+ n = n2 − n + n = n2,

which is what we needed to show. ■

Test Yourself
1. The multiplication rule says that if an operation can be per-

formed in k steps and, for each i with 1≤ i≤k, the i th step
can be performed in ni ways (regardless of how previous
steps were performed), then the operation as a whole can be
performed in _____.

2. A permutation of a set of elements is _____.

3. The number of permutations of a set of n elements equals
_____.

4. An r -permutation of a set of n elements is _____.

5. The number of r -permutations of a set of n elements is
denoted _____.

6. One formula for the number of r -permutations of a set of n
elements is _____ and another formula is _____.

Exercise Set 9.2
In 1–4, use the fact that in baseball’s World Series, the first team
to win four games wins the series.

1. Suppose team A wins the first three games. How many
ways can the series be completed? (Draw a tree.)

2. Suppose team A wins the first two games. How many ways
can the series be completed? (Draw a tree.)

3. How many ways can a World Series be played if team
A wins four games in a row?

4. How many ways can a World Series be played if no team
wins two games in a row?

5. In a competition between players X and Y , the first player
to win three games in a row or a total of four games wins.
How many ways can the competition be played if X wins
the first game and Y wins the second and third games?
(Draw a tree.)

6. One urn contains two black balls (labeled B1 and B2) and
one white ball. A second urn contains one black ball and
two white balls (labeled W1 and W2). Suppose the follow-
ing experiment is performed: One of the two urns is chosen
at random. Next a ball is randomly chosen from the urn.
Then a second ball is chosen at random from the same urn
without replacing the first ball.
a. Construct the possibility tree showing all possible out-

comes of this experiment.
b. What is the total number of outcomes of this experi-

ment?

c. What is the probability that two black balls are chosen?
d. What is the probability that two balls of opposite color

are chosen?

7. One urn contains one blue ball (labeled B1) and three red
balls (labeled R1, R2, and R3). A second urn contains two
red balls (R4 and R5) and two blue balls (B2 and B3). An
experiment is performed in which one of the two urns is
chosen at random and then two balls are randomly chosen
from it, one after the other without replacement.
a. Construct the possibility tree showing all possible out-

comes of this experiment.
b. What is the total number of outcomes of this experi-

ment?
c. What is the probability that two red balls are chosen?

8. A person buying a personal computer system is offered a
choice of three models of the basic unit, two models of
keyboard, and two models of printer. How many distinct
systems can be purchased?

9. Suppose there are three roads from city A to city B and five
roads from city B to city C .
a. How many ways is it possible to travel from city A to

city C via city B?
b. Howmany different round-trip routes are there from city

A to B to C to B and back to A?
c. How many different routes are there from city A to B

to C to B and back to A in which no road is traversed
twice?
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10. Suppose there are three routes from North Point to Boulder
Creek, two routes from Boulder Creek to Beaver Dam,
two routes from Beaver Dam to Star Lake, and four routes
directly from Boulder Creek to Star Lake. (Draw a sketch.)
a. How many routes from North Point to Star Lake pass

through Beaver Dam?
b. How many routes from North Point to Star Lake bypass

Beaver Dam?

11. a. A bit string is a finite sequence of 0’s and 1’s. Howmany
bit strings have length 8?

b. How many bit strings of length 8 begin with three 0’s?
c. Howmany bit strings of length 8 begin and end with a 1?

12. Hexadecimal numbers are made using the sixteen digits 0,
1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. They are denoted
by the subscript 16. For example, 9A2D16 and BC5416 are
hexadecimal numbers.
a. How many hexadecimal numbers begin with one of the

digits 3 through B, end with one of the digits 5 through
F, and are 5 digits long?

b. How many hexadecimal numbers begin with one of the
digits 4 through D, end with one of the digits 2 through
E, and are 6 digits long?

13. A coin is tossed four times. Each time the result H for heads
or T for tails is recorded. An outcome of HHTT means that
heads were obtained on the first two tosses and tails on the
second two. Assume that heads and tails are equally likely
on each toss.
a. How many distinct outcomes are possible?
b. What is the probability that exactly two heads occur?
c. What is the probability that exactly one head occurs?

14. Suppose that in a certain state, all automobile license plates
have four letters followed by three digits.
a. How many different license plates are possible?
b. How many license plates could begin with A and end

in 0?
c. How many license plates could begin with TGIF?
d. How many license plates are possible in which all the

letters and digits are distinct?
e. How many license plates could begin with AB and have

all letters and digits distinct?

15. A combination lock requires three selections of numbers,
each from 1 through 30.
a. How many different combinations are possible?
b. Suppose the locks are constructed in such a way that no

number may be used twice. How many different combi-
nations are possible?

16. a. How many integers are there from 10 through 99?
b. How many odd integers are there from 10 through 99?
c. How many integers from 10 through 99 have distinct

digits?

d. Howmany odd integers from 10 through 99 have distinct
digits?

e. What is the probability that a randomly chosen two-digit
integer has distinct digits? has distinct digits and is odd?

17. a. How many integers are there from 1000 through 9999?
b. How many odd integers are there from 1000 through

9999?
c. How many integers from 1000 through 9999 have dis-

tinct digits?
d. How many odd integers from 1000 through 9999 have

distinct digits?
e. What is the probability that a randomly chosen four-

digit integer has distinct digits? has distinct digits and
is odd?

18. The diagram below shows the keypad for an automatic
teller machine. As you can see, the same sequence of
keys represents a variety of different PINs. For instance,
2133, AZDE, and BQ3F are all keyed in exactly the
same way.

1
QZ

2
ABC

3
DEF

4
GHI

5
JKL

6
MNO

7
PRS

8
TUV

9
WXY

0

a. How many different PINs are represented by the same
sequence of keys as 2133?

b. How many different PINs are represented by the same
sequence of keys as 5031?

c. At an automatic teller machine, each PIN corresponds to
a four-digit numeric sequence. For instance, TWJM cor-
responds to 8956. How many such numeric sequences
contain no repeated digit?

19. Three officers—a president, a treasurer, and a secretary—
are to be chosen from among four people: Ann, Bob, Cyd,
and Dan. Suppose that Bob is not qualified to be trea-
surer and Cyd’s other commitments make it impossible for
her to be secretary. How many ways can the officers be
chosen? Can the multiplication rule be used to solve this
problem?
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20. Modify Example 9.2.4 by supposing that a PIN must not
begin with any of the letters A–M and must end with a digit.
Continue to assume that no symbol may be used more than
once and that the total number of PINs is to be determined.
a. Find the error in the following “solution.”

“Constructing a PIN is a four-step process.

Step 1: Choose the left-most symbol.

Step 2: Choose the second symbol from the left.

Step 3: Choose the third symbol from the left.

Step 4: Choose the right-most symbol.

Because none of the thirteen letters from A through M
may be chosen in step 1, there are 36− 13 = 23 ways
to perform step 1. There are 35 ways to perform step
2 and 34 ways to perform step 3 because previously
used symbols may not be used. Since the symbol cho-
sen in step 4 must be a previously unused digit, there
are 10− 3 = 7 ways to perform step 4. Thus there are
23 ·35 ·34 ·7 = 191,590 different PINs that satisfy the
given conditions.”

b. Reorder steps 1–4 in part (a) as follows:

Step 1: Choose the right-most symbol.

Step 2: Choose the left-most symbol.

Step 3: Choose the second symbol from the left.

Step 4: Choose the third symbol from the left.

Use the multiplication rule to find the number of PINs
that satisfy the given conditions.

21.H Suppose A is a set with m elements and B is a set with n
elements.
a. How many relations are there from A to B? Explain.
b. How many functions are there from A to B? Explain.
c. What fraction of the relations from A to B are functions?

22. a. How many functions are there from a set with three
elements to a set with four elements?

b. How many functions are there from a set with five
elements to a set with two elements?

c. How many functions are there from a set with m
elements to a set with n elements, where m and n are
positive integers?

23. In Section 2.5 we showed how integers can be repre-
sented by strings of 0’s and 1’s inside a digital computer.
In fact, through various coding schemes, strings of 0’s
and 1’s can be used to represent all kinds of symbols.
One commonly used code is the Extended Binary-Coded
Decimal Interchange Code (EBCDIC) in which each sym-
bol has an 8-bit representation. How many distinct symbols
can be represented by this code?

In each of 24–28, determine howmany times the innermost loop
will be iterated when the algorithm segment is implemented and
run. (Assume that m, n, p, a, b, c, and d are all positive inte-
gers.)

24. for i := 1 to 30

for j := 1 to 15
[Statements in body of inner loop.
None contain branching statements that
lead outside the loop.]

next j

next i

25. for j := 1 to m

for k := 1 to n
[Statements in body of inner loop.
None contain branching statements that
lead outside the loop.]

next k

next j

26. for i := 1 to m

for j := 1 to n

for k := 1 to p
[Statements in body of inner loop.
None contain branching statements that
lead outside the loop.]

next k

next j

next i

27. for i := 5 to 50

for j := 10 to 20
[Statements in body of inner loop.
None contain branching statements that
lead outside the loop.]

next j

next i

28. Assume a ≤ b and c ≤ d.

for i := a to b

for j := c to d
[Statements in body of inner loop.
None contain branching statements that
lead outside the loop.]

next j

next i

29.✶H Consider the numbers 1 through 99,999 in their ordinary
decimal representations. How many contain exactly one of
each of the digits 2, 3, 4, and 5?
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30.✶ Let n = pk11 pk22 · · · pkmm where p1, p2, . . . , pm are distinct
prime numbers and k1, k2, . . . , km are positive integers.
How many ways can n be written as a product of two posi-
tive integers that have no common factors
a. assuming that order matters (i.e., 8 ·15 and 15 ·8 are

regarded as different)?
b. assuming that order does not matter (i.e., 8 ·15 and

15 ·8 are regarded as the same)?

31.✶ a. If p is a prime number and a is a positive integer, how
many distinct positive divisors does pa have?

b. If p and q are distinct prime numbers and a and b are
positive integers, how many distinct positive divisors
does paqb have?

c. If p, q, and r are distinct prime numbers and a, b, and c
are positive integers, how many distinct positive divisors
does paqbrc have?

d. If p1, p2, . . . , pm are distinct prime numbers and
a1, a2, . . . , am are positive integers, how many distinct
positive divisors does pa11 pa22 · · · pamm have?

e. What is the smallest positive integer with exactly 12
divisors?

32. a. How many ways can the letters of the word
ALGORITHM be arranged in a row?

b. How many ways can the letters of the word
ALGORITHM be arranged in a row if A and L must
remain together (in order) as a unit?

c. How many ways can the letters of the word
ALGORITHM be arranged in a row if the letters GOR
must remain together (in order) as a unit?

33. Six people attend the theater together and sit in a row with
exactly six seats.
a. How many ways can they be seated together in the row?
b. Suppose one of the six is a doctor who must sit on the

aisle in case she is paged. How many ways can the peo-
ple be seated together in the row with the doctor in an
aisle seat?

c. Suppose the six people consist of three married cou-
ples and each couple wants to sit together with the hus-
band on the left. How many ways can the six be seated
together in the row?

34. Five people are to be seated around a circular table. Two
seatings are considered the same if one is a rotation of the
other. How many different seatings are possible?

35. Write all the 2-permutations of {W, X, Y, Z}.
36. Write all the 3-permutations of {s, t, u, v}.
37. Evaluate the following quantities.

a. P(6, 4) b. P(6, 6) c. P(6, 3) d. P(6, 1)

38. a. How many 3-permutations are there of a set of five
objects?

b. How many 2-permutations are there of a set of eight
objects?

39. a. How many ways can three of the letters of the word
ALGORITHM be selected and written in a row?

b. How many ways can six of the letters of the word
ALGORITHM be selected and written in a row?

c. How many ways can six of the letters of the word
ALGORITHM be selected and written in a row if the first
letter must be A?

d. How many ways can six of the letters of the word
ALGORITHM be selected and written in a row if the first
two letters must be OR?

40. Prove that for all integers n ≥ 2, P(n + 1, 3) = n3 − n.

41. Prove that for all integers n ≥ 2,

P(n + 1, 2)− P(n, 2) = 2P(n, 1).

42. Prove that for all integers n ≥ 3,

P(n + 1, 3)− P(n, 3) = 3P(n, 2).

43. Prove that for all integers n ≥ 2, P(n, n) = P(n, n − 1).

44. Prove Theorem 9.2.1 by mathematical induction.

45.H Prove Theorem 9.2.2 by mathematical induction.

46.✶ Prove Theorem 9.2.3 by mathematical induction.

47. A permutation on a set can be regarded as a function from
the set to itself. For instance, one permutation of {1, 2, 3, 4}
is 2341. It can be identified with the function that sends
each position number to the number occupying that posi-
tion. Since position 1 is occupied by 2, 1 is sent to 2 or
1→ 2; since position 2 is occupied by 3, 2 is sent to 3 or
2→ 3; and so forth. The entire permutation can be written
using arrows as follows:

1 2 3 4
↓ ↓ ↓ ↓
2 3 4 1

a. Use arrows to write each of the six permutations of
{1, 2, 3}.

b. Use arrows to write each of the permutations of
{1, 2, 3, 4} that keep 2 and 4 fixed.

c. Which permutations of {1, 2, 3} keep no elements fixed?
d. Use arrows to write all permutations of {1, 2, 3, 4} that

keep no elements fixed.

Answers for Test Yourself
1. n1n2 · · · nk ways 2. an ordering of the elements of the set in a row 3. n! 4. an ordered selection of r of the elements of the set

5. P(n, r) 6. n(n − 1)(n − 2) · · · (n − r + 1); n!
(n−r)!
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9.3 Counting Elements of Disjoint Sets:
The Addition Rule
The whole of science is nothing more than a refinement of everyday thinking.
—Albert Einstein, 1879–1955

In the last section we discussed counting problems that can be solved using possibility
trees. In this section we look at counting problems that can be solved by counting the
number of elements in the union of two sets, the difference of two sets, or the intersection
of two sets.

The basic rule underlying the calculation of the number of elements in a union or
difference or intersection is the addition rule. This rule states that the number of elements
in a union of mutually disjoint finite sets equals the sum of the number of elements in
each of the component sets.

Theorem 9.3.1 The Addition Rule

Suppose a finite set A equals the union of k distinct mutually disjoint subsets A1,
A2, . . . , Ak . Then

N (A) = N (A1)+ N (A2)+ · · · + N (Ak).

A formal proof of this theorem uses mathematical induction and is left to the
exercises.

Example 9.3.1 Counting Passwords with Three or Fewer Letters

A computer access password consists of from one to three letters chosen from the 26 in
the alphabet with repetitions allowed. How many different passwords are possible?

Solution The set of all passwords can be partitioned into subsets consisting of those of
length 1, those of length 2, and those of length 3 as shown in Figure 9.3.1.

Set of All Passwords of Length ≤ 3

passwords
of length 1

passwords
of length 2

passwords
of length 3

Figure 9.3.1

By the addition rule, the total number of passwords equals the number of passwords of
length 1, plus the number of passwords of length 2, plus the number of passwords of
length 3. Now the

number of passwords of length 1 = 26 because there are 26 letters in the alphabet

number of passwords of length 2 = 262 because forming such a word can be
thought of as a two-step process in which
there are 26 ways to perform each step

number of passwords of length 3 = 263 because forming such a word can be thought
of as a three-step process in which
there are 26 ways to perform each step.

Hence the total number of passwords = 26+ 262 + 263 = 18,278. ■
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Example 9.3.2 Counting the Number of Integers Divisible by 5

How many three-digit integers (integers from 100 to 999 inclusive) are divisible by 5?

Solution One solution to this problem was discussed in Example 9.1.4. Another approach
uses the addition rule. Integers that are divisible by 5 end either in 5 or in 0. Thus the
set of all three-digit integers that are divisible by 5 can be split into two mutually disjoint
subsets A1 and A2 as shown in Figure 9.3.2.

Three-Digit Integers That Are Divisible by 5

three-digit integers
that end in 0

three-digit integers
that end in 5

A1 A2

A1 ∪ A2 = the set of all three-digit integers
that are divisible by 5

A1 ∩ A2 = ∅

Figure 9.3.2

Now there are as many three-digit integers that end in 0 as there are possible choices
for the left-most and middle digits (because the right-most digit must be a 0). As illus-
trated below, there are nine choices for the left-most digit (the digits 1 through 9) and ten
choices for the middle digit (the digits 0 through 9). Hence N (A1) = 9 ·10 = 90.

↑ ↑ ↑
9 choices 10 choices number ends in 0

1, 2, 3, 4, 5, 6, 7, 8, 9 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Similar reasoning (using 5 instead of 0) shows that N (A2) = 90 also. So⎡
⎣the number of
three-digit integers
that are divisible by 5

⎤
⎦ = N (A1)+ N (A2) = 90+ 90 = 180. ■

The Difference Rule
An important consequence of the addition rule is the fact that if the number of elements
in a set A and the number in a subset B of A are both known, then the number of elements
that are in A and not in B can be computed.

Theorem 9.3.2 The Difference Rule

If A is a finite set and B is a subset of A, then

N (A − B) = N (A)− N (B).
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The difference rule is illustrated in Figure 9.3.3.

A (n elements)

B (k elements) A – B (n –  k elements)

Figure 9.3.3 The Difference Rule

The difference rule holds for the following reason: If B is a subset of A, then the two
sets B and A − B have no elements in common and B ∪ (A − B) = A. Hence, by the
addition rule,

N (B)+ N (A − B) = N (A).

Subtracting N (B) from both sides gives the equation

N (A − B) = N (A)− N (B).

Example 9.3.3 Counting PINs with Repeated Symbols

The PINs discussed in Examples 9.2.2 and 9.2.4 are made from exactly four symbols
chosen from the 26 letters of the alphabet and the ten digits, with repetitions allowed.

a. How many PINs contain repeated symbols?

b. If all PINs are equally likely, what is the probability that a randomly chosen PIN
contains a repeated symbol?

Solution

a. According to Example 9.2.2, there are 364 = 1,679,616 PINs when repetition is allowed,
and by Example 9.2.4, there are 1,413,720 PINs when repetition is not allowed. Thus,
by the difference rule, there are

1,679,616− 1,413,720 = 265,896

PINs that contain at least one repeated symbol.

b. By Example 9.2.2 there are 1,679,616 PINs in all, and by part (a) 265,896 of these
contain at least one repeated symbol. Thus, by the equally likely probability formula,
the probability that a randomly chosen PIN contains a repeated symbol is 265,896

1,679,616
∼=

0.158 = 15.8%. ■

An alternative solution to Example 9.3.3(b) is based on the observation that if S is the
set of all PINs and A is the set of all PINs with no repeated symbol, then S − A is the set
of all PINs with at least one repeated symbol. It follows that

P(S − A) = N (S − A)

N (S)
by definition of probability in the equally likely case

= N (S)− N (A)

N (S)
by the difference rule

= N (S)

N (S)
− N (A)

N (S)
by the laws of fractions

= 1− P(A) by definition of probability in the equally likely case

∼= 1− 0.842 by Example 9.2.4

∼= 0.158 = 15.8%

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



9.3 Counting Elements of Disjoint Sets: The Addition Rule 543

This solution illustrates a more general property of probabilities: that the probability of
the complement of an event is obtained by subtracting the probability of the event from
the number 1. In Section 9.8 we derive this formula from the axioms for probability.

Formula for the Probability of the Complement of an Event

If S is a finite sample space and A is an event in S, then

P(Ac) = 1− P(A).

Example 9.3.4 Number of Python Identifiers of Eight or Fewer Characters

In the computer language Python, identifiers must start with one of 53 symbols: either
one of the 52 letters of the upper- and lower-case Roman alphabet or an underscore (_).
The initial character may stand alone, or it may be followed by any number of additional
characters chosen from a set of 63 symbols: the 53 symbols allowed as an initial character
plus the ten digits. Certain keywords, however, such as and, if, print, and so forth, are set
aside and may not be used as identifiers. In one implementation of Python there are 31
such reserved keywords, none of which has more than eight characters. Howmany Python
identifiers are there that are less than or equal to eight characters in length?

Solution The set of all Python identifiers with eight or fewer characters can be partitioned
into eight subsets—identifiers of length 1, identifiers of length 2, and so on—as shown in
Figure 9.3.4. The reserved words have various lengths (all less than or equal to 8), so the
set of reserved words is shown overlapping the various subsets.

Set of Python Identifiers with Eight or Fewer Characters

Reserved words

length
1

length
2

length
3

length
4

length
5

length
6

length
7

length
8

Figure 9.3.4

According to the rules for creating Python identifiers, there are

53 potential identifiers of length 1 because there are 53 choices for the first character

53 ·63 potential identifiers of length 2 because the first character can be any one of
53 symbols, and the second character can be
any one of 63 symbols

53 ·632 potential identifiers of length 3 because the first character can be any one
of 53 symbols, and each of the next two
characters can be any one of 63 symbols

...

53 ·637 potential identifiers of length 8 because the first character can be any one
of 53 symbols, and each of the next seven
characters can be any one of 63 symbols.
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Thus, by the addition rule, the number of potential Python identifiers with eight or fewer
characters is

53+ 53 ·63+ 53 ·632 + 53 ·633 + 53 ·634 + 53 ·635 + 53 ·636 + 53 ·637

= 53

(
638 − 1

63− 1

)
= 212,133,167,002,880.

Now 31 of these potential identifiers are reserved, so by the difference rule, the actual
number of Python identifiers with eight or fewer characters is

212,133,167,002,880− 31 = 212,133,167,002,849. ■

Example 9.3.5 Internet Addresses

In order to communicate effectively, each computer in a network needs a distinguishing
name called an address. For the Internet this address is currently a 32-bit number called
the Internet Protocol (IP) address (although 128-bit addresses are being phased in to
accommodate the growth of the Internet). For technical reasons some computers have
more than one address, whereas other sets of computers, which use the Internet only
sporadically, may share a pool of addresses that are assigned on a temporary basis. Like
telephone numbers, IP addresses are divided into parts: one, the network ID, specifies the
local network to which a given computer belongs, and the other, the host ID, specifies
the particular computer.

An example of an IP address is 10001100 11000000 00100000 10001000, where the
32 bits have been divided into four groups of 8 for easier reading. To make the reading
even easier, IP addresses are normally written as “dotted decimals,” in which each group
of 8 bits is converted into a decimal number between 0 and 255. For instance, the IP
address above converts into 140.192.32.136.

In order to accommodate the various sizes of the local networks connected through
the Internet, the network IDs are divided into several classes, the most important of which
are called A, B, and C. In every class, a host ID may not consist of either all 0’s or all 1’s.

Class A network IDs are used for very large local networks. The left-most bit is set
to 0, and the left-most 8 bits give the full network ID. The remaining 24 bits are used for
individual host IDs. However, neither 00000000 nor 01111111 is allowed as a network
ID for a class A IP address.

Network ID Host ID

Class A: 0

Class B network IDs are used for medium to large local networks. The two left-most
bits are set to 10, and the left-most 16 bits give the full network ID. The remaining 16
bits are used for individual host IDs.

Network ID Host ID

Class B: 1 0

Class C network IDs are used for small local networks. The three left-most bits are
set to 110, and the left-most 24 bits give the full network ID. The remaining 8 bits are
used for individual host IDs.
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Network ID Host ID

Class C: 1 1 0

a. Check that the dotted decimal form of 10001100 11000000 00100000 10001000 is
140.192.32.136.

b. How many Class B networks can there be?

c. What is the dotted decimal form of the IP address for a computer in a Class B network?

d. How many host IDs can there be for a Class B network?

Solution

a. 10001100 = 1 ·27 + 1 ·23 + 1 ·22 = 128+ 8+ 4 = 140
11000000 = 1 ·27 + 1 ·26 = 128+ 64 = 192
00100000 = 1 ·25 = 32
10001000 = 1 ·27 + 1 ·23 = 128+ 8 = 136

b. The network ID for a Class B network consists of 16 bits and begins with 10. Because
there are two choices for each of the remaining 14 positions (either 0 or 1), the total
number of possible network IDs is 214, or 16,384.

c. The network ID part of a Class B IP address goes from

10000000 00000000 to 10111111 11111111.

As dotted decimals, these numbers range from 128.0 to 191.255 because 100000002 =
12810, 000000002 = 010, 101111112 = 19110, and 111111112 = 25510. Thus the dot-
ted decimal form of the IP address of a computer in a Class B network is w.x .y.z,
where 128 ≤ w ≤ 191, 0 ≤ x ≤ 255, 0 ≤ y ≤ 255, and 0 ≤ z ≤ 255. However, y and
z are not allowed both to be 0 or both to be 255 because host IDs may not consist of
either all 0’s or all 1’s.

d. For a class B network, 16 bits are used for host IDs. Having two choices (either 0 or 1)
for each of 16 positions gives a potential total of 216, or 65,536, host IDs. But because
two of these are not allowed (all 0’s and all 1’s), the total number of host IDs is 65,534.

■

The Inclusion/Exclusion Rule
The addition rule says how many elements are in a union of sets if the sets are mutually
disjoint. Now consider the question of how to determine the number of elements in a
union of sets when some of the sets overlap. For simplicity, begin by looking at a union
of two sets A and B, as shown in Figure 9.3.5.

A  B

A  B

A B

Figure 9.3.5
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First observe that the number of elements in A ∪ B varies according to the number
of elements the two sets have in common. If A and B have no elements in common, then
N (A ∪ B) = N (A)+ N (B). If A and B coincide, then N (A ∪ B) = N (A). Thus any
general formula for N (A ∪ B) must contain a reference to the number of elements the
two sets have in common, N (A ∩ B), as well as to N (A) and N (B).

The simplest way to derive a formula for N (A ∪ B) is to reason as follows: The
number N (A) counts the elements that are in A and not in B and also the elements that
are in both A and B. Similarly, the number N (B) counts the elements that are in B and
not in A and also the elements that are in both A and B. Hence when the two numbers
N (A) and N (B) are added, the elements that are in both A and B are counted twice. To
get an accurate count of the elements in A ∪ B, it is necessary to subtract the number of
elements that are in both A and B. Because these are the elements in A ∩ B,

N (A ∪ B) = N (A)+ N (B)− N (A ∩ B).Note An alternative
proof is outlined in
exercise 46 at the end of
this section.

A similar analysis gives a formula for the number of elements in a union of three sets,
as shown in Theorem 9.3.3.

Theorem 9.3.3 The Inclusion/Exclusion Rule for Two or Three Sets

If A, B, and C are any finite sets, then

N (A ∪ B) = N (A)+ N (B)− N (A ∩ B)

and

N (A ∪ B ∪ C) = N (A)+ N (B)+ N (C)− N (A ∩ B)− N (A ∩ C)

−N (B ∩ C)+ N (A ∩ B ∩ C).

It can be shown using mathematical induction (see exercise 48 at the end of this
section) that formulas analogous to those of Theorem 9.3.3 hold for unions of any finite
number of sets.

Example 9.3.6 Counting Elements of a General Union

a. How many integers from 1 through 1,000 are multiples of 3 or multiples of 5?

b. How many integers from 1 through 1,000 are neither multiples of 3 nor multiples of 5?

Solution

a. Let A = the set of all integers from 1 through 1,000 that are multiples of 3.
Let B = the set of all integers from 1 through 1,000 that are multiples of 5.

Then

A ∪ B = the set of all integers from 1 through 1,000 that are multiples of 3
or multiples of 5

and

A ∩ B = the set of all integers from 1 through 1,000 that are multiples
of both 3 and 5

= the set of all integers from 1 through 1,000 that are multiples of 15.

[Now calculate N (A), N (B), and N (A ∩ B) and use the inclusion/exclusion rule to solve
for N (A ∪ B).]
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Because every third integer from 3 through 999 is a multiple of 3, each can be rep-
resented in the form 3k, for some integer k from 1 through 333. Hence there are 333
multiples of 3 from 1 through 1,000, and so N (A) = 333.

1 2 3 4 5 6 . . . 996 997 998 999
( ( ( (

3 ·1 3 ·2 3 ·332 3 ·333

Similarly, each multiple of 5 from 1 through 1,000 has the form 5k, for some integer
k from 1 through 200.

1 2 3 4 5 6 7 8 9 10 . . . 995 996 997 998 999 1,000
( ( ( (

5 ·1 5 ·2 5 ·199 5 ·200

Thus there are 200 multiples of 5 from 1 through 1,000 and N (B) = 200.
Finally, each multiple of 15 from 1 through 1,000 has the form 15k, for some integer
k from 1 through 66 (since 990 = 66 ·15).

1 2 . . . 15 . . . 30 . . . 975 . . . 990 . . . 999 1,000
( ( ( (

15 ·1 15 ·2 15 ·65 15 ·66

Hence there are 66 multiples of 15 from 1 through 1,000, and N (A ∩ B) = 66.
It follows by the inclusion/exclusion rule that

N (A ∪ B) = N (A)+ N (B)− N (A ∩ B)

= 333+ 200− 66

= 467.

Thus, 467 integers from 1 through 1,000 are multiples of 3 or multiples of 5.

b. There are 1,000 integers from 1 through 1,000, and by part (a), 467 of these are multi-
ples of 3 or multiples of 5. Thus, by the set difference rule, there are 1,000− 467 = 533
that are neither multiples of 3 nor multiples of 5. ■

Note that the solution to part (b) of Example 9.3.6 hid a use of De Morgan’s law. The
number of elements that are neither in A nor in B is N (Ac ∩ Bc), and by De Morgan’s
law, Ac ∩ Bc = (A ∪ B)c. So N ((A ∪ B)c) was then calculated using the set difference
rule: N ((A ∪ B)c) = N (U )− N (A ∪ B), where the universeU was the set of all integers
from 1 through 1,000. Exercises 37–39 at the end of this section explore this technique
further.

Example 9.3.7 Counting the Number of Elements in an Intersection

A professor in a discrete mathematics class passes out a form asking students to check
all the mathematics and computer science courses they have recently taken. The finding
is that out of a total of 50 students in the class,

30 took precalculus; 16 took both precalculus and Java;
18 took calculus; 8 took both calculus and Java;
26 took Java; 47 took at least one of the three courses.
9 took both precalculus and calculus;
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Note that when we write “30 students took precalculus,” we mean that the total num-
ber of students who took precalculus is 30, and we allow for the possibility that some of
these students may have taken one or both of the other courses. If we want to say that
30 students took precalculus only (and not either of the other courses), we will say so
explicitly.

a. How many students did not take any of the three courses?

b. How many students took all three courses?

c. How many students took precalculus and calculus but not Java? How many students
took precalculus but neither calculus nor Java?

Solution

a. By the difference rule, the number of students who did not take any of the three courses
equals the number in the class minus the number who took at least one course. Thus
the number of students who did not take any of the three courses is

50− 47 = 3.

b. Let

P = the set of students who took precalculus

C = the set of students who took calculus

J = the set of students who took Java.

Then, by the inclusion/exclusion rule,

N (P ∪ C ∪ J ) = N (P)+ N (C)+ N (J )− N (P ∩ C)− N (P ∩ J )

− N (C ∩ J )+ N (P ∩ C ∩ J )

Substituting known values, we get

47 = 30+ 26+ 18− 9− 16− 8+ N (P ∩ C ∩ J ).

Solving for N (P ∩ C ∩ J ) gives

N (P ∩ C ∩ J ) = 6.

Hence there are six students who took all three courses. In general, if you know any
seven of the eight terms in the inclusion/exclusion formula for three sets, you can solve
for the eighth term.

c. To answer the questions of part (c), look at the diagram in Figure 9.3.6.

11
10

6

7

8

3 2

P J

C

The number of
students who
took all three
courses

The number of
students who
took both
precalcules and
calcules
but not Java 3

Figure 9.3.6
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Since N (P ∩ C ∩ J ) = 6, put the number 6 inside the innermost region. Then work
outward to find the numbers of students represented by the other regions of the dia-
gram. For example, since nine students took both precalculus and calculus and six
took all three courses, 9− 6 = 3 students took precalculus and calculus but not Java.
Similarly, since 16 students took precalculus and calculus and six took all three courses,
16− 6 = 10 students took precalculus and calculus but not Java. Now the total num-
ber of students who took precalculus is 30. Of these 30, three also took calculus but
not Java, ten took Java but not calculus, and six took both calculus and Java. That
leaves 11 students who took precalculus but neither of the other two courses.

A similar analysis can be used to fill in the numbers for the other regions of the
diagram. ■

Test Yourself
1. The addition rule says that if a finite set A equals the union

of k distinct mutually disjoint subsets A1, A2, . . . , Ak , then
_____.

2. The difference rule says that if A is a finite set and B is a
subset of A, then _____.

3. If S is a finite sample space and A is an event in S, then the
probability of Ac equals _____.

4. The inclusion/exclusion rule for two sets says that if A and
B are any finite sets, then _____.

5. The inclusion/exclusion rule for three sets says that if A, B,
and C are any finite sets, then _____.

Exercise Set 9.3
1. a. How many bit strings consist of from one through

four digits? (Strings of different lengths are con-
sidered distinct. Thus 10 and 0010 are distinct
strings.)

b. How many bit strings consist of from five through eight
digits?

2. a. How many strings of hexadecimal digits consist of from
one through three digits? (Recall that hexadecimal num-
bers are constructed using the 16 digits 0, 1, 2, 3, 4, 5, 6,
7, 8, 9, A, B, C, D, E, F.)

b. How many strings of hexadecimal digits consist of from
two through five digits?

3. a. How many integers from 1 through 999 do not have any
repeated digits?

b. How many integers from 1 through 999 have at least one
repeated digit?

c. What is the probability that an integer chosen at random
from 1 through 999 has at least one repeated digit?

4. How many arrangements in a row of no more than three let-
ters can be formed using the letters of the word NETWORK
(with no repetitions allowed)?

5. a. How many five-digit integers (integers from 10,000
through 99,999) are divisible by 5?

b. What is the probability that a five-digit integer chosen at
random is divisible by 5?

6. In a certain state, license plates consist of from zero to three
letters followed by from zero to four digits, with the provi-
sion, however, that a blank plate is not allowed.
a. Howmany different license plates can the state produce?
b. Suppose 85 letter combinations are not allowed because

of their potential for giving offense. How many different
license plates can the state produce?

7. In another state, all license plates consist of from four to six
symbols chosen from the 26 letters of the alphabet together
with the ten digits 0–9.
a. How many license plates are possible if repetition of

symbols is allowed?
b. How many license plates do not contain any repeated

symbol?
c.H Howmany license plates have at least one repeated sym-

bol?
d. What is the probability that a license plate chosen at ran-

dom has a repeated symbol?

8. At a certain company, passwords must be from 3–5 symbols
long and composed of the 26 letters of the alphabet, the ten
digits 0–9, and the 14 symbols !,@,#,$,%,ˆ,&, ∗,(,),−,+,{,
and }.
a. How many passwords are possible if repetition of sym-

bols is allowed?
b. How many passwords contain no repeated symbols?
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c. How many passwords have at least one repeated sym-
bol?

d. What is the probability that a password chosen at ran-
dom has n repeated symbol?

9. a. Consider the following algorithm segment:

for i := 1 to 4

for j := 1 to i
[Statements in body of inner loop.
None contain branching statements
that lead outside the loop.]
next j

next i

Howmany times will the inner loop be iterated when the
algorithm is implemented and run?

b. Let n be a positive integer, and consider the following
algorithm segment:

for i := 1 to n

for j := 1 to i
[Statements in body of inner loop.
None contain branching statements
that lead outside the loop.]
next j

next i

Howmany times will the inner loop be iterated when the
algorithm is implemented and run?

10.✶ A calculator has an eight-digit display and a decimal point
that is located at the extreme right of the number displayed,
at the extreme left, or between any pair of digits. The cal-
culator can also display a minus sign at the extreme left of
the number. How many distinct numbers can the calcula-
tor display? (Note that certain numbers are equal, such as
1.9, 1.90, and 01.900, and should, therefore, not be counted
twice.)

11. a. How many ways can the letters of the word QUICK be
arranged in a row?

b. How many ways can the letters of the word QUICK be
arranged in a row if the Q and the U must remain next
to each other in the order QU?

c. How many ways can the letters of the word QUICK be
arranged in a row if the letters QU must remain together
but may be in either the order QU or the order UQ?

12. a. How many ways can the letters of the word THEORY be
arranged in a row?

b. How many ways can the letters of the word THEORY be
arranged in a row if T and H must remain next to each
other as either TH or HT ?

13. A group of eight people are attending the movies together.
a. Two of the eight insist on sitting side-by-side. In how

many ways can the eight be seated together in a row?

b. Two of the people do not like each other and do not want
to sit side-by-side. Now howmany ways can the eight be
seated together in a row?

14. An early compiler recognized variable names according to
the following rules: Numeric variable names had to begin
with a letter, and then the letter could be followed by
another letter or a digit or by nothing at all. String variable
names had to begin with the symbol $ followed by a letter,
which could then be followed by another letter or a digit or
by nothing at all. How many distinct variable names were
recognized by this compiler?

15.H Identifiers in a certain database language must begin with a
letter, and then the letter may be followed by other charac-
ters, which can be letters, digits, or underscores (_). How-
ever, 82 keywords (all consisting of 15 or fewer charac-
ters) are reserved and cannot be used as identifiers. How
many identifiers with 30 or fewer characters are possible?
(Write the answer using summation notation and evaluate it
using a formula from Section 5.2.)

16. a. If any seven digits could be used to form a tele-
phone number, how many seven-digit telephone num-
bers would not have any repeated digits?

b. Howmany seven-digit telephone numbers would have at
least one repeated digit?

c. What is the probability that a randomly chosen seven-
digit telephone number would have at least one repeated
digit?

17. a. How many strings of four hexadecimal digits do not
have any repeated digits?

b. How many strings of four hexadecimal digits have at
least one repeated digit?

c. What is the probability that a randomly chosen string of
four hexadecimal digits has at least one repeated digit?

18. Just as the difference rule gives rise to a formula for the
probability of the complement of an event, so the addi-
tion and inclusion/exclusion rules give rise to formulas for
the probability of the union of mutually disjoint events and
for a general union of (not necessarily mutually exclusive)
events.
a. Prove that for mutually disjoint events A and B,

P(A ∪ B) = P(A)+ P(B).

b. Prove that for any events A and B.

P(A ∪ B) = P(A)+ P(B)− P(A ∩ B).

19.H A combination lock requires three selections of num-
bers, each from 1 through 39. Suppose the lock is con-
structed in such a way that no number can be used twice
in a row but the same number may occur both first and
third. For example, 20 13 20 would be acceptable, but 20
20 13 would not. How many different combinations are
possible?
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20.✶ a. How many integers from 1 through 100,000 contain the
digit 6 exactly once?

b. How many integers from 1 through 100,000 contain the
digit 6 at least once?

c. If an integer is chosen at random from 1 through
100,000, what is the probability that it contains two or
more occurrences of the digit 6?

21.✶H Six new employees, two of whom are married to each other,
are to be assigned six desks that are lined up in a row. If the
assignment of employees to desks is made randomly, what
is the probability that the married couple will have nonad-
jacent desks? (Hint: First find the probability that the cou-
ple will have adjacent desks, and then subtract this number
from 1.)

22.✶ Consider strings of length n over the set {a, b, c, d}.
a. How many such strings contain at least one pair of adja-

cent characters that are the same?
b. If a string of length ten over {a, b, c, d} is chosen at ran-

dom, what is the probability that it contains at least one
pair of adjacent characters that are the same?

23. a. How many integers from 1 through 1,000 are multiples
of 4 or multiples of 7?

b. Suppose an integer from 1 through 1,000 is chosen at
random. Use the result of part (a) to find the probability
that the integer is a multiple of 4 or a multiple of 7.

c. How many integers from 1 through 1,000 are neither
multiples of 4 nor multiples of 7?

24. a. How many integers from 1 through 1,000 are multiples
of 2 or multiples of 9?

b. Suppose an integer from 1 through 1,000 is chosen at
random. Use the result of part (a) to find the probability
that the integer is a multiple of 2 or a multiple of 9.

c. How many integers from 1 through 1,000 are neither
multiples of 2 nor multiples of 9?

25. Counting Strings:
a. Make a list of all bit strings of lengths zero, one, two,

three, and four that do not contain the bit pattern 111.
b. For each integer n ≥ 0, let dn = the number of bit strings

of length n that do not contain the bit pattern 111. Find
d0, d1, d2, d3, and d4.

c. Find a recurrence relation for d0, d1, d2, . . . .
d. Use the results of parts (b) and (c) to find the number

of bit strings of length five that do not contain the pat-
tern 111.

26. Counting Strings: Consider the set of all strings of a’s, b’s,
and c’s.
a. Make a list of all of these strings of lengths zero, one,

two, and three that do not contain the pattern aa.
b. For each integer n ≥ 0, let sn = the number of strings

of a’s, b’s, and c’s of length n that do not contain the
pattern aa. Find s0, s1, s2, and s3.

c.H Find a recurrence relation for s0, s1, s2, . . ..
d. Use the results of parts (b) and (c) to find the number

of strings of a’s, b’s, and c’s of length four that do not
contain the pattern aa.

e.H Use the technique described in Section 5.8 to find an
explicit formula for s0, s1, s2, . . . .

27. For each integer n ≥ 0, let ak be the number of bit strings
of length n that do not contain the pattern 101.
a. Show that ak = ak−1 + ak−3 + ak−4 + · · · + a0 + 2, for

all integers k ≥ 3.
b. Use the result of part (a) to show that if k ≥ 3, then

ak = 2ak−1 − ak−2 + ak−3.

28.✶ For each integer n ≥ 2 let an be the number of permu-
tations of {1, 2, 3, . . . , n} in which no number is more
than one place removed from its “natural” position. Thus
a1 = 1 since the one permutation of {1}, namely 1, does
not move 1 from its natural position. Also a2 = 2 since nei-
ther of the two permutations of {1,2}, namely 12 and 21,
moves either number more than one place from its natural
position.
a. Find a3.
b. Find a recurrence relation for a1, a2, a3, . . . .

29. Refer to Example 9.3.5.
a. Write the following IP address in dotted decimal form:

11001010 00111000 01101011 11101110

b. How many Class A networks can there be?
c. What is the dotted decimal form of the IP address for a

computer in a Class A network?
d. How many host IDs can there be for a Class A network?
e. How many Class C networks can there be?
f. What is the dotted decimal form of the IP address for a

computer in a Class C network?
g. How many host IDs can there be for a Class C network?
h. How can you tell, by looking at the first of the four num-

bers in the dotted decimal form of an IP address, what
kind of network the address is from? Explain.

i. An IP address is 140.192.32.136. What class of network
does it come from?

j. An IP address is 202.56.107.238. What class of network
does it come from?

30.✶ A row in a classroom has n seats. Let sn be the number
of ways nonempty sets of students can sit in the row so
that no student is seated directly adjacent to any other stu-
dent. (For instance, a row of three seats could contain a sin-
gle student in any of the seats or a pair of students in the
two outer seats. Thus s3 = 4.) Find a recurrence relation for
s1, s2, s3, . . . .

31. Assume that birthdays are equally likely to occur in any one
of the 12 months of the year.
a. Given a group of four people, A, B,C , and D, what is

the total number of ways in which birth months could
be associated with A, B,C , and D? (For instance, A
and B might have been born in May, C in September,
and D in February. As another example, A might have
been born in January, B in June, C in March, and D in
October.)
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b. How many ways could birth months be associated with
A, B,C , and D so that no two people would share the
same birth month?

c. How many ways could birth months be associated with
A, B,C , and D so that at least two people would share
the same birth month?

d. What is the probability that at least two people out of
A, B,C , and D share the same birth month?

e. How large must n be so that in any group of n people, the
probability that two or more share the same birth month
is at least 50%?

32.H Assuming that all years have 365 days and all birthdays
occur with equal probability, how large must n be so that in
any randomly chosen group of n people, the probability that
two or more have the same birthday is at least 1/2? (This is
called the birthday problem.Many people find the answer
surprising.)

33. A college conducted a survey to explore the academic inter-
ests and achievements of its students. It asked students to
place checks beside the numbers of all the statements that
were true of them. Statement #1 was “I was on the honor
roll last term,” statement #2 was “I belong to an academic
club, such as the math club or the Spanish club,” and state-
ment #3 was “I am majoring in at least two subjects.” Out
of a sample of 100 students, 28 checked #1, 26 checked #2,
and 14 checked #3, 8 checked both #1 and #2, 4 checked
both #1 and #3, 3 checked both #2 and #3, and 2 checked
all three statements.
a. How many students checked at least one of the state-

ments?
b. How many students checked none of the statements?
c. Let H be the set of students who checked #1, C the set

of students who checked #2, and D the set of students
who checked #3. Fill in the numbers for all eight regions
of the diagram below.

Sample of Students

H

C

D

d. How many students checked #1 and #2 but not #3?
e. How many students checked #2 and #3 but not #1?
f. How many students checked #2 but neither of the other

two?

34. A study was done to determine the efficacy of three differ-
ent drugs—A, B, and C—in relieving headache pain. Over

the period covered by the study, 50 subjects were given the
chance to use all three drugs. The following results were
obtained:

21 reported relief from drug A.

21 reported relief from drug B.

31 reported relief from drug C.

9 reported relief from both drugs A and B.

14 reported relief from both drugs A and C.

15 reported relief from both drugs B and C.

41 reported relief from at least one of the drugs.

Note that some of the 21 subjects who reported relief
from drug A may also have reported relief from drugs
B or C . A similar occurrence may be true for the other
data.
a. How many people got relief from none of the drugs?
b. How many people got relief from all three drugs?
c. Let A be the set of all subjects who got relief from drug

A, B the set of all subjects who got relief from drug B,
and C the set of all subjects who got relief from drug C .
Fill in the numbers for all eight regions of the diagram
below.

A

B

C

Sample of Subjects

d. How many subjects got relief from A only?

35. An interesting use of the inclusion/exclusion rule is to
check survey numbers for consistency. For example, sup-
pose a public opinion polltaker reports that out of a national
sample of 1,200 adults, 675 are married, 682 are from 20 to
30 years old, 684 are female, 195 are married and are from
20 to 30 years old, 467 are married females, 318 are females
from 20 to 30 years old, and 165 are married females from
20 to 30 years old. Are the polltaker’s figures consistent?
Could they have occurred as a result of an actual sample
survey?

36. Fill in the reasons for each step below. If A and B are sets
in a finite universe U , then

N (A ∩ B)= N (U )− N ((A ∩ B)c) (a)

= N (U )− N (Ac ∪ Bc) (b)

= N (U )− (N (Ac)+ N (Bc)− N (Ac ∩ Bc)) (c) .
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For each of exercises 37–39 below, the number of elements in
a certain set can be found by computing the number in some
larger universe that are not in the set and subtracting this from
the total. In each case, as indicated by exercise 34, De Morgan’s
laws and the inclusion/exclusion rule can be used to compute
the number that are not in the set.

37. How many positive integers less than 1,000 have no com-
mon factors with 1,000?

38.✶ How many permutations of abcde are there in which the
first character is a, b, or c and the last character is c, d, or e?

39.✶ How many integers from 1 through 999,999 contain each
of the digits 1, 2, and 3 at least once? (Hint: For each
i = 1, 2, and 3, let Ai be the set of all integers from 1
through 999,999 that do not contain the digit i .)

For 40 and 41, use the definition of the Euler phi function φ on
page 396.

40.H Use the inclusion/exclusion principle to prove the follow-
ing: If n = pq, where p and q are distinct prime numbers,
then ϕ(n) = (p − 1)(q − 1).

41. Use the inclusion/exclusion principle to prove the follow-
ing: If n = pqr , where p, q, and r are distinct prime num-
bers, then ϕ(n) = (p − 1)(q − 1)(r − 1).

42. A gambler decides to play successive games of blackjack
until he loses three times in a row. (Thus the gambler could
play five games by losing the first, winning the second, and
losing the final three or by winning the first two and los-
ing the final three. These possibilities can be symbolized as
LWLLL and WWLLL.) Let gn be the number of ways the
gambler can play n games.
a. Find g3, g4, and g5.
b. Find g6.
c.H Find a recurrence relation for g3, g4, g5, . . ..

43.✶ A derangement of the set {1, 2, . . . , n} is a permutation
that moves every element of the set away from its “natu-
ral” position. Thus 21 is a derangement of {1, 2}, and 231
and 312 are derangements of {1, 2, 3}. For each positive
integer n, let dn be the number of derangements of the set
{1, 2, . . . , n}.
a. Find d1, d2, and d3.
b. Find d4.
c.H Find a recurrence relation for d1, d2, d3, . . . .

44. Note that a product x1x2x3 may be parenthesized in two
different ways: (x1x2)x3 and x1(x2x3). Similarly, there are
several different ways to parenthesize x1x2x3x4. Two such
ways are (x1x2)(x3x4) and x1((x2x3)x4). Let Pn be the num-
ber of different ways to parenthesize the product x1x2 . . . x4.
Show that if P1 = 1, then

Pn =
n−1∑
k=1

Pk Pn−k for all integers n ≥ 2.

(It turns out that the sequence P1, P2, P3, . . . is the same
as the sequence of Catalan numbers: Pn = Cn−1 for all inte-
gers n ≥ 1. See Example 5.6.4.)

45. Use mathematical induction to prove Theorem 9.3.1.

46. Prove the inclusion/exclusion rule for two sets A and B
by showing that A ∪ B can be partitioned into A ∩ B,
A − (A ∩ B), and B − (A ∩ B), and then using the addi-
tion and difference rules.

47. Prove the inclusion/exclusion rule for three sets.

48.✶H Use mathematical induction to prove the general inclu-
sion/exclusion rule:

If A1, A2, . . . , An are finite sets, then

N (A1 ∪ A2 ∪ · · · ∪ An)

=
∑
1≤i≤n

N (Ai )−
∑

1≤i< j≤n
N (Ai ∩ A j )

+
∑

1≤i< j<k≤n
N (Ai ∩ A j ∩ Ak)

− · · · + (−1)n+1N (A1 ∩ A2 ∩ · · · ∩ An).

(The notation
∑

1≤i< j≤n N (Ai ∩ A j ) means that quantities
of the form N (Ai ∩ A j ) are to be added together for all
integers i and j with 1 ≤ i < j ≤ n.)

49.✶ A circular disk is cut into n distinct sectors, each shaped
like a piece of pie and all meeting at the center point of
the disk. Each sector is to be painted red, green, yellow, or
blue in such a way that no two adjacent sectors are painted
the same color. Let Sn be the number of ways to paint
the disk.
a.H Find a recurrence relation for Sk in terms of Sk−1 and

Sk−2 for each integer k ≥ 4.
b. Find an explicit formula for Sn for n ≥ 2.

Answers for Test Yourself
1. the number of elements in A equals N (A1)+ N (A2)+ . . .+ N (An) 2. the number of elements in A − B is the difference
between the number of elements in A and the number of elements in B, that is, N (A − B) = N (A)− N (B). 3. 1− P(A)

4. N (A ∪ B) = N (A)+ N (B)− N (A ∩ B) 5. N (A ∪ B ∪ C) = N (A)+ N (B)+ N (C)− N (A ∩ B)− N (A ∩ C)−
N (B ∩ C)+ N (A ∩ B ∩ C)
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9.4 The Pigeonhole Principle
The shrewd guess, the fertile hypothesis, the courageous leap to a tentative
conclusion—these are the most valuable coin of the thinker at work
—Jerome S. Bruner, 1960

The pigeonhole principle states that if n pigeons fly into m pigeonholes and n > m,
then at least one hole must contain two or more pigeons. This principle is illustrated in
Figure 9.4.1 for n = 5 and m = 4. Illustration (a) shows the pigeons perched next to their
holes, and (b) shows the correspondence from pigeons to pigeonholes. The pigeonhole
principle is sometimes called the Dirichlet box principle because it was first stated for-
mally by J. P. G. L. Dirichlet (1805–1859).

1 2

3 4

(a) (b)

3

5

2

1

1

2

3

4

5

1

2

3

4

Pigeons Pigeonholes

4

Figure 9.4.1

Illustration (b) suggests the following mathematical way to phrase the principle.

Pigeonhole Principle

A function from one finite set to a smaller finite set cannot be one-to-one: There must
be a least two elements in the domain that have the same image in the co-domain.

Thus an arrow diagram for a function from a finite set to a smaller finite set must have
at least two arrows from the domain that point to the same element of the co-domain. In
Figure 9.4.1(b), arrows from pigeons 1 and 4 both point to pigeonhole 3.

Since the truth of the pigeonhole principle is easy to accept on an intuitive basis,
we move immediately to applications, leaving a formal proof to the end of the section.
Applications of the pigeonhole principle range from the totally obvious to the extremely
subtle. A representative sample is given in the examples and exercises that follow.

Example 9.4.1 Applying the Pigeonhole Principle

a. In a group of six people, must there be at least two who were born in the same month?
In a group of thirteen people, must there be at least two who were born in the same
month? Why?

b. Among the residents of New York City, must there be at least two people with the
same number of hairs on their heads? Why?
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9.4 The Pigeonhole Principle 555

Solution

a. A group of six people need not contain two who were born in the same month. For
instance, the six people could have birthdays in each of the six months January through
June.

A group of thirteen people, however, must contain at least two who were born in
the same month, for there are only twelve months in a year and 13 > 12. To get at the
essence of this reasoning, think of the thirteen people as the pigeons and the twelve
months of the year as the pigeonholes. Denote the thirteen people by the symbols
x1, x2, . . . , x13 and define a function B from the set of people to the set of twelve
months as shown in the following arrow diagram.

x1

x2

x12

x 13

B
Jan

Feb

Dec

B(xi) = birth month of xi

13 people (pigeons) 12 months (pigeonholes)

The pigeonhole principle says that no matter what the particular assignment of months
to people, there must be at least two arrows pointing to the same month. Thus at least
two people must have been born in the same month.

b. The answer is yes. In this example the pigeons are the people of New York City and
the pigeonholes are all possible numbers of hairs on any individual’s head. Call the
population of New York City P . It is known that P is at least 5,000,000. Also the
maximum number of hairs on any person’s head is known to be no more than 300,000.
Define a function H from the set of people in New York City {x1, x2, . . . , xp} to the
set {0, 1, 2, 3, . . . , 300 000}, as shown below.

x1

x2

x3

xp

H

0

1

2

300,000

H(xi) = the number of

People in New York City
(pigeons)

Possible number of hairs on
a person's head (pigeonholes)

hairs on xi 's head

Since the number of people in New York City is larger than the number of possible
hairs on their heads, the function H is not one-to-one; at least two arrows point to the
same number. But that means that at least two people have the same number of hairs
on their heads. ■

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



556 Chapter 9 Counting and Probability

Example 9.4.2 Finding the Number to Pick to Ensure a Result

A drawer contains ten black and ten white socks. You reach in and pull some out without
looking at them. What is the least number of socks you must pull out to be sure to get a
matched pair? Explain how the answer follows from the pigeonhole principle.

Solution If you pick just two socks, they may have different colors. But when you pick a
third sock, it must be the same color as one of the socks already chosen. Hence the answer
is three.

This answer could be phrased more formally as follows: Let the socks pulled out be
denoted s1, s2, s3, . . . , sn and consider the function C that sends each sock to its color, as
shown below.

s1

s2

sn

C

C(si ) = color of si

Socks pulled out (pigeons) Colors (pigeonholes)

white

black

If n = 2,C could be a one-to-one correspondence (if the two socks pulled out were of
different colors). But if n > 2, then the number of elements in the domain of C is larger
than the number of elements in the co-domain of C . Thus by the pigeonhole principle, C
is not one-to-one: C(si ) = C(s j ) for some si �= s j . This means that if at least three socks
are pulled out, then at least two of them have the same color. ■

Example 9.4.3 Selecting a Pair of Integers with a Certain Sum

Let A = {1, 2, 3, 4, 5, 6, 7, 8}.
a. If five integers are selected from A, must at least one pair of the integers have a

sum of 9?

b. If four integers are selected from A, must at least one pair of the integers have a
sum of 9?

Solution

a. Yes. Partition the set A into the following four disjoint subsets:

{1, 8}, {2, 7}, {3, 6}, and {4, 5}
Observe that each of the integers in A occurs in exactly one of the four subsets and
that the sum of the integers in each subset is 9. Thus if five integers from A are chosen,
then by the pigeonhole principle, two must be from the same subset. It follows that the
sum of these two integers is 9.

To see precisely how the pigeonhole principle applies, let the pigeons be the five
selected integers (call them a1, a2, a3, a4, and a5) and let the pigeonholes be the sub-
sets of the partition. The function P from pigeons to pigeonholes is defined by letting
P(ai ) be the subset that contains ai .
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9.4 The Pigeonhole Principle 557

a1

a2

a3

a4

a5

P

P(ai ) = the subset that

The 5 selected integers
(pigeons)

The 4 subsets in the partition of A
(pigeonholes)

{1, 8}

{2, 7}

{3, 6}

{4, 5}

contains ai

The function P is well defined because for each integer ai in the domain, ai
belongs to one of the subsets (since the union of the subsets is A) and ai does not
belong to more than one subset (since the subsets are disjoint).

Because there are more pigeons than pigeonholes, at least two pigeons must go
to the same hole. Thus two distinct integers are sent to the same set. But that implies
that those two integers are the two distinct elements of the set, so their sum is 9. More
formally, by the pigeonhole principle, since P is not one-to-one, there are integers ai
and a j such that

P(ai ) = P(a j ) and ai �= a j .

But then, by definition of P , ai and a j belong to the same subset. Since the elements
in each subset add up to 9, ai + a j = 9.

b. The answer is no. This is a case where the pigeonhole principle does not apply; the
number of pigeons is not larger than the number of pigeonholes. For instance, if you
select the numbers 1, 2, 3, and 4, then since the largest sum of any two of these numbers
is 7, no two of them add up to 9. ■

Application to Decimal Expansions of Fractions
One important consequence of the piegonhole principle is the fact that

the decimal expansion of any rational number either terminates or repeats.

A terminating decimal is one like

3.625,

and a repeating decimal is one like

2.38246,

where the bar over the digits 246 means that these digits are repeated forever.

Note Strictly speaking,
a terminating decimal like
3.625 can be regarded as
a repeating decimal by
adding trailing zeros:
3.625 = 3.6250. This can
also be written as 3.6249.

Recall that a rational number is one that can be written as a ratio of integers—in other
words, as a fraction. Recall also that the decimal expansion of a fraction is obtained by
dividing its numerator by its denominator using long division. For example, the decimal
expansion of 4/33 is obtained as follows:

.1 2 1 2 1 2 1 2. . .
33 4 0 0 0 0 0 0 0 0 0 0 0

3 3
7 0
6 6

4 0
3 3

7 0
6 6

4...

→

→

→

These are the same number.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



558 Chapter 9 Counting and Probability

Because the number 4 reappears as a remainder in the long-division process, the sequence
of quotients and remainders that give the digits of the decimal expansion repeats forever;
hence the digits of the decimal expansion repeat forever.

In general, when one integer is divided by another, it is the pigeonhole principle
(together with the quotient-remainder theorem) that guarantees that such a repetition of
remainders and hence decimal digits must always occur. This is explained in the following
example. The analysis in the example uses an obvious generalization of the pigeonhole
principle, namely that a function from an infinite set to a finite set cannot be one-to-one.

Example 9.4.4 The Decimal Expansion of a Fraction

Consider a fraction a/b, where for simplicity a and b are both assumed to be positive.
The decimal expansion of a/b is obtained by dividing the a by the b as illustrated here
for a = 3 and b = 14.

Let r0 = a and let r1, r2, r3, . . . be the successive remainders obtained in the long division
of a by b. By the quotient-remainder theorem, each remainder must be between 0 and
b − 1. (In this example, a is 3 and b is 14, and so the remainders are from 0 to 13.) If
some remainder ri = 0, then the division terminates and a/b has a terminating decimal
expansion. If no ri = 0, then the division process and hence the sequence of remainders
continues forever. By the pigeonhole principle, since there are more remainders than
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9.4 The Pigeonhole Principle 559

values that the remainders can take, some remainder value must repeat: r j = rk , for some
indices j and k with j < k. This is illustrated below for a = 3 and b = 14.

r0

r1

r2

r7

0

1

3

2

13

F

F(ri) = value of ri

Sequence of remainders Values of remainders when b = 14

If follows that the decimal digits obtained from the divisions between r j and rk−1 repeat
forever. In the case of 3/14, the repetition begins with r7 = 2 = r1 and the decimal
expansion repeats the quotients obtained from the divisions from r1 through r6 forever:
3/14 = 0.2142857. ■

Note that since the decimal expansion of any rational number either terminates or
repeats, if a number has a decimal expansion that neither terminates nor repeats, then it
cannot be rational. Thus, for example, the following number cannot be rational:
0.01011011101111011111 . . . (where each string of 1’s is one longer than the previous
string).

Generalized Pigeonhole Principle
A generalization of the pigeonhole principle states that if n pigeons fly intom pigeonholes
and, for some positive integer k, k < n/m, then at least one pigeonhole contains k + 1
or more pigeons. This is illustrated in Figure 9.4.2 for m = 4, n = 9, and k = 2. Since
2 < 9/4 = 2.25, at least one pigeonhole contains three (2+ 1) or more pigeons. (In this
example, pigeonhole 3 contains three pigeons.)

6

)b()a(

1
2
3
4
5
6
7
8
9

1

2

3

4

Pigeons Pigeonholes

13 8 21 4

47 932 5

Figure 9.4.2

Generalized Pigeonhole Principle

For any function f from a finite set X with n elements to a finite set Y with m
elements and for any positive integer k, if k < n/m, then there is some y ∈ Y such
that y is the image of at least k + 1 distinct elements of X .
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Example 9.4.5 Applying the Generalized Pigeonhole Principle

Show how the generalized pigeonhole principle implies that in a group of 85 people, at
least 4 must have the same last initial.

Solution In this example the pigeons are the 85 people and the pigeonholes are the 26
possible last initials of their names. Note that

3 < 85/26 ∼= 3.27.

Consider the function L from people to initials defined by the following arrow diagram.

x1

x2

x26

x85

L

L(xi ) = the initial of

)selohnoegip( slaitini 62)snoegip( elpoep 58

A

B

Z

xi 's last name

Since 3 < 85/26, the generalized pigeonhole principle states that some initial must be
the image of at least four (3+ 1) people. Thus at least four people have the same last
initial. ■

Consider the following contrapositive form of the generalized pigeonhole principle.

Generalized Pigenohole Principle (Contrapositive Form)

For any function f from a finite set X with n elements to a finite set Y with m
elements and for any positive integer k, if for each y ∈ Y, f −1(y) has at most k
elements, then X has at most km elements; in other words, n ≤ km.

You may find it natural to use the contrapositive form of the generalized pigeonhole
principle in certain situations. For instance, the result of Example 9.4.5 can be explained
as follows:

Suppose no 4 people out of the 85 had the same last initial. Then a tmost 3 would share
any particular one. By the generalized pigeonhole principle (contrapositive form), this
would imply that the total number of people is at most 3 ·26 = 78. But this contradicts
the fact that there are 85 people in all. Hence at least 4 people share a last initial.

Example 9.4.6 Using the Contrapositive Form of the Generalized Pigeonhole Principle

There are 42 students who are to share 12 computers. Each student uses exactly 1 com-
puter, and no computer is used by more than 6 students. Show that at least 5 computers
are used by 3 or more students.
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Solution

a. Using an Argument by Contradiction: Suppose not. Suppose that 4 or fewer comput-
ers are used by 3 or more students. [A contradiction will be derived.] Then 8 or more
computers are used by 2 or fewer students. Divide the set of computers into two sub-
sets: C1 and C2. Into C1 place 8 of the computers used by 2 or fewer students; into
C2 place the computers used by 3 or more students plus any remaining computers (to
make a total of 4 computers in C2). (See Figure 9.4.3.)

The Set of 12 Computers

Each of these computers
serves at most 2 students.
So the maximum number
served by these computers is
2 ⋅ 8 = 16.

Some or all of these computers serve
3 or more students.  Each computer
serves at most 6 students.  So the
maximum number served by these
computers is 6 ⋅ 4 = 24.

C2C1

Figure 9.4.3

Since at most 6 students are served by any one computer, by the contrapositive
form of the generalized pigeonhole principle, the computers in set C2 serve at most
6 ·4 = 24 students. Since at most 2 students are served by any one computer in C1,
by the generalized pigeonhole principle (contrapositive form), the computers in set C1

serve at most 2 ·8 = 16 students. Hence the total number of students served by the
computers is 24+ 16 = 40. But this contradicts the fact that each of the 42 students
is served by a computer. Therefore, the supposition is false: At least 5 computers are
used by 3 or more students.

b. Using a Direct Argument: Let k be the number of computers used by 3 or more stu-
dents. [We must show that k ≥ 5.] Because each computer is used by at most 6 students,
these computers are used by at most 6k students (by the contrapositive form of the
generalized pigeonhole principle). Each of the remaining 12− k computers is used
by at most 2 students. Hence, taken together, they are used by at most 2(12− k) =
24− 2k students (again, by the contrapositive form of the generalized pigeonhole
principle). Thus the maximum number of students served by the computers is 6k +
(24− 2k) = 4k + 24. Because 42 students are served by the computers, 4k+24≥42.
Solving for k gives that k ≥ 4.5, and since k is an integer, this implies that k ≥ 5 [as
was to be shown]. ■

Proof of the Pigeonhole Principle
The truth of the pigeonhole principle depends essentially on the sets involved being finite.
Recall from Section 7.4 that a set is called finite if, and only if, it is the empty set or there
is a one-to-one correspondence from {1, 2, . . . , n} to it, where n is a positive integer. In
the first case the number of elements in the set is said to be 0, and in the second case it
is said to be n. A set that is not finite is called infinite.

Thus any finite set is either empty or can be written in the form {x1, x2, . . . , xn}where
n is a positive integer.
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Theorem 9.4.1 The Pigeonhole Principle

For any function f from a finite set X with n elements to a finite set Y with m
elements, if n > m, then f is not one-to-one.

Proof:

Suppose f is any function from a finite set X with n elements to a finite set Y withm
elements where n > m. Denote the elements of Y by y1, y2, . . . , ym . Recall that for
each yi in Y , the inverse image set f −1(yi ) = {x ∈ X | f (x) = yi }. Now consider
the collection of all the inverse image sets for all the elements of Y :

f −1(y1), f −1(y2), . . . , f −1(ym).

By definition of function, each element of X is sent by f to some element of Y .
Hence each element of X is in one of the inverse image sets, and so the union of all
these sets equals X . But also, by definition of function, no element of X is sent by f
to more than one element of Y . Thus each element of X is in only one of the inverse
image sets, and so the inverse image sets are mutually disjoint. By the addition rule,
therefore,

N (X) = N ( f −1(y1))+ N ( f −1(y2))+ · · · + N ( f −1(ym)). 9.4.1

Now suppose that f is one-to-one [which is the opposite of what we want to prove].
Then each set f −1(yi ) has at most one element, and so

N ( f −1(y1))+ N ( f −1(y2))+ · · · + N ( f −1(ym)) ≤ 1+ 1+ · · · + 1︸ ︷︷ ︸
m terms

= m 9.4.2

Putting equations (9.4.1) and (9.4.2) together gives that

n = N (X) ≤ m = N (Y ).

This contradicts the fact that n > m, and so the supposition that f is one-to-one must
be false. Hence f is not one-to-one [as was to be shown].

An important theorem that follows from the pigeonhole principle states that a function
from one finite set to another finite set of the same size is one-to-one if, and only if, it is
onto. As shown in Section 7.4, this result does not hold for infinite sets.

Theorem 9.4.2 One-to-One and Onto for Finite Sets

Let X and Y be finite sets with the same number of elements and suppose f is a
function from X to Y . Then f is one-to-one if, and only if, f is onto.

Proof:

Suppose f is a function from X to Y , where X and Y are finite sets each with m
elements. Let X = {x1, x2, . . . , xm} and Y = {y1, y2, . . . , ym}.
If f is one-to-one, then f is onto: Suppose f is one-to-one. Then f (x1), f (x2), . . . ,
f (xm) are all distinct. Consider the set S of all elements of Y that are not the image
of any element of X.
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9.4 The Pigeonhole Principle 563

Then the sets

{ f (x1)}, { f (x2)}, . . . , { f (xm)} and S

are mutually disjoint. By the addition rule,

N (Y ) = N ({ f (x1)})+ N ({ f (x2)})+ · · · + N ({ f (xm)})+ N (S)

= 1+ 1+ · · · + 1︸ ︷︷ ︸
m terms

+ N (S) because each { f (xi )}
is a singleton set

= m + N (S).

Thus

m = m + N (S) because N (Y ) = m,

⇒ N (S) = 0 by subtracting m from both sides.

Hence S is empty, and so there is no element of Y that is not the image of some
element of X . Consequently, f is onto.

If f is onto, then f is one-to-one: Suppose f is onto. Then f −1(yi ) �= ∅ and so
N ( f −1(yi )) ≥ 1 for all i = 1, 2, . . . ,m. As in the proof of the pigeonhole principle
(Theorem 9.4.1), X is the union of the mutually disjoint sets f −1(y1), f −1(y2), . . . ,
f −1(ym). By the addition principle,

N (X) = N ( f −1(y1))+ N ( f −1(y2))+ · · · + N ( f −1(ym))︸ ︷︷ ︸ ≥ m.

m terms, each ≥ 1

9.4.3

Now if any one of the sets f −1(yi ) has more than one element, then the sum in equa-
tion (9.4.3) is greater than m. But we know this is not the case because N (X) = m.
Hence each set f −1(yi ) has exactly one element, and thus f is one-to-one [as was to
be shown].

Note that Theorem 9.4.2 applies in particular to the case X = Y . Thus a one-to-one
function from a finite set to itself is onto, and an onto function from a finite set to itself
is one-to-one. Such functions are permutations of the sets on which they are defined. For
instance, the function defined by the diagram on the left is another representation for the
permutation cdba obtained by listing the images of a, b, c, and d in order.

a
b
c
d

a
b
c
d

Test Yourself
1. The pigeonhole principle states that _____.

2. The generalized pigeonhole principle states that _____.

3. If X and Y are finite sets and f is a function from X to Y
then f is one-to-one if, and only if, _____

Exercise Set 9.4
1. a. If 4 cards are selected from a standard 52-card deck,

must at least 2 be of the same suit? Why?
b. If 5 cards are selected from a standard 52-card deck,

must at least 2 be of the same suit? Why?

2. a. If 13 cards are selected from a standard 52-card deck,
must at least 2 be of the same denomination? Why?

b. If 20 cards are selected from a standard 52-card deck,
must at least 2 be of the same denomination? Why?

3. A small town has only 500 residents. Must there be 2 resi-
dents who have the same birthday? Why?

4. In a group of 700 people, must there be 2 who have the
same first and last initials? Why?
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5. a. Given any set of four integers, must there be two that
have the same remainder when divided by 3? Why?

b. Given any set of three integers, must there be two that
have the same remainder when divided by 3? Why?

6. a. Given any set of seven integers, must there be two that
have the same remainder when divided by 6? Why?

b. Given any set of seven integers, must there be two that
have the same remainder when divided by 8? Why?

7.H Let S = {3, 4, 5, 6, 7, 8, 9, 10, 11, 12}. Suppose six inte-
gers are chosen from S. Must there be two integers whose
sum is 15? Why?

8. Let T = {1, 2, 3, 4, 5, 6, 7, 8, 9}. Suppose five integers are
chosen from T . Must there be two integers whose sum is
10? Why?

9. a. If seven integers are chosen from between 1 and 12
inclusive, must at least one of them be odd? Why?

b. If ten integers are chosen from between 1 and 20 inclu-
sive, must at least one of them be even? Why?

10. If n + 1 integers are chosen from the set

{1, 2, 3, . . . , 2n},
where n is a positive integer, must at least one of them be
odd? Why?

11. If n + 1 integers are chosen from the set

{1, 2, 3, . . . , 2n},
where n is a positive integer, must at least one of them be
even? Why?

12. How many cards must you pick from a standard 52-card
deck to be sure of getting at least 1 red card? Why?

13. Suppose six pairs of similar-looking boots are thrown
together in a pile. How many individual boots must you
pick to be sure of getting a matched pair? Why?

14. How many integers from 0 through 60 must you pick in
order to be sure of getting at least one that is odd? at least
one that is even?

15. If n is a positive integer, how many integers from 0 through
2n must you pick in order to be sure of getting at least one
that is odd? at least one that is even?

16. How many integers from 1 through 100 must you pick in
order to be sure of getting one that is divisible by 5?

17. How many integers must you pick in order to be sure
that at least two of them have the same remainder when
divided by 7?

18. How many integers must you pick in order to be sure
that at least two of them have the same remainder when
divided by 15?

19. How many integers from 100 through 999 must you pick
in order to be sure that at least two of them have a digit

in common? (For example, 256 and 530 have the common
digit 5.)

20. a. If repeated divisions by 20,483 are performed, how
many distinct remainders can be obtained?

b. When 5/20483 is written as a decimal, what is the max-
imum length of the repeating section of the representa-
tion?

21. When 683/1493 is written as a decimal, what is
the maximum length of the repeating section of the
representation?

22. Is 0.101001000100001000001 . . . (where each string of
0’s is one longer than the previous one) rational or irra-
tional?

23. Is 56.556655566655556666 . . . (where the strings of 5’s
and 6’s become longer in each repetition) rational or irra-
tional?

24. Show that within any set of thirteen integers chosen from 2
through 40, there are at least two integers with a common
divisor greater than 1.

25. In a group of 30 people, must at least 3 have been born in
the same month? Why?

26. In a group of 30 people, must at least 4 have been born in
the same month? Why?

27. In a group of 2,000 people, must at least 5 have the same
birthday? Why?

28. A programmer writes 500 lines of computer code in 17
days. Must there have been at least 1 day when the pro-
grammer wrote 30 or more lines of code? Why?

29. A certain college class has 40 students. All the students in
the class are known to be from 17 through 34 years of age.
You want to make a bet that the class contains at least x
students of the same age. How large can you make x and
yet be sure to win your bet?

30. A penny collection contains twelve 1967 pennies, seven
1968 pennies, and eleven 1971 pennies. If you are to pick
some pennies without looking at the dates, how many must
you pick to be sure of getting at least five pennies from the
same year?

31.H A group of 15 executives are to share 5 assistants. Each
executive is assigned exactly 1 assistant, and no assistant
is assigned to more than 4 executives. Show that at least 3
assistants are assigned to 3 or more executives.

32.H ✶ Let A be a set of six positive integers each of which is
less than 13. Show that there must be two distinct sub-
sets of A whose elements when added up give the same
sum. (For example, if A = {5, 12, 10, 1, 3, 4}, then the ele-
ments of the subsets S1 = {1, 4, 10} and S2 = {5, 10} both
add up to 15.)

33.H Let A be a set of six positive integers each of which is less
than 15. Show that there must be two distinct subsets of A
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whose elements when added up give the same sum. (Thanks
to Jonathan Goldstine for this problem.)

34. Let S be a set of ten integers chosen from 1 through 50.
Show that the set contains at least two different (but not
necessarily disjoint) subsets of four integers that add up
to the same number. (For instance, if the ten numbers are
{3, 8, 9, 18, 24, 34, 35, 41, 44, 50}, the subsets can be taken
to be {8, 24, 34, 35} and {9, 18, 24, 50}. The numbers in
both of these add up to 101.)

35.✶H Given a set of 52 distinct integers, show that there must be
2 whose sum or difference is divisible by 100.

36.✶H Show that if 101 integers are chosen from 1 to 200 inclu-
sive, there must be 2 with the property that one is divisible
by the other.

37.✶ a. Suppose a1, a2, . . . , an is a sequence of n integers
none of which is divisible by n. Show that at least
one of the differences ai − a j (for i �= j) must be
divisible by n.

b.H Show that every finite sequence x1, x2, . . . , xn of n inte-
gers has a consecutive subsequence xi+1, xi+2, . . . , x j

whose sum is divisible by n. (For instance, the sequence

3, 4, 17, 7, 16 has the consecutive subsequence 17, 7, 16
whose sum is divisible by 5.) (From: James E. Schultz
and William F. Burger, “An Approach to Problem-
Solving Using Equivalence Classes Modulo n,” College
Mathematics Journal (15), No. 5, 1984, 401–405.)

38.✶H Observe that the sequence 12, 15, 8, 13, 7, 18, 19, 11, 14,
10 has three increasing subsequences of length four: 12,
15, 18, 19; 12, 13, 18, 19; and 8, 13, 18, 19. It also has one
decreasing subsequence of length four: 15, 13, 11, 10. Show
that in any sequence of n2 + 1 distinct real numbers, there
must be a sequence of length n + 1 that is either strictly
increasing or strictly decreasing.

39.✶ What is the largest number of elements that a set of inte-
gers from 1 through 100 can have so that no one element
in the set is divisible by another? (Hint: Imagine writing all
the numbers from 1 through 100 in the form 2k ·m, where
k ≥ 0 and m is odd.)

40. Suppose X and Y are finite sets, X has more elements than
Y , and F: X → Y is a function. By the pigeonhole princi-
ple, there exist elements a and b in X such that a �= b and
F(a) = F(b). Write a computer algorithm to find such a
pair of elements a and b.

Answers for Test Yourself
1. if n pigeons fly into m pigeonholes and n > m, then at least two pigeons fly into the same pigeonhole Or: a function from one
finite set to a smaller finite set cannot be one-to-one 2. if n pigeons fly intom pigeonholes and, for some positive integer k, k < n/m,
then at least one pigeonhole contains k + 1 or more pigeons Or: for any function f from a finite set X with n elements to a finite
set Y with m elements and for any positive integer k, if k < n/m, then there is some y ∈ Y such that y is the image of at least k + 1
distinct elements of Y 3. f is onto

9.5 Counting Subsets of a Set: Combinations
“But ‘glory’ doesn’t mean ‘a nice knock-down argument,’” Alice objected. “When I use
a word,” Humpty Dumpty said, in rather a scornful tone, “it means just what I choose it
to mean—neither more nor less.” —Lewis Carroll, Through the Looking Glass, 1872

Consider the following question:

Suppose five members of a group of twelve are to be chosen to work as a team
on a special project. How many distinct five-person teams can be selected?

This question is answered in Example 9.5.4. It is a special case of the following more
general question:

Given a set S with n elements, how many subsets of size r can be chosen from S?

The number of subsets of size r that can be chosen from S equals the number of subsets
of size r that S has. Each individual subset of size r is called an r -combination of the set.
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• Definition

Let n and r be nonnegative integers with r ≤ n. An r-combination of a set of n
elements is a subset of r of the n elements. As indicated in Section 5.1, the symbol(

n
r

)
,

which is read “n choose r ,” denotes the number of subsets of size r (r -combinations)
that can be chosen from a set of n elements.

Recall from Section 5.1 that calculators generally use symbols like C(n, r), nCr ,Cn,r , or
nCr instead of

(n
r

)
.

Example 9.5.1 3-Combinations

Let S = {Ann, Bob, Cyd, Dan}. Each committee consisting of three of the four people in
S is a 3-combination of S.

a. List all such 3-combinations of S. b. What is
(4
3

)
?

Solution

a. Each 3-combination of S is a subset of S of size 3. But each subset of size 3 can be
obtained by leaving out one of the elements of S. The 3-combinations are

{Bob, Cyd, Dan} leave out Ann

{Ann, Cyd, Dan} leave out Bob

{Ann, Bob, Dan} leave out Cyd

{Ann, Bob, Cyd} leave out Dan.

b. Because
(4
3

)
is the number of 3-combinations of a set with four elements, by part (a),(4

3

) = 4. ■

There are two distinct methods that can be used to select r objects from a set of n
elements. In an ordered selection, it is not only what elements are chosen but also the
order in which they are chosen that matters. Two ordered selections are said to be the
same if the elements chosen are the same and also if the elements are chosen in the same
order. An ordered selection of r elements from a set of n elements is an r -permutation of
the set.

In an unordered selection, on the other hand, it is only the identity of the chosen ele-
ments that matters. Two unordered selections are said to be the same if they consist of the
same elements, regardless of the order in which the elements are chosen. An unordered
selection of r elements from a set of n elements is the same as a subset of size r or an
r -combination of the set.

Example 9.5.2 Unordered Selections

How many unordered selections of two elements can be made from the set {0, 1, 2, 3}?
Solution An unordered selection of two elements from {0, 1, 2, 3} is the same as a 2-

combination, or subset of size 2, taken from the set. These can be listed systematically:

{0, 1}, {0, 2}, {0, 3} subsets containing 0

{1, 2}, {1, 3} subsets containing 1 but not already listed

{2, 3} subsets containing 2 but not already listed.
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Since this listing exhausts all possibilities, there are six subsets in all. Thus
(4
2

) = 6,
which is the number of unordered selections of two elements from a set of four. ■

When the values of n and r are small, it is reasonable to calculate values of
(n
r

)
using the method of complete enumeration (listing all possibilities) illustrated in Exam-
ples 9.5.1 and 9.5.2. But when n and r are large, it is not feasible to compute these
numbers by listing and counting all possibilities.

The general values of
(n
r

)
can be found by a somewhat indirect but simple method.

An equation is derived that contains
(n
r

)
as a factor. Then this equation is solved to obtain

a formula for
(n
r

)
. The method is illustrated by Example 9.5.3.

Example 9.5.3 Relation between Permutations and Combinations

Write all 2-permutations of the set {0, 1, 2, 3}. Find an equation relating the number of

2-permutations, P(4, 2), and the number of 2-combinations,
(4
2

)
, and solve this equation

for
(4
2

)
.

Solution According to Theorem 9.2.3, the number of 2-permutations of the set {0, 1, 2, 3}
is P(4, 2), which equals

4!
(4− 2)! =

4 ·3 ·2 ·1
2 ·1 = 12.

Now the act of constructing a 2-permutation of {0, 1, 2, 3} can be thought of as a
two-step process:

Step 1: Choose a subset of two elements from {0, 1, 2, 3}.
Step 2: Choose an ordering for the two-element subset.

This process can be illustrated by the possibility tree shown in Figure 9.5.1.

Start

Step 1: Write the 2-combinations
of {0, 1, 2, 3}.

Step 2: Order the 2-combinations
to obtain 2-permutations.

{0, 1}

{0, 2}

{0, 3}

{1, 2}

{1, 3}

{2, 3}

01

10

02

20

03

30
12

21

13

31

23

32

Figure 9.5.1 Relation between Permutations and Combinations
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The number of ways to perform step 1 is
(4
2

)
, the same as the number of subsets of

size 2 that can be chosen from {0, 1, 2, 3}. The number of ways to perform step 2 is 2!, the
number of ways to order the elements in a subset of size 2. Because the number of ways
of performing the whole process is the number of 2-permutations of the set {0, 1, 2, 3},
which equals P(4, 2), it follows from the product rule that

P(4, 2) =
(
4
2

)
·2!. This is an equation that relates P(4, 2) and

(4
2

)
.

Solving the equation for
(4
2

)
gives (

4
2

)
= P(4, 2)

2!
Recall that P(4, 2) = 4!

(4−2)! . Hence, substituting yields

(
4
2

)
=

4!
(4− 2)!

2! = 4!
2!(4− 2)! = 6. ■

The reasoning used in Example 9.5.3 applies in the general case as well. To form an
r -permutation of a set of n elements, first choose a subset of r of the n elements (there
are

(n
r

)
ways to perform this step), and then choose an ordering for the r elements (there

are r ! ways to perform this step). Thus the number of r -permutations is

P(n, r) =
(
n
r

)
·r !.

Now solve for
(n
r

)
to obtain the formula(

n
r

)
= P(n, r)

r ! .

Since P(n, r) = n!
(n−r)! , substitution gives

(
n
r

)
=

n!
(n − r)!

r ! = n!
r !(n − r)! .

The result of this discussion is summarized and extended in Theorem 9.5.1.

Theorem 9.5.1

The number of subsets of size r (or r -combinations) that can be chosen from a set
of n elements,

(n
r

)
, is given by the formula(

n
r

)
= P(n, r)

r ! first version

or, equivalently, (
n
r

)
= n!

r !(n − r)! second version

where n and r are nonnegative integers with r ≤ n.

Note that the analysis presented before the theorem proves the theorem in all cases
where n and r are positive. If r is zero and n is any nonnegative integer, then

(n
0

)
is the
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number of subsets of size zero of a set with n elements. But you know from Section 6.2
that there is only one set that does not have any elements. Consequently,

(n
0

) = 1. Also

n!
0!(n − 0)! =

n!
1 ·n! = 1

since 0! = 1 by definition. (Remember we said that definition would turn out to be con-
venient!) Hence the formula (

n
0

)
= n!

0!(n − 0)!
holds for all integers n ≥ 0, and so the theorem is true for all nonnegative integers n and
r with r ≤ n.

Example 9.5.4 Calculating the Number of Teams

Consider again the problem of choosing five members from a group of twelve to work as
a team on a special project. How many distinct five-person teams can be chosen?

Solution The number of distinct five-person teams is the same as the number of subsets of

size 5 (or 5-combinations) that can be chosen from the set of twelve. This number is
(12
5

)
.

By Theorem 9.5.1,(
12
5

)
= 12!

5!(12− 5)! =
12 ·11 ·10 ·9 ·8 ·7!
(5 ·4 ·3 ·2 ·1) ·7! = 11 ·9 ·8 = 792.

Thus there are 792 distinct five-person teams. ■

The formula for the number of r -combinations of a set can be applied in a wide variety
of situations. Some of these are illustrated in the following examples.

Example 9.5.5 Teams That Contain Both or Neither

Suppose two members of the group of twelve insist on working as a pair—any team must
contain either both or neither. How many five-person teams can be formed?

Solution Call the two members of the group that insist on working as a pair A and B. Then
any team formed must contain both A and B or neither A nor B. The set of all possible
teams can be partitioned into two subsets as shown in Figure 9.5.2 on the next page.

Because a team that contains both A and B contains exactly three other people from
the remaining ten in the group, there are as many such teams as there are subsets of three
people that can be chosen from the remaining ten. By Theorem 9.5.1, this number is

(
10
3

)
= 10!

3! ·7! =
3 4

10 · 9 · 8 ·7!
3 · 2 ·1·7! = 120.

Because a team that contains neither A nor B contains exactly five people from the
remaining ten, there are as many such teams as there are subsets of five people that can
be chosen from the remaining ten. By Theorem 9.5.1, this number is

(
10
5

)
= 10!

5! ·5! =
2 2
10 ·9 · 8 · 7 · 6 ·5!
5 · 4 ·3 · 2 ·1·5! = 252.
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Because the set of teams that contain both A and B is disjoint from the set of teams
that contain neither A nor B, by the addition rule,⎡

⎣number of teams containing
both A and B or
neither A nor B

⎤
⎦ =

⎡
⎣number of teams
containing
both A and B

⎤
⎦+

⎡
⎣number of teams
containing
neither A nor B

⎤
⎦

= 120+ 252 = 372.

This reasoning is summarized in Figure 9.5.2.

All Possible Five-Person Teams
Containing Both or Neither

teams with
both A and B

teams with
neither A nor B

There are
10
3( ) = 120 of these.

There are
10
5( ) = 252 of these.

So the total number of teams
that contain either both A and B
or neither A nor B is
120 + 252 = 372.

Figure 9.5.2
■

Example 9.5.6 Teams That Do Not Contain Both

Suppose two members of the group don’t get along and refuse to work together on a team.
How many five-person teams can be formed?

Solution Call the two people who refuse to work together C and D. There are two different
ways to answer the given question: One uses the addition rule and the other uses the
difference rule.

To use the addition rule, partition the set of all teams that don’t contain both C and D
into three subsets as shown in Figure 9.5.3 on the next page.

Because any team that contains C but not D contains exactly four other people from
the remaining ten in the group, by Theorem 9.5.1 the number of such teams is

(
10
4

)
= 10!

4!(10− 4)! =
3

10 · 9 ·8 ·7 · 6!
4 ·3 · 2 ·1·6! = 210.

Similarly, there are
(10
4

)
= 210 teams that contain D but not C . Finally, by the same

reasoning as in Example 9.5.5, there are 252 teams that contain neither C nor D. Thus,
by the addition rule,[

number of teams that do
not contain both C and D

]
= 210+ 210+ 252 = 672.
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This reasoning is summarized in Figure 9.5.3.

All Possible Five-Person Teams
That Do Not Contain Both C and D

teams that
contain C
but not D

There are
10
4( ) = 210

of these.

teams that
contain D
but not C

There are
10
4( ) = 210

of these.

teams that
contain neither 
C nor D

There are
10
5( ) = 252

of these.

So the total number of teams that
do not contain both C and D is
210 + 210 + 252 = 672.

Figure 9.5.3

The alternative solution by the difference rule is based on the following observation:
The set of all five-person teams that don’t contain both C and D equals the set difference
between the set of all five-person teams and the set of all five-person teams that contain

both C and D. By Example 9.5.4, the total number of five-person teams is
(12
5

)
= 792.

Thus, by the difference rule,[
number of teams that don’t
contain both C and D

]
=

[
total number of
teams of five

]
−
[
number of teams that
contain both C and D

]

=
(
12
5

)
−
(
10
3

)
= 792− 120 = 672.

This reasoning is summarized in Figure 9.5.4. ■

All Five-Person Teams

teams that do
not contain
both C and D

teams that
contain
both C and D

So there are
792 – 120 = 672 of these.

There are
12
5( ) = 792 of these.

There are
10
3( ) = 120 of these.

Figure 9.5.4

Before we begin the next example, a remark on the phrases at least and at most is in
order:

The phrase at least n means “n or more.”
The phrase at most n means “n or fewer.”

For instance, if a set consists of three elements and you are to choose at least two, you
will choose two or three; if you are to choose at most two, you will choose none, or one,
or two.
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Example 9.5.7 Teams with Members of Two Types

Suppose the group of twelve consists of five men and seven women.

a. How many five-person teams can be chosen that consist of three men and two women?

b. How many five-person teams contain at least one man?

c. How many five-person teams contain at most one man?

Solution

a. To answer this question, think of forming a team as a two-step process:

Step 1: Choose the men.

Step 2: Choose the women.

There are
(5
3

)
ways to choose the three men out of the five and

(7
2

)
ways to choose the

two women out of the seven. Hence, by the product rule,[
number of teams of five that
contain three men and two women

]
=

(
5
3

)(
7
2

)
= 5!

3!2! ·
7!
2!5!

= 7 ·6 ·5 ·4 ·3 ·2 ·1
3 ·2 ·1 ·2 ·1 ·2 ·1

= 210.

b. This question can also be answered either by the addition rule or by the difference
rule. The solution by the difference rule is shorter and is shown first.

Observe that the set of five-person teams containing at least one man equals the
set difference between the set of all five-person teams and the set of five-person teams
that do not contain any men. See Figure 9.5.5 below.

Now a team with no men consists entirely of five women chosen from the seven
women in the group, so there are

(7
5

)
such teams. Also, by Example 9.5.4, the total

number of five-person teams is
(12
5

)
= 792. Hence, by the difference rule,⎡

⎣number of teams
with at least
one man

⎤
⎦ =

⎡
⎣total number
of teams
of five

⎤
⎦−

⎡
⎣number of teams
of five that do not
contain any men

⎤
⎦

=
(
12
5

)
−
(
7
5

)
= 792− 7!

5! ·2!

= 792−
3

7 ·6 ·5!
5! ·2 ·1 = 792− 21 = 771.

This reasoning is summarized in Figure 9.5.5.

All Five-Person Teams

teams that 
contain at
least one man

teams that
contain no men

So there are
792 – 21 = 771 of these.

There are
7
5( ) = 21 of these.

There are
12
5( ) = 792 of these.

Figure 9.5.5
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Alternatively, to use the addition rule, observe that the set of teams containing
at least one man can be partitioned as shown in Figure 9.5.6. The number of teams
in each subset of the partition is calculated using the method illustrated in part (a).
There are (

5
1

)(
7
4

)
teams with one man and four women(

5
2

)(
7
3

)
teams with two men and three women(

5
3

)(
7
2

)
teams with three men and two women(

5
4

)(
7
1

)
teams with four men and one woman(

5
5

)(
7
0

)
teams with five men and no women.

Hence, by the addition rule,[
number of teams with
at least one man

]

=
(
5
1

)(
7
4

)
+
(
5
2

)(
7
3

)
+
(
5
3

)(
7
2

)
+
(
5
4

)(
7
1

)
+
(
5
5

)(
7
0

)

= 5!
1!4! ·

7!
4!3! +

5!
2!3! ·

7!
3!4! +

5!
3!2! ·

7!
2!5! +

5!
4!1! ·

7!
1!6! +

5!
5!0! ·

7!
0!7!

= 5 ·4! ·7 ·6 ·5 ·4!
4! ·3 ·2 ·4! +

2
5 ·4 ·3! ·7 ·6 ·5 ·4!
3! ·2 ·4! ·3 ·2 +

2 3
5 ·4 ·3! ·7 ·6 ·5!
2 ·3! ·5! ·2

+ 5 ·4! ·7 ·6!
4! ·6! + 5! ·7!

5! ·7!
= 175+ 350+ 210+ 35+ 1 = 771.

This reasoning is summarized in Figure 9.5.6.

Teams with At Least One Man

teams with
one man

teams with
two men

teams with
three men

teams with
four men

teams with
five men

There are
5
1

7
4( )( ) = 175

of these.

There are
5
2

7
3( )( ) = 350

of these.

There are
5
3

7
2( )( ) = 210

of these.

There are
5
4

7
1( )( ) = 35

of these.

There are
5
5

7
0( )( ) = 1

of these.

So the total number of
teams with at least
one man is
175 + 350 + 210 + 35 + 1 = 771.

Figure 9.5.6

c. As shown in Figure 9.5.7 on the next page, the set of teams containing at most one man
can be partitioned into the set that does not contain any men and the set that contains
exactly one man. Hence, by the addition rule,
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⎡
⎣number of teams
with at
most one man

⎤
⎦ =

⎡
⎣number of
teams without
any men

⎤
⎦+

⎡
⎣number of
teams with
one man

⎤
⎦

=
(
5
0

)(
7
5

)
+
(
5
1

)(
7
4

)
= 21+ 175 = 196.

This reasoning is summarized in Figure 9.5.7.

Teams with At Most One Man

teams without
any men

teams with
one man

There are
5
0

7
5( )( ) = 21

of these.

There are
5
1

7
4( )( ) = 175

of these.

So the total number of
teams with at most one
man is 21 + 175 = 196.

Figure 9.5.7 ■

Example 9.5.8 Poker Hand Problems

The game of poker is played with an ordinary deck of cards (see Example 9.1.1). Var-
ious five-card holdings are given special names, and certain holdings beat certain other
holdings. The named holdings are listed from highest to lowest below.

Royal flush: 10, J, Q, K, A of the same suit

Straight flush: five adjacent denominations of the same suit but not a royal flush—aces
can be high or low, so A, 2, 3, 4, 5 of the same suit is a straight flush.

Four of a kind: four cards of one denomination—the fifth card can be any other in the
deck

Full house: three cards of one denomination, two cards of another denomination

Flush: five cards of the same suit but not a straight or a royal flush

Straight: five cards of adjacent denominations but not all of the same suit—aces can
be high or low

Three of a kind: three cards of the same denomination and two other cards of different
denominations

Two pairs: two cards of one denomination, two cards of a second denomination, and
a fifth card of a third denomination

One pair: two cards of one denomination and three other cards all of different denom-
inations

No pairs: all cards of different denominations but not a straight or straight flush or
flush

a. How many five-card poker hands contain two pairs?

b. If a five-card hand is dealt at random from an ordinary deck of cards, what is the
probability that the hand contains two pairs?
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Solution

a. Consider forming a hand with two pairs as a four-step process:

Step 1: Choose the two denominations for the pairs.

Step 2: Choose two cards from the smaller denomination.

Step 3: Choose two cards from the larger denomination.

Step 4: Choose one card from those remaining.

The number of ways to perform step 1 is
(13
2

)
because there are 13 denominations

in all. The number of ways to perform steps 2 and 3 is
(4
2

)
because there are four cards

of each denomination, one in each suit. The number of ways to perform step 4 is
(44
1

)
because the fifth card is chosen from the eleven denominations not included in the pair
and there are four cards of each denomination. Thus[

the total number of
hands with two pairs

]
=

(
13

2

)(
4

2

)(
4

2

)(
44

1

)

= 13!
2!(13− 2)! ·

4!
2!(4− 2)! ·

4!
2!(4− 2)! ·

44!
1!(44− 1)!

= 13 ·12 ·11!
(2 ·1) ·11! ·

4 ·3 ·2!
(2 ·1) ·2! ·

4 ·3 ·2!
(2 ·1) ·2! ·

44 ·43!
1 ·43!

= 78 ·6 ·6 ·44 = 123,552.

b. The total number of five-card hands from an ordinary deck of cards is
(52
5

)=2,598,960.
Thus if all hands are equally likely, the probability of obtaining a hand with two pairs
is 123,552

2,598,960
∼= 4.75%. ■

Example 9.5.9 Number of Bit Strings with Fixed Number of 1’s

How many eight-bit strings have exactly three 1’s?

Solution To solve this problem, imagine eight empty positions into which the 0’s and 1’s
of the bit string will be placed. In step 1, choose positions for the three 1’s, and in step 2,
put the 0’s into place.

Three 1's and
five 0's to be
put into the
positions

1 2 3 4 5 6 7 8

Once a subset of three positions has been chosen from the eight to contain 1’s, then the
remaining five positions must all contain 0’s (since the string is to have exactly three 1’s).
It follows that the number of ways to construct an eight-bit string with exactly three 1’s
is the same as the number of subsets of three positions that can be chosen from the eight
into which to place the 1’s. By Theorem 9.5.1, this equals(

8
3

)
= 8!

3! ·5! =
8 ·7 ·6 ·5!
3 ·2 ·5! = 56. ■
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Example 9.5.10 Permutations of a Set with Repeated Elements

Consider various ways of ordering the letters in the wordMISSISSIPPI:

IIMSSPISSIP, ISSSPMIIPIS, PIMISSSSIIP, and so on.

How many distinguishable orderings are there?

Solution This example generalizes Example 9.5.9. Imagine placing the 11 letters of
MISSISSIPPI one after another into 11 positions.

Letters of
MISSISSIPPI
to be placed
into the
positions

1 2 3 4 5 6 7 8 9 10 11

Because copies of the same letter cannot be distinguished from one another, once the posi-
tions for a certain letter are known, then all copies of the letter can go into the positions
in any order. It follows that constructing an ordering for the letters can be thought of as a
four-step process:

Step 1: Choose a subset of four positions for the S’s.

Step 2: Choose a subset of four positions for the I ’s.

Step 3: Choose a subset of two positions for the P’s.

Step 4: Choose a subset of one position for the M .

Since there are 11 positions in all, there are
(11
4

)
subsets of four positions for the

S’s. Once the four S’s are in place, there are seven positions that remain empty, so there
are

(7
4

)
subsets of four positions for the I ’s. After the I ’s are in place, there are three

positions left empty, so there are
(3
2

)
subsets of two positions for the P’s. That leaves just

one position for the M . But 1 =
(1
1

)
. Hence by the multiplication rule,[

number of ways to
position all the letters

]
=

(
11
4

)(
7
4

)(
3
2

)(
1
1

)

= 11!
4!7! ·

7!
4!3! ·

3!
2!1! ·

1!
1!0!

= 11!
4! ·4! ·2! ·1! = 34,650. ■

In exercise 18 at the end of the section, you are asked to show that changing the
order in which the letters are placed into the positions does not change the answer to this
example.

The same reasoning used in this example can be used to derive the following general
theorem.
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Theorem 9.5.2 Permutations with sets of Indistinguishable Objects

Suppose a collection consists of n objects of which

n1 are of type 1 and are indistinguishable from each other

n2 are of type 2 and are indistinguishable from each other
...

nk are of type k and are indistinguishable from each other,

and suppose that n1 + n2 + · · · + nk = n. Then the number of distinguishable
permutations of the n objects is(

n
n1

)(
n − n1
n2

)(
n − n1 − n2

n3

)
· · ·

(
n − n1 − n2 − · · · − nk−1

nk

)

= n!
n1! n2! n3! · · · nk ! .

Some Advice about Counting
Students learning counting techniques often ask, “How do I know what to multiply and
what to add? When do I use the multiplication rule and when do I use the addition rule?”
Unfortunately, these questions have no easy answers. You need to imagine, as vividly as
possible, the objects you are to count. You might even start to make an actual list of the
items you are trying to count to get a sense for how to obtain them in a systematic way.
You should then construct a model that would allow you to continue counting the objects
one by one if you had enough time. If you can imagine the elements to be counted as
being obtained through a multistep process (in which each step is performed in a fixed
number of ways regardless of how preceding steps were performed), then you can use the
multiplication rule. The total number of elements will be the product of the number of
ways to perform each step. If, however, you can imagine the set of elements to be counted
as being broken up into disjoint subsets, then you can use the addition rule. The total
number of elements in the set will be the sum of the number of elements in each subset.

One of the most common mistakes students make is to count certain possibilities more
than once.

Example 9.5.11 Double Counting

Consider again the problem of Example 9.5.7(b). A group consists of five men and seven
women. How many teams of five contain at least one man?

Incorrect Solution
Imagine constructing the team as a two-step process:

Step 1: Choose a subset of one man from the five men.

Step 2: Choose a subset of four others from the remaining eleven people.

Hence, by the multiplication rule, there are
(5
1

)
·(114 )= 1,650 five-person teams that con-

tain at least one man.

!
Caution! Be careful to
avoid counting items
twice when using the
multiplication rule.

Analysis of the Incorrect Solution The problem with the solution above is that some
teams are counted more than once. Suppose the men are Anwar, Ben, Carlos, Dwayne,
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and Ed and the women are Fumiko, Gail, Hui-Fan, Inez, Jill, Kim, and Laura. According
to the method described previously, one possible outcome of the two-step process is as
follows:

Outcome of step 1: Anwar

Outcome of step 2: Ben, Gail, Inez, and Jill.

In this case the team would be {Anwar, Ben, Gail, Inez, Jill}. But another possible
outcome is

Outcome of step 1: Ben

Outcome of step 2: Anwar, Gail, Inez, and Jill,

which also gives the team {Anwar, Ben, Gail, Inez, Jill}. Thus this one team is given by
two different branches of the possibility tree, and so it is counted twice. ■

The best way to avoid mistakes such as the one just described is to visualize the
possibility tree that corresponds to any use of the multiplication rule and the set partition
that corresponds to a use of the addition rule. Check how your division into steps works
by applying it to some actual data—as was done in the analysis above—and try to pick
data that are as typical or generic as possible.

It often helps to ask yourself (1) “Am I counting everything?” and (2) “Am I counting
anything twice?” When using the multiplication rule, these questions become (1) “Does
every outcome appear as some branch of the tree?” and (2) “Does any outcome appear on
more than one branch of the tree?” When using the addition rule, the questions become
(1) “Does every outcome appear in some subset of the diagram?” and (2) “Do any two
subsets in the diagram share common elements?”

The Number of Partitions of a Set into r Subsets
In an ordinary (or singly indexed) sequence, integers n are associated to numbers an . In a
doubly indexed sequence, ordered pairs of integers (m, n) are associated to numbers am,n .
For example, combinations can be thought of as terms of the doubly indexed sequence
defined by Cn,r =

(n
r

)
for all integers n and r with 0 ≤ r ≤ n.

Note Stirling numbers
of the first kind are used
in counting
r -permutations with
various properties.

An important example of a doubly indexed sequence is the sequence of Stirling num-
bers of the second kind. These numbers, named after the Scottish mathematician James
Stirling (1692–1770), arise in a surprisingly large variety of counting problems. They are
defined recursively and can be interpreted in terms of partitions of a set.

Observe that if a set of three elements {x1, x2, x3} is partitioned into two subsets, then
one of the subsets has one element and the other has two elements. Therefore, there are
three ways the set can be partitioned:

{x1, x2}{x3} put x3 by itself
{x1, x3}{x2} put x2 by itself
{x2, x3}{x1} put x1 by itself

In general, let

Sn,r = number of ways a set of size n
can be partitioned into r subsets

Then, by the above, S3.2 = 3. The numbers Sn,r are called Stirling numbers of the
second kind.
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Example 9.5.12 Values of Stirling Numbers

Find S4,1, S4,2, S4,3, and S4,4.

Solution Given a set with four elements, denote it by {x1, x2, x3, x4}. The Stirling number
S4,1 = 1 because a set of four elements can be partitioned into one subset in only one way:

{x1, x2, x3, x4}.
Similarly, S4,4 = 1 because there is only one way to partition a set of four elements into
four subsets:

{x1}{x2}{x3}{x4}.
The number S4,2 = 7. The reason is that any partition of {x1, x2, x3, x4} into two sub-

sets must consist either of two subsets of size two or of one subset of size three and one
subset of size one. The partitions for which both subsets have size two must pair x1 with
x2, with x3, or with x4, which give rise to these three partitions:

{x1, x2}{x3, x4} x2 paired with x1
{x1, x3}{x2, x4} x3 paired with x1
{x1, x4}{x2, x3} x4 paired with x1

The partitions for which one subset has size one and the other has size three can have any
one of the four elements in the subset of size one, which leads to these four partitions:

{x1}{x2, x3, x4} x1 by itself

{x2}{x1, x3, x4} x2 by itself

{x3}{x1, x2, x4} x3 by itself

{x4}{x1, x2, x3} x4 by itself

It follows that the total number of ways that the set {x1, x2, x3, x4} can be partitioned into
two subsets is 3+ 4 = 7.

Finally, S4,3 = 6 because any partition of a set of four elements into three subsets must
have two elements in one subset and the other two elements in subsets by themselves.

There are
(4
2

)
= 6 ways to choose the two elements to put together, which results in the

following six possible partitions:

{x1, x2}{x3}{x4} {x2, x3}{x1}{x4}
{x1, x3}{x2}{x4} {x2, x4}{x1}{x3}
{x1, x4}{x2}{x3} {x3, x4}{x1}{x2} ■

Example 9.5.13 Finding a Recurrence Relation for Sn,r

Find a recurrence relation relating Sn,r to values of the sequence with lower indices than
n and r , and give initial conditions for the recursion.

Solution To solve this problem recursively, suppose a procedure has been found to count
both the number of ways to partition a set of n − 1 elements into r − 1 subsets and the
number of ways to partition a set of n − 1 elements into r subsets. The partitions of a set
of n elements {x1, x2, . . . , xn} into r subsets can be divided, as shown in Figure 9.5.8 on
the next page, into those that contain the set {xn} and those that do not.

To obtain the result shown in Figure 9.5.8 first count the number of partitions of
{x1, x2, . . . , xn} into r subsets where one of the subsets is {xn}. To do this, imagine taking
any one of the Sn−1, r−1 partitions of {x1, x2, . . . , xn−1} into r − 1 subsets and adding the

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



580 Chapter 9 Counting and Probability

Partitions of {x1, x2, . . . , xn} into r Subsets

Partitions of {x1, x2, . . . , xn}
into r subsets where one of
the subsets is {xn}

Partitions of {x1, x2, . . . , xn}
into r subsets where none of
the subsets is {xn}

There are Sn–1, r–1 partitions
that include {xn}.

There are rSn–1, r partitions
that do not include {xn}.

Thus the total number of partitions
of {x1, x2, . . . , xn} into r subsets
is Sn–1, r–1 + rSn–1, r . 

Figure 9.5.8

subset {xn} to the partition. For example, if n = 4 and r = 3, you would take one of the
three partitions of {x1, x2, x3} into two subsets, namely

{x1, x2}{x3}, {x1, x3}{x2}, or {x2, x3}{x1},
and add {x4}. The result would be one of the partitions

{x1, x2}{x3}{x4}, {x1, x3}{x3}{x4}, or {x2, x3}{x1}{x4}.
Clearly, any partition of {x1, x2, . . . , xn} into r subsets with {xn} as one of the subsets can
be obtained in this way. Hence Sn−1,r−1 is the number of partitions of {x1, x2, . . . , xn}
into r subsets of which one is {xn}.

Next, count the number of partitions of {x1, x2, . . . , xn} into r subsets where {xn} is
not one of the subsets of the partition. Imagine taking any one of the Sn−1,r partitions
of {x1, x2, . . . , xn−1} into r subsets. Now imagine choosing one of the r subsets of the
partition and adding in the element xn . The result is a partition of {x1, x2, . . . , xn} into r
subsets none of which is the singelton subset {xn}. Since the element xn could have been
added to any one of the r subsets of the partition, it follows from the multiplication rule
that there are r Sn−1,r partitions of this type. For instance, if n = 4 and r = 3, you would
take the (unique) partition of {x1, x2, x3} into three subsets, namely {x1}{x2}{x3}, and add
x4 to one of these sets. The result would be one of the partitions

{x1, x4}{x2}{x3}, {x1}{x2, x4}{x3}, or {x1}{x2}{x3, x4}.
↑ ↑ ↑

x4 is added to {x1} x4 is added to {x2} x4 is added to {x3}

Clearly, any partition of {x1, x2, . . . , xn} into r subsets, none of which is {xn}, can be
obtained in the way described above, for when xn is removed from whatever subset con-
tains it in such a partition, the result is a partition of {x1, x2, . . . , xn−1} into r subsets.
Hence r Sn−1,r is the number of partitions of {x1, x2, . . . , xn} that do not contain {xn}.

Since any partition of {x1, x2, . . . , xn} either contains {xn} or does not,⎡
⎣ the number of partitions

of {x1, x2, . . . , xn}
into r subsets

⎤
⎦ =

⎡
⎣ the number of partitions of
{x1, x2, . . . , xn} into r subsets
of which {xn} is one

⎤
⎦

+
⎡
⎣ the number of partitions of
{x1, x2, . . . , xn} into r subsets
none of which is {xn}

⎤
⎦
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9.5 Counting Subsets of a Set: Combinations 581

Thus
Sn,r = Sn−1,r−1 + r Sn−1,r

for all integers n and r with 1 < r < n.
The initial conditions for the recurrence relation are

Sn,1 = 1 and Sn,n = 1 for all integers n ≥ 1

because there is only one way to partition {x1, x2, . . . , xn} into one subset, namely

{x1, x2, . . . , xn}.
and only one way to partition {x1, x2, . . . , xn} into n subsets, namely

{x1}, {x2}, . . . , {xn}. ■

Test Yourself
1. The number of subsets of size r that can be formed from

a set with n elements is denoted _____, which is read as
“_____.”

2. The number of r -combinations of a set of n elements is
_____.

3. Two unordered selections are said to be the same if the ele-
ments chosen are the same, regardless of _____.

4. A formula relating
(n
r

)
and P(n, r) is _____.

5. The phrase “at least n” means _____, and the phrase “at
most n” means _____.

6. Suppose a collection consists of n objects of which, for each
i with 1 ≤ i ≤ k, ni are of type i and are indistinguishable
from each other. Also suppose that n = n1 + n2 + · · · + nk .
Then the number of distinct permutations of the n objects is
_____.

7. The Stirling number of the second kind, Sn,r , can be inter-
preted as _____.

8. Because any partition of a set X = {x1, x2, . . . , xn} either
contains {xn} or does not, the number of partitions of X into
r subsets equals _____ plus _____.

Exercise Set 9.5
1. a. List all 2-combinations for the set {x1, x2, x3}. Deduce

the value of
(3
2

)
.

b. List all unordered selections of four elements from the

set {a, b, c, d, e}. Deduce the value of
(5
4

)
.

2. a. List all 3-combinations for the set {x1, x2, x3, x4, x5}.
Deduce the value of

(5
3

)
.

b. List all unordered selections of two elements from the

set {x1, x2, x3, x4, x5, x6}. Deduce the value of
(6
2

)
.

3. Write an equation relating P(7, 2) and
(7
2

)
.

4. Write an equation relating P(8, 3) and
(8
3

)
.

5. Use Theorem 9.5.1 to compute each of the following.

a.
(6
0

)
b.
(6
1

)
c.
(6
2

)
d.
(6
3

)
e.
(6
4

)
f.
(6
5

)
g.
(6
6

)
6. A student council consists of 15 students.

a. In how many ways can a committee of six be selected
from the membership of the council?

b. Two council members have the same major and are not
permitted to serve together on a committee. How many

ways can a committee of six be selected from the mem-
bership of the council?

c. Two council members always insist on serving on com-
mittees together. If they can’t serve together, they won’t
serve at all. How many ways can a committee of six be
selected from the council membership?

d. Suppose the council contains eight men and seven
women.
(i) How many committees of six contain three men and

three women?
(ii) How many committees of six contain at least one

woman?
e. Suppose the council consists of three freshmen, four

sophomores, three juniors, and five seniors. How many
committees of eight contain two representatives from
each class?

7. A computer programming team has 13 members.
a. How many ways can a group of seven be chosen to work

on a project?
b. Suppose seven team members are women and six are

men.
(i) How many groups of seven can be chosen that

contain four women and three men?
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582 Chapter 9 Counting and Probability

(ii) How many groups of seven can be chosen that
contain at least one man?

(iii) How many groups of seven can be chosen that
contain at most three women?

c. Suppose two team members refuse to work together on
projects. How many groups of seven can be chosen to
work on a project?

d. Suppose two team members insist on either working
together or not at all on projects. How many groups of
seven can be chosen to work on a project?

8.H An instructor gives an exam with fourteen questions. Stu-
dents are allowed to choose any ten to answer.
a. How many different choices of ten questions are there?
b. Suppose six questions require proof and eight do not.

(i) Howmany groups of ten questions contain four that
require proof and six that do not?

(ii) How many groups of ten questions contain at least
one that requires proof?

(iii) How many groups of ten questions contain at most
three that require proof?

c. Suppose the exam instructions specify that at most one
of questions 1 and 2 may be included among the ten.
How many different choices of ten questions are there?

d. Suppose the exam instructions specify that either both
questions 1 and 2 are to be included among the ten or
neither is to be included. How many different choices of
ten questions are there?

9. A club is considering changing its bylaws. In an initial
straw vote on the issue, 24 of the 40 members of the club
favored the change and 16 did not. A committee of six is
to be chosen from the 40 club members to devote further
study to the issue.
a. How many committees of six can be formed from the

club membership?
b. How many of the committees will contain at least three

club members who, in the preliminary survey, favored
the change in the bylaws?

10. Two new drugs are to be tested using a group of 60 labo-
ratory mice, each tagged with a number for identification
purposes. Drug A is to be given to 22 mice, drug B is to be
given to another 22 mice, and the remaining 16 mice are to
be used as controls. How many ways can the assignment of
treatments to mice be made? (A single assignment involves
specifying the treatment for each mouse—whether drug A,
drug B, or no drug.)

11.✶ Refer to Example 9.5.8. For each poker holding below, (1)
find the number of five-card poker hands with that holding;
(2) find the probability that a randomly chosen set of five
cards has that holding.
a. royal flush b. straight flush c. four of a kind
d. full house e. flush f. straight
g. three of a kind h. one pair
i. neither a repeated denomination nor five of the same suit

nor five adjacent denominations

12. How many pairs of two distinct integers chosen from the
set {1, 2, 3, . . . , 101} have a sum that is even?

13. A coin is tossed ten times. In each case the outcome H (for
heads) or T (for tails) is recorded. (One possible outcome
of the ten tossings is denoted T HHTT T HT T H .)
a. What is the total number of possible outcomes of the

coin-tossing experiment?
b. In how many of the possible outcomes are exactly five

heads obtained?
c. In how many of the possible outcomes are at least eight

heads obtained?
d. In how many of the possible outcomes is at least one

head obtained?
e. In how many of the possible outcomes is at most one

head obtained?

14. a. How many 16-bit strings contain exactly seven 1’s?
b. How many 16-bit strings contain at least thirteen 1’s?
c. How many 16-bit strings contain at least one 1?
d. How many 16-bit strings contain at most one 1?

15. a. How many even integers are in the set

{1, 2, 3, . . . , 100}?
b. How many odd integers are in the set

{1, 2, 3, . . . , 100}?
c. How many ways can two integers be selected from the

set {1, 2, 3, . . . , 100} so that their sum is even?
d. How many ways can two integers be selected from the

set {1, 2, 3, . . . , 100} so that their sum is odd?

16. Suppose that three computer boards in a production run of
forty are defective. A sample of five is to be selected to be
checked for defects.
a. How many different samples can be chosen?
b. How many samples will contain at least one defective

board?
c. What is the probability that a randomly chosen sample

of five contains at least one defective board?

17. Ten points labeled A, B,C, D, E, F,G, H, I, J are
arranged in a plane in such a way that no three lie on
the same straight line.
a. How many straight lines are determined by the ten

points?
b. How many of these straight lines do not pass through

point A?
c. How many triangles have three of the ten points as ver-

tices?
d. How many of these triangles do not have A as a vertex?

18. Suppose that you placed the letters in Example 9.5.10 into
positions in the following order: first the M , then the I ’s,
then the S’s, and then the P’s. Show that you would obtain
the same answer for the number of distinguishable order-
ings.

19. a. How many distinguishable ways can the letters of the
word HULLABALOO be arranged in order?
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b. How many distinguishable orderings of the letters of
HULLABALOO begin with U and end with L?

c. How many distinguishable orderings of the letters of
HULLABALOO contain the two letters HU next to each
other in order?

20. a. How many distinguishable ways can the letters of the
word MILLIMICRON be arranged in order?

b. How many distinguishable orderings of the letters of
MILLIMICRON begin with M and end with N?

c. How many distinguishable orderings of the letters of
MILLIMICRON contain the letters CR next to each
other in order and also the letters ON next to each other
in order?

21. In Morse code, symbols are represented by variable-length
sequences of dots and dashes. (For example, A = ·−,

1 = · − −−−, ? = · · − −· · .) Howmany different sym-
bols can be represented by sequences of seven or fewer dots
and dashes?

22. Each symbol in the Braille code is represented by a rectan-
gular arrangement of six dots, each of which may be raised
or flat against a smooth background. For instance, when the
word Braille is spelled out, it looks like this:

· ·· ·· · · ·· ·· · · ·· ·· · · ·· ·· · · ·· ·· · · ·· ·· · · ·· ·· ·
Given that at least one of the six dots must be raised, how
many symbols can be represented in the Braille code?

23. On an 8× 8 chessboard, a rook is allowed to move any
number of squares either horizontally or vertically. How
many different paths can a rook follow from the bottom-
left square of the board to the top-right square of the board
if all moves are to the right or upward?

24. The number 42 has the prime factorization 2 ·3 ·7. Thus
42 can be written in four ways as a product of two posi-
tive integer factors (without regard to the order of the fac-
tors): 1 ·42, 2 ·21, 3 ·14, and 6 ·7. Answer a–d below with-
out regard to the order of the factors.
a. List the distinct ways the number 210 can be written as

a product of two positive integer factors.
b. If n = p1 p2 p3 p4, where the pi are distinct prime num-

bers, how many ways can n be written as a product of
two positive integer factors?

c. If n = p1 p2 p3 p4 p5, where the pi are distinct prime
numbers, how many ways can n be written as a prod-
uct of two positive integer factors?

d. If n = p1 p2 · · · pk , where the pi are distinct prime num-
bers, how many ways can n be written as a product of
two positive integer factors?

25. a. How many one-to-one functions are there from a set
with three elements to a set with four elements?

b. How many one-to-one functions are there from a set
with three elements to a set with two elements?

c. How many one-to-one functions are there from a set
with three elements to a set with three elements?

d. How many one-to-one functions are there from a set
with three elements to a set with five elements?

e.H How many one-to-one functions are there from a set
with m elements to a set with n elements, where m ≤ n?

26. a. How many onto functions are there from a set with three
elements to a set with two elements?

b. How many onto functions are there from a set with three
elements to a set with five elements?

c.H How many onto functions are there from a set with three
elements to a set with three elements?

d. How many onto functions are there from a set with four
elements to a set with two elements?

e. How many onto functions are there from a set with four
elements to a set with three elements?

f.✶H Let cm,n be the number of onto functions from a set of m
elements to a set of n elements, where m ≥ n ≥ 1. Find
a formula relating cm,n to cm−1,n and cm−1,n−1.

27. Let A be a set with eight elements.
a. How many relations are there on A?
b. How many relations on A are reflexive?
c. How many relations on A are symmetric?
d. How many relations on A are both reflexive and sym-

metric?

28.✶H A student council consists of three freshmen, four sopho-
mores, four juniors, and five seniors. How many commit-
tees of eight members of the council contain at least one
member from each class?

29.✶ An alternative way to derive Theorem 9.5.1 uses the follow-
ing division rule: Let n and k be integers so that k divides n.
If a set consisting of n elements is divided into subsets that
each contain k elements, then the number of such subsets is
n/k. Explain how Theorem 9.5.1 can be derived using the
division rule.

30. Find the error in the following reasoning: “Consider form-
ing a poker hand with two pairs as a five-step process.

Step 1: Choose the denomination of one of the pairs.
Step 2: Choose the two cards of that denomination.
Step 3: Choose the denomination of the other of the pairs.
Step 4: Choose the two cards of that second denomination.
Step 5: Choose the fifth card from the remaining denomi-
nations.

There are
(13
1

)
ways to perform step 1,

(4
2

)
ways to perform

step 2,
(12
1

)
ways to perform step 3,

(4
2

)
ways to perform

step 4, and
(44
1

)
ways to perform step 5. Therefore, the total

number of five-card poker hands with two pairs is
13 ·6 ·12 ·6 ·44 = 247,104.”

31.✶ Let Pn be the number of partitions of a set with n elements.
Show that

Pn =
(
n − 1
0

)
Pn−1 +

(
n − 1
1

)
Pn−2 + · · · +

(
n − 1
n − 1

)
P0

for all integers n ≥ 1.
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Exercises 32–38 refer to the sequence of Stirling numbers of the
second kind.

32. Find S3,4 by exhibiting all the partitions of {x1, x2, x3,
x4, x5} into four subsets.

33. Use the values computed in Example 9.5.12 and the
recurrence relation and initial conditions found in Exam-
ple 9.5.13 to compute S5,2.

34. Use the values computed in Example 9.5.12 and the
recurrence relation and initial conditions found in Exam-
ple 9.5.13 to compute S5,3.

35. Use the results of exercises 32–34 to find the total number
of different partitions of a set with five elements.

36. Use mathematical induction and the recurrence relation
found in Example 9.5.13 to prove that for all integers
n ≥ 2, Sn,2 = 2n−1 − 1.

37. Use mathematical induction and the recurrence relation
found in Example 9.5.13 to prove that for all integers
n ≥ 2,

∑k
k=2(3

4−k Sk,2)− Sn+1,3.

38.H If X is a set with n elements and Y is a set with m ele-
ments, express the number of onto functions from X and
Y using Stirling numbers of the second kind. Justify your
answer.

Answers for Test Yourself

1.
(n
r

)
; n choose r 2.

(n
r

)
(Or: n choose r ) 3. the order in which they are chosen 4.

(n
r

)
= P(n,r)

r ! 5. n or more; n or fewer

6.
( n
n1

) (n−n1
n2

) (n−n1−n2
n3

)
· · ·

(n−n1−n2−···−nk−1
nk

) (
Or : n!

n1!n2!n3!···nk !
)

7. the number of ways a set of size n can be partitioned

into r subsets 8. the number of partitions of X into r subsets of which {xn} is one; the number of partitions of X into r subsets, none
of which is {xn}

9.6 r-Combinations with Repetition Allowed
The value of mathematics in any science lies more in disciplined analysis and abstract
thinking than in particular theories and techniques. —Alan Tucker, 1982

In Section 9.5 we showed that there are
(n
r

)
r -combinations, or subsets of size r , of a set

of n elements. In other words, there are
(n
r

)
ways to choose r distinct elements without

regard to order from a set of n elements. For instance, there are
(4
3

)
= 4 ways to choose

three elements out of a set of four: {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}.
In this section we ask: How many ways are there to choose r elements without regard

to order from a set of n elements if repetition is allowed? A good way to imagine this is
to visualize the n elements as categories of objects from which multiple selections may
be made. For instance, if the categories are labeled 1, 2, 3, and 4 and three elements are
chosen, it is possible to choose two elements of type 3 and one of type 1, or all three of
type 2, or one each of types 1, 2 and 4. We denote such choices by [3, 3, 1], [2, 2, 2], and
[1, 2, 4], respectively. Note that because order does not matter, [3, 3, 1] = [3, 1, 3] =
[1, 3, 3], for example.

• Definition

An r-combination with repetition allowed, ormultiset of size r, chosen from a set
X of n elements is an unordered selection of elements taken from X with repetition
allowed. If X = {x1, x2, . . . , xn}, we write an r -combination with repetition allowed,
or multiset of size r , as [xi1, xi2, . . . , xir ] where each xi j is in X and some of the xi j
may equal each other.
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Example 9.6.1 r-Combinations with Repetition Allowed

Write a complete list to find the number of 3-combinations with repetition allowed, or
multisets of size 3, that can be selected from {1, 2, 3, 4}. Observe that because the order
in which the elements are chosen does not matter, the elements of each selection may be
written in increasing order, and writing the elements in increasing order will ensure that
no combinations are overlooked.

Solution [1, 1, 1] ; [1, 1, 2]; [1, 1, 3]; [1, 1, 4] all combinations with 1, 1

[1, 2, 2] ; [1, 2, 3]; [1, 2, 4]; all additional combinations with 1, 2

[1, 3, 3] ; [1, 3, 4]; [1, 4, 4]; all additional combinations with 1, 3 or 1, 4

[2, 2, 2] ; [2, 2, 3]; [2, 2, 4]; all additional combinations with 2, 2

[2, 3, 3] ; [2, 3, 4]; [2, 4, 4]; all additional combinations with 2, 3 or 2, 4

[3, 3, 3] ; [3, 3, 4]; [3, 4, 4]; all additional combinations with 3, 3 or 3, 4

[4, 4, 4] the only additional combination with 4, 4

Thus there are twenty 3-combinations with repetition allowed. ■

How could the number twenty have been predicted other than by making a complete
list? Consider the numbers 1, 2, 3, and 4 as categories and imagine choosing a total of
three numbers from the categories with multiple selections from any category allowed.
The results of several such selections are represented by the table below.

Category 1 Category 2 Category 3 Category 4 Result of the Selection

1 from category 2| × | | ××
2 from category 4

1 each from categories× | | × | ×
1, 3, and 4

× × × | | | 3 from category 1

As you can see, each selection of three numbers from the four categories can be repre-
sented by a string of vertical bars and crosses. Three vertical bars are used to separate the
four categories, and three crosses are used to indicate howmany items from each category
are chosen. Each distinct string of three vertical bars and three crosses represents a dis-
tinct selection. For instance, the string

×× | | × |
represents the selection: two from category 1, none from category 2, one from category 3,
and none from category 4. Thus the number of distinct selections of three elements that
can be formed from the set {1, 2, 3, 4} with repetition allowed equals the number of dis-
tinct strings of six symbols consisting of three |’s and three ×’s. But this equals the
number of ways to select three positions out of six because once three positions have
been chosen for the ×’s, the |’s are placed in the remaining three positions. Thus the
answer is (

6
3

)
= 6!

3!(6− 3)! =
6 ·5 ·4 ·3!
3 ·2 ·1 ·3! = 20,

as was obtained earlier by a careful listing.
The analysis of this example extends to the general case. To count the number of

r -combinations with repetition allowed, or multisets of size r , that can be selected from a
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586 Chapter 9 Counting and Probability

set of n elements, think of the elements of the set as categories. Then each r -combination
with repetition allowed can be represented as a string of n − 1 vertical bars (to separate
the n categories) and r crosses (to represent the r elements to be chosen). The number
of ×’s in each category represents the number of times the element represented by that
category is repeated.

r ×'s to be placed in categories

Category 1 Category 2 Category 3 Category n –  1 Category n

The number of strings of n − 1 vertical bars and r crosses is the number of ways to choose
r positions, into which to place the r crosses, out of a total of r + (n − 1) positions,
leaving the remaining positions for the vertical bars. But by Theorem 9.5.1, this number

is
(r+n−1

r

)
.

This discussion proves the following theorem.

Theorem 9.6.1

The number of r -combinations with repetition allowed (multisets of size r ) that can
be selected from a set of n elements is(

r + n − 1

r

)
.

This equals the number of ways r objects can be selected from n categories of objects
with repetition allowed.

Example 9.6.2 Selecting 15 Cans of Soft Drinks of Five Different Types

A person giving a party wants to set out 15 assorted cans of soft drinks for his guests. He
shops at a store that sells five different types of soft drinks.

a. How many different selections of cans of 15 soft drinks can he make?

b. If root beer is one of the types of soft drink, how many different selections include at
least six cans of root beer?

c. If the store has only five cans of root beer but at least 15 cans of each other type of
soft drink, how many different selections are there?

Solution

a. Think of the five different types of soft drinks as the n categories and the 15 cans
of soft drinks to be chosen as the r objects (so n = 5 and r = 15). Each selection of
cans of soft drinks is represented by a string of 5− 1 = 4 vertical bars (to separate the
categories of soft drinks) and 15 crosses (to represent the cans selected). For instance,
the string

××× | × ×××××× | | × × × | × ×
represents a selection of three cans of soft drinks of type 1, seven of type 2, none of
type 3, three of type 4, and two of type 5. The total number of selections of 15 cans
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of soft drinks of the five types is the number of strings of 19 symbols, 5− 1 = 4 of
them | and 15 of them ×:(

15+ 5− 1
15

)
=

(
19
15

)
=

6 2
19 · 18 · 17 · 16 · 15!

15! · 4 · 3 · 2 ·1 = 3,876.

b. If at least six cans of root beer are included, we can imagine choosing six such cans
first and then choosing 9 additional cans. The choice of the nine additional cans can be
represented as a string of 9 ×’s and 4 |’s. For example, if root beer is type 1, then the
string×××| | × × | × ×××| represents a selection of three cans of root beer (in
addition to the six chosen initially), none of type 2, two of type 3, four of type 4, and
none of type 5. Thus the total number of selections of 15 cans of soft drinks of the five
types, including at least six cans of root beer, is the number of strings of 13 symbols,
4 (= 5− 1) of them | and 9 of them ×:(

9+ 4
9

)
=

(
13
9

)
=

5
13 · 12 · 11 · 10 · 9!

9! · 4 · 3 · 2 ·1 = 715.

c. If the store has only five cans of root beer, then the number of different selections of
15 cans of soft drinks of the five types is the same as the number of different selections
that contain five or fewer cans of root beer. Let T be the set of selections for which
the type of cans of root beer is unrestricted, R≤5 the set of selections containing five
or fewer cans of root beer, and R≥6 the set of selections containing six or more cans
of root beer. Then

T = R≤5 ∪ R≥6 and R≤5 ∩ R≥6 = ∅.
By part (a) N (T ) = 3,876 and by part (b) N (R≥6) = 715. Thus, by the difference rule,

N (R≤5) = N (T )− N (R≥6) = 3,876− 715 = 3,161.

So the number of different selections of soft drinks is 3,161. ■

Example 9.6.3 Counting Triples (i, j, k) with 1 ≤ i ≤ j ≤ k ≤ n

If n is a positive integer, how many triples of integers from 1 through n can be formed
in which the elements of the triple are written in increasing order but are not necessarily
distinct? In other words, how many triples of integers (i, j, k) are there with 1 ≤ i ≤ j ≤
k ≤ n?

Solution Any triple of integers (i, j, k) with 1 ≤ i ≤ j ≤ k ≤ n can be represented as a
string of n − 1 vertical bars and three crosses, with the positions of the crosses indicating
which three integers from 1 to n are included in the triple. The table below illustrates this
for n = 5.

Category Result of the Selection
1 2 3 4 5

| | ×× | | × (3, 3, 5)

× | × | | × | (1, 2, 4)
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Thus the number of such triples is the same as the number of strings of (n − 1) |’s and
3×’s, which is(

3+ (n − 1)
3

)
=

(
n + 2
3

)
= (n + 2)!

3!(n + 2− 3)!

= (n + 2)(n + 1)n(n − 1)!
3!(n − 1)! = n(n + 1)(n + 2)

6
. ■

Note that in Examples 9.6.2 and 9.6.3 the reasoning behind Theorem 9.6.1 was used
rather than the statement of the theorem itself. Alternatively, in either example we could
invoke Theorem 9.6.1 directly by recognizing that the items to be counted either are
r -combinations with repetition allowed or are the same in number as such combinations.
For instance, in Example 9.6.3 we might observe that there are exactly as many triples of
integers (i, j, k) with 1 ≤ i ≤ j ≤ k ≤ n as there are 3-combinations of integers from 1
through n with repetition allowed because the elements of any such 3-combination can
be written in increasing order in only one way.

Example 9.6.4 Counting Iterations of a Loop

How many times will the innermost loop be iterated when the algorithm segment below
is implemented and run? (Assume n is a positive integer.)

for k := 1 to n

for j := 1 to k

for i := 1 to j
[Statements in the body of the inner loop,
none containing branching statements that lead
outside the loop]

next i

next j

next k

Solution Construct a trace table for the values of k, j , and i for which the statements in
the body of the innermost loop are executed. (See the table that follows.) Because i goes
from 1 to j , it is always the case that i ≤ j . Similarly, because j goes from 1 to k, it
is always the case that j ≤ k. To focus on the details of the table construction, consider
what happens when k = 3. In this case, j takes each value 1, 2, and 3. When j = 1, i
can only take the value 1 (because i ≤ j). When j = 2, i takes each value 1 and 2 (again
because i ≤ j). When j = 3, i takes each value 1, 2, and 3 (yet again because i ≤ j).

→ → →
→ → → → →

k 1 2 3 · · · n

j 1 1 2 1 2 3 · · · 1 2 · · · n

i 1 1 1 2 1 1 2 1 2 3 · · · 1 1 2 · · · 1 · · · n

Observe that there is one iteration of the innermost loop for each column of this table,
and there is one column of the table for each triple of integers (i, j, k) with 1 ≤ i ≤ j ≤
k ≤ n. But Example 9.6.3 showed that the number of such triples is [n(n + 1)(n + 2)]/6.
Thus there are [n(n + 1)(n + 2)]/6 iterations of the innermost loop. ■

The solution in Example 9.6.4 is the most elegant and generalizable one. (See exer-
cises 8 and 9.) An alternative solution using summations is outlined in exercise 21.
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Example 9.6.5 The Number of Integral Solutions of an Equation

How many solutions are there to the equation x1 + x2 + x3 + x4 = 10 if x1, x2, x3, and
x4 are nonnegative integers?

Solution Think of the number 10 as divided into ten individual units and the variables
x1, x2, x3, and x4 as four categories into which these units are placed. The number of
units in each category xi indicates the value of xi in a solution of the equation. Each
solution can, then, be represented by a string of three vertical bars (to separate the four
categories) and ten crosses (to represent the ten individual units). For example, in the
following table, the two crosses under x1, five crosses under x2, and three crosses under
x4 represent the solution x1 = 2, x2 = 5, x3 = 0, and x4 = 3.

Categories Solution to the equation x1 + x2 + x3 + x4 = 10
x1 x2 x3 x4

×× | × × × × × | | × × × x1 = 2, x2 = 5, x3 = 0, and x4 = 3

× × × × | × × × × ×× | | x1 = 4, x2 = 6, x3 = 0, and x4 = 0

Therefore, there are as many solutions to the equation as there are strings of ten
crosses and three vertical bars, namely(

10+ 3
10

)
=

(
13
10

)
= 13!

10!(13− 10)! =
13 ·12 ·11 ·10!
10! ·3 ·2 ·1 = 286. ■

Example 9.6.6 illustrates a variation on Example 9.6.5.

Example 9.6.6 Additional Constraints on the Number of Solutions

How many integer solutions are there to the equation x1 + x2 + x3 + x4 = 10 if each
xi ≥ 1?

Solution In this case imagine starting by putting one cross in each of the four categories.
Then distribute the remaining six crosses among the categories. Such a distribution can
be represented by a string of three vertical bars and six crosses. For example, the string

××× | | × × | ×
indicates that there are three more crosses in category x1 in addition to the one cross
already there (so x1 = 4), no more crosses in category x2 in addition to the one already
there (so x2 = 1), two more crosses in category x3 in addition to the one already there
(so x3 = 3), and one more cross in category x4 in addition to the one already there (so
x4 = 2). It follows that the number of solutions to the equation that satisfy the given
condition is the same as the number of strings of three vertical bars and six crosses,
namely (

6+ 3
6

)
=

(
9
6

)
= 9!

6!(9− 6)! =
9 ·8 ·7 ·6!
6! ·3 ·2 ·1 = 84.

An alternative solution to this example is based on the observation that since each
xi ≥ 1, we may introduce new variables yi = xi − 1 for each i = 1, 2, 3, 4. Then each
yi ≥ 0, and y1 + y2 + y3 + y4 = 6. Thus the number of solutions of y1+y2+y3+y4=6
in nonnegative integers is the same as the number of solutions of x1 + x2 + x3 + x4 = 10
in positive integers. ■
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Which Formula to Use?
Sections 9.2, 9.3, 9.5, and 9.6 have discussed four different ways of choosing k elements
from n. The order in which the choices are made may or may not matter, and repetition
may or may not be allowed. The following table summarizes which formula to use in
which situation.

Order Matters Order Does Not Matter

Repetition Is Allowed nk

(
k + n − 1

k

)

Repetition Is Not Allowed P(n, k)

(
n

k

)

Test Yourself
1. Given a set X = {x1, x2, . . . , xn}, an r -combination with

repetition allowed, or a multiset of size r , chosen from X
is _____, which is denoted _____.

2. If X = {x1, x2, . . . , xn}, the number of r -combinations with
repetition allowed (or multisets of size r ) chosen from X is
_____.

3. When choosing k elements from a set of n elements, order
may or may not matter and repetition may or may not be
allowed.

• The number of ways to choose the k elements when
repetition is allowed and order matters is _____.

• The number of ways to choose the k elements when
repetition is not allowed and order matters is _____.

• The number of ways to choose the k elements when
repetition is not allowed and order does not matter is
_____.

• The number of ways to choose the k elements when
repetition is allowed and order does not matter is
_____.

Exercise Set 9.6
1. a. According to Theorem 9.6.1, how many 5-combinations

with repetition allowed can be chosen from a set of three
elements?

b. List all of the 5-combinations that can be chosen with
repetition allowed from {1, 2, 3}.

2. a. According to Theorem 9.6.1, howmany multisets of size
four can be chosen from a set of three elements?

b. List all of the multisets of size four that can be chosen
from the set {x, y, z}.

3. A bakery produces six different kinds of pastry, one of
which is eclairs. Assume there are at least 20 pastries of
each kind.

a. How many different selections of twenty pastries are
there?

b. How many different selections of twenty pastries are
there if at least three must be eclairs?

c. How many different selections of twenty pastries con-
tain at most two eclairs?

4. A camera shop stocks eight different types of batteries, one
of which is type A7b. Assume there are at least 30 batteries
of each type.
a. How many ways can a total inventory of 30 batteries be

distributed among the eight different types?
b. How many ways can a total inventory of 30 batteries be

distributed among the eight different types if the inven-
tory must include at least four A76 batteries?

c. How many ways can a total inventory of 30 batteries be
distributed among the eight different types if the inven-
tory includes at most three A7b batteries?

5. If n is a positive integer, howmany 4-tuples of integers from
1 through n can be formed in which the elements of the
4-tuple are written in increasing order but are not nec-
essarily distinct? In other words, how many 4-tuples
of integers (i, j, k,m) are there with 1 ≤ i ≤ j ≤ k ≤
m ≤ n?

6. If n is a positive integer, howmany 5-tuples of integers from
1 through n can be formed in which the elements of the
5-tuple are written in decreasing order but are not nec-
essarily distinct? In other words, how many 5-tuples of
integers (h, i, j, k,m) are there with n ≥ h ≥ i ≥ j ≥ k ≥
m ≥ 1?

7. Another way to count the number of nonnegative integral
solutions to an equation of the form x1+x2+· · ·+xn=m is
to reduce the problem to one of finding the number of n-
tuples (y1, y2, . . . , yn) with 0 ≤ y1 ≤ y2 ≤ · · · ≤ yn ≤ m.
The reduction results from letting yi = x1 + x2 + · · · + xi
for each i = 1, 2, . . . , n. Use this approach to derive a gen-
eral formula for the number of nonnegative integral solu-
tions to x1 + x2 + · · · + xn = m.
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In 8 and 9, how many times will the innermost loop be iterated
when the algorithm segment is implemented and run? Assume
n, m, k, and j are positive integers.

8. for m := 1 to n

for k := 1 to m

for j := 1 to k

for i := 1 to j
[Statements in the body of the inner loop,
none containing branching statements that
lead outside the loop]

next i

next j

next k

next m

9. for k := 1 to n

for j := k to n

for i := j to n
[Statements in the body of the inner loop,
none containing branching statements that
lead outside the loop]

next i

next j

next k

In 10–14, find how many solutions there are to the given equa-
tion that satisfy the given condition.

10. x1 + x2 + x3 = 20, each xi is a nonnegative integer.

11. x1 + x2 + x3 = 20, each xi is a positive integer.

12. y1 + y2 + y3 + y4 = 30, each yi is a nonnegative integer.

13. y1 + y2 + y3 + y4 = 30, each yi is an integer that is at
least 2.

14. a + b + c + d + e = 500, each of a, b, c, d, and e is an
integer that is at least 10.

15.✶ For how many integers from 1 through 99,999 is the sum of
their digits equal to 10?

16. Consider the situation in Example 9.6.2.

a. Suppose the store has only six cans of lemonade but
at least 15 cans of each of the other four types, of soft
drink. In how many different ways can five cans of soft
drink be selected?

b. Suppose that the store has only five cans of root beer and
only six cans of lemonade but at least 15 cans of each of

the other three types of soft drink. In how many different
ways can five cans of soft drink be selected?

17. a.H A store sells 8 kinds of balloons with at least 30 of each
kind. How many different combinations of 30 balloons
can be chosen?

b. If the store has only 12 red balloons but at least 30 of
each other kind of balloon, how many combinations of
balloons can be chosen?

c. If the store has only 8 blue balloons but at least 30 of
each other kind of balloon, how many combinations of
balloons can be chosen?

d. If the store has only 12 red balloons and only 8 blue bal-
loons but at least 30 of each other kind of balloon, how
many combinations of balloons can be chosen?

18. A large pile of coins consists of pennies, nickels, dimes,
and quarters.
a. How many different collections of 30 coins can be cho-

sen if there are at least 30 of each kind of coin?
b. If the pile contains only 15 quarters but at least 30 of

each other kind of coin, how many collections of 30
coins can be chosen?

c. If the pile contains only 20 dimes but at least 30 of each
other kind of coin, how many collections of 30 coins can
be chosen?

d. If the pile contains only 15 quarters and only 20 dimes
but at least 30 of each other kind of coin, how many col-
lections of 30 coins can be chosen?

19.H Suppose the bakery in exercise 3 has only ten eclairs but
has at least twenty of each of the other kinds of pastry.
a. How many different selections of twenty pastries are

there?
b. Suppose in addition to having only ten eclairs, the bak-

ery has only eight napoleon slices. How many different
selections of twenty pastries are there?

20. Suppose the camera shop in exercise 4 can obtain at most
ten A76 batteries but can get at least 30 of each of the other
types.
a. How many ways can a total inventory of 30 batteries be

distributed among the eight different types?
b. Suppose that in addition to being able to obtain only ten

A76 batteries, the store can get only six of type D303.
How many ways can a total inventory of 30 batteries be
distributed among the eight different types?

21. Observe that the number of columns in the trace table for
Example 9.6.4 can be expressed as the sum

1+ (1+ 2)+ (1+ 2+ 3)+ · · · + (1+ 2+ · · · + n).

Explain why this is so, and show how this sum simplifies to
the same expression given in the solution of Example 9.6.4.
Hint: Use a formula from the exercise set for Section 5.2.

Answers for Test Yourself
1. an unordered selection of elements taken from X with repetition allowed; [xi1 , xi2 , . . . , xir ] where each xi j is in X and some of the

xi j may equal each other 2.
(r+n−1

r

)
3. nk; n(n − 1)(n − 2) · · · (n − k + 1) (Or : P(n, k)) ;

(n
k

)
;
(k+n−1

k

)
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9.7 Pascal’s Formula and the Binomial Theorem
I’m very well acquainted, too, with matters mathematical, I understand equations both
the simple and quadratical. About binomial theorem I am teaming with a lot of news,
With many cheerful facts about the square of the hypotenuse.
—William S. Gilbert, The Pirates of Penzance, 1880

In this section we derive several formulas for values of
(n
r

)
The most important is Pascal’s

formula, which is the basis for Pascal’s triangle and is a crucial component of one of the
proofs of the binomial theorem. We offer two distinct proofs for both Pascal’s formula
and the binomial theorem. One of them is called “algebraic” because it relies to a great
extent on algebraic manipulation, and the other is called “combinatorial,” because it is
based on the kind of counting arguments we have been discussing in this chapter.

Example 9.7.1 Values of
(

n
n

)
,

(
n

n − 1

)
,

(
n

n − 2

)
Think of Theorem 9.5.1 as a general template: Regardless of what nonnegative numbers
are placed in the boxes, if the number in the lower box is no greater than the number in
the top box, then (

�
♦

)
= �!
♦!(�− ♦)! .

Use Theorem 9.5.1 to show that for all integers n ≥ 0,(
n
n

)
= 1 9.7.1

(
n

n − 1

)
= n, if n ≥ 1 9.7.2

(
n

n − 2

)
= n(n − 1)

2
, if n ≥ 2. 9.7.3

Solution
(
n
n

)
= n!

n!(n − n)! =
1

0! = 1 since 0! = 1 by definition(
n

n − 1

)
= n!

(n − 1)!(n − (n − 1))!
= n ·(n − 1)!

(n − 1)!(n − n + 1)! =
n

1
= n(

n
n − 2

)
= n!

(n − 2)!(n − (n − 2))!
= n ·(n − 1) ·(n − 2)!

(n − 2)!2! = n(n − 1)

2
■

Note that the result derived algebraically above, that
(n
n

)
equals 1, agrees with the fact

that a set with n elements has just one subset of size n, namely itself. Similarly, exercise
1 at the end of the section asks you to show algebraically that

(n
0

)
= 1, which agrees with

the fact that a set with n elements has one subset, the empty set, of size 0. In exercise
2 you are also asked to show algebraically that

(n
1

)
= n. This result agrees with the fact

that there are n subsets of size 1 that can be chosen from a set with n elements, namely
the subsets consisting of each element taken alone.
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Example 9.7.2
(

n
r

)
=

(
n

n − r

)
In exercise 5 at the end of the section you are asked to verify algebraically that(

n
r

)
=

(
n

n − r

)
for all nonnegative integers n and r with r ≤ n.

An alternative way to deduce this formula is to interpret it as saying that a set A with n
elements has exactly as many subsets of size r as it has subsets of size n − r . Derive the
formula using this reasoning.

Solution Observe that any subset of size r can be specified either by saying which r ele-
ments lie in the subset or by saying which n − r elements lie outside the subset.

A, A Set with n Elements

B, a subset
with r
elements

A – B, a subset
with n – r
elements

Any subset B with r
elements completely
determines a subset,
A – B, with n – r elements.

Suppose A has k subsets of size r : B1, B2, . . . , Bk . Then each Bi can be paired up
with exactly one set of size n − r , namely its complement A − Bi as shown below.

Subsets of Size r Subsets of Size n – r

B1

B2

Bk

A – B1

A – B2

A – Bk

All subsets of size r are listed in the left-hand column, and all subsets of size n − r are
listed in the right-hand column. The number of subsets of size r equals the number of
subsets of size n − r , and so

(n
r

)
=
( n
n−r

)
. ■

The type of reasoning used in this example is called combinatorial, because it is
obtained by counting things that are combined in different ways. A number of theorems
have both combinatorial proofs and proofs that are purely algebraic.

Pascal’s Formula
Pascal’s formula, named after the seventeenth-century French mathematician and philoso-
pher Blaise Pascal, is one of the most famous and useful in combinatorics (which is the

formal term for the study of counting and listing problems). It relates the value of
(n+1

r

)
to the values of

( n
r−1

)
and

(n
r

)
. Specifically, it says that

(
n + 1
r

)
=

(
n

r − 1

)
+
(
n
r

)

whenever n and r are positive integers with r ≤ n. This formula makes it easy to compute
higher combinations in terms of lower ones: If all the values of

(n
r

)
are known, then the

values of
(n+1

r

)
can be computed for all r such that 0 < r ≤ n.

H
ul

to
n-

D
eu

tc
h

C
ol

le
ct

io
n/

C
O

R
B

IS

Blaise Pascal
(1623–1662)
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Pascal’s triangle, shown in Table 9.7.1, is a geometric version of Pascal’s formula.
Sometimes it is simply called the arithmetic triangle because it was used centuries before
Pascal by Chinese and Persian mathematicians. But Pascal discovered it independently,
and ever since 1654, when he published a treatise that explored many of its features, it
has generally been known as Pascal’s triangle.

Table 9.7.1 Pascal’s Triangle for
(

Values of
(

n
r

))

r
0 1 2 3 4 5 · · · r − 1 r · · ·

n

0 1 · · . . .

1 1 1 · · . . .

2 1 2 1 · · . . .

3 1 3 3 1 · · . . .

4 1 4 6 + 4 1 · · . . .

5 1 5 10 = 10 5 1 · · . . .
· · · · · · · · · . . .· · · · · · · · · . . .· · · · · · · · · . . .

n
(
n

0

) (
n

1

) (
n

2

) (
n

3

) (
n

4

) (
n

5

)
. . .

(
n

r − 1

)
+

(
n

r

)
. . .

n + 1
(
n + 1

0

) (
n + 1

1

) (
n + 1

2

) (
n + 1

3

) (
n + 1

4

) (
n + 1

5

)
. . . =

(
n + 1

r

)
. . .

· · · · · · · · . . .

· · · · · · · · . . .

· · · · · · · · . . .

Each entry in the triangle is a value of
(n
r

)
. Pascal’s formula translates into the fact that

the entry in row n + 1, column r equals the sum of the entry in row n, column r − 1 plus
the entry in row n, column r . That is, the entry in a given interior position equals the
sum of the two entries directly above and to the above left. The left-most and right-most
entries in each row are 1 because

(n
n

)
= 1 by Example 9.7.1 and

(n
0

)
= 1 by exercise 1 at

the end of this section.

Example 9.7.3 Calculating
(

n
r

)
Using Pascal’s Triangle

Use Pascal’s triangle to compute the values of(
6

2

)
and

(
6

3

)
.

Solution By construction, the value in row n, column r of Pascal’s triangle is the value of(n
r

)
, for every pair of positive integers n and r with r ≤ n. By Pascal’s formula,

(n+1
r

)
can be computed by adding together

( n
r−1

)
and

(n
r

)
, which are located directly above and

above left of
(n+1

r

)
. Thus,(

6
2

)
=

(
5
1

)
+
(
5
2

)
= 5+ 10 = 15 and

(
6
3

)
=

(
5
2

)
+
(
5
3

)
= 10+ 10 = 20. ■
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Pascal’s formula can be derived by two entirely different arguments. One is alge-
braic; it uses the formula for the number of r -combinations obtained in Theorem 9.5.1.
The other is combinatorial; it uses the definition of the number of r -combinations as the
number of subsets of size r taken from a set with a certain number of elements. We give
both proofs since both approaches have applications in many other situations.

Theorem 9.7.1 Pascal’s Formula

Let n and r be positive integers and suppose r ≤ n. Then(
n + 1
r

)
=

(
n

r − 1

)
+
(
n
r

)
.

Proof (algebraic version):

Let n and r be positive integers with r ≤ n. By Theorem 9.5.1,(
n

r − 1

)
+
(
n
r

)
= n!

(r − 1)!(n − (r − 1))! +
n!

r !(n − r)!
= n!

(r − 1)!(n − r + 1)! +
n!

r !(n − r)! .
To add these fractions, a common denominator is needed, so multiply the numera-
tor and denominator of the left-hand fraction by r and multiply the numerator and
denominator of the right-hand fraction by (n − r + 1). Then

(
n

r − 1

)
+
(
n
r

)
= n!

(r − 1)!(n − r + 1)! ·
r

r
+ n!

r !(n − r)! ·
(n − r + 1)

(n − r + 1)

= n! ·r
(n − r + 1)!r(r − 1)! +

n ·n! − n! ·r + n!
(n − r + 1)(n − r)!r !

= n! ·r + n! ·n − n! ·r + n!
(n − r + 1)!r ! = n!(n + 1)

(n + 1− r)!r !
= (n + 1)!

((n + 1)− r)!r ! =
(
n + 1
r

)
.

Proof (combinatorial version):

Let n and r be positive integers with r ≤ n. Suppose S is a set with n + 1 elements.
The number of subsets of S of size r can be calculated by thinking of S as consisting
of two pieces: one with n elements {x1, x2, . . . , xn} and the other with one element
{xn+1}.

Any subset of S with r elements either contains xn+1 or it does not. If it contains
xn+1, then it contains r − 1 elements from the set {x1, x2, . . . , xn}. If it does not
contain xn+1, then it contains r elements from the set {x1, x2, . . . , xn}.

continued on page 596
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596 Chapter 9 Counting and Probability

Subsets of Size r of {x1, x2, . . . , xn+1}

subsets of size r
that consist entirely
of elements from
{x1, x2 , . . . , xn}

subsets of size r
that contain xn+1
and r – 1 elements
from {x1, x2 , . . . , xn}

There are
n
r( )of these.

There are
n

r – 1(    )of these.

By the addition rule,⎡
⎣number of subsets of
{x1, x2, . . . , xn, xn+1}
of size r

⎤
⎦ =

⎡
⎣number of subsets of
{x1, x2, . . . , xn}
of size r − 1

⎤
⎦+

⎡
⎣number of subsets of
{x1, x2, . . . , xn}
of size r

⎤
⎦ .

By Theorem 9.5.1, the set {x1, x2, . . . , xn, xn+1} has
(n+1

r

)
subsets of size r , the set

{x1, x2, . . . , xn} has
( n
r−1

)
subsets of size r − 1, and the set {x1, x2, . . . , xn} has

(n
r

)
subsets of size r . Thus (

n + 1
r

)
=

(
n

r − 1

)
+
(
n
r

)
,

as was to be shown.

Example 9.7.4 Deriving New Formulas from Pascal’s Formula

Use Pascal’s formula to derive a formula for
(n+2

r

)
in terms of values of

(n
r

)
,
( n
r−1

)
, and( n

r−2
)
. Assume n and r are nonnegative integers and 2 ≤ r ≤ n.

Solution By Pascal’s formula,(
n + 2
r

)
=

(
n + 1
r − 1

)
+
(
n + 1
r

)
.

Now apply Pascal’s formula to
(n+1
r−1

)
and

(n+1
r

)
and substitute into the above to obtain(

n + 2
r

)
=

[(
n

r − 2

)
+
(

n
r − 1

)]
+
[(

n
r − 1

)
+
(
n
r

)]
.

Combining the two middle terms gives(
n + 2
r

)
=

(
n

r − 2

)
+ 2

(
n

r − 1

)
+
(
n
r

)
for all nonnegative integers n and r such that 2 ≤ r ≤ n. ■

The Binomial Theorem
In algebra a sum of two terms, such as a + b, is called a binomial. The binomial

theorem gives an expression for the powers of a binomial (a + b)n , for each positive
integer n and all real numbers a and b.
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9.7 Pascal’s Formula and the Binomial Theorem 597

Consider what happens when you calculate the first few powers of a + b. According
to the distributive law of algebra, you take the sum of the products of all combinations of
individual terms:

(a + b)2 = (a + b)(a + b) = aa + ab + ba + bb,

(a + b)3 = (a + b)(a + b)(a + b)

= aaa + aab + aba + abb + baa + bab + bba + bbb,

(a + b)4 = (a + b)︸ ︷︷ ︸(a + b)︸ ︷︷ ︸(a + b)︸ ︷︷ ︸(a + b)︸ ︷︷ ︸
1st 2nd 3rd 4th
factor factor factor factor

= aaaa + aaab + aaba + aabb + abaa + abab + abba + abbb

+ baaa + baab + baba + babb + bbaa + bbab + bbba + bbbb.

Now focus on the expansion of (a + b)4. (It is concrete, and yet it has all the features
of the general case.) A typical term of this expansion is obtained by multiplying one of the
two terms from the first factor times one of the two terms from the second factor times
one of the two terms from the third factor times one of the two terms from the fourth
factor. For example, the term abab is obtained by multiplying the a’s and b’s marked
with arrows below.

↓ ↓ ↓ ↓
(a + b)(a + b)(a + b)(a + b)

Since there are two possible values—a or b—for each term selected from one of the four
factors, there are 24 = 16 terms in the expansion of (a + b)4.

Now some terms in the expansion are “like terms” and can be combined. Consider all
possible orderings of three a’s and one b, for example. By the techniques of Section 9.5,

there are
(4
1

) = 4 of them. And each of the four occurs as a term in the expansion of
(a + b)4:

aaab aaba abaa baaa.

By the commutative and associative laws of algebra, each such term equals a3b, so all
four are “like terms.” When the like terms are combined, therefore, the coefficient of a3b
equals

(4
1

)
.

Similarly, the expansion of (a + b)4 contains the
(4
2

) = 6 different orderings of two
a’s and two b’s,

aabb abab abba baab baba bbaa,

all of which equal a2b2, so the coefficient of a2b2 equals
(4
2

)
. By a similar analysis, the

coefficient of ab3 equals
(4
3

)
. Also, since there is only one way to order four a’s, the

coefficient of a4 is 1 (which equals
(4
0

)
, and since there is only one way to order four

b’s, the coefficient of b4 is 1 (which equals
(4
4

)
). Thus, when all of the like terms are

combined,

(a + b)4 =
(
4
0

)
a4 +

(
4
1

)
a3b +

(
4
2

)
a2b2 +

(
4
3

)
ab3 +

(
4
4

)
b4

= a4 + 4a3b + 6a2b2 + 4ab3 + b4.

The binomial theorem generalizes this formula to an arbitrary nonnegative integer n.
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Theorem 9.7.2 Binomial Theorem

Given any real numbers a and b and any nonnegative integer n,

(a + b)n =
n∑

k=0

(
n
k

)
an−kbk

= an +
(
n
1

)
an−1b1 +

(
n
2

)
an−2b2 + · · · +

(
n

n − 1

)
a1bn−1 + bn.

Note that the second expression equals the first because
(n
0

)
= 1 and

(n
n

)
= 1, for all

nonnegative integers n, provided that b0 = 1 and an−n = 1.
It is instructive to see two proofs of the binomial theorem: an algebraic proof and a

combinatorial proof. Both require a precise definition of integer power.

• Definition

For any real number a and any nonnegative integer n, the nonnegative integer
powers of a are defined as follows:

an =
{
1 if n = 0
a ·an−1 if n > 0

In some mathematical contexts, 00 is left undefined. Defining it to be 1, as is done

here, makes it possible to write general formulas such as
n∑

i=0
xi = 1

1−x without having to

exclude values of the variables that result in the expression 00.
The algebraic version of the binomial theorem uses mathematical induction and calls

upon Pascal’s formula at a crucial point.

Note This is the
definition of O0 given by
Donald E. Knuth in The
Art of Computer
Programming, Volume 1:
Fundamental Algorithms,
Third Edition (Reading,
Mass.: Addison-Wesley,
1997), p. 57.

Proof of the Binomial Theorem (algebraic version):

Suppose a and b are real numbers. We use mathematical induction and let the prop-
erty P(n) be the equation

(a + b)n =
n∑

k=0

(
n
k

)
an−kbk . ← P(n)

Show that P(0) is true: When n = 0, the binomial theorem states that:

(a + b)0 =
0∑

k=0

(
0
k

)
a0−kbk . ← P(0)

But the left-hand side is (a + b)0 = 1 [by definition of power], and the right-hand
side is

0∑
k=0

(
0
k

)
a0−kbk =

(
0
0

)
a0−0b0

= 0!
0! ·(0− 0)! ·1 ·1 =

1

1 ·1 = 1

also [since 0! = 1, a0 = 1, and b0 = 1]. Hence P(0) is true.
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9.7 Pascal’s Formula and the Binomial Theorem 599

Show that for all integers m≥0, if P(m) is true then P(m+1) is true: Let an integer
m ≥ 0 be given, and suppose P(m) is true. That is, suppose

(a + b)m =
m∑

k=0

(
m
k

)
am−kbk . P(m)

inductive hypothesis.

We need to show that P(m + 1) is true:

(a + b)m+1 =
m+1∑
k=0

(
m + 1

k

)
a(m+1)−kbk . P(m + 1)

Now, by definition of the (m + 1)st power,

(a + b)m+1 = (a + b) ·(a + b)m,

so by substitution from the inductive hypothesis,

(a + b)m+1 = (a + b) ·
m∑

k=0

(
m
k

)
am−kbk

= a ·
m∑

k=0

(
m
k

)
am−kbk + b ·

m∑
k=0

(
m
k

)
am−kbk

=
m∑

k=0

(
m
k

)
am+1−kbk +

m∑
k=0

(
m
k

)
am−kbk+1

by the generalized distributive
law and the facts that
a ·am−k = a1+m−k = am+1−k
and b ·bk = b1+k = bk+1.

We transform the second summation on the right-hand side by making the change of
variable j = k + 1. When k = 0, then j = 1. When k = m, then j = m + 1. And
since k = j − 1, the general term is(

m
k

)
am−kbk+1 =

(
m

j − 1

)
am−( j−1)b j =

(
m

j − 1

)
am+1− j b j .

Hence the second summation on the right-hand side above is

m+1∑
j=1

(
m

j − 1

)
am+1− j b j .

But the j in this summation is a dummy variable; it can be replaced by the letter k,
as long as the replacement is made everywhere the j occurs:

m+1∑
j=1

(
m

j − 1

)
am+1− j b j =

m+1∑
k=1

(
m

k − 1

)
am+1−kbk .

Substituting back, we get

(a + b)m+1 =
m∑

k=0

(
m
k

)
am+1−kbk +

m+1∑
k=1

(
m

k − 1

)
am+1−kbk .

[The reason for the above maneuvers was to make the powers of a and b agree so that
we can add the summations together term by term, except for the first and the last terms,
which we must write separately.]

continued on page 600
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Thus

(a + b)m+1 =
(
m
0

)
am+1−0b0 +

m∑
k=1

[(
m
k

)
+
(

m
k − 1

)]
am+1−kbk

+
(

m
(m + 1)− 1

)
am+1−(m+1)bm+1

= am+1 +
m∑

k=1

[(
m
k

)
+
(

m
k − 1

)]
am+1−kbk + bm+1

since a0 = b0 = 1 and(
m
0

)
=

(
m
m

)
= 1.

But [(
m
k

)
+
(

m
k − 1

)]
=

(
m + 1

k

)
by Pascal’s formula.

Hence

(a + b)m+1 = am+1 +
m∑

k=1

(
m + 1

k

)
a(m+1)−kbk + bm+1

=
m+1∑
k=0

(
m + 1

k

)
a(m+1)−kbk because

(
m + 1

0

)
=

(
m + 1
m + 1

)
= 1

which is what we needed to show.

It is instructive to write out the product (a + b) ·(a + b)m without using the summa-
tion notation but using the inductive hypothesis about (a + b)m :

(a + b)m+1 = (a + b) ·
[
am +

(
m
1

)
am−1b + · · · +

(
m

k − 1

)
am−(k−1)bk−1

+
(
m
k

)
am−kbk + · · · +

(
m

m − 1

)
abm−1 + bm

]
.

You will see that the first and last coefficients are clearly 1 and that the term containing
am+1−kbk is obtained from multiplying am−kbk by a and am−(k−1)bk−1 by b [because
m + 1− k = m − (k − 1)]. Hence the coefficient of am+1−kbk equals the sum of

(m
k

)
and

( m
k−1

)
. This is the crux of the algebraic proof.

If n and r are nonnegative integers and r ≤ n, then
(n
r

)
is called a binomial coefficient

because it is one of the coefficients in the expansion of the binomial expression (a + b)n .
The combinatorial proof of the binomial theorem follows.

Proof of Binomial Theorem (combinatorial version):

[The combinatorial argument used here to prove the binomial theorem works only for
n ≥ 1. If we were giving only this combinatorial proof, we would have to prove the case
n = 0 separately. Since we have already given a complete algebraic proof that includes
the case n = 0, we do not prove it again here.]

Let a and b be real numbers and n an integer that is at least 1. The expression
(a + b)n can be expanded into products of n letters, where each letter is either a or b.
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9.7 Pascal’s Formula and the Binomial Theorem 601

For each k = 0, 1, 2, . . . , n, the product

an−kbk = a ·a ·a · · · a︸ ︷︷ ︸ ·b ·b ·b · · · b︸ ︷︷ ︸
n − k factors k factors

occurs as a term in the sum the same number of times as there are orderings of
(n − k) a’s and k b’s. But this number is

(n
k

)
, the number of ways to choose k

positions into which to place the b’s. [The other n − k positions will be filled by a′s.]
Hence, when like terms are combined, the coefficient of an−kbk in the sum is

(n
k

)
.

Thus

(a + b)n =
n∑

k=0

(
n
k

)
an−kbk .

This is what was to be proved.

Example 9.7.5 Substituting into the Binomial Theorem

Expand the following expressions using the binomial theorem:

a. (a + b)5 b. (x − 4y)4

Solution

a. (a + b)5 =
5∑

k=0

(
5
k

)
a5−kbk

= a5 +
(
5
1

)
a5−1b1 +

(
5
2

)
a5−2b2 +

(
5
3

)
a5−3b3 +

(
5
4

)
a5−4b4 + b5

= a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5

b. Observe that (x − 4y)4 = (x + (−4y))4. So let a = x and b = (−4y), and substitute
into the binomial theorem.

(x − 4y)4 =
4∑

k=0

(
4
k

)
x4−k(−4y)k

= x4 +
(
4
1

)
x4−1(−4y)1+

(
4
2

)
x4−2(−4y)2+

(
4
3

)
x4−3(−4y)3+ (−4y)4

= x4 + 4x3(−4y)+ 6x2(16y2)+ 4x1(−64y3)+ (256y4)

= x4 − 16x3y + 96x2y2 − 256xy3 + 256y4 ■

Example 9.7.6 Deriving Another Combinatorial Identity from the Binomial Theorem

Use the binomial theorem to show that

2n =
n∑

k=0

(
n
k

)
=

(
n
0

)
+
(
n
1

)
+
(
n
2

)
+ · · · +

(
n
n

)

for all integers n ≥ 0.

Solution Since 2 = 1+ 1, 2n = (1+ 1)n . Apply the binomial theorem to this expression
by letting a = 1 and b = 1. Then

2n =
n∑

k=0

(
n
k

)
·1n−k ·1k =

n∑
k=0

(
n
k

)
·1 ·1

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



602 Chapter 9 Counting and Probability

since 1n−k = 1 and 1k = 1. Consequently,

2n =
n∑

k=0

(
n
k

)
=

(
n
0

)
+
(
n
1

)
+
(
n
2

)
+ · · · +

(
n
n

)
. ■

Example 9.7.7 Using a Combinatorial Argument to Derive the Identity

According to Theorem 6.3.1, a set with n elements has 2n subsets. Apply this fact to give
a combinatorial argument to justify the identity(

n
0

)
+
(
n
1

)
+
(
n
2

)
+
(
n
3

)
+ · · · +

(
n
n

)
= 2n.

Solution Suppose S is a set with n elements. Then every subset of S has some number of
elements k, where k is between 0 and n. It follows that the total number of subsets of
S, N (P(S)), can be expressed as the following sum:⎡

⎣number of
subsets
of S

⎤
⎦ =

⎡
⎣number of
subsets of
size 0

⎤
⎦+

⎡
⎣number of
subsets of
size 1

⎤
⎦+ · · · +

⎡
⎣number of
subsets of
size n

⎤
⎦ .

Now the number of subsets of size k of a set with n elements is
(n
k

)
. Hence the

number of subsets of S =
(
n
0

)
+
(
n
1

)
+
(
n
2

)
+ · · · +

(
n
n

)
But by Theorem 6.3.1, S has 2n subsets. Hence(

n
0

)
+
(
n
1

)
+
(
n
2

)
+
(
n
3

)
+ · · · +

(
n
n

)
= 2n. ■

Example 9.7.8 Using the Binomial Theorem to Simplify a Sum

Express the following sum in closed form (without using a summation symbol and with-
out using an ellipsis · · · ):

n∑
k=0

(
n
k

)
9k

Solution When the number 1 is raised to any power, the result is still 1. Thus

n∑
k=0

(
n
k

)
9k =

n∑
k=0

(
n
k

)
1n−k9k

= (1+ 9)n by the binomial theorem with a = 1 and b = 9

= 10n . ■

Test Yourself
1. If n and r are nonnegative integers with r ≤ n, then the rela-

tion between
(n
r

)
and

( n
n−r

)
is _____.

2. Pascal’s formula says that if n and r are positive integers
with r ≤ n, then _____.

3. The crux of the algebraic proof of Pascal’s formula is that
to add two fractions you need to express both of them with
a _____.

4. The crux of the combinatorial proof of Pascal’s formula is
that the set of subsets of size r of a set {x1, x2, . . . , xn+1}
can be partitioned into the set of subsets of size r that con-
tain _____ and those that _____.

5. The binomial theorem says that given any real numbers a
and b and any nonnegative integer n, _____.

6. The crux of the algebraic proof of the binomial theorem
is that, after making a change of variable so that two
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9.7 Pascal’s Formula and the Binomial Theorem 603

summations have the same lower and upper limits and the
exponents of a and b are the same, you use the fact that(m
k

)
+
( m
k−1

)
= _____.

7. The crux of the combinatorial proof of the binomial theorem
is that the number of ways to arrange k b’s and (n − k) a’s
in order is _____.

Exercise Set 9.7
In 1–4, use Theorem 9.5.1 to compute the values of the indi-
cated quantities. (Assume n is an integer.)

1.
(
n
0

)
, for n ≥ 0 2.

(
n
1

)
, for n ≥ 1

3.
(
n
2

)
, for n ≥ 2 4.

(
n
3

)
, for n ≥ 3

5. Use Theorem 9.5.1 to prove algebraically that
(n
r

)
=
( n
n−r

)
,

for integers n and r with 0 ≤ r ≤ n. (This can be done by
direct calculation; it is not necessary to use mathematical
induction.)

Justify the equations in 6–9 either by deriving them from for-
mulas in Example 9.7.1 or by direct computation from Theo-
rem 9.5.1. Assume m, n, k, and r are integers.

6.
(

m + k
m + k − 1

)
= m + k, for m + k ≥ 1

7.

(
n + 3
n + 1

)
= (n + 3)(n + 2)

2
, for n ≥ −1

8.

(
k − r
k − r

)
= 1, for k − r ≥ 0

9.

(
2n
n

)
for n ≥ 0

10. a. Use Pascal’s triangle given in Table 9.7.1 to compute the

values of
(6
2

)
,
(6
3

)
,
(6
4

)
, and

(6
5

)
.

b. Use the result of part (a) and Pascal’s formula to compute(7
3

)
,
(7
4

)
, and

(7
5

)
.

c. Complete the row of Pascal’s triangle that corresponds to
n = 7.

11. The row of Pascal’s triangle that corresponds to n = 8 is as
follows:

1 8 28 56 70 56 28 8 1.

What is the row that corresponds to n = 9?

12. Use Pascal’s formula repeatedly to derive a formula for(n+3
r

)
in terms of values of

(n
k

)
with k ≤ r . (Assume n and

r are integers with n ≥ r ≥ 3.)

13. Use Pascal’s formula to prove by mathematical induction
that if n is an integer and n ≥ 1, then

n+1∑
i=2

(
i
2

)
=

(
2
2

)
+
(
3
2

)
+ · · · +

(
n + 1
2

)

=
(
n + 2
3

)
.

14.H Prove that if n is an integer and n ≥ 1, then

1 ·2+ 2 ·3+ · · · + n(n + 1) = 2

(
n + 2
3

)
.

15. Prove the following generalization of exercise 13: Let r be a
fixed nonnegative integer. For all integers n with n ≥ r ,

n∑
i=r

(
i
r

)
=

(
n + 1
r + 1

)
.

16. Think of a set with m + n elements as composed of two
parts, one with m elements and the other with n elements.
Give a combinatorial argument to show that(
m + n

r

)
=
(
m
0

)(
n
r

)
+
(
m
1

)(
n

r − 1

)
+ · · · +

(
m
r

)(
n
0

)
,

where m and n are positive integers and r is an integer that
is less than or equal to both m and n.

This identity gives rise to many useful additional identi-

ties involving the quantities
(n
k

)
. Because Alexander Vander-

monde published an influential article about it in 1772, it is
generally called the Vandermonde convolution. However, it
was known at least in the 1300s in China by Chu Shih-chieh.

17.H Prove that for all integers n ≥ 0,(
n
0

)2

+
(
n
1

)2

+ · · · +
(
n
n

)2

=
(
2n
n

)
.

18. Let m be any nonnegative integer. Use mathematical induc-
tion and Pascal’s formula to prove that for all integers n ≥ 0,(
m
0

)
+
(
m + 1

1

)
+ · · · +

(
m + n

n

)
=

(
m + n + 1

n

)
.

Use the binomial theorem to expand the expressions in 19–27.

19. (1+ x)7 20. (p + q)6 21.(1− x)6

22. (u − v)5 23. (p − 2q)4 24. (u2 − 3v)4

25.
(
x + 1

x

)5

26.
(
3

a
− a

3

)5

27.
(
x2 + 1

x

)5

28. In Example 9.7.5 it was shown that

(a + b)5 = a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b35.

Evaluate (a + b)6 by substituting the expression above into
the equation

(a + b)6 = (a + b)(a + b)5

and then multiplying out and combining like terms.
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In 29–34, find the coefficient of the given term when the expres-
sion is expanded by the binomial theorem.

29. x6y3 in (x + y)9 30. x7 in (2x + 3)10

31. a5b7 in (a − 2b)12 32. u16v4 in (u2 − v2)10

33. p16q7 in (3p2 − 2q)15 34. x9y10 in (2x − 3y2)14

35. As in the proof of the binomial theorem, transform the sum-
mation

n∑
k=0

(
m
k

)
am−kbk+1

by making the change of variable j = k + 1.

Use the binomial theorem to prove each statement in 36–41.

36. For all integers n ≥ 1,(
n
0

)
−
(
n
1

)
+
(
n
2

)
− · · · + (−1)n

(
n
n

)
= 0.

(Hint: Use the fact that 1+ (−1) = 0.)

37.H For all integers n ≥ 0,

3n =
(
n
0

)
+ 2

(
n
1

)
+ 22

(
n
2

)
+ · · · + 2n

(
n
n

)
.

38. For all integers m ≥ 0,
m∑
i=0

(−1)i
(
m
i

)
2m−i = 1.

39. For all integers n ≥ 0,
n∑

i=0
(−1)i

(
n
i

)
3n−i = 2n .

40. For all integers n ≥ 0 and for all nonnegative real numbers
x, 1+ nx ≤ (1+ x)n .

41.H For all integers n ≥ 1,(
n
0

)
− 1

2

(
n
1

)
+ 1

22

(
n
2

)
− 1

23

(
n
3

)

+ · · · + (−1)n−1 1

2n−1

(
n

n − 1

)
=

⎧⎨
⎩
0 if n is even
1

2n−1
if n is odd

.

42. Use mathematical induction to prove that for all integers
n ≥ 1, if S is a set with n elements, then S has the same

number of subsets with an even number of elements as with
an odd number of elements. Use this fact to give a combina-
torial argument to justify the identity of exercise 36.

Express each of the sums in 43–54 in closed form (without using
a summation symbol and without using an ellipsis · · · ).

43.
n∑

k=0

(
n
k

)
5k 44.

m∑
i=0

(
m
i

)
4i

45.
n∑

i=0

(
n
i

)
xi 46.

m∑
k=0

(
m
k

)
2m−k xk

47.
2n∑
j=0

(−1) j
(
2n
j

)
x j 48.

n∑
r=0

(
n
r

)
x2r

49.
m∑
i=0

(
m
i

)
pm−i q2i 50.

n∑
k=0

(
n
k

)
1

2k

51.
m∑
i=0

(−1)i
(
m
i

)
1

2i
52.

n∑
k=0

(
n
k

)
32n−2k22k

53.
n∑

i=0
(−1)i

(
n
i

)
5n−i2i 54.

n∑
k=0

(−1)k
(
n
k

)
32n−2k22k

55.✶ (For students who have studied calculus)
a. Explain how the equation below follows from the bino-

mial theorem:

(1+ x)n =
n∑

k=0

(
n
k

)
xk .

b. Write the formula obtained by taking the derivative of
both sides of the equation in part (a) with respect to x .

c. Use the result of part (b) to derive the formulas below.

(i) 2n−1 = 1

n

[(
n
1

)
+ 2

(
n
2

)
+ 3

(
n
3

)
+ · · · + n

(
n
n

)]

(ii)
n∑

k=1
k

(
n
k

)
(−1)k = 0

d. Express
n∑

k=1
k

(
n
k

)
3k in closed form (without using a

summation sign or ellipsis).

Answers for Test Yourself

1.
(n
r

)
=
( n
n−r

)
2.
(n+1

r

)
=
( n
r−1

)
+
(n
r

)
3. common denominator 4. xn+1; do not contain xn+1

5. (a + b)n =
n∑

k=0

(n
k

)
an−kbk 6.

(m+1
k

)
7.
(n
k

)
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9.8 Probability Axioms and Expected Value 605

9.8 Probability Axioms and Expected Value
The theory of probability is at bottom nothing but common sense reduced to a calculus.
—Pierre-Simon Laplace (1749–1827)

Up to this point, you have calculated probabilities only for situations, such as tossing a
fair coin or rolling a pair of balanced dice, where the outcomes in the sample space are
all equally likely. But coins are not always fair and dice are not always balanced. How is
it possible to calculate probabilities for these more general situations?

Ye
vg

en
y

K
ha

ld
ei

/C
O

R
B

IS

Andrei Nikolaevich
Kolmogorov (1903–1987)

The following axioms were formulated by A. N. Kolmogorov in 1933 to provide a
theoretical foundation for a far-ranging theory of probability. In this section we state the
axioms, derive a few consequences, and introduce the notion of expected value.

Recall that a sample space is a set of all outcomes of a random process or experiment
and that an event is a subset of a sample space.

Probability Axioms

Let S be a sample space, A probability function P from the set of all events in S to
the set of real numbers satisfies the following three axioms: For all events A and B
in S,

1. 0 ≤ P(A) ≤ 1

2. P(∅) = 0 and P(S) = 1

3. If A and B are disjoint (that is, if A ∩ B = ∅), then the probability of the union
of A and B is

P(A ∪ B) = P(A)+ P(B).

Example 9.8.1 Applying the Probability Axioms

Suppose that A and B are events in a sample space S. If A and B are disjoint, could
P(A) = 0.6 and P(B) = 0.8?

Solution No. Probability axiom 3 would imply that P(A ∪ B) = P(A)+ P(B) =
0.6+ 0.8 = 1.4, and since 1.4 > 1, this result would violate probability axiom 1. ■

Example 9.8.2 The Probability of the Complement of an Event

Suppose that A is an event in a sample space S. Deduce that P(Ac) = 1− P(A).

Solution By Theorem 6.2.2(5), with S playing the role of the universal set U ,

A ∩ Ac = ∅ and A ∪ Ac = S.

Thus S is the disjoint union of A and Ac, and so

P(A ∪ Ac) = P(A)+ P(Ac) = P(S) = 1.

Subtracting P(A) from both sides gives the result that P(Ac) = 1− P(A). ■

Probability of the Complement of an Event

If A is any event in a sample space S, then

P(Ac) = 1− P(A). 9.8.1
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606 Chapter 9 Counting and Probability

It is important to check that Kolmogorov’s probability axioms are consistent with
the results obtained using the equally likely probability formula. To see that this is the
case, let S be a finite sample space with outcomes a1, a2, a3, . . . , an . It is clear that all
the singleton sets {a1}, {a2}, {a3}, . . . , {an} are mutually disjoint and that their union is
S. Since P(S) = 1, probability axiom 3 can be applied multiple times (see exercise 13 at
the end of this section) to obtain

P({a1} ∪ {a2} ∪ {a3} ∪ · · · ∪ {an}) =
n∑

k=1
P({ak}) = 1.

If, in addition, all the outcomes are equally likely, there is a positive real number c so that

P({a1}) = P({a2}) = P({a3}) = · · · = P({an}) = c.

Hence

1 =
n∑

k=1
c = c + c + · · · + c︸ ︷︷ ︸ = nc,

n terms

and thus

c = 1

n
.

It follows that if A is any event with outcomes ai1 , ai2 , ai3 , . . . , aim , then

P(A) =
m∑

k=1
P({aik }) =

m∑
k=1

1

n
= m

n
= N (A)

N (S)
,

which is the result given by the equally likely probability formula.

Example 9.8.3 The Probability of a General Union of Two Events

Follow the steps outlined in parts (a) and (b) below to prove the following formula:

Probability of a General Union of Two Events

If S is any sample space and A and B are any events in S, then

P(A ∪ B) = P(A)+ P(B)− P(A ∩ B). 9.8.2

In both steps, suppose that A and B are any events in a sample space S.

a. Show that A ∪ B is a disjoint union of the following sets: A − (A ∩ B), B − (A ∩ B),

and A ∩ B.

b. In exercise 12 at the end of the section, you are asked to prove that for any events
U and V in a sample space S, if U ⊆ V then P(V −U ) = P(V )− P(U ). Use this
result and the result of part (a) to finish the proof of the formula.

Solution

a. Refer to Figure 9.8.1 on the next page as you read the following explanation. Elements
in the set A − (A ∩ B) are in the region shaded blue, elements in B − (A ∩ B) are in
the region shaded gray, and elements in A ∩ B are in the white region.
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A  BA – (A  B) B – (A  B)

BA

Figure 9.8.1

Part 1: Show that A ∪ B ⊆ (A − (A ∩ B)) ∪ (B − (A ∩ B)) ∪ (A ∩ B): Given any
element x in A ∪ B, x satisfies exactly one of the following three conditions:

(1) x ∈ A and x ∈ B

(2) x ∈ A and x /∈ B

(3) x ∈ B and x /∈ A

1. In the first case, x ∈ A ∩ B, and so x ∈ (A − (A ∩ B)) ∪ (B − (A ∩ B)) ∪ (A ∩ B)

by definition of union.

2. In the second case, x /∈ A ∩ B (because x /∈ B), and so x ∈ A − (A ∩ B). Therefore
x ∈ (A − (A ∩ B)) ∪ (B − (A ∩ B)) ∪ (A ∩ B) by definition of union.

3. In the third case, x /∈ A ∩ B (because x /∈ A), and hence x ∈ B − (A ∩ B). So, again,
x ∈ (A − (A ∩ B)) ∪ (B − (A ∩ B)) ∪ (A ∩ B) by definition of union.

Hence, in all three cases, x ∈ (A − (A ∩ B)) ∪ (B − (A ∩ B)) ∪ (A ∩ B), which com-
pletes the proof of part 1.

Moreover, since the three conditions are mutually exclusive, the three sets A − (A ∩ B),
B − (A ∩ B), and A ∩ B are mutually disjoint.

Part 2: Show that (A − (A ∩ B)) ∪ (B − (A ∩ B)) ∪ (A ∩ B) ⊆ A ∪ B: : Suppose x
is any element in (A − (A ∩ B)) ∪ (B − (A ∩ B)) ∪ (A ∩ B). By definition of union,
x ∈ A − (A ∩ B) or x ∈ B − (A ∩ B) or x ∈ A ∩ B.

1. In case x ∈ A − (A ∩ B), then x ∈ A and x /∈ A ∩ B by definition of set difference.
In particular, x ∈ A and so x ∈ A ∪ B.

2. In case x ∈ B − (A ∩ B), then x ∈ B and x /∈ A ∩ B by definition of set difference.
In particular, x ∈ B and so x ∈ A ∪ B.

3. In case x ∈ A ∩ B, then in particular, x ∈ A and so x ∈ A ∪ B.

Hence, in all three cases, x ∈ A ∪ B, which completes the proof of part 2.

b. P(A ∪ B) = P((A − (A ∩ B)) ∪ (B − (A ∩ B)) ∪ (A ∩ B)) by part (a)

= P(A − (A ∩ B))+ P(B − (A ∩ B))+ P(A ∩ B)
by exercise 13 at the end of the section and the fact that
A − (A ∩ B), B − (A ∩ B), and A ∩ B are mutually disjoint

= P(A)− P(A ∩ B)+ P(B)− P(A ∩ B)+ P(A ∩ B)
by exercise 12 at the end of the section
because A ∩ B ⊆ A and A ∩ B ⊆ B

= P(A)+ P(B)− P(A ∩ B) by algebra. ■
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608 Chapter 9 Counting and Probability

Example 9.8.4 Computing the Probability of a General Union of Two Events

Suppose a card is chosen at random from an ordinary 52-card deck (see Section 9.1).
What is the probability that the card is a face card (jack, queen, or king) or is from one of
the red suits (hearts or diamonds)?

Solution Let A be the event that the chosen card is a face card, and let B be the event that
the chosen card is from one of the red suits. The event that the card is a face card or is
from one of the red suits is A ∪ B. Now N (A) = 4 ·3 = 12 (because each of the four suits
has three face cards), and so P(A) = 12/52. Also N (B) = 26 (because half the cards are
red), and so P(B) = 26/52. Finally, N (A ∩ B) = 6 (because there are three face cards
in hearts and another three in diamonds), and so P(A ∩ B) = 6/52. It follows from the
formula for the probability of a union of any two events that

P(A ∪ B) = P(A)+ P(B)− P(A ∩ B) = 12

52
+ 26

52
− 6

52
= 32

52
∼= 61.5%.

Thus the probability that the chosen card is a face card or is from one of the red suits is
approximately 61.5%. ■

Expected Value
People who buy lottery tickets regularly often justify the practice by saying that, even
though they know that on average they will lose money, they are hoping for one significant
gain, after which they believe they will quit playing. Unfortunately, when people who
have lost money on a string of losing lottery tickets win some or all of it back, they
generally decide to keep trying their luck instead of quitting.

The technical way to say that on average a person will lose money on the lottery is to
say that the expected value of playing the lottery is negative.

• Definition

Suppose the possible outcomes of an experiment, or random process, are real num-
bers a1, a2, a3, . . . , an , which occur with probabilities p1, p2, p3, . . . , pn . The
expected value of the process is

n∑
k=1

ak pk = a1 p1 + a2 p2 + a3 p3 + · · · + an pn.

Example 9.8.5 Expected Value of a Lottery

Suppose that 500,000 people pay $5 each to play a lottery game with the following prizes:
a grand prize of $1,000,000, 10 second prizes of $1,000 each, 1,000 third prizes of $500
each, and 10,000 fourth prizes of $10 each. What is the expected value of a ticket?

Solution Each of the 500,000 lottery tickets has the same chance as any other of contain-
ing a winning lottery number, and so pk = 1

500000 for all k = 1, 2, 3, . . . , 500000. Let

a1, a2, a3, . . . , a500000 be the net gain for an individual ticket, where a1 = 999995 (the
net gain for the grand prize ticket, which is one million dollars minus the $5 cost of the
winning ticket), a2 = a3 = · · · = a11 = 995 (the net gain for each of the 10 second prize
tickets), a12 = a13 = · · · = a1011 = 495 (the net gain for each of the 1,000 third prize
tickets), and a1012 = a1013 = · · · = a11011 = 5 (the net gain for each of the 10,000 fourth
prize tickets). Since the remaining 488,989 tickets just lose $5, a11012 = a11013 = · · · =
a500000 = −5.
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The expected value of a ticket is therefore

500000∑
k=1

ak pk =
500000∑
k=1

(
ak · 1

500000

)
because each pk = 1/500000

= 1

500000

500000∑
k=1

ak by Theorem 5.1.1(2)

= 1

500000
(999995+ 10 ·995+ 1000 ·495+ 10000 ·5+ (−5) ·488989)

= 1

500000
(999995+ 9950+ 495000+ 50000− 2444945)

= −1.78.
In other words, a person who continues to play this lottery for a very long time will
probably win some money occasionally but on average will lose $1.78 per ticket. ■

Example 9.8.6 Gambler’s Ruin

A gambler repeatedly bets $1 that a coin will come up heads when tossed. Each time the
coin comes up heads, the gambler wins $1; each time it comes up tails, he loses $1. The
gambler will quit playing either when he is ruined (loses all his money) or when he has
$M (where M is a positive number he has decided in advance). Let Pn be the probability
that the gambler is ruined if he begins playing with $n. Then if the coin is fair (has an
equal chance of coming up heads or tails),

Pk−1 = 1

2
Pk + 1

2
Pk−2 for each integer k with 2 ≤ k ≤ M.

(This follows from the fact that if the gambler has $(k − 1), then he has an equal chance
of winning $1 or losing $1, and if he wins $1, then his chance of being ruined is Pk ,
whereas if he loses $1, then his chance of being ruined is Pk−2.) Also P0 = 1 (because if
he has $0, he is certain of being ruined) and PM = 0 (because once he has $M , he quits
and so stands no chance of being ruined). Find an explicit formula for Pn . How should
the gambler choose M to minimize his chance of being ruined?

Solution Multiplying both sides of Pk−1 = 1
2 Pk + 1

2 Pk−2 by 2 and subtracting Pk−2 from
both sides gives

Pk = 2Pk−1 − Pk−2.

This is a second-order homogeneous recurrence relation with constant coefficients. Because
Pk − 2Pk−1 + Pk−2 = 0 its characteristic equation is

t2 − 2t + 1 = 0,

which has the single root r = 1. Thus, by the single-root theorem from Section 5.8,

Pn = Crn + Dnrn = C + Dn

(since r = 1), where C and D are determined by two values of the sequence. But P0 = 1
and PM = 0. Hence

1 = P0 = C + D ·0 = C,

0 = PM = C + DM = 1+ DM.

It follows that C = 1 and D = − 1
M , and so

Pn = 1− 1

M
n = M − n

M
for each integer n with 0 ≤ n ≤ M.
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610 Chapter 9 Counting and Probability

For instance, a gambler who starts with $20 and decides to quit either if his total grows
to $100 or if he goes broke has the following chance of going broke:

P20 = 100− 20

100
= 80

100
= 80%.

Observe that the larger M is relative to n, the closer Pn is to 1. In other words, the larger
the amount of money the gambler sets himself as a target, the more likely he is to go
broke. Conversely, the more modest he is in his goal, the more likely he is to reach it. ■

Test Yourself
1. If A is an event in a sample space S, P(A) can take values

between _____ and _____. Moreover, P(S) = _____, and
P(∅) = _____.

2. If A and B are disjoint events in a sample space S,
P(A ∪ B) = _____.

3. If A is an event in a sample space S, P(Aa) = _____.

4. If A and B are any events in a sample space S,
P(A ∪ B) = _____.

5. If the possible outcomes of a random process or experiment
are real numbers a1, a2, . . . , an , which occur with prob-
abilities p1, p2, . . . , pn , then the expected value of the
process is _____.

Exercise Set 9.8
1. In any sample space S, what is P(∅)?
2. Suppose A, B, and C are mutually exclusive events in a

sample space S, A ∪ B ∪ C = S, and A and B have proba-
bilities 0.3 and 0.5, respectively.
a. What is P(A ∪ B)? b. What is P(C)?

3. Suppose A and B are mutually exclusive events in a sam-
ple space S,C is another event in S, A ∪ B ∪ C = S, and
A and B have probabilities 0.4 and 0.2, respectively.
a. What is P(A ∪ B)?
b. Is it possible that P(C) = 0.2? Explain.

4. Suppose A and B are events in a sample space S with
probabilities 0.8 and 0.7, respectively. Suppose also that
P(A ∩ B) = 0.6. What is P(A ∪ B)?

5. Suppose A and B are events in a sample space S and sup-
pose that P(A) = 0.6, P(Bc) = 0.4, and P(A ∩ B) = 0.2.
What is P(A ∪ B)?

6. Suppose U and V are events in a sample space S and sup-
pose that P(Uc) = 0.3, P(V ) = 0.6, and P(Uc ∪ V c) =
0.4. What is P(U ∪ V )?

7. Suppose a sample space S consists of three outcomes: 0,
1, and 2. Let A = {0}, B = {1}, and C = {2}, and suppose
P(A) = 0.4, and P(B) = 0.3. Find each of the following:
a. P(A ∪ B) b. P(C) c. P(A ∪ C)

d. P(Ac) e. P(Ac ∩ Bc) f. P(Ac ∪ Bc)

8. Redo exercise 7 assuming that P(A) = 0.5 and
P(B) = 0.4.

9. Let A and B be events in a sample space S, and let
C = S − (A ∪ B). Suppose P(A) = 0.4, P(B) = 0.5, and
P(A ∩ B) = 0.2. Find each of the following:

a. P(A ∪ B) b. P(C) c. P(Ac)
d. P(Ac ∩ Bc) e. P(Ac ∪ Bc) f. P(Bc ∩ C)

10. Redo exercise 9 assuming that P(A) = 0.7, P(B) = 0.3,
and P(A ∩ B) = 0.1.

11.H Prove that if S is any sample space and U and V are events
in S with U ⊆ V , then P(U ) ≤ P(V ).

12.H Prove that if S is any sample space and U and V are any
events in S, then P(V −U ) = P(V )− P(U ∩ V ).

13.H Use the axioms for probability and mathematical induction
to prove that for all integers n ≥ 2, if A1, A2, A3, . . . , An

are any mutually disjoint events in a sample space S, then

P(A1 ∪ A2 ∪ A3 ∪ · · · ∪ An) =
n∑

k=1
P(Ak).

14. A lottery game offers $2 million to the grand prize winner,
$20 to each of 10,000 second prize winners, and $4 to each
of 50,000 third prize winners. The cost of the lottery is $2
per ticket. Suppose that 1.5 million tickets are sold. What is
the expected gain or loss of a ticket?

15. A company sends millions of people an entry form
for a sweepstakes accompanied by an order form for
magazine subscriptions. The first, second, and third prizes
are $10,000,000, $1,000,000, and $50,000, respectively. In
order to qualify for a prize, a person is not required to order
any magazines but has to spend 60 cents to mail back the
entry form. If 30 million people qualify by sending back
their entry forms, what is a person’s expected gain or loss?

16. An urn contains four balls numbered 2, 2, 5, and 6. If a per-
son selects a set of two balls at random, what is the expected
value of the sum of the numbers on the balls?
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9.9 Conditional Probability, Bayes’ Formula, and Independent Events 611

17. An urn contains five balls numbered 1, 2, 2, 8, and 8. If
a person selects a set of two balls at random, what is the
expected value of the sum of the numbers on the balls?

18. An urn contains five balls numbered 1, 2, 2, 8, and 8. If
a person selects a set of three balls at random, what is the
expected value of the sum of the numbers on the balls?

19. When a pair of balanced dice are rolled and the sum of the
numbers showing face up is computed, the result can be any
number from 2 to 12, inclusive. What is the expected value
of the sum?

20.H Suppose a person offers to play a game with you. In this
game, when you draw a card from a standard 52-card deck,
if the card is a face card you win $3, and if the card is any-
thing else you lose $1. If you agree to play the game, what
is your expected gain or loss?

21. A person pays $1 to play the following game: The person
tosses a fair coin four times. If no heads occur, the person
pays an additional $2, if one head occurs, the person pays

an additional $1, if two heads occur, the person just loses
the initial dollar, if three heads occur, the person wins $3,
and if four heads occur, the person wins $4. What is the
person’s expected gain or loss?

22.H A fair coin is tossed until either a head comes up or
four tails are obtained. What is the expected number of
tosses?

23.H A gambler repeatedly bets that a die will come up 6 when
rolled. Each time the die comes up 6, the gambler wins
$1; each time it does not, the gambler loses $1. He will
quit playing either when he is ruined or when he wins
$300. If Pn is the probability that the gambler is ruined
when he begins play with $n, then Pk−1 = 1

6 Pk + 5
6 Pk−2

for all integers k with 2 ≤ k ≤ 300. Also P0 = 1 and
P300 = 0. Find an explicit formula for Pn and use it to
calculate P20. (Exercise 33 in Section 9.9 asks you to derive
the recurrence relation.)

Answers for Test Yourself
1. 0; 1; 1; 0 2. P(A)+ P(B) 3. 1− P(A) 4. P(A)+ P(B)− P(A ∩ B) 5. a1 p1 + a2 p2 + · · · + an pn

9.9 Conditional Probability, Bayes’ Formula,
and Independent Events
It is remarkable that a science which began with the consideration of games of chance
should have become the most important object of human knowledge.. . . The most
important questions of life are, for the most part, really only problems of probability.
—Pierre-Simon Laplace 1749–1827

In this section we introduce the notion of conditional probability and discuss Bayes’
Theorem and the kind of interesting results to which it leads. We then define the concept
of independent events and give some applications.

Conditional Probability
Imagine a couple with two children, each of whom is equally likely to be a boy or a girl.
Now suppose you are given the information that one is a boy. What is the probability that
the other child is a boy?

Figure 9.9.1 shows the four equally likely combinations of gender for the children.
You can imagine that the first letter refers to the older child and the second letter to the

BB BG GB GG

Figure 9.9.1
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612 Chapter 9 Counting and Probability

younger. Thus the combination BG indicates that the older child is a boy and the younger
is a girl.

The combinations where one of the children is a boy are shaded gray, and the combi-
nation where the other child is also a boy is shaded blue-gray. Given that you know one
child is a boy, only the three combinations in the gray region could be the case, so you
can think of the set of those outcomes as a new sample space with three elements, all of
which are equally likely. Within the new sample space, there is one combination where
the other child is a boy (in the region shaded blue-gray). Thus it would be reasonable
to say that the likelihood that the other child is a boy, given that at least one is a boy, is
1/3 = 331

3%. Note that because the original sample space contained four outcomes,

P(at least one child is a boy and the other child is also a boy)

P(at least one child is a boy)
=

1
4
3
4

= 1

3

also. A generalization of this observation forms the basis for the following definition.

• Definition

Let A and B be events in a sample space S. If P(A) �= 0, then the conditional
probability of B given A, denoted P(B |A), is

P(B | A) = P(A ∩ B)

P(A)
. 9.9.1

Example 9.9.1 Computing a Conditional Probability

A pair of fair dice, one blue and the other gray, are rolled. What is the probability that the
sum of the numbers showing face up is 8, given that both of the numbers are even?

Solution The sample space is the set of all 36 outcomes obtained from rolling the two
dice and noting the numbers showing face up on each. As in Section 9.1, denote by
ab the outcome that the number showing face up on the blue die is a and the one
on the gray die is b. Let A be the event that both numbers are even and B the event
that the sum of the numbers is 8. Then A = {22, 24, 26, 42, 44, 46, 62, 64, 66}, B =
{26, 35, 44, 53, 62}, and A ∩ B = {26, 44, 62}. Because the dice are fair (so all outcomes
are equally likely), P(A) = 9/36, P(B) = 5/36 and P(A ∩ B) = 3/36. By definition of
conditional probability,

P(B | A) = P(A ∩ B)

P(A)
=

3
36
9
36

= 3

9
= 1

3
. ■

Note that when both sides of the formula for conditional probability (formula 9.9.1)
are multiplied by P(A), a formula for P(A ∩ B) is obtained:

P(A ∩ B) = P(B | A) · P(A). 9.9.2

Dividing both sides of formula (9.9.2) by P(B | A) gives a formula for P(A):

P(A) = P(A ∩ B)

P(B | A)
. 9.9.3
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Example 9.9.2 Representing Conditional Probabilities with a Tree Diagram

An urn contains 5 blue and 7 gray balls. Let us say that 2 are chosen at random, one after
the other, without replacement.

a. Find the following probabilities and illustrate them with a tree diagram: the probability
that both balls are blue, the probability that the first ball is blue and the second is not
blue, the probability that the first ball is not blue and the second ball is blue, and the
probability that neither ball is blue.

b. What is the probability that the second ball is blue?

c. What is the probability that at least one of the balls is blue?

d. If the experiment of choosing two balls from the urn were repeated many times over,
what would be the expected value of the number of blue balls?

Solution Let S denote the sample space of all possible choices of two balls from the urn,
let B1 be the event that the first ball is blue, and let B2 be the event that the second ball is
blue. Then Bc

1 is the event that the first ball is not blue and Bc
2 is the event that the second

ball is not blue.

a. Because there are 12 balls of which 5 are blue and 7 are gray, the probability that the
first ball is blue is

P(B1) = 5

12

and the probability that the first ball is not blue is

P(B c
1 ) = 7

12
.

If the first ball is blue, then the urn would contain 4 blue balls and 7 gray balls, and so

P(B2 | B1) = 1

11
and P(B c

2 | B1) = 7

11
,

where P(B2 | B1) is the probability that the second ball is blue given that the first ball
is blue and P(B c

2 | B1) is the probability that the second ball is not blue given that the
first ball is blue. It follows from formula (9.9.2) that

P(B1 ∩ B2) = P(B2 | B1) · P(B1) = 4

11
· 5
12
= 20

132

and

P(B1 ∩ B c
2 ) = P(B c

2 | B1) · P(B1) = 7

11
· 5
12
= 35

132
.

Similarly, if the first ball is not blue, then the urn would contain 5 blue balls and 6 gray
balls, and so

P(B2 | B c
1 ) = 5

11
and P(B c

2 | B c
1 ) = 6

11
,

where P(B2 | B c
1 ) is the probability that the second ball is blue given that the first ball

is not blue and P(B c
2 | B c

1 ) is the probability that the second ball is not blue given that
the first ball is not blue. It follows from formula (9.9.2) that

P(B c
1 ∩ B2) = P(B2 | B c

1 ) · P(B c
1 ) = 5

11
· 7
12
= 35

132
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614 Chapter 9 Counting and Probability

and

P(B c
1 ∩ B c

2 ) = P(B c
2 | B c

1 ) · P(B c
1 ) = 6

11
· 7
12
= 42

132
.

The tree diagram in Figure 9.9.2 is a convenient way to help calculate these results.

P(B1) =
 —
5
12

P(B2
   B1) =

 —
4
11

4
11

5
12

20
132

P(B1    B 
c) = — · — = —–

P(B1    B2) = — · — = —–

7
11

5
12

35
132

B1     B2

B1

B1     B 
c

P(B 
c    B 

c) = — · — = —–6
11

7
12

42
132

7
12

P(B c
 ) = —1

B 
c

1

6
11

P(B c 
 B c

 ) = —2 1

2

5
11P(B 

   B 
c

 ) = —
1

7
11

P(B c   B 
 ) = —2 1

B 
c     B21

2

P(B2    B 
c) = — · — = —–5

11
7

12
35

1322

12
B 

c     B 
c

21

Figure 9.9.2

b. The event that the second ball is blue can occur in one of two mutually exclusive ways:
Either the first ball is blue and the second is also blue, or the first ball is gray and the
second is blue. In other words, B2 is the disjoint union of B2 ∩ B1 and B2 ∩ B c

1 . Hence

P(B2) = P
(
(B2 ∩ B1) ∪

(
B2 ∩ B c

1

))
= P(B2 ∩ B1)+ P

(
B2 ∩ B c

1

)
by probability axiom 3

= 20

132
+ 35

132
by part (a)

= 55

132
= 5

12
.

Thus the probability that the second ball is blue is 5/12, the same as the probability
that the first ball is blue.

c. By formula 9.8.2, for the union of any two events,

P(B1 ∪ B2) = P(B1)+ P(B2)− P(B1 ∩ B2)

= 5

12
+ 5

12
− 20

132
by parts (a) and (b)

= 90

132
= 15

22
.

Thus the probability is 15/22, or approximately 68.2%, that at least one of the balls
is blue.

d. The event that neither ball is blue is the complement of the event that at least one of
the balls is blue, so

P(0 blue balls) = 1− P (at least one ball is blue) by formula 9.8.1

= 1− 15

22
by part (c)

= 7

22
.
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9.9 Conditional Probability, Bayes’ Formula, and Independent Events 615

The event that one ball is blue can occur in one of two mutually exclusive ways: Either
the second ball is blue and the first is not, or the first ball is blue and the second is not.
Part (a) showed that the probability of the first way is 35

132 , and the probability of the
second way is also 35

132 . Thus, by probability axiom 3,

P(1 blue ball) = 35

132
+ 35

132
= 70

132
.

Finally, by part (a),

P(2 blue balls) = 20

132
.

Therefore,[
the expected value of
the number of blue balls

]
= 0 · P(0 blue balls)+ 1 · P(1 blue ball)

+ 2 · P(2 blue balls)

= 0 · 7
22
+ 1 · 70

132
+ 2 · 20

132

= 110

132
∼= 0.8. ■

Bayes’ Theorem
Suppose that one urn contains 3 blue and 4 gray balls and a second urn contains 5 blue
and 3 gray balls. A ball is selected by choosing one of the urns at random and then picking
a ball at random from that urn. If the chosen ball is blue, what is the probability that it
came from the first urn?

This problem can be solved by carefully interpreting all the information that is known
and putting it together in just the right way. Let A be the event that the chosen ball is blue,
B1 the event that the ball came from the first urn, and B2 the event that the ball came from
the second urn. Because 3 of the 7 balls in urn one are blue, and 5 of the 8 balls in urn
two are blue,

P(A | B1) = 3

7
and P(A | B2) = 5

8
.

And because the urns are equally likely to be chosen,

P(B1) = P(B2) = 1

2
.

Moreover, by formula (9.9.2),

P(A ∩ B1) = P(A | B1) · P(B1) = 3

7
· 1
2
= 3

14
, and

P(A ∩ B2) = P(A | B2) · P(B2) = 5

8
· 1
2
= 5

16
.

But A is the disjoint union of (A ∩ B1) and (A ∩ B2), so by probability axiom 3,

P(A) = P((A ∩ B1) ∪ (A ∩ B2)) = P(A ∩ B1)+ P(A ∩ B2) = 3

14
+ 5

16
= 59

112
.
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616 Chapter 9 Counting and Probability

Finally, by definition of conditional probability,

P(B1 | A) = P(B1 ∩ A)

P(A)
=

3
14
59
112

= 336

826
∼= 40.7%.

Thus, if the chosen ball is blue, the probability is approximately 40.7% that it came from
the first urn.

C
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Thomas Bayes
(1702–1761)

The steps used to derive the answer in the previous example can be generalized to
prove Bayes’ Theorem. (See exercises 9.9 and 9.10 at the end of this section.) Thomas
Bayes was an English Presbyterian minister who devoted much of his energies to math-
ematics. The theorem that bears his name was published posthumously in 1763. The
portrait at the left is the only one attributed to him, but its authenticity has recently come
into question.

Theorem 9.9.1 Bayes’ Theorem

Suppose that a sample space S is a union of mutually disjoint events B1, B2, B3, . . . ,

Bn , suppose A is an event in S, and suppose A and all the B1 have nonzero probabil-
ities. If k is an integer with 1 ≤ k ≤ n, then

P(Bk | A) = P(A | Bk)P(Bk)

P(A | B1)P(B1)+ P(A | B2)P(B2)+ · · · + P(A | Bn)P(Bn)

Example 9.9.3 Applying Bayes’ Theorem

Most medical tests occasionally produce incorrect results, called false positives and false
negatives. When a test is designed to determine whether a patient has a certain disease,
a false positive result indicates that a patient has the disease when the patient does not
have it. A false negative result indicates that a patient does not have the disease when the
patient does have it.

When large-scale health screenings are performed for diseases with relatively low
incidence, those who develop the screening procedures have to balance several consid-
erations: the per-person cost of the screening, follow-up costs for further testing of false
positives, and the possibility that people who have the disease will develop unwarranted
confidence in the state of their health.

Consider a medical test that screens for a disease found in 5 people in 1,000. Suppose
that the false positive rate is 3% and the false negative rate is 1%. Then 99% of the time a
person who has the condition tests positive for it, and 97% of the time a person who does
not have the condition tests negative for it. (See exercise 4 at the end of this section.)

a. What is the probability that a randomly chosen person who tests positive for the dis-
ease actually has the disease?

b. What is the probability that a randomly chosen person who tests negative for the dis-
ease does not indeed have the disease?

Solution Consider a person chosen at random from among those screened. Let A be the
event that the person tests positive for the disease, B1 the event that the person actually
has the disease, and B2 the event that the person does not have the disease. Then

P(A | B1) = 0.99, P(Ac | B1) = 0.01, P(Ac | B2) = 0.97, and P(A | B2) = 0.03.

Also, because 5 people in 1,000 have the disease,

P(B1) = 0.005 and P(B2) = 0.995.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



9.9 Conditional Probability, Bayes’ Formula, and Independent Events 617

a. By Bayes’ Theorem,

P(B1 | A) = P(A | B1)P(B1)

P(A | B1)P(B1)+ P(A | B2)P(B2)

= (0.99)(0.005)

(0.99)(0.005)+ (0.03)(0.995)
∼= 0.1422 ∼= 14.2%.

Thus the probability that a person with a positive test result actually has the disease is
approximately 14.2%.

b. By Bayes’ Theorem,

P(B2 | Ac) = P(Ac | B2)P(B2)

P(Ac | B1)P(B1)+ P(Ac | B2)P(B2)

= (0.97)(0.995)

(0.01)(0.005)+ (0.97)(0.995)
∼= 0.999948 ∼= 99.995%.

Thus the probability that a person with a negative test result does not have the disease is
approximately 99.995%.

You might be surprised by these numbers, but they are fairly typical of the situation
where the screening test is significantly less expensive than a more accurate test for the
same disease yet produces positive results for nearly all people with the disease. Using
the screening test limits the expense of unnecessarily using the more costly test to a
relatively small percentage of the population being screened, while only rarely indicating
that a person who has the disease is free of it. ■

Independent Events
Suppose a coin is tossed twice. It seems intuitively clear that the outcome of the first toss
does not depend in any way on the outcome of the second toss, and conversely. In other
words, if, for instance, A is the event that a head is obtained on the first toss and B is
the event that a head is obtained on the second toss, then if the coin is tossed randomly
both times, events A and B should be independent in the sense that P(A | B) = P(A)

and P(B | A) = P(B). This intuitive idea of independence is supported by the following
analysis. If the coin is fair, then the four outcomes HH, HT, T H , and T T are equally
likely, and

A = {HH, HT }, B = {T H, HH}, A ∩ B = {HH}.
Hence

P(A) = P(B) = 2

4
= 1

2
.

But also

P(A | B) = P(A ∩ B)

P(B)
=

1
4
1
2

= 1

2
and P(B | A) = P(A ∩ B)

P(A)
=

1
4
1
2

= 1

2
,

and thus P(A | B) = P(A) and P(B | A) = P(B).
To obtain the final form for definition of independence, observe that

if P(B) �= 0 and P(A | B) = P(A), then P(A ∩ B) = P(A | B) · P(B) = P(A) · P(B).
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By the same argument,

if P(A) �= 0 and P(B | A) = P(B), then P(A ∩ B) = P(A) · P(B).

Conversely (see exercise 18 at the end of this section),

if P(A ∩ B) = P(A) · P(B) and P(A) �= 0, then P(B | A) = P(B),

and

if P(A ∩ B) = P(A) · P(B) and P(B) �= 0, then P(A | B) = P(A).

Thus, for convenience and to eliminate the requirement that the probabilities be nonzero,
we use the following product formula to define independent events.

Note It would be
natural to think that
mutually disjoint events
would be independent,
but in fact almost the
opposite is true: Mutually
disjoint events with
nonzero probabilities are
dependent.

• Definition

If A and B are events in a sample space S, then A and B are independent if, and
only if,

P(A ∩ B) = P(A) · P(B).

Example 9.9.4 Disjoint Events and Independence

Let A and B be events in a sample space S, and suppose A ∩ B = ∅, P(A) �= 0, and
P(B) �= 0. Show that P(A ∩ B) �= P(A) · P(B).

Solution Because A ∩ B = ∅, P(A ∩ B) = 0 by probability axiom 2. But P(A) · P(B)

�= 0 because neither P(A) nor P(B) equals zero. Thus P(A ∩ B) �= P(A) · P(B). ■

The following example, and its immediate consequence, show how the independence
of two events extends to their complements.

Example 9.9.5 The Probability of A ∩ Bc When A and B Are Independent Events

Suppose A and B are independent events in a sample space S. Show that A and Bc are
also independent.

Solution The solution for exercises 8 and 25 in Section 6.2 show that for all sets A and B,

(1) (A ∩ B) ∪ (A ∩ Bc) = A

and (2) (A ∩ B) ∩ (A ∩ Bc) = ∅
It follows that probability axiom 3 may be applied to equation (1) to obtain

P((A ∩ B) ∪ (A ∩ Bc)) = P(A ∩ B)+ P(A ∩ Bc) = P(A).

Solving for P(A ∩ Bc) gives that

P(A ∩ Bc) = P(A)− P(A ∩ B)

= P(A)− P(A) · P(B) because A and B are independent

= P(A)(1− P(B)) by factoring out P(A)

= P(A) · P(Bc) by formula 9.8.1.

Thus A and Bc are independent events. ■
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It follows immediately from Example 9.9.5 that if A and B are independent, then
Ac and B are also independent and so are Ac and Bc. (See exercise 22 at the end of this
section.) These results are applied in Example 9.9.6.

Example 9.9.6 Computing Probabilities of Intersections of Two Independent Events

A coin is loaded so that the probability of heads is 0.6. Suppose the coin is tossed twice.
Although the probability of heads is greater than the probability of tails, there is no reason
to believe that whether the coin lands heads or tails on one toss will affect whether it lands
heads or tails on the other toss. Thus it is reasonable to assume that the results of the tosses
are independent.

a. What is the probability of obtaining two heads?

b. What is the probability of obtaining one head?

c. What is the probability of obtaining no heads?

d. What is the probability of obtaining at least one head?

Solution The sample space S consists of the four outcomes {HH, HT, T H, T T }, which
are not equally likely. Let E be the event that a head is obtained on the first toss, and let
F be the event that a head is obtained on the second toss. Then P(E) = P(F) = 0.6, and
it is to be assumed that E and F are independent.

a. The probability of obtaining two heads is P(E ∩ F). Because E and F are
independent,

P (two heads) = P(E ∩ F) = P(E) · P(F) = (0.6)(0.6) = 0.36 = 36%.

b. One head can be obtained in two mutually exclusive ways: head on the first toss and
tail on the second, or tail on the first toss and head on the second. Thus, the event of
obtaining exactly one head is (E ∩ Fc) ∪ (Ec ∩ F). Also (E ∩ Fc) ∩ (Ec ∩ F) = ∅,
and, moreover, by the formula for the probability of the complement of an event,
P(Ec) = P(Fc) = 1− 0.6 = 0.4. Hence

P(one head) = P((E ∩ Fc) ∪ (Ec ∩ F))

= P(E) · P(Fc)+ P(Ec) · P(F) by Example 9.9.5 and exercise 22

= (0.6)(0.4)+ (0.4)(0.6)

= 0.48 = 48%.

c. The probability of obtaining no heads is P(Ec ∩ Fc). By exercise 22,

P(no heads) = P(Ec ∩ Fc) = P(Ec) · P(Fc) = (0.4)(0.4) = 0.16 = 16%.

d. There are two ways to solve this problem. One is to observe that because the event of
obtaining one head and the event of obtaining two heads are mutually disjoint,

P(at least one head) = P(one head)+ P(two heads)

= 0.48+ 0.36 by parts (a) and (b)

= 0.84 = 84%.

The second way is to use the fact that the event of obtaining at least one head is the
complement of the event of obtaining no heads. So

P(at least one head) = 1− P(no heads)

= 1− 0.16 by part (c)

= 0.84 = 84%. ■
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620 Chapter 9 Counting and Probability

Example 9.9.7 Expected Value of Tossing a Loaded Coin Twice

Suppose that a coin is loaded so that the probability of heads is 0.6, and suppose the coin
is tossed twice. If this experiment is repeated many times, what is the expected value of
the number of heads?

Solution Think of the outcomes of the coin tossings as just 0, 1, or 2 heads. Example 9.9.6
showed that the probabilities of these outcomes are 0.16, 0.48, and 0.36, respectively.
Thus, by definition of expected value, the

expected number of heads = 0 ·(0.16)+ 1 ·(0.48)+ 2 ·(0.36) = 1.2. ■

What if a loaded coin is tossed more than twice? Suppose it is tossed ten times, or a
hundred times. What are the probabilities of various numbers of heads? To answer this
question, it is necessary to expand the notion of independence to more than two events.
For instance, we say three events A, B, and C are pairwise independent if, and only if,

P(A ∩ B) = P(A) · P(B), P(A ∩ C) = P(A) · P(C), and P(B ∩ C) = P(B) · P(C).

The next example shows that events can be pairwise independent without satisfying the
condition P(A ∩ B ∩ C) = P(A) · P(B) · P(C). Conversely, they can satisfy the condi-
tion P(A ∩ B ∩ C) = P(A) · P(B) · P(C) without being pairwise independent (see exer-
cise 26 at the end of this section).

Example 9.9.8 Exploring Independence for Three Events

Suppose that a fair coin is tossed twice. Let A be the event that a head is obtained on the
first toss, B the event that a head is obtained on the second toss, andC the event that either
two heads or two tails are obtained. Show that A, B, and C are pairwise independent but
do not satisfy the condition P(A ∩ B ∩ C) = P(A) · P(B) · P(C).

Solution Because there are four equally likely outcomes—HH, HT, T H , and T T—it is
clear that P(A) = P(B) = P(C) = 1

2 . You can also see that A ∩ B = {HH},
A ∩ C = {HH}, B ∩ C = {HH}, and A ∩ B ∩ C = {HH}. Hence P(A ∩ B) =
P(A ∩ C) = P(B ∩ C) = 1

4 , and so P(A ∩ B) = P(A) · P(B), P(A ∩ C) =
P(A) · P(C), and P(B ∩ C) = P(B) · P(C). Thus A, B, and C are pairwise indepen-
dent. But

P(A ∩ B ∩ C) = P({HH}) = 1

4
�=

(
1

2

)3

= P(A) · P(B) · P(C). ■

Because of situations like that in Example 9.9.8, four conditions must be included in
the definition of independence for three events.

• Definition

Let A, B, and C be events in a sample space S. A, B, and C are pairwise indepen-
dent if, and only if, they satisfy conditions 1–3 below. They are mutually
independent if, and only if, they satisfy all four conditions below.

1. P(A ∩ B) = P(A) · P(B)

2. P(A ∩ C) = P(A) · P(C)

3. P(B ∩ C) = P(B) · P(C)

4. P(A ∩ B ∩ C) = P(A) · P(B) · P(C)
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9.9 Conditional Probability, Bayes’ Formula, and Independent Events 621

The definition of mutual independence for any collection of n events with n ≥ 2
generalizes the two definitions given previously.

• Definition

Events A1, A2, A3, . . . , An in a sample space S are mutually independent if, and
only if, the probability of the intersection of any subset of the events is the product
of the probabilities of the events in the subset.

Example 9.9.9 Tossing a Loaded Coin Ten Times

A coin is loaded so that the probability of heads is 0.6 (and thus the probability of tails is
0.4). Suppose the coin is tossed ten times. As in Example 9.9.6, it is reasonable to assume
that the results of the tosses are mutually independent.

a. What is the probability of obtaining eight heads?

b. What is the probability of obtaining at least eight heads?

Solution

a. For each i = 1, 2, . . . , 10, let Hi be the event that a head is obtained on the i th toss,
and let Ti be the event that a tail is obtained on the i th toss. Suppose that the eight
heads occur on the first eight tosses and that the remaining two tosses are tails. This
is the event H1 ∩ H2 ∩ H3 ∩ H4 ∩ H5 ∩ H6 ∩ H7 ∩ H8 ∩ T9 ∩ T10. For simplicity, we
denote it as HHHHHHHHTT . By definition of mutually independent events,

P(HHHHHHHHTT ) = (0.6)8(0.4)2.

Because of the commutative law for multiplication, if the eight heads occur on any
other of the ten tosses, the same number is obtained. For instance, if we denote the
event H1 ∩ H2 ∩ T3 ∩ H4 ∩ H5 ∩ H6 ∩ H7 ∩ H8 ∩ T9 ∩ H10 by HHT HHHHHT H ,
then

P(HHT HHHHHT H) = (0.6)2(0.4)(0.6)5(0.4)(0.6) = (0.6)8(0.4)2.

Now there are as many different ways to obtain eight heads in ten tosses as there are
subsets of eight elements (the toss numbers on which heads are obtained) that can be

chosen from a set of ten elements. This number is
(10
8

)
. It follows that, because the

different ways of obtaining eight heads are all mutually exclusive,

P(eight heads) =
(
10
8

)
(0.6)8(0.4)2.

b. By reasoning similar to that in part (a),

P(nine heads) =
⎡
⎣the number of different
ways nine heads can be
obtained in ten tosses

⎤
⎦ ·(0.6)9(0.4)1 = (

10
9

)
(0.6)9(0.4),

and

P(ten heads) =
⎡
⎣the number of different
ways ten heads can be
obtained in ten tosses

⎤
⎦ ·(0.6)10(0.4)0 = (

10
10

)
(0.6)10.
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622 Chapter 9 Counting and Probability

Because obtaining eight, obtaining nine, and obtaining ten heads are mutually disjoint
events,

P(at least eight heads) = P(eight heads)+ P(nine heads)+ P(ten heads)

=
(
10
8

)
(0.6)8(0.4)2 +

(
10
9

)
(0.6)9(0.4)+

(
10
10

)
(0.6)10

∼= 0.167 = 16.7%. ■

Note the occurrence of the binomial coefficients
(n
k

)
in solutions to problems like the

one in Example 9.9.9. For that reason, probabilities of the form(
n

k

)
pn−k(1− p)k,

where 0 ≤ p ≤ 1, are called binomial probabilities.

Note Binomial
probabilities occur in
situations with multiple,
mutually independent
repetitions of a random
process, all of which have
the same two possible
outcomes with the same
probabilities on each
repetition.

Test Yourself
1. If A and B are any events in a sample space S and

P(A) �= 0, then the conditional probability of B given A
is P(B | A) = _____.

2. Bayes’ theorem says that if a sample space S is a union of
mutually disjoint events B1, B2, . . . , Bn with nonzero prob-
abilities, if A is an event in S with P(A) �= 0, and if k is an
integer with 1 ≤ k ≤ n, then _____.

3. Events A and B in a sample space S are independent if, and
only if, _____.

4. Events A, B, and C in a sample space S are mutually inde-
pendent if, and only if, _____, _____, _____, and _____.

Exercise Set 9.9
1. Suppose P(A | B) = 1/2 and P(A ∩ B) = 1/6. What is

P(B)?

2. Suppose P(X | Y ) = 1/3 and P(Y ) = 1/4. What is
P(X ∩ Y )?

3.H The instructor of a discrete mathematics class gave two
tests. Twenty-five percent of the students received an A on
the first test and 15% of the students received A’s on both
tests. What percent of the students who received A’s on the
first test also received A’s on the second test?

4. a. Prove that if A and B are any events in a sample space
S, with P(B) �= 0, then P(Ac | B) = 1− P(A | B).

b. Explain how this result justifies the following state-
ments: (1) If the probability of a false positive on a test
for a condition is 4%, then there is a 96% probability
that a person who does not have the condition will have
a negative test result. (2) If the probability of a false neg-
ative on a test for a condition is 1%, then there is a 99%
probability that a person who does have the condition
will test positive for it.

5.H Suppose that A and B are events in a sample space S and
that P(A), P(B), and P(A | B) are known. Derive a for-
mula for P(A | Bc).

6. An urn contains 25 red balls and 15 blue balls. Two are
chosen at random, one after the other, without replacement.

a. Use a tree diagram to help calculate the following prob-
abilities: the probability that both balls are red, the prob-
ability that the first ball is red and the second is not, the
probability that the first ball is not red and the second is
red, the probability that neither ball is red.

b. What is the probability that the second ball is red?
c. What is the probability that at least one of the balls is

red?

7. Redo exercise 6 assuming that the urn contains 30 red balls
and 40 blue balls.

8. A pool of 10 semifinalists for a job consists of 7 men and
3 women. Because all are considered equally qualified, the
names of two of the semifinalists are drawn, one after the
other, at random, to become finalists for the job.
a. What is the probability that both finalists are women?
b. What is the probability that both finalists are men?
c.H What is the probability that one finalist is a woman and

the other is a man?

9.H Prove Bayes’ Theorem for n = 2. That is, prove that if a
sample space S is a union of mutually disjoint events B1

and B2, if A is an event in S with P(A) �= 0, and if k = 1
or k = 2, then

P(Bk | A) = P(A | Bk)P(Bk)

P(A | B1)P(B1)+ P(A | B2)P(B2)
.
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10. Prove the full version of Bayes’ Theorem.

11. One urn contains 12 blue balls and 7 white balls, and a sec-
ond urn contains 8 blue balls and 19 white balls. An urn is
selected at random, and a ball is chosen from the urn.
a. What is the probability that the chosen ball is blue?
b. If the chosen ball is blue, what is the probability that it

came from the first urn?

12. Redo exercise 11 assuming that the first urn contains 4 blue
balls and 16 white balls and the second urn contains 10 blue
balls and 9 white balls.

13.H One urn contains 10 red balls and 25 green balls, and a sec-
ond urn contains 22 red balls and 15 green balls. A ball
is chosen as follows: First an urn is selected by tossing a
loaded coin with probability 0.4 of landing heads up and
probability 0.6 of landing tails up. If the coin lands heads
up, the first urn is chosen; otherwise, the second urn is cho-
sen. Then a ball is picked at random from the chosen urn.
a. What is the probability that the chosen ball is green?
b. If the chosen ball is green, what is the probability that it

was picked from the first urn?

14. A drug-screening test is used in a large population of peo-
ple of whom 4% actually use drugs. Suppose that the false
positive rate is 3% and the false negative rate is 2%. Thus
a person who uses drugs tests positive for them 98% of the
time, and a person who does not use drugs tests negative for
them 987% of the time.
a. What is the probability that a randomly chosen person

who tests positive for drugs actually uses drugs?
b. What is the probability that a randomly chosen person

who tests negative for drugs does not use drugs?

15. Two different factories both produce a certain automobile
part. The probability that a component from the first fac-
tory is defective is 2%, and the probability that a compo-
nent from the second factory is defective is 5%. In a supply
of 180 of the parts, 100 were obtained from the first factory
and 80 from the second factory.
a. What is the probability that a part chosen at random from

the 180 is from the first factory?
b. What is the probability that a part chosen at random from

the 180 is from the second factory?
c. What is the probability that a part chosen at random from

the 180 is defective?
d. If the chosen part is defective, what is the probability

that it came from the first factory?

16.H Three different suppliers—X, Y , and Z—provide produce
for a grocery store. Twelve percent of produce from X is
superior grade, 8% of produce from Y is superior grade and
15% of produce from Z is superior grade. The store obtains
20% of its produce from X , 45% from Y , and 35% from Z .
a. If a piece of produce is purchased, what is the probabil-

ity that it is superior grade?
b. If a piece of produce in the store is superior grade, what

is the probability that it is from X?

17. Prove that if A and B are events in a sample space S with
the property that P(A | B) = P(A) and P(A) �= 0, then
P(B | A) = P(B).

18. Prove that if P(A ∩ B) = P(A) · P(B), P(A) �= 0, and
P(B) �= 0, then P(A | B) = P(A) and P(B | A) = P(B).

19. A pair of fair dice, one blue and the other gray, are rolled.
Let A be the event that the number face up on the blue
die is 2, and let B be the event that the number face up
on the gray die is 4 or 5. Show that P(A | B) = P(A) and
P(B | A) = P(B).

20. Suppose a fair coin is tossed three times. Let A be the
event that a head appears on the first toss, and let B be the
event that an even number of heads is obtained. Show that
P(A | B) = P(A) and P(B | A) = P(B).

21. If A and B are events in a sample space S and A ∩ B = ∅,
what must be true in order for A and B to be independent?
Explain.

22. Prove that if A and B are independent events in a sample
space S, then Ac and B are also independent, and so are Ac

and Bc.

23. A student taking a multiple-choice exam does not know
the answers to two questions. All have five choices for the
answer. For one of the two questions, the student can elim-
inate two answer choices as incorrect but has no idea about
the other answer choices. For the other question, the stu-
dent has no clue about the correct answer at all. Assume
that whether the student chooses the correct answer on one
of the questions does not affect whether the student chooses
the correct answer on the other question.
a. What is the probability that the student will answer both

questions correctly?
b. What is the probability that the student will answer

exactly one of the questions correctly?
c. What is the probability that the student will answer nei-

ther question correctly?

24. A company uses two proofreaders X and Y to check a cer-
tain manuscript. X misses 12% of typographical errors and
Y misses 15%. Assume that the proofreaders work indepen-
dently.
a. What is the probability that a randomly chosen typo-

graphical error will be missed by both proofreaders?
b. If the manuscript contains 1,000 typographical errors,

what number can be expected to be missed?

25. A coin is loaded so that the probability of heads is 0.7
and the probability of tails is 0.3. Suppose that the coin
is tossed twice and that the results of the tosses are
independent.
a. What is the probability of obtaining exactly two heads?
b. What is the probability of obtaining exactly one head?
c. What is the probability of obtaining no heads?
d. What is the probability of obtaining at least one head?
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26.✶ Describe a sample space and events A, B, and C , where
P(A ∩ B ∩ C) = P(A) · P(B) · P(C) but A, B, and C are
not pairwise independent.

27.H The example used to introduce conditional probability
described a family with two children each of whom was
equally likely to be a boy or a girl. The example showed that
if it is known that one child is a boy, the probability that the
other child is a boy is 1/3. Now imagine the same kind of
family—two children each of whom is equally likely to be a
boy or a girl. Suppose you meet one of the children and see
that it is a boy. What is the probability that the other child is
a boy? Explain. (Be careful. The answer may surprise you.)

28. A coin is loaded so that the probability of heads is 0.7 and
the probability of tails is 0.3. Suppose that the coin is tossed
ten times and that the results of the tosses are mutually inde-
pendent.
a. What is the probability of obtaining exactly seven

heads?
b. What is the probability of obtaining exactly ten heads?
c. What is the probability of obtaining no heads?
d. What is the probability of obtaining at least one head?

29. Suppose that ten items are chosen at random from a large
batch delivered to a company. The manufacturer claims that
just 3% of the items in the batch are defective. Assume that
the batch is large enough so that even though the selection
is made without replacement, the number 0.03 can be used
to approximate the probability that any one of the ten items
is defective. In addition, assume that because the items are
chosen at random, the outcomes of the choices are mutually
independent. Finally, assume that the manufacturer’s claim
is correct.
a. What is the probability that none of the ten is defective?
b. What is the probability that at least one of the ten is

defective?
c. What is the probability that exactly four of the ten are

defective?
d. What is the probability that at most two of the ten are

defective?

30. Suppose the probability of a false positive result on a
mammogram is 4% and that radiologists’ interpretations of
mammograms are mutually independent in the sense that
whether or not a radiologist finds a positive result on one
mammogram does not influence whether or not the radiolo-
gist finds a positive result on another mammogram. Assume
that a woman has a mammogram every year for ten years.
a. What is the probability that she will have no false posi-

tive results during that time?

b. What is the probability that she will have at least one
false positive result during that time?

c. What is the probability that she will have exactly two
false positive results during that time?

d. Suppose that the probability of a false negative result
on a mammogram is 2%, and assume that the probabil-
ity that a randomly chosen woman has breast cancer is
0.0002.
(i) If a woman has a positive test result one year, what

is the probability that she actually has breast cancer?
(ii) If a woman has a negative test result one year, what

is the probability that she actually has breast cancer?

31. Empirical data indicate that approximately 103 out of every
200 children born are male. Hence the probability of a new-
born being male is about 51.5%. Suppose that a family has
six children, and suppose that the genders of all the children
are mutually independent.
a.H What is the probability that none of the children is male?
b. What is the probability that at least one of the children

is male?
c. What is the probability that exactly five of the children

are male?

32. A person takes a multiple-choice exam in which each ques-
tion has four possible answers. Suppose that the person has
no idea about the answers to three of the questions and sim-
ply chooses randomly for each one.
a. What is the probability that the person will answer all

three questions correctly?
b. What is the probability that the person will answer

exactly two questions correctly?
c. What is the probability that the person will answer

exactly one question correctly?
d. What is the probability that the person will answer no

questions correctly?
e. Suppose that the person gets one point of credit for each

correct answer and that 1/3 point is deducted for each
incorrect answer. What is the expected value of the per-
son’s score for the three questions?

33. In exercise 23 of Section 9.8, let Ck be the event that the
gambler has k dollars, wins the next roll of the die, and
is eventually ruined, let Dk be the event that the gambler
has k dollars, loses the next roll of the die, and is even-
tually ruined, and let Pn be the probability that the gam-
bler is eventually ruined. Use the probability axioms and
the definition of conditional probability to derive the equa-

tion Pk−1 = 1
6 Pk + 5

6 Pk−2.

Answers for Test Yourself

1.
P(A ∩ B)

P(A)
2. P(Bk | A) = P(A | Bk)P(Bk)

P(A | B1)P(B1)+ P(A | B2)P(B2)+ · · · + P(A | Bn)P(Bn)
3. P(A ∩ B) = P(A) · P(B)

4. P(A ∩ B) = P(A) · P(B); P(A ∩ C) = P(A) · P(C); P(B ∩ C) = P(B) · P(C); P(A ∩ B ∩ C) = P(A) · P(B) · P(C)
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CHAPTER 10

GRAPHS AND TREES

Graphs and trees have appeared previously in this book as convenient visualizations. For
instance, a possibility tree shows all possible outcomes of a multistep operation with a
finite number of outcomes for each step, the directed graph of a relation on a set shows
which elements of the set are related to which a Hasse diagram illustrates the relations
among elements in a partially ordered set, and a PERT diagram shows which tasks must
precede which in executing a project.

In this chapter we present some of the mathematics of graphs and trees, discussing
concepts such as the degree of a vertex, connectedness, Euler and Hamiltonian circuits,
representation of graphs by matrices, isomorphisms of graphs, the relation between the
number of vertices and the number of edges of a tree, properties of rooted trees span-
ning trees, and shortest paths in graphs. Applications include uses of graphs and trees
in the study of artificial intelligence, chemistry, scheduling problems, and transportation
systems.

10.1 Graphs: Definitions and Basic Properties
The whole of mathematics consists in the organization of a series of aids to the
imagination in the process of reasoning. — Alfred North Whitehead, 1861–1947

Imagine an organization that wants to set up teams of three to work on some projects. In
order to maximize the number of people on each team who had previous expe-
rience working together successfully, the director asked themembers to provide names of
their past partners. This information is displayed below both in a table and in a
diagram.

Name Past Partners

Ana Dan, Flo
Bev Cai, Flo, Hal
Cai Bev, Flo
Dan Ana, Ed
Ed Dan, Hal
Flo Cai, Bev, Ana
Gia Hal
Hal Gia, Ed, Bev, Ira
Ira Hal

Ana

Bev

Cai

Dan

EdFlo

Gia

Hal

Ira

From the diagram, it is easy to see that Bev, Cai, and Flo are a group of three past
partners, and so they should form one of these teams. The figure on the next page shows
the result when these three names are removed from the diagram.
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Ana

Dan

Ed

Gia

Hal

Ira

This drawing shows that placing Hal on the same team as Ed would leave Gia and Ira
on a team containing no past partners. However, if Hal is placed on a team with Gia and
Ira, then the remaining team would consist of Ana, Dan, and Ed, and both teams would
contain at least one pair of past partners.

Drawings such as those shown previously are illustrations of a structure known as a
graph. The dots are called vertices (plural of vertex) and the line segments joining vertices
are called edges. As you can see from the drawing, it is possible for two edges to cross
at a point that is not a vertex. Note also that the type of graph described here is quite
different from the “graph of an equation” or the “graph of a function.”

In general, a graph consists of a set of vertices and a set of edges connecting various
pairs of vertices. The edges may be straight or curved and should either connect one
vertex to another or a vertex to itself, as shown below.

Parallel edges Isolated vertex

Loop

e3

e1

e2 e4

e6

e5

v2

v4

v1

v3

v5

v7

v6

In this drawing, the vertices have been labeled with v’s and the edges with e’s. When an
edge connects a vertex to itself (as e5 does), it is called a loop. When two edges connect
the same pair of vertices (as e2 and e3 do), they are said to be parallel. It is quite possible
for a vertex to be unconnected by an edge to any other vertex in the graph (as v5 is), and
in that case the vertex is said to be isolated. The formal definition of a graph follows.

• Definition

A graph G consists of two finite sets: a nonempty set V (G) of vertices and a set
E(G) of edges, where each edge is associated with a set consisting of either one or
two vertices called its endpoints. The correspondence from edges to endpoints is
called the edge-endpoint function.

An edge with just one endpoint is called a loop, and two or more distinct edges
with the same set of endpoints are said to be parallel. An edge is said to connect
its endpoints; two vertices that are connected by an edge are called adjacent; and a
vertex that is an endpoint of a loop is said to be adjacent to itself.

An edge is said to be incident on each of its endpoints, and two edges incident
on the same endpoint are called adjacent. A vertex on which no edges are incident
is called isolated.
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10.1 Graphs: Definitions and Basic Properties 627

Graphs have pictorial representations in which the vertices are represented by dots and
the edges by line segments. A given pictorial representation uniquely determines a graph.

Example 10.1.1 Terminology

Consider the following graph:

e3
e2

e4

e6

e5

e7

e1

v1

v2 v3

v4

v6

v5

a. Write the vertex set and the edge set, and give a table showing the edge-endpoint
function.

b. Find all edges that are incident on v1, all vertices that are adjacent to v1, all edges
that are adjacent to e1, all loops, all parallel edges, all vertices that are adjacent to
themselves, and all isolated vertices.

Solution

a. vertex set = {v1, v2, v3, v4, v5, v6}
edge set = {e1, e2, e3, e4, e5, e6, e7}
edge-endpoint function:

Edge Endpoints

e1 {v1, v2}
e2 {v1, v3}
e3 {v1, v3}
e4 {v2, v3}
e5 {v5, v6}
e6 {v5}
e7 {v6}

Note that the isolated vertex v4 does not appear in this table. Although each edgemust
have either one or two endpoints, a vertex need not be an endpoint of an edge.

b. e1, e2, and e3 are incident on v1.
v2 and v3 are adjacent to v1.
e2, e3, and e4 are adjacent to e1.
e6 and e7 are loops.
e2 and e3 are parallel.
v5 and v6 are adjacent to themselves.
v4 is an isolated vertex. ■

As noted earlier, a given pictorial representation uniquely determines a graph.
However, a given graph may have more than one pictorial representation. Such things
as the lengths or curvatures of the edges and the relative position of the vertices on the
page may vary from one pictorial representation to another.
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Example 10.1.2 Drawing More Than One Picture for a Graph

Consider the graph specified as follows:

vertex set = {v1, v2, v3, v4}
edge set = {e1, e2, e3, e4}
edge-endpoint function:

Edge Endpoints

e1 {v1, v3}
e2 {v2, v4}
e3 {v2, v4}
e4 {v3}

Both drawings (a) and (b) shown below are pictorial representations of this graph.

e4

e1

e2
e2

e4

e3 e1

e3

v3

v2 v4

v1

v2 v1

v3

v4

(a) (b) ■

Example 10.1.3 Labeling Drawings to Show They Represent the Same Graph

Consider the two drawings shown in Figure 10.1.1. Label vertices and edges in such a
way that both drawings represent the same graph.

(a) (b)

Figure 10.1.1

Solution Imagine putting one end of a piece of string at the top vertex of Figure 10.1.1(a)
(call this vertex v1), then laying the string to the next adjacent vertex on the lower right
(call this vertex v2), then laying it to the next adjacent vertex on the upper left (v3), and
so forth, returning finally to the top vertex v1. Call the first edge e1, the second e2, and so
forth, as shown below.

e3
e1

e4
e2

e5

v3 v4

v5 v2

v1
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Now imagine picking up the piece of string, together with its labels, and repositioning it
as follows:

e3

e1

e4 e2

v4

v1

v5 v2

v3

e5

This is the same as Figure 10.1.1(b), so both drawings are representations of the graph
with vertex set {v1, v2, v3, v4, v5}, edge set {e1, e2, e3, e4, e5}, and edge-endpoint function
as follows:

Edge Endpoints

e1 {v1, v2}
e2 {v2, v3}
e3 {v3, v4}
e4 {v4, v5}
e5 {v5, v1} ■

In Chapter 8 we discussed the directed graph of a binary relation on a set. The general
definition of directed graph is similar to the definition of graph, except that one associates
an ordered pair of vertices with each edge instead of a set of vertices. Thus each edge of
a directed graph can be drawn as an arrow going from the first vertex to the second vertex
of the ordered pair.

• Definition

A directed graph, or digraph, consists of two finite sets: a nonempty set V (G) of
vertices and a set D(G) of directed edges, where each is associated with an ordered
pair of vertices called its endpoints. If edge e is associated with the pair (v,w) of
vertices, then e is said to be the (directed) edge from v to w.

Note that each directed graph has an associated ordinary (undirected) graph, which is
obtained by ignoring the directions of the edges.

Examples of Graphs
Graphs are a powerful problem-solving tool because they enable us to represent a com-
plex situation with a single image that can be analyzed both visually and with the aid of
a computer. A few examples follow, and others are included in the exercises.

Example 10.1.4 Using a Graph to Represent a Network

Telephone, electric power, gas pipeline, and air transport systems can all be represented
by graphs, as can computer networks—from small local area networks to the global
Internet system that connects millions of computers worldwide. Questions that arise in
the design of such systems involve choosing connecting edges tominimize cost, optimize
a certain type of service, and so forth. A typical network, called a hub and spoke model,
is shown on the next page.
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Boston

New York

Washington

Chicago
Denver

San Francisco

Los Angeles

■

Example 10.1.5 Using a Graph to Represent the World Wide Web

The World Wide Web, or Web, is a system of interlinked documents, or webpages, con-
tained on the Internet. Users employing Web browsers, such as Internet Explorer, Google
Chrome, Apple Safari, and Opera, can move quickly from one webpage to another by
clicking on hyperlinks, which use versions of software called hypertext transfer protocols
(HTTPs). Individuals and individual companies create the pages, which they transmit
to servers that contain software capable of delivering them to those who request them
through a Web browser. Because the amount of information currently on the Web is so
vast, search engines, such as Google, Yahoo, and Bing, have algorithms for finding infor-
mation very efficiently.

The picture below shows a minute fraction of the hyperlink connections on the Inter-
net that radiate in and out from the Wikipedia main page.

W
ik

ip
ed

ia
/C

hr
is

7
3

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



10.1 Graphs: Definitions and Basic Properties 631

Example 10.1.6 Using a Graph to Represent Knowledge

In many applications of artifical intelligence, a knowledge base of information is col-
lected and represented inside a computer. Because of the way the knowledge is repre-
sented and because of the properties that govern the artificial intelligence program, the
computer is not limited to retrieving data in the same form as it was entered; it can also
derive new facts from the knowledge base by using certain built-in rules of inference.
For example, from the knowledge that the Los Angeles Times is a big-city daily and
that a big-city daily contains national news, an artifical intelligence program could infer
that the Los Angeles Times contains national news. The directed graph shown in Fig-
ure 10.1.2 is a pictorial representation for a simplified knowledge base about periodical
publications.

According to this knowledge base, what paper finish does the New York Times use?

Paper
made-of Periodical contains

is-ais-a

is-ais-ais-a

is-a

is-a

Printed
writing

Sports
Illustrated

instance-of
Sports
magazine

Motor Trend
instance-of

Newspaper

Big-city
daily

contains

Suburban
weekly

Scholarly
journal

Scientific
journal

Literary
journal

instance-of

in
sta

nc
e-

of

instance-of

Poetry
Magazine

Los Angeles
Times

New York
Times

contains
contains

contains

National
news

Local
news

Sports
news

Glossy

paper-finish

paper-finish

Matte

Long
words

Figure 10.1.2

Solution The arrow going from New York Times to big-city daily (labeled “instance-of”)
shows that the New York Times is a big-city daily. The arrow going from big-city daily to
newspaper (labeled “is-a”) shows that a big-city daily is a newspaper. The arrow going
from newspaper tomatte (labeled “paper-finish”) indicates that the paper finish on a news-
paper is matte. Hence it can be inferred that the paper finish on the New York Times is
matte. ■

Example 10.1.7 Using a Graph to Solve a Problem: Vegetarians and Cannibals

The following is a variation of a famous puzzle often used as an example in the study
of artificial intelligence. It concerns an island on which all the people are of one of two
types, either vegetarians or cannibals. Initially, two vegetarians and two cannibals are on
the left bank of a river. With them is a boat that can hold a maximum of two people.
The aim of the puzzle is to find a way to transport all the vegetarians and cannibals to
the right bank of the river. What makes this difficult is that at no time can the number
of cannibals on either bank outnumber the number of vegetarians. Otherwise, disaster
befalls the vegetarians!

Solution A systematic way to approach this problem is to introduce a notation that can
indicate all possible arrangements of vegetarians, cannibals, and the boat on the banks of
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the river. For example, you couldwrite (vvc/Bc) to indicate that there are two vegetarians
and one cannibal on the left bank and one cannibal and the boat on the right bank. Then
(vvccB/) would indicate the initial position in which both vegetarians, both cannibals,
and the boat are on the left bank of the river. The aim of the puzzle is to figure out
a sequence of moves to reach the position (/Bvvcc) in which both vegetarians, both
cannibals, and the boat are on the right bank of the river.

Construct a graph whose vertices are the various arrangements that can be reached
in a sequence of legal moves starting from the initial position. Connect vertex x to ver-
tex y if it is possible to reach vertex y in one legal move from vertex x . For instance,
from the initial position there are four legal moves: one vegetarian and one cannibal
can take the boat to the right bank; two cannibals can take the boat to the right bank;
one cannibal can take the boat to the right bank; or two vegetarians can take the boat
to the right bank. You can show these by drawing edges connecting vertex (vvccB/) to
vertices (vc/Bvc), (vv/Bcc), (vvcBc), and (cc/Bvv). (It might seem natural to draw
directed edges rather than undirected edges from one vertex to another. The rationale
for drawing undirected edges is that each legal move is reversible.) From the position
(vc/Bvc), the only legal moves are to go back to (vvccB/) or to go to (vvcB/c). You
can also show these by drawing in edges. Continue this process until finally you reach
(/Bvvcc). From Figure 10.1.3 it is apparent that one successful sequence of moves is
(vvccB/)→ (vc/Bvc)→ (vvcB/c)→ (c/Bvvc)→ (ccB/vv)→ (/Bvvcc).

vc/Bvc

vv/Bcc

vvccB/

vvc/Bc

cc/Bvv

vvcB/c c/Bvvc /Bvvcc

ccB/vv

vcB/vc

Figure 10.1.3 ■

Special Graphs
One important class of graphs consists of those that do not have any loops or parallel
edges. Such graphs are called simple. In a simple graph, no two edges share the same set
of endpoints, so specifying two endpoints is sufficient to determine an edge.

• Definition and Notation

A simple graph is a graph that does not have any loops or parallel edges. In a simple
graph, an edge with endpoints v and w is denoted {v,w}.

Example 10.1.8 A Simple Graph

Draw all simple graphs with the four vertices {u, v, w, x} and two edges, one of which
is {u, v}.

Solution Each possible edge of a simple graph corresponds to a subset of two vertices.
Given four vertices, there are

(4
2

) = 6 such subsets in all: {u, v}, {u, w}, {u, x}, {v,w},
{v, x}, and {w, x}. Now one edge of the graph is specified to be {u, v}, so any of the
remaining five from this list can be chosen to be the second edge. The possibilities are
shown on the next page.
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Another important class of graphs consists of those that are “complete” in the sense
that all pairs of vertices are connected by edges.

Note The K stands for
the German word
komplett, which means
“complete.”

• Definition

Let n be a positive integer. A complete graph on n vertices, denoted Kn, is a simple
graph with n vertices and exactly one edge connecting each pair of distinct vertices.

Example 10.1.9 Complete Graphs on n Vertices: K1, K2, K3, K4, K5

The complete graphs K1, K2, K3, K4, and K5 can be drawn as follows:

v1 v1 v5

v2 v4

v2

v4

v3

v3

v1

v2

v3v1 v2

K2K1 K3 K4 K5 ■

In yet another class of graphs, the vertex set can be separated into two subsets: Each
vertex in one of the subsets is connected by exactly one edge to each vertex in the other
subset, but not to any vertices in its own subset. Such a graph is called complete bipartite.

• Definition

Let m and n be positive integers. A complete bipartite graph on (m, n) vertices,
denoted Km,n, is a simple graph with distinct vertices v1, v2, . . . , vm andw1, w2, . . . ,

wn that satisfies the following properties: For all i, k = 1, 2, . . . ,m and for all j, l =
1, 2, . . . , n,

1. There is an edge from each vertex vi to each vertex w j .

2. There is no edge from any vertex vi to any other vertex vk .

3. There is no edge from any vertex w j to any other vertex wl .

Example 10.1.10 Complete Bipartite Graphs: K3,2 and K3,3

The complete bipartite graphs K3,2 and K3,3 are illustrated below.

v1

v2

v3

v1

v2

v3

w1

w2

w3

w2

w1

K3, 2 K3, 3 ■
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• Definition

A graph H is said to be a subgraph of a graph G if, and only if, every vertex in H
is also a vertex in G, every edge in H is also an edge in G, and every edge in H has
the same endpoints as it has in G.

Example 10.1.11 Subgraphs

List all subgraphs of the graph G with vertex set {v1, v2} and edge set {e1, e2, e3}, where
the endpoints of e1 are v1 and v2, the endpoints of e2 are v1 and v2, and e3 is a loop at v1.

Solution G can be drawn as shown below.

v1

v2

e1

e2

e3

There are 11 subgraphs of G, which can be grouped according to those that do not have
any edges, those that have one edge, those that have two edges, and those that have three
edges. The 11 subgraphs are shown in Figure 10.1.4.

v1

v2v2

e1

e2

v1

v2

e1

e2

e3
v1 e3

v1

v2

e1

e3 v1

v2

e2

e3

v1v1

v2

e2

v2

e3
v1 v1

v2

v1

v2

e1

1 2 3 4 5 6

7 8 9 10 11

Figure 10.1.4 ■

The Concept of Degree
The degree of a vertex is the number of end segments of edges that “stick out of” the
vertex. We will show that the sum of the degrees of all the vertices in a graph is twice the
number of edges of the graph.
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• Definition

Let G be a graph and v a vertex of G. The degree of v, denoted deg(v), equals the
number of edges that are incident on v, with an edge that is a loop counted twice.
The total degree of G is the sum of the degrees of all the vertices of G.

Since an edge that is a loop is counted twice, the degree of a vertex can be obtained
from the drawing of a graph by counting how many end segments of edges are incident
on the vertex. This is illustrated below.

The degree of this
vertex equals 5.

Example 10.1.12 Degree of a Vertex and Total Degree of a Graph

Find the degree of each vertex of the graph G shown below. Then find the total degree
of G.

v1

v2

v3

e1 e2

e3

Solution deg(v1) = 0 since no edge is incident on v1 (v1 is isolated).

deg(v2) = 2 since both e1 and e2 are incident on v2.

deg(v3) = 4 since e1 and e2 are incident on v3 and the loop e3 is also
incident on v3 (and contributes 2 to the degree of v3).

total degree of G = deg(v1)+ deg(v2)+ deg(v3) = 0+ 2+ 4 = 6. ■

Note that the total degree of the graph G of Example 10.1.12, which is 6, equals twice
the number of edges of G, which is 3. Roughly speaking, this is true because each edge
has two end segments, and each end segment is counted once toward the degree of some
vertex. This result generalizes to any graph.

In fact, for any graph without loops, the general result can be explained as follows:
Imagine a group of people at a party. Depending on how social they are, each person
shakes handswith various other people. So each person participates in a certain number of
handshakes—perhaps many, perhaps none—but because each handshake is experienced
by two different people, if the numbers experienced by each person are added together,
the sum will equal twice the total number of handshakes. This is such an attractive way
of understanding the situation that the following theorem is often called the handshake
lemma or the handshake theorem. As the proof demonstrates, the conclusion is true even
if the graph contains loops.
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Theorem 10.1.1 The Handshake Theorem

If G is any graph, then the sum of the degrees of all the vertices of G equals twice
the number of edges of G. Specifically, if the vertices of G are v1, v2, . . . , vn, where
n is a nonnegative integer, then

the total degree of G = deg(v1)+ deg(v2)+ · · · + deg(vn)

= 2 ·(the number of edges of G).

Proof:

Let G be a particular but arbitrarily chosen graph, and suppose that G has n vertices
v1, v2, . . . , vn and m edges, where n is a positive integer and m is a nonnegative
integer. We claim that each edge of G contributes 2 to the total degree of G. For sup-
pose e is an arbitrarily chosen edge with endpoints vi and v j . This edge contributes 1
to the degree of vi and 1 to the degree v j . As shown below, this is true even if i = j ,
because an edge that is a loop is counted twice in computing the degree of the vertex
on which it is incident.

vi

vj
e e

vi = vj

i = ji ≠ j

Therefore, e contributes 2 to the total degree of G. Since e was arbitrarily chosen,
this shows that each edge of G contributes 2 to the total degree of G. Thus

the total degree of G = 2 · (the number of edges of G).

The following corollary is an immediate consequence of Theorem 10.1.1.

Corollary 10.1.2

The total degree of a graph is even.

Proof:

By Theorem 10.1.1 the total degree of G equals 2 times the number of edges, which
is an integer, and so the total degree of G is even.

Example 10.1.13 Determining Whether Certain Graphs Exist

Draw a graph with the specified properties or show that no such graph exists.

a. A graph with four vertices of degrees 1, 1, 2, and 3

b. A graph with four vertices of degrees 1, 1, 3, and 3

c. A simple graph with four vertices of degrees 1, 1, 3, and 3
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Solution

a. No such graph is possible. By Corollary 10.1.2, the total degree of a graph is even.
But a graph with four vertices of degrees 1, 1, 2, and 3 would have a total degree of
1+ 1+ 2+ 3 = 7, which is odd.

b. Let G be any of the graphs shown below.

a

d

b

c

a

d

b

c

a

d

b

c

a

d

b

c

In each case, no matter how the edges are labeled, deg(a) = 1, deg(b) = 1, deg(c) =
3, and deg(d) = 3.

c. There is no simple graph with four vertices of degrees 1, 1, 3, and 3.

Proof (by contradiction):

Suppose there were a simple graph G with four vertices of degrees 1, 1, 3, and 3. Call a
and b the vertices of degree 1, and call c and d the vertices of degree 3. Since deg(c) = 3
and G does not have any loops or parallel edges (because it is simple), there must be
edges that connect c to a, b, and d.

a

d

b

c

By the same reasoning, there must be edges connecting d to a, b, and c.

a

d

b

c

But then deg(a) ≥ 2 and deg(b) ≥ 2, which contradicts the supposition that these vertices
have degree 1. Hence the supposition is false, and consequently there is no simple graph
with four vertices of degrees 1, 1, 3, and 3. ■

Example 10.1.14 Application to an Acquaintance Graph

Is it possible in a group of nine people for each to be friends with exactly five others?

Solution The answer is no. Imagine constructing an “acquaintance graph” in which each
of the nine people represented by a vertex and two vertices are joined by an edge if, and
only if, the people they represent are friends. Suppose each of the people were friends
with exactly five others. Then the degree of each of the nine vertices of the graph would
be five, and so the total degree of the graph would be 45. But this contradicts Corollary
10.1.2, which says that the total degree of a graph is even. This contradiction shows that
the supposition is false, and hence it is impossible for each person in a group of nine
people to be friends with exactly five others. ■

The following proposition is easily deduced from Corollary 10.1.2 using properties
of even and odd integers.
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Proposition 10.1.3

In any graph there are an even number of vertices of odd degree.

Proof:

Suppose G is any graph, and suppose G has n vertices of odd degree and m vertices
of even degree, where n is a positive integer and m is a nonnegative integer. [We
must show that n is even.] Let E be the sum of the degrees of all the vertices of even
degree, O the sum of the degrees of all the vertices of odd degree, and T the total
degree of G. If u1, u2, . . . , um are the vertices of even degree and v1, v2, . . . , vn are
the vertices of odd degree, then

E = deg(u1)+ deg(u2)+ · · · + deg(um),

O = deg(v1)+ deg(v2)+ · · · + deg(vn), and

T = deg(u1)+ · · · + deg(um)+ deg(v1)+ · · · + deg(vn) = E + O.

Now T , the total degree of G, is an even integer by Corollary 10.1.2. Also E is
even since either E is zero, which is even, or E is a sum of the numbers deg(ui ),
each of which is even. But

T = E + O,

and therefore O = T − E .

Hence O is a difference of two even integers, and so O is even.
By assumption, deg(vi ) is odd for all i = 1, 2, . . . , n. Thus O , an even integer,

is a sum of the n odd integers deg(v1), deg(v2), . . . , deg(vn). But if a sum of n odd
integers is even, then n is even. (See exercise 32 at the end of this section.) Therefore,
n is even [as was to be shown].

Example 10.1.15 Applying the Fact That the Number of Vertices with Odd Degree Is Even

Is there a graph with ten vertices of degrees 1, 1, 2, 2, 2, 3, 4, 4, 4, and 6?

Solution No. Such a graph would have three vertices of odd degree, which is impossible
by Proposition 10.1.3.

Note that this same result could have been deduced directly from Corollary 10.1.2 by
computing the total degree (1+ 1+ 2+ 2+ 2+ 3+ 4+ 4+ 4+ 6 = 29) and noting
that it is odd. However, use of Proposition 10.1.3 gives the result without the need to
perform this addition. ■

Test Yourself
Answers to Test Yourself questions are located at the end of each section.

1. A graph consists of two finite sets: _____ and _____, where
each edge is associated with a set consisting of _____.

2. A loop in a graph is _____.

3. Two distinct edges in a graph are parallel if, and only if,
_____.

4. Two vertices are called adjacent if, and only if, _____.

5. An edge is incident on _____.

6. Two edges incident on the same endpoint are _____.

7. A vertex on which no edges are incident is _____.

8. In a directed graph, each edge is associated with _____.

9. A simple graph is _____.

10. A complete graph on n vertices is a _____.

11. A complete bipartite graph on (m, n) vertices is a simple
graph whose vertices can be partitioned into two disjoint sets
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V1 and V2 in such a way that (1) each of the m vertices in
V1 is _____ to each of the n vertices in V2, no vertex in V1

is connected to _____, and no vertex in V2 is connected to
_____.

12. A graph H is a subgraph of a graph G if, and only if,
(1) _____, (2) _____, and (3) _____.

13. The degree of a vertex in a graph is _____.

14. The total degree of a graph is defined as _____.

15. The handshake theorem says that the total degree of a graph
is _____.

16. In any graph the number of vertices of odd degree is _____.

Exercise Set 10.1*
In 1 and 2, graphs are represented by drawings. Define each
graph formally by specifying its vertex set, its edge set, and a
table giving the edge-endpoint function.

1.

v2
v1

v3

v4
e2

e3

e1

2.

v2

v3

v1

v4
e2 e3

e4 e5
e1

In 3 and 4, draw pictures of the specified graphs.

3. Graph G has vertex set {v1, v2, v3, v4, v5} and edge set
{e1, e2, e3, e4}, with edge-endpoint function as follows:

Edge Endpoints

e1 {v1, v2}
e2 {v1, v2}
e3 {v2, v3}
e4 {v2}

4. Graph H has vertex set {v1, v2, v3, v4, v5} and edge set
{e1, e2, e3, e4} with edge-endpoint function as follows:

Edge Endpoints

e1 {v1}
e2 {v2, v3}
e3 {v2, v3}
e4 {v1, v5}

In 5–7, show that the two drawings represent the same graph
by labeling the vertices and edges of the right-hand drawing to
correspond to those of the left-hand drawing.

5.

v2
v1 v3

v4v5v6

e7 e6
e5

e2

e3

e4e1

6. v1

v4

v2

v3

e2

e3e4

e1

7.

v1

v2

v7

v3

v5

v4

v6

e2

e1 e3

e5
e7 e6

e8 e4

e9

∗For exercises with blue numbers or letters, solutions are given in Appendix B. The symbolH indicates that only a hint or a partial
solution is given. The symbol ✶ signals that an exercise is more challenging than usual.
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640 Chapter 10 Graphs and Trees

For each of the graphs in 8 and 9:
(i) Find all edges that are incident on v1.
(ii) Find all vertices that are adjacent to v3.
(iii) Find all edges that are adjacent to e1.
(iv) Find all loops.
(v) Find all parallel edges.
(vi) Find all isolated vertices.
(vii) Find the degree of v3.
(viii) Find the total degree of the graph.

8. v1

v5 v4

v3

v2
v6

e2

e3

e8

e9
e7

e5e4

e6

e1

e10

9.

v2
v1

v3
v5

v4

e2

e4

e5
e7

e3

e6

e1

10. Use the graph of Example 10.1.6 to determine
a. whether Sports Illustrated contains printed writing;
b. whether Poetry Magazine contains long words.

11. Find three other winning sequences of moves for the vege-
tarians and the cannibals in Example 10.1.7.

12. Another famous puzzle used as an example in the study
of artificial intelligence seems first to have appeared in a
collection of problems, Problems for the Quickening of the
Mind, which was compiled about A.D. 775. It involves a
wolf, a goat, a bag of cabbage, and a ferryman. From an
initial position on the left bank of a river, the ferryman is
to transport the wolf, the goat, and the cabbage to the right
bank. The difficulty is that the ferryman’s boat is only big
enough for him to transport one object at a time, other than
himself. Yet, for obvious reasons, the wolf cannot be left
alone with the goat, and the goat cannot be left alone with
the cabbage. How should the ferryman proceed?

13. Solve the vegetarians-and-cannibals puzzle for the case
where there are three vegetarians and three cannibals to be
transported from one side of a river to the other.

14.H Two jugs A and B have capacities of 3 quarts and 5 quarts,
respectively. Can you use the jugs to measure out exactly
1 quart of water, while obeying the following restrictions?
You may fill either jug to capacity from a water tap; you
may empty the contents of either jug into a drain; and you
may pour water from either jug into the other.

15. A graph has vertices of degrees 0, 2, 2, 3, and 9. Howmany
edges does the graph have?

16. A graph has vertices of degrees 1, 1, 4, 4, and 6. Howmany
edges does the graph have?

In each of 17–25, either draw a graph with the specified proper-
ties or explain why no such graph exists.

17. Graph with five vertices of degrees 1, 2, 3, 3, and 5.

18. Graph with four vertices of degrees 1, 2, 3, and 3.

19. Graph with four vertices of degrees 1, 1, 1, and 4.

20. Graph with four vertices of degrees 1, 2, 3, and 4.

21. Simple graph with four vertices of degrees 1, 2, 3, and 4.

22. Simple graph with five vertices of degrees 2, 3, 3, 3, and 5.

23. Simple graph with five vertices of degrees 1, 1, 1, 2, and 3.

24. Simple graph with six edges and all vertices of degree 3.

25. Simple graph with nine edges and all vertices of degree 3.

26. Find all subgraphs of each of the following graphs.

a.

v1

v2

e2

e1

b.

v0

v1

c.

v1 v3

v2

27. a. In a group of 15 people, is it possible for each person to
have exactly 3 friends? Explain. (Assume that friendship
is a symmetric relationship: If x is a friend of y, then y
is a friend of x .)

b. In a group of 4 people, is it possible for each person to
have exactly 3 friends? Why?

28. In a group of 25 people, is it possible for each to shake
hands with exactly 3 other people? Explain.

29. Is there a simple graph, each of whose vertices has even
degree? Explain.

30. Suppose that G is a graph with v vertices and e edges and
that the degree of each vertex is at least dmin and at most
dmax. Show that

1

2
dmin ·v ≤ e ≤ 1

2
dmax ·v.

31. Prove that any sum of an odd number of odd integers is odd.

32.H Deduce from exercise 31 that for any positive integer n, if
there is a sum of n odd integers that is even, then n is even.

33. Recall that Kn denotes a complete graph on n vertices.
a. Draw K6.
b.H Show that for all integers n ≥ 1, the number of edges of

Kn is
n(n − 1)

2
.

34. Use the result of exercise 33 to show that the number of
edges of a simple graph with n vertices is less than or equal

to
n(n − 1)

2
.
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10.1 Graphs: Definitions and Basic Properties 641

35. Is there a simple graph with twice as many edges as ver-
tices? Explain. (You may find it helpful to use the result of
exercise 34.)

36. Recall that Km,n denotes a complete bipartite graph on
(m, n) vertices.
a. Draw K4,2

b. Draw K1,3

c. Draw K3,4

d. How many vertices of Km,n have degree m? degree n?
e. What is the total degree of Km,n?
f. Find a formula in terms of m and n for the number of

edges of Km,n . Explain.

37. A bipartite graph G is a simple graph whose vertex set can
be partitioned into two disjoint nonempty subsets V1 and V2

such that vertices in V1 may be connected to vertices in V2,
but no vertices in V1 are connected to other vertices in V1

and no vertices in V2 are connected to other vertices in V2.
For example, the graphG illustrated in (i) can be redrawn as
shown in (ii). From the drawing in (ii), you can see that G is
bipartite withmutually disjoint vertex sets V1 = {v1, v3, v5}
and V2 = {v2, v4, v6}.
(i)

v1

v6

v3

v2

v5

v4

(ii)
v1

v3

v5

v2

v4

v6

Find which of the following graphs are bipartite. Redraw
the bipartite graphs so that their bipartite nature is evident.

a. v1

v4

v2

v3

b. v1

v3

v2

c.

v1

v4

v3

v6

v2

v5

d.

v1

v2

v6

v5

v4

v3

e. v1

v5

v2

v3

v4

f.

v1

v5

v3

v4

v2

38. Suppose r and s are any positive integers. Does there exist
a graph G with the property that G has vertices of degrees
r and s and of no other degrees? Explain.

Definition: If G is a simple graph, the complement of G,
denoted G′, is obtained as follows: The vertex set of G ′ is
identical to the vertex set of G. However, two distinct ver-
tices v and w of G ′ are connected by an edge if, and only if,
v and w are not connected by an edge in G. For example, if
G is the graph

v1

v2

v4

v3

then G ′ is
v2

v4

v1 v3

39. Find the complement of each of the following graphs.

a.

v1 v3

v2

v4

b. v1

v4

v2

v3

40. a. Find the complement of the graph K4, the complete
graph on four vertices. (See Example 10.1.9.)

b. Find the complement of the graph K3,2, the complete
bipartite graph on (3, 2) vertices. (See Example 10.1.10.)

41. Suppose that in a group of five people A, B,C, D, and
E the following pairs of people are acquainted with each
other:
A and C, A and D, B and C,C and D,C and E .
a. Draw a graph to represent this situation.
b. Draw a graph that illustrates who among these five peo-

ple are not acquainted. That is, draw an edge between
two people if, and only if, they are not acquainted.

42.H Let G be a simple graph with n vertices. What is the rela-
tion between the number of edges of G and the number of
edges of the complement G ′?

43. Show that at a party with at least two people, there are
at least two mutual acquaintances or at least two mutual
strangers.

44. a. In a simple graph, must every vertex have degree that is
less than the number of vertices in the graph? Why?

b. Can there be a simple graph that has four vertices each
of different degrees?

c.H ✶ Can there be a simple graph that has n vertices all of
different degrees?

45.✶H In a group of two or more people, must there always be at
least two people who are acquainted with the same number
of people within the group? Why?
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642 Chapter 10 Graphs and Trees

46. Imagine that the diagram shown below is a map with coun-
tries labeled a–g. Is it possible to color the map with only
three colors so that no two adjacent countries have the same
color? To answer this question, draw and analyze a graph in
which each country is represented by a vertex and two ver-
tices are connected by an edge if, and only if, the countries
share a common border.

a b c

d
e

g
f

47.H In this exercise a graph is used to help solve a scheduling
problem. Twelve faculty members in amathematics depart-
ment serve on the following committees:

Undergraduate Education: Tenner, Peterson, Kashina, Cohen

Graduate Education: Gatto, Yang, Cohen, Catoiu

Colloquium: Sahin, McMurry, Ash

Library: Cortzen, Tenner, Sahin

Hiring: Gatto, McMurry, Yang, Peterson

Personnel: Yang, Wang, Cortzen

The committees must all meet during the first week of
classes, but there are only three time slots available. Find

a schedule that will allow all faculty members to attend
the meetings of all committees on which they serve. To do
this, represent each committee as the vertex of a graph, and
draw an edge between two vertices if the two committees
have a common member. Find a way to color the vertices
using only three colors so that no two committees have the
same color, and explain how to use the result to schedule
the meetings.

48. A department wants to schedule final exams so that no stu-
dent has more than one exam on any given day. The vertices
of the graph below show the courses that are being taken by
more than one student, with an edge connecting two ver-
tices if there is a student in both courses. Find a way to
color the vertices of the graph with only four colors so that
no two adjacent vertices have the same color and explain
how to use the result to schedule the final exams.

MCS101 MCS102

MCS110

MCS120MCS130
MCS135

MCS100

Answers for Test Yourself
1. a finite, nonempty set of vertices; a finite set of edges; one or two vertices called its endpoints 2. an edge with a single endpoint
3. they have the same set of endpoints 4. they are connected by an edge 5. each of its endpoints 6. adjacent 7. isolated 8.
an ordered pair of vertices called its endpoints 9. a graph with no loops or parallel edges 10. simple graph with n vertices whose
set of edges contains exactly one edge for each pair of vertices 11. connected by an edge; any other vertex in V1; any other vertex
in V2 12. every vertex in H is also a vertex in G; every edge in H is also an edge in G; every edge in H has the same endpoints as
it has in G 13. the number of edges that are incident on the vertex, with an edge that is a loop counted twice 14. the sum of the
degrees of all the vertices of the graph 15. equal to twice the number of edges of the graph 16. an even number

10.2 Trails, Paths, and Circuits
One can begin to reason only when a clear picture has been formed in the imagination.
—W. W. Sawyer, Mathematician’s Delight, 1943

The subject of graph theory began in the year 1736 when the great mathematician Leon-
hard Euler published a paper giving the solution to the following puzzle:

The town of Königsberg in Prussia (now Kaliningrad in Russia) was built at a point
where two branches of the Pregel River came together. It consisted of an island and
some land along the river banks. These were connected by seven bridges as shown in
Figure 10.2.1.

The question is this: Is it possible for a person to take a walk around town, starting
and ending at the same location and crossing each of the seven bridges exactly once?∗

∗In his original paper, Euler did not require the walk to start and end at the same point. The analysis
of the problem is simplified, however, by adding this condition. Later in the section, we discuss
walks that start and end at different points.
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Pregel River B

D

A

C

M
er

ia
n-

E
rb

en

B

D

A

C

Figure 10.2.1 The Seven Bridges of Königsberg

To solve this puzzle, Euler translated it into a graph theory problem. He noticed that
all points of a given land mass can be identified with each other since a person can travel
from any one point to any other point of the same land mass without crossing a bridge.
Thus for the purpose of solving the puzzle, the map of Königsberg can be identified with
the graph shown in Figure 10.2.2, in which the vertices A, B,C , and D represent land
masses and the seven edges represent the seven bridges.

B
et

tm
an

n/
C

O
R

B
IS

Leonhard Euler
(1707–1783)

A

D

B C

Figure 10.2.2 Graph Version of Königsberg Map

In terms of this graph, the question becomes the following:

Is it possible to find a route through the graph that starts and ends at some
vertex, one of A, B,C, or D, and traverses each edge exactly once?

Equivalently:

Is it possible to trace this graph, starting and ending at the same point,
without ever lifting your pencil from the paper?

Take a few minutes to think about the question yourself. Can you find a route that meets
the requirements? Try it!

Looking for a route is frustrating because you continually find yourself at a vertex
that does not have an unused edge on which to leave, while elsewhere there are unused
edges that must still be traversed. If you start at vertex A, for example, each time you
pass through vertex B,C , or D, you use up two edges because you arrive on one edge
and depart on a different one. So, if it is possible to find a route that uses all the edges
of the graph and starts and ends at A, then the total number of arrivals and departures
from each vertex B,C , and D must be a multiple of 2. Or, in other words, the degrees of
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644 Chapter 10 Graphs and Trees

the vertices B,C , and D must be even. But they are not: deg(B) = 5, deg(C) = 3, and
deg(D) = 3. Hence there is no route that solves the puzzle by starting and ending at A.
Similar reasoning can be used to show that there are no routes that solve the puzzle by
starting and ending at B,C, or D. Therefore, it is impossible to travel all around the city
crossing each bridge exactly once.

Definitions
Travel in a graph is accomplished by moving from one vertex to another along a sequence
of adjacent edges. In the graph below, for instance, you can go from u1 to u4 by taking
f1 to u2 and then f7 to u4. This is represented by writing

u1f1u2f7u4.

f1
f2

f7
f4

f3

f5

f6

u1

u5

u2

u4

u3

Or you could take the roundabout route

u1 f1u2 f3u3 f4u2 f3u3 f5u4 f6u4 f7u2 f3u3 f5u4.

Certain types of sequences of adjacent vertices and edges are of special importance
in graph theory: those that do not have a repeated edge, those that do not have a repeated
vertex, and those that start and end at the same vertex.

• Definition

Let G be a graph, and let v and w be vertices in G.

A walk from v to w is a finite alternating sequence of adjacent vertices and edges of
G. Thus a walk has the form

v0e1v1e2 · · · vn−1envn,
where the v’s represent vertices, the e’s represent edges, v0 = v, vn = w, and for
all i = 1, 2, . . . n, vi−1 and vi are the endpoints of ei . The trivial walk from v to v
consists of the single vertex v.

A trail from v to w is a walk from v to w that does not contain a repeated edge.

A path from v to w is a trail that does not contain a repeated vertex.

A closed walk is a walk that starts and ends at the same vertex.

A circuit is a closed walk that contains at least one edge and does not contain a
repeated edge.

A simple circuit is a circuit that does not have any other repeated vertex except the
first and last.
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10.2 Trails, Paths, and Circuits 645

For ease of reference, these definitions are summarized in the following table:

Repeated Repeated Starts and Ends Must Contain at
Edge? Vertex? at Same Point? Least One Edge?

Walk allowed allowed allowed no

Trail no allowed allowed no

Path no no no no

Closed walk allowed allowed yes no

Circuit no allowed yes yes

Simple circuit no first and yes yes
last only

Often a walk can be specified unambiguously by giving either a sequence of edges or
a sequence of vertices. The next two examples show how this is done.

Example 10.2.1 Notation for Walks
a. In the graph below, the notation e1e2e4e3 refers unambiguously to the following walk:

v1e1v2e2v3e4v3e3v2. On the other hand, the notation e1 is ambiguous if used to refer
to a walk. It could mean either v1e1v2 or v2e1v1.

v1 v2 v3

e2

e3

e1
e4

b. In the graph of part (a), the notation v2v3 is ambiguous if used to refer to a walk.
It could mean v2e2v3 or v2e3v3. On the other hand, in the graph below, the notation
v1v2v2v3 refers unambiguously to the walk v1e1v2e2v2e3v3.

v1 v2 v3

e2

e1 e3 ■

Note that if a graph G does not have any parallel edges, then anywalk in G is uniquely
determined by its sequence of vertices.

Example 10.2.2 Walks, Trails Paths, and Circuits

In the graph below, determine which of the following walks are trails, paths, circuits, or
simple circuits.

a. v1e1v2e3v3e4v3e5v4 b. e1e3e5e5e6 c. v2v3v4v5v3v6v2
d. v2v3v4v5v6v2 e. v1e1v2e1v1 f. v1

v1 v2

v6

v3 v4

v5

e2

e5

e9

e4

e3

e7

e8

e10
e6

e1
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Solution

a. This walk has a repeated vertex but does not have a repeated edge, so it is a trail from
v1 to v4 but not a path.

b. This is just a walk from v1 to v5. It is not a trail because it has a repeated edge.

c. Thiswalk starts and ends at v2, contains at least one edge, and does not have a repeated
edge, so it is a circuit. Since the vertex v3 is repeated in the middle, it is not a simple
circuit.

d. This walk starts and ends at v2, contains at least one edge, does not have a repeated
edge, and does not have a repeated vertex. Thus it is a simple circuit.

e. This is just a closed walk starting and ending at v1. It is not a circuit because edge e1
is repeated.

f. The first vertex of this walk is the same as its last vertex, but it does not contain an
edge, and so it is not a circuit. It is a closed walk from v1 to v1. (It is also a trail from
v1 to v1.) ■

Becausemost of themajor developments in graph theory have happened relatively recently
and in a variety of different contexts, the terms used in the subject have not been stan-
dardized. For example, what this book calls a graph is sometimes called a multigraph,
what this book calls a simple graph is sometimes called a graph, what this book calls a
vertex is sometimes called a node, and what this book calls an edge is sometimes called
an arc. Similarly, instead of the word trail, the word path is sometimes used; instead of
the word path, the words simple path are sometimes used; and instead of the words sim-
ple circuit, the word cycle is sometimes used. The terminology in this book is among the
most common, but if you consult other sources, be sure to check their definitions.

Connectedness
It is easy to understand the concept of connectedness on an intuitive level. Roughly speak-
ing, a graph is connected if it is possible to travel from any vertex to any other vertex
along a sequence of adjacent edges of the graph. The formal definition of connectedness
is stated in terms of walks.

• Definition

Let G be a graph. Two vertices v and w of G are connected if, and only if, there is a
walk from v to w. The graph G is connected if, and only if, given any two vertices
v and w in G, there is a walk from v to w. Symbolically,

G is connected ⇔ ∀ vertices v,w ∈ V (G), ∃ a walk from v to w.

If you take the negation of this definition, you will see that a graph G is not connected
if, and only if, there are two vertices of G that are not connected by any walk.

Example 10.2.3 Connected and Disconnected Graphs

Which of the following graphs are connected?

v1
v1 v3

v2

v3

v4

v5

v6

v2 v2

v3

v6

v5
v1

v4
v4

v5

v8 v7

v6

(a) (b) (c)
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Solution The graph represented in (a) is connected, whereas those of (b) and (c) are not.
To understand why (c) is not connected, recall that in a drawing of a graph, two edges
may cross at a point that is not a vertex. Thus the graph in (c) can be redrawn as follows:

v1

v2

v3

v4

v6

v5

■

Some useful facts relating circuits and connectedness are collected in the following
lemma. Proofs of (a) and (b) are left for the exercises. The proof of (c) is in Section 10.5.

Lemma 10.2.1

Let G be a graph.

a. If G is connected, then any two distinct vertices of G can be connected by a path.

b. If vertices v and w are part of a circuit in G and one edge is removed from the
circuit, then there still exists a trail from v to w in G.

c. If G is connected and G contains a circuit, then an edge of the circuit can be
removed without disconnecting G.

Look back at Example 10.2.3. The graphs in (b) and (c) are both made up of three
pieces, each of which is itself a connected graph. A connected component of a graph is a
connected subgraph of largest possible size.

• Definition

A graph H is a connected component of a graph G if, and only if,

1. H is subgraph of G;

2. H is connected; and

3. no connected subgraph of G has H as a subgraph and contains vertices or edges
that are not in H .

The fact is that any graph is a kind of union of its connected components.

Example 10.2.4 Connected Components

Find all connected components of the following graph G.

v1

v2

v4

v5

v8

v6

v7v3

e2 e4

e1

e3

e5
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Solution G has three connected components: H1, H2, and H3 with vertex sets V1, V2, and
V3 and edge sets E1, E2, and E3, where

V1 = {v1, v2, v3}, E1 = {e1, e2},
V2 = {v4}, E2 = ∅,
V3 = {v5, v6, v7, v8}, E3 = {e3, e4, e5}. ■

Euler Circuits
Now we return to consider general problems similar to the puzzle of the Königsberg
bridges. The following definition is made in honor of Euler.

• Definition

Let G be a graph. An Euler circuit for G is a circuit that contains every vertex and
every edge of G. That is, an Euler circuit for G is a sequence of adjacent vertices
and edges in G that has at least one edge, starts and ends at the same vertex, uses
every vertex of G at least once, and uses every edge of G exactly once.

The analysis used earlier to solve the puzzle of the Königsberg bridges generalizes to
prove the following theorem:

Theorem 10.2.2

If a graph has an Euler circuit, then every vertex of the graph has positive even degree.

Proof:

Suppose G is a graph that has an Euler circuit. [We must show that given any vertex
v of G, the degree of v is even.] Let v be any particular but arbitrarily chosen vertex
of G. Since the Euler circuit contains every edge of G, it contains all edges incident
on v. Now imagine taking a journey that begins in the middle of one of the edges
adjacent to the start of the Euler circuit and continues around the Euler circuit to end
in the middle of the starting edge. (See Figure 10.2.3. There is such a starting edge
because the Euler circuit has at least one edge.) Each time v is entered by traveling
along one edge, it is immediately exited by traveling along another edge (since the
journey ends in the middle of an edge).

In this example, the Euler circuit
is v0v1v2v3v4v5v0, and v is v2.
Each time v2 is entered by one
edge, it is exited by another edge.

Start here First entry/exit
pair of edges

Second entry/exit
pair of edges

v1

v5

v2
v0

v3

v4

Figure 10.2.3 Example for the Proof of Theorem 10.2.2
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Because the Euler circuit uses every edge of G exactly once, every edge incident on
v is traversed exactly once in this process. Hence the edges incident on v occur in
entry/exit pairs, and consequently the degree of v must be a positive multiple of 2.
But that means that v has positive even degree [as was to be shown].

Recall that the contrapositive of a statement is logically equivalent to the statement.
The contrapositive of Theorem 10.2.2 is as follows:

Contrapositive Version of Theorem 10.2.2

If some vertex of a graph has odd degree, then the graph does not have an Euler
circuit.

This version of Theorem 10.2.2 is useful for showing that a given graph does not have
an Euler circuit.

Example 10.2.5 Showing That a Graph Does Not Have an Euler Circuit

Show that the graph below does not have an Euler circuit.

v1
v4

v3

e2

e7

e6

e5
e4

e3

e1v2

Solution Vertices v1 and v3 both have degree 3, which is odd. Hence by (the contrapositive
form of) Theorem 10.2.2, this graph does not have an Euler circuit. ■

Now consider the converse of Theorem 10.2.2: If every vertex of a graph has even
degree, then the graph has an Euler circuit. Is this true? The answer is no. There is a graph
G such that every vertex of G has even degree but G does not have an Euler circuit. In
fact, there are many such graphs. The illustration below shows one example.

v1

v2

e2

e1

v4

v3

e4

Every vertex has even degree,
but the graph does not have
an Euler circuit.

e3

Note that the graph in the preceding drawing is not connected. It turns out that
although the converse of Theorem 10.2.2 is false, a modified converse is true: If every
vertex of a graph has positive even degree and if the graph is connected, then the graph
has an Euler circuit. The proof of this fact is constructive: It contains an algorithm to find
an Euler circuit for any connected graph in which every vertex has even degree.
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Theorem 10.2.3

If a graph G is connected and the degree of every vertex of G is a positive even
integer, then G has an Euler circuit.

Proof:

Suppose that G is any connected graph and suppose that every vertex of G is a
positive even integer. [We must find an Euler circuit for G.] Construct a circuit C by
the following algorithm:

Step 1: Pick any vertex v of G at which to start.
[This step can be accomplished because the vertex set of G is nonempty by
assumption.]

Step 2: Pick any sequence of adjacent vertices and edges, starting and ending at v
and never repeating an edge. Call the resulting circuit C .
[This step can be performed for the following reasons: Since the degree of each
vertex of G is a positive even integer, as each vertex of G is entered by traveling
on one edge, either the vertex is v itself and there is no other unused edge adja-
cent to v, or the vertex can be exited by traveling on another previously unused
edge. Since the number of edges of the graph is finite (by definition of graph),
the sequence of distinct edges cannot go on forever. The sequence can eventu-
ally return to v because the degree of v is a positive even integer, and so if an
edge connects v to another vertex, there must be a different edge that connects
back to v.]

Step 3: Check whether C contains every edge and vertex of G. If so, C is an Euler
circuit, and we are finished. If not, perform the following steps.

Step 3a: Remove all edges of C from G and also any vertices that become
isolated when the edges of C are removed. Call the resulting
subgraph G ′.
[Note that G ′ may not be connected (as illustrated in Figure 10.2.4), but
every vertex of G ′ has positive, even degree (since removing the edges
of C removes an even number of edges from each vertex, the difference
of two even integers is even, and isolated vertices with degree 0 were
removed.)]

G:

u

v

w

C

G'

Figure 10.2.4

Step 3b: Pick any vertex w common to both C and G ′.
[There must be at least one such vertex since G is connected. (See exercise
44.) (In Figure 10.2.4 there are two such vertices: u and w.)]

Step 3c: Pick any sequence of adjacent vertices and edges of G ′, starting and
ending at w and never repeating an edge. Call the resulting circuit C ′.
[This can be done since each vertex of G ′ has positive, even degree and
G ′ is finite. See the justification for step 2.]
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Step 3d: Patch C and C ′ together to create a new circuit C ′′ as follows: Start at
v and follow C all the way tow. Then follow C ′ all the way back tow.
After that, continue along the untraveled portion of C to return to v.
[The effect of executing steps 3c and 3d for the graph of Figure 10.2.4 is
shown in Figure 10.2.5.]

G:

u

v

w

C

C''

C'

Figure 10.2.5

Step 3e: Let C = C ′′ and go back to step 3.

Since the graph G is finite, execution of the steps outlined in this algorithm must
eventually terminate. At that point an Euler circuit for G will have been constructed.
(Note that because of the element of choice in steps 1, 2, 3b, and 3c, a variety of
different Euler circuits can be produced by using this algorithm.)

Example 10.2.6 Finding an Euler Circuit

Use Theorem 10.2.3 to check that the graph below has an Euler circuit. Then use the
algorithm from the proof of the theorem to find an Euler circuit for the graph.

a

b
c

d

e

f
i

j

h
g

Solution Observe that

deg(a) = deg(b) = deg(c) = deg( f ) = deg(g) = deg(i) = deg( j) = 2

and that deg(d) = deg(e) = deg(h) = 4. Hence all vertices have even degree. Also, the
graph is connected. Thus, by Theorem 10.2.3, the graph has an Euler circuit.

To construct an Euler circuit using the algorithm of Theorem 10.2.3, let v = a and let
C be

C: abcda.
C is represented by the labeled edges shown below.

a

b
c

d

e

f
i

j

h
g

2

4

1
3
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Observe that C is not an Euler circuit for the graph but that C intersects the rest of the
graph at d. Let C ′ be

C ′: deghjid.
Patch C ′ into C to obtain

C ′′: abcdegh jida.
Set C = C ′′. Then C is represented by the labeled edges shown below.

a

b
c

d

e

f
i

j

h
g

2

10

1
3 4

5
6

7

8

9

Observe that C is not an Euler circuit for the graph but that it intersects the rest of the
graph at e. Let C ′ be

C ′: e f he.
Patch C ′ into C to obtain

C ′′: abcde f hegh jida.
Set C = C ′′. Then C is represented by the labeled edges shown below.

a

b
c

d

e

f
i

j

h
g

2

13

1
3 4

5
67

10

11

12

8
9

Since C includes every edge of the graph exactly once, C is an Euler circuit for the graph.
■

In exercise 45 at the end of this section you are asked to show that any graph with
an Euler circuit is connected. This result can be combined with Theorems 10.2.2 and
10.2.3 to give a complete characterization of graphs that have Euler circuits, as stated in
Theorem 10.2.4.

Theorem 10.2.4

A graph G has an Euler circuit if, and only if, G is connected and every vertex of G
has positive even degree.

A corollary to Theorem 10.2.4 gives a criterion for determining when it is possible
to find a walk from one vertex of a graph to another, passing through every vertex of the
graph at least once and every edge of the graph exactly once.

• Definition

Let G be a graph, and let v and w be two distinct vertices of G. An Euler trail from
v to w is a sequence of adjacent edges and vertices that starts at v, ends at w, passes
through every vertex of G at least once, and traverses every edge of G exactly once.
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Corollary 10.2.5

Let G be a graph, and let v and w be two distinct vertices of G. There is an Euler
path from v to w if, and only if, G is connected, v and w have odd degree, and all
other vertices of G have positive even degree.

The proof of this corollary is left as an exercise.

Example 10.2.7 Finding an Euler Trail

The floor plan shown below is for a house that is open for public viewing. Is it possible
to find a trail that starts in room A, ends in room B, and passes through every interior
doorway of the house exactly once? If so, find such a trail.

A

B

C D
J K

I

E

HG

F

Solution Let the floor plan of the house be represented by the graph below.

A

B

C

G

H

F

D

E
J

I

K

Each vertex of this graph has even degree except for A and B, each of which has degree 1.
Hence by Corollary 10.2.5, there is an Euler path from A to B. One such trail is

AGHFE I HEK J DCB. ■

Hamiltonian Circuits
Theorem 10.2.4 completely answers the following question: Given a graph G, is it pos-

B
et

tm
an

n/
C

O
R

B
IS

Sir Wm. Hamilton
(1805–1865)

sible to find a circuit for G in which all the edges of G appear exactly once? A related
question is this: Given a graph G, is it possible to find a circuit for G in which all the
vertices of G (except the first and the last) appear exactly once?

In 1859 the Irish mathematician Sir William Rowan Hamilton introduced a puzzle in
the shape of a dodecahedron (DOH-dek-a-HEE-dron). (Figure 10.2.6 contains a drawing
of a dodecahedron, which is a solid figure with 12 identical pentagonal faces.)

Figure 10.2.6 Dodecahedron
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654 Chapter 10 Graphs and Trees

Each vertex was labeled with the name of a city—London, Paris, Hong Kong, New York,
and so on. The problem Hamilton posed was to start at one city and tour the world by
visiting each other city exactly once and returning to the starting city. One way to solve
the puzzle is to imagine the surface of the dodecahedron stretched out and laid flat in the
plane, as follows:

The circuit denoted with black lines is one solution. Note that although every city is
visited, many edges are omitted from the circuit. (More difficult versions of the puzzle
required that certain cities be visited in a certain order.)

The following definition is made in honor of Hamilton.

• Definition

Given a graph G, aHamiltonian circuit for G is a simple circuit that includes every
vertex of G. That is, a Hamiltonian circuit for G is a sequence of adjacent vertices
and distinct edges in which every vertex of G appears exactly once, except for the
first and the last, which are the same.

Note that although an Euler circuit for a graph G must include every vertex of G, it
may visit some vertices more than once and hence may not be a Hamiltonian circuit. On
the other hand, a Hamiltonian circuit for G does not need to include all the edges of G
and hence may not be an Euler circuit.

Despite the analogous-sounding definitions of Euler and Hamiltonian circuits, the
mathematics of the two are very different. Theorem 10.2.4 gives a simple criterion for
determining whether a given graph has an Euler circuit. Unfortunately, there is no anal-
ogous criterion for determining whether a given graph has a Hamiltonian circuit, nor is
there even an efficient algorithm for finding such a circuit. There is, however, a simple
technique that can be used in many cases to show that a graph does not have a Hamilto-
nian circuit. This follows from the following considerations:

Suppose a graph G with at least two vertices has a Hamiltonian circuit C given con-
cretely as

C: v0e1v1e2 · · · vn−1envn.
Since C is a simple circuit, all the ei are distinct and all the v j are distinct except that
v0 = vn . Let H be the subgraph of G that is formed using the vertices and edges of C .
An example of such an H is shown below.

H is indicated by the black lines.

Note that H has the same number of edges as it has vertices since all its n edges are
distinct and so are its n vertices v1, v2, . . . , vn . Also, by definition of Hamiltonian circuit,
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10.2 Trails, Paths, and Circuits 655

every vertex of G is a vertex of H , and H is connected since any two of its vertices lie on
a circuit. In addition, every vertex of H has degree 2. The reason for this is that there are
exactly two edges incident on any vertex. These are ei and ei+1 for any vertex vi except
v0 = vn , and they are e1 and en for v0 (= vn). These observations have established the
truth of the following proposition in all cases where G has at least two vertices.

Proposition 10.2.6

If a graph G has a Hamiltonian circuit, then G has a subgraph H with the following
properties:

1. H contains every vertex of G.

2. H is connected.

3. H has the same number of edges as vertices.

4. Every vertex of H has degree 2.

Note that if G contains only one vertex and G has a Hamiltonian circuit, then the circuit
has the form v e v, where v is the vertex of G and e is an edge incident on v. In this case,
the subgraph H consisting of v and e satisfies conditions (1)–(4) of Proposition 10.2.6.

Recall that the contrapositive of a statement is logically equivalent to the statement.
The contrapositive of Proposition 10.2.6 says that if a graph G does not have a subgraph
H with properties (1)–(4), then G does not have a Hamiltonian circuit.

Example 10.2.8 Showing That a Graph Does Not Have a Hamiltonian Circuit

Prove that the graph G shown below does not have a Hamiltonian circuit.

a

e

b

c

d

Solution If G has a Hamiltonian circuit, then by Proposition 10.2.6, G has a subgraph H
that (1) contains every vertex of G, (2) is connected, (3) has the same number of edges
as vertices, and (4) is such that every vertex has degree 2. Suppose such a subgraph H
exists. In other words, suppose there is a connected subgraph H of G such that H has
five vertices (a, b, c, d, e) and five edges and such that every vertex of H has degree 2.
Since the degree of b in G is 4 and every vertex of H has degree 2, two edges incident
on b must be removed from G to create H . Edge {a, b} cannot be removed because if it
were, vertex a would have degree less than 2 in H . Similar reasoning shows that edges
{e, b}, {b, a}, and {b, d} cannot be removed either. It follows that the degree of b in H
must be 4, which contradicts the condition that every vertex in H has degree 2 in H .
Hence no such subgraph H exists, and so G does not have a Hamiltonian circuit. ■

The next example illustrates a type of problem known as a traveling salesman prob-
lem. It is a variation of the problem of finding a Hamiltonian circuit for a graph.
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Example 10.2.9 A Traveling Salesman Problem

Imagine that the drawing below is a map showing four cities and the distances in kilome-
ters between them. Suppose that a salesmanmust travel to each city exactly once, starting
and ending in city A. Which route from city to city will minimize the total distance that
must be traveled?

B

DA

C

2535

40

30

30 50

Solution This problem can be solved by writing all possible Hamiltonian circuits starting
and ending at A and calculating the total distance traveled for each.

Route Total Distance (In Kilometers)

ABCDA 30+ 30+ 25+ 40 = 125

ABDCA 30+ 35+ 25+ 50 = 140

ACBDA 50+ 30+ 35+ 40 = 155

ACDBA 140 [ABDCA backwards]

ADBCA 155 [ACBDA backwards]

ADCBA 125 [ABCDA backwards]

Thus either route ABCDA or ADCBA gives a minimum total distance of 125
kilometers. ■

The general traveling salesman problem involves finding a Hamiltonian circuit to
minimize the total distance traveled for an arbitrary graph with n vertices in which each
edge is marked with a distance. One way to solve the general problem is to use the
method of Example 10.2.9: Write down all Hamiltonian circuits starting and ending at
a particular vertex, compute the total distance for each, and pick one for which this total
is minimal. However, even for medium-sized values of n this method is impractical. For
a complete graph with 30 vertices, there would be (29!)/2 ∼= 4.42× 1030 Hamiltonian
circuits starting and ending at a particular vertex to check. Even if each circuit could be
found and its total distance computed in just one nanosecond, it would require approx-
imately 1.4× 1014 years to finish the computation. At present, there is no known algo-
rithm for solving the general traveling salesman problem that is more efficient. However,
there are efficient algorithms that find “pretty good” solutions—that is, circuits that, while
not necessarily having the least possible total distances, have smaller total distances than
most other Hamiltonian circuits.

Test Yourself
1. Let G be a graph and let v and w be vertices in G.

(a) A walk from v to w is _____.

(b) A trail from v to w is _____.

(c) A path from v to w is _____.

(d) A closed walk is _____.

(e) A circuit is _____.

(f) A simple circuit is _____.

(g) A trivial walk is _____.

(h) Vertices v and w are connected if, and only if, _____.
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2. A graph is connected if, and only if, _____.

3. Removing an edge from a circuit in a graph does not _____.

4. An Euler circuit in a graph is _____.

5. A graph has an Euler circuit if, and only if, _____.

6. Given vertices v and w in a graph, there is an Euler path from
v to w if, and only if, _____.

7. A Hamiltonian circuit in a graph is _____.

8. If a graphG has a Hamiltonian circuit, thenG has a subgraph
H with the following properties: _____, _____, _____, and
_____.

9. A traveling salesman problem involves finding a _____ that
minimizes the total distance traveled for a graph in which
each edge is marked with a distance.

Exercise Set 10.2
1. In the graph below, determine whether the following walks

are trails, paths, closed walks, circuits, simple circuits, or
just walks.
a. v0e1v1e10v5e9v2e2v1 b. v4e7v2e9v5e10v1e3v2e9v5

c. v2 d. v5v2v3v4v4v5

e. v2v3v4v5v2v4v3v2 f. e5e8e10e3

v1

v2

v3

v5 v4

v0

e2

e3

e9

e7
e5

e6

e4e1

e10

e8

2. In the graph below, determine whether the following walks
are trails, paths, closed walks, circuits, simple circuits, or
just walks.
a. v1e2v2e3v3e4v4e5v2e2v1e1v0 b. v2v3v4v5v2
c. v4v2v3v4v5v2v4 d. v2v1v5v2v3v4v2
e. v0v5v2v3v4v2v1 f. v5v4v2v1

v1

v2

v3

v5 v4

v0

e2

e7
e8e10

e5
e4

e3e1

e9

e6

3. Let G be the graph

v1 v2

e2

e1

and consider the walk v1e1v2e2v1.
a. Can this walk be written unambiguously as v1v2v1?

Why?
b. Can this walk be written unambiguously as e1e2? Why?

4. Consider the following graph.

v1 v2 v3 v4

e2

e1 e5e3

e4

a. How many paths are there from v1 to v4?
b. How many trails are there from v1 to v4?
c. How many walks are there from v1 to v4?

5. Consider the following graph.

e2

e1

e5
e3

e4

ca
b

a. How many paths are there from a to c?
b. How many trails are there from a to c?
c. How many walks are there from a to c?

6. An edge whose removal disconnects the graph of which it
is a part is called a bridge. Find all bridges for each of the
following graphs.

a. v1

v5

v2

v4

v3

b. v0 v1 v2

v7

v8

v3
v4

v5v6

c.
v1

v9

v2 v3
v4

v5
v6 v7

v8

v10

7. Given any positive integer n, (a) find a connected graph
with n edges such that removal of just one edge discon-
nects the graph; (b) find a connected graph with n edges
that cannot be disconnected by the removal of any single
edge.
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8. Find the number of connected components for each of the
following graphs.

a.

a c hf

b
e

g

d

b.

u

z

w

x

v

y

c.

a

j h

e

db
c

i

g

f

d.

v1 v3

v2

v4

9. Each of (a)–(c) describes a graph. In each case answer yes,
no, or not necessarily to this question: Does the graph have
an Euler circuit? Justify your answers.
a. G is a connected graph with five vertices of degrees 2,

2, 3, 3, and 4.
b. G is a connected graph with five vertices of degrees 2,

2, 4, 4, and 6.
c. G is a graph with five vertices of degrees 2, 2, 4, 4,

and 6.

10. The solution for Example 10.2.5 shows a graph for which
every vertex has even degree but which does not have an
Euler circuit. Give another example of a graph satisfying
these properties.

11. Is it possible for a citizen of Königsberg to make a tour
of the city and cross each bridge exactly twice? (See
Figure 10.2.1.) Why?

Determine which of the graphs in 12–17 have Euler circuits. If
the graph does not have an Euler circuit, explain why not. If it
does have an Euler circuit, describe one.

12.

v1

v2

v4

v5 v3

e2

e1

e8

e4

e5

e7

e3

e6

13.

v1

v0
v9

v8

v6v7

v4

v2

v5 v3

14. a

b

c
f

de

i

h

g

15.

r z y x

s w

vt

u

16. v1

v4

v0

v5

v2

v3

17.

E

C

A

F

D

B

18. Is it possible to take a walk around the city whose map
is shown below, starting and ending at the same point and
crossing each bridge exactly once? If so, how can this be
done?

B

E

A C

D

River

For each of the graphs in 19–21, determine whether there is an
Euler path from u to w. If there is, find such a path.

19.

v1
v7

v4

v0

v5

v2
v6

w

u

v3

20.

a u f

h w

e

b c d

g
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21.

v1

v2v3

v4

v0v7

v6

w

v5

u

22. The following is a floor plan of a house. Is it possible to
enter the house in room A, travel through every interior
doorway of the house exactly once, and exit out of room
E? If so, how can this be done?

A B

G

F

C

D

E

H

Find Hamiltonian circuits for each of the graphs in 23 and 24.

23.

v0

v1

v3

v6

v5

v7

v2

v4

24.
a

l

k

j

h
b

c

d

g

f

i

e

Show that none of the graphs in 25–27 has a Hamiltonian cir-
cuit.

25.H

a e

b d

g f

c

26. a

j h

c

b

i f

e

d

g

27.

A

F

G

C

D

E

B

In 28–31 find Hamiltonian circuits for those graphs that have
them. Explain why the other graphs do not.

28.H
a b

f g

e d c

29.

a

g

c

e

b

d

f

30.

v0

v4

v7

v2

v1

v3

v6v5

31.

a c

b

e f

h g

d

32.H Give two examples of graphs that have Euler circuits but
not Hamiltonian circuits.

33.H Give two examples of graphs that have Hamiltonian circuits
but not Euler circuits.

34.H Give two examples of graphs that have circuits that are both
Euler circuits and Hamiltonian circuits.

35.H Give two examples of graphs that have Euler circuits and
Hamiltonian circuits that are not the same.
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36. A traveler in Europe wants to visit each of the cities shown
on the map exactly once, starting and ending in Brussels.
The distance (in kilometers) between each pair of cities is
given in the table. Find a Hamiltonian circuit that mini-
mizes the total distance traveled. (Use the map to narrow
the possible circuits down to just a few. Then use the table
to find the total distance for each of those.)

Berlin

Brussels
Düsseldorf
Luxembourg
Munich
Paris

783
564
764
585

1,057

223
219
771
308

224
613
497

517
375 832

Brussels
Düsseldorf

Luxembourg

Berlin Brussels Düsseldorf Luxembourg Munich

Munich

Paris

37. a. Prove that if a walk in a graph contains a repeated edge,
then the walk contains a repeated vertex.

b. Explain how it follows from part (a) that any walk with
no repeated vertex has no repeated edge.

38. Prove Lemma 10.2.1(a): If G is a connected graph, then
any two distinct vertices of G can be connected by a path.

39. Prove Lemma 10.2.1(b): If vertices v and w are part of
a circuit in a graph G and one edge is removed from the
circuit, then there still exists a trail from v to w in G.

40. Draw a picture to illustrate Lemma 10.2.1(c): If a graph G
is connected and G contains a circuit, then an edge of the
circuit can be removed without disconnecting G.

41. Prove that if there is a trail in a graph G from a vertex v to
a vertex w, then there is a trail from w to v.

42.H If a graph contains a circuit that starts and ends at a vertex
v, does the graph contain a simple circuit that starts and
ends at v? Why?

43. Prove that if there is a circuit in a graph that starts and ends
at a vertex v and if w is another vertex in the circuit, then
there is a circuit in the graph that starts and ends at w.

44. Let G be a connected graph, and let C be any circuit in
G that does not contain every vertex of C . Let G ′ be the
subgraph obtained by removing all the edges of C from G
and also any vertices that become isolated when the edges
of C are removed. Prove that there exists a vertex v such
that v is in both C and G ′.

45. Prove that any graph with an Euler circuit is connected.

46. Prove Corollary 10.2.5.

47. For what values of n does the complete graph Kn with n
vertices have (a) an Euler circuit? (b) a Hamiltonian circuit?
Justify your answers.

48.✶ For what values of m and n does the complete bipartite
graph on (m, n) vertices have (a) an Euler circuit? (b) a
Hamiltonian circuit? Justify your answers.

49.✶ What is the maximum number of edges a simple dis-
connected graph with n vertices can have? Prove your
answer.

50.✶ Show that a graph is bipartite if, and only if, it does not have
a circuit with an odd number of edges. (See exercise 37 of
Section 10.1 for the definition of bipartite graph.)

Answers for Test Yourself
1. (a) a finite alternating sequence of adjacent vertices and edges of G (b) a walk that does not contain a repeated edge (c) a
trail that does not contain a repeated vertex (d) a walk that starts and ends at the same vertex (e) a closed walk that contains at
least one edge and does not contain a repeated edge (f) a circuit that does not have any repeated vertex other than the first and the
last (g) a walk consisting of a single vertex and no edge (h) there is a walk from v to w 2. given any two vertices in the graph,
there is a walk from one to the other 3. disconnect the graph 4. a circuit that contains every vertex and every edge of the graph
5. the graph is connected, and every vertex has positive, even degree 6. the graph is connected, v and w have odd degree, and all
other vertices have positive even degree 7. a simple circuit that includes every vertex of the graph 8. H contains every vertex of
G; H is connected; H has the same number of edges as vertices; every vertex of H has degree 2 9. Hamiltonian circuit
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10.3 Matrix Representations of Graphs
Order and simplification are the first steps toward the mastery of a subject.
— Thomas Mann, The Magic Mountain, 1924

How can graphs be represented inside a computer? It happens that all the information
needed to specify a graph can be conveyed by a structure called a matrix, and matrices
(matrices is the plural of matrix) are easy to represent inside computers. This section
contains some basic definitions aboutmatrices and matrix operations, a description of the
relation between graphs and matrices, and some applications.

Matrices
Matrices are two-dimensional analogues of sequences. They are also called two-
dimensional arrays.

• Definition

An m × n (read “m by n”)matrix A over a set S is a rectangular array of elements
of S arranged into m rows and n columns:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 . . . a1 j . . . a1n
a21 a22 . . . a2 j . . . a2n
...

...
...

...

ai1 ai2 . . . ai j . . . ain
...

...
...

...

am1 am2 . . . amj . . . amn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
← i th row of A

↑
j th column of A

We write A = (ai j ).

The ith row of A is

[ai1 ai2 · · · ain]
and the j th column of A is ⎡

⎢⎢⎢⎣
a1 j
a2 j
...

amj

⎤
⎥⎥⎥⎦ .

The entry ai j in the i th row and j th column ofA is called the i j th entry of A.Anm ×
n matrix is said to have size m × n. If A and B arematrices, then A= B if, and only if, A
and B have the same size and the corresponding entries of A and B are all equal; that is,

ai j = bi j for all i = 1, 2, . . . ,m and j = 1, 2 . . . , n.

A matrix for which the numbers of rows and columns are equal is called a square
matrix. If A is a square matrix of size n × n, then themain diagonal of A consists of all
the entries a11, a22, . . . , ann :
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 . . . a1i . . . a1n
a21 a22 . . . a2i . . . a2n
...

...
...

...

ai1 ai2 . . . aii . . . ain
...

...
...

...

an1 an2 . . . ani . . . ann

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

→

main diagonal of A

Example 10.3.1 Matrix Terminology

The following is a 3× 3 matrix over the set of integers.⎡
⎣ 1 0 −3

4 −1 5
−2 2 0

⎤
⎦

a. What is the entry in row 2, column 3?

b. What is the second column of A?

c. What are the entries in the main diagonal of A?
Solution

a. 5 b.

⎡
⎣ 0
−1
2

⎤
⎦ c. 1,−1, and 0 ■

Matrices and Directed Graphs
Consider the directed graph shown in Figure 10.3.1. This graph can be represented by the
matrix A = (ai j ) for which ai j = the number of arrows from vi to v j , for all i = 1, 2, 3
and j = 1, 2, 3. Thus a11 = 1 because there is one arrow from v1 to v1, a12 = 0 because
there is no arrow from v1 to v2, a23 = 2 because there are two arrows from v2 to v3, and
so forth. A is called the adjacency matrix of the directed graph. For convenient reference,
the rows and columns of A are often labeled with the vertices of the graph G.

v1

v3

v2

e2

e4

e5e6

e3e1

A =
⎡
⎣

v1 v2 v3

v1 1 0 0
v2 1 1 2
v3 1 0 0

⎤
⎦

Directed Graph G Adjacency Matrix

)b()a(

Figure 10.3.1 A Directed Graph and Its Adjacency Matrix

• Definition

LetG be a directed graph with ordered vertices v1, v2, . . . , vn . The adjacencymatrix
of G is the n × n matrix A = (aij) over the set of nonnegative integers such that

ai j = the number of arrows from vi to v j for all i, j = 1, 2, . . . , n.
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Note that nonzero entries along themain diagonal of an adjacency matrix indicate the
presence of loops, and entries larger than 1 correspond to parallel edges. Moreover, if the
vertices of a directed graph are reordered, then the entries in the rows and columns of
the corresponding adjacency matrix are moved around.

Example 10.3.2 The Adjacency Matrix of a Graph

The two directed graphs shown below differ only in the ordering of their vertices. Find
their adjacency matrices.

v1

v3

v2
e2

e4

e5

e1

e3

v3

v2

v1
e2

e4

e5

e1

e3

(a) (b)

Solution Since both graphs have three vertices, both adjacency matrices are 3× 3 matrices.
For (a), all entries in the first row are 0 since there are no arrows from v1 to any other
vertex. For (b), the first two entries in the first row are 1 and the third entry is 0 since from
v1 there are single arrows to v1 and to v2 and no arrows to v3. Continuing the analysis in
this way, you obtain the following two adjacency matrices:

⎡
⎣

v1 v2 v3

v1 0 0 0
v2 0 1 1
v3 2 1 0

⎤
⎦

⎡
⎣

v1 v2 v3

v1 1 1 0
v2 1 0 2
v3 0 0 0

⎤
⎦

(a) (b) ■

If you are given a square matrix with nonnegative integer entries, you can construct a
directed graph with that matrix as its adjacency matrix. However, the matrix does not tell
you how to label the edges, so the directed graph is not uniquely determined.

Example 10.3.3 Obtaining a Directed Graph from a Matrix

Let

A =

⎡
⎢⎢⎣
0 1 1 0
1 1 0 2
0 0 1 1
2 1 0 0

⎤
⎥⎥⎦ .

Draw a directed graph that has A as its adjacency matrix.

Solution Let G be the graph corresponding to A, and let v1, v2, v3, v4 be the vertices of G.
Label A across the top and down the left side with these vertex names, as shown below.

A =

⎡
⎢⎢⎣

v1 v2 v3 v4

v1 0 1 1 0
v2 1 1 0 2
v3 0 0 1 1
v4 2 1 0 0

⎤
⎥⎥⎦

Then, for instance, the 2 in the fourth row and the first column means that there are two
arrows from v4 to v1. The 0 in the first row and the fourth column means that there is no
arrow from v1 to v4. A corresponding directed graph is shown on the next page (without
edge labels because the matrix does not determine those).
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v1

v2

v3

v4

■

Matrices and Undirected Graphs
Once you know how to associate a matrix with a directed graph, the definition of the
matrix corresponding to an undirected graph should seem natural to you. As before, you
must order the vertices of the graph, but in this case you simply set the i j th entry of the
adjacency matrix equal to the number of edges connecting the i th and j th vertices of the
graph.

• Definition

Let G be an undirected graph with ordered vertices v1, v2, . . . , vn . The adjacency
matrix of G is the n × n matrix A = (ai j ) over the set of nonnegative integers such
that

ai j = the number of edges connecting vi and v j

for all i, j = 1, 2, . . . , n.

Example 10.3.4 Finding the Adjacency Matrix of a Graph

Find the adjacency matrix for the graph G shown below.

v1 v2

v3
v4

e3

e4

e6

e1 e5

e2

Solution

A =

⎡
⎢⎢⎣

v1 v2 v3 v4

v1 0 1 0 1
v2 1 1 2 1
v3 0 2 0 0
v4 1 1 0 1

⎤
⎥⎥⎦

■

Note that if thematrixA = (ai j ) in Example 10.3.4 is flipped across its main diagonal,
it looks the same: ai j = a ji , for i, j = 1, 2, . . . , n. Such a matrix is said to be symmetric.

• Definition

An n × n square matrix A = (ai j ) is called symmetric if, and only if, for all i, j =
1, 2, . . . , n,

ai j = a ji .
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Example 10.3.5 Symmetric Matrices

Which of the following matrices are symmetric?

a.

[
1 0
1 2

]
b.

⎡
⎣0 1 2
1 1 0
2 0 3

⎤
⎦ c.

[
2 0 0
0 1 0

]

Solution Only (b) is symmetric. In (a) the entry in the first row and the second column
differs from the entry in the second row and the first column; the matrix in (c) is not even
square. ■

It is easy to see that thematrix of any undirected graph is symmetric since it is always
the case that the number of edges joining vi and v j equals the number of edges joining v j

and vi for all i, j = 1, 2, . . . , n.

Matrices and Connected Components
Consider a graph G, as shown below, that consists of several connected components.

v1

v2

v4
v6

v7

v5

v3

e2

e3
e7

e4

e5

e6

e8

e1

The adjacency matrix of G is

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1
....................

0 0
....................

0 0
0 0 2 0 0 0 0

. . . . . . . . . . . . . . . . . . . . . .1 2 0 0 0 0 0

0 0 0 0 1 0 0

. . . . . . . . . . . . . . . . . . . . . .0 0 0 1 1 0 0

0 0 0 0 0 0 2
0 0 0 0 0 2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

As you can see, A consists of square matrix blocks (of different sizes) down its diagonal
and blocks of 0’s everywhere else. The reason is that vertices in each connected com-
ponent share no edges with vertices in other connected components. For instance, since
v1, v2, and v3 share no edges with v4, v5, v6, or v7, all entries in the top three rows to the
right of the third column are 0 and all entries in the left three columns below the third
row are also 0. Sometimes matrices whose entries are all 0’s are themselves denoted 0. If
this convention is followed here, A is written as

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1
0 0 2
1 2 0

�

�

�

	

�

�

�

	
�
�

�
	

0 1
1 1

�
�

�
	

�
�

�
	

�
�

�
	

0 2
2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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The previous reasoning can be generalized to prove the following theorem:

Theorem 10.3.1

LetG be a graph with connected componentsG1,G2, . . . ,Gk . If there are ni vertices
in each connected componentGi and these vertices are numbered consecutively, then
the adjacency matrix of G has the form⎡

⎢⎢⎢⎢⎢⎣
A1 O O · · · O O
O A2 O · · · O O
O O A3 · · · O O
...

...
...

...
...

O O O · · · O Ak

⎤
⎥⎥⎥⎥⎥⎦

where each Ai is the ni × ni adjacency matrix of Gi , for all i = 1, 2, . . . , k, and the
O’s represent matrices whose entries are all 0.

Matrix Multiplication

Matrix multiplication is an enormously useful operation that arises in many contexts,
including the investigation of walks in graphs. Although matrix multiplication can be
defined in quite abstract settings, the definition for matrices whose entries are real num-
bers will be sufficient for our applications. The product of two matrices is built up of
scalar or dot products of their individual rows and columns.

• Definition

Suppose that all entries in matrices A and B are real numbers. If the number of ele-
ments, n, in the i th row of A equals the number of elements in the j th column of B,
then the scalar product or dot product of the i th row of A and the j th column of
B is the real number obtained as follows:

[ai1 ai2 · · · ain]

⎡
⎢⎢⎢⎣
b1 j
b2 j
...

bnj

⎤
⎥⎥⎥⎦ = ai1b1 j + ai2b2 j + · · · + ainbnj .

Example 10.3.6 Multiplying a Row and a Column

[3 0 − 1 2]

⎡
⎢⎢⎣
−1
2
3
0

⎤
⎥⎥⎦ = 3 ·(−1)+ 0 ·2+ (−1) ·3+ 2 ·0

= −3+ 0− 3+ 0 = −6 ■
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More generally, if A and B are matrices whose entries are real numbers and if A and
B have compatible sizes in the sense that the number of columns of A equals the number
of rows of B, then the product AB is defined. It is thematrixwhose i j th entry is the scalar
product of the i th row of A times the j th column of B, for all possible values of i and j .

• Definition

LetA = (ai j ) be anm × k matrix and B = (bi j ) a k × n matrixwith real entries. The
(matrix) product of A times B, denoted AB, is that matrix (ci j ) defined as follows:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 · · · a1k
a21 a22 · · · a2k
...

...
...

ai1 ai2 · · · aik
...

...
...

am1 am2 · · · amk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

b11 b12 · · · b1 j · · · b1n
b21 b22 · · · b2 j · · · b2n

· · ·
· · ·
· · ·

bk1 bk2 · · · bkj · · · bkn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

c11 c12 · · · c1 j · · · c1n
c21 c22 · · · c2 j · · · c2n
...

...
...

...

ci1 ci2 · · · ci j · · · cin
...

...
...

...

cm1 cm2 · · · cmj · · · cmn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

where

ci j = ai1b1 j + ai2b2 j + · · · + aikbk j =
k∑

r=1
airbr j ,

for all i = 1, 2, . . . ,m and j = 1, 2, . . . , n.

Example 10.3.7 Computing a Matrix Product

Let A =
[

2 0 3
−1 1 0

]
and B =

[
4 3
2 2
−2 −1

]
. Compute AB.

Solution A has size 2× 3 and B has size 3× 2, so the number of columns of A equals the
number of rows of B and the matrix product of A and B can be computed. Then[

2 0 3
−1 1 0

]⎡⎣ 4 3
2 2
−2 −1

⎤
⎦ = [

c11 c12
c21 c22

]
,
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where

c11 = 2 ·4+ 0 ·2+ 3 ·(−2) = 2

[ �
�

�
�2 0 3

−1 1 0

]⎡⎣
�

�

�

	

4 3
2 2
−2 −1

⎤
⎦

c12 = 2 ·3+ 0 ·2+ 3 ·(−1) = 3

[ �
�

�
�2 0 3

−1 1 0

]⎡⎣ 4
�

�

�

	

3
2 2
−2 −1

⎤
⎦

c21 = (−1) ·4+ 1 ·2+ 0 ·(−2) = 2

[
2 0 3�

�
�
�− 1 1 0

]⎡⎣
�

�

�

	

4 3
2 2
−2 −1

⎤
⎦

c22 = (−1) ·3+ 0 ·2+ 3 ·(−1) = −1
[

2 0 3�
�

�
�− 1 1 0

]⎡⎣ 4
�

�

�

	

3
2 2
−2 −1

⎤
⎦ .

Hence

AB =
[

2 3
−2 −1

]
. ■

Matrix multiplication is both similar to and different from multiplication of real num-
bers. One difference is that although the product of any two numbers can be formed, only
matrices with compatible sizes can be multiplied. Also, multiplication of real numbers is
commutative (for all real numbers a and b, ab = ba), whereas matrix multiplication is
not. For instance,[

1 1
0 1

] [
0 1
0 1

]
=

[
0 2
0 1

]
, but

[
0 1
0 1

] [
1 1
0 1

]
=

[
0 1
0 1

]
.

On the other hand, both real number and matrix multiplications are associative ((ab)c =
a(bc), for all elements a, b, and c for which the products are defined). This is proved in
Example 10.3.8 for products of 2× 2 matrices. Additional exploration of matrix multi-
plication is offered in the exercises.

Example 10.3.8 Associativity of Matrix Multiplication for 2 × 2 Matrices

Prove that if A, B, and C are 2× 2 matrices over the set of real numbers, then (AB)C =
A(BC).

Solution Suppose A = (ai j ), B = (bi j ), and C = (ci j ) are particular but arbitrarily chosen
2× 2matrices with real entries. Since the numbers of rows and columns are all the same,
AB, BC, (AB)C, and A(BC) are defined. Let AB = (di j ) and BC = (ei j ). Then for all
integers i = 1, 2 and j = 1, 2,

the i j th entry of (AB)C =
2∑

r=1
dir cr j

by definition of the
product of AB and C

= di1c1 j + di2c2 j by definition of �

=
(

2∑
r=1

airbr1

)
c1 j +

(
2∑

r=1
airbr2

)
c2 j

by definition of the
product ofA andB

= (ai1b11 + ai2b21)c1 j

+ (ai1b12 + ai2b22)c2 j

by definition of �

= ai1b11c1 j + ai2b21c1 j + ai1b12c2 j + ai2b22c2 j .
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Similarly, the i j th entry of A(BC) is

(A(BC))i j =
2∑

r=1
air er j

= ai1e1 j + ai2e2 j

= ai1

(
2∑

r=1
b1r cr j

)
+ ai2

(
2∑

r=1
b2r cr j

)

= ai1(b11c1 j + b12c2 j )+ ai2(b21c1 j + b22c2 j )

= ai1b11c1 j + ai1b12c2 j + ai2b21c1 j + ai2b22c2 j
= ai1b11c1 j + ai2b21c1 j + ai1b12c2 j + ai2b22c2 j .

Comparing the results of the two computations shows that for all i and j ,

the i j th entry of (AB)C = the i j th entry of A(BC).

Since all corresponding entries are equal, (AB)C = A(BC), as was to be shown. ■

As far as multiplicative identities are concerned, there are both similarities and differ-
ences between real numbers and matrices. You know that the number 1 acts as a multi-
plicative identity for products of real numbers. It turns out that there are certain matrices,
called identity matrices, that act as multiplicative identities for certain matrix products.
For instance, mentally perform the following matrix multiplications to check that for any
real numbers a, b, c, d, e, f, g, h and i ,[

1 0
0 1

] [
a b c
d e f

]
=

[
a b c
d e f

]
and ⎡

⎣a b c
d e f
g h i

⎤
⎦
⎡
⎣1 0 0
0 1 0
0 0 1

⎤
⎦
⎡
⎣a b c
d e f
g h i

⎤
⎦ .

These computations show that
[
1 0
0 1

]
acts as an identity on the left side for multiplication

with 2× 3 matrices and that

[
1 0 0
0 1 0
0 0 1

]
acts as an identity on the right side for multiplica-

tion with 3× 3 matrices. Note that
[
1 0
0 1

]
cannot act as an identity on the right side for

multiplication with 2× 3 matrices because the sizes are not compatible.

• Definition

For each positive integer n, the n × n identity matrix, denoted In = (δi j ) or just I
(if the size of the matrix is obvious from context), is the n × n matrix in which all
the entries in the main diagonal are 1’s and all other entries are 0’s. In other words,

δi j =
{
1 if i = j
0 if i �= j

, for all i, j = 1, 2, . . . , n.

The German mathematician Leopold Kronecker introduced the symbol δi j to make matrix
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Leopold Kronecker
(1823–1891) computations more convenient. In his honor, this symbol is called the Kronecker delta.
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Example 10.3.9 An Identity Matrix Acts as an Identity

Prove that if A is any m × n matrix and I is the n × n identity matrix, then AI = A. (In
exercise 14 at the end of this section you are asked to show that if I is the m × m identity
matrix, then IA = A.)

Proof:

LetA be any n × n matrix and let ai j be the i j th entry ofA for all integers i = 1, 2, . . . ,m
and j = 1, 2, . . . , n. Consider the product AI, where I is the n × n identity matrix.
Observe that⎡

⎢⎢⎢⎣
a11 a12 · · · a1n
a21 a22 · · · 22n
...

...
...

am1 am2 · · · amn

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
1 0 · · · 0
0 1 · · · 0
...

...
...

0 0 · · · 1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

⎤
⎥⎥⎥⎦

because

the i j th entry of AI =
n∑

r=1
airδr j by definition of 1

= ai1δ1 j + ai2δ2 j + · · · by definition of �

+ ai jδ j j + · · · + ainδnj
= ai jδ j j since δk j = 0 whenever k �= j and δ j j = 1

= ai j
= the i j th entry of A.

Thus AI = A, as was to be shown. ■

There are also similarities and differences between real numbers and matrices with
respect to the computation of powers. Any number can be raised to a nonnegative integer
power, but a matrix can be multiplied by itself only if it has the same number of rows as
columns. As for real numbers, however, the definition of matrix powers is recursive. Just
as any number to the zero power is defined to be 1, so any n × n matrix to the zero power
is defined to be the n × n identity matrix. The nth power of an n × n matrix A is defined
to be the product of A with its (n − 1)st power.

• Definition

For any n × n matrix A, the powers of A are defined as follows:

A0 = I where I is the n × n identity matrix

An = AAn−1 for all integers n ≥ 1

Example 10.3.10 Powers of a Matrix

Let A =
[
1 2
2 0

]
. Compute A0,A1,A2, and A3.

Solution A0 = the 2× 2 identity matrix =
[
1 0
0 1

]
A1 = AA0 = AI = A
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A2 = AA1 = AA =
[
1 2
2 0

] [
1 2
2 0

]
=

[
5 2
2 4

]

A3 = AA2 =
[
1 2
2 0

] [
5 2
2 4

]
=

[
9 10
10 4

]
■

Counting Walks of Length N
A walk in a graph consists of an alternating sequence of vertices and edges. If repeated
edges are counted each time they occur, then the number of edges in the sequence is called
the length of the walk. For instance, the walk v2e3v3e4v2e2v2e3v3 has length 4 (counting
e3 twice). Consider the following graph G:

v1

v2

v3

e2

e1
e4

e3

How many distinct walks of length 2 connect v2 and v2? Your can list the possibilities
systematically as follows: From v1, the first edge of the walk must go to some vertex of
G: v1, v2, or v3. There is one walk of length 2 from v2 to v2 that starts by going from v2

to v1:
v2e1v1e1v2.

There is one walk of length 2 from v2 to v2 that starts by going from v2 to v2:

v2e2v2e2v2.

And there are four walks of length 2 from v2 to v2 that start by going from v2 to v3:

v2e3v3e4v2,

v2e4v3e3v2,

v2e3v3e3v2,

v2e4v3e4v2.

Thus the answer is six.
The general question of finding the number of walks that have a given length and con-

nect two particular vertices of a graph can easily be answered using matrix multiplication.
Consider the adjacency matrix A of the graph G on the previous page:

A =
⎡
⎣

v1 v2 v3

v1 0 1 0
v2 1 1 2
v3 0 2 0

⎤
⎦.

Compute A2 as follows:⎡
⎣0 1 0
1 1 2
0 2 0

⎤
⎦
⎡
⎣0 1 0
1 1 2
0 2 0

⎤
⎦ =

⎡
⎣1 1 2
1 6 2
2 2 4

⎤
⎦ .
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672 Chapter 10 Graphs and Trees

Note that the entry in the second row and the second column is 6, which equals the number
of walks of length 2 from v2 to v2. This is no accident! To compute a22, you multiply the
second row of A times the second column of A to obtain a sum of three terms:

[
1 1 2

]⎡⎣1
1
2

⎤
⎦ = 1 ·1+ 1 ·1+ 2 ·2.

Observe that

[
the first term
of this sum

]
=

⎡
⎣number of
edges from
v2 to v1

⎤
⎦ .

⎡
⎣number of
edges from
v1 to v2

⎤
⎦ =

⎡
⎣number of pairs
of edges from
v2 to v1 and v1 to v2

⎤
⎦ .

Now consider the i th term of this sum, for each i = 1, 2, and 3. It equals the number of
edges from v2 to vi times the number of edges from vi to v2. By the multiplication rule
this equals the number of pairs of edges from v2 to vi and from vi back to v2. But this
equals the number of walks of length 2 that start and end at v2 and pass through vi . Since
this analysis holds for each term of the sum for i = 1, 2, and 3, the sum as a whole equals
the total number of walks of length 2 that start and end at v2:

1 ·1+ 1 ·1+ 2 ·2 = 1+ 1+ 4 = 6.

More generally, if A is the adjacency matrix of a graph G, the i j th entry of A2 equals
the number of walks of length 2 connecting the i th vertex to the j th vertex of G. Even
more generally, if n is any positive integer, the i j th entry of An equals the number of
walks of length n connecting the i th and the j th vertices of G.

Theorem 10.3.2

If G is a graph with vertices v1, v2, . . . , vm and A is the adjacency matrix of G, then
for each positive integer n and for all integers i, j = 1, 2, . . . ,m,

the i j th entry of An = the number of walks of length n from vi to v j .

Proof:

Suppose G is a graph with vertices v1, v2, . . . , vm and A is the adjacency matrix
of G. Let P(n) be the sentence

For all integers i, j = 1, 2, . . . ,m, ← P(n)

the i j th entry of An = the number of walks of length n from vi to v j .

We will use mathematical induction to show that P(n) is true for all integers n ≥ 1.

Show that P(1) is true:

The i j th entry of A1 = the i j th entry of A because A1 = A

= the number of edges by definition of adjacency matrix

connecting vi to v j

= the number of walks of
length 1 from vi to v j

because a walk of length 1
contains a single edge.

Show that for all integers k with k ≥ 1, if P(k) is true then P(k + 1) is true:
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Let k be any integer with k ≥ 1, and suppose that

For all integers i, j = 1, 2, . . . ,m, ← P(k)

the i j th entry of Ak = the number of walks of length k from vi to v j . inductive
hypothesis

We must show that

For all integers i, j = 1, 2, . . . ,m, ← P(k + 1)

the i j th entry of Ak+1 = the number of walks of length k + 1 from vi to v j .

Let A = (ai j ) and Ak = (bi j ). Since Ak+1 = AAk , the i j th entry of Ak+1 is
obtained by multiplying the i th row of A by the j th column of Ak :

the i j th entry of Ak+1 = ai1b1 j + ai2b2 j + · · · + aimbmj 10.3.1

for all i, j = 1, 2, . . . ,m. Now consider the individual terms of this sum: ai1 is the
number of edges from vi to v1; and, by inductive hypothesis, b1 j is the number of
walks of length k from v1 to v j . But any edge from vi to v1 can be joined with any
walk of length k from v1 to v j to create a walk of length k + 1 from vi to v j with v1

as its second vertex. Thus, by the multiplication rule,

ai1b1 j =
[
the number of walks of length k + 1 from
vi to v j that have v1 as their second vertex

]
.

More generally, for each integer r = 1, 2, . . . ,m,

airbr j =
[
the number of walks of length k + 1 from
vi to v j that have vr as their second vertex

]
.

Since any walk of length k + 1 from vi to v j must have one of the vertices v1, v2, . . . ,

vm as its second vertex, the total number of walks of length k + 1 from vi to v j equals
the sum in (10.3.1), which equals the i j th entry of Ak+1. Hence

the i j th entry of Ak+1 = the number of walks of length k + 1 from vi to v j

[as was to be shown].
[Since both the basis step and the inductive step have been proved, the sentence P(n) is
true for all integers n ≥ 1.]

Test Yourself
1. In the adjacency matrix for a directed graph, the entry in the

i th row and j th column is _____.

2. In the adjacency matrix for an undirected graph, the entry in
the i th row and j th column is _____.

3. An n × n square matrix is called symmetric if, and only if,
for all integers i and j from 1 to n, the entry in row _____
and column _____ equals the entry in row _____ and column
_____.

4. The ijth entry in the product of two matrices A and B is
obtained by multiplying row _____ of A by row _____ of B.

5. In an n × n identity matrix the entries on the main diagonal
are all _____ and the off-diagonal entries are all _____.

6. If G is a graph with vertices v1, v2, . . . , vm and A is the
adjacency matrix of G, then for each positive integer n and
for all integers i and j with i, j = 1, 2, . . . , m, the ijth entry
of An = _____.

Exercise Set 10.3
1. Find real numbers a, b, and c such that the following are

true.

a.
[
a + b a − c
c b − a

]
=

[
1 0
−1 3

] b.

[
2a b + c

c − a 2b − a

]
=

[
4 3
1 −2

]
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674 Chapter 10 Graphs and Trees

2. Find the adjacency matrices for the following directed
graphs.

a.
v1 v2

v3

e2

e1

e3

b.

v1

v2

v3v4

e2
e5

e6

e1

e3 e4

3. Find directed graphs that have the following adjacency
matrices:

a.

⎡
⎢⎢⎣
1 0 1 2
0 0 1 0
0 2 1 1
0 1 1 0

⎤
⎥⎥⎦ b.

⎡
⎢⎢⎣
0 1 0 0
2 0 1 0
1 2 1 0
0 0 1 0

⎤
⎥⎥⎦

4. Find adjacency matrices for the following (undirected)
graphs.

v1 v2

v3
v4

e2

e1 e4

e3 e5

b.

v1

v3

v2

v4

e1

e4

e3

e2

e5

e6

a.

c. K4, the complete graph on four vertices
d. K2,3, the complete bipartite graph on (2, 3) vertices

5. Find graphs that have the following adjacency matrices.

a.

⎡
⎣1 0 1
0 1 2
1 2 0

⎤
⎦ b.

⎡
⎣0 2 0
2 1 0
0 0 1

⎤
⎦

6. The following are adjacency matrices for graphs. In each
case determine whether the graph is connected by analyz-
ing the matrix without drawing the graph.

a.

⎡
⎣0 1 1
1 1 0
1 0 0

⎤
⎦ b.

⎡
⎢⎢⎣
0 2 0 0
2 0 0 0
0 0 1 1
0 0 1 1

⎤
⎥⎥⎦

7. Suppose that for all positive integers i , all the entries in the
i th row and i th column of the adjacency matrix of a graph
are 0. What can you conclude about the graph?

8. Find each of the following products.

a.
[
2 −1] [1

3

]
b.

[
4 −1 7

]⎡⎣1
2
0

⎤
⎦

9. Find each of the following products.

a.
[
3 0
1 −2

] [
1 −1 4
0 2 1

]

b.

[
2 0 1
0 −1 0

]⎡⎣ 1 3
5 −4
−2 2

⎤
⎦

c.

[−1
2

] [
2 3

]

10. Let A =
[
1 1 −1
0 −2 1

]
, B =

[−2 0
1 3

]
, and

C =
⎡
⎣0 −2
3 1
1 0

⎤
⎦.

For each of the following, determine whether the indicated
product exists, and compute it if it does.
a. AB b. BA c. A2 d. BC e. CB
f. B2 g. B3 h. C2 i. AC j. CA

11. Give an example different from that in the text to show
that matrix multiplication is not commutative. That is, find
2× 2 matrices A and B such that AB and BA both exist but
AB �= BA.

12. Let O denote the matrix

[
0 0
0 0

]
. Find 2× 2 matrices A and

B such that A �= O and B �= O, but AB = O.

13. Let O denote the matrix

[
0 0
0 0

]
. Find 2× 2 matrices A and

B such that A �= B, B �= O, and AB �= O, but BA = O.

In 14–18 assume the entries of all matrices are real numbers.

14.H Prove that if I is the m × m identity matrix and A is any
m × n matrix, then IA = A.

15. Prove that if A is an m × m symmetric matrix, then A2 is
symmetric.

16. Prove that matrix multiplication is associative: If A, B, and
C are any m × k, k × r , and r × n matrices, respectively,
then (AB)C = A(BC).

17. Use mathematical induction and the result of exercise 16 to
prove that if A is any m × m matrix, then AnA = AAn for
all integers n ≥ 1.

18. Use mathematical induction to prove that if A is an m × m
symmetric matrix, then for any integer n ≥ 1,An is also
symmetric.

19. a. Let A =
⎡
⎣1 1 2
1 0 1
2 1 0

⎤
⎦. Find A2 and A3.

b. Let G be the graph with vertices v1, v2, and v3 and with
A as its adjacency matrix. Use the answers to part (a) to
find the number of walks of length 2 from v1 to v3 and
the number of walks of length 3 from v1 to v3. Do not
draw G to solve this problem.

c. Examine the calculations you performed in answering
part (a) to find five walks of length 2 from v3 to v3. Then
draw G and find the walks by visual inspection.
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20. The following is an adjacency matrix for a graph:

⎡
⎢⎢⎣

v1 v2 v3 v4

v1 0 1 1 0
v2 1 0 2 1
v3 1 2 0 1
v4 0 1 1 1

⎤
⎥⎥⎦

Answer the following questions by examining the matrix
and its powers only, not by drawing the graph:
a. How many walks of length 2 are there from v2 to v3?
b. How many walks of length 2 are there from v3 to v4?
c. How many walks of length 3 are there from v1 to v4?
d. How many walks of length 3 are there from v2 to v3?

21. Let A be the adjacent matrix for K3, the complete graph on
three vertices. Use mathematical induction to prove that for
each positive integer n, all the entries along the main diag-
onal of An are equal to each other and all the entries that do
not lie along the main diagonal are equal to each other.

22. a. Draw a graph that has⎡
⎢⎢⎢⎢⎣
0 0 0 1 2
0 0 0 1 1
0 0 0 2 1
1 1 2 0 0
2 1 1 0 0

⎤
⎥⎥⎥⎥⎦

as its adjacency matrix. Is this graph bipartite? (For a
definition of bipartite, see exercise 37 in Section 10.1.)

Definition: Given an m × n matrix A whose i j th entry is
denoted ai j , the transpose of A is the matrix At whose i j th
entry is a ji , for all i = 1, 2, . . . ,m and j = 1, 2, . . . , n.

Note that the first row of A becomes the first column of
At , the second row of A becomes the second column of
At , and so forth. For instance,

if A =
[
0 2 1
1 2 3

]
, then At =

⎡
⎣0 1
2 2
1 3

⎤
⎦ .

b.H Show that a graph with n vertices is bipartite if, and only
if, for some labeling of its vertices, its adjacency matrix
has the form [

O A
At O

]
where A is a k × (n − k) matrix for some integer k such
that 0 < k < n, the top left O represents a k × k matrix
all of whose entries are 0, At is the transpose of A,
and the bottom right O represents an (n − k)× (n − k)
matrix all of whose entries are 0.

23. a. Let G be a graph with n vertices, and let v and w be dis-
tinct vertices of G. Prove that if there is a walk from v to
w, then there is a walk from v to w that has length less
than or equal to n − 1.

b.H If A = (ai j ) and B = (bi j ) are any m × n matrices, the
matrix A+ B is the m × n matrix whose i j th entry is
ai j + bi j for all i = 1, 2, . . . ,m and j = 1, 2, . . . , n. Let
G be a graph with n vertices where n > 1, and let A be
the adjacency matrix of G. Prove that G is connected
if, and only if, every entry of A+ A2 + · · · + An−1 is
positive.

Answers for Test Yourself
1. the number of arrows from vi (the i th vertex) to v j (the j th vertex) 2. the number of edges connecting vi (the i th vertex) and v j

(the j th vertex) 3. i; j; j; i 4. i; j 5. 1; 0 6. the number of walks of length n from vi to v j

10.4 Isomorphisms of Graphs
Thinking is a momentary dismissal of irrelevancies. — R. Buckminster Fuller, 1969

Recall from Example 10.1.3 that the two drawings shown in Figure 10.4.1 both repre-
sent the same graph: Their vertex and edge sets are identical, and their edge-endpoint
functions are the same. Call this graph G.

v1

v4 v3

v3

v5 v2

v4v5 v2

e2

e2

e5

e3

e4

e5 e1

e3

v1

e1

e4

Figure 10.4.1
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Now consider the graph G ′ represented in Figure 10.4.2.

v1

v4 v5

v2 v3

e3e2

e4 e1

e5

Figure 10.4.2

Observe that G ′ is a different graph from G (for instance, in G the endpoints of e1 are v1

and v2, whereas in G ′ the endpoints of e1 are v1 and v3). Yet G ′ is certainly very similar
to G. In fact, if the vertices and edges of G ′ are relabeled by the functions shown in
Figure 10.4.3, then G ′ becomes the same as G.

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

e1

e2

e3

e4

e5

e1

e2

e3

e4

e5

Vertices
of G

Vertices
of G'

Edges
of G

Edges
of G'

Figure 10.4.3

Note that these relabeling functions are one-to-one and onto.
Two graphs that are the same except for the labeling of their vertices and edges are

called isomorphic. The word isomorphism comes from the Greek, meaning “same form.”
Isomorphic graphs are those that have essentially the same form.

• Definition

Let G and G ′ be graphs with vertex sets V (G) and V (G ′) and edge sets E(G) and
E(G ′), respectively. G is isomorphic to G′ if, and only if, there exist one-to-one
correspondences g: V (G)→ V (G ′) and h: E(G)→ E(G ′) that preserve the edge-
endpoint functions of G and G ′ in the sense that for all v ∈ V (G) and e ∈ E(G),

v is an endpoint of e ⇔ g(v) is an endpoint of h(e). 10.4.1

In words, G is isomorphic to G ′ if, and only if, the vertices and edges of G and G ′ can
be matched up by one-to-one, onto functions such that the edges between corresponding
vertices correspond to each other.

It is common in mathematics to identify objects that are isomorphic. For instance,
if we are given a graph G with five vertices such that each pair of vertices is connected
by an edge, then we may identify G with K5, saying that G is K5 rather than that G is
isomorphic to K5.
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Example 10.4.1 Showing That Two Graphs Are Isomorphic

Show that the following two graphs are isomorphic.

f1 f2 f5

f3

f7

f4

f6

w1

v1

v2

v5

v3

v4

w5

w3

w4

w2

e1

e4

e5

e7

e6 e2 e3

GG '

Solution To solve this problem, you must find functions g: V (G)→ V (G ′) and h: E(G)→
E(G ′) such that for all v ∈ V (G) and e ∈ E(G), v is an endpoint of e if, and only if,
g(v) is an endpoint of h(e). Setting up such functions is partly a matter of trial and error
and partly a matter of deduction. For instance, since e2 and e3 are parallel (have the
same endpoints), h(e2) and h(e3) must be parallel also. So h(e2) = f1 and h(e3) = f2 or
h(e2) = f2 and h(e3) = f1. Also, the endpoints of e2 and e3 must correspond to the end-
points of f1 and f2, and so g(v3) = w1 and g(v4) = w5 or g(v3) = w5 and g(v4) = w1.

Similarly, since v1 is the endpoint of four distinct edges (e1, e7, e5, and e4), g(v1)

must also be the endpoint of four distinct edges (because every edge incident on g(v1)

is the image under h of an edge incident on v1 and h is one-to-one and onto). But the
only vertex in G ′ that has four edges coming out of it is w2, and so g(v1) = w2. Now if
g(v3) = w1, then since v1 and v3 are endpoints of e1 in G, g(v1) = w2 and g(v3) = w1

must be endpoints of h(e1) in G ′. This implies that h(e1) = f3.
By continuing in this way, possibly making some arbitrary choices as you go, you

eventually can find functions g and h to define the isomorphism between G and G ′. One
pair of functions (there are several) is the following:

v1

v2

v3

v4

v5

w1

w2

w3

w4

w5

V(G) V(G' ) g

e1

e2

e3

e4

e6

e7

e5

f1
f2
f3
f4

f6
f7

f5

E (G) E(G' ) 
h

■

It is not hard to show that graph isomorphism is an equivalence relation on a set of
graphs; in other words, it is reflexive, symmetric, and transitive.

Theorem 10.4.1 Graph Isomorphism is an Equivalence Relation

Let S be a set of graphs and let R be the the relation of graph isomorphism on S.
Then R is an equivalence relation on S.

Proof:

R is reflexive: Given any graph G in S, define a graph isomorphism from G to G by
using the identity functions on the set of vertices and on the set of edges of G.

R is symmetric: Given any graphs G and G ′ in S such that G is isomorphic to G ′,
we must show that G ′ is isomorphic to G.

continued on page 678
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678 Chapter 10 Graphs and Trees

But this is true because if g and h are vertex and edge correspondences from G to
G ′ that preserve the edge-endpoint functions, then g−1 and h−1 are vertex and edge
correspondences from G ′ to G that preserve the edge-endpoint functions.

R is transitive: Given any graphs G, G ′, and G ′′ in S such that G is isomorphic to
G ′ and G ′ is isomorphic to G ′′, we must show that G is isomorphic to G ′′.

But this follows from the fact that if g1 and h1 are vertex and edge correspon-
dences from G to G ′ that preserve the edge-endpoint functions of G and G ′ and g2
and h2 are vertex and edge correspondences from G ′ to G ′′ that preserve the edge-
endpoint functions of G ′ and G ′′, then g2◦g1 and h2◦h1 are vertex and edge corre-
spondences from G to G ′′ that preserve the edge-endpoint functions of G and G ′′.

Note As a consequence
of the symmetry property,
you can simply say “G
and G ′ are isomorphic”
instead of “G is
isomorphic to G ′” or
“G ′ is isomorphic to G.”

Example 10.4.2 Finding Representatives of Isomorphism Classes

Find all nonisomorphic graphs that have two vertices and two edges. In other words, find
a collection of representative graphs with two vertices and two edges such that every such
graph is isomorphic to one in the collection.

Solution There are four nonisomorphic graphs that have two vertices and two edges. These
can be drawn without vertex and edge labels because any two labelings give isomorphic
graphs.

(a) (b) (c) (d)

To see that these four drawings show all the nonisomorphic graphs that have two
vertices and two edges, first note whether one of the edges joins the two vertices or not. If
it does, there are two possibilities: The other edge can also join the two vertices (as in (a))
or it can be a loop incident on one of them (as in (b)—it makes no difference which vertex
is chosen to have the loop because interchanging the two vertex labels gives isomorphic
graphs). If neither edge joins the two vertices, then both edges are loops. In this case,
there are only two possibilities: Either both loops are incident on the same vertex (as
in (c)) or the two loops are incident on separate vertices (as in (d)). There are no other
possibilities for placing the edges, so the listing is complete. ■

Now consider the question, “Is there a general method to figure out whether graphs G
and G ′ are isomorphic?” In other words, is there some algorithm that will accept graphs G
and G ′ as input and produce a statement as to whether they are isomorphic? In fact, there
is such an algorithm. It consists of generating all one-to-one, onto functions from the set
of vertices of G to the set of vertices of G ′ and from the set of edges of G to the set of
edges of G ′ and checking each pair to determine whether it preserves the edge-endpoint
functions of G and G ′. The problem with this algorithm is that it takes an unreasonably
long time to perform, even on a high-speed computer. If G and G ′ each have n vertices
andm edges, the number of one-to-one correspondences from vertices to vertices is n! and
the number of one-to-one correspondences from edges to edges is m!, so the total number
of pairs of functions to check is n! ·m!. For instance, if m = n = 20, there would be
20! ·20! ∼= 5.9× 1036 pairs to check. Assuming that each check takes just 1 nanosecond,
the total time would be approximately 1.9× 1020 years!
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Unfortunately, there is no more efficient general method known for checking whether
two graphs are isomorphic. However, there are some simple tests that can be used to
show that certain pairs of graphs are not isomorphic. For instance, if two graphs are
isomorphic, then they have the same number of vertices (because there is a one-to-one
correspondence from the vertex set of one graph to the vertex set of the other). It follows
that if you are given two graphs, one with 16 vertices and the other with 17, you can
immediately conclude that the two are not isomorphic. More generally, a property that is
preserved by graph isomorphism is called an isomorphic invariant. For instance, “having
16 vertices” is an isomorphic invariant: If one graph has 16 vertices, then so does any
graph that is isomorphic to it.

• Definition

A property P is called an invariant for graph isomorphism if, and only if, given
any graphs G and G ′, if G has property P and G ′ is isomorphic to G, then G ′ has
property P .

Theorem 10.4.2

Each of the following properties is an invariant for graph isomorphism, where n,m,
and k are all nonnegative integers:

1. has n vertices; 6. has a simple circuit of length k;

2. has m edges; 7. has m simple circuits of length k;

3. has a vertex of degree k; 8. is connected;

4. has m vertices of degree k; 9. has an Euler circuit;

5. has a circuit of length k; 10. has a Hamiltonian circuit.

Example 10.4.3 Showing That Two Graph Are Not Isomorphic

Show that the following pairs of graphs are not isomorphic by finding an isomorphic
invariant that they do not share.

a.

G G'G G'

b.

H'H H'H

Solution

a. G has nine edges; G ′ has only eight.

b. H has a vertex of degree 4; H ′ does not. ■

We prove part (3) of Theorem 10.4.2 on the next page and leave the proofs of the
other parts as exercises.
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Example 10.4.4 Proof of Theorem 10.4.2, Part (3)

Prove that if G is a graph that has a vertex of degree k and G ′ is isomorphic to G, then
G ′ has a vertex of degree k.

Proof:

Suppose G and G ′ are isomorphic graphs and G has a vertex v of degree k, where k is a
nonnegative integer. [We must show that G ′ has a vertex of degree k.] Since G and G ′ are
isomorphic, there are one-to-one, onto functions g and h from the vertices of G to the
vertices of G ′ and from the edges of G to the edges of G ′ that preserve the edge-endpoint
functions in the sense that for all edges e and all vertices u of G, u is an endpoint of
e if, and only if, g(u) is an endpoint of h(e). An example for a particular vertex v is
shown below.

e3

e4

e2 h(e2)
h(e1)

h(e4)

e5

e1

v g(v)

Degree v = 3 + 2 · 2 = 7 Degree g(v) = 3 + 2 · 2 = 7

h(e3)

h(e5)

Let e1, e2, . . . , em be the m distinct edges that are incident on a vertex v in G, where m is
a nonnegative integer. Then h(e1), h(e2), . . . , h(em) are m distinct edges that are incident
on g(v) in G ′. [The reason why h(e1), h(e2), . . . , h(em) are distinct is that h is one-to-one
and e1, e2, . . . , em are distinct. And the reason why h(e1), h(e2), . . . , h(em) are incident on
g(v) is that g and h preserve the edge-endpoint functions of G and G ′ and e1, e2, . . . , em are
incident on v.]

Also, there are no edges incident on g(v) other than the ones that are images under g
of edges incident on v [because g is onto and g and h preserve the edge-endpoint functions
of G and G ′]. Thus the number of edges incident on v equals the number of edges incident
on g(v).

Finally, an edge e is a loop at v if, and only if, h(e) is a loop at g(v), so the number
of loops incident on v equals the number of loops incident on g(v). [For since g and h
preserve the edge-endpoint functions of G and G ′, a vertex w is an endpoint of e in G if, and
only if, g(w) is an endpoint of h(e) in G ′. It follows that v is the only endpoint of e in G if,
and only if, g(v) is the only endpoint of h(e) in G ′.]

Now the degree of v, which is k, equals the number of edges incident on v plus the
number of edges incident on v that are loops (since each loop contributes 2 to the degree
of v). But we have already shown that the number of edges incident on v equals the
number of edges incident on g(v) and that the number of loops incident on v equals the
number of loops incident on g(v). Hence g(v) also has degree k. ■

Graph Isomorphism for Simple Graphs
When graphs G and G ′ are both simple, the definition of G being isomorphic to G ′ can
be written without referring to the correspondence between the edges of G and the edges
of G ′.
• Definition

If G and G ′ are simple graphs, then G is isomorphic to G′ if, and only if, there
exists a one-to-one correspondence g from the vertex set V (G) of G to the vertex
set V (G ′) of G ′ that preserves the edge-endpoint functions of G and G ′ in the sense
that for all vertices u and v of G,

{u, v} is an edge in G ⇔ {g(u), g(v)} is an edge in G ′. 10.4.2
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Example 10.4.5 Isomorphism of Simple Graphs

Are the two graphs shown below isomorphic? If so, define an isomorphism.

a

b

c

d

x

z

yw

GG '

Solution Yes. Define f : V (G)→ V (G ′) by the arrow diagram shown below.

a
b
c
d

w

x
y
z

V (G) V (G' )g

Then g is one-to-one and onto by inspection. The fact that g preserves the edge-endpoint
functions of G and G ′ is shown by the following table:

Edges of G Edges of G′

{a, b} {y, w} = {g(a), g(b)}
{a, c} {y, x} = {g(a), g(c)}
{a, d} {y, z} = {g(a), g(d)}
{c, d} {x, z} = {g(c), g(d)} ■

Test Yourself
1. If G and G ′ are graphs, then G is isomorphic to G ′ if, and

only if, there exist a one-to-one correspondence g from the
vertex set of G to the vertex set of G ′ and a one-to-one cor-
respondence h from the edge set of G to the edge set of G ′

such that for all vertices v and edges e in G, v is an endpoint
of e if, and only if, _____.

2. A property P is an invariant for graph isomorphism if, and
only if, given any graphs G and G ′, if G has property P and
G ′ is isomorphic to G then _____.

3. Some invariants for graph isomorphisms are _____, _____,
_____, _____, _____, _____, _____, _____, _____, and
_____.

Exercise Set 10.4
For each pair of graphs G and G ′ in 1–5, determine whether G
and G ′ are isomorphic. If they are, give functions g: V (G)→
V (G ′) and h: E(G)→ E(G ′) that define the isomorphism. If
they are not, give an invariant for graph isomorphism that they
do not share.

1. v1

w1 w3
w2

w4

v4

v2 v3

e1 e3

f1

f2e2

e4

G G'

f3

f4

2.

v1

v5 v3
v4

v2

e2

e3

e1

e6

e7

e5

e4

G

w2

w1

w4 w6

w3

f1 f2

f3

f4

f6

w5f5

f7

G'
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3.

v1 v3

v2
v4

e6

e1 e3

e5

e2

e4

G

f6

f5

f2

f3

f1

w1

w3

w2

w4

f4

G'

4.

v1

v2

v5 v4

v3
e2 e7

e1

e6

e5

e3

e4

G

w1

w2

w3

w5 w4

f1

f3 f5

f6

f7

f2

f4

G'

5.

v1

v5

v2

v3

v4

e2

e3

e4

e5

e7

e6

e1

G

w1

w5 w4

w3

w2

f6

f4

f5

f3

f2

f1

f7

G'

For each pair of simple graphs G and G ′ in 6–13, determine
whether G and G ′ are isomorphic. If they are, give a function
g: V (G)→ V (G ′) that defines the isomorphism. If they are not,
give an invariant for graph isomorphism that they do not share.

6.

v1 v2 v3 v4

w1

w4

w2

w3

GG '

7. w1

w4

w2

w3

v1

v4

v2

v3

G G'

8.

a

f

c

d

b

e y

v

u

z

w

x

G G'

9.

a

f

e

b

c

d

G

u

z y

x

v w

G'

10.

a

g

c

e

d

b

f

G

t

z

v

w

x

y

u

G'

11.

a

f

c

d

b

e

G

u

z y

x

w
v

G'

12.
a

d

b

c

f

e

h

g

G

s
x

v

w

t

u

G'

z y

13.
a

f

d

e
b

c

G

h g

s
x

v

w

t

u

G'

z y

14. Draw all nonisomorphic simple graphs with three vertices.

15. Draw all nonisomorphic simple graphs with four vertices.

16. Draw all nonisomorphic graphs with three vertices and no
more than two edges.

17. Draw all nonisomorphic graphs with four vertices and no
more than two edges.

18.H Draw all nonisomorphic graphs with four vertices and three
edges.

19. Draw all nonisomorphic graphs with six vertices, all having
degree 2.

20. Draw four nonisomorphic graphs with six vertices, two of
degree 4 and four of degree 3.
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Prove that each of the properties in 21–29 is an invariant for
graph isomorphism. Assume that n,m, and k are all nonnega-
tive integers.

21. Has n vertices 22. Has m edges

23. Has a circuit of length k

24. Has a simple circuit of length k

25.H Has m vertices of degree k

26. Has m simple circuits of length k

27.H Is connected 28. Has an Euler circuit

29. Has a Hamiltonian circuit

30. Show that the following two graphs are not isomorphic by
supposing they are isomorphic and deriving a contradiction.

v1 v2 v3 v4 v5 v6

e1 e2
e3

e4

e5 e6

w1 w2 w3 w4 w5 w6

f1 f2 f3
f4

f5

f6

G

G'

Answers for Test Yourself
1. g(v) is an endpoint of h(e) 2. G

′
has property P 3. has n vertices; has m edges; has a vertex of degree k; has m vertices of

degree k; has a circuit of length k; has a simple circuit of length k; has m simple circuits of length k; is connected; has an Euler circuit;
has a Hamiltonian circuit

10.5 Trees
We are not very pleased when we are forced to accept a mathematical truth
by virtue of a complicated chain of formal conclusions and computations, which we
traverse blindly, link by link, feeling our way by touch. We want first an overview of the
aim and of the road; we want to understand the idea of the proof, the deeper context.
— Hermann Weyl, 1885–1955

If a friend asks what you are studying and you answer “trees,” your friend is likely to infer
you are taking a course in botany. But trees are also a subject for mathematical investi-
gation. In mathematics, a tree is a connected graph that does not contain any circuits.
Mathematical trees are similar in certain ways to their botanical namesakes.

• Definition

A graph is said to be circuit-free if, and only if, it has no circuits. A graph is called
a tree if, and only if, it is circuit-free and connected. A trivial tree is a graph that
consists of a single vertex. A graph is called a forest if, and only if, it is circuit-free
and not connected.

Example 10.5.1 Trees and Non-Trees

All the graphs shown in Figure 10.5.1 are trees, whereas those in Figure 10.5.2 are not.

(a) (b) (c) (d)

Figure 10.5.1 Trees. All the graphs in (a)–(d) are connected and circuit-free.
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684 Chapter 10 Graphs and Trees

(a) (b) (c) (d)

Figure 10.5.2 Non-Trees. The graphs in (a), (b), and (c) all have circuits, and the graph in (d) is not connected. ■

Examples of Trees
The following examples illustrate just a few of the many and varied situations in which
mathematical trees arise.

Example 10.5.2 A Decision Tree

During orientation week, a college administers an exam to all entering students to deter-
mine placement in the mathematics curriculum. The exam consists of two parts, and
placement recommendations are made as indicated by the tree shown in Figure 10.5.3.
Read the tree from left to right to decide what course should be recommended for a stu-
dent who scored 9 on part I and 7 on part II.

Score on
part I

Score on
part II

Math 100

Math 100

Math 110

Math 110

Math 120
Score on
part II

>10

<8

= 8, 9, 10

>10

≤

≤

10

>6

6

Figure 10.5.3

Solution Since the student scored 9 on part I, the score on part II is checked. Since it is
greater than 6, the student should be advised to take Math 110. ■

Example 10.5.3 A Parse Tree

In the last 30 years, Noam Chomsky and others have developed new ways to describe the
syntax (or grammatical structure) of natural languages such as English. As is discussed
briefly in Chapter 12, this work has proved useful in constructing compilers for high-
level computer languages. In the study of grammars, trees are often used to show the
derivation of grammatically correct sentences from certain basic rules. Such trees are
called syntactic derivation trees or parse trees.
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10.5 Trees 685

A very small subset of English grammar, for example, specifies that

1. a sentence can be produced by writing first a noun phrase and then a verb phrase;

2. a noun phrase can be produced by writing an article and then a noun;

3. a noun phrase can also be produced by writing an article, then an adjective, and then
a noun;

4. a verb phrase can be produced by writing a verb and then a noun phrase;

5. one article is “the”;

6. one adjective is “young”;

7. one verb is “caught”;

8. one noun is “man”;

9. one (other) noun is “ball.”

The rules of a grammar are called productions. It is customary to express them using

C
ou

rt
es

y
of

IB
M

C
or

po
ra

ti
on

John Backus
(1924–1998)

the shorthand notation illustrated below. This notation, introduced by John Backus in
1959 and modified by Peter Naur in 1960, was used to describe the computer language
Algol and is called the Backus-Naur notation. In the notation, the symbol | represents
the word or, and angle brackets 〈 〉 are used to enclose terms to be defined (such as a
sentence or noun phrase).

1. 〈sentence〉 → 〈noun phrase〉〈verb phrase〉
2., 3. 〈noun phrase〉 → 〈article〉〈noun〉 | 〈article〉〈adjective〉〈noun〉
4. 〈verb phrase〉 → 〈verb〉〈noun phrase〉
5. 〈article〉 → the

6. 〈adjective〉 → young

7, 8. 〈noun〉 → man | ball
9. 〈verb〉 → caught

The derivation of the sentence “The young man caught the ball” from the above rules

C
ou

rt
es

y
of

P
et

er
N

au
r

Peter Naur
(born 1928)

is described by the tree shown below.

〈sentence〉

〈noun phrase 〈〉 verb phrase〉

〈article〉 〈adjective〉 〈noun〉 〈verb〉

caught

〈noun phrase〉

〈article〉 〈noun〉

the ball

the young man

In the study of linguistics, syntax refers to the grammatical structure of sentences, and
semantics refers to the meanings of words and their interrelations. A sentence can be syn-
tactically correct but semantically incorrect, as in the nonsensical sentence “The young
ball caught the man,” which can be derived from the rules given above. Or a sentence can
contain syntactic errors but not semantic ones, as, for instance, when a two-year-old child
says, “Me hungry!” ■
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Example 10.5.4 Structure of Hydrocarbon Molecules

The German physicist Gustav Kirchhoff (1824–1887) was the first to analyze the behav-
ior of mathematical trees in connection with the investigation of electrical circuits. Soon
after (and independently), the English mathematician Arthur Cayley used the mathemat-
ics of trees to enumerate all isomers for certain hydrocarbons. Hydrocarbon molecules
are composed of carbon and hydrogen; each carbon atom can form up to four chemical
bonds with other atoms, and each hydrogen atom can form one bond with another atom.
Thus the structure of hydrocarbon molecules can be represented by graphs such as those
shown following, in which the vertices represent atoms of hydrogen and carbon, denoted
H and C, and the edges represent the chemical bonds between them.

H

H

H

H

H

H HH

HH CC

C

C

H

H

H HC

H

H

C

H

H

C

H

H

C

IsobutaneButane

Note that each of these graphs has four carbon atoms and ten hydrogen atoms, but the
two graphs show different configurations of atoms. When two molecules have the same
chemical formulae (in this case C4H10) but different chemical bonds, they are called
isomers.

Certain saturated hydrocarbon molecules contain the maximum number of hydro-

B
et

tm
an

n/
C

O
R

B
IS

Arthur Cayley
(1821–1895)

gen atoms for a given number of carbon atoms. Cayley showed that if such a saturated
hydrocarbon molecule has k carbon atoms, then it has 2k + 2 hydrogen atoms. The first
step in doing so is to prove that the graph of such a saturated hydrocarbon molecule is
a tree. Prove this using proof by contradiction. (You are asked to finish the derivation of
Cayley’s result in exercise 4 at the end of this section.)

Solution Suppose there is a hydrocarbon molecule that contains the maximum number of
hydrogen atoms for the number of its carbon atoms and whose graph G is not a tree.
[We must derive a contradiction.] Since G is not a tree, G is not connected or G has a
circuit. But the graph of any molecule is connected (all the atoms in a molecule must be
connected to each other), and so G must have a nontrivial circuit. Now the edges of the
circuit can link only carbon atoms because every vertex of a circuit has degree at least 2
and a hydrogen atom vertex has degree 1. Delete one edge of the circuit and add two new
edges to join each of the newly disconnected carbon atom vertices to a hydrogen atom
vertex as shown below.

C

C

C

C

H

H

Add
Delete

Rest of circuit
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10.5 Trees 687

The resulting molecule has two more hydrogen atoms than the given molecule, but the
number of carbon atoms is unchanged. This contradicts the supposition that the given
molecule has the maximum number of hydrogen atoms for the given number of carbon
atoms. Hence the supposition is false, and so G is a tree. ■

Characterizing Trees
There is a somewhat surprising relation between the number of vertices and the number of
edges of a tree. It turns out that if n is a positive integer, then any tree with n vertices (no
matter what its shape) has n − 1 edges. Perhaps even more surprisingly, a partial converse
to this fact is also true—namely, any connected graph with n vertices and n − 1 edges is
a tree. It follows from these facts that if even one new edge (but no new vertex) is added
to a tree, the resulting graph must contain a circuit. Also, from the fact that removing an
edge from a circuit does not disconnect a graph, it can be shown that every connected
graph has a subgraph that is a tree. It follows that if n is a positive integer, any graph with
n vertices and fewer than n − 1 edges is not connected.

A small but very important fact necessary to derive the first main theorem about trees
is that any nontrivial tree must have at least one vertex of degree 1.

Lemma 10.5.1

Any tree that has more than one vertex has at least one vertex of degree 1.

A constructive way to understand this lemma is to imagine being given a tree T with
more than one vertex. You pick a vertex v at random and then search outward along a
path from v looking for a vertex of degree 1. As you reach each new vertex, you check
whether it has degree 1. If it does, you are finished. If it does not, you exit from the vertex
along a different edge from the one you entered on. Because T is circuit-free, the vertices
included in the path never repeat. And since the number of vertices of T is finite, the
process of building a path must eventually terminate. When that happens, the final vertex
v′ of the path must have degree 1. This process is illustrated below.

Start here Search outward from v to
find vertex v' of degree 1.

e
e'

v

v'

This discussion is made precise in the following proof.

Proof:

Let T be a particular but arbitrarily chosen tree that has more than one vertex, and
consider the following algorithm:

Step 1: Pick a vertex v of T and let e be an edge incident on v.
[If there were no edge incident on v, then v would be an isolated vertex. But this
would contradict the assumption that T is connected (since it is a tree) and has
at least two vertices.]

Step 2: While deg(v) > 1, repeat steps 2a, 2b, and 2c:

continued on page 688

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



688 Chapter 10 Graphs and Trees

Step 2a: Choose e′ to be an edge incident on v such that e′ �= e. [Such an edge
exists because deg(v) > 1 and so there are at least two edges incident on
v.]

Step 2b: Let v′ be the vertex at the other end of e′ from v. [Since T is a tree, e′

cannot be a loop and therefore e′ has two distinct endpoints.]

Step 2c: Let e = e′ and v = v′. [This is just a renaming process in preparation
for a repetition of step 2.]

The algorithm just described must eventually terminate because the set of ver-
tices of the tree T is finite and T is circuit-free. When it does, a vertex v of degree 1
will have been found.

Using Lemma 10.5.1 it is not difficult to show that, in fact, any tree that has more
than one vertex has at least two vertices of degree 1. This extension of Lemma 10.5.1 is
left to the exercises at the end of this section.

• Definition

Let T be a tree. If T has only one or two vertices, then each is called a terminal
vertex. If T has at least three vertices, then a vertex of degree 1 in T is called a
terminal vertex (or a leaf ), and a vertex of degree greater than 1 in T is called an
internal vertex (or a branch vertex).

Example 10.5.5 Terminal and Internal Vertices

Find all terminal vertices and all internal vertices in the following tree:

v8

v0

v7

v6

v1

v5

v3

v2

v4

Solution The terminal vertices are v0, v2, v4, v5, v7, and v8. The internal vertices are v6, v1,
and v3. ■

The following is the first of the two main theorems about trees:

Theorem 10.5.2

For any positive integer n, any tree with n vertices has n − 1 edges.

The proof is by mathematical induction. To do the inductive step, you assume the
theorem is true for a positive integer k and then show it is true for k + 1. Thus you assume
you have a tree T with k + 1 vertices, and you must show that T has (k + 1)− 1 = k
edges. As you do this, you are free to use the inductive hypothesis that any tree with k
vertices has k − 1 edges. To make use of the inductive hypothesis, you need to reduce the
tree T with k + 1 vertices to a tree with just k vertices. But by Lemma 10.5.1, T has a
vertex v of degree 1, and since T is connected, v is attached to the rest of T by a single
edge e as sketched on the next page.
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e
v

T:

Rest of T

Now if e and v are removed from T , what remains is a tree T ′ with (k + 1)− 1 = k
vertices. By inductive hypothesis, then, T ′ has k − 1 edges. But the original tree T has
one more vertex and one more edge than T ′. Hence T must have (k − 1)+ 1 = k edges,
as was to be shown. A formal version of this argument is given below.

Proof (by mathematical induction):

Let the property P(n) be the sentence

Any tree with n vertices has n − 1 edges. ← P(n)

We use mathematical induction to show that this property is true for all integers
n ≥ 1.

Show that P(1) is true: Let T be any tree with one vertex. Then T has zero edges
(since it contains no loops). But 0 = 1− 1, so P(1) is true.

Show that for all integers k ≥ 1, if P(k) is true then P(k + 1) is true:
Suppose k is any positive integer for which P(k) is true. In other words, suppose
that

Any tree with k vertices has k - 1 edges. ← P(k)
inductive hypothesis

We must show that P(k + 1) is true. In other words, we must show that

Any tree with k + 1 vertices has (k + 1)− 1 = k edges. ← P(k + 1)

Let T be a particular but arbitrarily chosen tree with k + 1 vertices. [We must show
that T has k edges.] Since k is a positive integer, (k + 1) ≥ 2, and so T has more
than one vertex. Hence by Lemma 10.5.1, T has a vertex v of degree 1. Also, since
T has more than one vertex, there is at least one other vertex in T besides v. Thus
there is an edge e connecting v to the rest of T . Define a subgraph T ′ of T so that

V (T ′) = V (T )− {v}
Then

E(T ′) = E(T )− {e}.
1. The number of vertices of T ′ is (k + 1)− 1 = k.

2. T ′ is circuit-free (since T is circuit-free, and removing an edge and a vertex
cannot create a circuit).

3. T ′ is connected (see exercise 24 at the end of this section).

Hence, by the definition of tree, T ′ is a tree. Since T ′ has k vertices, by inductive
hypothesis

the number of edges of T ′ = (the number of vertices of T ′)− 1

= k − 1.

continued on page 690
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690 Chapter 10 Graphs and Trees

But then

the number of edges of T = (the number of edges of T ′)+ 1

= (k − 1)+ 1

= k.

[This is what was to be shown.]

Example 10.5.6 Determining Whether a Graph Is a Tree

A graph G has ten vertices and twelve edges. Is it a tree?

Solution No. By Theorem 10.5.2, any tree with ten vertices has nine edges, not twelve.
■

Example 10.5.7 Finding Trees Satisfying Given Conditions

Find all nonisomorphic trees with four vertices.

Solution By Theorem 10.5.2, any tree with four vertices has three edges. Thus the total
degree of a tree with four vertices must be 6. Also, every tree with more than one vertex
has at least two vertices of degree 1 (see the comment following Lemma 10.5.1 and
exercises 5 and 29 at the end of this section). Thus the following combinations of degrees
for the vertices are the only ones possible:

1, 1, 1, 3 and 1, 1, 2, 2.

There are two nonisomorphic trees corresponding to both of these possibilities, as shown
below.

and
■

To prove the second major theorem about trees, we need another lemma.

Lemma 10.5.3

If G is any connected graph, C is any circuit in G, and any one of the edges of C is
removed from G, then the graph that remains is connected.

Essentially, the reason why Lemma 10.5.3 is true is that any two vertices in a circuit
are connected by two distinct paths. It is possible to draw the graph so that one of these
goes “clockwise” and the other goes “counterclockwise” around the circuit. For example,
in the circuit shown on the next page, the clockwise path from v2 to v3 is

v2e3v3

and the counterclockwise path from v2 to v3 is

v2e2v1e1v0e6v5e5v4e4v3.
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v2 v3

v0 v5

v1 v4

e2

e1

e4

e5

e3

e6

 Clockwise

 Counterclockwise

Proof:

Suppose G is a connected graph, C is a circuit in G, and e is an edge of C . Form a
subgraph G ′ of G by removing e from G. Thus

V (G ′) = V (G)

E(G ′) = E(G)− {e}.
We must show that G ′ is connected. [To show a graph is connected, we must show that
if u and w are any vertices of the graph, then there exists a walk in G ′ from u to w.]
Suppose u and w are any two vertices of G ′. [We must find a walk from u to w.] Since
the vertex sets of G and G ′ are the same, u and w are both vertices of G, and since
G is connected, there is a walk W in G from u to w.

Case 1 (e is not an edge of W): The only edge in G that is not in G ′ is e, so in this
case W is also a walk in G ′. Hence u is connected to w by a walk in G ′.

Case 2 (e is an edge of W): In this case the walk W from u to w includes a section
of the circuit C that contains e. Let C be denoted as follows:

C: v0e1v1e2v2 · · · envn (= v0).

Now e is one of the edges of C , so, to be specific, let e = ek . Then the walk W
contains either the sequence

vk−1ekvk or vkekvk−1.

If W contains vk−1ekvk , connect vk−1 to vk by taking the “counterclockwise” walk
W ′ defined as follows:

W ′: vk−1ek−1vk−2 · · · v0envn−1 · · · ek+1vk .
An example showing how to go from u to w while avoiding ek is given in Fig-
ure 10.5.4.

u

vk–1

vk+1

vk

vk–2

ek–1 ek+1 To go from u to w
while avoiding ek , go
counterclockwise
around the circuit.

ek

w

Figure 10.5.4 An Example of a Walk from u to w That Does Not Include Edge ek

If W contains vkekvk−1, connect vk to vk−1 by taking the “clockwise” walk W ′′
defined as follows:

W ′′: vkek+1vk+1 · · · vne1v1e2 · · · ek−1vk−1.
continued on page 692
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692 Chapter 10 Graphs and Trees

Now patch either W ′ or W ′′ into W to form a new walk from u to w. For instance, to
patch W ′ into W , start with the section of W from u to vk−1, then take W ′ from vk−1
to vk , and finally take the section of W from vk to w. If this new walk still contains
an occurrence of e, just repeat the process described previously until all occurrences
are eliminated. [This must happen eventually since the number of occurrences of e in C
is finite.] The result is a walk from u to w that does not contain e and hence is a walk
in G ′.

The previous arguments show that both in case 1 and in case 2 there is a walk in
G ′ from u to w. Since the choice of u and w was arbitrary, G ′ is connected.

The second major theorem about trees is a modified converse to Theorem 10.5.2.

Theorem 10.5.4

For any positive integer n, if G is a connected graph with n vertices and n − 1 edges,
then G is a tree.

Proof:

Let n be a positive integer and suppose G is a particular but arbitrarily chosen graph
that is connected and has n vertices and n − 1 edges. [We must show that G is a tree.
Now a tree is a connected, circuit-free graph. Since we already know G is connected, it
suffices to show that G is circuit-free.] Suppose G is not circuit-free. That is, suppose
G has a circuit C . [We must derive a contradiction.] By Lemma 10.5.3, an edge of C
can be removed from G to obtain a graph G ′ that is connected. If G ′ has a circuit,
then repeat this process: Remove an edge of the circuit from G ′ to form a new con-
nected graph. Continue repeating the process of removing edges from circuits until
eventually a graph G ′′ is obtained that is connected and is circuit-free. By definition,
G ′′ is a tree. Since no vertices were removed from G to form G ′′,G ′′ has n vertices
just as G does. Thus, by Theorem 10.5.2, G ′′ has n − 1 edges. But the supposition
that G has a circuit implies that at least one edge of G is removed to form G ′′. Hence
G ′′ has no more than (n − 1)− 1 = n − 2 edges, which contradicts its having n − 1
edges. So the supposition is false. Hence G is circuit-free, and therefore G is a tree
[as was to be shown].

Theorem 10.5.4 is not a full converse of Theorem 10.5.2. Although it is true that every
connected graph with n vertices and n − 1 edges (where n is a positive integer) is a tree,
it is not true that every graph with n vertices and n − 1 edges is a tree.

Example 10.5.8 A Graph with n Vertices and n − 1 Edges That Is Not a Tree

Give an example of a graph with five vertices and four edges that is not a tree.

Solution By Theorem 10.5.4, such a graph cannot be connected. One example of such an
unconnected graph is shown below.

v1 v4

v5v2 v3

e2

e3

e1 e4

■
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Test Yourself
1. A circuit-free graph is a graph with _____.

2. A forest is a graph that is _____, and a tree is a graph that is
_____.

3. A trivial tree is a graph that consists of _____.

4. Any tree with at least two vertices has at least one vertex of
degree _____.

5. If a tree T has at least two vertices, then a terminal vertex (or
leaf) in T is a vertex of degree _____ and an internal vertex
(or branch vertex) in T is a vertex of degree _____.

6. For any positive integer n, any tree with n vertices has _____.

7. For any positive integer n, if G is a connected graph with n
vertices and n − 1 edges then _____.

Exercise Set 10.5
1. Read the tree in Example 10.5.2 from left to right to answer

the following questions:
a. What course should a student who scored 12 on part I

and 4 on part II take?
b. What course should a student who scored 8 on part I and

9 on part II take?

2. Draw trees to show the derivations of the following sen-
tences from the rules given in Example 10.5.3.
a. The young ball caught the man.
b. The man caught the young ball.

3.H What is the total degree of a tree with n vertices? Why?

4. Let G be the graph of a hydrocarbon molecule with the
maximum number of hydrogen atoms for the number of its
carbon atoms.
a. Draw the graph of G if G has three carbon atoms and

eight hydrogen atoms.
b. Draw the graphs of three isomers of C5H12.
c. Use Example 10.5.4 and exercise 3 to prove that if the

vertices of G consist of k carbon atoms and m hydrogen
atoms, then G has a total degree of 2k + 2m − 2.

d.H Prove that if the vertices of G consist of k carbon atoms
and m hydrogen atoms, then G has a total degree of
4k + m.

e. Equate the results of (c) and (d) to prove Cayley’s result
that a saturated hydrocarbon molecule with k carbon
atoms and a maximum number of hydrogen atoms has
2k + 2 hydrogen atoms.

5.H Extend the argument given in the proof of Lemma 10.5.1 to
show that a tree with more than one vertex has at least two
vertices of degree 1.

6. If graphs are allowed to have an infinite number of vertices
and edges, then Lemma 10.5.1 is false. Give a counterex-
ample that shows this. In other words, give an example of
an “infinite tree” (a connected, circuit-free graph with an
infinite number of vertices and edges) that has no vertex of
degree 1.

7. Find all terminal vertices and all internal vertices for the
following trees.

a.

v1 v4

v2

v3

v5

v7

v6

b. v1 v4
v2

v3
v5

v7

v6 v8

In each of 8–21, either draw a graph with the given specifica-
tions or explain why no such graph exists.

8. Tree, nine vertices, nine edges

9. Graph, connected, nine vertices, nine edges

10. Graph, circuit-free, nine vertices, six edges

11. Tree, six vertices, total degree 14

12. Tree, five vertices, total degree 8

13. Graph, connected, six vertices, five edges, has a nontrivial
circuit

14. Graph, two vertices, one edge, not a tree

15. Graph, circuit-free, seven vertices, four edges

16. Tree, twelve vertices, fifteen edges

17. Graph, six vertices, five edges, not a tree

18. Tree, five vertices, total degree 10

19. Graph, connected, ten vertices, nine edges, has a nontrivial
circuit
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20. Simple graph, connected, six vertices, six edges

21. Tree, ten vertices, total degree 24

22. A connected graph has twelve vertices and eleven edges.
Does it have a vertex of degree 1? Why?

23. A connected graph has nine vertices and twelve edges.
Does it have a nontrivial circuit? Why?

24. Suppose that v is a vertex of degree 1 in a connected graph
G and that e is the edge incident on v. Let G ′ be the sub-
graph of G obtained by removing v and e from G. Must G ′

be connected? Why?

25. A graph has eight vertices and six edges. Is it connected?
Why?

26.H If a graph has n vertices and n − 2 or fewer edges, can it be
connected? Why?

27. A circuit-free graph has ten vertices and nine edges. Is it
connected? Why?

28.H Is a circuit-free graph with n vertices and at least n − 1
edges connected? Why?

29. Prove that every nontrivial tree has at least two vertices of
degree 1 by filling in the details and completing the follow-
ing argument: Let T be a nontrivial tree and let S be the set
of all paths from one vertex to another of T . Among all the
paths in S, choose a path P with the most edges. (Why is
it possible to find such a P?) What can you say about the
initial and final vertices of P? Why?

30. Find all nonisomorphic trees with five vertices.

31. a. Prove that the following is an invariant for graph iso-
morphism: A vertex of degree i is adjacent to a vertex of
degree j .

b.H Find all nonisomorphic trees with six vertices.

Answers for Test Yourself
1. no circuits 2. circuit-free and not connected; connected and circuit-free 3. a single vertex (and no edges) 4. 1 5. 1; greater
than 1 (Or: at least 2) 6. n − 1 edges 7. G is a tree

10.6 Rooted Trees

Let us grant that the pursuit of mathematics is a divine madness of the human spirit, a
refuge from the goading urgency of contingent happenings. — Alfred North Whitehead,

1861–1947

An outdoor tree is rooted and so is the kind of family tree that shows all the descendants of
one particular person. The terminology and notation of rooted trees blends the language
of botanical trees and that of family trees. In mathematics, a rooted tree is a tree in which
one vertex has been distinguished from the others and is designated the root. Given any
other vertex v in the tree, there is a unique path from the root to v. (After all, if there were
two distinct paths, a circuit could be constructed.) The number of edges in such a path is
called the level of v, and the height of the tree is the length of the longest such path. It is
traditional in drawing rooted trees to place the root at the top (as is done in family trees)
and show the branches descending from it.

• Definition

A rooted tree is a tree in which there is one vertex that is distinguished from the
others and is called the root. The level of a vertex is the number of edges along the
unique path between it and the root. The height of a rooted tree is the maximum
level of any vertex of the tree. Given the root or any internal vertex v of a rooted
tree, the children of v are all those vertices that are adjacent to v and are one level
farther away from the root than v. If w is a child of v, then v is called the parent
of w, and two distinct vertices that are both children of the same parent are called
siblings. Given two distinct vertices v and w, if v lies on the unique path between w

and the root, then v is an ancestor of w and w is a descendant of v.
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These terms are illustrated in Figure 10.6.1.

Level 0

Level 1

Level 2

Level 3

Level 4

u

v
w

Vertices in the enclosed region
are descendants of u, which
is an ancestor of each.

v is a child of u.
u is the parent of v.
v and w are siblings.

Root

Figure 10.6.1 A Rooted Tree

Example 10.6.1 Rooted Trees

Consider the tree with root v0 shown below.

a. What is the level of v5? b. What is the level of v0?

c. What is the height of this rooted tree? d. What are the children of v3?

e. What is the parent of v2? f. What are the siblings of v8?

g. What are the descendants of v3?

v1 v2 v3

v4

v7 v8 v9 v10

v5 v6

v0

Solution

a. 2 b. 0 c. 3 d. v5 and v6 e. v0 f. v7 and v9 g. v5, v6, v10

■

Note that in the tree with root v0 shown below, v1 has level 1 and is the child of v0,
and both v0 and v1 are terminal vertices.

v1

v0

Binary Trees
When every vertex in a rooted tree has at most two children and each child is designated
either the (unique) left child or the (unique) right child, the result is a binary tree.
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• Definition

A binary tree is a rooted tree in which every parent has at most two children. Each
child in a binary tree is designated either a left child or a right child (but not both),
and every parent has at most one left child and one right child. A full binary tree is
a binary tree in which each parent has exactly two children.

Given any parent v in a binary tree T , if v has a left child, then the left subtree
of v is the binary tree whose root is the left child of v, whose vertices consist of the
left child of v and all its descendants, and whose edges consist of all those edges
of T that connect the vertices of the left subtree. The right subtree of v is defined
analogously.

These terms are illustrated in Figure 10.6.2.

v is the left
child of u.

v

u

Root

w x is the right
child of w.

x

Left subtree of w Right subtree of w

Figure 10.6.2 A Binary Tree

Example 10.6.2 Representation of Algebraic Expressions

Binary trees are used in many ways in computer science. One use is to represent algebraic
expressions with arbitrary nesting of balanced parentheses. For instance, the following
(labeled) binary tree represents the expression a/b: The operator is at the root and acts
on the left and right children of the root in left-right order.

/

a b

More generally, the binary tree shown below represents the expression a/(c + d). In
such a representation, the internal vertices are arithmetic operators, the terminal vertices
are variables, and the operator at each vertex acts on its left and right subtrees in left-right
order.

c d

/

a +

Draw a binary tree to represent the expression ((a − b) ·c)+ (d/e).
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Solution

a

d e– c

+

· /

b ■

An interesting theorem about binary trees says that if you know the number of internal
vertices of a full binary tree, then you can calculate both the total number of vertices and
the number of terminal vertices, and conversely. More specifically, a full binary tree with
k internal vertices has a total of 2k + 1 vertices of which k + 1 are terminal vertices.

Theorem 10.6.1

If k is a positive integer and T is a full binary tree with k internal vertices, then T
has a total of 2k + 1 vertices and has k + 1 terminal vertices.

Proof:

Suppose k is a positive integer and T is a full binary tree with k internal vertices.
Observe that the set of all vertices of T can be partitioned into two disjoint subsets:
the set of all vertices that have a parent and the set of all vertices that do not have
a parent. Now there is just one vertex that does not have a parent, namely the root.
Also, since every internal vertex of a full binary tree has exactly two children, the
number of vertices that have a parent is twice the number of parents, or 2k, since
each parent is an internal vertex. Hence[

the total number
of vertices of T

]
=

⎡
⎣the number of
vertices that
have a parent

⎤
⎦ +

⎡
⎣the number of
vertices that do
not have a parent

⎤
⎦

= 2k + 1.

But it is also true that the total number of vertices of T equals the number of internal
vertices plus the number of terminal vertices. Thus[

the total number
of vertices of T

]
=

[
the number of
internal vertices

]
+

[
the number of
terminal vertices

]

= k +
[
the number of
terminal vertices

]
Now equate the two expressions for the total number of vertices of T:

2k + 1 = k +
[
the number of
terminal vertices

]
Solving this equation gives[

the number of
terminal vertices

]
= (2k + 1)− k = k + 1.

Thus the total number of vertices is 2k + 1 and the number of terminal vertices is
k + 1 [as was to be shown].
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Example 10.6.3 Determining Whether a Certain Full Binary Tree Exists

Is there a full binary tree that has 10 internal vertices and 13 terminal vertices?

Solution No. By Theorem 10.6.1, a full binary tree with 10 internal vertices has
10+ 1 = 11 terminal vertices, not 13. ■

Another interesting theorem about binary trees specifies the maximum number of
terminal vertices of a binary tree of a given height. Specifically, the maximum number of
terminal vertices of a binary tree of height h is 2h . Another way to say this is that a binary
tree with t terminal vertices has height of at least log2 t .

Theorem 10.6.2

For all integers h ≥ 0, if T is any binary tree with of height h and t terminal vertices,
then

t ≤ 2h .

Equivalently, log2 t ≤ h.

Proof (by strong mathematical induction):

Let P(h) be the sentence

If T is any binary tree of height h, then the number of ← P(h)

terminal vertices of T is at most 2h .

Show that P(0) is true: We must show that if T is any binary tree of height 0, then
the number of terminal vertices of T is at most 20. Suppose T is a tree of height 0.
Then T consists of a single vertex, the root. By definition this is a terminal vertex
and so the number of terminal vertices is t = 1 = 2◦ = 2h . Hence t ≤ 2h [as was to
be shown].

Show that for all integers k ≥ 0, if P(i) is true for all integers i from 0 through k,
then it is true for k + 1:
Let k be any integer with k ≥ 0, and suppose that

For all integers i from 0 through k, if T is any
binary tree of height i, then the number of ← inductive hypothesis

terminal vertices of T is at most 2i .

We must show that

If T is any binary tree of height k + 1, then the number of ← P(k + 1)

terminal vertices of T is 2k+1.

Let T be a binary tree of height k + 1, root v, and t terminal vertices. Because k ≥ 0,
we have that k + 1 ≥ 1 and so v has at least one child.

Case 1 (v has only one child): In this case we may assume without loss of generality
that v’s child is a left child and denote it by vL . Let TL be the left subtree of v. Then
vL is the root of TL . (This situation is illustrated in Figure 10.6.3.) Because v has
only one child, v is itself a terminal vertex, so the total number of terminal vertices
in T equals the number of terminal vertices in TL plus 1. Thus if tL is the number of
terminal vertices in TL , then t = tL + 1.
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10.6 Rooted Trees 699

Now by inductive hypothesis, tL ≤ 2k because the height of TL is k, one less
than the height of T . Also, because v has a child, k + 1 ≥ 1, and so 2k ≥ 20 = 1.
Therefore,

t = tL + 1 ≤ 2k + 1 ≤ 2k + 2k = 2 ·2k = 2(k+1).

Level 0

Level 1

Level 2

Level 3

Left subtree TL

vL

v

Figure 10.6.3 A Binary Tree Whose Root Has One Child

Case 2 (v has two children): In this case, v has both a left child, vL , and a right
child, vR , and vL and vR are roots of a left subtree TL and a right subtree TR . Note
that TL and TR are binary trees because T is a binary tree. (This situation is illustrated
in Figure 10.6.4.)

Level 0

Level 1

Level 2

Level 3

Level 4

v

vL vR

Right subtree TRLeft subtree TL

Figure 10.6.4 A Binary Tree Whose Root Has Two Children

Now vL and vR are the roots of the left and right subtrees of v, denoted TL and
TR , respectively. Note that TL and TR are binary trees because T is a binary tree.
Let hL and hR be the heights of TL and TR , respectively. Then hL ≤ k and hR ≤ k
since T is obtained by joining TL and TR and adding a level. Let tL and tR be the
numbers of terminal vertices of TL and TR , respectively. Then, since both TL and TR

have heights less than k + 1, by inductive hypothesis

tL ≤ 2hL and tR ≤ 2hR .

But the terminal vertices of T consist exactly of the terminal vertices of TL together
with the terminal vertices of TR . Therefore,

t = tL + tR ≤ 2hL + 2hR by inductive hypothesis
since hL ≤ k and hR ≤ k

continued on page 700
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Hence,

t ≤ 2k + 2k = 2 ·2k = 2k+1 by basic algebra.

Thus the number of terminal vertices is at most 2k + 1 [as was to be shown].

Since both the basis step and the inductive step have been proved, we conclude
that for all integers h ≥ 0, if T is any binary tree with height h and t terminal ver-
tices, then t ≤ 2h .

The equivalent inequality log2 t ≤ h follows from the fact that the logarithmic
function with base 2 is increasing. In other words, for all positive real numbers x
and y,

if x < y then log2 x < log2 y.

Thus if we apply the logarithmic function with base 2 to both sides of

t ≤ 2h,

we obtain

log2 t ≤ log2(2
h).

Now by definition of logarithm, log2(2
h) = h [because log2(2

h) is the exponent to
which 2 must be raised to obtain 2h]. Hence

log2 t ≤ h

[as was to be shown].

Example 10.6.4 Determining Whether a Certain Binary Tree Exists

Is there a binary tree that has height 5 and 38 terminal vertices?

Solution No. By Theorem 10.6.2, any binary tree T with height 5 has at most 25 = 32
terminal vertices, so such a tree cannot have 38 terminal vertices. ■

Test Yourself
1. A rooted tree is a tree in which _____. The level of a

vertex in a rooted tree is _____. The height of a rooted tree
is _____.

2. A binary tree is a rooted tree in which _____.

3. A full binary tree is a rooted tree in which _____.

4. If k is a positive integer and T is a full binary tree with k
internal vertices, then T has a total of _____ vertices and has
_____ terminal vertices.

5. If T is a binary tree that has t terminal vertices and height h,
then t and h are related by the inequality _____.

Exercise Set 10.6
1. Consider the tree shown at right with root a.

a. What is the level of n?
b. What is the level of a?
c. What is the height of this rooted tree?
d. What are the children of n?
e. What is the parent of g?
f. What are the siblings of j?
g. What are the descendants of f ?

j k

q r s t

x y z

l

e

b

a

d
c

f

m

u

n o p

g h i

v w
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10.7 Spanning Trees and Shortest Paths 701

2. Consider the tree shown below with root v0.
a. What is the level of v8?
b. What is the level of v0?
c. What is the height of this rooted tree?
d. What are the children of v10?
e. What is the parent of v5?
f. What are the siblings of v1?
g. What are the descendants of v12?

v7

v1

v3 v4

v0

v2

v6

v12

v17

v19v18

v16v15v14v13

v10
v11v8 v9

v5

3. Draw binary trees to represent the following expressions:
a. a ·b − (c/(d + e)) b. a/(b − c ·d)

In each of 4–20 either draw a graph with the given specifications
or explain why no such graph exists.

4. Full binary tree, five internal vertices

5. Full binary tree, five internal vertices, seven terminal ver-
tices

6. Full binary tree, seven vertices, of which four are internal
vertices

7. Full binary tree, twelve vertices

8. Full binary tree, nine vertices

9. Binary tree, height 3, seven terminal vertices

10. Full binary tree, height 3, six terminal vertices

11. Binary tree, height 3, nine terminal vertices

12. Full binary tree, eight internal vertices, seven terminal
vertices.

13. Binary tree, height 4, eight terminal vertices

14. Full binary tree, seven vertices

15. Full binary tree, nine vertices, five internal vertices

16. Full binary tree, four internal vertices

17. Binary tree, height 4, eighteen terminal vertices

18. Full binary tree, sixteen vertices

19. Full binary tree, height 3, seven terminal vertices

20. What can you deduce about the height of a binary tree if
you know that it has the following properties?
a. Twenty-five terminal vertices
b. Forty terminal vertices
c. Sixty terminal vertices

Answers for Test Yourself
1. one vertex is distinguished from the others and is called the root; the number of edges along the unique path between it and the
root; the maximum level of any vertex of the tree 2. every parent has at most two children 3. every parent has exactly two children
4. 2k + 1; k + 1 5. t ≤ 2h , or, equivalently, log2 t ≤ h

10.7 Spanning Trees and Shortest Paths
I contend that each science is a real science insofar as it is mathematics.
— Immanuel Kant, 1724–1804

An East Coast airline company wants to expand service to the Midwest and has received
permission from the Federal Aviation Authority to fly any of the routes shown in Fig-
ure 10.7.1.

St. Louis

Chicago

Minneapolis

Milwaukee
Detroit

Cincinnati

Louisville

Nashville

Figure 10.7.1
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702 Chapter 10 Graphs and Trees

The company wishes to legitimately advertise service to all the cities shown but, for
reasons of economy, wants to use the least possible number of individual routes to connect
them. One possible route system is given in Figure 10.7.2.

St. Louis

Chicago

Minneapolis

Milwaukee
Detroit

Cincinnati

Louisville

Nashville

Figure 10.7.2

Clearly this system joins all the cities. Is the number of individual routes minimal? The
answer is yes, and the reason may surprise you.

The fact is that the graph of any system of routes that satisfies the company’s wishes
is a tree, because if the graph were to contain a circuit, then one of the routes in the circuit
could be removed without disconnecting the graph (by Lemma 10.5.3), and that would
give a smaller total number of routes. But any tree with eight vertices has seven edges.
Therefore, any system of routes that connects all eight vertices and yet minimizes the
total number of routes consists of seven routes.

• Definition

A spanning tree for a graph G is a subgraph of G that contains every vertex of G
and is a tree.

The preceding discussion contains the essence of the proof of the following
proposition:

Proposition 10.7.1

1. Every connected graph has a spanning tree.

2. Any two spanning trees for a graph have the same number of edges.

Proof of (1):

Suppose G is a connected graph. If G is circuit-free, then G is its own spanning tree
and we are done. If not, then G has at least one circuit C1. By Lemma 10.5.3, the
subgraph of G obtained by removing an edge from C1 is connected. If this subgraph
is circuit-free, then it is a spanning tree and we are done. If not, then it has at least
one circuit C2, and, as above, an edge can be removed from C2 to obtain a connected
subgraph. Continuing in this way, we can remove successive edges from circuits,
until eventually we obtain a connected, circuit-free subgraph T of G. [This must
happen at some point because the number of edges of G is finite, and at no stage does
removal of an edge disconnect the subgraph.] Also, T contains every vertex of G
because no vertices of G were removed in constructing it. Thus T is a spanning tree
for G.

The proof of part (2) is left as an exercise.
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Example 10.7.1 Spanning Trees

Find all spanning trees for the graph G pictured below.

v5

v0

v4

v1

v3

v2

Solution The graph G has one circuit v2v1v4v2, and removal of any edge of the circuit
gives a tree. Thus, as shown below, there are three spanning trees for G.

v5

v0

v4

v1

v3

v2

v5

v0

v4

v1

v3

v2

v5

v0

v4

v1

v3

v2 ■

Minimum Spanning Trees
The graph of the routes allowed by the Federal Aviation Authority shown in Figure 10.7.1
can be annotated by adding the distances (in miles) between each pair of cities. This is
done in Figure 10.7.3.

St. Louis

Chicago

Minneapolis

Milwaukee
Detroit

Cincinnati

Louisville

Nashville

355

695
74

262

242

348

151

83

230

269
306

Figure 10.7.3

Now suppose the airline company wants to serve all the cities shown, but with a route
system that minimizes the total mileage. Note that such a system is a tree, because if the
system contained a circuit, removal of an edge from the circuit would not affect a person’s
ability to reach every city in the system from every other (again, by Lemma 10.5.3), but
it would reduce the total mileage of the system.

More generally, a graph whose edges are labeled with numbers (known as weights) is
called aweighed graph. Aminimum-weight spanning tree, or simply aminimum spanning
tree, is a spanning tree for which the sum of the weights of all the edges is as small as
possible.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



704 Chapter 10 Graphs and Trees

• Definition

A weighted graph is a graph for which each edge has an associated positive real
number weight. The sum of the weights of all the edges is the total weight of the
graph. A minimum spanning tree for a connected weighted graph is a spanning
tree that has the least possible total weight compared to all other spanning trees for
the graph.

If G is a weighed graph and e is an edge of G, then w(e) denotes the weight of e and
w(G) denotes the total weight of G.

The problem of finding a minimum spanning tree for a graph is certainly solvable.
One solution is to list all spanning trees for the graph, compute the total weight of each,
and choose one for which this total is a minimum. (Note that the well-ordering principle
for the integers guarantees the existence of such a minimum total.) This solution, how-
ever, is inefficient in its use of computing time because the number of distinct spanning
trees is so large. For instance, a complete graph with n vertices has nn−2 spanning trees.
Even using the fastest computers available today, examining all such trees in a graph with
approximately 100 vertices would require more time than is estimated to remain in the
life of the universe.

In 1956 and 1957 Joseph B. Kruskal and Robert C. Prim each described much more
efficient algorithms to construct minimum spanning trees. Even for large graphs, both
algorithms can be implemented so as to take relatively short computing times.

Kruskal’s Algorithm
In Kruskal’s algorithm, the edges of a connected weighted graph are examined one by
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Joseph Kruskal
(born 1928)

one in order of increasing weight. At each stage the edge being examined is added to
what will become the minimum spanning tree, provided that this addition does not create
a circuit. After n − 1 edges have been added (where n is the number of vertices of the
graph), these edges, together with the vertices of the graph, form a minimum spanning
tree for the graph.

Algorithm 10.7.1 Kruskal

Input: G [a connected weighted graph with n vertices, where n is a positive integer]

Algorithm Body:
[Build a subgraph T of G to consist of all the vertices of G with edges added in order of
increasing weight. At each stage, let m be the number of edges of T .]

1. Initialize T to have all the vertices of G and no edges.

2. Let E be the set of all edges of G, and let m := 0.

3. while (m < n − 1)

3a. Find an edge e in E of least weight.
3b. Delete e from E .
3c. if addition of e to the edge set of T does not produce a circuit

then add e to the edge set of T and set m := m + 1

end while
Output: T [T is a minimum spanning tree for G.]
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The following example shows how Kruskal’s algorithm works for the graph of the
airline route system.

Example 10.7.2 Action of Kruskal’s Algorithm

Describe the action of Kruskal’s algorithm on the graph shown in Figure 10.7.4, where
n = 8.

St. Louis

Chicago

Minneapolis

Milwaukee
Detroit

Cincinnati

Louisville

Nashville

355

695
74

262

242

348

151

83

230

269
306

Figure 10.7.4

Solution Iteration Number Edge Considered Weight Action Taken

1 Chicago–Milwaukee 74 added
2 Louisville–Cincinnati 83 added
3 Louisville–Nashville 151 added
4 Cincinnati–Detroit 230 added
5 St. Louis–Louisville 242 added
6 St. Louis–Chicago 262 added
7 Chicago–Louisville 269 not added
8 Louisville–Detroit 306 not added
9 Louisville–Milwaukee 348 not added

10 Minneapolis–Chicago 355 added

The tree produced by Kruskal’s algorithm is shown in Figure 10.7.5.

Minneapolis

Milwaukee

Chicago

355

74

262

St. Louis
242

Nashville

Louisville

Cincinnati

Detroit

151

83

230

Figure 10.7.5 ■

When Kruskal’s algorithm is used on a graph in which some edges have the same
weight as others, more than one minimum spanning tree can occur as output. To make
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the output unique, the edges of the graph can be placed in an array and edges having the
same weight can be added in the order they appear in the array.

It is not obvious from the description of Kruskal’s algorithm that it does what it is
supposed to do. To be specific, what guarantees that it is possible at each stage to find an
edge of least weight whose addition does not produce a circuit? And if such edges can
be found, what guarantees that they will all eventually connect? And if they do connect,
what guarantees that the resulting tree has minimum weight? Of course, the mere fact
that Kruskal’s algorithm is printed in this book may lead you to believe that everything
works out. But the questions above are real, and they deserve serious answers.

Theorem 10.7.2 Correctness of Kruskal’s Algorithm

When a connected, weighted graph is input to Kruskal’s algorithm, the output is a
minimum spanning tree.

Proof:

Suppose that G is a connected, weighted graph with n vertices and that T is a sub-
graph of G produced when G is input to Kruskal’s algorithm. Clearly T is circuit-
free [since no edge that completes a circuit is ever added to T]. Also T is connected.
For as long as T has more than one connected component, the set of edges of G that
can be added to T without creating a circuit is nonempty. [The reason is that since G
is connected, given any vertex v1 in one connected component C1 of T and any vertex
v2 in another connected component C2, there is a path in G from v1 to v2. Since C1 and
C2 are distinct, there is an edge e of this path that is not in T . Adding e to T does not
create a circuit in T , because deletion of an edge from a circuit does not disconnect a
graph and deletion of e would.] The preceding arguments show that T is circuit-free
and connected. Since by construction T contains every vertex of G, T is a spanning
tree for G.

Next we show that T has minimum weight. Let T1 be any minimum spanning
tree for G such that the number of edges T1 and T have in common is a maximum.
Suppose that T �= T1. Then there is an edge e in T that is not an edge of T1. [Since
trees T and T1 both have the same vertex set, if they differ at all, they must have different,
but same-size, edge sets.] Now adding e to T1 produces a graph with a unique circuit
(see exercise 19 at the end of this section). Let e′ be an edge of this circuit such
that e′ is not in T . [Such an edge must exist because T is a tree and hence circuit-free.]
Let T2 be the graph obtained from T1 by removing e′ and adding e. This situation is
illustrated below.

e (add  to T1 to form T2.)

e' (remove  from T1 to form T2.)

The entire graph is G. T1
has black edges. e is in T
but not T1. e′ is in T1 but
not T .

Note that T2 has n − 1 edges and n vertices and that T2 is connected [since by Lemma
10.5.3 the subgraph obtained by removing an edge from a circuit in a connected graph
is connected]. Consequently, T2 is a spanning tree for G. In addition,

w(T2) = w(T1)− w(e′)+ w(e).

Now w(e) ≤ w(e′) because at the stage in Kruskal’s algorithm when e was added
to T , e′ was available to be added [since it was not already in T , and at that stage its
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10.7 Spanning Trees and Shortest Paths 707

addition could not produce a circuit since e was not in T ], and e′ would have been added
had its weight been less than that of e. Thus

w(T2) = w(T1)− [w(e′)− w(e)]︸ ︷︷ ︸
≥0

≤ w(T1).

But T1 is a minimum spanning tree. Since T2 is a spanning tree with weight less than
or equal to the weight of T1, T2 is also a minimum spanning tree for G.

Finally, note that by construction, T2 has one more edge in common with T than
T1 does, which contradicts the choice of T1 as a minimum spanning tree for G with
a maximum number of edges in common with T . Thus the supposition that T �= T1

is false, and hence T itself is a minimum spanning tree for G.

Prim’s Algorithm
Prim’s algorithm works differently from Kruskal’s. It builds a minimum spanning tree T
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Robert Prim
(born 1921)

by expanding outward in connected links from some vertex. One edge and one vertex are
added at each stage. The edge added is the one of least weight that connects the vertices
already in T with those not in T , and the vertex is the endpoint of this edge that is not
already in T .

Algorithm 10.7.2

Input: G [a connected weighted graph with n vertices where n is a positive integer]

Algorithm Body:
[Build a subgraph T of G by starting with any vertex v of G and attaching edges (with
their endpoints) one by one to an as-yet-unconnected vertex of G, each time choosing an
edge of least weight that is adjacent to a vertex of T .]

1. Pick a vertex v of G and let T be the graph with one vertex, v, and no edges.

2. Let V be the set of all vertices of G except v.

3. for i := 1 to n − 1

3a. Find an edge e of G such that (1) e connects T to one of the vertices in
V , and (2) e has the least weight of all edges connecting T to a vertex
in V . Let w be the endpoint of e that is in V .

3b. Add e and w to the edge and vertex sets of T , and delete w from V .

next i

Output: T [T is a minimum spanning tree for G.]

The following example shows how Prim’s algorithm works for the graph of the airline
route system.

Example 10.7.3 Action of Prim’s Algorithm

Describe the action of Prim’s algorithm for the graph in Figure 10.7.6 using the Min-
neapolis vertex as a starting point.
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Figure 10.7.6

Solution Iteration Number Vertex Added Edge Added Weight

0 Minneapolis
1 Chicago Minneapolis–Chicago 355
2 Milwaukee Chicago–Milwaukee 74
3 St. Louis Chicago–St. Louis 262
4 Louisville St. Louis–Louisville 242
5 Cincinnati Louisville–Cincinnati 83
6 Nashville Louisville–Nashville 151
7 Detroit Cincinnati–Detroit 230 ■

Note that the tree obtained is the same as that obtained by Kruskal’s algorithm, but
the edges are added in a different order.

As with Kruskal’s algorithm, in order to ensure a unique output, the edges of the
graph could be placed in an array and those with the same weight could be added in the
order they appear in the array. It is not hard to see that when a connected graph is input to
Prim’s algorithm, the result is a spanning tree. What is not so clear is that this spanning
tree is a minimum. The proof of the following theorem establishes that it is.

Theorem 10.7.3 Correctness of Prim’s Algorithm

When a connected, weighted graph G is input to Prim’s algorithm, the output is a
minimum spanning tree for G.

Proof:

Let G be a connected, weighted graph, and suppose G is input to Prim’s algorithm.
At each stage of execution of the algorithm, an edge must be found that connects a
vertex in a subgraph to a vertex outside the subgraph. As long as there are vertices
outside the subgraph, the connectedness of G ensures that such an edge can always
be found. [For if one vertex in the subgraph and one vertex outside it are chosen, then
by the connectedness of G there is a walk in G linking the two. As one travels along
this walk, at some point one moves along an edge from a vertex inside the subgraph to a
vertex outside the subgraph.]

Now it is clear that the output T of Prim’s algorithm is a tree because the edge
and vertex added to T at each stage are connected to other edges and vertices of T

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



10.7 Spanning Trees and Shortest Paths 709

and because at no stage is a circuit created since each edge added connects vertices
in two disconnected sets. [Consequently, removal of a newly added edge produces a
disconnected graph, whereas by Lemma 10.5.3, removal of an edge from a circuit
produces a connected graph.] Also, T includes every vertex of G because T , being
a tree with n − 1 edges, has n vertices [and that is all G has]. Thus T is a spanning
tree for G.

Next we show that T has minimum weight. Let T1 be a minimum spanning tree
for G such that the number of edges T1 and T have in common is a maximum.
Suppose that T �= T1. Then there is an edge e in T that is not an edge of T1. [Since
trees T and T1 both have the same vertex set if they differ at all, they must have different,
same-size edge sets.] Of all such edges, let e be the last that was added when T was
constructed using Prim’s algorithm. Let S be the set of vertices of T just before the
addition of e. Then one endpoint, say v of e, is in S and the other, say w, is not.
Since T1 is a spanning tree, there is a path in T1 joining v to w. And since v ∈ S
and w �∈ S, as one travels along this path, one must encounter an edge e′ that joins a
vertex in S to one that is not in S and that therefore is not in T because e was the last
edge added to T . Now at the stage when e was added to T, e′ could also have been
added and it would have been added instead of e had its weight been less than that
of e. Since e′ was not added at that stage, we conclude that

w(e′) ≥ w(e).

Let T2 be the graph obtained from T1 by removing e′ and adding e. [Thus T2

has one more edge in common with T than T1 does.] Note that T2 is a tree. The rea-
son is that since e′ is part of a path in T1 from v to w, and e connects v and w,
adding e to T1 creates a circuit. When e′ is removed from this circuit, the resulting
subgraph remains connected. In fact, T2 is a spanning tree for G since no vertices
were removed in forming T2 from T1. The argument showing that w(T2) ≤ w(T1) is
left as an exercise. [It is virtually identical to part of the proof of Theorem 10.7.2.] It
follows that T2 is a minimum spanning tree for G.

By construction, T2 has one more edge in common with T than T1, does which
contradicts the choice of T1 as a minimum spanning tree for G with a maximum
number of edges in common with T . It follows that T = T1, and hence T itself is a
minimum spanning tree for G.

Example 10.7.4 Finding Minimum Spanning Trees

Find all minimum spanning trees for the following graph. Use Kruskal’s algorithm and
Prim’s algorithm starting at vertex a. Indicate the order in which edges are added to form
each tree.
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Solution When Kruskal’s algorithm is applied, edges are added in one of the following two
orders:

1. {d, f }, {a, c}, {a, b}, {c, d}, {d, e}
2. {d, f }, {a, c}, {b, c}, {c, d}, {d, e}
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710 Chapter 10 Graphs and Trees

When Prim’s algorithm is applied starting at a, edges are added in one of the following
two orders:

1. {a, c}, {a, b}, {c, d}, {d, f }, {d, e}
2. {a, c}, {b, c}, {c, d}, {d, f }, {d, e}
Thus, as shown below, there are two distinct minimum spanning trees for this graph.
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Dijkstra’s Shortest Path Algorithm
Although the trees produced by Kruskal’s and Prim’s algorithms have the least pos-

sible total weight compared to all other spanning trees for the given graph, they do not
always reveal the shortest distance between any two points on the graph. For instance,
according to the complete route system shown in Figure 10.7.3, one can fly directly from
Nashville to Minneapolis for a distance of 695 miles, whereas if you use the minimum
spanning tree shown in Figure 10.7.5 the only way to fly from Nashville to Minneapolis
is by going through Louisville, St. Louis, and Chicago, which gives a total distance of
151+ 242+ 262+ 355 = 1, 010 miles and the unpleasantness of three changes of plane.

In 1959 the computing pioneer, Edsgar Dijkstra (see Section 5.5), developed an algo-
rithm to find the shortest path between a starting vertex and an ending vertex in a weighted
graph in which all the weights are positive. It is somewhat similar to Prim’s algorithm in
that it works outward from a starting vertex a, adding vertices and edges one by one to
construct a tree T . However, it differs from Prim’s algorithm in the way it chooses the
next vertex to add, ensuring that for each added vertex v, the length of the shortest path
from a to v has been identified.

At the start of execution of the algorithm, each vertex u of G is given a label L(u),
which indicates the current best estimate of the length of the shortest path from a to u.
L(a) is initially set equal to 0 because the shortest path from a to a has length zero, but,
because there is no previous information about the lengths of the shortest paths from a to
any other vertices of G, the label L(u) of each vertex u other than a is initially set equal
to a number, denoted ∞, that is greater than the sum of the weights of all the edges of
G. As execution of the algorithm progresses, the values of L(u) are changed, eventually
becoming the actual lengths of the shortest paths from a to u in G.

Because T is built up outward from a, at each stage of execution of the algorithm
the only vertices that are candidates to join T are those that are adjacent to at least one
vertex of T . Thus at each stage of Dijkstra’s algorithm, the graph G can be thought of as
divided into three parts: the tree T that is being built up, the set of “fringe” vertices that
are adjacent to at least one vertex of the tree, and the rest of the vertices of G. Each fringe
vertex is a candidate to be the next vertex added to T . The one that is chosen is the one
for which the length of the shortest path to it from a through T is a minimum among all
the vertices in the fringe.

An essential observation underlying Dijkstra’s algorithm is that after each addition of
a vertex v to T , the only fringe vertices for which a shorter path from a might be found
are those that are adjacent to v [because the length of the path from a to v was a minimum
among all the paths from a to vertices in what was then the fringe]. So after each addition
of a vertex v to T , each fringe vertex u adjacent to v is examined and two numbers are
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10.7 Spanning Trees and Shortest Paths 711

compared: the current value of L(u) and the value of L(v)+ w(v, u), where L(v) is the
length of the shortest path to v (in T ) and w(v, u) is the weight of the edge joining v and
u. If L(v)+ w(v, u) < L(u), then the value of L(u) is changed to L(v)+ w(v, u).

At the beginning of execution of the algorithm, the tree consists only of the vertex
a, and L(a) = 0. When execution terminates, L(z) is the length of a shortest path from
a to z.

As with Kruskal’s and Prim’s algorithms for finding minimum spanning trees, there
is a simple but dramatically inefficient way to find the shortest path from a to z: compute
the lengths of all the paths and choose one that is shortest. The problem is that even for
relatively small graphs using this method to find a shortest path could require billions of
years, whereas Dijkstra’s algorithm could do the job in a few seconds.

Algorithm 10.7.3 Dijkstra

Input: G [a connected simple graph with a positive weight for every edge],∞ [a num-
ber greater than the sum of the weights of all the edges in the graph],w(u, v) [the weight
of edge {u, v}], a [the starting vertex], z [the ending vertex]

Algorithm Body:

1. Initialize T to be the graph with vertex a and no edges. Let V (T ) be the set of
vertices of T , and let E(T ) be the set of edges of T .

2. Let L(a) = 0, and for all vertices in G except a, let L(u) = ∞.
[The number L(x) is called the label of x.]

3. Initialize v to equal a and F to be {a}.
[The symbol v is used to denote the vertex most recently added to T.]

4. while (z �∈ V (T ))

4a. F := (F − {v})∪ {vertices that are adjacent to v and are not in V (T )}
[The set F is called the fringe. Each time a vertex is added to T, it is removed
from the fringe and the vertices adjacent to it are added to the fringe if they are
not already in the fringe or the tree T.]

4b. For each vertex u that is adjacent to v and is not in V (T ),
if L(v)+ w(v, u) < L(u) then

L(u) := L(v)+ w(v, u)

D(u) := v

[Note that adding v to T does not affect the labels of any vertices in the fringe F
except those adjacent to v. Also, when L(u) is changed to a smaller value, the
notation D(u) is introduced to keep track of which vertex in T gave rise to the
smaller value.]

Note The unique path
in the tree T from a to z is
the shortest path in G
from a to z.

4c. Find a vertex x in F with the smallest label
Add vertex x to V (T ), and add edge {D(x), x} to E(T )

v := x [This statement sets up the notation for the next iteration of the loop.]

end while

Output: L(z) [L(z), a nonnegative integer, is the length of the shortest path from
a to z.]

The action of Dijkstra’s algorithm is illustrated by the flow of the drawings in
Example 10.7.5.
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712 Chapter 10 Graphs and Trees

Example 10.7.5 Action of Dijkstra’s Algorithm

Show the steps in the execution of Dijkstra’s shortest path algorithm for the graph shown
below with starting vertex a and ending vertex z.
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Solution
Step 1: Going into the while loop: V (T ) = {a}, E(T ) = ∅, and F = {a}
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During iteration:
F = {b, c}, L(b) = 3, L(c) = 4.
Since L(b) < L(c), b is added to
V (T ) and {a, b} is added to E(T ).

Step 2: Going into the while loop: V (T ) = {a, b}, E(T ) = {{a, b}}
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During iteration:
F = {c, d, e}, L(c) = 4, L(d) = 9,
L(e) = 8.
Since L(c) < L(d) and L(c) < L(e), c is
added to V (T ) and {a, c} is added to E(T ).

Step 3: Going into the while loop: V (T ) = {a, b, c}, E(T ) = {{a, b}, {a, c}}
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During iteration:
F = {d, e}, L(d) = 9, L(e) = 5
L(e) becomes 5 because ace, which has
length 5, is a shorter path to e than abe,
which has length 8.
Since L(e) < L(d), e is added
to V (T ) and {c, e} is added to E(T ).

Step 4: Going into the while loop: V (T ) = {a, b, c, e},
E(T ) = {{a, b}, {a, c}, {c, e}}
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During iteration:
F = {d, z}, L(d) = 7, L(z) = 17
L(d) becomes 7 because aced, which has
length 7, is a shorter path to d than abd,
which has length 9.
Since L(d) < L(z), d is added to V (T )

and {e, d} is added to E(T ).

Step 5: Going into the while loop: V (T ) = {a, b, c, e, d},
E(T ) = {{a, b},{a, c}, {c, e}, {e, d}}
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During iteration: F = {z}, L(z) = 14
L(z) becomes 14 because acedz, which
has length 14, is a shorter path to d than
abdz, which has length 17.
Since z is the only vertex in F , its label
is a minimum, and so z is added to
V (T ) and {e, z} is added to E(T ).
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10.7 Spanning Trees and Shortest Paths 713

Execution of the algorithm terminates at this point because z ∈ V (T ). The shortest
path from a to z has length L(z) = 14. ■

Keeping track of the steps in a table is a convenient way to show the action of Dijk-
stra’s algorithm. Table 10.7.1 does this for the graph in Example 10.7.5.

Table 10.7.1

Step V (T ) E(T ) F L(a) L(b) L(c) L(d) L(e) L(z)

0 {a} ∅ {a} 0 ∞ ∞ ∞ ∞ ∞
1 {a} ∅ {b, c} 0 3 4 ∞ ∞ ∞
2 {a, b} {{a, b}} {c, d, e} 0 3 4 9 8 ∞
3 {a, b, c} {{a, b}, {a, c}} {d, e} 0 3 4 9 5 ∞
4 {a, b, c, e} {{a, b}, {a, c}, {c, e}} {d, z} 0 3 4 7 5 17

5 {a, b, c, e, d} {{a, b}, {a, c}, {c, e}, {e, d}} {z} 0 3 4 7 5 14

6 {a, b, c, e, d, z} {{a, b}, {a, c}, {c, e}, {e, d}, {e, z}}

It is clear that Dijkstra’s algorithm keeps adding vertices to I until it has added z. The
proof of the following theorem shows that when the algorithm terminates, the label z goes
the length of the shortest path to it from a.

Theorem 10.7.4 Correctness of Dijkstra’s Algorithm

When a connected, simple graph with a positive weight for every edge is input to
Dijkstra’s algorithm with starting vertex a and ending vertex z, the output is the
length of a shortest path from a to z.

Proof:

Let G be a connected, weighted graph with no loops or parallel edges and with a
positive weight for every edge. Let T be the graph built up by Dijkstra’s algorithm,
and for each vertex u in G, let L(u) be the label given by the algorithm to vertex u.
For each integer n ≥ 0, let the property P(n) be the sentence

After the nth iteration of the while loop in Dijkstra’s algorithm,

(1) T is a tree, and (2) for every vertex v in T, L(v) is the length of a ← P(n)

shortest path in G from a to v.

We will show by mathematical induction that P(n) is true for all integers n from 0
through the termination of the algorithm.

Show that P(0) is true: When n = 0, the graph T is a tree because it is defined
to consist only of the vertex a and no edges. In addition, L(a) is the length of the
shortest path from a to a because the initial value of L(a) is 0.

Show that for all integers k ≥ 0, if P(k) is true then P(k+ 1) is also true: Let k be
any integer with k ≥ 0 and suppose that

After the kth iteration of the while loop in Dijkstra’s algorithm, (1) T ← P(k)

is a tree, and (2) for every vertex v in T, L(v) is the length of a inductive

shortest path in G from a to v.
hypothesis

We must show that

After the (k + 1)st iteration of the while loop in Dijkstra’s
algorithm, (1) T is a tree, and (2) for every vertex v in T, ← P(k + 1)

L(v) is the length of a shortest path in G from a to v.

continued on page 714
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714 Chapter 10 Graphs and Trees

So suppose that after the (k + 1)st iteration of thewhile loop in Dikjstra’s algorithm,
the vertex v and edge {x, v} have been added to T , where x is in V (T ). Clearly the
new value of T is a tree because adding a new vertex and edge to a tree does not
create a circuit and does not disconnect the tree. By inductive hypothesis for each
vertex y in the tree before the addition of v, L(y) is the length of a shortest path
from a to y. So it remains only to show that L(v) is the length of a shortest path
from a to v.

Now, according to the algorithm, the final value of L(v) = L(x)+ w(x, v). Con-
sider any shortest path from a to v, and let {s, t} be the first edge in this path to leave
T , where s ∈ V (T ) and t �∈ V (T ). This situation is illustrated below.

a
s

x

v

t

Let LSP(a, v) be the length of a shortest path from a to v, and let LSP(a, s) be
the length of a shortest path from a to s. Observe that

LSP(a, v) ≥ LSP(a, s)+ w(s, t) because the path from t to v has length ≥ 0

≥ L(s)+ w(s, t) by inductive hypothesis because s is a vertex in T

≥ L(x)+ w(x, v)
t is in the fringe of the tree, and so if L(s)+w(s, t)
were less than L(x)+w(x, v) then t would have
been added to T instead of v.

On the other hand

L(x)+ w(x, v) ≥ LSP(a, v)
because L(x)+w(x , v) is the length of a path from
a to v and so it is greater than or equal to the length
of the shortest path from a to v.

It follows that LSP(a, v) = L(x)+ w(x, v),

and, since L(v) = L(x)+ w(x, v),

L(v) is the length of a shortest path from a to v. This completes the proof by math-
ematical induction.

The algorithm terminates as soon as z is in T , and, since we have proved that
the label of every vertex in the tree gives the length of the shortest path to it from a,
then, in particular, L(z) is the length of a shortest path from a to z.

Test Yourself
1. A spanning tree for a graph G is _____.

2. A weighted graph is a graph for which _____, and the total
weight of the graph is _____.

3. A minimum spanning tree for a connected, weighted graph
is _____.

4. In Kruskal’s algorithm, the edges of a connected, weighted
graph are examined one by one in order of _____ starting
with _____.

5. In Prim’s algorithm, a minimum spanning tree is built by
expanding outward from an _____ in a sequence of ____.

6. In Dijkstra’s algorithm, a vertex is in the fringe if it is _____
vertex in the tree that is being built up.

7. At each stage of Dijkstra’s algorithm, the vertex that is added
to the tree is a vertex in the fringe whose label is a _____.
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Exercise Set 10.7
Find all possible spanning trees for each of the graphs in 1
and 2.

1.
a b

d c

2. v0 v1

v3 v2

Find a spanning tree for each of the graphs in 3 and 4.

3. a

g

b d

c e

f

4.

z

r s t

u

y

x

v
w

Use Kruskal’s algorithm to find a minimum spanning tree for
each of the graphs in 5 and 6. Indicate the order in which edges
are added to form each tree.

5.

a

b c

e

g

d

f

1

8 10

9

7

3
4

2

6
5

6. v1v0

v7v6

v5 v4
v3 v2

12

13

10 2
4 7

8 15

5

18

20

19

Use Prim’s algorithm starting with vertex a or v0 to find a min-
imum spanning tree for each of the graphs in 7 and 8. Indicate
the order in which edges are added to form each tree.

7. The graph of exercise 5. 8. The graph of exercise 6.

For each of the graphs in 9 and 10, find all minimum spanning
trees that can be obtained using (a) Kruskal’s algorithm and (b)
Prim’s algorithm starting with vertex a or t . Indicate the order
in which edges are added to form each tree.

9.

4

4

4

1

5

3

3
7

7
11

12

10

a

g
f

b

c

d
e

10. t

w x y z

u v

3 15 1 8
10

7

7

5 2 5

2

11. A pipeline is to be built that will link six cities. The cost (in
hundreds of millions of dollars) of constructing each poten-
tial link depends on distance and terrain and is shown in the
weighted graph below. Find a system of pipelines to con-
nect all the cities and yet minimize the total cost.

Albuquerque
Phoenix

Salt Lake City Cheyenne

Denver

Amarillo

1.8

2.2

1.6

1.2

1.9
2.5

2.9

0.8

1.5

1.1

1.7

12. Use Dijkstra’s algorithm for the airline route system of Fig-
ure 10.7.3 to find the shortest distance from Nashville to
Minneapolis. Make a table similar to Table 10.7.1 to show
the action of the algorithm.

Use Dijkstra’s algorithm to find the shortest path from a to z for
each of the graphs in 13–16. In each case make tables similar to
Table 10.7.1 to show the action of the algorithm.

13.

a

b

d

c

e

z

2

8

10

3

15

2

1

14.

a

b

e

d

g

z

1

20

f

c

87
1

1 1

4
1 1

15. The graph of exercise 9 with a = a and z = f

16. The graph of exercise 10 with a = u and z = w

17. Prove part (2) of Proposition 10.7.1: Any two spanning
trees for a graph have the same number of edges.

18. Given any two distinct vertices of a tree, there exists a
unique path from one to the other.
a. Give an informal justification for the above statement.
b.✶ Write a formal proof of the above statement.
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716 Chapter 10 Graphs and Trees

19. Prove that if G is a graph with spanning tree T and e is
an edge of G that is not in T , then the graph obtained by
adding e to T contains one and only one set of edges that
forms a circuit.

20. Suppose G is a connected graph and T is a circuit-free sub-
graph of G. Suppose also that if any edge e of G not in T
is added to T , the resulting graph contains a circuit. Prove
that T is a spanning tree for G.

21. a. Suppose T1 and T2 are two different spanning trees for
a graph G. Must T1 and T2 have an edge in common?
Prove or give a counterexample.

b. Suppose that the graph G in part (a) is simple. Must T1

and T2 have an edge in common? Prove or give a coun-
terexample.

22.H Prove that an edge e is contained in every spanning tree for
a connected graph G if, and only if, removal of e discon-
nects G.

23. Consider the spanning trees T1 and T2 in the proof of The-
orem 10.7.3. Prove that w(T2) ≤ w(T1).

24. Suppose that T is a minimum spanning tree for a connected,
weighted graphG and thatG contains an edge e (not a loop)
that is not in T . Let v and w be the endpoints of e. By exer-
cise 18 there is a unique path in T from v to w. Let e′ be
any edge of this path. Prove that w(e′) ≤ w(e).

25.H Prove that if G is a connected, weighted graph and e is an
edge of G (not a loop) that has smaller weight than any
other edge of G, then e is in every minimum spanning tree
for G.

26.✶ If G is a connected, weighted graph and no two edges of G
have the same weight, does there exist a unique minimum
spanning tree for G? Use the result of exercise 19 to help
justify your answer.

27.✶ Prove that if G is a connected, weighted graph and e is an
edge of G that (1) has greater weight than any other edge
of G and (2) is in a circuit of G, then there is no minimum
spanning tree T for G such that e is in T .

28. Suppose a disconnected graph is input to Kruskal’s algo-
rithm. What will be the output?

29. Suppose a disconnected graph is input to Prim’s algorithm.
What will be the output?

30. Prove that if a connected, weighted graph G is input to
Algorithm 10.7.4 (shown below), the output is a minimum
spanning tree for G.

Algorithm 10.7.4

Input: G [a connected graph]

Algorithm Body:

1. T := G.

2. E := the set of all edges of G,m := the number of edges
of G.

3. while (m > 0)

3a. Find an edge e in E that has maximal weight.
3b. Remove e from E and set m := m − 1.
3c. if the subgraph obtained when e is removed from

the edge set of T is connected then remove e from
the edge set of T

end while

Output: T [a minimum spanning tree for G]

31. Modify Algorithm 10.7.3 so that the output consists of the
sequence of edges in the shortest path from a to z.

Answers for Test Yourself
1. a subgraph of G that contains every vertex of G and is a tree. 2. each edge has an associated positive real number weight; the sum
of the weights of all the edges of the graph 3. a spanning tree that has the least possible total weight compared to all other spanning
trees for the graph 4. weight; an edge of least weight 5. initial vertex; adjacent vertices and edges 6. adjacent to a 7. minimum
among all those in the fringe
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CHAPTER 11

ANALYSIS OF ALGORITHM
EFFICIENCY

In 1637 the French mathematician and philosopher René Descartes published his great
philosophical work Discourse on Method. An appendix to this work, called “Geometry,”
laid the foundation for the subject of analytic geometry, in which geometric methods are
applied to the study of algebraic objects, such as functions, equations, and inequalities,
and algebraic methods are used to study geometric objects, such as straight lines, circles,
and half-planes.
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René Descartes
(1596–1650)

The analytic geometry of Descartes provides the foundation for the main topic of
this chapter: the big-O, big-Omega, and big-Theta notations and their application to the
analysis of algorithms. In Section 11.1 we brie y discuss certain properties of graphs of
real-valued functions of a real variable that are needed to understand these notations. In
Section 11.2 we define the notations and apply them to power and polynomial functions,
and in Section 11.3 we show how the notations are used to study the efficiency of algo-
rithms. Because the analysis of algorithms often involves logarithmic and exponential
functions, we develop the needed properties of these functions in Section 11.4 and use
them to analyze several algorithms in Section 11.5.

11.1 Real-Valued Functions of a Real Variable
and Their Graphs
The first precept was never to accept a thing as true until I knew it as such without a
single doubt —René Descartes, 1637

A Cartesian plane or two-dimensional Cartesian coordinate system is a pictorial
representation of R × R obtained by setting up a one-to-one correspondence between
ordered pairs of real numbers and points in a Euclidean plane. To obtain it, two perpen-
dicular lines, called the horizontal and vertical axes, are drawn in the plane. Their point
of intersection is called the origin, and a unit of distance is chosen for each axis. An
ordered pair (x, y) of real numbers corresponds to the point P that lies |x | units to the
right or left of the vertical axis and |y| units above or below the horizontal axis. On each
axis the positive direction is marked with an arrow.

A real-valued function of a real variable is a function from one set of real numbers
to another. If f is such a function, then for each real number x in the domain of f , there
is a unique corresponding real number f (x). Thus it is possible to define the graph of f
as follows:

• Definition

Let f be a real-valued function of a real variable. The graph of f is the set of all
points (x, y) in the Cartesian coordinate plane with the property that x is in the
domain of f and y = f (x).
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718 Chapter 11 Analysis of Algorithm Efficiency

The definition of graph (see Figure 11.1.1) means that for all x in the domain of f :

y = f (x) ⇔ the point (x, y) lies on the graph of f.

Graph of f

(x, f (x))

x

f (x) = the height of
the graph of f at x

Figure 11.1.1 Graph of a Function f

Note that if f (x) can be written as an algebraic expression in x , the graph of the
function f is the same as the graph of the equation y = f (x) where x is restricted to lie
in the domain of f .

Power Functions
A function that sends a real number x to a particular power, xa , is called a power
function. For applications in computer science, we are almost invariably concerned with
situations where x and a are nonnegative, and so we restrict our definition to these cases.

• Definition

Let a be any nonnegative real number. Define pa , the power function with expo-
nent a, as follows:

pa(x) = xa for each nonnegative real number x .

Example 11.1.1 Graphs of Power Functions

Plot the graphs of the power functions p0, p1/2, p1, and p2 on the same coordinate axes.

Solution Because the power function with exponent zero satisfies p0(x) = x0 = 1 for all
nonnegative numbers x ,∗ all points of the form (x, 1) lie on the graph of p0 for all
such x . So the graph is just a horizontal half-line of height 1 lying above the horizon-
tal axis. Similarly, p1(x) = x for all nonnegative numbers x , and so the graph of p1
consists of all points of the form (x, x) where x is nonnegative. The graph is therefore
the half-line of slope 1 that emanates from (0, 0).

Since for each nonnegative number x, p1/2(x) = x1/2 = √x , any point with coordi-
nates (x,

√
x), where x is nonnegative, is on the graph of p1/2. For instance, the graph of

∗As in Section 9.7 (see page 598), for simplicity we define 00 = 1.
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p1/2 contains the points (0, 0), (1, 1), (4, 2), and (9, 3). Similarly, since p2(x) = x2, any
point with coordinates (x, x2) lies on the graph of p2. Thus, for instance, the graph of p2
contains the points (0, 0), (1, 1), (2, 4), and (3, 9).

The graphs of all four functions are shown in Figure 11.1.2.

x

y
y = x2

y = x

y = x1/2

y = 1

Figure 11.1.2 Graphs of Some Power Functions ■

The Floor Function
The floor and ceiling functions arise in many computer science contexts. Example 11.1.2
illustrates the graph of the floor function. In exercise 6 at the end of this section you are
asked to draw the graph of the ceiling function.

Example 11.1.2 Graph of the Floor Function

Recall that each real number either is an integer itself or sits between two consecutive
integers: For each real number x , there exists a unique integer n such that n ≤ x < n + 1.
The floor of a number is the integer immediately to its left on the number line. More
formally, the floor function F is defined by the rule

For each real number x ,

F(x) = �x�
= the greatest integer that is less than or equal to x
= the unique integer n such that n ≤ x < n + 1.

Graph the floor function.

Solution If n is any integer, then for each real number x in the interval n ≤ x < n + 1, the
floor of x, �x�, equals n. Thus on each such interval, the graph of the floor function is
horizontal; for each x in the interval, the height of the graph is n.

It follows that the graph of the floor function consists of horizontal line segments, like
a staircase, as shown in Figure 11.1.3. The open circles at the right-hand edge of each step
are used to show that those points are not on the graph.
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x

y

y = �x�

1–1–2–3–4–5 2 3 54

–1

1

2

3

–2

–3

Figure 11.1.3 Graph of the Floor Function ■

Graphing Functions Defined on Sets of Integers
Many real-valued functions used in computer science are defined on sets of integers and
not on intervals of real numbers. Suppose you know what the graph of a function looks
like when it is given by a certain formula on an interval of real numbers. You can obtain
the graph of the function defined by the same formula on the integers in the interval
by selecting out only those points on the known graph with integers as their first coordi-
nates. For instance, if f is the function defined by the same formula as the power function
p1 but having as its domain the set of nonnegative integers, then f (n) = n for all non-
negative integers n. The graphs of p1, reproduced from Example 11.1.2, and f are shown
side-by-side below.

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

Graph of p1 where p1(x) = x
for all nonnegative real numbers x

Graph of f where f (n) = n
for all nonnegative integers n

Example 11.1.3 Graph of a Function Defined on a Set of Integers

Consider an integer version of the power function p1/2. In other words, define a function g
by the formula g(n) = n1/2 for all nonnegative integers n. Draw the graph of g.

Solution Look back at the graph of p1/2 in Figure 11.1.2. Draw the graph of g by repro-
ducing only those points on the graph of p1/2 with integer first coordinates. Thus for each
nonnegative integer n, the point (n, n1/2) is on the graph of g.

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

Graph of g where g(n) = n1/2 for all nonnegative integers n ■
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Graph of a Multiple of a Function
A multiple of a function is obtained by multiplying every value of the function by a fixed
number. To understand the concept of O-notation, it is helpful to understand the relation
between the graph of a function and the graph of a multiple of the function.

• Definition

Let f be a real-valued function of a real variable and let M be any real number. The
function M f , called themultiple of f by M or M times f , is the real-valued function
with the same domain as f that is defined by the rule

(M f )(x) = M ·( f (x)) for all x ∈ domain of f.

If the graph of a function is known, the graph of any multiple can easily be deduced.
Specifically, if f is a function and M is a real number, the height of the graph of M f
at any real number x is M times the quantity f (x). To sketch the graph of M f from the
graph of f , you plot the heights M ·( f (x)) on the basis of knowledge of M and visual
inspection of the heights f (x).

Example 11.1.4 Graph of a Multiple of a Function

Let f be the function whose graph is shown below. Sketch the graph of 2 f .

Graph of f

y

1–1–2–3–4–5–6 2 3 4 5 6

1

–1

–2

2

Solution At each real number x , you obtain the height of the graph of 2 f by measuring the
height of the graph of f at x and multiplying that number by 2. The result is the following
graph. Note that the general shapes of f and 2 f are very similar, but the graph of 2 f is
“stretched out”: the “highs” are twice as high and the “lows” are twice as low.

Graph of 2 f

y

1–1–2–3–4–5–6 2 3 4 5 6

1

–1

–2

–3

–4

2

3

4

■
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722 Chapter 11 Analysis of Algorithm Efficiency

Increasing and Decreasing Functions
Consider the absolute value function, A, which is defined as follows:

A(x) = |x | =
{

x if x ≥ 0
−x if x < 0

for all real numbers x .

When x ≥ 0, the graph of A is the same as the graph of y = x, the straight line with
slope 1 that passes through the origin (0, 0). For x < 0, the graph of A is the same as the
graph of y = −x , which is the straight line with slope−1 that passes through (0, 0). (See
Figure 11.1.4.)

x

y

1 2 3 4–1–2–3–4

1

–1

2

3

4

y = |x|

Figure 11.1.4 Graph of the Absolute Value Function

Note that as you trace from left to right along the graph to the left of the origin, the
height of the graph continually decreases. For this reason, the absolute value function is
said to be decreasing on the set of real numbers less than 0. On the other hand, as you
trace from left to right along the graph to the right of the origin, the height of the graph
continually increases. Consequently, the absolute value function is said to be increasing
on the set of real numbers greater than 0.

Since the height of the graph of a function f at a point x is f (x), these geometric
concepts translate to the following analytic definition.

• Definition

Let f be a real-valued function defined on a set of real numbers, and suppose the
domain of f contains a set S. We say that f is increasing on the set S if, and only if,

for all real numbers x1 and x2 in S, if x1 < x2 then f (x1) < f (x2).

We say that f is decreasing on the set S if, and only if,

for all real numbers x1 and x2 in S, if x1 < x2 then f (x1) > f (x2).

We say that f is an increasing (or decreasing) function if, and only if, f is increas-
ing (or decreasing) on its entire domain.

Figure 11.1.5 illustrates the analytic definitions of increasing and decreasing.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



11.1 Real-Valued Functions of a Real Variable and Their Graphs 723

f (x1) = the height
of graph at x1

f (x1) = the height
of graph at x1

f (x2) = the height
of graph at x2

f (x2) = the height
of graph at x2

x1

(x1,  f (x1))

(x2,  f (x2))

x2

 f (x1) <  f (x2)  f (x1) >  f (x2)

x x

(x1,  f (x1))

x1 x2

(x2,  f (x2))

An Increasing Function A Decreasing Function

(a) (b)

Figure 11.1.5

It follows almost immediately from the definitions that both increasing functions and
decreasing functions are one-to-one. You are asked to show this in the exercises.

Example 11.1.5 A Positive Multiple of an Increasing Function Is Increasing

Suppose that f is a real-valued function of a real variable that is increasing on a set S of
real numbers, and suppose M is any positive real number. Show that M f is also increasing
on S.

Solution Suppose x1 and x2 are particular but arbitrarily chosen elements of S such that

x1 < x2.

[We must show that (M f )(x1) < (M f )(x2).] From the facts that x1 < x2 and f is increas-
ing, it follows that

f (x1) < f (x2).

Then

M f (x1) < M f (x2),

since multiplying both sides of the inequality by a positive number does not change the
direction of the inequality. Hence, by definition of M f ,

(M f )(x1) < (M f )(x2),

and, consequently, M f is increasing on S. ■

It is also true that a positive multiple of a decreasing function is decreasing, that a
negative multiple of a increasing function is decreasing, and that a negative multiple of a
decreasing function is increasing. The proofs of these facts are left to the exercises.

Test Yourself
Answers to Test Yourself questions are located at the end of each section.

1. If f is a real-valued function of a real variable, then the
domain and co-domain of f are both _____.

2. A point (x, y) lies on the graph of a real-valued function of
a real variable f if, and only if, _____.
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724 Chapter 11 Analysis of Algorithm Efficiency

3. If a is any nonnegative real number, then the power function
with exponent a, pa , is defined by _____.

4. Given a function f : R→ R and a real number M , the func-
tion Mf is defined by _____.

5. Given a function f : R→ R, to prove that f is increasing,
you suppose that _____ and then you show that _____.

6. Given a function f : R→ R, to prove that f is decreasing,
you suppose that _____ and then you show that _____.

Exercise Set 11.1*
1. The graph of a function f is shown below.

a. Is f (0) positive or negative?
b. For what values of x does f (x) = 0?
c. Find approximate values for x1 and x2 so that

f (x1) = f (x2) = 1 but x1 �= x2.
d. Find an approximate value for x such that f (x) = 1.5.
e. As x increases from −3 to −1, do the values of f

increase or decrease?
f. As x increases from 0 to 4, do the values of f increase

or decrease?

1–1–2–3–4 2 3 4

1

–1

–2

2

Graph of f

2. The graph of a function g is shown below.
a. Is g(0) positive or negative?
b. Find an approximate value of x so that g(x) = 0.
c. Find approximate values for x1 and x2 so that g(x1) =

g(x2) = 1 but x1 �= x2.
d. Find an approximate value for x such that g(x) = −2.
e. As x increases from−2 to 1, do the values of g increase

or decrease?
f. As x increases from 1 to 3, do the values of g increase

or decrease?

1–1–2–3–4 2 3 4

1

–1

–2

2

3

Graph of g

3. Draw the graphs of the power functions p1/3 and p1/4 on
the same set of axes. When 0 < x < 1, which is greater:
x1/3 or x1/4? When x > 1, which is greater: x1/3 or x1/4?

4. Draw the graphs of the power functions p3 and p4 on the
same set of axes. When 0 < x < 1, which is greater: x3 or
x4? When x > 1, which is greater: x3 or x4?

5. Draw the graphs of y = 2�x� and y = �2x� for all real
numbers x . What can you conclude from these graphs?

Graph each of the functions defined in 6–9 below.

6. g(x) = �x� for all real numbers x (Recall that the ceil-
ing of x , �x�, is the least integer that is greater than or
equal to x . That is, �x� = the unique integer n such that
n − 1 < x ≤ n.)

7. h(x) = �x� − �x� for all real numbers x

8. F(x) = �x1/2� for all real numbers x

9. G(x) = x − �x� for all real numbers x

In each of 10–13 a function is defined on a set of integers. Graph
each function.

10. f (n) = |n| for each integer n

11. g(n) = (n/2)+ 1 for each integer n

12. h(n) = �n/2� for each integer n ≥ 0

13. k(n) = �n1/2� for each integer n ≥ 0

14. The graph of a function f is shown below. Find the inter-
vals on which f is increasing and the intervals on which f
is decreasing.

1–1–2–3 2 3

1

–1

–2

2

Graph of f

15. Show that the function f : R→ R defined by the formula
f (x) = 2x − 3 is increasing on the set of all real numbers.

16. Show that the function g: R→ R defined by the formula
g(x) = −(x/3)+ 1 is decreasing on the set of all real
numbers.

∗For exercises with blue numbers or letters, solutions are given in Appendix B. The symbol H indicates that only a hint or a partial
solution is given. The symbol ✶ signals that an exercise is more challenging than usual.
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17. Let h be the function from R to R defined by the formula
h(x) = x2 for all real numbers x .

a. Show that h is decreasing on the set of all real numbers
less than zero.

b. Show that h is increasing on the set of all real numbers
greater than zero.

18. Let k: R→ R be the function defined by the formula
k(x) = (x − 1)/x for all real numbers x �= 0.
a. Show that k is increasing for all real numbers x > 0.
b. Is k increasing or decreasing for x < 0? Prove your

answer.

19. Show that if a function f : R→ R is increasing, then f is
one-to-one.

20. Given real-valued functions f and g with the same domain
D, the sum of f and g, denoted f + g, is defined as
follows:

For all real numbers x , ( f + g)(x) = f (x)+ g(x).

Show that if f and g are both increasing on a set S, then
f + g is also increasing on S.

21. a. Let m be any positive integer, and define f (x) = xm for
all nonnegative real numbers x . Use the binomial theo-
rem to show that f is an increasing function.

b. Let m and n be any positive integers, and let
g(x) = xm/n for all nonnegative real numbers x . Prove
that g is an increasing function.

The results of this exercise are used in the exercises for
Sections 11.2 and 11.4.

22. Let f be the function whose graph is shown below. Draw
the graph of 3 f .

Graph of f

1–2–3–4–5 2 3 4 5

1

–1

–2

2

23. Let h be the function whose graph is shown below. Draw
the graph of 2h.

Graph of h

1–2–3–4–5 2 3 4 5
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–2

2

3

24. Let f be a real-valued function of a real variable. Show
that if f is decreasing on a set S and if M is any positive
real number, then M f is decreasing on S.

25. Let f be a real-valued function of a real varaible. Show
that if f is increasing on a set S and if M is any negative
real number, then M f is decreasing on S.

26. Let f be a real-valued function of a real variable. Show
that if f is decreasing on a set S and if M is any negative
real number, then M f is increasing on S.

In 27 and 28, functions f and g are defined. In each case draw
the graphs of f and 2g on the same set of axes and find a number
x0 so that f (x) ≤ 2g(x) for all x > x0. You can find an exact
value for x0 by solving a quadratic equation, or you can find an
approximate value for x0 by using a graphing calculator.

27. f (x) = x2 + 10x + 11 and g(x) = x2 for all real numbers
x ≥ 0

28. f (x) = x2 + 125x + 254 and g(x) = x2 for all real
numbers x ≥ 0

Answers for Test Yourself
1. sets of real numbers 2. y = f (x) 3. pa(x) = xa for all real numbers x 4. (M f )(x) = M · f (x) for x ∈ R 5. x1 and x2 are
any real numbers such that x1 < x2; f (x1) < f (x2) 6. x1 and x2 are any real numbers such that x1 < x2; f (x1) > f (x2)

11.2 O-, �-, and �-Notations
Although this may seem a paradox, all exact science is dominated by the idea of
approximation. —Bertrand Russell, 1872–1970

It often happens that any one of several algorithms could be used to do a certain job but
the time or memory space they require varies dramatically. The O-,�-, and �-notations
provide approximations that make it easy to evaluate large-scale differences in algorithm
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726 Chapter 11 Analysis of Algorithm Efficiency

efficiency, while ignoring differences of a constant factor and differences that occur only
for small sets of input data.

The oldest of the notations, O-notation (read “big-O notation”), was introduced by
the German mathematician Paul Bachmann in 1894 in a book on analytic number the-
ory. Both the�- (read “big-Omega”) and�- (read “big-Theta”) notations were developed
by Donald Knuth, one of the pioneers of the science of computer programming.

The idea of the notations is this. Suppose f and g are real-valued functions of a real
variable x .

1. If, for sufficiently large values of x , the values of | f | are less than those of a multiple
of |g|, then f is of order at most g, or f (x) is O(g(x)).

2. If, for sufficiently large values of x , the values of | f | are greater than those of a
multiple of |g|, then f is of order at least g, or f (x) is �(g(x)).

3. If, for sufficiently large values of x , the values of | f | are bounded both above and
below by those of multiples of |g|, then f is of order g, or f (x) is �(g(x)).

These relationships are illustrated in Figure 11.2.1.

a x

(x, A|g(x)|)

(x, | f (x)|)

f(x) is Ω (g(x))

Graph of | f |

Graph of A|g|

b x

(x, B|g(x)|)

(x, | f (x)|)

f(x) is O(g(x))

Graph of | f |

Graph of B|g|

(x, B|g(x)|)

k x

(x, A|g(x)|)

(x, | f (x)|)

f(x) is Θ(g(x))

Graph of | f |

Graph of B|g|

Graph of A|g|

Figure 11.2.1
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• Definition

Let f and g be real-valued functions defined on the same set of nonnegative real
numbers. Then

1. f is of order at least g, written f (x) is �(g(x)), if, and only if, there exist a
positive real number A and a nonnegative real number a such that

A|g(x)| ≤ | f (x)| for all real numbers x > a.

2. f is of order at most g, written f (x) is O(g(x)), if, and only if, there exist a
positive real number B and a nonnegative real number b such that

| f (x)| ≤ B|g(x)| for all real numbers x > b.

3. f is of order g, written f (x) is �(g(x)), if, and only if, there exist a positive real
number A, B, and a nonnegative real number k such that

A|g(x)| ≤ | f (x)| ≤ B|g(x)| for all real numbers x > k.

Remark on Notation: In Section 7.1 we stated that we would generally make a careful
distinction between a function f and its value f (x). The traditional use of the order
notation violates this general rule. For instance, in the statement “ f (x) is �(g(x)),” the
symbols f (x) and g(x) are understood to refer to the functions f and g defined by the
expressions f (x) and g(x), respectively. Thus the statement

3
√
x + 4 is �(x1/2)

means that f is of order g where f and g are defined by f (x) = 3
√
x + 4 and g(x) = x1/2

with some common domain (usually the largest set of nonnegative real numbers for which
both function formulas are defined).

Example 11.2.1 Translating to �-Notation

Use �-notation to express the statement

10|x6| ≤ |17x6 − 45x3 + 2x + 8| ≤ 30|x6| for all real numbers x > 2.

Solution Let A = 10, B = 30, and k = 2. Then the statement translates to

A|x6| ≤ |17x6 − 45 x3 + 2x + 8| ≤ B|x6| for all real numbers x > k.

So, by definition of �-notation,

17x6 − 45x3 + 2x + 8 is �(x6). ■

Example 11.2.2 Translating to O- and �-Notations

a. Use � and O notations to express the statements

(i) 15 |√x | ≤
∣∣∣∣15
√
x(2x + 9)

x + 1

∣∣∣∣ for all real numbers x > 0.

(ii)

∣∣∣∣15
√
x(2x + 9)

x + 1

∣∣∣∣ ≤ 45 |√x | for all real numbers x > 7.

b. Justify the statement:
15
√
x(2x + 9)

x + 1
is �

(√
x
)
.
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Solution

a. (i) Let A = 15 and a = 0. The given statement translates to

A|√x | ≤
∣∣∣∣15
√
x(2x + 9)

x + 1

∣∣∣∣ for all real numbers x > a.

So by definition of �-notation,

15
√
x(2x + 9)

x + 1
is �(

√
x).

(ii) Let B = 45 and b = 7. The given statement translates to∣∣∣∣15
√
x(2x + 9)

x + 1

∣∣∣∣ ≤ B|√x | for all real numbers x > b

So by definition of O-notation,

15
√
x(2x + 9)

x + 1
is O(

√
x).

b. Let A = 15, B = 45, and let k be the larger of 0 and 7. Then when x > k, both
inequalities in a(i) and a(ii) are satisfied, and so

A|√x | ≤
∣∣∣∣15
√
x(2x + 9)

x + 1

∣∣∣∣ ≤ B|√x | for all real numbers x > k.

Hence by definition of �-notation,
15
√
x(2x + 9)

x + 1
is �(

√
x). ■

Part (b) of Example 11.2.2 illustrates the fact that if you know both that f is of order
at most g and that f is of order at least g, then you may take k to be the larger of the
numbers a and b promised in the definitions for big-Omega and big-O and conclude that
f is of order g. Conversely, if f is of order g, then both a and b may be taken to be the
number k promised in the definition for big-Theta to show that f is of order at most g
and f is of order at least g. These results, and a transitive property of order, are stated for-
mally in the following theorem. Additional useful properties of the notations are included
in the exercises at the end of the section.

Theorem 11.2.1 Properties of O-, �-, and �-Notations

Let f and g be real-valued functions defined on the same set of nonnegative real
numbers.

1. f (x) is �(g(x)) and f (x) is O(g(x)) if, and only if f (x) is �(g(x)).

2. f (x) is �(g(x)) if, and only if, g(x) is O( f (x)).

3. If f (x) is O(g(x)) and g(x) is O(h(x)), then f (x) is O(h(x)).

Proof:
1. The proof of this property was given before the statement of the theorem.

2. We first show that if f (x) is �(g(x)), then g(x) is O( f (x)). Thus, suppose f (x)
is �(g(x)). By definition of �-notation, there exist a positive real number A and
a nonnegative real number a such that

A|g(x)| ≤ | f (x)| for all real numbers x > a.

Divide both sides by A to obtain

|g(x)| ≤ 1

A
| f (x)| for all real numbers x > a.
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Let B = 1/A and b = a. Then B is a positive real number and b is a nonnegative
real number, and

|g(x)| ≤ B| f (x)| for all real numbers x > b,

and so g(x) is O( f (x)) by definition of O-notation.
The proof that if g(x) is O( f (x)) then f (x) is �(g(x)) is left as exercise 10

at the end of the section.

3. Suppose f (x) is O(g(x)) and g(x) is O(h(x)). By definition of O-notation, there
exist positive real numbers B1 and B2, and nonnegative real numbers b1 and b2
such that

| f (x)| ≤ B1|g(x)| for all real numbers x > b1,

and

|g(x)| ≤ B2|h(x)| for all real numbers x > b2.

Let B = B1B2, and let b be the greater of b1 and b2. Then if x > b,

| f (x)| ≤ B1|g(x)| ≤ B1(B2|h(x)|) ≤ B|h(x)|.
Thus, by definition of O-notation, f (x) is O(h(x)).

Orders of Power Functions
Observe that if 1 < x,

then x < x2 multiplying both sides by x (which is positive)

and so x2 < x3 multiplying again by x .

Thus if 1 < x , then 1 < x < x2 < x3.

The following generalization of this result is developed in exercises 15 and 50 at the
end of this section.

For any rational numbers r and s,

if x > 1 and r < s, then xr < xs . 11.2.1

Property (11.2.1) has the following consequence for orders.

For any rational numbers r and s,

if r < s, then xr is O(xs). 11.2.2

The relation among the graphs of various positive power functions of x for x ≥ 1 is
shown graphically in Figure 11.2.2 on the next page.
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x

y
y = x3

y = x2

y = xy = x3/2

y = x1/2

y = x2/3

y = x1/3

If r < s, the graph of
y = xr lies underneath the
graph of y = xs  for x > 1.

1 2 3 4

1

2

3

4

Figure 11.2.2 Graphs of Powers of x for x ≥ 1

Orders of Polynomial Functions
The following example shows how to use property (11.2.1) to derive a polynomial in-
equality.

Example 11.2.3 A Polynomial Inequality

Show that for any real number x ,

if x > 1, then 3x3 + 2x + 7 ≤ 12x3.

Solution Suppose x is a real number and x > 1. Then by property (11.2.1),

x < x3 and 1 < x3.

Multiply the left-hand inequality by 2 and the right-hand inequality by 7 to get

2x < 2x3 and 7 < 7x3.

Now add 3x3 ≤ 3x3, 2x < 2x3, and 7 < 7x3 to obtain

3x3 + 2x + 7 ≤ 3x3 + 2x3 + 7x3 = 12x3. ■

The method of Example 11.2.3 is used in the next example (more compactly) to show
that a polynomial function has a certain order.

Example 11.2.4 Using the Definitions to Show That a Polynomial Function
with Positive Coefficients Has a Certain Order

Use the definitions of big-Omega, big-O , and big-Theta to show that 2x4 + 3x3 + 5 is
�(x4).

Solution Define functions f and g as follows. For all nonnegative real numbers x ,

f (x) = 2x4 + 3x3 + 5, and

g(x) = x4.

Observe that for all real numbers x > 0,

2x4 ≤ 2x4 + 3x3 + 5 because 3x3 + 5 > 0 for x > 0,

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



11.2 O-, �-, and �-Notations 731

and so

2|x4| ≤ |2x4 + 3x3 + 5| because all terms on both sides
of the inequality are positive.

Let A = 2 and a = 0. Then

A|x4| ≤ |2x4 + 3x3 + 5| for all x > a,

and so by definition of �-notation, 2x4 + 3x3 + 5 is �(x4).
Also for x > 1,

2x4 + 3x3 + 5 ≤ 2x4 + 3x4 + 5x4 because by (11.2.1), x3 < x4 and
1 < x4, and so 3x3 < 3x4 and 5 < 5x4

⇒ 2x4 + 3x3 + 5 ≤ 10x4 because 2+ 3+ 5 = 10

⇒ |2x4 + 3x3 + 5| ≤ 10|x4| because all terms on both sides
of the inequality are positive

Note When the
implication arrow,⇒, is
placed at the beginning of
a line, it means that every
number x that makes the
inequality in the line
above true also makes the
inequality in the given
line true.

Let B = 10 and b = 1. Then

|2x4 + 3x3 + 5| ≤ B|x4| for all x > b,

and so, by definition of O-notation, 2x4 + 3x3 + 5 is O(x4).
Since 2x4 + 3x3 + 5 is both �(x4) and O(x4), by Theorem 11.2.1, it is �(x4). ■

The technique used in Example 11.2.4 can be generalized to show that any polynomial
with nonnegative coefficients is big-Theta of its highest-power term. Taken together, the
next two examples show that such a result can hold for a polynomial with negative as
well as positive coefficients.

Example 11.2.5 A Big-O Approximation for a Polynomial with Some Negative Coefficients

a. Use the definition of O-notation to show that 3x3 − 1000x − 200 is O(x3).

b. Show that 3x3 − 1000x − 200 is O(xs) for all integers s > 3.

Solution

a. According to the triangle inequality for absolute value (Theorem 4.4.6),

|a + b| ≤ |a| + |b| for all real numbers a and b. triangle inequality

If −b is substituted in place of b, the result is

|a − b| = |a + (−b)| ≤ |a| + |− b| = |a| + |b|, or

|a − b| ≤ |a| + |b|.
It follows that for all real numbers x > 1,

|3x3 − 1000x − 200| ≤ |3x3| + |1000x | + |200|
⇒ |3x3 − 1000x − 200| ≤ 3x3 + 1000x + 200 because all terms on the right side

of the inequality are positive
when x > 1

⇒ |3x3 − 1000x − 200| ≤ 3x3 + 1000x3 + 200x3 because by (11.2.1), x < x3 and
1 < x3, and so 1000x < 1000x3

and 200 < 200x3

⇒ |3x3 − 1000x − 200| ≤ 1203x3 because 3+ 1000+ 200 = 1203

⇒ |3x3 − 1000x − 200| ≤ 1203|x3| because x3 is positive.
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Let b = 1 and B = 1203. Then

|3x3 − 1000x − 200| ≤ B|x3| for all real numbers x > b.

So, by definition of O-notation, 3x3 − 1000x − 200 is O(x3).

b. Suppose s is an integer with s > 3. By property (11.2.1), x3 < xs for all real numbers
x > 1. So B|x3| < B|xs | for all real numbers x > b (because b = 1), and thus by
part (a),

|3x3 − 1000x − 200| ≤ B|xs | for all real numbers x > b.

Hence, by definition of O-notation, 3x3 − 1000x − 200 is O(xs) for all integers s > 3.
■

Example 11.2.6 A Big-Omega Approximation for a Polynomial with Some Negative
Coefficients

a. Use the definition of �-notation to show that 3x3 − 1000x − 200 is �(x3).

b. Show that 3x3 − 1000x − 200 is �(xr ) for all integers r < 3.

Solution

a. To show that 3x3 − 1000x − 200 is �(x3), you need to find numbers a and A so that
A|x3| ≤ |3x3 − 1000x − 200| for all real numbers x > a. Exercise 27 at the end of
the section shows that the following procedure for choosing a will always produce an
A that will give the desired result.

Choose a as follows: Add up the absolute values of the coefficients of the lower-
order terms of 3x3 − 1000x − 200, divide by the absolute value of the highest-power
term, and multiply the result by 2. The result is a = 2(1000+ 200)/3, which equals
800. If you follow the steps below, you will see that when a is chosen in this way, A can
be taken to be one-half of the absolute value of the highest power of the polynomial.
Accordingly, assume that x > a. Then

x > 800

⇒ x > 2

(
1000+ 200

3

)
because
2(1000+ 200)/3 = 800

⇒ x >
2 · 1000

3
+ 2 · 200

3
by the rules for adding
fractions

⇒ x >
2 · 1000

3
· 1
x
+ 2 · 200

3
· 1
x2

because x > 800 and so by

(11.2.1), 1>
1

x
and 1>

1

x2

⇒ 3

2
x3 > 1000x + 200

by multiplying both sides

by
3

2
x2

⇒ 3x3 − 3

2
x3 > 1000x + 200 because 3

2 = 3− 3
2

⇒ 3x3 − 1000x − 200 >
3

2
x3

by adding
3
2 x

3 − 1000x − 200
to both sides

⇒ |3x3 − 1000x − 200| >
3

2
|x3| because the expressions on

both sides of the inequality
are positive when x > 800.

Let A = 3
2 and let a = 800. Then
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A|x3| ≤ |3x3 − 1000x − 200| for all real numbers x > a.

So, by definition of �-notation, 3x3 − 1000x − 200 is �(x3).

b. Suppose r is an integer with r < 3. By property (11.2.1), xr < x3 for all real numbers
x > 1. So, since a = 800 > 1, A|xr | < A|x3| for all real numbers x > a. Thus, by
part (a),

A|xr | ≤ |3x3 − 1000x − 200| for all real numbers x > a.

Hence, by definition of�-notation, 3x3 − 1000x − 200 is�(xr ) for all integers r < 3.
■

By Theorem 11.2.1, it follows immediately from Examples 11.2.5(a) and 11.2.6(a)
that 3x3− 1000x − 200 is big-Theta of x3, and the techniques used in the examples can be
generalized to show that every polynomial is big-Theta of the power function of its highest
power. Moreover, the findings in parts (b) of the examples—that 3x3− 1000x − 200 is
also big-O of xs for every integer s greater than 3 and is big-Omega of xr for every integer
r less than 3—can also be generalized to all polynomials. These facts are summarized in
the next theorem.

Theorem 11.2.2 On Polynomial Orders

Suppose a0, a1, a2, . . . , an are real numbers and an �= 0.

1. anxn + an−1xn−1 + · · · + a1x + a0 is O(xs) for all integers s ≥ n.

2. anxn + an−1xn−1 + · · · + a1x + a0 is �(xr ) for all integers r ≤ n.

3. anxn + an−1xn−1 + · · · + a1x + a0 is �(xn).

Theorem 11.2.2 can easily be proved using calculus. As suggested by Examples
11.2.5 and 11.2.6, however, it can also be derived without calculus. (See exercises 26, 27,
and 49 at the end of this section.)

Example 11.2.7 Calculating Polynomial Orders Using the Theorem on Polynomial Orders

Use the theorem on polynomial orders to find orders for the functions given by the fol-
lowing formulas.

a. f (x) = 7x5 + 5x3 − x + 4, for all real numbers x .

b. g(x) = (x − 1)(x + 1)

4
, for all real numbers x .

Solution

a. By direct application of the theorem on polynomial orders, 7x5 + 5x3 − x + 4
is �(x5)

b. g(x) = (x − 1)(x + 1)

4

= 1

4
(x2 − 1)

= 1

4
x2 − 1

4
by algebra

Thus g(x) is �(x2) by the theorem on polynomial orders. ■
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Example 11.2.8 Showing That Two Power Functions Have Different Orders

Show that x2 is not O(x), and deduce that x2 is not �(x).

Solution [Argue by contradiction.] Suppose that x2 is O(x). [Derive a contradiction.] By the
supposition that x2 is O(x), there exist a positive real number B and a nonnegative real
number b such that

|x2| ≤ B|x | for all real numbers x > b. (∗)
Let x be a positive real number that is greater than both B and b. Then

x · x > B · x by multiplying both sides of
x > B by x which is positive

⇒ |x2| > B|x | because b is positive.

Thus there is a real number x > b such that

|x2| > B|x |.
This contradicts (∗). Hence the supposition is false, and so x2 is not O(x).

By Theorem 11.2.1, if x2 is �(x), then x2 is O(x). But x2 is not O(x), and thus x2 is
not �(x). ■

The technique used in Example 11.2.8 can be extended and generalized to prove that
any polynomial function in x of degree n is not big-O (or big-Theta) of the mth power
function xm for any m < n. (See exercise 53 at the end of this section.)

Theorem 11.2.3 Limitation on Orders of Polynomial Functions

Let n be a positive integer, and let a0, a1, a2, . . . , an be real numbers with an �= 0. If
m is any integer with m < n, then

anx
n + an−1xn−1 + · · · + a1x + a0 is not O(xm)

and

anx
n + an−1xn−1 + · · · + a1x + a0 is not �(xm).

It follows from Theorems 11.2.2 and 11.2.3 that integral power functions are conve-
nient benchmarks for comparisons among general polynomial functions because every
polynomial function has the same order as some integral power function, and no power
function has the same order as any other.

Orders for Functions of Integer Variables
It is traditional to use the symbol x to denote a real number variable, whereas n is used to
represent an integer variable. Thus, given a statement of the form

f (n) is �(g(n)),

we assume that f and g are functions defined on sets of integers. If it is true that

f (x) is �(g(x)),

where f and g are functions defined for real numbers, then it is certainly true that f (n)
is �(g(n)). The reason is that if f (x) is �(g(x)), then an inequality

A|g(x)| ≤ | f (x)| ≤ B|g(x)|
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holds for all real numbers x > k. Hence, in particular, the inequality

A|g(n)| ≤ | f (n)| ≤ B|g(n)|
holds for all integers n > k.

Example 11.2.9 An Order for the Sum of the First n Integers

Sums of the form 1+ 2+ 3+ · · · + n arise in the analysis of computer algorithms such
as selection sort. Show that for a positive integer variable n,

1+ 2+ 3+ · · · + n is �(n2).

Solution By the formula for the sum of the first n integers (see Theorem 5.2.2), for all
positive integers n,

1+ 2+ 3+ · · · + n = n(n + 1)

2
.

But

n(n + 1)

2
= 1

2
n2 + 1

2
n by basic algebra.

And, by the theorem on polynomial orders,

1

2
n2 + 1

2
n is �(n2).

Hence

1+ 2+ 3+ · · · + n is �(n2). ■

Extension to Functions Composed of Rational
Power Functions

Consider a function of the form

(x3/2 + 3)(x − 2)2

x1/2(2x1/2 + 1)
= x7/2 − 4x5/2 + 4x3/2 + 3x2 − 12x + 12

2x + x1/2
.

When the numerator and denominator are expanded, each is a sum of terms of the form
axr , where a is a real number and r is a positive rational number. The degree of such a
sum can be taken to be the largest exponent of x that occurs in one of its terms. If the
difference between the degree of the numerator and that of the denominator is called
the degree of the function and denoted d, then it can be shown that f (x) is �(xd),
that f (x) is O(xc) for all real numbers c > d, and that f (x) is not O(xc) for any
real number c < d. For the example given above, this means that d = 7/2− 1 = 5/2
and that

(x3/2 + 3)(x − 2)2

x1/2(2x1/2 + 1)
is �(x5/2),

(x3/2 + 3)(x − 2)2

x1/2(2x1/2 + 1)
is O(xc) for all real numbers c > 5/2,

and

(x3/2 + 3)(x − 2)2

x1/2(2x1/2 + 1)
is not O(xc) for any real number c < 5/2.

We state the general result as Theorem 11.2.4.
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Theorem 11.2.4 Orders of Functions Composed of Rational Power Functions

Let m and n be positive integers, and let r0, r1, r2, . . . , rn and s0, s1, s2, . . . , sm be
nonnegative rational numbers with r0 < r1 < r2 < · · · < rn and s0 < s1 < s2 < · · ·
< sm . Let a0, a1, a2, . . . , an and b0, b1, b2, . . . , bm be real numbers with an �= 0 and
bm �= 0. Then

anxrn + an−1xrn−1 + · · · + a1xr1 + a0xr0

bmxsm + bm−1xsm−1 + · · · + b1xs1 + b0xs0
is �(xrn−sm ).

anxrn + an−1xrn−1 + · · · + a1xr1 + a0xr0

bmxsm + bm−1xsm−1 + · · · + b1xs1 + b0xs0
is O(xc) for all real numbers c > rn − sm .

anxrn + an−1xrn−1 + · · · + a1xr1 + a0xr0

bmxsm + bm−1xsm−1 + · · · + b1xs1 + b0xs0
is not O(xc) for any real number c < rn − sm .

Test Yourself
1. A sentence of the form “A|g(x)| ≤ | f (x)| for all x > a”

translates into �-notation as _____.

2. A sentence of the form “| f (x)| ≤ B|g(x)| for all x > b”
translates into O-notation as _____.

3. A sentence of the form “A|g(x)| ≤ | f (x)| ≤ B|g(x)| for all
x > k” translates into �-notation as _____.

4. When x > 1, x2 _____ x and x5 _____ x2.

5. According to the theorem on polynomial orders, if p(x) is a
polynomial in x , then p(x) is �(xn), where n is _____.

6. If n is a positive integer, then 1+ 2+ 3+ · · · + n has order
_____.

Exercise Set 11.2
1. The following is a formal definition for �-notation, writ-

ten using quantifiers and variables: f (x) is �(g(x)) if, and
only if, ∃ positive real numbers a and A such that ∀x > a,

A|g(x)| ≤ | f (x)|.
a. Write the formal negation for the definition using the

symbols ∀ and ∃.
b. Restate the negation less formally without using the

symbols ∀ and ∃.
2. The following is a formal definition for O-notation, writ-

ten using quantifiers and variables: f (x) is O(g(x)) if, and
only if, ∃ positive real numbers b and B such that ∀x > b,

| f (x)| ≤ B|g(x)|.
a. Write the formal negation for the definition using the

symbols ∀ and ∃.
b. Restate the negation less formally without using the

symbols ∀ and ∃.
3. The following is a formal definition for �-notation, writ-

ten using quantifiers and variables: f (x) is �(g(x)) if,
and only if, ∃ positive real numbers k, A, and B such that
∀x > k,

A|g(x)| ≤ | f (x)| ≤ B|g(x)|.
a. Write the formal negation for the definition using the

symbols ∀ and ∃.
b. Restate the negation less formally without using the

symbols ∀ and ∃.

In 4–9, express each statement using �-, O-, or �-notation.

4. |5x8 − 9x7 + 2x5 + 3x − 1| ≤ 6|x8| for all real numbers
x > 3. (Use O-notation.)

5. |x | ≤
∣∣∣∣ (x2 − 1)(12x + 25)

3x2 + 4

∣∣∣∣ ≤ 6|x | for all real numbers

x > 2.

6. |x7/2| ≤
∣∣∣∣ (x2 − 7)2(10x1/2 + 3)

x + 1

∣∣∣∣ for all real numbers

x > 4. (Use �-notation.)

7. |3x6 + 5x4 − x3| ≤ 9|x6| for all real numbers x > 1. (Use
O-notation.)

8. 1
2 x

4 ≤ |x4 − 50x3 + 1| for all real numbers x > 101. (Use

�-notation.)

9. 1
2 x

2 ≤ |3x2 − 80x + 7| ≤ 3|x2| for all real numbers
x > 25.

In each of 10–14 assume f and g are real-valued functions
defined on the same set of nonnegative real numbers.

10. Prove that if g(x) is O( f (x)), then f (x) is �(g(x)).

11. Prove that if f (x) is O(g(x)) and c is any nonzero real
number, then c f (x) is O(g(x)).

12. Prove that if f (x) is O(h(x)) and g(x) is O(k(x)), then
f (x)+ g(x) is O(G(x)), where, for each x in the domain,
G(x) = max(|h(x)|, |k(x)|).
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13. Prove that f (x) is �( f (x)).

14.H Prove that if f (x) is O(h(x)) and g(x) is O(k(x)), then
f (x)g(x) is O(h(x)k(x)).

15. a. Use mathematical induction to prove that if x is any real
number with x > 1, then xn > 1 for all integers n ≥ 1.

b.H Prove that if x is any real number with x > 1, then
xm < xn for any integers m and n with m < n.

16. a. Show that for any real number x ,

if x > 1 then |x2| ≤ |2x2 + 15x + 4|.
b. Show that for any real number x ,

if x > 1 then |2x2 + 15x + 4| ≤ 21|x2|.
c. Use the �- and O-notations to express the results of

parts (a) and (b).
d. What can you deduce about the order of 2x2 + 15x + 4?

17. a. Show that for any real number x ,

if x > 1 then |x4| ≤ |23x4 + 8x2 + 4x |.
b. Show that for any real number x ,

if x > 1 then |23x4 + 8x2 + 4x | ≤ 35|x4|.
c. Use the �- and O-notations to express the results of

parts (a) and (b).
d. What can you deduce about the order of

23x4 + 8x2 + 4x?

18. Use the definition of �-notation to show that

5x3 + 65x + 30 is �(x3).

19. Use the definition of �-notation to show that

x2 + 100x + 88 is �(x2).

20. a. Show that for any real number x , if x > 1 then
|x2| ≤ |�x2�|.

b. Show that for any real number x , if x > 1 then
1
2 |�x2�| ≤ |x2|.

c. Use the �- and O-notations to express the results of
parts (a) and (b).

d. What can you deduce about the order of �x2�?
21. a. Show that for any real number x , if x > 1 then

|�√x�| ≤ |√x |.
b. Show that for any real number x , if x > 1 then

1
2 |
√
x | ≤ |�x�|.

c. Use the �- and O-notation to express the results of parts
(a) and (b).

d. What can you deduce about the order of �√x�?
22. a. Show that for any real number x , if x > 1 then

|7x4 − 95x3 + 3| ≤ 105|x4|.
b. Use O-notation to express the result of part (a).

23. a. Show that for any real number x , if x > 1 then

|15 x2 − 42x − 8| ≤ 51|x2|.
b. Use O-notation to express the result of part (a).

24. a. Show that for any real number x , if x > 1 then

|14 x5 − 50x3 + 3x + 12| ≤ 66|x5|.
b. Use O-notation to express the result of part (a).

25.H Show that x5 is not O(x2).

26. Suppose a0, a1, a2, . . . , an are real numbers and an �= 0.
Use the generalization of the triangle inequality to n inte-
gers (exercise 43, Section 5.5) to show that

anx
n + an−1xn−1 + · · · + a1x + a0 is O(xn).

27. Suppose a0, a1, a2, . . . , an are real numbers and an �= 0.
Show that anxn + an−1xn−1 + · · · + a1x + a0 is �(xn) by
letting

d = 2

( |a0| + |a1| + |a2| + · · · + |an−1|
|an|

)
.

and letting a = max(d, 1).

In 28–30: (a) Let d be the number obtained by adding up the
absolute values of the coefficients of the lower-order terms of
the given polynomial, dividing by the absolute value of the
highest-order term, and multiplying the result by 2. Let a be the
maximum number of d and 1, and let A be half the coefficient of
the absolute value of the highest-order term of the polynomial.
(b) Show that if x > a, the absolute value of the polynomial will
be greater than the product of A and the absolute value of x4,
where n is the degree of the polynomial. (c) Deduce the result
given in the exercise.

28. 7x4 − 95x3 + 3 is �(x4).

29. 1
5 x

2 − 42x − 8 is �(x2).

30. 1
4 x

5 − 50x3 + 3x + 12 is �(x5).

31. Refer to the results of exercises 22 and 28 to find an order
for 7x4 − 95x3 + 3 from among the set of power functions.

32. Refer to the results of exercises 23 and 29 to find an order

for 1
5 x

2 − 42x − 8 from among the set of power functions.

33. Refer to the results of exercises 24 and 30 to find an
order for 1

4 x
5 − 50x3 + 3x + 12 from among the set of

power functions.

Use the theorem on polynomial orders to prove each of the state-
ments in 34–39.

34.
(x + 1)(x − 2)

4
is �(x2).

35.
x

3
(4x2 − 1) is �(x3).

36.
x(x − 1)

2
+ 3x is �(x2).

37.
n(n + 1)(2n + 1)

6
is �(n3).
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38.

[
n(n + 1)

2

]2

is �(n4).

39. 2(n − 1)+ n(n + 1)

2
+ 4

(
n(n − 1)

2

)
is �(n2).

Prove each of the statements in 40–47, assuming n is a vari-
able that takes positive integer values. (Use formulas from the
exercise set of Section 5.2 and the theorem on polynomial
orders as appropriate.)

40. 12 + 22 + 32 + · · · + n2 is �(n3).

41. 13 + 23 + 33 + · · · + n3 is �(n4).

42. 2+ 4+ 6+ · · · + 2n is �(n2).

43. 5+ 10+ 15+ 20+ 25+ · · · + 5n is �(n2).

44.
n∑

i=1
(4i − 9) is �(n2). 45.

n∑
k=1

(k + 3) is �(n2).

46.H
n∑

i=1
i(i + 1) is �(n3). 47.

n∑
k=3

(k2 − 2k) is �(n3).

48.H (Requires the concept of limit from calculus)
a. Let a0, a1, a2, . . . , an be real numbers with an �= 0.

Prove that

lim
x→∞

∣∣∣∣anxn + an−1xn−1 + · · · + a1x + a0
anxn

∣∣∣∣ = 1.

b. Use the result of part (a) and the definition of limit to
prove that

anx
n + an−1xn−1 + · · · + a1x + a0 is �(xn).

49. Another approach to proving part of the theorem on poly-
nomial orders uses properties of O-notation.
a. Show that if f, g, and h are functions from R to R and

f (x) is O(h(x)) and g(x) is O(h(x)), then f (x)+ g(x)
is O(h(x)).

b. How does it follow from part (a) and Theorem 11.2.1(3)
that x4 + x2 is O(x4)?

c. The result of exercise 11 states that if f is a function
from R to R, f (x) is O(g(x)), and c is any nonzero real
number, then c f (x) is O(g(x)). How does it follow from
this result and part (a) that 12x5 − 34x2 + 7 is O(x5)?

d. Use the results of part (a) and exercise 11 to show that if
n is any positive integer and a1, a2, . . . , an are real num-
bers, then

anx
n + an−1xn−1 + · · · + a1x + a0 is O(xn).

50. a. Let x be any positive real number. Use mathematical
induction to prove that for all integers n ≥ 1, if x ≤ 1
then xn ≤ 1.

b. Explain how it follows from part (a) that if x is any pos-
itive real number, then for all integers n ≥ 1, if xn > 1
then x > 1.

c. Explain how it follows from part (b) that if x is any pos-
itive real number, then for all integers n ≥ 1, if x > 1
then x1/n > 1.

d.H Let p, q, and s be positive integers, let r be a nonneg-
ative integer, and suppose p/q > r/s. Use part (c) and
the result of exercise 15 to prove property (11.2.1). In
other words show that for any real number x , if x > 1
then x p/q > xr/s .

Explain how each statement in 51 and 52 follows from exercise
50, exercise 13, and parts (a) and (c) of exercise 49.

51. 4x4/3 − 15x + 7 is O(x4/3).

52.
√
x(38x5 + 9) is O(x11/2).

53.H Prove that if r and s are rational numbers with r > s, then
xr is not O(xs).

In 54–56, use Theorem 11.2.4 to find an order for each of the
given functions from among the set of rational power functions.

54. f (x) =
√
x(3x + 5)

2x + 1

55. f (x) = (2x7/2 + 1)(x − 1)

(x1/2 + 1)(x + 1)

56. f (x) = (5x2 + 1)
(√

x − 1
)

4x3/2 − 2x

57.✶ a. Use mathematical induction to prove that
√
1+√2+√3+ · · · + √n ≤ n3/2

for all integers n ≥ 1.
b.H Use mathematical induction to prove that

1

2
n3/2 ≤ √1+√2+√3+ · · · + √n.

c. What can you conclude from parts (a) and (b) about an
order of

√
1+√2+√3+ · · · + √n?

58.✶ a. Use mathematical induction to prove that
11/3 + 21/3 + · · · + n1/3 ≤ n4/3, for all integers n ≥ 1.

b. Use mathematical induction to prove that

1

2
n4/3 ≤ 11/3 + 21/3 + 31/3 + · · · + n1/3.

c. What can you conclude from parts (a) and (b) about an
order for 11/3 + 21/3 + 31/3 + · · · + n1/3?

Exercises 59–61 use the following definition, which requires the
concept of limit from calculus.

Definition: If f and g are real-valued functions of a real vari-
able and limx→∞ g(x) �= 0, then

f (x) is o(g(x)) ⇔ lim
x→∞

f (x)

g(x)
= 0.

The notation f (x) is o(g(x)) is read “ f (x) is little-oh
of g(x).”

59. Prove that if f (x) is o(g(x)), then f (x) is O(g(x)).
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60. Prove that if f (x) and g(x) are both o(h(x)), then for all
real numbers a and b, a f (x)+ bg(x) is o(h(x)).

61. Prove that for any positive real numbers a and b, if a < b
then xa is o(xb).

Answers for Test Yourself
1. f (x) is �(g(x)) 2. f (x) is O(g(x)) 3. f (x) is �(g(x)) 4. >; > 5. the degree of p(x) 6. n2

11.3 Application: Analysis of Algorithm Efficiency I
As soon as an Analytical Engine exists, it will necessarily guide the future course of the
science. Whenever any result is sought by its aid, the question will then arise—by what
course of calculation can these results be arrived at by the machine in the shortest time?
— Charles Babbage, 1864

Charles Babbage’s Analytical Engine was similar in concept to a modern computer, and
the quotation shown above suggests that well over a hundred years ago he anticipated
the importance of analyzing the efficiencies of computer algorithms. Starting in the late
1940s, a number of mathematicians and computer scientists contributed to the develop-
ment of algorithm analysis. Alan Turing may have been the first to suggest a concrete
way for doing this. In a 1948 paper he wrote: “It is convenient to have a measure of the
amount of work involved in a computing process, even though it be a very crude one. . . .
Wemight, for instance, count the number of additions, subtractions, multiplications, divi-
sions, recording of numbers . . .”∗ In the early 1960s, Donald Knuth started writing The
Art of Computer Programming, a multivolume work, which provides a solid and exten-
sive foundation for the subject that is both elegant and mathematically rigorous.†
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Charles Babbage
(1792–1871)

Note For more about
the work of Alan Turing,
see Sections 6.4 and 12.2.

The Sequential Search Algorithm
The object of a search algorithm is to hunt through an array of data in an attempt to find
a particular item x . In a sequential search, x is compared to the first item in the array,
then to the second, then to the third, and so on. The search is stopped if a match is found
at any stage. On the other hand, if the entire array is processed without finding a match,
then x is not in the array. An example of a sequential search is shown diagrammatically
in Figure 11.3.1.

a[1]

a[1] = x ? a[2] = x ? a[3] = x ? a[4] = x ? a[5] = x ?

a[2] a[3] a[4] a[5] a[6] a[7]
no no no no

yes

Done

Figure 11.3.1 Sequential Search of a[1], a[2], . . . , a[7] for x where x = a[5]

∗Quarterly Journal of Mechanics and Applied Mathematics, vol. 1 (1948), pp. 287–308.
†Donald E. Knuth, The Art of Computer Programming, vol. 1: Fundamental Algorithms, 3rd ed.
(1997); vol. 2: Seminumerical Algorithms, 3rd ed., (1997); vol. 3: Searching and Sorting, 2nd ed.
(1998) (Reading, MA: Addison-Wesley).
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740 Chapter 11 Analysis of Algorithm Efficiency

Example 11.3.4 Best- and Worst-Case Orders for Sequential Search

Find best- and worst-case orders for the sequential search algorithm from among the set
of power functions.

Solution Suppose the sequential search algorithm is applied to an input array a[1], a[2],
. . . , a[n] to find an item x . In the best case, the algorithm requires only one compari-
son between x and the items in a[1], a[2], . . . , a[n]. This occurs when x is the first item
in the array. Thus in the best case, the sequential search algorithm is �(1). (Note that
�(1) = �(n0).) In the worst case, however, the algorithm requires n comparisons. This
occurs when x = a[n] or when x does not appear in the array at all. Thus in the worst
case, the sequential search algorithm is �(n). ■

The Insertion Sort Algorithm
Insertion sort is an algorithm for arranging the items in an array into ascending order.
Initially, the second item is compared to the first. If the second item is less than the first,
their values are interchanged, and as a result the first two array items are in ascending
order. The idea of the algorithm is gradually to lengthen the section of the array that is
known to be in ascending order by inserting each subsequent array item into its correct
position relative to the preceding ones. When the last item has been placed, the entire
array is in ascending order.
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Donald Knuth
(born 1938)

Figure 11.3.2 illustrates the action of step k of insertion sort on an array a[1], a[2],
a[3], . . . , a[n].

sorted subarray

a[1], a[2], a[3], . . . , a[k – 1], a[k], a[k + 1], . . . , a[n]

Step k: Insert the value of a[k] into its proper position relative to
a[1], a[2], . . . , a[k – 1].  At the end of this step a[1], a[2], . . . , a[k] is sorted.

Figure 11.3.2 Step k of Insertion Sort

Understanding the relative efficiencies of algorithms designed to do the same job is
of much more than academic interest. In industrial and scientific settings, the choice of
an efficient over an inefficient program may result in the saving of many thousands of
dollars or may make the difference between being able or not being able to do a project
at all.

Two aspects of algorithm efficiency are important: the amount of time required to
execute the algorithm and the amount of memory space needed when it is run. In this
chapter we introduce basic techniques for calculating time efficiency. Similar techniques
exist for calculating space efficiency. Occasionally, one algorithm may make more effi-
cient use of time but less efficient use of memory space than another, forcing a trade-off
based on the resources available to the user.

Time Efficiency of an Algorithm
How can the time efficiency of an algorithm be calculated? The answer depends on sev-
eral factors. One is the size of the set of data that is input to the algorithm; for example,
it takes longer for a sort algorithm to process 1,000,000 items than 100 items. Conse-
quently, the execution time of an algorithm is generally expressed as a function of its
input size.

Another factor that may affect the run time of an algorithm is the nature of the input
data. For instance, a program that searches sequentially through a list of length n to find a
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data item requires only one step if the item is first on the list, but it uses n steps if the item
is last on the list. Thus algorithms are frequently analyzed in terms of their “best case,”
“worst case,” and “average case” performances for an input of size n.

Roughly speaking, the analysis of an algorithm for time efficiency begins by try-
ing to count the number of elementary operations that must be performed when the
algorithm is executed with an input of size n (in the best case, worst case, or average
case). What is classified as an “elementary operation” may vary depending on the nature
of the problem the algorithms being compared are designed to solve. For instance, to
compare two algorithms for evaluating a polynomial, the crucial issue is the number of
additions and multiplications that are needed, whereas to compare two algorithms for
searching a list to find a particular element, the important distinction is the number of
comparisons that are required. As is common, we will classify the following as elemen-
tary operations: addition, subtraction, multiplication, division, and comparisons that are
indicated explicitly in an if-statement using one of the relational symbols <,≤,>,≥,

=, or �=.
When algorithms are implemented in a particular programming language and run on

a particular computer, some operations are executed faster than others, and, of course,
there are differences in execution times from one machine to another. In certain prac-
tical situations these factors are taken into account when we decide which algorithm
or which machine to use to solve a particular problem. In other cases, however, the
machine is fixed, and rough estimates are all that we need to determine the clear supe-
riority of one algorithm over another. Since each elementary operation is executed in
time no longer than the slowest, the time efficiency of an algorithm is approximately
proportional to the number of elementary operations required to execute the
algorithm.

Consider the example of two algorithms, A and B, designed to do a certain job. Sup-
pose that for an input of size n, the number of elementary operations needed to perform
algorithm A is between 10n and 20n (at least for large n) and the number of elementary
operations needed to perform algorithm B is between 2n2 and 4n2. Note that 20n < 2n2

whenever n > 10, which means that the maximum number of operations required to exe-
cute A is less than the minimum number of operations required to execute B whenever
n > 10. In fact, 20n is very much less than 2n2 when n is large. For instance, if n = 1000,
then 20n = 20,000, whereas 2n2 = 2,000, 000. We say that in the worst case, algorithm
A is �(n) (or has worst-case order n) and that in the worst case, algorithm B is �(n2)
(or has worst-case order n2).

• Definition

Let A be an algorithm.

1. Suppose the number of elementary operations performed when A is executed for
an input of size n depends on n alone and not on the nature of the input data; say it
equals f (n). If f (n) is�(g(n)), we say that A is �(g(n)) or A is of order g(n).

2. Suppose the number of elementary operations performed when A is executed for
an input of size n depends on the nature of the input data as well as on n.

a. Let b(n) be theminimum number of elementary operations required to execute
A for all possible input sets of size n. If b(n) is �(g(n)), we say that in the
best case, A is �(g(n)) or A has a best-case order of g(n).

b. Let w(n) be the maximum number of elementary operations required to exe-
cute A for all possible input sets of size n. If w(n) is �(g(n)), we say that in
the worst case, A is �(g(n)) or A has a worst-case order of g(n).
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Some of the orders most commonly used to describe algorithm efficiencies are shown
in Table 11.3.1. As you see from the table, differences between the orders of various types
of algorithms are more than astronomical. The time required for an algorithm of order 2n

to operate on a data set of size 100,000 is approximately 1030,076 times the estimated 15
billion years since the universe began (according to one theory of cosmology). On the
other hand, an algorithm of order log2 n needs at most a fraction of a second to process
the same data set.

Table 11.3.1 Time Comparisons of Some Algorithm Orders

Approximate Time to Execute f (n) Operations Assuming One Operation per Nanosecond∗

f (n) n = 10 n = 1,000 n = 100,000 n = 10,000,000

log2 n 3.3× 10−9 sec 10−8 sec 1.7× 10−8 sec 2.3× 10−8 sec
n 10−8 sec 10−6 sec 0.0001 sec 0.01 sec

n log2 n 3.3× 10−8 sec 10−5 sec 0.0017 sec 0.23 sec
n2 10−7 sec 0.001 sec 10 sec 27.8 min
n3 10−6 sec 1 sec 11.6 days 31,688 yr
2n 10−6 sec 3.4× 10284 yr 3.1× 1030086 yr 2.9× 103010283 yr

∗one nanosecond = 10−9 second

Example 11.3.1 Computing an Order of an Algorithm Segment

Assume n is a positive integer and consider the following algorithm segment:

p := 0, x := 2

for i := 2 to n

p := (p + i) ·x
next i

a. Compute the actual number of additions and multiplications that must be performed
when this algorithm segment is executed.

b. Use the theorem on polynomial orders to find an order for this algorithm segment.

Solution

a. There are one multiplication and one addition for each iteration of the loop, so there
are twice as many multiplications and additions as there are iterations of the loop. Now
the number of iterations of the for-next loop equals the top index of the loop minus the
bottom index plus 1; that is, n − 2+ 1 = n − 1. Hence there are 2(n − 1) = 2n − 2
multiplications and additions.

b. By the theorem on polynomial orders,

2n − 2 is �(n),

and so this algorithm segment is �(n). ■

The next example looks at an algorithm segment that contains a nested loop.
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Example 11.3.2 An Order for an Algorithm with a Nested Loop

Assume n is a positive integer and consider the following algorithm segment:

s := 0

for i := 1 to n

for j := 1 to i

s := s + j ·(i − j + 1)

next j

next i

a. Compute the actual number of additions, subtractions, and multiplications that must
be performed when this algorithm segment is executed.

b. Use the theorem on polynomial orders to find an order for this algorithm segment.

Solution

a. There are two additions, one multiplication, and one subtraction for each iteration of
the inner loop, so the total number of additions, multiplications, and subtractions is
four times the number of iterations of the inner loop. Now the inner loop is iterated

one time when i = 1,

two times when i = 2,

three times when i = 3,
...

n times when i = n.

You can see this easily if you construct a table that shows the values of i and j for
which the statements in the inner loop are executed. There is one iteration for each
column in the table.

→ → → →i 1 2 3 4 · · · n

j 1 1 2 1 2 3 1 2 3 4 · · · 1 2 3 · · · n︸︷︷︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸ ︸ ︷︷ ︸
1 2 3 4 n

Hence the total number of iterations of the inner loop is

1+ 2+ 3+ · · · + n = n(n + 1)

2
by Theorem 5.2.2,

and so the number of additions, subtractions, and multiplications is

4 · n(n + 1)

2
= 2n(n + 1).

An alternative method for computing the number of columns of the table uses an
approach discussed in Example 9.6.3. Observe that the number of columns in the table
is the same as the number of ways to place two×’s in n categories, 1, 2, . . . , n, where
the location of the ×’s indicates the values of i and j with j ≤ i . By Theorem 9.6.1,
this number is(

n − 1+ 2
2

)
=

(
n + 1
2

)
= (n + 1)!

2!((n + 1)− 2)! =
(n + 1)n(n − 1)!

2(n − 1)! = n(n + 1)

2
.

Although, for this example, the alternative method is more complicated than the one
preceding it, it is simpler when the number of loop nestings exceeds two. (See
exercise 19.)
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b. By the theorem on polynomial orders, 2n(n + 1) = 2n2 + 2n is �(n2), and so this
algorithm segment is �(n2). ■

Example 11.3.3 When the Number of lterations Depends on the Floor Function

Assume n is a positive integer and consider the following algorithm segment:

for i := �n/2� to n
a := n − i

next i

a. Compute the actual number of subtractions that must be performed when this algo-
rithm segment is executed.

b. Use the theorem on polynomial orders to find an order for this algorithm segment.

Solution

a. There is one subtraction for each iteration of the loop, and the loop is iterated

n −
⌊
n

2

⌋
+ 1 times. If n is even, then

⌊
n

2

⌋
= n

2
, and so the number of subtractions is

n −
⌊
n

2

⌋
+ 1 = n − n

2
+ 1 = n + 2

2
.

If n is odd, then

⌊
n

2

⌋
= n − 1

2
, and so the number of subtractions is

n −
⌊
n

2

⌋
+ 1 = n − n − 1

2
+ 1 = 2n − (n − 1)+ 2

2
= n + 3

2
.

b. By the theorem on polynomial orders,

n + 2

2
is �(n) and

n + 3

2
is �(n)

also. Hence, regardless of whether n is even or odd, this algorithm segment
is �(n). ■

The following is a formal algorithm for insertion sort.

Algorithm 11.3.1 Insertion Sort

[The aim of this algorithm is to take an array a[1], a[2], a[3], . . . , a[n], where n ≥
1, and reorder it. The output array is also denoted a[1], a[2], a[3], . . . , a[n]. It has
the same values as the input array, but they are in ascending order. In the kth step,
a[1], a[2], a[3], . . . , a[k − 1] is in ascending order, and a[k] is inserted into the correct
position with respect to it.]

Input: n [a positive integer], a[1], a[2], a[3], . . . , a[n] [an array of data items capa-
ble of being ordered]
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Algorithm Body:

for k := 2 to n

[Compare a[k] to previous items in the array a[1], a[2], a[3], . . . , a[k − 1], starting
from the largest and moving downward. Whenever a[k] is less than a preceding array
item, increment the index of the preceding item to move it one position to the right.
As soon as a[k] is greater than or equal to an array item, insert the value of a[k] to
the right of that item. If a[k] is greater than or equal to a[k − 1], then leave the value
of a[k] unchanged.]

x := a[k]
j := k − 1

while ( j �= 0)

if x < a[j] then

a[ j + 1] := a[ j]
j := j − 1

end if

end while

a[ j + 1] := x

next k

Output: a[1], a[2], a[3], . . . , a[n] [in ascending order]

Figure 11.3.3 shows the result of each step when insertion sort is applied to the par-
ticular array

a[1] = 6, a[2] = 3, a[3] = 5, a[4] = 7, a[5] = 2.

6 3 5 7 2

a[1] a[2] a[3] a[4] a[5]

3 6 5 7 2

3 5 6 7 2

3 5 6 7 2

2 3 5 6 7

Initial

Result of step 1

Result of step 2

Result of step 3

Result of step 4

The top row of the table shows the initial values of the
array, and the bottom row shows the final values.  The result
of each step is shown in a separate row.  For each step,
the sorted section of the array is shaded.

Figure 11.3.3 Action of Insertion Sort on an Array

Example 11.3.5 develops a trace table for the action of insertion sort on a particular
array.

Example 11.3.5 A Trace Table for Insertion Sort

Construct a trace table showing the action of insertion sort on the array

a[1] = 6, a[2] = 3, a[3] = 5, a[4] = 7, a[5] = 2.

Solution
The first column on the next page shows the state of the variables before the first

iteration of the for-next loop. When the for-next loop is first iterated, k is assigned the
value 2; x the value of a[2], which is 3; and j the value of k − 1, which is 1. Because
j �= 0, the while loop is entered and the condition for the if-then-else statement is tested.
Because a[1] > x , then a[2] is assigned the value of a[1], which is 6, j is assigned the
value of j − 1, which is 0, and a[1] is assigned the value of x , which is 3. The condition
governing the while loop is tested again, but since j = 0, it is not satisfied, and so the
while loop is not entered. Thus the value of k is incremented by 1 (so that it equals 3),
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and the for-next loop is entered a second time. This process continues until the value of
k has been incremented to 6. Because 6 is greater than the top value in the for-next loop,
execution of the algorithm ceases, and the array items are seen to be in ascending order.

n 5

a[1] 6 3 2

a[2] 3 6 5 3

a[3] 5 6 5

a[4] 7 7 6

a[5] 2 7

k 2 3 4 5 6

x 3 5 7 2

j 1 0 2 1 3 4 3 2 1 0

■

Example 11.3.6 Finding a Worst-Case Order for Insertion Sort

a. What is the maximum number of comparisons that are performed when insertion sort
is applied to the array a[1], a[2], a[3], . . . , a[n]?

b. Use the theorem on polynomial orders to find a worst-case order for insertion sort.

Solution

a. In each attempted iteration of the while loop, two explicit comparisons are made: one
to test whether j �= 0 and the other to test whether a[ j] > x . During the time that
a[k] is put into position relative to a[1], a[2], . . . , a[k − 1], the maximum number of
attempted iterations of the while loop is k. This happens when a[k] is less than every
a[1], a[2], . . . , a[k − 1]; on the kth attempted iteration, the condition of the while
loop is not satisfied because j = 0. Thus the maximum number of comparisons for a
given value of k is 2k. Because k goes from 2 to n, it follows that the maximum total
number of comparisons occurs when the items in the array are in reverse order, and it
equals

2 ·2+ 2 ·3+ · · · + 2 ·n = 2(2+ 3+ · · · + n) by factoring out the 2

= 2[(1+ 2+ 3+ · · · + n)− 1] by adding and subtracting 1

= 2

(
n(n + 1)

2
− 1

)
by Theorem 5.2.2

= n(n + 1)− 2

= n2 + n − 2 by algebra.

b. By the theorem on polynomial orders, n2 + n − 2 is �(n2), and so the insertion sort
algorithm has worst-case order �(n2). ■

The definition of expected value that was introduced in Section 9.8 can be used to
find an average-case order for insertion sort.

Example 11.3.7 Finding an Average-Case Order for Insertion Sort

a. What is the average number of comparisons that are performed when insertion sort is
applied to the array a[1], a[2], a[3], . . . , a[n]?

b. Use the theorem on polynomial orders to find an average-case order for insertion sort.
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Solution

a. Let En be the average, or expected, number of comparisons used to sort a[1], a[2], . . . ,
a[n] with insertion sort. Note that for each integer k = 2, 3, . . . , n,⎡
⎣the expected number of
comparisons used to
sort a[1], a[2], . . . , a[k]

⎤
⎦

=
⎡
⎣the expected number of
comparisons used to
sort a[1], a[2], . . . , a[k − 1]

⎤
⎦+

⎡
⎣the expected number of comparisons
used to place a[k] into position
relative to a[1], a[2], . . . , a[k − 1]

⎤
⎦ .

Thus

Ek = Ek−1 +
⎡
⎣the expected number of comparisons
used to place a[k] into position
relative to a[1], a[2], . . . , a[k − 1]

⎤
⎦ .

Also, E1 = 0 because when there is just one item in the array, n = 1 and no iterations
of the outer loop are performed.

Now at the time a[k] is placed relative to a[1], a[2], . . . , a[k − 1], a reasonable
assumption is that it is equally likely to belong in any one of the first k positions. Thus
the probability of its belonging in any particular position is 1/k. If it actually belongs
in position j , then 2(k − j + 1) comparisons will be used in moving it, because there
will be k − j + 1 attempted iterations of the while loop and there are 2 comparisons
per attempted iteration.

According to the definition of expected value given in Section 9.8, the expected
number of comparisons used to place a[k] relative to a[1], a[2], . . . , a[k − 1] is
therefore

k∑
j=1

1

k
2(k − j + 1) = 2

k
[k + (k − 1)+ · · · + 3+ 2+ 1] by writing the

summation in expanded
form

= 2

k

(
k(k + 1)

2

)
by Theorem 5.2.2

= k + 1 by algebra.

Hence
Ek = Ek−1 + k + 1 for all integers k ≥ 2, and

E1 = 0.

Exercise 27 at the end of the section asks you to solve this recurrence relation to
show that

En = n2 + 3n − 4

2
for each integer n ≥ 1.

b. By the theorem on polynomial orders,
n2 + 3n − 4

2
= 1

2
n2 + 3

2
n − 2 is �(n2), and

so the average-case order of insertion sort is also �(n2). ■

Test Yourself
1. When an algorithm segment contains a nested for-next

loop, you can find the number of times the loop will
iterate by constructing a table in which each column
represents _____.

2. In the worst case for an input array of length n, the sequen-
tial search algorithm has to look through _____ elements of
the array before it terminates.

3. The worst-case order of the insertion sort algorithm is
_____, and its average-case order is _____.
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Exercise Set 11.3
1. Suppose a computer takes 1 nanosecond (= 10−9 second)

to execute each operation. Approximately how long will it
take for the computer to execute the following numbers of
operations? Convert your answers into seconds, minutes,
hours, days, weeks, or years, as appropriate. For example,
instead of 250 nanoseconds, write 13 days.
a. log2 200 b. 200 c. 200 log2 200

d. 2002 e. 2008 f. 2200

2. Suppose an algorithm requires cn2 operations when per-
formed with an input of size n (where c is a constant).
a. How many operations will be required when the input

size is increased from m to 2m (where m is a positive
integer)?

b. By what factor will the number of operations increase
when the input size is doubled?

c. By what factor will the number of operations increase
when the input size is increased by a factor of ten?

3. Suppose an algorithm requires cn3 operations when per-
formed with an input of size n (where c is a constant).
a. How many operations will be required when the input

size is increased from m to 2m (where m is a positive
integer)?

b. By what factor will the number of operations increase
when the input size is doubled?

c. By what factor will the number of operations increase
when the input size is increased by a factor of ten?

Exercises 4–5 explore the fact that for relatively small values
of n, algorithms with larger orders can be more efficient than
algorithms with smaller orders.

4. Suppose that when run with an input of size n, algorithm
A requires 2n2 operations and algorithm B requires 80n3/2

operations.
a. What are orders for algorithms A and B from among the

set of power functions?
b. For what values of n is algorithm A more efficient than

algorithm B?
c. For what values of n is algorithm B at least 100 times

more efficient than algorithm A?

5. Suppose that when run with an input of size n, algorithm
A requires 106n2 operations and algorithm B requires n3

operations.
a. What are orders for algorithms A and B from among the

set of power functions?
b. For what values of n is algorithm A more efficient than

algorithm B?
c. For what values of n is algorithm B at least 100 times

more efficient than algorithm A?

For each of the algorithm segments in 6–19, assume that n is a
positive integer. (a) Compute the actual number of additions,

subtractions, multiplications, divisions, and comparisons that
must be performed when the algorithm segment is executed. For
simplicity, however, count only comparisons that occur within
if-then statements; ignore those implied by for-next loops. (b)
Use the theorem on polynomial orders to find an order for the
algorithm segment.

6. for i := 3 to n − 1
a := 3 ·n + 2 · i − 1

next i

7. max := a[1]
for i := 2 to n

if max < a[i] then max := a[i]
next i

8. for i := 1 to �n/2�
a := n − i

next i

9. for i := 1 to n
for j := 1 to 2n

a := 2 ·n + i · j
next j

next i

10. for k := 2 to n
for j := 1 to 3n

x := a[k] − b[ j]
next j

next k

11. for k := 1 to n − 1
for j := 1 to k + 1

x := a[k] + b[ j]
next j

next k

12. for k := 1 to n − 1
max := a[k]
for i := k + 1 to n

if max < a[i] then max := a[i]
next i

a[k] := max
next k

13. for i := 1 to n − 1
for j := i to n

if a[ j] > a[i] then do
temp := a[i]
a[i] := a[ j]
a[ j] := temp
end do

next j
next i
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14. t := 0
for i := 1 to n

s := 0
for j := 1 to i

s := s + a[ j]
next j
t := t + s2

next i

15. r := 0
for i := 1 to n − 1

p := 1
q := 1
for j := i + 1 to n

p := p ·c[ j]
q := q ·(c[ j])2

next j
r := p + q

next i

16. t := 0
for i := 1 to n

s := 0
for j := 1 to i − 1

s := s + j ·(i − j + 1)
next j
r := s2

next i

17. for i := 1 to n
for j := 1 to �(i + 1)/2�

a := (n − i) ·(n − j)
next j

next i

18. for i := 1 to n
for j := �(i + 1)/2� to n

x := i · j
next j

next i

19.✶H for i := 1 to n
for j := 1 to i

for k := 1 to j
x := i · j ·k

next k
next j

next i

20. Construct a table showing the result of each step when
insertion sort is applied to the array a[1] = 6, a[2] = 2,
a[3] = 1, a[4] = 8, and a[5] = 4.

21. Construct a table showing the result of each step when
insertion sort is applied to the array a[1] = 7, a[2] = 3,
a[3] = 6, a[4] = 9, and a[5] = 5.

22. Construct a trace table showing the action of insertion sort
on the array of exercise 20.

23. Construct a trace table showing the action of insertion sort
on the array of exercise 21.

24. How many comparisons between values of a[ j] and x actu-
ally occur when insertion sort is applied to the array of exer-
cise 20?

25. How many comparisons between values of a[ j] and x actu-
ally occur when insertion sort is applied to the array of exer-
cise 21?

26. According to Example 11.3.6, the maximum number of
comparisons needed to perform insertion sort on an array of
length five is 52 − 5+ 2 = 22. Find an array of length five
that requires the maximum number of comparisons when
insertion sort is applied to it.

27.H Consider the recurrence relation that arose in Example
11.3.7: E1 = 0 and Ek = Ek−1 + k + 1, for all integers
k ≥ 2.
a. Use iteration to find an explicit formula for the sequence.
b. Use mathematical induction to verify the correctness of

the formula.

Exercises 28–35 refer to selection sort, which is another algo-
rithm to arrange the items in an array in ascending order.

Algorithm 11.3.2 Selection Sort
[Starting with an array a[1], a[2], a[3], . . . , a[n], this algo-
rithm sorts the array by selecting the correct item to
place in each position by moving sequentially through
the elements of the array. In general, for each k = 1
to n − 1, the kth step of the algorithm finds the index
of the array item with minimum value from among
a[k + 1], a[k + 2], a[k + 3], . . . , a[n]. Once this index is
found, the value of the corresponding array item is inter-
changed with the value of a[k]. At the end of execution the
array elements are in order.]

Input: n [a positive integer], a[1], a[2], a[3], . . . , a[n]
[an array of data items capable of being ordered]

Algorithm Body:

for k := 1 to n − 1

IndexOfMin := k

for i := k + 1 to n

if (a[i] < a[IndexOfMin])

then IndexOfMin := i

next i

if IndexOfMin �= k then
Temp := a[k]
a[k] := a[IndexOfMin]

a[IndexOfMin] := Temp

next k

Output: , a[1], a[2], a[3], . . . , a[n] [in ascending order]
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The action of selection sort can be represented pictorially
as follows:

a[1] a[2] · · · a[k] a[k + 1] · · · a[n]
↑

kth step: Find the index of the array element with
minimum value from among a[k + 1], . . . , a[n]
and interchange its value with the value of a[k].

28. Construct a table showing the interchanges that occur
when selection sort is applied to the array a[1] = 5, a[2] =
3, a[3] = 4, a[4] = 6, and a[5] = 2.

29. Construct a table showing the interchanges that occur
when selection sort is applied to the array a[1] = 6, a[2] =
4, a[3] = 5, a[4] = 8, and a[5] = 1.

30. Construct a trace table showing the action of selection sort
on the array of exercise 28.

31. Construct a trace table showing the action of selection sort
on the array of exercise 29.

32. When selection sort is applied to the array of exercise 28,
how many times is the comparison in the if-then statement
performed?

33. When selection sort is applied to the array of exercise 29,
how many times is the comparison in the if-then statement
performed?

34. When selection sort is applied to an array a[1], a[2], a[3],
a[4], howmany times is the comparison in the if-then state-
ment performed?

35. Consider applying selection sort to an array a[1], a[2],
a[3], . . . , a[n].
a. How many times is the comparison in the if-then state-

ment performed when a[1] is compared to each of a[2],
a[3], . . . , a[n]?

b. How many times is the comparison in the if-then state-
ment performed when a[2] is compared to each of a[3],
a[4], . . . , a[n]?

c. How many times is the comparison in the if-then state-
ment performed when a[k] is compared to each of
a[k − 1], a[k + 2], . . . , a[n]?

d.H Using the number of times the comparison in the if-then
statement is performed as a measure of the time effi-
ciency of selection sort, find an order for selection sort.
Use the theorem on polynomial orders.

Exercises 36–39 refer to the following algorithm to compute the
value of a real polynomial.

Algorithm 11.3.3 Term-by-Term Polynomial Evaluation

[This algorithm computes the value of the real polynomial
a[n]xn + a[n − 1]xn−1 + · · · + a[2]x2 + a[1]x + a[0] by
computing each term separately, starting with a[0], and
adding it on to an accumulating sum.]

Input: n [a nonnegative integer] a[0], a[1], a[2], . . . , a[n]
[an array of real numbers], x [a real number]
Algorithm Body:

polyval := a[0]
for i := 1 to n

term := a[i]
for j := 1 to i

term := term ·x
next j
polyval := polyval + term

next i
[At this point

polyval= a[n]xn + a[n − 1]xn−1
+ · · · + a[2]x2 + a[1]x + a[0].]

Output: polyval [a real number]

36. Trace Algorithm 11.3.3 for the input n = 3, a[0] = 2,
a[1] = 1, a[2] = −1, a[3] = 3, and x = 2.

37. Trace Algorithm 11.3.3 for the input n = 2, a[0] = 5,
a[1] = −1, a[2] = 2, and x = 3.

38. Let sn = the number of additions and multiplications that
must be performed when Algorithm 11.3.3 is executed for
a polynomial of degree n. Express sn as a function of n.

39. Use the theorem on on polynomial orders to find an order
for Algorithm 11.3.3.

Exercises 40–43 refer to another algorithm, known as Horner’s
rule, for finding the value of a real polynomial.

Algorithm 11.3.4 Horner’s Rule
[This algorithm computes the value of the real polyno-
mial a[n]xn + a[n − 1]xn−1 + · · · + a[2]x2 + a[1]x + a[0] by
nesting successive additions and multiplications as indicated in
the following parenthesization:

((· · · ((a[n]x + a[n − 1])x + a[n − 2])x
+ · · · + a[2])x + a[1])x + a[0].

At each stage, starting with a[n], the current value of polyval is
multiplied by x and the next lower coefficient of the polynomial
is added on.]

Input: n [a nonnegative integer] a[0], a[1], a[2], . . . , a[n]
[an array of real numbers], x [a real number]

Algorithm Body:

polyval := a[n]
for i := 1 to n

polyval := polyval · x + a[n − i]
next i
[At this point

polyval= a[n]xn + a[n − 1]xn−1
+ · · · + a[2]x2 + a[1]x + a[0].]

Output: polyval [a real number]
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40. Trace Algorithm 11.3.4 for the input n = 3, a[0] =
2, a[1] = 1, a[2] = −1, a[3] = 3, and x = 2.

41. Trace Algorithm 11.3.4 for the input n = 2, a[0] =
5, a[1] = −1, a[2] = 2, and x = 3.

42.H Let tn = the number of additions and multiplications that

must be performed when Algorithm 11.3.4 is executed for
a polynomial of degree n. Express tn as a function of n.

43. Use the theorem on polynomial orders to find an order for
Algorithm 11.3.4. How does this order compare with that
of Algorithm 11.3.3?

Answers for Test Yourself
1. one iteration of the innermost loop 2. n 3. n2; n2

11.4 Exponential and Logarithmic Functions:
Graphs and Orders
We ought never to allow ourselves to be persuaded of the truth of anything unless on the
evidence of our own reason. — René Descartes, 1596–1650

Exponential and logarithmic functions are of great importance in mathematics in gen-
eral and in computer science in particular. Several important computer algorithms have
execution times that involve logarithmic functions of the size of the input data (which
means they are relatively efficient for large data sets), and some have execution times
that are exponential functions of the size of the input data (which means they are quite
inefficient for large data sets). In addition, since exponential and logarithmic functions
arise naturally in the descriptions of many growth and decay processes and in the compu-
tation of many kinds of probabilities, these functions are used in the analysis of computer
operating systems, in queuing theory, and in the theory of information.

Graphs of Exponential Functions
As defined in Section 7.2, the exponential function with base b > 0 is the function that
sends each real number x to bx . The graph of the exponential function with base 2
(together with a partial table of its values) is shown in Figure 11.4.1. Note that the values
of this function increase with extraordinary rapidity. If we tried to continue drawing the
graph using the scale shown in Figure 11.4.1, we would have to plot the point (10, 210)
more than 21 feet above the horizontal axis. And the point (30, 230) would be located
more than 610,080 miles above the axis—well beyond the moon!
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20 1 1

21 1 2

22 1 4

23 1 8

2–1 1 0.5

2–2 1 0.25

2–3 1 0.125

20.5       1.414

2–0.5       0.707

Figure 11.4.1 The Exponential Function with Base 2
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752 Chapter 11 Analysis of Algorithm Efficiency

The graph of any exponential function with base b > 1 has a shape that is similar to
the graph of the exponential function with base 2. If 0 < b < 1, then 1/b > 0 and the
graph of the exponential function with base b is the reflection across the vertical axis of
the exponential function with base 1/b. These facts are illustrated in Figure 11.4.2.

1–1–2 2

y

x

(1, b)b

1(–1,   )1
b

y = bx, b > 1

Graph of the exponential function
with base b > 1

(a)

1–1–2 2

y

x

(1, b)
b
1

(–1,   )1
b

y = bx,
0 < b <†1

Graph of the exponential function
with base b where 0 < b < 1

(b)

Figure 11.4.2 Graphs of Exponential Functions

Graphs of Logarithmic Functions
Logarithms were first introduced by the Scotsman John Napier. Astronomers and naviga-
tors found them so useful for reducing the time needed to do multiplication and division
that they quickly gained wide acceptance and played a crucial role in the remarkable
development of those areas in the seventeenth century. Nowadays, however, electronic
calculators and computers are available to handle most computations quickly and conve-
niently, and logarithms and logarithmic functions are used primarily as conceptual tools.
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B
IS

John Napier (1550–1617)

Recall the definition of the logarithmic function with base b from Section 7.1. We
state it formally below.

• Definition

If b is a positive real number not equal to 1, then the logarithmic function with
base b, log b: R+ → R, is the function that sends each positive real number x to the
number logb x , which is the exponent to which b must be raised to obtain x .

The logarithmic function with base b is, in fact, the inverse of the exponential function
with base b. (See exercise 10 at the end of this section.) It follows that the graphs of the
two functions are symmetric with respect to the line y = x . The graph of the logarithmic
function with base b > 1 is shown in Figure 11.4.3 on the next page.
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x

y

1

1

–1

y = logb x

logb x1

logb x2

x1 x2

Figure 11.4.3 The Graph of the Logarithmic Function with Base b > 1

If its base b is greater than 1, the logarithmic function is increasing. Analytically, this
means that

if b > 1, then for all positive numbers x1 and x2,

if x1 < x2, then logb(x1) < logb(x2). 11.4.1

Corresponding to the rapid growth of the exponential function, however, is the very
slow growth of the logarithmic function. Thus you must go very far out on the horizontal
axis to find points whose logarithms are large numbers.

Note As examples,
log2(1,024) is only 10
and log2(1,048,576) is
just 20.

The following example shows how to make use of the increasing nature of the loga-
rithmic function with base 2 to derive a remarkably useful property.

Example 11.4.1 Base 2 Logarithms of Numbers between Two Consecutive Powers of 2

Prove the following property:

a.

If k is an integer and x is a real number with

2k ≤ x < 2k+1, then �log2 x� = k. 11.4.2

b. Describe property (11.4.2) in words and give a graphical interpretation of the property
for x > 1.

Solution

a. Suppose that k is an integer and x is a real number with

2k ≤ x < 2k+1.

Because the logarithmic function with base 2 is increasing, this implies that

log2(2
k) ≤ log2 x < log2(2

k+1).

But log2(2
k) = k [the exponent to which you must raise 2 to get 2k is k] and log2(2

k+1) =
k + 1 [for a similar reason]. Hence

k ≤ log2 x < k + 1.
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754 Chapter 11 Analysis of Algorithm Efficiency

By definition of the floor function, then,

�log2 x� = k.

b. Recall that the floor of a positive number is its integer part. For instance, �2.82� =
2. Hence property (11.4.2) can be described in words as follows:

If x is a positive number that lies between two consecutive integer powers of 2,
the floor of the logarithm with base 2 of x is the exponent of the smaller power
of 2.

A graphical interpretation follows:

y = log2 x

0

1

2

3

k

k + 1

1 2 22 = 4 23 = 8 2k 2k+1
If x lies in here

 then log2 x lies in here:

■

One consequence of property (11.4.2) does not appear particularly interesting in its
own right but is frequently needed as a step in the analysis of algorithm efficiency.

Example 11.4.2 When �log2(n − 1)� = �log2 n�
Prove the following property:

For any odd integer n > 1, �log2(n − 1)� = �log2 n�. 11.4.3

Solution If n is an odd integer that is greater than 1, then n lies strictly between two suc-
cessive powers of 2:

2k < n < 2k+1 for some integer k > 0. 11.4.4

It follows that 2k ≤ n − 1 because 2k < n and both 2k and n are integers. Consequently,

2k ≤ n − 1 < 2k+1. 11.4.5

Applying property (11.4.2) to both (11.4.4) and (11.4.5) gives

�log2 n� = k and also �log2(n − 1)� = k.

Hence �log2 n� = �log2(n − 1)�. ■
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Application: Number of Bits Needed to Represent
an Integer in Binary Notation

Given a positive integer n, how many binary digits are needed to represent n? To answer
this question, recall from Section 5.4 that any positive integer n can be written in a unique
way as

n = 2k + ck−1·2k−1 + · · · + c2·22 + c1·2+ c0,

where k is a nonnegative integer and each c0, c1, c2, . . . ck−1 is either 0 or 1. Then the
binary representation of n is

1ck−1ck−2 · · · c2c1c0,
and so the number of binary digits needed to represent n is k + 1.

What is k + 1 as a function of n? Observe that since each ci ≤ 1,

n = 2k + ck−1·2k−1 + · · · + c2·22 + c1·2+ c0 ≤ 2k + 2k−1 + · · · + 22 + 2+ 1.

But by the formula for the sum of a geometric sequence (Theorem 5.2.3),

2k + 2k−1 + · · · + 22 + 2+ 1 = 2k+1 − 1

2− 1
= 2k+1 − 1.

Hence, by transitivity of order,

n ≤ 2k+1 − 1 < 2k+1 11.4.6

In addition, because each ci ≥ 0,

2k ≤ 2k + ck−1·2k−1 + · · · + c2·22 + c1·2+ c0 = n. 11.4.7

Putting inequalities (11.4.6) and (11.4.7) together gives the double inequality

2k ≤ n < 2k+1.

But then, by property (11.4.2),

k = �log2 n�.
Thus the number of binary digits needed to represent n is �log2 n� + 1.

Example 11.4.3 Number of Bits in a Binary Representation

How many binary digits are needed to represent 52,837 in binary notation?

Solution If you compute the logarithm with base 2 using the formula in part (a) of
Theorem 7.2.1 and a calculator that gives you approximate values of logarithms with
base 10, you find that

log2(52,837) ∼=
log10(52,837)

log10(2)
∼= 4.722938151

0.3010299957
∼= 15.7.

Thus the binary representation of 52,837 has �15.7� + 1 = 15+ 1 = 16 binary
digits. ■

Application: Using Logarithms to Solve
Recurrence Relations

In Chapter 5 we discussed methods for solving recurrence relations. One class of recur-
rence relations that is very important in computer science has solutions that can be
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756 Chapter 11 Analysis of Algorithm Efficiency

expressed in terms of logarithms. One such recurrence relation is discussed in the next
example.

Example 11.4.4 A Recurrence Relation with a Logarithmic Solution

Define a sequence a1, a2, a3, . . . recursively as follows:

a1 = 1,

ak = 2a�k/2� for all integers k ≥ 2.

a. Use iteration to guess an explicit formula for this sequence.

b. Use strong mathematical induction to confirm the correctness of the formula obtained
in part (a).

Solution

a. Begin by iterating to find the values of the first few terms of the sequence.

→a1 = 1 1 = 20

a2 = 2a�2/2� = 2a1 = 2 ·1 = 2
→
a3 = 2a�3/2� = 2a1 = 2 ·1 = 2

}
2 = 21

a4 = 2a�4/2� = 2a2 = 2 ·2 = 4
→
a5 = 2a�5/2� = 2a2 = 2 ·2 = 4

a6 = 2a�6/2� = 2a3 = 2 ·2 = 4

a7 = 2a�7/2� = 2a3 = 2 ·2 = 4

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

4 = 22

a8 = 2a�8/2� = 2a4 = 2 ·4 = 8
→
a9 = 2a�9/2� = 2a4 = 2 ·4 = 8
...

...

a15 = 2a�15/2� = 2a7 = 2 ·4 = 8

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

8 = 23

a16 = 2a�16/2� = 2a8 = 2 ·8 = 16
→...

...

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

16 = 24

Note that in each case when the subscript n is between two powers of 2, an equals the
smaller power of 2. More precisely:

If 2i ≤ n < 2i+1, then an = 2i . 11.4.8

But since n satisfies the inequality

2i ≤ n < 2i+1,

then (by property 11.4.2)

i = �log2 n�.
Substituting into statement (11.4.8) gives

an = 2�log2 n�.

b. The following proof shows that if a1, a2, a3, . . . is a sequence of numbers that satisfies

a1 = 1, and ak = 2a�k/2� for all integers k ≥ 2,

then the sequence satisfies the formula

an = 2�log2 n� for all integers n ≥ 1.
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Proof:

Let a1, a2, a3, . . . be the sequence defined by specifying that a1 = 1 and ak = 2�ak/2�
for all integers k ≥ 2, and let the property P(n) be the equation

an = 2�log2 n�. ← P(n)

We will use strong mathematical induction to prove that for all integers n ≥ 1, P(n)
is true.

Show that P (1) is true: By definition of a1, a2, a3, . . . , we have that a1 = 1. But it is
also the case that 2�log2 1� = 20 = 1. Thus a1 = 2�log2 1� and P(1) is true.

Show that for all integers k ≥ 1, if P(i) is true for all integers i from 1 through k,
then P(k+ 1) is also true: Let k be any integer with k ≥ 1, and suppose that

ai = 2�log2 i� for all integers i with 1 ≤ i ≤ k. ←inductive hypothesis

We must show that

ak+1 = 2�log2(k+1)� ← P(k + 1)

Consider the two cases: k is even and k is odd.

Case 1 (k is even): In this case, k + 1 is odd, and

ak+1 = 2a�(k+1)/2� by definition of a1, a2, a3, . . .

= 2ak/2 because �(k + 1)/2� = k/2 since k + 1 is odd

= 2 ·2�log2(k/2)� by inductive hypothesis because, since k is even,

k ≥ 2, and so k/2 ≥ 1

= 2�log2(k/2)�+1 by the laws of exponents from algebra (7.2.1)

= 2�log2 k−log2 2�+1 by the identity logb(x/y) = logb x − logb y

from Theorem 7.2.1

= 2�log2 k−1�+1 since log2 2 = 1

= 2�log2 k�−1+1
by substituting x = log2 k into the identity

�x − 1� = �x� − 1 derived in exercise 15 of Section 4.5

= 2�log2 k�

= 2�log2(k+1)� by property (11.4.3)

Case 2 (k is odd): The analysis of this case is very similar to that of case 1 and is left
as exercise 56 at the end of the section.

Thus in either case, an = 2�log2(k+1)�, as was to be shown. ■

Exponential and Logarithmic Orders
Now consider the question “How do graphs of logarithmic and exponential functions
compare with graphs of power functions?” It turns out that for large enough values of x ,
the graph of the logarithmic function with any base b > 1 lies below the graph of any pos-
itive power function, and the graph of the exponential function with any base b > 1 lies
above the graph of any positive power function. In analytic terms, this says the following:

For all real numbers b and r with b > 1 and r > 0,

logb x ≤ xr for all sufficiently large real numbers x . 11.4.9

and xr ≤ bx for all sufficiently large real numbers x . 11.4.10
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These statements have the following implications for O-notation.

For all real numbers b and r with b > 1 and r > 0,

logb x is O(xr ) 11.4.11

and xr is O(bx ) 11.4.12

Another important function in the analysis of algorithms is the function f defined by
the formula

f (x) = x logb x for all real numbers x > 0.

For large values of x , the graph of this function fits in between the graph of the identity
function and the graph of the squaring function. More precisely:

For all real numbers b with b > 1 and for all sufficiently large real numbers x ,

x ≤ x logb x ≤ x2. 11.4.13

The O-notation versions of these facts are as follows:

For all real numbers b > 1,

x is O(x logb x) and x logb x is O(x2). 11.4.14

Although proofs of some of these facts require calculus, proofs of some cases can be
obtained using the algebra of inequalities. (See the exercises at the end of this section.)
Figure 11.4.4 illustrates the relationships among some power functions, the logarithmic
function with base 2, the exponential function with base 2, and the function defined by
the formula x → x log2 x . Note that different scales are used on the horizontal and verti-
cal axes.

Example 11.4.5 shows how to use inequalities such as (11.4.9), (11.4.10), and (11.4.13)
to derive additional orders involving the logarithmic function.

Example 11.4.5 Deriving an Order from Logarithmic Inequalities

Show that x + x log2 x is �(x log2 x).

Solution First observe that x + x log2 x is �(x log2 x) because for all real numbers x > 1,

x log2 x ≤ x + x log2 x,

and since all quantities are positive,

|x log2 x | ≤ |x + x log2 x |.
Let A = 1 and a = 1. Then

A|x log2 x | ≤ |x + x log2 x | for all x > a.

Hence, by definition of �-notation,

x + x log2 x is �(x log2 x).
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Figure 11.4.4 Graphs of Some Logarithmic, Exponential, and Power Functions

To show that x + x log2 x is O(x log2 x), note that according to property (11.4.13)
with b = 2, there is a number b such that for all x > b,

x < x log2 x

⇒ x + x log2 x < 2x log2 x by adding x log2 x to both sides

Thus, if b is taken to be greater than 2, then

|x + x log2 x | < 2|x log2 x | because when x > 2, x log2 x > 0, and so
|x + x log2 x | = x + x log2 x and
log2 x = |x log2 x |.

Let B = 2. Then

|x + x log2 x | ≤ B|x log2 x | for all x > b.

Hence, by definition of O-notation

x + x log2 x is O(x log2 x).

Therefore, since x + x log2 x is �(x log2 x) and x + x log2 x is O(x log2 x), by
Theorem 11.2.1,

x + x log2 x is �(x log2 x). ■

Example 11.4.5 illustrates a special case of a useful general fact about O-notation:
If one function “dominates” another (in the sense of being larger for large values of the
variable), then the sum of the two is big-O of the dominating function. (See exercise 49a
in Section 11.2.)

Example 11.4.6 shows that any two logarithmic functions with bases greater
than 1 have the same order.
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Example 11.4.6 Logarithm with Base b Is Big-Theta of Logarithm with Base c

Show that if b and c are real numbers such that b > 1 and c > 1, then logb x is �(logc x).

Solution Suppose b and c are real numbers and b > 1 and c > 1. To show that logb x is
�(logc x), positive real numbers A, B, and k must be found such that

A| logc x | ≤ | logb x | ≤ B| logc x | for all real numbers x > k.

By part (d) of Theorem 7.2.1,

logb x =
logc x

logc b
=

(
1

logc b

)
logc x . (∗)

Since b > 1 and the logarithmic function with base c is strictly increasing, then logc b >

logc 1 = 0, and so
1

logc b
> 0 also. Furthermore, if x > 1, then logb x > 0 and logc x > 0.

It follows from equation (∗), therefore, that(
1

logc b

)
logc x ≤ logb x ≤

(
1

logc b

)
logc x (∗∗)

for all real numbers x > 1. Accordingly, let A = 1

logc b
, B = 1

logc b
, and k = 1. Then,

since all quantities in (∗∗) are positive,
A| logc x | ≤ | logb x | ≤ B| logc x | for all real numbers x > k.

Hence, by definition of �-notation,

logb x is �(logc x). ■

Example 11.4.7 shows how a logarithmic order can arise from the computation of a
certain kind of sum. It requires the following fact from calculus:

The area underneath the graph of y = 1/x between x = 1 and x = n equals ln n,
where ln n = loge n. This fact is illustrated in Figure 11.4.5.

x

y

n1

1

Graph of y = 1
x

Area of shaded region = ln n

Figure 11.4.5 Area Under Graph of y = 1
x

Between x = 1 and x = n

Example 11.4.7 Order of a Harmonic Sum

Sums of the form 1+ 1

2
+ · · · + 1

n
are called harmonic sums. They occur in the analysis

of various computer algorithms such as quick sort. Show that 1+ 1

2
+ 1

3
+ · · · + 1

n
is

�(ln n) by performing the steps on the next page:
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a. Interpret Figure 11.4.6 to show that

1

2
+ 1

3
+ · · · + 1

n
≤ ln n.

and

ln n ≤ 1+ 1

2
+ 1

3
+ · · · + 1

n
.

b. Show that if n is an integer that is at least 3, then 1 ≤ ln n.

c. Deduce from (a) and (b) that if the integer n is greater than or equal to 3, then

ln n ≤ 1+ 1

2
+ 1

3
+ · · · + 1

n
≤ 2 ln n.

d. Deduce from (c) that

1+ 1

2
+ 1

3
+ · · · + 1

n
is �(ln n).

Solution

a. Figure 11.4.6(a) shows rectangles whose bases are the intervals between each pair
of integers from 1 to n and whose heights are the heights of the graph of y = 1/x
above the right-hand endpoints of the intervals. Figure 11.4.6(b) shows rectangles
with the same bases but whose heights are the heights of the graph above the left-hand
endpoints of the intervals.

x

y

1 2 3 4 n – 1 n

(1, 1) Total area under graph
from 1 to n = ln n

(2,   )1
2

(3,   )1
3 (4,   )1

4 (n – 1,         )1
n – 1 (n,   )1

n
(n – 1,         )1

n – 1

x

y

1 2 3 4 n – 1 n

(1, 1)

Graph of y = 1
xGraph of y = 1

x

Total area under graph
from 1 to n = ln n

(2,   )1
2 (3,   )1

3 (4,   )1
4 (n,   )1

n

(a) (b)

1 1

Figure 11.4.6

Now the area of each rectangle is its base times its height. Since all the rectangles
have base 1, the area of each rectangle equals its height. Thus in Figure 11.4.6(a),

the area of the rectangle from 1 to 2 is
1

2
;

the area of the rectangle from 2 to 3 is
1

3
;

...

the area of the rectangle from n − 1 to n is
1

n
.

So the sum of the areas of all the rectangles is
1

2
+ 1

3
+ · · · + 1

n
. From the picture it

is clear that this sum is less than the area underneath the graph of f between x = 1
and x = n, which is known to equal ln n. Hence
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1

2
+ 1

3
+ · · · + 1

n
≤ ln n.

A similar analysis of the areas of the combined blue and gray rectangles in
Figure 11.4.6(b) shows that

ln n ≤ 1+ 1

2
+ 1

3
+ · · · + 1

n
.

b. Suppose n is an integer and n ≥ 3. Since e ∼= 2.718, then n ≥ e. Now the logarithmic
function with base e is strictly increasing. Thus since e ≤ n, then 1 = ln e ≤ ln n.

c. By part (a),

1

2
+ 1

3
+ · · · + 1

n
≤ ln n,

and by part (b),

1 ≤ ln n.

Adding these two inequalities together gives

1+ 1

2
+ 1

3
+ · · · + 1

n
≤ 2 ln n for any integer n ≥ 3.

d. Putting together the results of parts (a) and (c) leads to the conclusion that for all
integers n ≥ 3,

ln n ≤ 1+ 1

2
+ 1

3
+ · · · + 1

n
≤ 2 ln n.

And because all the quantities are positive for n ≥ 3,

| ln n| ≤
∣∣∣∣1+ 1

2
+ 1

3
+ · · · + 1

n

∣∣∣∣ ≤ 2| ln n|.

Let A = 1, B = 2, and k = 3. Then

A| ln n| ≤
∣∣∣∣1+ 1

2
+ 1

3
+ · · · + 1

n

∣∣∣∣ ≤ B| ln n| for all n > k.

Hence by definition of �-notation,

1+ 1

2
+ 1

3
+ · · · + 1

n
is �(ln n). ■

Test Yourself
1. The domain of any exponential function is _____, and its

range is _____.

2. The domain of any logarithmic function is _____, and its
range is _____.

3. If k is an integer and 2k ≤ x < 2k+1, then �log2 x� = _____.

4. If b is a real number with b > 1 and if x is a sufficiently large
real number, then when the quantities x, x2, logb x , and
x logb x are arranged in order of increasing size, the result is
_____.

5. If n is a positive integer, then 1+ 1
2 + 1

3 + · · · + 1
n has order

_____.

Exercise Set 11.4
Graph each function defined in 1–8.

1. f (x) = 3x for all real numbers x

2. g(x) = (
1
3

)x
for all real numbers x

3. h(x) = log10 x for all positive real numbers x

4. k(x) = log2 x for all positive real numbers x

5. F(x) = �log2 x� for all positive real numbers x
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6. G(x) = �log2 x� for all positive real numbers x

7. H(x) = x log2 x for all positive real numbers x

8. K (x) = x log10 x for all positive real numbers x

9. The scale of the graph shown in Figure 11.4.1 is one-fourth
inch to each unit. If the point (2, 264) is plotted on the graph
of y = 2x , how many miles will it lie above the horizontal
axis? What is the ratio of the height of the point to the dis-
tance of the earth from the sun? (There are 12 inches per
foot and 5,280 feet per mile. The earth is approximately
93,000,000 miles from the sun on average.)
( 14 inch ∼= 0.635 cm, 1 mile ∼= 0.62 km)

10. a. Use the definition of logarithm to show that logbb
x = x

for all real numbers x .
b. Use the definition of logarithm to show that blogbx = x

for all positive real numbers x .
c. By the result of exercise 25 in Section 7.3, if f : X → Y

and g: Y→ X are functions and g◦ f = IX and f ◦g=
IY , then f and g are inverse functions. Use this result to
show that logb and expb (the exponential function with
base b) are inverse functions.

11. Let b > 1.
a. Use the fact that u = logb v ⇔ v = bu to show that a

point (u, v) lies on the graph of the logarithmic function
with base b if, and only if, (v, u) lies on the graph of the
exponential function with base b.

b. Plot several pairs of points of the form (u, v) and (v, u)
on a coordinate system. Describe the geometric relation-
ship between the locations of the points in each pair.

c. Draw the graphs of y = log2 x and y = 2x . Describe the
geometric relationship between these graphs.

12. Give a graphical interpretation for property (11.4.2) in
Example 11.4.1(a) for 0 < x < 1.

13.H Suppose a positive real number x satisfies the inequal-
ity 10m ≤ x < 10m+1 where m is an integer. What can be
inferred about �log10 x�? Justify your answer.

14. a. Prove that if x is a positive real number and k is
a nonnegative integer such that 2k−1 < x ≤ 2k , then
�log2 x� = k.

b. Describe in words the statement proved in part (a).

15. If n is an odd integer and n > 1, is �log2(n − 1)� =
�log2(n)�? Justify your answer.

16.H If n is an odd integer and n > 1, is �log2(n + 1)� =
�log2(n)�? Justify your answer.

17. If n is an odd integer and n > 1, is �log2(n + 1)� =
�log2(n)�? Justify your answer.

In 18 and 19, indicate how many binary digits are needed to rep-
resent the numbers in binary notation. Use the method shown in
Example 11.4.3.

18. 148,206 19. 5,067,329

20. It was shown in the text that the number of binary digits
needed to represent a positive integer n is �log2 n� + 1. Can
this also be given as �log2 n�? Why or why not?

In each of 21 and 22, a sequence is specified by a recurrence
relation and initial conditions. In each case, (a) use iteration to
guess an explicit formula for the sequence; (b) use strong math-
ematical induction to confirm the correctness of the formula you
obtained in part (a).

21. ak = a�k/2� + 2, for all integers k ≥ 2
a1 = 1

22. bk = b�k/2� + 1, for all integers k ≥ 2
b1 = 1.

23.H Define a sequence c1, c2, c3, . . . , recursively as follows:

c1 = 0,

ck = 2c�k/2� + k, for all integers k ≥ 2.

Use strong mathematical induction to show that cn ≤ n2 for
all integers n ≥ 1.

24.H✶ Use strong mathematical induction to show that for the
sequence of exercise 23, cn ≤ n log2 n, for all integers
n ≥ 4.

Exercises 25–28 refer to properties 11.4.9 and 11.4.10. To solve
them, think big!

25. Find a real number x > 3 such that log2 x < x1/10.

26. Find a real number x > 1 such that x50 < 2x .

27. Find a real number x > 2 such that x < 1.0001x .

28. Use a graphing calculator or computer graphing program
to find two distinct approximate values of x such that x =
1.0001x . On what approximate intervals is x > 1.0001x?
On what approximate intervals is x < 1.0001x?

29. Use �-notation to express the following statement:

|x2| ≤ |7x2 + 3x log2 x | ≤ 10|x2|,
for all real numbers x > 2.

Derive each statement in 30–33.

30. 2x + log2 x is �(x).

31. x2 + 5x log2 x is �(x2).

32. n2 + 2n is �(2n).

33.H 2n+1 is �(2n).

34.H Show that 4n is not O(2n).

Prove each of the statements in 35–40, assuming n is an integer
variable that takes positive integer values. Use identities from
Section 5.2 as needed.

35. 1+ 2+ 22 + 23 + · · · + 2n is �(2n).

36.H 4+ 42 + 43 + · · · + 4n is �(4n).
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37. 2+ 2 ·32 + 2 ·34 + · · · + 2 ·32n is �(32n).

38.
1

5
+ 4

52
+ 42

53
+ · · · + 4n

5n+1
is �(1).

39. n + n

2
+ n

4
+ · · · + n

2n
is �(n).

40.
2n

3
+ 2n

32
+ 2n

33
+ · · · + 2n

3n
is �(n).

41. Quantities of the form

kn + kn log2 n for positive integers k1 ·k2, and n
arise in the analysis of the merge sort algorithm in computer
science. Show that for any positive integer k,

k1n + k2n log2 n is �(n log2 n).

42. Calculate the values of the harmonic sums

1+ 1

2
+ 1

3
+ · · · + 1

n
for n = 2, 3, 4, and 5.

43. Use part (d) of Example 11.4.7 to show that

n + n

2
+ n

3
+ · · · + n

n
is �(n ln n).

44. Use the fact that log2 x =
(

1

loge 2

)
loge x and loge x =

ln x , for all positive numbers x , and part (c) of Example
11.4.7 to show that

1+ 1

2
+ 1

3
+ · · · + 1

n
is �(log2 n).

45. a. Show that �log2 n� is �(log2 n).
b. Show that �log2 n� + 1 is �(log2 n).

46. Prove by mathematical induction that n ≤ 10n for all inte-
gers n ≥ 1.

47.H Prove by mathematical induction that log2 n ≤ n for all inte-
gers n ≥ 1.

48.H Show that if n is a variable that takes positive integer values,
then 2n is O(n!).

49. Let n be a variable that takes positive integer values.
a. Show that n! is O(nn).

b. Use part (a) to show that log2(n!) is O(n log2 n).
c.H Show that nn ≤ (n!)2 for all integers n ≥ 2.
d. Use part (c) to show that log2(n!) is �(n log2 n).
e. Use parts (b) and (d) to find an order for log2(n!).

50.✶ a. For all positive real numbers u, log2 u < u. Use this fact
to show that for any positive integer n, log2 x < nx1/n

for all real numbers x > 0.
b. Interpret the statement of part (a) using O-notation.

51. a. For all real numbers x, x < 2x . Use this fact to show that
for any positive integer n, xn < nn2x for all real numbers
x > 0.

b. Interpret the statement of part (a) using O-notation.

52.✶ For all positive real numbers u, log2 u < u. Use this fact
and the result of exercise 21 in Section 11.1 to prove the
following: For all integers n ≥ 1, log2 x < x1/n for all real
numbers x > (2n)2n .

53. Use the result of exercise 52 above to prove the follow-
ing: For all integers n ≥ 1, xn < 2x for all real numbers
x > (2n)2n .

Exercises 54 and 55 use L’Hôpital’s rule from calculus.

54. a. Let b be any real number greater than 1. Use L’Hôpital’s
rule and mathematical induction to prove that for all
integers n ≥ 1,

lim
x→∞

xn

bx
= 0.

b. Use the result of part (a) and the definitions of limit and
of O-notation to prove that xn is O(bx ) for any integer
n ≥ 1.

55. a. Let b be any real number greater than 1. Use L’Hôpital’s
rule to prove that for all integers n ≥ 1,

lim
x→∞

logb x

x1/n
= 0.

b. Use the result of part (a) and the definitions of limit and
of O-notation to prove that logb x is O(x1/n) for any
integer n ≥ 1.

56. Complete the proof in Example 11.4.4.

Answers for Test Yourself
1. the set of all real numbers; the set of all positive real numbers 2. the set of all positive real numbers; the set of all real numbers
3. k 4. logb x < x < x logb x < x2 5. ln x (or, equivalently, log2 x)

11.5 Application: Analysis of Algorithm Efficiency II
Pick a Number, Any Number — Donal O’Shea, 2007

Have you ever played the “guess my number” game? A person thinks of a number
between two other numbers, say 1 and 10 or 1 and 100 for example, and you try to
figure out what it is, using the least possible number of guesses. Each time you guess a
number, the person tells you whether you are correct, too low, or too high.
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If you have played this game, you have probably already hit upon the most efficient
strategy: Begin by guessing a number as close to the middle of the two given numbers
as possible. If your guess is too high, then the number is between the lower of the two
given numbers and the one you first chose. If your guess is too low, then the number is
between the number you first chose and the higher of the two given numbers. In either
case, you take as your next guess a number as close as possible to the middle of the new
range in which you now know the number lies. You repeat this process as many times as
necessary until you have found the person’s number.

The technique described previously is an example of a general strategy called divide
and conquer, which works as follows: To solve a problem, reduce it to a fixed number of
smaller problems of the same kind, which can themselves be reduced to the same fixed
number of smaller problems of the same kind, and so forth until easily resolved problems
are obtained. In this case, the problem of finding a particular number in a given range of
numbers is reduced at each stage to finding a particular number in a range of numbers
approximately half as long.

It turns out that algorithms using a divide-and-conquer strategy are generally quite
efficient and nearly always have orders involving logarithmic functions. In this section
we define the binary search algorithm, which is the formalization of the “guess my num-
ber” game described previously, and we compare the efficiency of binary search to the
sequential search discussed in Section 11.3. Then we develop a divide-and-conquer algo-
rithm for sorting, merge sort, and compare its efficiency with that of insertion sort and
selection sort, which were also discussed in Section 11.3.

Binary Search
Whereas a sequential search can be performed on an array whose elements are in any
order, a binary search can be performed only on an array whose elements are arranged in
ascending (or descending) order. Given an array a[1], a[2], . . . , a[n] of distinct elements
arranged in ascending order, consider the problem of trying to find a particular element x
in the array.

To use binary search, first compare x to the “middle element” of the array. If the
two are equal, the search is successful. If the two are not equal, then because the array
elements are in ascending order, comparing the values of x and the middle array element
narrows the search either to the lower subarray (consisting of all the array elements below
the middle element) or to the upper subarray (consisting of all array elements above the
middle element).

The search continues by repeating this basic process over and over on successively
smaller subarrays. It terminates either when a match occurs or when the subarray to which
the search has been narrowed contains no elements. The efficiency of the algorithm is a
result of the fact that at each step, the length of the subarray to be searched is roughly half
the length of the array of the previous step. This process is illustrated in Figure 11.5.1.

left subarray middle element right subarray

a[r] a[s]a[mid – 1] a[mid + 1]a[mid ]

x > a[mid ]x < a[mid]

Compare x to a[mid ].  If the two
are equal, the search ends.

Search the left subarray
a[r], . . . , a[mid – 1] for x.

Search the right subarray
a[mid + 1], . . . , a[s] for x.

Figure 11.5.1 One lteration of the Binary Search Process
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766 Chapter 11 Analysis of Algorithm Efficiency

To write down a formal algorithm for binary search, we introduce a variable index
whose final value will tell us whether or not x is in the array and, if so, will indicate
the location of x . Since the array goes from a[1] to a[n], we intialize index to be 0. If
and when x is found, the value of index is changed to the subscript of the array element
equaling x . If index still has the value 0 when the algorithm is complete, then x is not one
of the elements in the array. Figure 11.5.2 shows the action of a particular binary search.

a[5] = x ?

index = 5

a[6] = x ?

a[4] = x ? no: x > a[4]

no: x < a[6]

yes

a[1] a[2] a[3] a[4] a[5] a[6] a[7]

Figure 11.5.2 Binary Search of a[1], a[2], . . . , a[7] for x where x = a[5]

Formalizing a binary search algorithm also requires that we be more precise about
the meaning of the “middle element” of an array. (This issue was side-stepped by careful
choice of n in Figure 11.5.2.) If the array consists of an even number of elements, there
are two elements in the middle. For instance, both a[6] and a[7] are equally in the middle
of the following array.

a[3] a[4] a[5]︸ ︷︷ ︸ a[6] a[7]︸ ︷︷ ︸ a[8] a[9] a[10]︸ ︷︷ ︸
three elements two middle three elements

elements

In a case such as this, the algorithm must choose which of the two middle elements to
take, the smaller or the larger. The choice is arbitrary—either would do. We will write the
algorithm to choose the smaller. The index of the smaller of the two middle elements is
the floor of the average of the top and bottom indices of the array. That is, if

bot = the bottom index of the array,

top = the top index of the array, and

mid = the lower of the two middle indices of the array,

then

mid =
⌊
bot+ top

2

⌋
.

In this case, bot = 3 and top = 10, so the index of the “middle element” is

mid =
⌊
3+ 10

2

⌋
=

⌊
13

2

⌋
= �6.5� = 6.

The following is a formal algorithm for a binary search.
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Algorithm 11.5.1 Binary Search

[The aim of this algorithm is to search for an element x in an ascending array of elements
a[1], a[2], . . . , a[n]. If x is found, the variable index is set equal to the index of the array
element where x is located. If x is not found, index is not changed from its initial value,
which is 0. The variables bot and top denote the bottom and top indices of the array
currently being examined.]

Input: n [a positive integer], a[1], a[2], . . . , a[n] [an array of data items given in
ascending order], x [a data item of the same data type as the elements of the array]

Algorithm Body:

index := 0, bot := 1, top := n
[Compute the middle index of the array, mid. Compare x to a[mid]. If the two are
equal, the search is successful. If not, repeat the process either for the lower or for the
upper subarray, either giving top the new value mid − 1 or giving bot the new value
mid + 1. Each iteration of the loop either decreases the value of top or increases
the value of bot. Thus, if the looping is not stopped by success in the search process,
eventually the value of top will become less than the value of bot. This occurrence
stops the looping process and indicates that x is not an element of the array.]

while (top ≥ bot and index = 0)

mid :=
⌊
bot + top

2

⌋
if a[mid] = x then index := mid

if a[mid] > x

then top := mid − 1

else bot := mid + 1

end while

[If index has the value 0 at this point, then x is not in the array. Otherwise, index
gives the index of the array where x is located.]

Output: index [a nonnegative integer]

Example 11.5.1 Tracing the Binary Search Algorithm

Trace the action of Algorithm 11.5.1 on the variables index, bot, top, mid, and the values
of x given in (a) and (b) below for the input array

a[1] = Ann, a[2] = Dawn, a[3] = Erik, a[4] = Gail, a[5] = Juan,

a[6] = Matt, a[7] = Max, a[8] = Rita, a[9] = Tsuji, a[10] = Yuen

where alphabetical ordering is used to compare elements of the array.

a. x = Max b. x = Sara

Solution

a.
index 0 7

bot 1 6 7

top 10 7

mid 5 8 6 7

b. index 0

bot 1 6 9

top 10 8

mid 5 8 9

■
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The Efficiency of the Binary Search Algorithm
The idea of the derivation of the efficiency of the binary search algorithm is not dif-
ficult. Here it is in brief. At each stage of the binary search process, the length of the
new subarray to be searched is approximately half that of the previous one, and in the
worst case, every subarray down to a subarray with a single element must be searched.
Consequently, in the worst case, the maximum number of iterations of the while loop in
the binary search algorithm is 1 more than the number of times the original input array
can be cut approximately in half. If the length n of this array is a power of 2 (n = 2k

for some integer k), then n can be halved exactly k = log2 n = �log2 n� times before an
array of length 1 is reached. If n is not a power of 2, then n = 2k + m for some integer k
(where m < 2k), and so n can be split approximately in half k times also. So in this case,
k = �log2 n� also. Thus in the worst case, the number of iterations of the while loop in
the binary search algorithm, which is proportional to the number of comparisons required
to execute it, is �log2 n� + 1. The derivation is concluded by noting that �log2 n� + 1 is
O(log2 n).

The details of the derivation are developed in Examples 11.5.2–11.5.6. Throughout
the derivation, for each integer n ≥ 1, let

wn = the number of iterations of the while loop
in a worst-case execution of the binary search
algorithm for an input array of length n.

The first issue to consider is this. If the length of the input array for one iteration of
the while loop is known, what is the greatest possible length of the array input to the next
iteration?

Example 11.5.2 The Length of the Input Array to the Next Iteration of the Loop

Prove that if an array of length k is input to the while loop of the binary search algorithm,
then after one unsuccessful iteration of the loop, the input to the next iteration is an array
of length at most �k/2�.

Solution Consider what occurs when an array of length k is input to the while loop in the
case where x �= a[mid]:

a[bot], a[bot+ 1], . . . , a[mid− 1]︸ ︷︷ ︸ , a[mid], a[mid+ 1], . . . , a[top− 1], a[top].︸ ︷︷ ︸,⏐
new input to the while
loop if x < a[mid] “middle

element”

new input to the while
loop if x > a[mid]

Since the input array has length k, the value of mid depends on whether k is odd or
even. In both cases we match up the array elements with the integers from 1 to k and
analyze the lengths of the left and right subarrays. In case k is odd, both the left and the
right subarrays have length �k/2�. In case k is even, the left subarray has length �k/2� − 1
and the right subarray has length �k/2�. The reasoning behind these results is shown in
Figure 11.5.3.
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k odd: a[bot] a[top]a[mid – 1] a[mid + 1]a[mid ]

(

( ( ( ( (

( ( ( (

k even: a[bot] a[top]a[mid – 1] a[mid + 1]a[mid ]

1

1

k

k

k + 1
2

k + 1
2

– 1 k + 1
2

+ 1

k – 1
2

k + 1
2

– 1length = = = k
2

k
2

k
2

k
2

middle
element

k + 1
2

+ 1length = k – + 1 = k – 1
2

= k
2(       )

k
2

+ 1length = k – + 1 = = k
2

k
2(    )

– 1 + 1

↑

middle
element

↑
length = k

2
– 1 – 1= k

2

Figure 11.5.3 Lengths of the Left and Right Subarrays

Because the maximum of the numbers �k/2� and �k/2� − 1 is �k/2�, in the worst case
this will be the length of the array input to the next iteration of the loop. ■

To find the order of the algorithm, a formula for w1, w2, w3, . . . is needed. The next
example derives a recurrence relation for the sequence.

Example 11.5.3 A Recurrence Relation for w1, w2, w3, . . .

Prove that the sequence w1, w2, . . . , wn, . . . satisfies the recurrence relation and initial
condition

w1 = 1,

wk = 1+ w�k/2� for all integers k > 1.

Solution Example 11.5.2 showed that given an input array of length k to the while loop,
the worst that can happen is that the next iteration of the loop will have to search an array
of length �k/2�. Hence the maximum number of iterations of the loop is 1 more than the
maximum number necessary to execute it for an input array of length �k/2�. In symbols,

wk = 1+ w�k/2�.

Also w1 = 1

because for an input array of length 1 (bot = top), the while loop iterates only one time.
■

Now that a recurrence relation for w1, w2, w3, . . . has been found, iteration can be
used to come up with a good guess for an explicit formula.

Example 11.5.4 An Explicit Formula for w1, w2, w3, . . .

Apply iteration to the recurrence relation found in Example 11.5.3 to conjecture an
explicit formula for w1, w2, w3, . . . .
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Solution Begin by iterating to find the values of the first few terms of the sequence.

→w 1© =
�
�

�
�1 1 = 20; 1 = 0+ 1

→w 2© = 1+ w�2/2� = 1+ w1 = 1+ 1 = �
�

�
�2

w3 = 1+ w�3/2� = 1+ w1 = 1+ 1 = 2

}
2 = 21; 2 = 1+ 1

→w 4© = 1+ w�4/2� = 1+ w2 = 1+ 2 = �
�

�
�3

w5 = 1+ w�5/2� = 1+ w2 = 1+ 2 = 3

w6 = 1+ w�6/2� = 1+ w3 = 1+ 2 = 3

w7 = 1+ w�7/2� = 1+ w3 = 1+ 2 = 3

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

4 = 22; 3 = 2+ 1

→w 8© = 1+ w�8/2� = 1+ w4 = 1+ 3 = �
�

�
�4

w9 = 1+ w�9/2� = 1+ w4 = 1+ 3 = 4
...

...

w15 = 1+ w�15/2� = 1+ w7 = 1+ 3 = 4

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

8 = 23; 4 = 3+ 1

w16©= 1+ w�16/2� = 1+ w8 = 1+ 4 = �
�

�
�5

→...
...

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

16 = 24; 5 = 4+ 1

Note that in each case when the subscript n is between two powers of 2, wn is 1 more
than the exponent of the lower power of 2. In other words:

If 2i ≤ n < 2i+1, then wn = i + 1. 11.5.1

But if 2i ≤ n < 2i+1,

then [by property (11.4.2) of Example 11.4.1]

i = �log2 n�.
Substitution into statement (11.5.1) gives the conjecture that

wn = �log2 n� + 1. ■

Now mathematical induction can be used to verify the correctness of the formula
found in Example 11.5.4.

Example 11.5.5 Verifying the Correctness of the Formula

Use strong mathematical induction to show that if w1, w2, w3, . . . is a sequence of num-
bers that satisfies the recurrence relation and initial condition

w1 = 1 and wk = 1+ w�k/2� for all integers k > 1,

then w1, w2, w3, . . . satisfies the formula

wn = �log2 n� + 1 for all integers n ≥ 1.

Solution Let w1, w2, w3, . . . be the sequence defined by specifying that w1 = 1 and wk =
1+ w�k/2� for all integers k ≥ 2, and let the property P(n) be the equation

wn = �log2 n� + 1. ← P(n)

We will use mathematical induction to prove that for all integers n ≥ 1, P(n) is true.

Show that P(1) is true: By definition of w1, w2, w3, . . . , we have that w1 = 1. But it is
also the case that �log2 1� + 1 = 0+ 1 = 1. Thus w1 = �log2 1� + 1 and P(1) is true.
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Show that for all integers k ≥ 1, if P(i) is true for all integers i from 1 through k, then
P(k + 1) is also true: Let k be any integer with k ≥ 1, and suppose that

wi = �log2 i� + 1 for all integers i with 1 ≤ i ≤ k. ← inductive hypothesis

We must show that

wk+1 = �log2(k + 1)� + 1 ← P(k + 1)

Consider the two cases: k is even and k is odd.

Case 1 (k is even): In this case, k + 1 is odd, and

wk+1 = 1+ w�(k+1)/2� by definition of w1 , w2 , w3 , . . .

= 1+ w�k/2� because �(k + 1)/2� = k/2� since k + 1 is odd

= 1+ (⌊
log2(k/2)

⌋+ 1
) by inductive hypothesis because, since k is even,

k ≥ 2, and so 1 ≤ �k/2� ≤ k/2 < k

= �log2(k)− log2 2� + 2 by substituting into the identity
logb(x/y) = logb x − logb y from
Theorem 7.2.1

= �log2(k)− 1� + 2 since log2 2 = 1

= (�log2(k)� − 1)+ 2 by substituting x = log2(k) into the identity
�x − 1� = �x� − 1 derived in exercise 15 of Section 4.5

= �log2(k + 1)� + 1 by property (11.4.3) in Example 11.4.2

Case 2 (k is odd): In this case, it can also be shown that wk = �log2 k� + 1. The analysis
is very similar to that of case 1 and is left as exercise 16 at the end of the section.

Hence regardless of whether k is even or k is odd,

wk+1 = �log2(k + 1)� + 1,

as was to be shown. [Since both the basis and the inductive steps have been demonstrated,
the proof by strong mathematical induction is complete.] ■

The final example shows how to use the formula for w1, w2, w3, . . . to find a worst-
case order for the algorithm.

Example 11.5.6 The Binary Search Algorithm Is Logarithmic

Given that by Example 11.5.5, for all positive integers n,

wn = �log2 n� + 1,

show that in the worst case, the binary search algorithm is �(log2 n).

Solution For any integer n > 2,

wn = �log2 n� + 1 by Example 11.5.5

⇒ log2 n ≤ wn ≤ log2 n + 1
because x < �x� + 1 and �x� ≤ x
for all real numbers x

⇒ log2 n ≤ wn ≤ log2 n + log2 n since the logorithm with base 2 is increas-
ing, if 2 < n, then 1 = log2 2 < log2 n

⇒ log2 n ≤ wn ≤ 2 log2 n.
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Both wn and log2 n are positive for n > 2. Therefore,

| log2 n| ≤ |wn| ≤ 2| log2 n| for all integers n > 2.

Let A = 1, B = 2, and k = 2. Then

A| log2 n| ≤ |wn| ≤ B| log2 n| for all integers n > k.

Hence by definition of �-notation,

wn is �(log2 n).

But wn , the number of iterations of the while loop, is proportional to the number of
comparisons performed when the binary search algorithm is executed. Thus the binary
search algorithm is �(log2 n). ■

Examples 11.5.2–11.5.6 show that in the worst case, the binary search algorithm has
order log2 n. As noted in Section 11.3, in the worst case the sequential search algorithm
has order n. This difference in efficiency becomes increasingly more important as n gets
larger and larger. Assuming one loop iteration is performed each nanosecond, then per-
forming n iterations for n = 100,000,000 requires 0.1 second, whereas performing log2 n
iterations requires 0.000000027 second. For n = 100,000,000,000 the times are 1.67
minutes and 0.000000037 second, respectively. And for n = 100,000,000,000,000 the
respective times are 27.78 hours and 0.000000047 second.

Merge Sort
Note that it is much easier to write a detailed algorithm for sequential search than for
binary search. Yet binary search is much more efficient than sequential search. Such
trade-offs often occur in computer science. Frequently, the straightforward “obvious”
solution to a problem is less efficient than a clever solution that is more complicated to
describe.

In the text and exercises for Section 11.3, we gave two methods for sorting, insertion
sort and selection sort, both of which are formalizations of methods human beings often
use in ordinary situations. Can a divide-and-conquer approach be used to find a sorting
method more efficient than these? It turns out that the answer is an emphatic “yes.” In
fact, over the past few decades, computer scientists have developed several divide-and-
conquer sorting methods all of which are somewhat more complex to describe but are
significantly more efficient than either insertion sort or selection sort.

One of these methods, merge sort, is obtained by thinking recursively. Imagine that
an efficient way for sorting arrays of length less than k is already known. How can such
knowledge be used to sort an array of length k? One way is to suppose the array of length
k is split into two roughly equal parts and each part is sorted using the known method. Is
there an efficient way to combine the parts into a sorted array? Sure. Just “merge” them.

Figure 11.5.4 illustrates how a merge works. Imagine that the elements of two ordered
subarrays, 2, 5, 6, 8 and 3, 6, 7, 9, are written on slips of paper (to make them easy to
move around). Place the slips for each subarray in two columns on a tabletop, one at the
left and one at the right. Along the bottom of the tabletop, set up eight positions into
which the slips will be moved. Then, one-by-one, bring down the slips from the bottoms
of the columns. At each stage compare the numbers on the slips currently at the column
bottoms, and move the slip containing the smaller number down into the next position in
the array as a whole. If at any stage the two numbers are equal, take, say, the slip on the
left to move into the next position. And if one of the columns is empty at any stage, just
move the slips from the other column into position one-by-one in order.
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Figure 11.5.4 Merging Two Sorted Subarrays to Obtain a Sorted Array

One important observation about the merging algorithm described previously: It
requires memory space to move the array elements around. A second set of array posi-
tions as long as the original one is needed into which to place the elements of the two
subarrays in order. In Figure 11.5.4 this second set of array positions is represented by
the positions set up at the bottom of the tabletop. Of course, once the elements of the
original array have been placed into this new array, they can be moved back in order into
the original array positions.

In terms of time, however, merging is efficient because the total number of compar-
isons needed to merge two subarrays into an array of length k is just k − 1. You can see
why by analyzing Figure 11.5.4. Observe that at each stage, the decision about which slip
to move is made by comparing the numbers on the slips currently at the bottoms of the
two columns—execpt when one of the columns is empty, in which case no comparisons
are made at all. Thus in the worst case there will be one comparison for each of the k
positions in the final array except the very last one (because when the last slip is placed
into position, the other column is sure to be empty), or a total of k − 1 comparisons
in all.

The merge sort algorithm is recursive: Its defining statements include references to
itself. The algorithm is well defined, however, because at each stage the length of the array
that is input to the algorithm is shorter than at the previous stage, so that, ultimately, the
algorithm has to deal only with arrays of length 1, which are already sorted. Specifically,
merge sort works as follows.

Given an array of elements that can be put into order, if the array consists of a single
element, leave it as it is. It is already sorted. Otherwise:

1. Divide the array into two subarrays of as nearly equal length as possible.

2. Use merge sort to sort each subarray.

3. Merge the two subarrays together.

Figure 11.5.5 illustrates a merge sort in a particular case.
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Figure 11.5.5 Applying Merge Sort to the Array 5, 2, 4, 6, 1, 3, 2, 6

As in the case of the binary search algorithm, in order to formalize merge sort we
must decide at exactly what point to split each array. Given an array denoted by a[bot],
a[bot + 1], . . . , a[top], let mid = �(bot + top)/2�. Take the left subarray to be a[bot],
a[bot + 1], . . . , a[mid] and the right subarray to be a[mid + 1], a[mid + 2], . . . , a[top].
The following is a formal version of merge sort.

Algorithm 11.5.2 Merge Sort

[The aim of this algorithm is to take an array of elements a[r ], a[r + 1], . . . , a[s] (where
r ≤ s) and to order it. The output array is denoted a[r ], a[r + 1], . . . , a[s] also. It has
the same values as the input array, but they are in ascending order. The input array is
split into two nearly equal-length subarrays, each of which is ordered using merge sort.
Then the two subarrays are merged together.]

Input: r and s, [positive integers with r < s] a[r ], a[r + 1], . . . , a[s] [an array of
data items that can be ordered]

Algorithm Body:

bot := r, top := s

while (bot < top)

mid :=
⌊
bot + top

2

⌋
call merge sort with input bot, mid, and

a[bot], a[bot + 1], . . . , a[mid]
call merge sort with input mid + 1, top and

a[mid + 1], a[mid + 2], . . . , a[top]
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[After these steps are completed, the arrays a[bot], a[bot + 1], . . . , a[mid] and
a[mid + 1], a[mid + 2], . . . , a[top] are both in order.]

merge a[bot], a[bot + 1], . . . , a[mid] and
a[mid+ 1], a[mid+ 2], . . . , a[top]

[This step can be done with a call to a merge algorithm. To put the final array in
ascending order, the merge algorithm must be written so as to take two arrays in
ascending order and merge them into an array in ascending order.]

end while

Output: a[r ], a[r + 1], . . . , a[s] [an array with the same elements as the input array
but in ascending order]

To derive the efficiency of merge sort, let

mn = the maximum number of comparisons used
when merge sort is applied to an array of length n.

Then m1 = 0 because no comparisons are used when merge sort is applied to an array
of length 1. Also for any integer k > 1, consider an array a[bot], a[bot + 1], . . . , a[top]
of length k that is split into two subarrays, a[bot], a[bot + 1], . . . , a[mid] and
a[mid + 1], a[mid + 2], . . . , a[top], where mid = �(bot + top)/2�. In exercise 24 you
are asked to show that the right subarray has length �k/2� and the left subarray has length
�k/2�. From the previous discussion of the merge process, it is known that to merge two
subarrays into an array of length k, at most k − 1 comparisons are needed.

Consequently,⎡
⎣the number of comparisons
when merge sort is applied
to an array of length k

⎤
⎦ =

⎡
⎣the number of comparisons
when merge sort is applied
to an array of length �k/2�

⎤
⎦

+
⎡
⎣the number of comparisons
when merge sort is applied
to an array of length �k/2�

⎤
⎦+

⎡
⎣the number of comparisons
used to merge two subarrays
into an array of length k

⎤
⎦ .

Or, in other words,

mk = m�k/2� + m�k/2� + (k − 1) for all integers k > 1.

In exercise 25 you are asked to use this recurrence relation to show that

1

2
n log2 n ≤ mn ≤ 2n log2 n for all integers n ≥ 1.

It follows that merge sort is �(n log2 n).
In the text and exercises for Section 11.3, we showed that insertion sort and selection

sort are both �(n2). How much difference can it make that merge sort is �(n log2 n)? If
n = 100,000,000 and a computer is used that performs one operation each nanosecond,
the time needed to perform n log2 n operations is about 2.7 seconds, whereas the time
needed to perform n2 operations is over 115 days.

Tractable and Intractable Problems
At an opposite extreme from an algorithm such as binary search, which has logarithmic
order, is an algorithm with exponential order. For example, consider an algorithm to direct
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the movement of each of the 64 disks in the Tower of Hanoi puzzle as they are transferred
one by one from one pole to another. In Section 5.7 we showed that such a transfer
requires 264 − 1 steps. If a computer took a nanosecond to calculate each transfer step,
the total time to calculate all the steps would be

(264 − 1) ·
(

1

109

)
·
(

1

60

)
·
(

1

60

)
·
(

1

24

)
·
(

1

365.25

)
∼= 584 years.

↑
number of
moves

moves
per
second

seconds
per
minute

minutes
per
hour

hours
per
day

days
per
year

Problems whose solutions can be found with algorithms whose worst-case order with
respect to time is a polynomial are said to belong to class P. They are called polynomial-
time algorithms and are said to be tractable. Problems that cannot be solved in poly-
nomial time are called intractable. For certain problems, it is possible to check the
correctness of a proposed solution with a polynomial-time algorithm, but it may not be
possible to find a solution in polynomial time. Such problems are said to belong to class
NP.∗ The biggest open question in theoretical computer science is whether every problem
in class NP belongs to class P. This is known as the P vs. NP problem. The Clay Institute,
in Cambridge, Massachusetts, has offered a prize of $1,000,000 to anyone who can either
prove or disprove that P = NP.

In recent years, computer scientists have identified a fairly large set of problems,
called NP-complete, that all belong to class NP but are widely believed not to belong
to class P. What is known for sure is that if any one of these problems is solvable in
polynomial time, then so are all the others. One of the NP-complete problems, commonly
known as the traveling salesman problem, was discussed in Section 10.2.

A Final Remark on Algorithm Efficiency
This section and the previous one on algorithm efficiency have offered only a partial view
of what is involved in analyzing a computer algorithm. For one thing, it is assumed that
searches and sorts take place in the memory of the computer. Searches and sorts on disk-
based files require different algorithms, though the methods for their analysis are similar.
For another thing, as mentioned at the beginning of Section 11.3, time efficiency is not
the only factor that matters in the decision about which algorithm to choose. The amount
of memory space required is also important, and there are mathematical techniques to
estimate space efficiency very similar to those used to estimate time efficiency. Further-
more, as parallel processing of data becomes increasingly prevalent, current methods of
algorithm analysis are being modified and extended to apply to algorithms designed for
this new technology.

Test Yourself
1. To solve a problem using a divide-and-conquer algorithm,

you reduce it to a fixed number of smaller problems of the
same kind, which can themselves be _____, and so forth
until _____.

2. To search an array using the binary search algorithm in each
step, you compare a middle element of the array to _____.
If the middle element is less than _____, you _____, and if
the middle element is greater than _____, you _____.

3. The worst case order of the binary search algorithm
is _____.

4. To sort an array using the merge sort algorithm, in each step
until the last one you split the array into approximately two
equal sections and sort each section using ____. Then you
_____ the two sorted sections.

5. The worst case order of the merge sort algorithm is _____.

∗Technically speaking, a problem whose solution can be verified on an ordinary computer (or deterministic sequential machine) with a
polynomial-time algorithm can be solved on a nondeterministic sequential machine with a polynomial-time algorithm. Such problems
are called NP, which stands for nondeterministic polynomial-time algorithm.
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Exercise Set 11.5
1. Use the facts that log2 10 ∼= 3.32 and that for all real

numbers a, log2(10
a) = a log2 10 to find log2(1,000),

log2(1,000,000), and log2(1,000,000,000,000).

2. Suppose an algorithm requires c�log2 n� operations when
performed with an input of size n (where c is a
constant).
a. By what factor will the number of operations increase

when the input size is increased from m to m2 (where m
is a positive integer power of 2)?

b. By what factor will the number of operations increase
when the input size is increased from m to m10 (where
m is a positive integer power of 2)?

c. When n increases from 128 (= 27) to 268,435,456
(= 228), by what factor is c�log2 n� increased?

Exercises 3 and 4 illustrate that for relatively small values of n,
algorithms with larger orders can be more efficient than algo-
rithms with smaller orders. Use a graphing calculator or com-
puter to answer these questions.

3. For what values of n is an algorithm that requires n
operations more efficient than an algorithm that requires
�50 log2 n� operations?

4. For what values of n is an algorithm that requires �n2/10�
operations more efficient than an algorithm that requires
�n log2 n� operations?

In 5 and 6, trace the action of the binary search algorithm (Algo-
rithm 11.5.1) on the variables index, bot, top, mid, and the
given values of x for the input array a[1] = Chia, a[2] = Doug,
a[3] = Jan, a[4] = Jim, a[5] = José, a[6] =Mary, a[7] = Rob,
a[8] = Roy, a[9] = Sue, a[10] = Usha, where alphabetical
ordering is used to compare elements of the array.

5. a. x = Chia b. x = Max

6. a. x = Amanda b. x = Roy

7. Suppose bot and top are positive integers with bot ≤ top.
Consider the array

a[bot], a[bot + 1], . . . , a[top].
a. How many elements are in this array?
b. Show that if the number of elements in the array is odd,

then the quantity bot + top is even.
c. Show that if the number of elements in the array is even,

then the quantity bot + top is odd.

Exercises 8–11 refer to the following algorithm segment. For
each positive integer n, let an be the number of iterations of the
while loop. while (n > 0)

n := n div 2

end while

8. Trace the action of this algorithm segment on n when the
initial value of n is 27.

9. Find a recurrence relation for an .

10. Find an explicit formula for an .

11. Find an order for this algorithm segment.

Exercises 12–15 refer to the following algorithm segment. For
each positive integer n, let bn be the number of iterations of the
while loop.

while (n > 0)
n := n div 3

end while

12. Trace the action of this algorithm segment on n when the
initial value of n is 424.

13. Find a recurrence relation for bn .

14.H a. Use iteration to guess an explicit formula for bn .
b. Prove that if k is an integer and x is a real number with

3k ≤ x < 3k , then �log3 x� = k.
c. Prove that for all integers m ≥ 1,

�log3(3m)� = �log3(3m + 1)� = �log3(3m + 2)�.
d. Prove the correctness of the formula you found in

part (a).

15. Find an order for the algorithm segment.

16. Complete the proof of case 2 of the strong induction argu-
ment in Example 11.5.5. In other words, show that if k is
an odd integer and wi = �log2 i� + 1 for all integers i with
1 ≤ i ≤ k, then wk+1 = �log2 k + 1� + 1.

For 17–19, modify the binary search algorithm (Algorithm
11.5.1) to take the upper of the two middle array elements in
case the input array has even length. In other words, in Algo-
rithm 11.5.1 replace

mid :=
⌊
bot + top

2

⌋
with mid :=

⌈
bot + top

2

⌉
.

17. Trace the modified binary search algorithm for the same
input as was used in Example 11.5.1.
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18. Suppose an array of length k is input to the while loop of
the modified binary search algorithm. Show that after one
iteration of the loop, if a[mid] �= x , the input to the next
iteration is an array of length at most �k/2�.

19. Let wn be the number of iterations of the while loop in a
worst-case execution of the modified binary search algo-
rithm for an input array of length n. Show that wk = 1+
w�k/2� for k ≥ 2.

In 20 and 21, draw a diagram like Figure 11.5.4 to show how to
merge the given subarrays into a single array in ascending order.

20. 3, 5, 6, 9, 12 and 2, 4, 7, 9, 11

21. F, K, L, R, U and C, E, L, P, W (alphabetical order)

In 22 and 23, draw a diagram like Figure 11.5.5 to show how
merge sort works for the given input arrays.

22. R, G, B, U, C, F, H, G (alphabetical order)

23. 5, 2, 3, 9, 7, 4, 3, 2

24. Show that given an array a[bot], a[bot + 1], . . . , a[top] of
length k, if mid = �(bot + top)/2� then
a. the subarray a[mid + 1], a[mid + 2], . . . , a[top] has

length �k/2�.
b. the subarray a[bot], a[bot + 1], . . . , a[mid] has length
�k/2�.

25.H The recurrence relation form1,m2,m3, . . . ,which arises in
the calculation of the efficiency of merge sort, is

m1 = 0

mk = m�k/2� + m�k/2� + k − 1.

Show that for all integers n ≥ 1,
a. 1

2n log2 n ≤ mn b. mn ≤ 2n log2 n

26. You might think that n − 1 multiplications are needed to
compute xn , since

xn = x · x · · · x .︸ ︷︷ ︸
n−1 multiplications

But observe that, for instance, since 6 = 4+ 2,

x6 = x4x2 = (x2)2x2.

Thus x6 can be computed using three multiplications: one
to compute x2, one to compute (x2)2, and one to multiply
(x2)2 times x2. Similarly, since 11 = 8 + 2 + 1,

x11 = x8x2x1 = ((x2)2)2x2x

and so x11 can be computed using five multiplications:
one to compute x2, one to compute (x2)2, one to compute
((x2)2)2, one to multiply ((x2)2)2 times x2, and one to mul-
tiply that product by x .
a. Write an algorithm to take a real number x and a positive

integer n and compute xn by
(i) calling Algorithm 5.1.1 to find the binary represen-

tation of n:

(r [k] r [k − 1] · · · r [0])2,
where each r [i] is 0 or 1;

(ii) computing x2, x2
2
, x2

3
, . . . , x2

k
by squaring, then

squaring again, and so forth,
(iii) computing xn using the fact that

xn = xr [k]2
k+···+r [2]22+r [1]21+r [0]20

= xr [k]2
k · · · xr [2]22 · xr [1]21 · xr [0]20

b. Show that the number of multiplications performed by
the algorithm of part (a) is less than or equal to
2�log2 n�.

Answers for Test Yourself
1. reduced to the same finite number of smaller problems of the same kind; easily resolved problems are obtained 2. the element you
are looking for; the element you are looking for; apply the binary search algorithm to the lower half of the array; the element you are
looking for; apply the binary search algorithm to the upper half of the array 3. log2 n, where n is the length of the array 4. merge
sort; merge 5. n log2 n
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CHAPTER 12

REGULAR EXPRESSIONS
AND FINITE-STATE AUTOMATA

The theoretical foundations of computer science were derived from several disciplines:
logic (the foundations of mathematics), electrical engineering (the design of switching
circuits), brain research (models of neurons), and linguistics (the formal specification of
languages).

As discussed briefly in Sections 6.4 and 7.4, the 1930s saw the development of mathe-
matical treatments of basic questions concerning what can be proved in mathematics and
what can be computed by means of a finite sequence of mechanized operations. Although
the first digital computers were not built until the early 1940s, ten years earlier Alan Tur-
ing developed a simple abstract model of a machine, now called a Turing machine, by
means of which he defined what it would mean for a function to be computable.

Around the same time, somewhat similar models of computation were developed by
the American logicians Alonzo Church, Stephen C. Kleene, and Emil Post (who was
born in Poland but came to the United States as a child), but Church and others showed
these all to be equivalent. As a result, Church formulated a conjecture, now known as
the Church-Turing thesis, asserting that the Turing machine is universal in the sense
that anything that can ever be computed on a machine can be computed with a Turing
machine. If this thesis is correct—which is widely believed—then all computers that
have been or will ever be constructed are theoretically equivalent in what they can do,
although they may differ widely in speed and storage capacity. For instance, quantum
computers may have the capability to compute certain quantities enormously faster than
classical computers. But Church’s thesis implies that the theory of computation is likely
to remain fundamentally the same, even though the enabling technology is subject to
constant change.

In the early 1940s, Warren S. McCulloch and Walter Pitts, working at the
Massachusetts Institute of Technology (M.I.T.), developed a model of how the neurons
in the brain might work and how models of neurons could be combined to make “cir-
cuits” or “automata” capable of more complicated computations. To a certain extent, they
were influenced by the results of Claude Shannon, who also worked at M.I.T. and had in
the 1930s developed the foundations of a theory that implemented Boolean functions as
switching circuits. In the 1950s, Kleene analyzed the work of McCulloch and Pitts and
connected it with versions of the machine models introduced by Turing and others.

Another development of the 1950s was the introduction of high-level computer lan-
guages. During the same years, linguist Noam Chomsky’s attempts to understand the
underlying principles by means of which human beings generate speech led him to develop
a theory of formal languages, which he defined using sets of abstract rules, called
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780 Chapter 12 Regular Expressions and Finite-State Automata

grammars, of varying levels of complexity. It soon became apparent that Chomsky’s
theory was of great utility in the analysis and construction of computer languages. For
computer science, the most useful of Chomsky’s language classifications are also the two
simplest: the regular languages and the context-free languages.

Regular languages, which are defined by regular expressions, are used extensively for
matching patterns within text (as in word processing or Internet searches) and for lexical
analysis in computer language compilers. They are part of sophisticated text editors and
a number of UNIX∗ utilities, and they are also used in transforming XML†documents.

Through use of the Backus-Naur notation (introduced in Section 10.5), context-free
languages are able to describe many of the more complex aspects of modern high-level
computer languages, and they form the basis for the main part of compilers, which trans-
late programs written in a high-level language into machine code suitable for execution.

A remarkable fact is that all of the subjects referred to previously are related. Each
context-free grammar turns out to be equivalent to a type of automaton called a push-
down automaton, and each regular expression turns out to be equivalent to a type of
automaton called a finite-state automaton. In this chapter, we focus on the study of regular
languages and finite-state automata, leaving the subject of context-free grammars and
their equivalent automata to a later course in compiler construction or automata theory.

Note Automata is the
plural of automaton.

12.1 Formal Languages and Regular Expressions
The mind has finite means but it makes unbounded use of them and in very specific and
organized ways. That’s the core problem of language that it became possible to face
[by the mid-twentieth century]. — Noam Chomsky, circa 1998

An English sentence can be regarded as a string of words, and an English word can be
regarded as a string of letters. Not every string of letters is a legitimate word, and not
every string of words is a grammatical sentence. We could say that a word is legitimate if
it can be found in an unabridged English dictionary and that a sentence is grammatical if
it satisfies the rules in a standard English grammar book.
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Noam Chomsky
(born 1928)

Computer languages are similar to English in that certain strings of characters are
legitimate words of the language and certain strings of words can be put together accord-
ing to certain rules to form syntactically correct programs. A compiler for a computer
language analyzes the stream of characters in a program—first to recognize individual
word and sentence units (this part of the compiler is called a lexical scanner), then to ana-
lyze the syntax, or grammar, of the sentences (this part is called a syntactic analyzer), and
finally to translate the sentences into machine code (this part is called a code generator).

In computer science it has proved useful to look at languages from a very abstract
point of view as strings of certain fundamental units and allow any finite set of symbols
to be used as an alphabet. It is common to denote an alphabet by a capital Greek sigma:
�. (This just happens to be the same symbol as the one used for summation, but the two
concepts have no other connection.)

The definition of a string of characters of an alphabet � (or a string over �) is a
generalization of the definition of string introduced earlier. A formal language over an
alphabet is any set of strings of characters of the alphabet. These definitions are given
formally on the next page.

∗UNIX is an operating system that was developed in 1969 by Kenneth Thompson at Bell Labo-
ratories. It was later rewritten in Dennis Ritchie’s C language, which was also developed at Bell
Laboratories.
†XML is a standard for defining markup languages used for Internet applications.
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12.1 Formal Languages and Regular Expressions 781

Alphabet �: a finite set of characters

String over �: (1) a finite sequence of elements (called characters)
of � or (2) the null string ε

Length of a string over �: The number of characters that made up the string,
with the null string having length 0.

Formal language over �: a set of strings over the alphabet

Note that the empty set satisfies the criteria for being a formal language. Allowing
the empty set to be a formal language turns out to be convenient in certain technical
situations.

Example 12.1.1 Examples of Formal Languages

Let the alphabet � = {a, b}.
a. Define a language L1 over � to be the set of all strings that begin with the character a

and have length at most three characters. Find L1.

b. A palindrome is a string that looks the same if the order of its characters is reversed.
For instance, aba and baab are palindromes. Define a language L2 over � to be the
set of all palindromes obtained using the characters of �. Write ten elements of L2.

Solution

a. L1 = {a, aa, ab, aaa, aab, aba, abb}
b. L2 contains the following ten strings (among infinitely many others):

ε, a, b, aa, bb, aaa, bab, abba, babaabab, abaabbbbbaaba ■

• Notation

Let � be an alphabet. For each nonnegative integer n, let

�n = the set of all strings over � that have length n,

�+= the set of all strings over � that have length at least 1, and

�∗ = the set of all strings over �.

Note that�n is essentially the Cartesian product of n copies of�. The language�∗ is
called theKleene closure of�, in honor of Stephen C. Kleene (pronounced CLAY-knee).
�+ is the set of all strings over � except for ε and is called the positive closure of �.
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Stephen C. Kleene
(1909–1994)

Example 12.1.2 The Languages �n, �+, and �∗

Let � = {a, b}.
a. Find �0, �1, �2, and �3.

b. Let A = �0 ∪�1 and B = �2 ∪�3. Use words to describe A, B, and A ∪ B.

c. Describe a systematic way of writing the elements of �+. What change needs to be
made to obtain the elements of �∗?
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782 Chapter 12 Regular Expressions and Finite-State Automata

Solution

a. �0 = {ε}, �1 = {a, b}, �2 = {aa, ab, ba, bb}, and �3 = {aaa, aab, aba, abb, baa,
bab, bba, bbb}

b. A is the set of all strings over � of length at most 1.

B is the set of all strings over � of length 2 or 3.

A ∪ B is the set of all strings over � of length at most 3.

c. Elements of �+ can be written systematically by writing all the strings of length 1,
then all the strings of length 2, and so forth.

�+: a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba, bbb, aaaa, . . .
Of course the process of writing the strings in �+ would continue forever, because
�+ is an infinite set. The only change that needs to be made to obtain �∗ is to place
the null string at the beginning of the list. ■

Example 12.1.3 Polish Notation: A Language Consisting of Postfix Expressions

An expression such as a + b, in which a binary operator such as + sits between the
two quantities on which it acts, is said to be written in infix notation. Alternative nota-
tions are called prefix notation (in which the binary operator precedes the quantities on
which it acts) and postfix notation (in which the binary operator follows the quantities
on which it acts). In prefix notation, a + b is written + ab. In postfix notation, a + b is
written ab +.

Prefix and postfix notations were introduced in 1920 by the Polish mathematician
Jan Łukasiewicz (pronounced Wu-cash-AY-vich). In his honor—and because some peo-
ple have difficulty pronouncing his name—they are often referred to as Polish notation
and reverse Polish notation, respectively. A great advantage of these notations is that
they eliminate the need for parentheses in writing arithmetic expressions. For instance,
in postfix (or reverse Polish) notation, the expression 8 4+ 6 / is evaluated from left to
right as follows: Add 8 and 4 to obtain 12, and then divide 12 by 6 to obtain 2. As another
example, if the expression (a + b) ·c in infix notation is converted to postfix notation, the
result is ab + c · .
a. If the expression ab ·cd ·+ in postfix notation is converted to infix notation, what is

the result?

b. Let � = {4, 1,+,−}, and let L = the set of all strings over � obtained by writing
either a 4 or a 1 first, then either a 4 or a 1, and finally either a + or a −. List all
elements of L between braces, and evaluate the resulting expressions.

Solution

a. a ·b + c ·d

b. L = {4 1 +, 4 1 −, 1 4 +, 1 4 −, 4 4 +, 4 4 −, 1 1 +, 1 1 −}

4 1 + = 4 + 1 = 5, 4 1 − = 4 − 1 = 3, 1 4 + = 1 + 4 = 5,

1 4 − = 1 − 4 = −3, 4 4 + = 4 + 4 = 8, 4 4 − = 4 − 4 = 0,

1 1 + = 1 + 1 = 2, 1 1 − = 1 − 1 = 0 ■

The following definition describes ways in which languages can be combined to form
new languages.
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12.1 Formal Languages and Regular Expressions 783

• Definition

Let � be an alphabet. Given any strings x and y over �, the concatenation of x and
y is the string obtained by writing all the characters of x followed by all the charac-
ter of y. For any languages L and L ′ over �, three new languages can be defined as
follows:

The concatenation of L and L′, denoted LL′, is

LL ′ = {xy | x ∈ L and y ∈ L ′}.
The union of L and L′, denoted L ∪ L′, is

L ∪ L ′ = {x | x ∈ L or x ∈ L ′}.
The Kleene closure of L, denoted L∗, is

L∗ = {x | x is a concatenation of any finite number of strings in L}.
Note that ε is in L∗ because it is regarded as a concatenation of zero strings in L .

Example 12.1.4 New Languages from Old

Let L1 be the set of all strings consisting of an even number of a’s (namely, ε, aa, aaaa,
aaaaaa, . . .), and let L2 = {b, bb, bbb}. Find L1L2, L1 ∪ L2, and (L1 ∪ L2)

∗. Note that
the null string ε is in L1 because 0 is an even number.

Solution
L1L2 = the set of all strings that consist of an even number of a’s followed by b or
by bb or by bbb.

L1 ∪ L2 = the set that includes the strings b, bb, bbb and any strings consisting of an
even number of a’s.

(L1 ∪ L2)
∗ = the set of all strings of a’s and b’s in which every occurrence of a

is in a block consisting of an even number of a’s. ■

The Language Defined by a Regular Expression
One of the most useful ways to define a language is by means of a regular expression, a
concept first introduced by Kleene. We give a recursive definition for generating the set
of all regular expressions over an alphabet.

• Definition

Given an alphabet �, the following are regular expressions over �:

I. BASE: ∅, ε, and each individual symbol in � are regular expressions over �.

II. RECURSION: If r and s are regular expressions over �, then the following are
also regular expressions over �:

(i) (rs) (ii) (r | s) (iii) (r∗)

where rs denotes the concatenation of r and s, r∗ denotes the concatenation of
r with itself any finite number (including zero) of times, and r | s denotes either
one of the strings r or s. The regular expression r∗ is called the Kleene closure
of r .

III. RESTRICTION: Nothing is a regular expression over � except for objects
defined in (I) and (II) above.
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784 Chapter 12 Regular Expressions and Finite-State Automata

As an example, one regular expression over � = {a, b, c} is
a | (b | c)∗ | (ab)∗.

If the alphabet � happens to include symbols—such as ( | ) ∗—special provisions
have to be made to avoid ambiguity. An escape character, usually a backslash, is added
before the potentially ambiguous symbol. For instance, a left parenthesis would be written
as \( and the backslash itself would be written as \\.

To eliminate parentheses, an order of precedence for the operations used to define
regular expressions has been introduced. The highest is ∗, concatenation is next, and |
is the lowest. It is also customary to eliminate the outer set of parentheses in a regular
expression, because doing so does not produce ambiguity. Thus

(a((bc)∗)) = a(bc)∗ and (a | (bc)) = a | bc.

Example 12.1.5 Order of Precedence for the Operations in a Regular Expression

a. Add parentheses to make the order of precedence clear in the following expression:
ab∗ | b∗a.

b. Use the convention about order of precedence to eliminate the parentheses in the
following expression: ((a | ((b∗)c))(a∗)).

Solution

a. ((a(b∗)) | ((b∗)a)) b. (a | b∗c)a∗ ■

Given a finite alphabet, every regular expression r over the alphabet defines a formal
language L(r). The function L is defined recursively.

• Definition

For any finite alphabet �, the function L that associates a language to each regular
expression over � is defined by (I) and (II) below. For each such regular expression
r, L(r) is called the language defined by r.

I. BASE: L(∅) = ∅, L(ε) = {ε}, L(a) = {a} for every a in �.

II. RECURSION: If L(r) and L(r ′) are the languages defined by the regular expres-
sions r and r ′ over �, then

(i) L(rr ′) = L(r)L(r ′) (ii) L(r | r ′) = L(r) ∪ L(r ′) (iii) L(r∗) = (L(r))∗

Note that any finite language can be defined by a regular expression. For instance,
the language {cat, dog, bird} is defined by the regular expression (cat | dog | bird). An
important example is the following.

Example 12.1.6 Using Set Notation to Describe the Language Defined by a Regular Expression

Let � = {a, b}, and consider the language defined by the regular expression (a | b)∗. Use
set notation to find this language, and describe it in words.
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Solution The language defined by (a | b)∗ is
L((a | b)∗) = (L(a | b))∗

= (L(a) ∪ L(b))∗

= ({a} ∪ {b})∗
= {a, b}∗ by definition of operations on languages

= the set of all strings of a’s and b’s

= �∗. ■

Note that concatenating strings and taking unions of sets are both associative opera-
tions. Thus for any regular expressions r, s and t ,

L((rs)t) = L(r(st)).

Moreover,

L ((r | s) | t) = (L(r | s)) ∪ L(t) by definition of |
= (L(r) ∪ L(s)) ∪ L(t) by definition of |
= L(r) ∪ (L(s) ∪ L(t)) by the associativity of union for sets

= L(r) ∪ (L(s | t)) by definition of |
= L(r | (s | t)) by definition of |.

Because of these relationships, it is customary to drop the parentheses in “associative”
situations and write

rst = (rs)t = r(st)

and r | s | t = (r | s) | t = r | (s | t).
As you become accustomed to working with regular expressions, you will find that

you do not need to go through a formal derivation in order to determine the language
defined by an expression.

Example 12.1.7 The Language Defined by a Regular Expression

Let � = {0, 1}. Use words to describe the languages defined by the following regular
expressions over �.

a. 0∗1∗ | 1∗0∗ b. 0(0 | 1)∗
Solution

a. The strings in this language consist either of a string of 0’s followed by a string of
1’s or of a string of 1’s followed by a string of 0’s. However, in either case the strings
could be empty, which means that ε is also in the language.

b. The strings in this language have to start with a 0. The 0 may be followed by any finite
number (including zero) of 0’s and 1’s in any order. Thus the language is the set of all
strings of 0’s and 1’s that start with a 0. ■

Example 12.1.8 Individual Strings in the Language Defined
by a Regular Expression

In each of (a) and (b), let � = {a, b} and consider the language L over � defined by the
given regular expression.

a. The regular expression is a∗b(a | b)∗. Write five strings that belong to L .
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b. The regular expression is a∗ | (ab)∗. Indicate which of the following strings
belong to L:

a b aaaa abba ababab

Solution

a. The strings b, ab, abbb, abaaa, and ababba are five strings from the infinitely
many in L .

b. The following strings are the only ones listed that belong to L: a, aaaa, and ababab.
The string b does not belong to L because it is neither a string of a’s nor a string of
possibly repeated ab’s. The string abba does not belong to L because any two b’s that
might occur in a string of L are separated by an a. ■

Example 12.1.9 A Regular Expression That Defines a Language

Let � = {0, 1}. Find regular expressions over � that define that following languages.

a. The language consisting of all strings of 0’s and 1’s that have even length and in which
the 0’s and 1’s alternate.

b. The language consisting of all strings of 0’s and 1’s with an even number of 1’s. Such
strings are said to have even parity.

c. The language consisting of all strings of 0’s and 1’s that do not contain two consecu-
tive 1’s.

Solution

a. If a string in the language starts with a 1, the pattern 10 must continue for the length of
the string. If it starts with 0, the pattern 01 must continue for the length of the string.
Also, the null string satisfies the condition by default. Thus an answer is

(10)∗ | (01)∗.
b. Basic strings with even parity are ε, 0, and 10∗1. Concatenation of strings with even

parity also have even parity. Because such a string may start or end with a string of
0’s, an answer is

(0 | 10∗1)∗.
c. Note that a string may end in a 1, but any other 1 must be followed immediately by a

0. Thus, it is enough to enforce the rule that a 1 must be followed by a 0, unless the 1
is at the end of the string. A regular expression satisfying these conditions is

(0 | 10)∗(ε | 1). ■

Note that a given language may be defined by more than one regular expression. For
example, both

(a∗ | b∗)∗ and (a | b)∗
define the language consisting of the set of all strings of a’s and b’s.

Example 12.1.10 Deciding Whether Regular Expressions Define the Same Language

In (a) and (b), determine whether the given regular expressions define the same language.
If they do, describe the language. If they do not, give an example of a string that is in one
of the languages but not the other.

a. (a | ε)∗ and a∗ b. 0∗ | 1∗ and (01)∗
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Solution

a. Note that because the null string ε has no characters, when it is concatenated with any
other string x , the result is just x : for all strings x, xε = εx = x . Now L((a | ε)∗) is the
set of strings formed using a and ε in any order, and so, because aε = εa = a, this is
the same as the set of strings consisting of zero or more a’s. Thus L((a | ε)∗) = L(a∗).

b. The two languages defined by the given regular expressions are not the same: 0101 is
in the second language but not the first. ■

Practical Uses of Regular Expressions
Many applications of computers involve performing operations on pieces of text. For
instance, word and text processing programs allow us to find certain words or phrases in
a document and possibly replace them with others. A compiler for a computer language
analyzes an incoming stream of characters to find groupings that represent aspects of
the computer language such as keywords, constants, identifiers, and operators. And in
bioinformatics, pattern matching and flexible searching techniques are used extensively
to analyze the long sequences of the characters A, C, G, and T that occur in DNA.

Through their connection with finite-state automata, which we discuss in the next sec-
tion, regular expressions provide an extremely useful way to describe a pattern in order to
identify a string or a collection of strings within a piece of text. Regular expressions make
it possible to replace a long, complicated set of if-then-else statements with code that is
easy both to produce and to understand. Because of their convenience, regular expres-
sions were introduced into a number of UNIX utilities, such as grep (short for globally
search for regular expression and print) and egrep (extended grep), in text editors, such
as QED (short for Quick EDitor, the first text editor to use regular expressions), vi (short
for visual interface), sed (short for stream editor and originally developed for UNIX but
now used by many systems), and Emacs (short for Editor macros), and in the lexical
scanner component of a compiler. The computer language Perl has a particularly power-
ful implementation for regular expressions, which has become a de facto standard. The
implementations used in Java and .NET are similar.

A number of shorthand notations have been developed to facilitate working with reg-
ular expressions in text processing. When characters in an alphabet or in a part of an
alphabet are understood to occur in a standard order, the notation [beginning character–
ending character] is commonly used to represent the regular expression that consists of
a single character in the range from the beginning to the ending character. It is called a
character class. Thus

[A − C] stands for (A | B | C)

and

[0− 9] stands for (0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9).
Character classes are also allowed to include more than one range of characters. For
instance,

[A − C x − z] stands for (A | B | C | x | y | z)
As an example, consider the language defined by the regular expression

[A − Z a − z]([A − Z a − z] | [0− 9])∗.
The following are some strings in the language:

Account Number, z23, jsmith109, Draft2rev.
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In general, the language is the set of all strings that start with a letter followed by a
sequence of digits or letters. This set is the same as the set of allowable identifiers in a
number of computer languages.

Other commonly used shorthands are

[ABC] to stand for (A | B | C)

and a single dot

. to stand for an arbitrary character.

Thus, for instance, if � = {A, B,C}, then
A.C stands for (AAC | ABC | ACC).

When the symbol ˆ is placed at the beginning of a character class, it indicates that a
character of the same type as those in the range of the class is to occur at that point in the
string, except for one of the specific characters indicated after the ˆ sign. For instance,

[ˆD − Z ][0− 9][0− 9]∗
stands for any string starting with a letter of the alphabet different from D to Z , followed
by any positive number of digits from 0 to 9. Examples are B3097,C0046, and so forth.
If r is a regular expression, the notation r+ denotes the concatenation of r with itself any
positive finite number of times. In symbols,

r+ = rr∗.

For example, [A − Z ]+
represents any nonempty string of capital letters. If r is a regular expression, then

r? = (ε | r).
That is, r? denotes either zero occurrences or exactly one occurrence of r . Finally, if m
and n are positive integers with m ≤ n,

r{n} denotes the concatenation of r with itself exactly n times,

and

r{m, n} denotes the concatenation of r with itself anywhere from m through n times.

Thus a check to help determine whether a given string is a local telephone number in the
United States is to see whether it has the form

[0− 9][0− 9][0− 9] - [0− 9][0− 9][0− 9][0− 9],
or, equivalently, whether it has the form

[0− 9]{3} - [0− 9]{4}.

Example 12.1.11 A Regular Expression for a Date

People often write dates in a variety of formats. For instance, in the United States the
following all represent the fifth of February of 2050:

2/5/2050 2-5-2050 02/05/2050 02-05-2050

Write a regular expression that would help check whether a given string might be a valid
date written in one of these forms.

Note In most of the rest
of the world these
expressions represent the
second of May of 2050.
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Solution The language defined by the following regular expression consists of all strings
that begin with one or two digits followed by either a hyphen or a slash, followed by
either one or two digits, followed by either a hyphen or a slash, followed by four digits.

[0− 9]{1, 2}[−/][0− 9]{1, 2}[0− 9]{4}
All valid dates of the given format are elements of the language defined by this expression,
but the language also includes strings that are not valid dates. For instance, 09/54/1978
is in the language, but it is not a valid date because September does not have 54 days, and
38/12/2184 is not valid because there is no 38th month. It is possible to write a more com-
plicated regular expression that could be used to check all aspects of the validity of a date
(see exercise 40 at the end of the section), but the kind of simpler expression given above
is nonetheless useful. For instance, it provides an easy way to notify a user of an inter-
active program that a certain kind of mistake was made and that information should be
reentered. ■

Test Yourself
Answers to Test Yourself questions are located at the end of each section.

1. If x and y are strings, the concatenation of x and y is _____.

2. If L and L ′ are languages, the concatenation of L and L ′ is
_____.

3. If L and L ′ are languages, the union of L and L ′ is _____.

4. If L is a language, the Kleene closure of L is _____.

5. The set of regular expressions over an alphabet � is defined
recursively. The BASE for the definition is the statement
that _____. The RECURSION for the definition specifies
that if r and s are any regular expressions over �, then
the following are also regular expressions in the set: _____,
_____, and _____.

6. The function that associates a language to each regular
expression over an alphabet � is defined recursively. The
BASE for the definition is the statement that L(∅) = _____,

L(ε) = _____, and L(a) = _____ for every a in �. The
RECURSION for the definition specifies that if L(r) and
L(r ′) are the languages defined by the regular expression r
and r ′ over �, then L(rr ′) = _____, L(r | r ′) = _____, and
L(r∗) = _____.

7. The notation [A - C] is an example of a _____ and denotes
the regular expression _____.

8. Use of a single dot in a regular expression stands for _____.

9. The symbol ∧, placed at the beginning of a character class,
indicates _____.

10. If r is a regular expression, the notation r+ denotes _____.

11. If r is a regular expression, the notation r? denotes _____.

12. If r is a regular expression, the notation r{n} denotes _____
and the notation r{m, n} denotes _____.

Exercise Set 12.1*
In 1 and 2 let � = {x, y} be an alphabet.
1. a. Let L1 be the language consisting of all strings over �

that are palindromes and have length ≤ 4. List the ele-
ments of L1 between braces.

b. Let L2 be the language consisting of all strings over �

that begin with an x and have length ≤ 3. List the ele-
ments of L2.

2. a. Let L3 be the language consisting of all strings over �

of length ≤ 3 in which all the x’s appear to the left of all
the y’s. List the elements of L3 between braces.

b. List between braces the elements of�4, the set of strings
of length 4 over �.

c. Let A = �1 ∪�2 and B = �3 ∪�4. Describe A, B,
and A ∪ B in words.

3.H a. If the expression ab+ cd + · in postfix notation is con-
verted to infix notation, what is the result?

b. Let � = {1, 2,∗ , /} and let L be the set of all strings
over � obtained by writing first a number (1 or 2), then
a second number (1 or 2), which can be the same as the
first one, and finally an operation (* or / where * indi-
cates multiplication and / indicates division). Then L is
a set of postfix, or reverse Polish, expressions. List all the
elements of L between braces, and evaluate the resulting
expressions.

∗For exercises with blue numbers or letters, solutions are given in Appendix B. The symbol H indicates that only a hint or a partial
solution is given. The symbol ✶ signals that an exercise is more challenging than usual.
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In 4–6, describe L1L2, L1 ∪ L2, and (L1 ∪ L2)
∗ for the given

languages L1 and L2.

4. L1 is the set of all strings of a’s and b’s that start with an
a and contain only that one a; L2 is the set of all strings of
a’s and b’s that contain an even number of a’s.

5. L1 is the set of all strings of a’s, b’s, and c’s that contain
no c’s and have the same number of a’s as b’s; L2 is the
set of all strings of a’s, b’s, and c’s that contain no a’s
or b’s.

6. L1 is the set of all strings of 0’s and 1’s that start with a
0, and L2 is the set of all strings of 0’s and 1’s that end
with a 0.

In 7–9, add parentheses to make the order of precedence clear
in the given expressions.

7. (a | b∗b)(a∗ | ab) 8. 0∗1 | 0(0∗1)∗
9. (x | yz∗)∗(yx | (yz)∗z)
In 10–12 use the convention about order of precedence to elim-
inate the parentheses in the given regular expression.

10. ((a(b∗)) | (c(b∗))) ((ac) | (bc))
11. (1(1∗)) | ((1(0∗)) | ((1∗)1))
12. (xy)(((x∗)y)∗) | (((yx) | y)(y∗))
In 13–15 use set notation to derive the language defined by the
given regular expression. Assume � = {a, b, c}.
13. ε | ab 14. ∅ | ε 15. (a | b)c
In 16–18 write five strings that belong to the language defined
by the given regular expression.

16. 0∗1(0∗1∗)∗ 17. b∗ | b∗ab∗ 18. x∗(yxxy | x)∗
In 19–21 use words to describe the language defined by the
given regular expression.

19. b∗ab∗ab∗a 20. 1(0 | 1)∗00 21. (x | y)y(x | y)∗
In 22–24 indicate whether the given strings belong to the lan-
guage defined by the given regular expression. Briefly justify
your answers.

22. Expression: (b | ε)a(a | b)∗a(b | ε), strings: aaaba, baabb
23. Expression: (x∗y | zy∗)∗, strings: zyyxz, zyyzy
24. Expression: (01∗2)∗, strings: 120, 01202

In 25–27 find a regular expression that defines the given lan-
guage.

25. The language consisting of all strings of 0’s and 1’s with
an odd number of 1’s. (Such a string is said to have odd
parity.)

26. The language consisting of all strings of a’s and b’s in
which the third character from the end is a b.

27. The language consisting of strings of x’s and y’s in which
the elements in every pair of x’s are separated by at least
one y.

Let r, s, and t be regular expressions over � = {a, b}. In 28–30
determine whether the two regular expressions define the same
language. If they do, describe the language. If they do not, give
an example of a string that is in one of the languages but not the
other.

28. (r | s)t and r t | st 29. (rs)∗ and r∗s∗

30. (rs)∗ and ((rs)∗)∗

In 31–39 write a regular expression to define the given set of
strings. Use the shorthand notations given in the section when
ever convenient. In most cases, your expression will describe
other strings in addition to the given ones, but try to make your
answer fit the given strings as closely as possible within reason-
able space limitations.

31. All words that are written in lower-case letters and start
with the letters pre but do not consist of pre all by itself.

32. All words that are written in upper-case letters, and contain
the letters BIO (as a unit) or INFO (as a unit).

33. All words that are written in lower-case letters, end in ly,
and contain at least five letters.

34. All words that are written in lower-case letters and contain
at least one of the vowels a, e, i, o, or u.

35. All words that are written in lower-case letters and contain
exactly one of the vowels a, e, i, o, or u.

36. All words that are written in upper-case letters and do not
start with one of the vowels A, E, I, O, or U but contain
exactly two of these vowels next to each other.

37. All United States social security numbers (which consist
of three digits, a hyphen, two digits, another hyphen, and
finally four more digits), where the final four digits start
with a 3 and end with a 6.

38. All telephone numbers that have three digits, then a hyphen,
then three more digits, then a hyphen, and then four digits,
where the first three digits are either 800 or 888 and the last
four digits start and end with a 2.

39. All signed or unsigned numbers with or without a decimal
point. A signed number has one of the prefixes + or −,
and an unsigned number does not have a prefix. Represent
the decimal point as \. to distinguish it from the single dot
symbol for an arbitrary character.
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40.H Write a regular expression to perform a complete check
to determine whether a given string represents a valid
date from 1980 to 2079 written in one of the formats of
Example 12.1.11. (During this period, leap years occur
every four years starting in 1980.)

41.✶ Write a regular expression to define the set of strings of 0’s
and 1’s with an even number of 0’s and even number of 1’s.

Answers for Test Yourself
1. the string obtained by writing all the characters of x followed by all the characters of y 2. {xy | x ∈ L and y ∈ L ′} 3. {s | s ∈ L
or s ∈ L ′} 4. {t | t is a concatenation of any finite number of strings in L} 5. ∅, ε, and each individual symbol in � are regular
expressions over �; (rs) : (r | s); (r∗) 6. ∅; {ε}; {a}; L(r)L(r ′); L(r) ∪ L(r ′); (L(r))∗ 7. character class; (A | B |C) 8. an
arbitrary character 9. a character of the same type as those in the range of the class is to occur at that point in the string except for
one of the specific characters indicated after the ∧ sign. 10. The concatenation of r with itself any positive finite number of times
11. (ε | r) 12. the concatenation of r with itself exactly n times; the concatenation of r with itself anywhere from m through n times

12.2 Finite-State Automata
The world of the future will be an ever more demanding struggle against the limitations
of our intelligence, not a comfortable hammock in which we can lie down to be waited
upon by our robot slaves. — Norbert Wiener, 1964

The kind of circuit discussed in Section 2.4 is called a combinational circuit. Such a cir-
cuit is characterized by the fact that its output is completely determined by its input/output
table, or, in other words, by a Boolean function. Its output does not depend in any way
on the history of previous inputs to the circuit. For this reason, a combinational circuit is
said to have no memory.

Combinational circuits are very important in computer design, but they are not the
only type of circuits used. Equally important are sequential circuits. For sequential cir-
cuits one cannot predict the output corresponding to a particular input unless one also
knows something about the prior history of the circuit, or, more technically, unless one
knows the state the circuit was in before receiving the input. The behavior of a sequential
circuit is a function not only of the input to the circuit but also of the state the circuit is in
when the input is received. A computer memory circuit is a type of sequential circuit.

A finite-state automaton (aw-TAHM-uh-tahn) is an idealized machine that embodies
the essential idea of a sequential circuit. Each piece of input to a finite-state automaton
leads to a change in the state of the automaton, which in turn affects how subsequent
input is processed. Imagine, for example, the act of dialing a telephone number. Dialing
1–800 puts the telephone circuit in a state of readiness to receive the final seven digits of
a toll-free call, whereas dialing 328 leads to a state of expectation for the four digits of a
local call. Vending machines operate similarly. Just knowing that you put a quarter into
a vending machine is not enough for you to be able to predict what the behavior of the
machine will be. You also have to know the state the machine was in when the quarter
was inserted. If 75c/ had already been deposited, you might get a beverage or some candy,
but if the quarter was the first coin deposited, you would probably get nothing at all.

Example 12.2.1 A Simple Vending Machine

A simple vending machine dispenses bottles of juice that cost $1 each. The machine
accepts quarters and half-dollars only and does not give change. As soon as the amount
deposited equals or exceeds $1 the machine releases a bottle of juice. The next coin
deposited starts the process over again. The operation of the machine is represented by
the diagram of Figure 12.2.1.
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Figure 12.2.1 A Simple Vending Machine

Each circle represents a state of the machine: the state in which 0c/ has been deposited,
25c/ , 50c/ , 75c/ , and $1 or more. The unlabeled arrow pointing to “0c/ deposited” indi-
cates that this is the initial state of the machine. The double circle around “$1 or more
deposited” indicates that a bottle of juice is released when the machine has reached this
state. (It is called an accepting state of the machine because when the machine is in this
state, it has accepted the input sequence of coins as payment for juice.) The arrows that
link the states indicate what happens when a particular input is made to the machine
in each of its various states. For instance, the arrow labeled “quarter” that goes from
“0c/ deposited” to “25c/ deposited” indicates that when the machine is in the state “0c/
deposited” and a quarter is inserted, the machine goes to the state “25c/ deposited.” The
arrow labeled “half-dollar” that goes from “75c/ deposited” to “$1 or more deposited”
indicates that when the machine is in the state “75c/ deposited” and a half-dollar is inserted,
the machine goes to the state “$1 or more deposited” and juice is dispensed. (In this case
the purchaser would pay $1.25 for the juice because the machine does not return change.)
The arrow labeled “quarter” that goes from “$1 or more deposited” to “25c/ deposited”
indicates that when the machine is in the state “$1 or more deposited” and a quater is
inserted, the machine goes back to the state “25c/ deposited.” (This corresponds to the fact
that after the machine has dispensed a bottle of juice, it starts operation all over again.)

Equivalently, the operation of the vending machine can be represented by a next-state
table as shown in Table 12.2.1.

Table 12.2.1 Next-State Table

Input

Quarter Half-Dollar

→ 0c/ deposited 25c/ deposited 50c/ deposited
25c/ deposited 50c/ deposited 75c/ deposited

State 50c/ deposited 75c/ deposited $1 or more deposited
75c/ deposited $1 or more deposited $1 or more deposited

� $1 or more deposited 25c/ deposited 50c/ deposited

The arrow pointing to “0c/ deposited” in the table indicates that the machine begins
operation in this state. The double circle next to “$1 or more deposited” indicates that a
bottle of juice is released when the machine has reached this state. Entries in the body of
the table are interpreted in the obvious way. For instance, the entry in the third row of the
column labeled Half-Dollar shows that when the machine is in state “50c/ deposited” and
a half-dollar is deposited, it goes to state “$1 or more deposited.”

Note that Table 12.2.1 conveys exactly the same information as the diagram of Figure
12.2.1. If the diagram is given, the table can be constructed; and if the table is given, the
diagram can be drawn. ■
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Observe that the vending machine described in Example12.2.1 can be thought of as
having a primitive memory: It “remembers” how much money has been deposited (within
limits) by referring to the state it is in. This capability for storing information and acting
upon it is what gives finite-state automata their tremendous power.

The most important finite-state automata are digital computers. Each computer con-
sists of several subsystems: input devices, a processor, and output devices. A proces-
sor typically consists of a central processing unit and a finite number of memory loca-
tions. At any given time, the state of the processor is determined by the locations and
values of all the bits stored within its memory. A computer that has n different loca-
tions for storing a single bit can therefore exist in 2n different states. For a modern
computer, n is many billions or even trillions, so the total number of states is enor-
mous. But it is finite. Therefore, despite the complexity of a computer, just as for a
vending machine, it is possible to predict the next state given knowledge of the cur-
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rent state and the input. Indeed, this is essentially what programmers try to do every time
they write a program. Fortunately, modern, high-level computer languages provide a lot
of help.

The basic theory of automata was developed to answer very theoretical questions
about the foundations of mathematics posed by the great German mathematician David
Hillbert in 1900. The ground-breaking work on automata was done in the mid-1930s
by the English mathematician and logician Alan M. Turing. In the 1940s and 1950s,
Turing’s work played an important role in the development of real-world automatic
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computers.

Definition of a Finite-State Automaton
A general finite-state automaton is completely described by giving a set of states, together
with an indication about which is the initial state and which are the accepting states
(when something special happens), a list of all input elements, and specification for a
next-state function that defines which state is produced by each input in each state. This
is formalized in the following definition:

• Definition

A finite-state automaton A consists of five objects:

1. A finite set I , called the input alphabet, of input symbols;

2. A finite set S of states the automaton can be in;

3. A designated state s0 called the initial state;

4. A designated set of states called the set of accepting states;

5. A next-state function N: S × I → S that associates a “next-state” to each
ordered pair consisting of a “current state” and a “current input.” For each state s
in S and input symbol m in I, N (s,m) is the state to which A goes if m is input
to A when A is in state s.

The operation of a finite-state automaton is commonly described by a diagram called
a (state-)transition diagram, similar to that of Figure 12.2.1. It is called a transition
diagram because it shows the transitions the machine makes from one state to another
in response to various inputs. In a transition diagram, states are represented by circles
and accepting states by double circles. There is one arrow that points to the initial state
and other arrows that are labeled with input symbols and point from each state to other
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states to indicate the action of the next-state function. Specifically, an arrow from state s
to state t labeled m means that N (s,m) = t .

The next-state table for an automaton shows the values of the next-state function N
for all possible states s and input symbols i . In the annotated next-state table, the initial
state is indicated by an arrow and the accepting states are marked by double circles.

Example 12.2.2 A Finite-State Automaton Given by a Transition Diagram

Consider the finite-state automaton A defined by the transition diagram shown in
Figure 12.2.2.

a. What are the states of A?

b. What are the input symbols of A?

c. What is the initial state of A?

d. What are the accepting states of A?

e. Determine N (s1, 1).

f. Construct the annotated next-state table for A.

1 0 0

1

1

0s0 s1 s2

Figure 12.2.2

Solution

a. The states of A are s0, s1, and s2 [since these are the labels of the circles].

b. The input symbols of A are 0 and 1 [since these are the labels of the arrows].

c. The initial state of A is s0 [since the unlabeled arrow points to s0].

d. The only accepting state of A is s2 [since this is the only state marked by a double circle].

e. N (s1, 1) = s2 [since there is an arrow from s1 to s2 labeled 1].

f. Input

0 1

→ s0 s1 s0
State s1 s1 s2

� s2 s1 s0 ■

Example 12.2.3 A Finite-State Automaton Given by an Annotated Next-State Table

Consider the finite-state automaton A defined by the following annotated next-state table:

Input

a b c

→ U Z Y Y
� V V V V

State Y Z V Y
� Z Z Z Z

a. What are the states of A?

b. What are the input symbols of A?

c. What is the initial state of A?

d. What are the accepting states of A?

e. Find N (U, c).

f. Draw the transition diagram for A.
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Solution

a. The states of A are U, V, Y , and Z .

b. The input symbols of A are a, b, and c.

c. The initial state of A is U [since the arrow points to U].

d. The accepting states of A are V and Z [since these are marked with double circles].

e. N (U, c) = Y [since the entry in the row labeled U and the column labeled c of the
next-state table is Y ].

f. The transition diagram for A is shown in Figure 12.2.3. It can be drawn more com-
pactly by labeling arrows with multiple-input symbols where appropriate. This is illus-
trated in Figure 12.2.4.

a

a

a
a

b

b

b

c

c

b

c

c

U V

YZ

Figure 12.2.3

a

a

b

c
a, b, c

a, b, c

b, c

U V

YZ

Figure 12.2.4

■

The Language Accepted by an Automaton
Now suppose a string of input symbols is fed into a finite-state automaton in sequence.
At the end of the process, after each successive input symbol has changed the state of the
automaton, the automaton ends up in a certain state, which may be either an accepting
state or a nonaccepting state. In this way, the action of a finite-state automaton separates
the set of all strings of input symbols into two subsets: those that send the automaton
to an accepting state and those that do not. Those strings that send the automaton to an
accepting state are said to be accepted by the automaton.

• Definition

Let A be a finite-state automaton with set of input symbols I . Let I ∗ be the set of
all strings over I , and let w be a string in I ∗. Then w is accepted by A if, and only
if, A goes to an accepting state when the symbols of w are input to A in sequence
from left to right, starting when A is in its initial state. The language accepted by
A, denoted L(A), is the set of all strings that are accepted by A.
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Example 12.2.4 Finding the Language Accepted by an Automaton

Consider the finite-state automaton A defined in Example 12.2.2 and shown again below.

1 0 0

1

1

0s0 s1 s2

a. To what states does A go if the symbols of the following strings are input to A in
sequence, starting from the initial state?

(i) 01 (ii) 0011 (iii) 0101100 (iv) 10101

b. Which of the strings in part (a) send A to an accepting state?

c. What is the language accepted by A?

d. Is there a regular expression that defines the same language?

Solution

a. (i) s2 (ii) s0 (iii) s1 (iv) s2

b. The strings 01 and 10101 send A to an accepting state.

c. Observe that if w is any string that ends in 01, then w is accepted by A. For if w is
any string of length n ≥ 2, then after the first n − 2 symbols of w have been input, A
is in one of its three states: s0, s1, or s2. But from any of these three states, input of the
symbols 01 in sequence sends A first to s1 and then to the accepting state s2. Hence
any string that ends in 01 is accepted by A.

Also note that the only strings accepted by A are those that end in 01. (That is, no
other strings besides those ending in 01 are accepted by A.) The reason for this is that
the only accepting state of A is s2, and the only arrow pointing to s2 comes from s1 and
is labeled 1. Thus in order for an input string w of length n to send A to an accepting
state, the last symbol of w must be a 1 and the first n − 1 symbols of w must send A
to state s1. Now three arrows point to s1, one from each of the three states of A, and
all are labeled 0. Thus the last of the first n − 1 symbols of w must be 0, or, in other
words, the next-to-the-last symbol of w must be 0. Hence the last two symbols of w

must be 01, and thus

L(A) = the set of all strings of 0’s and 1’s that end in 01.

d. Yes. One regular expression that defines L(A) is (0 | 1)∗01. ■

A finite-state automaton with multiple accepting states can have output devices
attached to each one so that the automaton can classify input strings into a variety of
different categories, one for each accepting state. This is how finite-state automata are
used in the lexical scanner component of a computer compiler to group the symbols from
a stream of input characters into identifiers, keywords, and so forth.

The Eventual-State Function
Now suppose a finite-state automaton is in one of its states (not necessarily the initial
state) and a string of input symbols is fed into it in sequence. To what state will the
automaton eventually go? The function that gives the answer to this question for every
possible combination of input strings and states of the automaton is called the eventual-
state function.
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• Definition

Let A be a finite-state automaton with set of input symbols I , set of states S, and
next-state function N : S × I → S. Let I ∗ be the set of all strings over I , and define
the eventual-state function N ∗: S × I ∗ → S as follows:

For any state s and for any input string w,

N ∗(s, w) =
⎡
⎣the state to which A goes if the
symbols of w are input to A in sequence,
starting when A is in state s

⎤
⎦ .

Example 12.2.5 Computing Values of the Eventual-State Function

Consider again the finite-state automaton of Example 12.2.2 shown below for conven-
ience. Find N ∗(s1, 10110).

1 0 0

1

1

0s0 s1 s2

Solution By definition of the eventual-state function,

N ∗(s1, 10110) =
⎡
⎣the state to which A goes if the
symbols of 10110 are input to A in
sequence, starting when A is in state s1

⎤
⎦ .

By referring to the transition diagram for A, you can see that starting from s1, when a 1
is input, A goes to s2; then when a 0 is input, A goes back to s1; after that, when a 1 is
input, A goes to s2; from there, when a 1 is input, A goes to s0; and finally, when a 0 is
input, A goes back to s1. This sequence of state transitions can be written as follows:

s1
1−→ s2

0−→ s1
1−→ s2

1−→ s0
0−→ s1.

Thus, after all the symbols of 10110 have been input in sequence, the eventual state of A
is s1, so

N ∗(s1, 10110) = s1. ■

The definitions of string and language accepted by an automaton can be restated sym-
bolically using the eventual-state function. Suppose A is a finite-state automaton with set
of input symbols I and next-state function N , and suppose that I ∗ is the set of all strings
over I and that w is a string in I ∗.

w is accepted by A ⇔ N ∗(s0, w) is an accepting state of A

L(A) = {w ∈ I ∗ | N ∗(s0, w) is an accepting state of A}

Designing a Finite-State Automaton
Now consider the problem of starting with a description of a language and designing an
automaton to accept exactly that language.
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Example 12.2.6 A Finite-State Automaton That Accepts the Set of Strings of 0’s and 1’s
for Which the Number of 1’s Is Divisible by 3

a. Design a finite-state automaton A that accepts the set of all strings of 0’s and 1’s such
that the number of 1’s in the string is divisible by 3.

b. Is there a regular expression that defines this set?

Solution

a. Let s0 be the initial state of A, s1 its state after one 1 has been input, and s2 its state
after two 1’s have been input. Note that s0 is the state of A after zero 1’s have been
input, and since zero is divisible by 3 (0 = 0 ·3), s0 must be an accepting state. The
states s0, s1, and s2 must be different from one another because from state s0 three 1’s
are needed to reach a new total divisible by 3, whereas from state s1 two additional 1’s
are necessary, and from state s2 just one more 1 is required.

Now the state of A after three 1’s have been input can also be taken to be s0
because after three 1’s have been input, three more are needed to reach a new total
divisible by 3. More generally, if 3k 1’s have been input to A, where k is any non-
negative integer, then three more are needed for the total again to be divisible by 3
(since 3k + 3 = 3(k + 1)). Thus the state in which 3k 1’s have been input, for any
nonnegative integer k, can be taken to be the initial state s0.

By similar reasoning, the states in which (3k + 1) 1’s and (3k + 2) 1’s have been
input, where k is a nonnegative integer, can be taken to be s1 and s2, respectively.

Now every nonnegative integer can be written in one of the three forms 3k, 3k + 1,
or 3k + 2 (see Section 4.4), so the three states s0, s1, and s2 are all that is needed to
create A. Thus the states of A can be drawn and labeled as shown below.

s2

s1s0

Next consider the possible inputs to A in each of its states. No matter what state
A is in, if a 0 is input the total number of 1’s in the input string remains unchanged.
Thus there is a loop at each state labeled 0.

Now suppose a 1 is input to A when it is in state s0. Then A goes to state s1 (since
the total number of 1’s in the input string has changed from 3k to 3k + 1). Similarly,
if a 1 is input to A when it is in state s1, then A goes to state s2 (since the total number
of 1’s in the input string has changed from 3k + 1 to 3k + 2). Finally, if a 1 is input
to A when it is in state s2, then it goes to state s0 (since the total number of 1’s in the
input string becomes (3k + 2)+ 1 = 3k + 3 = 3(k + 1), which is a multiple of 3.)

It follows that the transition diagram for A has the appearance shown below.
0

1

0

11

0

This automaton accepts the set
of strings of 0's and 1's for which
the number of 1's is divisible by 3.

s2

s1s0

b. A regular expression that defines the given set is 0∗ | (0∗10∗10∗10∗)∗. ■

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



12.2 Finite-State Automata 799

Example 12.2.7 A Finite-State Automaton That Accepts the Set of All Strings of 0’s and 1’s
Containing Exactly One 1

a. Design a finite-state automaton A to accept the set of all strings of 0’s and 1’s that
contain exactly one 1.

b. Is there a regular expression that defines this set?

Solution

a. The automaton A must have at least two distinct states:

s0: initial state;

s1: state to which A goes when the input string contains exactly one 1.

If A is in state s0 and a 0 is input, A may as well stay in state s0 (since it still needs
to wait for a 1 to move to state s1), but as soon as a 1 is input, A moves to state s1.
Thus a partial drawing of the transition diagram is as shown below.

0

1s0 s1

Now consider what happens when A is in state s1. If a 0 is input, the input string
still has a single 1, so A stays in state s1. But if a 1 is input, then the input string
contains more than one 1, so A must leave s1 (since no string with more than one 1 is
to be accepted by A). It cannot go back to state s0 because there is a way to get from
s0 to s1, and after input of the second 1, A can never return to state s1. Hence A must
go to a third state, s2, from which there is no return to s1. Thus from s2 every input
may as well leave A in state s2. It follows that the completed transition diagram for A
has the appearance shown below.

0 0, 10

1 1 This automaton accepts the set of
strings 0's and 1's, with exactly one 1.

s0 s2s1

b. A regular expression that defines the given set is 0∗10∗. ■

Simulating a Finite-State Automaton Using Software
Suppose items have been coded with strings of 0’s and 1’s. A program is to be written
to govern the processing of items coded with strings that end 011; items coded any other
way are to be ignored. This situation can be modeled by the finite-state automaton shown
in Figure 12.2.5.

0 1

1

1 This automaton recognizes
strings that end 011.

1 0
0

0

s0 s2s1 s3

Figure 12.2.5
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800 Chapter 12 Regular Expressions and Finite-State Automata

The symbols of the code for the item are fed into this automaton in sequence, and
every string of symbols in a given code sends the automaton to one of the four states
s0, s1, s2, or s3. If state s3 is reached, the item is processed; if not, the item is ignored.

The action of this finite-state automaton can be simulated by a computer algorithm as
given in Algorithm 12.2.1.

Algorithm 12.2.1 A Finite-State Automaton

[This algorithm simulates the action of the finite-state automaton of Figure 12.2.5 by
mimicking the functioning of the transition diagram. The states are denoted 0, 1, 2,
and 3.]

Input: string [a string of 0’s and 1’s plus an end marker e]

Algorithm Body:

state := 0

symbol := first symbol in the input string

while (symbol �= e)

if state = 0 then if symbol = 0

then state := 1

else state := 0

else if state = 1 then if symbol = 0

then state := 1

else state := 2

else if state = 2 then if symbol = 0

then state := 1

else state := 3

else if state = 3 then if symbol = 0

then state := 1

else state := 0

symbol := next symbol in the input string

end while

[After execution of the while loop, the value of state is 3 if, and only if, the in-
put string ends in 011e.]

Output: state

Note how use of the finite-state automaton allows the creator of the algorithm to focus
on each step of the analysis of the input string independently of the other steps.

An alternative way to program this automaton is to enter the values of the next-state
function directly as a two-dimensional array. This is done in Algorithm 12.2.2.

Algorithm 12.2.2 A Finite-State Automaton

[This algorithm simulates the action of the finite-state automaton of Figure 12.2.5 by
repeated application of the next-state function. The states are denoted 0, 1, 2, and 3.]

Input: string [a string of 0’s and 1’s plus an end marker e]
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Algorithm Body:

N (0, 0) := 1, N (0, 1) := 0, N (1, 0) := 1, N (1, 1) := 2,

N (2, 0) := 1, N (2, 1) := 3, N (3, 0) := 1, N (3, 1) := 0

state : = 0

symbol : = first symbol in the input string

while (symbol �= e)

state := N (state, symbol)

symbol := next symbol in the input string

end while
[After execution of thewhile loop, the value of state is 3 if, and only if, the input string
ends in 011e.]

Output: state

Finite-State Automata and Regular Expressions
In the previous sections, each time we considered a language accepted by a finite-state
automaton, we found a regular expression that defined the same language. Stephen Kleene
showed that our ability to do this is not sheer coincidence. He proved that any language
accepted by a finite-state automaton can be defined by a regular expression and that, con-
versely, any language defined by a regular expression is accepted by a finite-state automa-
ton. Thus for the many applications of regular expressions discussed in Section 12.1, it
is theoretically possible to find a corresponding finite-state automaton, which can then be
simulated using the kinds of computer algorithms described in the previous subsection.

In practice, it is often of interest to retain only pieces of the patterns sought. For
instance, to obtain a reference in an HTML document, one would specify a regular
expression defining the full HTML tag, <a href= “the desired URL”>, but one would
be interested in retrieving only the string between the quotation marks. Because of these
kinds of considerations, actual implementations of finite-state automata include addi-
tional features.∗

We break the statement of Kleene’s theorem into two parts.

Kleene’s Theorem, Part 1

Given any language that is accepted by a finite-state automaton, there is a regular
expression that defines the same language.

Proof:

Suppose A is a finite-state automaton with a set I of input symbols, a set S of n
states, and a next-state function N : S × I → S. Let I ∗ denote the set of all strings
over I . Number the states s1, s2, s3, . . . , sn , using s1 to denote the initial state, and
for each integer k = 1, 2, 3, . . . , n, let

Lk
i, j =

⎧⎨
⎩x ∈ I ∗

∣∣∣∣∣∣
when the symbols of x are input to A in sequence, A
goes from state si to state s j without traveling through
an intermediate state sh for which h > k

⎫⎬
⎭ .

continued on page 802

∗For more information, see Mastering Regular Expressions, 3rd ed., by Jeffrey E. F. Friedl,
(Sebastopol, CA: O’Reilly & Associates, 2006).
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Note that either index i or index j in Lk
i, j could be greater than k; the only

restriction is that the symbols of a string in Lk
i, j cannot make A both enter and exit

an intermediate state with index greater than k.
If s j is an accepting state and if k = n and i = 1, then Ln

1, j is the set of all strings
that send A to s j when the symbols of the string are input to A in sequence starting
from s1. Thus

Ln
1, j ⊆ L(A).

Moreover, because the sequence of symbols in every string in L(A) sends A to some
accepting state s j ,

L(A) is the union of all the sets Ln
1, j ,where s j is an accepting state.

We use a version of mathematical induction to build up a set of regular expres-
sions over I . Let the property P(m) be the sentence

For any pair of integers i and j with 1 ≤ i, j ≤ n,
there is a regular expression rmi, j that defines L

m
i, j . ← P(m)

Show that P(0) is true: For each pair of integers i and j with 1 ≤ i, j ≤ n, L0
i, j is the

set of all strings that send A from si to s j without sending it through any intermediate
state sh for which h > 0. Because the subscript of every state in A is greater than
zero, the strings in L0

i, j do not send A through any intermediate states at all, and so
each is a single input symbol from I . In other words, for all integers i and j with
1 ≤ i, j ≤ n,

L0
i, j = {a ∈ I | N (si , a) = s j }.

Hence L0
i, j is a subset of I , and so (because I is finite) we may denote the elements

of L0
i, j as follows:

L0
i, j = {a1, a2, a3, . . . , aM } ⊆ I.

Now, by definition of regular expression, each single input symbol of I is a reg-
ular expression over I ; thus every element of L0

i, j is a regular expression over I .
The result is that for all integers i and j with 1 ≤ i, j ≤ n, the following regular
expression defines L0

i, j :
a1 | a2 | a3| · · · |aM

Show that for all integers k with 0 ≤ k < n, if P(k) is true then P(k+ 1) is true:
Let k be any integer with 1 ≤ k < n, and suppose that

For each pair of integers p and q with 1 ≤ p, q ≤ n, ← P(k)

there is a regular expression rkp,q that defines L
k
p,q . inductive hypothesis

We will show that

For each pair of integers i and j with 1 ≤ i, j ≤ n,
there is a regular expression rk+1i, j that defines Lk+1

i, j . ← P(k + 1)

So suppose that i and j are any pair of integers with 1 ≤ i, j ≤ n, and observe that
any string in Lk+1

i, j sends A from si to s j , either by a route that makes A pass through
sk+1 or by a route that does not make A pass through sk+1. Now each string that sends
A from si to s j and makes A pass through sk+1 one or more times can be broken into
segments. The symbols in the first segment send A from si to sk+1 without making
A pass through sk+1; those in each of the intermediate segments send sk+1 to itself
without making A pass through sk+1; and those in the final segment send A from
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sk+1 to s j without making A pass through sk+1. (The intermediate segment could
be the null string.) A typical path showing two intermediate segments is illustrated
below.

si sjsk+1

Note that each intermediate segment of the string is in Lk
k+1,k+1, and by assumption

the regular expression rkk+1,k+1 defines this set. By the same reasoning, rki,k+1 defines
the set of all possible first segments of the string, and rkk+1, j defines the set of all
possible final segments of the string. In addition, rki, j defines the set of all strings that
send A from si to s j without making it pass through a state sm with m > k. Thus we
may define the regular expression rk+1i, j as follows:

rk+1i, j = rki, j | rki,k+1
(
rkk+1,k+1

)∗
rkk+1, j .

Then rk+1i, j defines the set of all strings that send A from si to s j without making it

pass through any states sm with m > k + 1, and so rk+11, j defines Lk+1
1, j [as was to be

shown].
To complete the proof, let s j1 , s j2 , . . . , s jk be the accepting state of A. Because

L(A) is the union of all the Ln
1, j where s j is an accepting state, we have

L(A) = L
(
rn1, j1

)
∪ L

(
rn1, j2 ∪ · · · ∪ L

(
rn1, jn

)
= L

(
rn1, j1 |rn1, j2 | · · · |rn1, jn

)
by the recursive definition for the
language defined by a regular expression

Thus if we let r = rn1, j1

∣∣∣rn1, j2 ∣∣∣ · · · ∣∣∣rn1, jn , we have that L(A) = L(r). In other words,

we have constructed a regular expression r that defines the language accepted by A.

Kleene’s Theorem, Part 2

Given any language defined by a regular expression, there is a finite-state automaton
that accepts the same language.

The most common way to prove part 2 of Kleene’s theorem is to introduce a new cat-
egory of automata called nondeterministic finite-state automata. These are similar to the
(deterministic) finite-state automata we have been discussing, except that for any given
state and input symbol, the next state is a subset of the set of states of the automaton,
possibly even the empty set. Thus the next state of the automaton is not uniquely deter-
mined by the combination of a current state and an input symbol. A string is accepted by a
nondeterministic finite-state automaton if, and only if, when the symbols in the string are
input to the automaton in sequence, starting from an initial state, there is some sequence
of next states through which the automaton could travel that would send it to an accept-
ing state. For instance, the transition diagram at the left is an example of a very simple
nondeterministic finite-state automaton that accepts the set of all strings beginning with
a 1. Observe that N (s0, 1) = {s1, s2} and N (s0, 0) = ∅.

1

0

1

1

s1

s2

s0

Given a language defined by any regular expression, there is a straightforward recur-
sive algorithm for finding a nondeterministic finite-state automaton that defines the same
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language. The proof of Kleene’s theorem is completed by showing that for any such non-
deterministic finite-state automaton, there is a (deterministic) finite-state automaton that
defines the same language. We leave the details of the proof to a course in automata
theory.

Regular Languages
According to Kleene’s theorem, the set of languages defined by regular expressions is
identical to the set of languages accepted by finite-state automata. Any such language is
called a regular language. The brief allusions we made earlier to context-free languages
and Chomsky’s classification of languages suggest that not every language is regular. We
will prove this by giving an example of a nonregular language.

To construct the example, note that because a finite-state automaton can assume only
a finite number of states and because there are infinitely many input sequences, by the
pigeonhole principle there must be at least one state to which the automaton returns over
and over again. This is the essential feature of an automaton that makes it possible to find
a nonregular language.

Example 12.2.8 Showing That a Language is Not Regular

Let the language L consist of all strings of the form akbk , where k is a positive integer.
Symbolically, L is the language over the alphabet � = {a, b} defined by

L = {s ∈ �∗ | s = akbk,where k is a positive integer}.
Use the pigeonhole principle to show that L is not regular. In other words, show that there
is no finite-state automaton that accepts L .

Solution [Use a proof by contradiction.] Suppose not. That is, suppose there is a finite-
state automaton A that accepts L . [A contradiction will be derived.] Since A has only a
finite number of states, these states can be denoted s1, s2, s3, . . . , sn , where n is a positive
integer. Consider all input strings that consist entirely of a’s: a, a2, a3, a4, . . . .Now there
are infinitely many such strings and only finitely many states. Thus, by the pigeonhole
principle, there must be a state sm and two input strings ap and aq with p �= q such that
when either ap or aq is input to A, A goes to state sm . (See Figure 12.2.6.) [The pigeons
are the strings of a’s, the pigeonholes are the states, and the correspondence associates each
string with the state to which A goes when the string is input.]

a2

a3

ap

aq

a F

s2

s3

sm

sn

s1

Strings of a's States of A

There are an
infinite number
of these strings.

There are only
n states.

F(ai) = the state to which A 

= N*(S0, ai)

goes when ai is input

Since F is not one-to-one, ∃ strings
ap and aq

 with  p ≠ q such that both
ap and aq send A to the same state sm.

Figure 12.2.6
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Now, by supposition, A accepts L . Hence A accepts the string

a pbp.

This means that after p a’s have been input, at which point A is in state sm , inputting p
additional b’s sends A into an accepting state, say sa . But that implies that

aqbp

also sends A to the accepting state sa , and so aqbp is accepted by A. The reason is that
after q a’s have been input, A is also in state sm , and from that point, inputting p additional
b’s sends A to state sa , which is an accepting state. Pictorially, if p < q, then

a a
a

a

a a

a

a

b b

p a's are input p b's are input

q – p additional
a's are input

sm saso

Now, by supposition, L is the language accepted by A. Thus since s is accepted by
A, s ∈ L . But by definition of L , L consists only of strings with equal numbers of a’s
and b’s. So since p �= q, s /∈ L . Hence s ∈ L and s /∈ L , which is a contradiction.

It follows that the supposition is false, and so there is no finite-state automaton that
accepts L . ■

Test Yourself
1. The five objects that make up a finite-state automaton are

_____, _____, _____, _____, and _____.

2. The next-state table for an automaton shows the values of
_____.

3. In the annotated next-state table, the initial state is indicated
with an _____ and the accepting states are marked by _____.

4. A string w consisting of input symbols is accepted by a
finite-state automation A if, and only if, _____.

5. The language accepted by a finite-state automaton A is
_____.

6. If N is the next-state function for a finite-state automation

A, the eventual-state function N ∗ is defined as follows: For
each state s of A and for each string w that consists of input
symbols of A, N ∗(s, w) = _____.

7. One part of Kleene’s theorem says that given any language
that is accepted by a finite-state automaton, there is _____.

8. The second part of Kleene’s theorem says that given any
language defined by a regular expression, there is _____.

9. A regular language is _____.

10. Given the language consisting of all strings of the form akbk ,
where k is a positive integer, the pigeonhole principle can be
used to show that the language is _____.

Exercise Set 12.2
1. Find the state of the vending machine in Example 12.2.1

after each of the following sequences of coins have been
input.
a. Quarter, half-dollar, quarter
b. Quarter, half-dollar, half-dollar
c. Half-dollar, quarter, quarter, quarter, half-dollar

In 2–7 a finite-state automaton is given by a transition diagram.
For each automaton:

a. Find its states.
b. Find its input symbols.
c. Find its initial state.
d. Find its accepting states.
e. Write its annotated next-state table.
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2.
1 0

0 1

1

0
s0 s1 s2

3.

b b

b

a

b

a

aa

U0 U1

U2

U3

4.

1

1

0

1

0

0

s0 s1 s2

5.

y

x

y

x

y

x

x
x

y

x

y

y

B

C

A F

D

E

6.
0 0

00

1

1

1
1

s0 s1

s3 s2

7.
0 0

00

1

1

1
1

s0

s2

s1

s3

In 8 and 9 a finite-state automaton is given by an annotated next-
state table. For each automaton:
a. Find its states.
b. Find its input symbols.
c. Find its initial state.
d. Find its accepting states.
e. Draw its transition diagram.

8. Next-State Table
Input

0 1
→ s0 s1 s2

State s1 s1 s2
� s2 s1 s2

9. Next-State Table

Input

0 1
→ s0 s0 s1
� s1 s1 s2

State s2 s2 s3
s3 s3 s0

10. A finite-state automaton A, given by the transition diagram
below, has next-state function N and eventual-state func-
tion N ∗.

0

1

1

1

0 100

s0

s2

s3

s1

a. Find N (s1, 1) and N (s0, 1).
b. Find N (s2, 0) and N (s1, 0).
c. Find N ∗(s0, 10011) and N ∗(s1, 01001).
d. Find N ∗(s2, 11010) and N ∗(s0, 01000).

11. A finite-state automaton A, given by the transition diagram
below, has next-state function N and eventual-state func-
tion N ∗.

1

0

0

0 1 0

1

1

0

1

s1s0

s4

s2s3
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12.2 Finite-State Automata 807

a. Find N (s3, 0) and N (s2, 1).
b. Find N (s0, 0) and N (s4, 1).
c. Find N ∗(s0, 010011) and N ∗(s3, 01101).
d. Find N ∗(s0, 1111) and N ∗(s2, 00111).

12. Consider again the finite-state automaton of exercise 2.
a. To what state does the automaton go when the symbols

of the following strings are input to it in sequence, start-
ing from the initial state?
(i) 1110001 (ii) 0001000 (iii) 11110000

b. Which of the strings in part (a) send the automaton to an
accepting state?

c. What is the language accepted by the automaton?
d. Find a regular expression that defines the language.

13. Consider again the finite-state automaton of exercise 3.
a. To what state does the automaton go when the symbols

of the following strings are input to it in sequence, start-
ing from the initial state?
(i) bb (ii) aabbbaba (iii) babbbbbabaa
(iv) bbaaaabaa

b. Which of the strings in part (a) send the automaton to an
accepting state?

c. What is the language accepted by the automaton?
d. Find a regular expression that defines the language.

In each of 14–19, (a) find the language accepted by the automa-
ton in the referenced exercise, and (b) find a regular expression
that defines the same language.

14. Exercise 4 15. Exercise 5 16. Exercise 6

17. Exercise 7 18. Exercise 8 19. Exercise 9

In each of 20–29, (a) design an automaton with the given input
alphabet that accepts the given set of strings, and (b) find a
regular expression that defines the language accepted by the
automaton.

20. Input alphabet = {0, 1}; Accepts the set of all strings for
which the final three input symbols are 1.

21.H Input alphabet = {a, b}; Accepts the set of all strings of
length at least 2 for which the final two input symbols are
the same.

22. Input alphabet = {0, 1}; Accepts the set of all strings that
start with 01 or 10.

23. Input alphabet = {0, 1}; Accepts the set of all strings that
start with 01.

24. Input alphabet = {0, 1}; Accepts the set of all strings that
start with 101.

25. Input alphabet = {0, 1}; Accepts the set of all strings that
end in 10.

26. Input alphabet = {a, b}; Accepts the set of all strings that
contain exactly two b’s.

27. Input alphabet = {0, 1}; Accepts the set of all strings that
start with 0 and contain exactly one 1.

28. Input alphabet = {0, 1}; Accepts the set of all strings that
contain the pattern 010.

In 29–47, design a finite-state automaton to accept the language
defined by the regular expression in the referenced exercise
from Section 12.1.

29. Exercise 16 30. Exercise 17 31. Exercise 18

32. Exercise 19 33. Exercise 20 34. Exercise 21

35. Exercise 24 36. Exercise 25 37. Exercise 26

38. Exercise 27 39. Exercise 31 40. Exercise 32

41. Exercise 33 42. Exercise 34 43. Exercise 35

44. Exercise 36 45. Exercise 37 46. Exercise 38

47. Exercise 39

48. A simplified telephone switching system allows the follow-
ing strings as legal telephone numbers:
a. A string of seven digits in which neither of the first two

digits a 0 or a1 (a local call string).
b. A 1 followed by a three-digit area code string (any digit

except 0 or 1 followed by a 0 or 1 followed by any digit)
followed by a seven-digit local call string.

c. A 0 alone or followed by a three-digit area code string
plus a seven-digit local call string.

Design a finite-state automaton to recognize all the legal
telephone numbers in (a), (b) and (c). Include an “error
state” for invalid telephone numbers.

49. Write a computer algorithm that simulates the action of the
finite-state automaton of exercise 2 by mimicking the action
of the transition diagram.

50. Write a computer algorithm that simulates the action of the
finite-state automaton of exercise 8 by repeated application
of the next-state function.

51.H Let L be the language consisting of all strings of the form

ambn,where m and n are positive integers and m ≥ n.

Show that there is no finite-state automaton that accepts L .

52. Let L be the language consisting of all strings of the form

ambn,where m and n are positive integers and m ≤ n.

Show that there is no finite-state automaton that accepts L .

53.H Let L be the language consisting of all strings of the form

an,where n = m2, for some positive integer m.

Show that there is no finite-state automaton that accepts L .

54. a. Let A be a finite-state automaton with input alphabet �,
and suppose L(A) is the language accepted by A. The
complement of L(A) is the set of all strings over � that
are not in L(A). Show that the complement of a regular
language is regular by proving the following: If L(A)

is the language accepted by a finite-state automaton A,
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808 Chapter 12 Regular Expressions and Finite-State Automata

then there is a finite-state automaton A′ that accepts the
complement of L(A).

b. Show that the intersection of any two regular languages
is regular as follows: First prove that if L(A1) and
L(A2) are languages accepted by automata A1 and A2,

respectively, then there is an automaton A that accepts
(L(A1))

c ∪ (L(A2))
c. Then use one of De Morgan’s

laws for sets, the double complement law for sets, and
the result of part (a) to prove that there is an automaton
that accepts L(A1) ∩ L(A2).

Answers for Test Yourself
1. a finite set of input symbols; a finite set of states; a designated initial state; a designated set of accepting states; a next-state function
that associates a “next-state” with each state and input symbol of the automaton 2. the next-state function for each state and input
symbol of the automaton 3. arrow; double circles 4. when the symbols in the string are input to the automaton in sequence from
left to right, starting from the initial state, the automaton ends up in an accepting state 5. the set of strings that are accepted by A
6. the state to which A goes if it is in state s and the characters of w are input to it in sequence 7. a regular expression that defines
the same language 8. a finite-state automaton that accepts the same language 9. a language defined by a regular expression (Or: a
language accepted by a finite-state automaton) 10. not regular

12.3 Simplifying Finite-State Automata
Our life is frittered away by detail. . . . Simplify, simplify.
—Henry David Thoreau, Walden, 1854

Any string input to a finite-state automaton either sends the automaton to an accepting
state or not, and the set of all strings accepted by an automaton is the language accepted
by the automaton. It often happens that when an automaton is created to do a certain
job (as in compiler construction, for example), the automaton that emerges “naturally”
from the development process is unnecessarily complicated; that is, there may be an
automaton with fewer states that accepts exactly the same language. It is desirable to
find such an automaton because the memory space required to store an automaton with
n states is approximately proportional to n2. Thus approximately 10,000 memory spaces
are required to store an automaton with 100 states, whereas only about 100 memory
spaces are needed to store an automaton with 10 states. In addition, the fewer states an
automaton has, the easier it is to write a computer algorithm based on it; and to see that
two automata both accept the same language, it is easiest to simplify each to a minimal
number of states and compare the simplified automata. In this section we show how to
take a given automaton and simplify it in the sense of finding an automaton with fewer
states that accepts the same language.

Example 12.3.1 An Overview

Consider the finite-state automata A and A′ in Figure 12.3.1. A moment’s thought should
convince you that A′ accepts all those strings, and only those strings, that contain an
even number of 1’s. But A, although it appears more complicated, accepts exactly those

s1

00

00

1

1

1
1

A

0 0

1

1

A'

s0

s3 s2

s'0 s'1

Figure 12.3.1 Two Equivalent Automata
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12.3 Simplifying Finite-State Automata 809

strings also. Thus the two automata are “equivalent” in the sense that they accept the same
language, even though A′ has fewer states than A.

Roughly speaking, the reason for the equivalence of these automata is that some of
the states of A can be combined without affecting the acceptance or nonacceptance of
any input string. It turns out that s2 can be combined with state s0 and that s3 can be
combined with state s1. (How to figure out which states can be combined is explained
later in this section.) The automaton with the two combined states {s0, s2} and {s1, s3} is
called the quotient automaton of A and is denoted A. Its transition diagram is obtained
by combining the circles for s0 and s2 and for s1 and s3 and by replacing any arrow from
a state s to a state t by an arrow from the combined state containing s to the combined
state containing t . For instance, since there is an arrow labeled 1 from s1 to s2 in A, there
is an arrow labeled 1 from {s1, s3} to {s0, s2} in A. The complete transition diagram for
A is shown in Figure 12.3.2. As you can see, except for labeling the names of the states,
it is identical to the diagram for A′.

0 0
1

1

{s0, s2} {s1, s3}

Figure 12.3.2 ■

In general, simplification of a finite-state automaton involves identifying “equiva-
lent states” that can be combined without affecting the action of the automaton on input
strings. Mathematically speaking, this means defining an equivalence relation on the set
of states of the automaton and forming a new automaton whose states are the equivalence
classes of the relation. The rest of this section is devoted to developing an algorithm to
carry out this process in a practical way.

∗-Equivalence of States
Two states of a finite-state automaton are said to be ∗-equivalent (this is read “star equiv-
alent”) if any string accepted by the automaton when it starts from one of the states is
accepted by the automaton when it starts from the other state. Recall that the value of
the eventual-state function, N*, for a state s and input string w is the state to which the
automaton goes if the characters of w are input in sequence when the automaton is in
state s.

• Definition

Let A be a finite-state automaton with next-state function N and eventual-state func-
tion N*. Define a binary relation on the set of states of A as follows: Given any states
s and t of A, we say that s and t are ∗-equivalent and write s R∗ t if, and only if,
for all input strings w,

either both N*(s, w) and N*(t, w) are accepting states or both
are nonaccepting states.

In other words, states s and t are ∗-equivalent if, and only if, for all input strings w,

N*(s, w) is an accepting state ⇔ N*(t, w) is an accepting state.
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810 Chapter 12 Regular Expressions and Finite-State Automata

Or, more simply, for all input strings w,[
A goes to an accepting state if
w is input when A is in state s

]
⇔

[
A goes to an accepting state if
w is input when A is in state t

]
.

It follows immediately, by substitution into the definition, that

R∗ is an equivalence relation on S, the set of states of A. 12.3.1

You are asked to prove this formally in the exercises at the end of this section.

k-Equivalence of States
From a procedural point of view, it is difficult to determine the ∗-equivalence of two
states using the definition directly. According to the definition, you must know the action
of the automaton starting in states s and t on all input strings in order to tell whether s
and t are equivalent. But since most languages have infinitely many input strings, you
cannot check individually the effect of every string that is input to an automaton. As a
practical matter, you can tell whether or not two states s and t are ∗-equivalent by using an
iterative procedure based on a simpler kind of equivalence of states called k-equivalence.
Two states are k-equivalent if any string of length less than or equal to k that is accepted
by the automaton when it starts from one of the states is accepted by the automaton when
it starts from the other state.

• Definition

Let A be a finite-state automaton with next-state function N and eventual-state func-
tion N*. Define a relation on the set of states of A as follows: Given any states s and
t of A and an integer k ≥ 0, we say that s is k-equivalent to t and write s Rk t if,
and only if, for all input strings w of length less than or equal to k, either N*(s, w)

and N*(t, w) are both accepting states or they are both nonaccepting states.

Certain useful facts follow quickly from the definition of k-equivalence:

For each integer k ≥ 0, k-equivalence is an equivalence relation. 12.3.2

For each integer k ≥ 0, the k-equivalence classes partition the set of all
states of the automaton into a union of mutually disjoint subsets. 12.3.3

For each integer k ≥ 1, if two states are k-equivalent, then they are
also (k − 1) equivalent. 12.3.4

For each integer k ≥ 1, each k-equivalence class is a subset of a
(k − 1)-equivalence class. 12.3.5

Any two states that are k-equivalent for all integers k ≥ 0 are ∗-equivalent. 12.3.6

Proofs of these facts are left for the exercises.
The following theorem gives a recursive description of k-equivalence of states. It

says, first, that any two states are 0-equivalent if, and only if, either both are accepting
states or both are nonaccepting states and, second, that any two states are k-equivalent
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12.3 Simplifying Finite-State Automata 811

(for k ≥ 1) if, and only if, they are (k − 1)-equivalent and for any input symbols their
next-states are also (k − 1)-equivalent.

Theorem 12.3.1

Let A be a finite-state automaton with next-state function N . Given any states
s and t in A,

1. s is 0-equivalent to t ⇔
[
either s and t are both accepting states
or they are both nonaccepting states

]

2. for every integer k ≥ 1,
s is k-equivalent to t

⇔
⎡
⎣s and t are (k − 1)-equivalent, and
for any input symbol m, N (s,m) and
N (t,m) are also (k − 1)-equivalent

⎤
⎦.

The truth of Theorem 12.3.1 follows from the fact that inputting a string w of length
k has the same effect as inputting the first symbol of w and then the remaining k − 1
symbols of w. A detailed proof is somewhat technical.

Theorem 12.3.1 implies that if you know which states are (k − 1)-equivalent (where
k is a positive integer) and if you know the action of the next-state function, then you
can figure out which states are k-equivalent. Specifically, if s and t are (k − 1)-equivalent
states whose next-states are (k − 1)-equivalent for any input symbol m, then s and t are
k-equivalent. Thus the k-equivalence classes are obtained by subdividing the (k − 1)-
equivalence classes according to the action of the next-state function on the members of
the classes. An example should make this procedure clear.

Example 12.3.2 Finding k-Equivalence Classes

Find the 0-equivalence classes, the 1-equivalence classes, and the 2-equivalence classes
for the states of the automaton shown below.

0

11 1

1

0
0 0

0

1

s2

s3

s1s0

s4

Solution

1. 0-equivalence classes: By Theorem 12.3.1 two states are 0-equivalent if, and only if,
both are accepting states or both are nonaccepting states. Thus there are two sets of
0-equivalent states:

{s0, s1, s4} (the nonaccepting states) and {s2, s3} (the accepting states),
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and so

the 0-equivalence classes are {s0, s1, s4} and {s2, s3}.
2. 1-equivalence classes: By Theorem 12.3.1, two states are 1-equivalent if, and only

if, they are 0-equivalent and, after input of any input symbol, their next-states are
0-equivalent. Thus s1 is not 1-equivalent to s0 because when a 0 is input to the automa-
ton in state s1 it goes to state s2, whereas when a 0 is input to the automaton in state s0 it
goes to state s0, and s2 and s0 are not 0-equivalent. On the other hand, s1 is 1-equivalent
to s4 because when a 0 is input to the automaton in state s1 or s4 the next-states are
s2 and s3, which are 0-equivalent; and when a 1 is input to the automaton in state s1
or s4 the next-states are s4 and s1, which are 0-equivalent. By a similar argument, s2
is 1-equivalent to s3. Since 1-equivalent states must also be 0-equivalent [by property
(12.3.4)], no other pairs of states can be 1-equivalent. Hence

the 1-equivalence classes are {s0}, {s1, s4}, and {s2, s3}.
3. 2-equivalence classes: By Theorem 12.3.1, two states are 2-equivalent if, and only

if, they are 1-equivalent and, after input of any input symbol, their next-states are 1-
equivalent. Now s1 is 2-equivalent to s4 because they are 1-equivalent; and when a
1 is input to the automaton in state s1 or s4 the next-states are s4 and s1, which are 1-
equivalent; and when a 0 is input to the automaton in state s1 or s4 the next-states are
s2 and s3, which are 1-equivalent. Similarly, s2 is 2-equivalent to s3. Since 2-equivalent
states must also be 1-equivalent [by property (12.3.4)], no other pairs of states can be
2-equivalent. Hence

the 2-equivalence classes are {s0}, {s1, s4}, and {s2, s3}.
Note that the set of 2-equivalence classes equals the set of 1-equivalence classes. ■

Finding the ∗-Equivalence Classes
Example 12.3.2 illustrates the relative ease with which the sets of k-equivalence classes
of states can be found. But to simplify a finite-state automaton, you need to find the set
of ∗-equivalence classes of states. The next theorem says that for some integer K , the
set of ∗-equivalence classes equals the set of K -equivalence classes.

Theorem 12.3.2

If A is a finite-state automaton, then for some integer, K ≥ 0, the set of K -equivalence
classes of states of A equals the set of (K + 1)-equivalence classes of states of
A, and for all such K these are both equal to the set of ∗-equivalence classes of
states of A.

The detailed proof of Theorem 12.3.2 is somewhat technical, but the idea of the proof
is not hard to understand. Theorem 12.3.2 follows from the fact that for each positive
integer k, the k-equivalence classes are obtained by subdividing the (k − 1)-equivalence
classes according to a certain rule that is the same for each k. Since the number of states of
the automaton is finite, this subdivision process cannot continue forever, and so for some
integer K ≥ 0, the set of K -equivalence classes equals the set of (K + 1)-equivalence
classes. Moreover, the set of m-equivalence classes equals the set of K -equivalence
classes for every integer m ≥ K . But this implies that the set of ∗-equivalence classes
equals the set of K -equivalence classes.
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12.3 Simplifying Finite-State Automata 813

Example 12.3.3 Finding ∗-Equivalence Classes of R

Let A be the finite-state automaton defined in Example 12.3.2. Find the ∗-equivalence
classes of states of A.

Solution According to Example 12.3.2, the set of 1-equivalence classes for A equals the
set of 2-equivalence classes. By Theorem 12.3.2, then, the set of ∗-equivalence classes
also equals the set of 1-equivalence classes. Hence

the ∗-equivalence classes are {s0}, {s1, s4} and {s2, s3}.
In the notation of Section 8.3, the equivalence classes are denoted

[s0] = {s0} [s1] = {s1, s4} = [s4] [s2] = {s2, s3} = [s3]. ■

The Quotient Automaton
We next define the quotient automaton A of an automaton A. However, in order for all
parts of the definition to make sense, we must point out two facts.

No ∗-equivalence class of states of A can contain both accepting
and nonaccepting states.

12.3.7

The reason this is true is that the 0-equivalence classes divide the set of states of A
into accepting and nonaccepting states, and the ∗-equivalence classes are subsets of
0-equivalence classes.

If two states are ∗-equivalent, then their next-states are also
∗-equivalent for any input symbol m.

12.3.8

This is true for the following reason. Suppose states s and t are ∗-equivalent. Then any
input string that sends A to an accepting state when A is in state s sends A to an accepting
state when A is in state t . Now suppose m is any input symbol, and consider the next-
states N (s,m) and N (t,m). Inputting a string of length k to A when A is in state N (s,m)

or N (t,m) produces the same effect as inputting a certain string of length k + 1 to A
when A is in state s or t (namely the concatenation of m with the string of length k).
Hence any string that sends A to an accepting state when A is in state N (s,m) also
sends A to an accepting state when A is in state N (t,m). It follows that N (s,m) and
N (t,m) are ∗-equivalent. Complete proofs of properties (12.3.7) and (12.3.8) are left to
the exercises.

Now we can define the quotient automaton A of A. It is the finite-state automa-
ton whose states are the ∗-equivalence classes of states of A, whose initial state is the
∗-equivalence class containing the initial state of A, whose accepting states are of the
form [s]where s is an accepting state of A, whose input symbols are the same as the input
symbols of A, and whose next-state function is derived from the next-state function for
A in the following way: To find the next-state of A for a state s and an input symbol m,
pick any state t in [s] and look to see what next-state A goes to if m is input when A is in
state t ; the equivalence class of this state is the next-state of A.
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814 Chapter 12 Regular Expressions and Finite-State Automata

• Definition

Let A be a finite-state automaton with set of states S, set of input symbols I , and
next-state function N . The quotient automaton A is defined as follows:

1. The set of states, S, of A is the set of ∗-equivalence classes of states of A.
2. The set of input symbols, I , of A equals I .

3. The initial state of A is [s0], where s0 is the initial state of A.
4. The accepting states of A are the states of the form [s], where s is an accepting

state of A.

5. The next-state function N : S × I → S is defined as follows:

For all states [s] in S and input symbols m in I , N ([s],m) = [N (s,m)].
(That is, if m is input to A when A is in state [s], then A goes to the state that is
the ∗-equivalence class of N (s,m).)

Note that since the states of A are sets of states of A, A generally has fewer states
than A. (A and A have the same number of states only in the case where each ∗-equivalence
class of states contains just one element.) Also, by property (12.3.7), each accepting state
of A consists entirely of accepting states of A. Furthermore, property (12.3.8) guarantees
that the next-state function N is well defined.

By construction, a quotient automaton A accepts exactly the same strings as A. We
state this formally as Theorem 12.3.3. We leave the details to a more advanced course in
automata theory.

Theorem 12.3.3

If A is a finite-state automaton, then the quotient automaton A accepts exactly the
same languages as A. In other words, if L(A) denotes the language accepted by A
and L(A) denotes the language accepted by A, then

L(A) = L(A).

Constructing the Quotient Automaton
Let A be a finite-state automaton with set of states S, next-state function N , relation R∗
of ∗-equivalence of states, and relation Rk of k-equivalence of states. It follows from
Theorems 12.3.2 and 12.3.3 and from the definition of quotient automaton that to find the
quotient automaton A of A, you can proceed as follows:

1. Find the set of 0-equivalence classes of S.

2. For each integer k ≥ 1, subdivide the (k − 1)-equivalence classes of S (as described
earlier) to find the k-equivalence classes of S. Stop subdividing when you observe
that for some integer K the set of (K + 1)-equivalence classes equals the set of
K -equivalence classes. At this point, conclude that the set of K -equivalence classes
equals the set of ∗-equivalence classes.

3. Construct the quotient automaton A whose states are the ∗-equivalence classes of
states of A and whose next-state function N is given by

N ([s],m) = [N (s,m)] for any state of A and any input symbol m,
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12.3 Simplifying Finite-State Automata 815

where s is any state in [s]. [That is, to see where A goes if m is input to A when it is in
state s, look to see where A goes if m is input to A when it is in state s. The ∗-equivalence
class of that state is the answer.]

Example 12.3.4 Constructing a Quotient Automaton

Consider the automaton A of Examples 12.3.2 and 12.3.3. This automaton is shown again
below for reference. Find the quotient automaton of A.

0

11 1

1

0
0 0

0

1

s2

s3

s1s0

s4

Solution According to Example 12.3.3 the ∗-equivalence classes of the states of A are

{s0}, {s1, s4}, and {s2, s3}.
Hence the states of the quotient automaton A are

[s0] = {s0}, [s1] = {s1, s4} = [s4], [s2] = {s2, s3} = [s3].
The accepting states of A are s2 and s3, so the accepting state of A is [s2] = [s3]. The next-
state function N of A is defined as follows: for all states [s] and input symbols m of A,

N ([s],m) = [N (s,m)] = the ∗-equivalence class of N (s,m).

Thus,

N ([s0], 0) = [N (s0, 0)] = the ∗-equivalence class of N (s0, 0).

But N (s0, 0) = s0, so

N ([s0], 0) = the ∗-equivalence class of s0 = [s0].
Similarly,

N ([s0], 1) = [N (s0, 1)] = [s1]
N ([s1], 0) = [N (s1, 0)] = [s2]
N ([s1], 1) = [N (s1, 1)] = [s4] = [s1]
N ([s2], 0) = [N (s2, 0)] = [s3] = [s2]
N ([s2], 1) = [N (s2, 1)] = [s4] = [s1].

The transition diagram for A is, therefore, as shown below.

0 1 0

1
0

1

[s0] [s1] [s2]

By Theorem 12.3.3, this automaton accepts the same language as the original
automaton. ■
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816 Chapter 12 Regular Expressions and Finite-State Automata

Equivalent Automata
Output devices may be attached to the states of finite-state automata to indicate whether
they are accepting or nonaccepting states. For example, accepting states might produce
an output of 1 and nonaccepting states an output of 0. Then a finite-state automaton can
be thought of as an input/output device whose input consists of strings and whose out-
put consists of 0’s and 1’s. Recall that a circuit can be thought of as a black box that
transforms combinations of input signals into output signals. Two circuits that produce
identical output signals for each combination of input signals are called equivalent. Sim-
ilarly, a finite-state automaton can be regarded as a black box that processes input strings
and produces output signals (indicating whether or not the strings are accepted). Two
finite-state automata are called equivalent if they produce identical output signals for
each input string. But this means that two finite-state automata are equivalent if, and only
if, they accept the same language.

• Definition

Let A and A′ be finite-state automata with the same set of input symbols I . Let L(A)

denote the language accepted by A and L(A′) the language accepted by A′. Then A
is said to be equivalent to A′ if, and only if, L(A) = L(A′).

Example 12.3.5 Showing That Two Automata Are Equivalent

Show that the automata A and A′ that follow are equivalent.

1

1

0
1

1

0

0

0

1

1

0

10

A

A'

0

0, 1

s0 s1

s3

s2

s'0 s'2

s'3

s'1

The label 0, 1 on an arrow of a transition

diagram means that for either input 0 or

1, the next-state of the automaton is the

state to which the arrow points.

Solution

For the automaton A: The 0-equivalence classes are

{s0, s1} and {s2, s3} since s0 and s1 are accepting states
and s2 and s3 are nonaccepting states.

The 1-equivalence classes are

{s0}, {s1}, and {s2, s3}
since s0 and s1 are not 1-equivalent
(because N (s0, 1) = s1, whereas
N (s1, 1) = s3 and s1 is not 0-equivalent
to s3) but s2 and s3 are 1-equivalent.

The 2-equivalence classes are

{s0}, {s1}, and {s2, s3} since s2 and s3 are 1-equivalent.
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12.3 Simplifying Finite-State Automata 817

This discussion shows that the set of 1-equivalence classes equals the set of 2-equivalence
classes, so by Theorem 12.3.2 this is equal to the set of ∗-equivalence classes. Hence the
∗-equivalence classes are

{s0}, {s1}, and {s2, s3}.
For the automaton A′: By reasoning similar to that done previously, the 0-equivalence
classes are {

s ′0, s
′
2, s
′
3

}
and

{
s ′1
}
.

The 1-equivalence classes are{
s ′0, s

′
3

}
,

{
s ′2
}
, and

{
s ′1
}
.

The 2-equivalence classes are the same as the 1-equivalence classes, which are therefore
equal to the ∗-equivalence classes. Thus the ∗-equivalence classes are{

s ′0, s
′
3

} {
s ′2
}
, and

{
s ′1
}
.

To calculate the next-state functions for A and A′, you repeatedly use the fact that in
the quotient automaton, the next-state of [s] and m is the class of the next-state of s and
m. For instance,

N ([s1], 1) = [N (s1, 1)] = [s3] = [s2]
and N ′

([
s ′0
]
, 0
) = [

N ′
(
s ′0, 0

)] = [
s ′3
] = [

s ′0
]

where N is the next-state function for A and N ′ is the next-state function for A′.
The complete transition diagrams for the quotient automata A and A′ are shown

below.

0

1

1 0

0, 1 0

1

1 0

0, 1

A A'

[s0] [s1]

[s2]

[s'0 ] [s'2]

[s'1]

As you can see, except for the labeling of the names of the states, A and A′ are
identical and hence accept the same language. But by Theorem 12.3.3, each original
automaton accepts the same language as its quotient automaton. Thus A and A′ accept
the same language, and so they are equivalent. ■

In mathematics an object such as a finite-state automaton is called a structure. In
general, when two mathematical structures are the same in all respects except for the
labeling given to their elements, they are called isomorphic,which comes from the Greek
words isos, meaning “same” or “equal,” and morphe, meaning “from.” It can be shown
that two automata are equivalent if, and only if, their quotient automata are isomorphic,
provided that “inaccessible states” have first been removed. (Inaccessible states are those
that cannot be reached by inputting any string of symbols to the automaton when it is in
its initial state.)

Test Yourself
1. Given a finite-state automaton A with eventual-state func-

tion N ∗ and given any states s and t in A, we say that s and
t are ∗-equivalent if, and only if, _____.

2. Given a finite-state automaton A with eventual-state func-
tion N ∗ and given any states s and t in A, we say that s and
t are k-equivalent if, and only if, _____.
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818 Chapter 12 Regular Expressions and Finite-State Automata

3. Given states s and t in a finite-state automaton A, s is
0-equivalent to t if, and only if, either both s and t are _____
or both are _____. Moreover, for every integer k ≥ 1, s is
k-equivalent to t if, and only if, (1) s and t are (k − 1)-
equivalent and (2) _____.

4. If A is a finite-state automaton, then for some integer K ≥ 0,
the set of K -equivalence classes of states of A equals the set
of _____-equivalence classes of A, and for all such K these
are both equal to the set of _____.

5. Given a finite-state automaton A, the set of states of the quo-
tient automaton A is _____.

Exercise Set 12.3
1. Consider the finite-state automaton A given by the follow-

ing transition diagram:

0 0 0 01 1

1 0

1 0

1

1

s0 s2s1

s3 s5s4

a. Find the 0-, 1-, and 2-equivalence classes of states of A.
b. Draw the transition diagram for A, the quotient automa-

ton of A.

2. Consider the finite-state automaton A given by the follow-
ing transition diagram:

1

1

1

0

0

0

0 0 0

0

1

1

1

1

s0 s3 s4

s5

s2

s6

s1

a. Find the 0-, 1-, and 2-equivalence classes of states of A.
b. Draw the transition diagram for A, the quotient automa-

ton of A.

3. Consider the finite-state automaton A discussed in Example
12.3.1:

0 0

00

1

1

1
1

s0

s2

s1

s3

a. Find the 0- and 1-equivalence classes of states of A.
b. Draw the transition diagram of A, the quotient automa-

ton of A.

4. Consider the finite-state automaton given by the following
transition diagram:

11 0

1

1

1

0

1 0

0
0

0s0 s2

s1

s5 s3

s4

a. Find the 0-,1-, 2-, and 3-equivalence classes of states
of A.

b. Draw the transition diagram for A, the quotient automa-
ton of A.

5. Consider the finite-state automaton given by the following
transition diagram:

0

0

10

0

0

1

1

01

1

1

s1 s2

s5s4

s3

s0

a. Find the 0-, 1-, 2-, and 3-equivalence classes of states
of A.

b. Draw the transition diagram for A, the quotient automa-
ton of A.
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6. Consider the finite-state automaton given by the following transition diagram:

0

1 1

0

0
1

0

0 1
1

0

0

1

1

s0 s1 s3 s5

s6s4s2

a.H Find the 0-, 1-, 2-, and 3-equivalence classes of states of A.
b. Draw the transition diagram for A, the quotient automaton of A.

7. Are the automata A and A′ shown below equivalent?

1

A
A'

0

1

1 0

0

0 1

s'1

0

1

1

0

0 0 1 1
s0 s1

s3

s2
s'0

s'3 s'2

8. Are the automata A and A′ shown below equivalent?

1

1

0

11

1

0 0

0

0

A

A'

0

0

1

1 0

0

1

1

0

1

s0 s'0 s'2

s'3

s'1

s1

s2

s4

s'4

s3
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9. Are the automata A and A′ shown below equivalent?

0

0 1

1

1
1

1 1

11

0

0

1 0 0

A
A'

0

0

0
0

1

1

1

0

0

s4

s2

s1

s0 s'0

s'1s'4

s'2

s'5 s'3

s3

s5

10. Are the automata A and A′ shown below equivalent?

0

0

1

1

11

1 0

1

1 010

0

1

A

A'

0

0

0

0, 1

s0

s4

s1

s3

s2

s'4

s'2s '0
s'1

s'3

11.H Prove property (12.3.1).

12. How should the proof of property (12.3.1) be modified to
prove property (12.3.2)?

13. Prove property (12.3.3). 14. Prove property (12.3.4).

15.H Prove property (12.3.5). 16. Prove property (12.3.6).

17.H Prove that if two states of a finite-state automaton are
k-equivalent for some integer k, then those states are
m-equivalent for all nonnegative integers m < k.

18. Write a complete proof of property (12.3.7).

19.H Write a complete proof of property (12.3.8).

Answers for Test Yourself
1. for all input strings w, either N ∗(s, w) and N ∗(t, w) are both accepting states or both are nonaccepting states 2. for all input
strings w of length less than or equal to k, either N ∗(s, w) and N ∗(t, w) are both accepting states or both are nonaccepting states
3. accepting states; nonaccepting states; for any input symbol m, N (s,m) and N (t,m) are also (k − 1)-equivalent 4. (K + 1);
∗-equivalence classes of states of A 5. the set of ∗-equivalence classes of states of A
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A-1

APPENDIX A

PROPERTIES OF THE REAL
NUMBERS∗

In this text we take the real numbers and their basic properties as our starting point. We
give a core set of properties, called axioms, which the real numbers are assumed to satisfy,
and we state some useful properties that can be deduced from these axioms.

We assume that there are two binary operations defined on the set of real numbers,
called addition and multiplication, such that if a and b are any two real numbers, the
sum of a and b, denoted a + b, and the product of a and b, denoted a ·b or ab, are
also real numbers. These operations satisfy properties F1–F6, which are called the field
axioms.

F1. Commutative Laws For all real numbers a and b,

a + b = b + a and ab = ba.

F2. Associative Laws For all real numbers a, b, and c,

(a + b)+ c = a + (b + c) and (ab)c = a(bc).

F3. Distributive Laws For all real numbers a, b, and c,

a(b + c) = ab + ac and (b + c)a = ba + ca.

F4. Existence of Identity Elements There exist two distinct real numbers, denoted 0
and 1, such that for every real number a,

0+ a = a + 0 = a and 1 ·a = a ·1 = a.

F5. Existence of Additive Inverses For every real number a, there is a real number,
denoted −a and called the additive inverse of a, such that

a + (−a) = (−a)+ a = 0.

F6. Existence of Reciprocals For every real number a �= 0, there is a real number,
denoted 1/a or a−1, called the reciprocal of a, such that

a ·
(
1

a

)
=

(
1

a

)
·a = 1.

All the usual algebraic properties of the real numbers that do not involve order can be
derived from the field axioms. The most important are collected as theorems T1–T16 as
follows. In all these theorems the symbols a, b, c, and d represent arbitrary real numbers.

∗Adapted from Tom M. Apostol, Calculus, Volume I (New York: Blaisdell, 1961), pp. 13–19.
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A-2 Appendix A Properties of the Real Numbers

T1. Cancellation Law for Addition If a + b = a + c, then b = c. (In particular, this
shows that the number 0 of Axiom F4 is unique.)

T2. Possibility of Subtraction Given a and b, there is exactly one x such that a+ x = b.
This x is denoted by b − a. In particular, 0− a is the additive inverse of a,−a.

T3. b − a = b + (−a).
T4. −(−a) = a.

T5. a(b − c) = ab − ac.

T6. 0 ·a = a ·0 = 0.

T7. Cancellation Law for Multiplication If ab = ac and a �= 0, then b = c. (In par-
ticular, this shows that the number 1 of Axiom F4 is unique.)

T8. Possibility of Division Given a and b with a �= 0, there is exactly one x such that
ax = b. This x is denoted by b/a and is called the quotient of b and a. In particular,
1/a is the reciprocal of a.

T9. If a �= 0, then b/a = b ·a−1.
T10. If a �= 0, then (a−1)−1 = a.

T11. Zero Product Property If ab = 0, then a = 0 or b = 0.

T12. Rule for Multiplication with Negative Signs

(−a)b = a(−b) = −(ab), (−a)(−b) = ab,

and

−a

b
= −a

b
= a

−b .

T13. Equivalent Fractions Property

a

b
= ac

bc
, if b �= 0 and c �= 0.

T14. Rule for Addition of Fractions

a

b
+ c

d
= ad + bc

bd
, if b �= 0 and d �= 0.

T15. Rule for Multiplication of Fractions

a

b
· c
d
= ac

bd
, if b �= 0 and d �= 0.

T16. Rule for Division of Fractions

a

b
c

d

= ad

bc
, if b �= 0, c �= 0, and d �= 0.

The real numbers also satisfy the following axioms, called the order axioms. It is assumed
that among all real numbers there are certain ones, called the positive real numbers, that
satisfy properties Ord1–Ord3.
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Appendix A Properties of the Real Numbers A-3

Ord1. For any real numbers a and b, if a and b are positive, so are a + b and ab.

Ord2. For every real number a �= 0, either a is positive or −a is positive but not both.

Ord3. The number 0 is not positive.

The symbols <,>,≤, and ≥, and negative numbers are defined in terms of positive
numbers.

• Definition

Given real numbers a and b,

a < b means b + (−a) is positive. b > a means a < b.
a ≤ b means a < b or a = b. b ≥ a means a ≤ b.
If a < 0, we say that a is negative. If a ≥ 0, we say that a is nonnegative.

From the order axioms Ord1–Ord3 and the above definition, all the usual rules for cal-
culating with inequalities can be derived. The most important are collected as theorems
T17–T27 as follows. In all these theorems the symbols a, b, c, and d represent arbitrary
real numbers.

T17. Trichotomy Law For arbitrary real numbers a and b, exactly one of the three rela-
tions a < b, b < a, or a = b holds.

T18. Transitive Law If a < b and b < c, then a < c.

T19. If a < b, then a + c < b + c.

T20. If a < b and c > 0, then ac < bc.

T21. If a �= 0, then a2 > 0.

T22. 1 > 0.

T23. If a < b and c < 0, then ac > bc.

T24. If a < b, then −a > −b. In particular, if a < 0, then −a > 0.

T25. If ab > 0, then both a and b are positive or both are negative.

T26. If a < c and b < d, then a + b < c + d.

T27. If 0 < a < c and 0 < b < d, then 0 < ab < cd.

One final axiom distinguishes the set of real numbers from the set of rational numbers. It
is called the least upper bound axiom.

LUB. Any nonempty set S of real numbers that is bounded above has a least upper bound.
That is, if B is the set of all real numbers x such that x ≥ s for all s in S and if B
has at least one element, then B has a smallest element. This element is called the
least upper bound of S.

The least upper bound axiom holds for the set of real numbers but not for the set of
rational numbers. For example, the set of all rational numbers that are less than

√
2 has

upper bounds but not a least upper bound within the set of rational numbers.
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A-4

APPENDIX B

SOLUTIONS AND HINTS
TO SELECTED EXERCISES

Section 1.1
1. a. x2 = −1 (Or: the square of x is −1)

b. A real number x

3. a. Between a and b

b. Real numbers a and b; there is a real number c

5. a. r is positive

b. Positive; the reciprocal of r is positive (Or: positive; 1/r
is positive)

c. Is positive; 1/r is positive (Or: is positive; the reciprocal
of r is positive)

7. a. There are real numbers whose sum is less than their dif-
ference.

True. For example, 1+ (−1)= 0, 1− (−1)= 1+ 1= 2,
and 0 < 2.

c. The square of any positive integer is greater than the
integer.

True. If n is any positive integer, then n ≥ 1. Multiply-
ing both sides by the positive number n does not change
the direction of the inequality (see Appendix A, T20),
and so n2 ≥ n.

8. a. Have four sides

b. Has four sides

c. Has four sides

d. Is a square; J has four sides

e. J has four sides

10. a. Have a reciprocal

b. A reciprocal

c. s is a reciprocal for r

12. a. Real number; product with every number leaves the
number unchanged

b. With every number leaves the number unchanged

c. rs = s

Section 1.2
1. A = C and B = D

2. a. The set of all positive real numbers x such that 0 is less
than x and x is less than 1

c. The set of all integers n such that n is a factor of 6

3. a. No, {4} is a set with one element, namely 4, whereas 4
is just a symbol that represents the number 4

b. Three: the elements of the set are 3, 4, and 5.

c. Three: the elements are the symbol 1, the set {1}, and
the set {1,{1}}

5. Hint: R is the set of all real numbers, Z is the set of all
integers, and Z+ is the set of all positive integers

6. Hint: T0 and T1 do not have the same number of elements
as T2 and T−3.

7. a. {1,−1}
c. ∅ (the set has no elements)

d. Z (every integer is in the set)

8. a. No, B � A :. j ∈ B and j �∈A
d. Yes, C is a proper subset of A. Both elements of C are

in A, but A contains elements (namely c and f ) that are
not in C .

9. a. Yes

b. No

f. No

i. Yes

10. a. No. Observe that (−2)2 = (−2)(−2) = 4 whereas
−22 = −(22) = −4. So ((−2)2,−22) = (4,−4), (−22,
(−2)2) = (−4, 4), and (4,−4) �= (−4, 4) because
−4 �= 4.

c. Yes. Note that 8− 9 = −1 and 3
√−1 = −1, and so

(8− 9, 3
√−1) = (−1,−1).
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2.1 Solutions and Hints to Selected Exercises A-5

11. a. {(w, a), (w, b), (x, a), (x, b), (y, a), (y, b), (z, a),
(z, b)}

b. {(a, w), (b, w), (a, x), (b, x), (a, y), (b, y), (a, z),
(b, z)}

c. {(w,w), (w, x), (w, y), (w, z), (x, w), (x, x), (x, y),
(x, z), (y, w), (y, x), (y, y), (y, z), (z, w), (z, x),
(z, y), (z, z)}

d. {(a, a), (a, b), (b, a), (b, b)}

Section 1.3
1. a. No. Yes. No. Yes.

b. R = {(2, 6), (2, 8), (2, 10), (3, 6), (4, 8)}
c. Domain of R = A = {2, 3, 4}, co-domain of R = B =
{6, 8, 10}

d. R

6

8

10

2

3

4

3. a. 3 T 0 because 3−0
3 =

3
3 = 1, which is an integer.

1 T/ (−1) because 1−(−1)
3 = 2

3 , which is not an integer.

(2,−1) ∈ T because
2−(−1)

3 = 3
3 = 1, which is an

integer.

(3,−2) �∈ T because
3−(−2)

3 = 5
3 , which is not an

integer.

b. T = {(1,−2), (2,−1), (3, 0)}
c. Domain of T = E = {1, 2, 3}, co-domain of T = F =
{−2,−1, 0}

d. T

–2

–1

0

1

2

3

5. a. (2, 1) ∈ S because 2 ≥ 1. (2, 2) ∈ S because 2 ≥ 2.

2 S/ 3 because 2 � ≥3. (−1) S/ (−2) because (−1) �≥(−2).

b.

x
1

x ≥ y in shaded region graph of S

7. a. R

5

6

7

4

5

6

A B

4
5
6

5
6
7

S TA B

4
5
6

5
6
7

b. R is not a function because it satisfies neither property
(1) nor property (2) of the definition. It fails property (1)
because (4, y) �∈ R, for any y in B. It fails property (2)
because (6, 5) ∈ R and (6, 6) ∈ R and 5 �= 6.

S is not a function because (5, 5) ∈ S and (5, 7) ∈ S
and 5 �= 7. So S does not satisfy property (2) of the def-
inition of function.

T is not a function both because (5, x) �∈ T for any x
in B and because (6, 5) ∈ T and (6, 7) ∈ T and 5 �= 7.
So T does not satisfy either property (1) or property (2)
of the definition of function.

9. a. ∅, {(0, 1)}, {(1, 1)}, {(0, 1), (1, 1)}
b. {(0, 1), (1, 1)}
c. 1/4

11. No, P is not a function because, for example, (4, 2) ∈ P
and (4,−2) ∈ P but 2 �= −2.

13. a. Domain= A={−1, 0, 1}, co-domain= B={t, u, v, w}
b. F(−1) = u, F(0) = w, F(1) = u

15. a. This diagram does not determine a function because 2 is
related to both 2 and 6.

b. This diagram does not determine a function because 5 is
in the domain but it is not related to any element in the
co-domain.

16. f (−1) = (−1)2 = 1, f (0) = 02 = 0, f
(
1
2

)
=
(
1
2

)2= 1
4 .

19. For all x ∈ R, g(x) = 2x3+2x
x2+1 =

2x(x2+1)
x2+1 = 2x = f (x).

Therefore, by definition of equality of functions, f = g.

Section 2.1
1. Common form: If p then q.

p.
Therefore, q.

(a + 2b)(a2 − b) can be written in prefix notation.
All algebraic expressions can be written in prefix notation.

3. Common form: p ∨ q.
∼p.
Therefore, q.

My mind is shot. Logic is confusing.

5. a. It is a statement because it is a true sentence. 1,024
is a perfect square because 1,024 = 322, and the next
smaller perfect square is 312 = 961, which has less than
four digits.
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A-6 Appendix B Solutions and Hints to Selected Exercises

6. a. s ∧ i b. ∼s ∧ ∼i
8. a. (h ∧ w) ∧ ∼s d. (∼w ∧ ∼s) ∧ h

10. a. p ∧ q ∧ r c. p ∧ (∼q ∨ ∼r)
11. Inclusive or. For instance, a team could win the playoff by

winning games 1, 3, and 4 and losing game 2. Such an out-
come would satisfy both conditions.

12.
p q ∼p ∼p ∧ q

T T F F

T F F F

F T T T

F F T F

14.
p q r q ∧ r p ∧ (q ∧ r)

T T T T T

T T F F F

T F T F F

T F F F F

F T T T F

F T F F F

F F T F F

F F F F F

16.
p q p ∧ q p ∨ ( p ∧ q) p

T T T T T

T F F T T

F T F F F

F F F F F

↑ ↑
p ∨ (p ∧ q) and p always have
the same truth values, so they are
logically equivalent. (This proves
one of the absorption laws.)

18.
p t p ∨ t

T T T

F T T

↑ ↑
p ∨ t and t always have the same truth values,
so they are logically equivalent. (This proves
one of the universal bound laws.)

21.
p q r p ∧ q q ∧ r ( p ∧ q) ∧ r p ∧ (q ∧ r)

T T T T T T T

T T F T F F F

T F T F F F F

T F F F F F F

F T T F T F F

F T F F F F F

F F T F F F F

F F F F F F F

↑ ↑
(p∧ q)∧ r and p∧ (q ∧ r) always have the same truth values, so they
are logically equivalent. (This proves the associative law for∧.)

23.
p q r p ∧ q q ∨ r ( p ∧ q) ∨ r p ∧ (q ∨ r)

T T T T T T T

T T F T T T T

T F T F T T T

T F F F F F F

F T T F T T F

F T F F T F F

F F T F T T F

F F F F F F F

↑ ↑
(p ∧ q) ∨ r and p ∧ (q ∨ r) have different truth values in the fifth
and seventh rows, so they are not logically equivalent. (This proves
that parentheses are needed with∧ and∨.)

25. Hal is not a math major or Hal’s sister is not a computer
science major.

27. The connector is not loose and the machine is not
unplugged.

32. −2 ≥ x or x ≥ 7

34. 2 ≤ x ≤ 5

36. 1 ≤ x or x < −3
38. This statement’s logical form is (p ∧ q) ∨ r , so its

negation has the form∼((p ∧ q) ∨ r) ≡∼(p ∧ q) ∧ ∼r ≡
(∼p ∨ ∼q) ∧ ∼r . Thus a negation for the statement
is (num−orders ≤ 100 or num−instock > 500) and
num−instock ≥ 200.
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2.1 Solutions and Hints to Selected Exercises A-7

40.
p q ∼p ∼q p ∧ q p ∧ ∼q ∼p ∨ ( p ∧ ∼q) ( p ∧ q) ∨ (∼p ∨ ( p ∧ ∼q))

T T F F T F F T

T F F T F T T T

F T T F F F T T

F F T T F F T T

↑
Its truth values are all T’s, so (p ∧ q)
∨ (∼p ∨ (p∧ ∼q)) is a tautology.

41. p q ∼p ∼q p ∧ ∼q ∼p ∨ q ( p ∧ ∼q) ∧ (∼p ∨ q)

T T F F F T F

T F F T T F F

F T T F F T F

F F T T F T F

↑
Its truth values are all F’s, so (p ∧ ∼q) ∧ (∼p ∨ q) is a contradiction.

44. Let p be ‘x < 2’, q be ‘1 < x’, and r be ‘x < 3’. Then the sentences in (a) and (b) are symbolized as p ∨ ∼(q ∧ r) and
∼q ∨ (p ∨ ∼r), respectively.

p q r ∼q ∼r q ∧ r ∼(q ∧ r) p ∨ ∼r p ∨ ∼(q ∧ r) ∼q ∨ ( p ∨ ∼r)
T T T F F T F T T T
T T F F T F T T T T
T F T T F F T T T T
T F F T T F T T T T
F T T F F T F F F F
F T F F T F T T T T
F F T T F F T F T T
F F F T T F T T T T

↑ ↑
The statement forms p ∨ ∼(q ∧ r) and ∼q ∨ (p ∨ ∼r) always have the
same truth values, so they are logically equivalent.

Therefore the statements in (a) and (b) are logically equivalent.

46. a. Solution 1: Construct a truth table for p ⊕ p using the
truth values for exclusive or.

p p ⊕ p

T F

F F

because an exclusive or statement is
false when both components are true
and when both components are false.

Since all its truth values are false, p ⊕ p ≡ c, a contra-
diction.

Solution 2: Replace q by p in the logical equivalence
p ⊕ q ≡ (p ∨ q)∧ ∼(p ∧ q), and simplify the result.

p ⊕ p ≡ (p ∨ q) ∧ ∼(p ∧ p) by defintion of ⊕
≡ p ∧ ∼p by the identity laws
≡ c by the negation law for ∧

47. There is a famous story about a philosopher who once
gave a talk in which he observed that whereas in English
and many other languages a double negative is equiva-
lent to a positive, there is no language in which a dou-
ble positive is equivalent to a negative. To this, another
philosopher, SidneyMorgenbesser, responded sarcastically,
“Yeah, yeah.”

[Strictly speaking, sarcasm functions like negation. When
spoken sarcastically, the words “Yeah, yeah” are not a true
double positive; they just mean “no.”]

48. a. The distributive law

b. The commutative law for ∨
c. The negation law for ∨
d. The identity law for ∧

50. (p∧ ∼q) ∨ p ≡ p ∨ (p∧ ∼q) by the commutative
law for ∨

≡ p by the absorption law
(with ∼q in place of q)

53. ∼((∼p ∧ q) ∨ (∼p ∧ ∼q)) ∨ (p ∧ q)
≡∼[∼p ∧ (q ∨ ∼q)] ∨ (p ∧ q) by the distributive law
≡∼(∼p ∧ t) ∨ (p ∧ q) by the negation law for ∨
≡∼(∼p) ∨ (p ∧ q) by the identity law for ∧
≡ p ∨ (p ∧ q) by the double negative law
≡ p by the absorption law
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A-8 Appendix B Solutions and Hints to Selected Exercises

Section 2.2
1. If this loop does not contain a stop or a go to, then it will

repeat exactly N times.

3. If you do not freeze, then I’ll shoot.

5. conclusion︷ ︸︸ ︷ hypothesis︷ ︸︸ ︷
p q ∼p ∼q ∼p ∨ q ∼p ∨ q → ∼q

T T F F T F

T F F T F T

F T T F T F

F F T T T T

7. conclusion︷ ︸︸ ︷ hypothesis︷ ︸︸ ︷
p q r ∼q p ∧ ∼q p ∧ ∼q → r

T T T F F T

T T F F F T

T F T T T T

T F F T T F

F T T F F T

F T F F F T

F F T T F T

F F F T F T

9.
p q r ∼r p ∧ ∼r q ∨ r p ∧ ∼r ↔ q ∨ r

T T T F F T F

T T F T T T T

T F T F F T F

T F F T T F F

F T T F F T F

F T F T F T F

F F T F F T F

F F F T F F T

12. If x > 2 then x2 > 4, and if x < −2 then x2 > 4.

13. a. p q ∼p p → q ∼p ∨ q

T T F T T

T F F F F

F T T T T

F F T T T

↑ ↑
p→ q and∼p ∨ q always have the same
truth values, so they are logically equivalent.

14. a. Hint: p→ q ∨ r is true in all cases except when p is
true and both q and r are false.

16. Let p represent “You paid full price” and q represent “You
didn’t buy it at Crown Books.” Thus, “If you paid full price,
you didn’t buy it at Crown Books” has the form p→ q .
And “You didn’t buy it at Crown Books or you paid full
price” has the form q ∨ p.

p q p → q q ∨ p

T T T T

T F F T

F T T T

F F T F

These two statements are
not logically equivalent
because their forms have
different truth values in
rows 2 and 4.

(An alternative representation for the forms of the two
statements is p→∼q and ∼q ∨ p. In this case, the truth
values differ in rows 1 and 3.)

19. False. The negation of an if-then statement is not an if-then
statement. It is an and statement.

20. a. P is a square and P is not a rectangle.

d. n is prime and both n is not odd and n is not 2.

Or: n is prime and n is neither odd nor 2.

f. Tom is Ann’s father and either Jim is not her uncle or
Sue is not her aunt.

21. a. Because p→ q is false, p is true and q is false. Hence
∼p is false, and so ∼p→ q is true.

22. a. If P is not a rectangle, then P is not a square.

d. If n is not odd and n is not 2, then n is not prime.

f. If either Jim is not Ann’s uncle or Sue is not her aunt,
then Tom is not her father.

23. a. Converse: If P is a rectangle, then P is a square.
Inverse: If P is not a square, then P is not a rectangle.

d. Converse: If n is odd or n is 2, then n is prime.
Inverse: If n is not prime, then n is not odd and n is

not 2.
f. Converse: If Jim is Ann’s uncle and Sue is her aunt,

then Tom is her father.
Inverse: If Tom is not Ann’s father, then Jim is not her

uncle or Sue is not her aunt.

24.
p q p → q q → p

T T T T

T F F T

F T T F

F F T T

↑ ↑
p→ q and q → p have different truth values in the second
and third rows, so they are not logically equivalent.
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2.2 Solutions and Hints to Selected Exercises A-9

26.
p q ∼q ∼p ∼q → ∼p p → q

T T F F T T

T F T F F F

F T F T T T

F F T T T T

↑ ↑
∼q →∼p and p→ q always have the same
truth values, so they are logically equivalent.

28. Hint: A person who says “I mean what I say” claims to
speak sincerely. A person who says “I say what I mean”
claims to speak with precision.

29. (p→ (q ∨ r))↔ ((p∧ ∼q)→ r)

p q r ∼q q ∨ r p ∧ ∼q p → (q ∨ r) p ∧ ∼q → r ( p → (q ∨ r)) ↔ (( p ∧ ∼q) → r)

T T T F T F T T T

T T F F T F T T T

T F T T T T T T T

T F F T F T F F T

F T T F T F T T T

F T F F T F T T T

F F T T T F T T T

F F F T F F T T T

↑
(p→ (q ∨ r))↔ ((p∧ ∼q)→ r) is a tautology
because all of its truth values are T.

32. If this quadratic equation has two distinct real roots, then its
discriminant is greater than zero, and if the discriminant of
this quadratic equation is greater than zero, then the equa-
tion has two real roots.

34. If the Cubs do not win tomorrow’s game, then they will not
win the pennant.
If the Cubs win the pennant, then they will have won tomor-
row’s game.

37. If a new hearing is not granted, payment will be made on
the fifth.

40. If I catch the 8:05 bus, then I am on time for work.

42. If this number is not divisible by 3, then it is not divisible
by 9.
If this number is divisible by 9, then it is divisible by 3.

44. If Jon’s team wins the rest of its games, then it will win the
championship.

46. a. This statement is the converse of the given statement,
and so it is not necessarily true. For instance, if the actual
boiling point of compound X were 200◦C, then the given
statement would be true but this statement would be
false.

b. This statement must be true. It is the contrapositive of
the given statement.

47. a. p ∧ ∼q → r ≡ ∼(p ∧ ∼q) ∨ r

b. Result of (a) ≡∼[∼(∼(p∧ ∼q))∧ ∼r ]
an acceptable answer

≡∼[(p∧ ∼q)∧ ∼r ]
by the double negative law
(another acceptable answer)

49. a. (p→ r)↔ (q → r) ≡ (∼p ∨ r)↔ (∼q ∨ r)

≡∼(∼p ∨ r) ∨ (∼q ∨ r)] ∧ [∼(∼q ∨ r) ∨ (∼p ∨ r)]
an acceptable answer

≡ [(p∧ ∼r) ∨ (∼q ∨ r)] ∧ [(q ∧ ∼r) ∨ (∼p ∨ r)]
by De Morgan’s law
(another acceptable answer)

b. Result of (a) ≡∼[∼(p∧ ∼r)∧ ∼(∼q ∨ r)] ∧
∼[∼(q ∧ ∼r)∧ ∼(∼p ∨ r)]

by De Morgan’s law

≡∼[∼(p∧ ∼r) ∧ (q ∧ ∼r)] ∧
∼[∼(q ∧ ∼r) ∧ (p∧ ∼r)]

by De Morgan’s law
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A-10 Appendix B Solutions and Hints to Selected Exercises

Section 2.3
1.
√
2 is not rational. 3. Logic is not easy.

6. premises︷ ︸︸ ︷ conclusion︷ ︸︸ ︷
p q p → q q → p p ∨ q

T T T T T

T F F T

F T T F

F F T T F ←
This row shows that it is possible for an argument
of this form to have true premises and a false
conclusion. Thus this argument form is invalid.

7. premises︷ ︸︸ ︷ conclusion︷ ︸︸ ︷
p q r ∼q p p → q ∼q ∨ r r

T T T F T T T T

T T F F T T F

T F T T T F T

←

This row describes the only situation in which all the premises
are true. Because the conclusion is also true here, the argument
form is valid.

T F F T T F T

F T T F F T T

F T F F F T F

F F T T F T T

F F F T F T T

8. premises︷ ︸︸ ︷ conclusion︷ ︸︸ ︷
p q r ∼q p ∨ q p → ∼q p → r r

T T T F T F T

T T F F T F F

T F T T T T T T

T F F T T T F

F T T F T T T T

←

This row shows that it is possible for
an argument of this form to have true
premises and a false conclusion. Thus
this argument form is invalid.

F T F F T T T F

F F T T F T T

F F F T F T T

12. a. premises︷ ︸︸ ︷ conclusion︷ ︸︸ ︷
p q p → q q p

T T T T T

T F F F

F T T T F ←

This row shows that it is possible for an argument
of this form to have true premises and a false
conclusion. Thus this argument form is invalid.

F F T F

14. premise︷ ︸︸ ︷ conclusion︷ ︸︸ ︷
p q p p ∨ q

T T T T

T F T T

F T F

←
←

These two rows show that in all
situations where the premise is true,
the conclusion is also true. Thus the
argument form is valid.

F F F

18. premises︷ ︸︸ ︷ conclusion︷ ︸︸ ︷
p q p ∨ q ∼q p

T T T F

T F T T T ←

This row represents the only situation in which
both premises are true. Because the conclusion is
also true here the argument form is valid.

F T T F

F F F T

22. Let p represent “Tom is on team A” and q represent “Hua is
on team B.” Then the argument has the form

∼p→ q

∼q → p

∴ ∼p∨ ∼q
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2.3 Solutions and Hints to Selected Exercises A-11

premises︷ ︸︸ ︷ conclusion︷ ︸︸ ︷
p q ∼p ∼q ∼p → q ∼q → p ∼p ∨ ∼q

T T F F T T F

T F F T T T T

←

This row shows that it is possible for an argument
of this form to have true premises and a false con-
clusion. Thus this argument form is invalid.

F T T F T T T

F F T T F F

24. p→ q
q

∴ p invalid: converse error
25. p ∨ q

∼p
∴ q valid: elimination

26. p→ q
q → r

∴ p→ r valid: transitivity

27. p→ q
∼p

∴ ∼q invalid: inverse error
36. The program contains an undeclared variable.

One explanation:
1. There is not a missing semicolon and there is not a mis-

spelled variable name. (by (c) and (d) and definition
of ∧)

2. It is not the case that there is a missing semicolon or
a misspelled variable name. (by (1) and De Morgan’s
laws)

3. There is not a syntax error in the first five lines. (by (b)
and (2) and modus tollens)

4. There is an undeclared variable. (by (a) and (3) and
elimination)

37. The treasure is buried under the flagpole.
One explanation:
1. The treasure is not in the kitchen. (by (c) and (a) and

modus ponens)
2. The tree in the front yard is not an elm. (by (b) and (1)

and modus tollens)
3. The treasure is buried under the flagpole. (by (d) and (2)

and elimination)

38. a. A is a knave and B is a knight.
One explanation:
1. Suppose A is a knight.
2. ∴ What A says is true. (by definition of knight)
3. ∴ B is a knight also. (That’s what A said.)
4. ∴ What B says is true. (by definition of knight)
5. ∴ A is a knave. (That’s what B said.)
6. ∴ We have a contradiction: A is a knight and a

knave. (by (1) and (5))
7. ∴ The supposition that A is a knight is false. (by the

contradiction rule)
8. ∴ A is a knave. (negation of supposition)

9. ∴ What B says is true. (B said A was a knave,
which we now know to be true.)

10. ∴ B is a knight. (by definition of knight)

d. Hint: W and Y are knights; the rest are knaves.

39. The chauffeur killed Lord Hazelton.
One explanation:
1. Suppose the cook was in the kitchen at the time of the

murder.

2. ∴ The butler killed Lord Hazelton with strychnine. (by
(c) and (1) and modus ponens)

3. ∴ We have a contradiction: Lord Hazelton was killed
by strychnine and a blow on the head. (by (2) and (a))

4. ∴ The supposition that the cook was in the kitchen is
false. (by the contradiction rule)

5. ∴ The cook was not in the kitchen at the time of the
murder. (negation of supposition)

6. ∴ Sara was not in the dining room when the murder was
committed. (by (e) and (5) and modus ponens)

7. ∴ Lady Hazelton was in the dining room when the
murder was committed. (by (b) and (6) and
elimination)

8. ∴ The chauffeur killed Lord Hazelton. (by (d) and (7)
and modus ponens)

41. (1) p→ t by premise (d )
∼t by premise (c)

∴ ∼p by modus tollens
(2) ∼p by (1)

∴ ∼p ∨ q by generalization
(3) ∼p ∨ q → r by premise (a)

∼p ∨ q by (2)
∴ r by modus ponens

(4) ∼p by (1)
r by (3)

∴ ∼p ∧ r by conjunction
(5) ∼p ∧ r →∼s by premise (e)

∼p ∧ r by (4)
∴ ∼s by modus ponens

(6) s ∨ ∼q by premise (b)
∼s by (5)

∴ ∼q by elimination

43. (1) ∼w by premise (d )
u ∨ w by premise (e)

∴ u by elimination
(2) u →∼p by premise (c)

u by (1)
∴ ∼p by modus ponens

(3) ∼p→ r ∧ ∼s by premise (a)
∼p by (2)

∴ r ∧ ∼s by modus ponens
(4) r ∧ ∼s by (3)

∴ ∼s by specialization
(5) t → s by premise (b)

∼s by (4)
∴ ∼t by modus tollens
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A-12 Appendix B Solutions and Hints to Selected Exercises

Section 2.4
1. R = 1 3. S = 1

5.
Input Output

P Q R

1 1 1

1 0 1

0 1 0

0 0 1

7.
Input Output

P Q R S

1 1 1 1

1 1 0 0

1 0 1 1

1 0 0 1

0 1 1 1

0 1 0 0

0 0 1 1

0 0 0 0

9. P ∨ ∼Q 11. (P ∧ ∼Q) ∨ R

13.

OR
NOTP

Q

16.

OR

NOT

P

Q

R

AND

18. a. (P ∧ Q ∧ ∼R) ∨ (∼P ∧ Q ∧ R)

b. P

Q

R NOT

NOT

AND

OR

AND

20. a. (P ∧ Q ∧ R) ∨ (P ∧ ∼Q ∧ R) ∨ (∼P ∧ ∼Q ∧ ∼R)

b.

AND

P

Q

R

AND

NOT

NOT

NOT

ANDNOT

OR

22. The input/output table is

Input Output

P Q R S

1 1 1 0

1 1 0 1

1 0 1 0

1 0 0 0

0 1 1 0

0 1 0 0

0 0 1 1

0 0 0 0

One circuit (among many) having this input/output table is
shown below.

P

Q

R NOT

NOT

NOT

AND

AND

OR
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2.4 Solutions and Hints to Selected Exercises A-13

24. Let P and Q represent the positions of the switches in the
classroom, with 0 being “down” and 1 being “up.” Let R
represent the condition of the light, with 0 being “off” and
1 being “on.” Initially, P = Q = 0 and R = 0. If either
P or Q (but not both) is changed to 1, the light turns on.
So when P = 1 and Q = 0, then R = 1, and when P = 0
and Q = 1, then R = 1. Thus when one switch is up and
the other is down the light is on, and hence moving the
switch that is down to the up position turns the light off.
So when P = 1 and Q = 1, then R = 0. It follows that the
input/output table has the following appearance:

Input Output

P Q R

1 1 0

1 0 1

0 1 1

0 0 0

One circuit (among many) having this input/output table is
the following:

P

Q
AND

OR

NOT

AND
NOT

R

26. The Boolean expression for (a) is (P ∧ Q) ∨ Q, and for
(b) it is (P ∨ Q) ∧ Q. We must show that if these expres-
sions are regarded as statement forms, then they are logi-
cally equivalent. But

(P ∧ Q) ∨ Q

≡ Q ∨ (P ∧ Q) by the commutative law for ∨
≡ (Q ∨ P) ∧ (Q ∨ Q) by the distributive law

≡ (Q ∨ P) ∧ Q by the idempotent law

≡ (P ∨ Q) ∧ Q by the commutative law for ∧
Alternatively, by the absorption laws, both statement forms
are logically equivalent to Q.

28. The Boolean expression for (a) is

(P ∧ Q) ∨ (P ∧ ∼Q) ∨ (∼P ∧ ∼Q)

and for (b) it is P ∨ ∼Q. We must show that if these expres-
sions are regarded as statement forms, then they are logi-
cally equivalent. But

(P ∧ Q) ∨ (P ∧ ∼Q) ∨ (∼P ∧ ∼Q)

≡ ((P ∧ Q) ∨ (P ∧ ∼Q)) ∨ (∼P ∧ ∼Q)

by inserting parentheses (which
is legal by the associative law)

≡ (P ∧ (Q ∨ ∼Q)) ∨ (∼P ∧ ∼Q)

by the distributive law

≡ (P ∧ t) ∨ (∼P ∧ ∼Q) by the negation law for ∨
≡ P ∨ (∼P ∧ ∼Q) by the identity law for ∧
≡ (P ∨ ∼P) ∧ (P ∨ ∼Q) by the distibutive law

≡ t ∧ (P ∨ ∼Q) by the negation law for ∨
≡ (P ∨ ∼Q) ∧ t by the commutative law for ∧
≡ P ∨ ∼Q by the identity law for ∧

30. (P ∧ Q) ∨ (∼P ∧ Q) ∨ (∼P ∧ ∼Q)

≡ (P ∧ Q) ∨ ((∼P ∧ Q) ∨ (∼P ∧ ∼Q))

by inserting parentheses (which
is legal by the associative law)

≡ (P ∧ Q) ∨ (∼P ∧ (Q ∨ ∼Q))

by the distributive law

≡ (P ∧ Q) ∨ (∼P ∧ t) by the negation law for ∨
≡ (P ∧ Q)∨ ∼P by the identity law for ∧
≡∼P ∨ (P ∧ Q) by the commutative law for ∨
≡ (∼P ∨ P) ∧ (∼P ∨ Q) by the distributive law

≡ (P ∨ ∼P) ∧ (∼P ∨ Q)

by the commutative law for ∨
≡ t ∧ (∼P ∨ Q) by the negation law for ∨
≡ (∼P ∨ Q) ∧ t by the commutative law for ∧
≡∼P ∨ Q by the identity law for ∧
The following is, therefore, a circuit with at most two logic
gates that has the same input/output table as the circuit cor-
responding to the given expression.

OR
NOTP

Q

34. b. (P ↓ Q) ↓ (P ↓ Q)

≡ ∼(P ↓ Q) by part (a)

≡ ∼[∼(P ∨ Q)] by definition of ↓
≡ P ∨ Q by the double negative law

d. Hint: Use the results of exercise 13 of Section 2.2 and
part (a) and (c) of this exercise.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



A-14 Appendix B Solutions and Hints to Selected Exercises

Section 2.5
1. 1910 = 16+ 2+ 1 = 100112
4. 45810 = 256+ 128+ 64+ 8+ 2 = 1110010102
7. 11102 = 8+ 4+ 2 = 1410
10. 11001012 = 64+ 32+ 4+ 1 = 10110
13. 1 1 1

1 0 1 12
+ 1 0 12

1 0 0 0 02

15. 1 1 1 1
1 0 1 1 0 12

+ 1 1 1 0 12
1 0 0 1 0 1 02

17. 1
1 10 10 1

1 0 1 0 02
− 1 1 0 12

1 1 12

19. 0 10
1 0 1 1 0 12

− 1 0 0 1 12
1 1 0 1 02

21. a. S = 0, T = 1

23. 2310 = (16+ 4+ 2+ 1)10 = 000101112 → 11101000→
11101001. So the answer is 11101001.

25. 410 = 000001002 → 11111011→ 11111100. So the answer
is 11111100.

27. Because the leading bit is 1, this is the 8-bit represen-
tation of a negative integer. 11010011→ 00101100→
001011012 ↔ −(32+ 8+ 4+ 1)10 = −4510. So the
answer is −4510.

29. Because the leading bit is 1, this is the 8-bit represen-
tation of a negative integer. 11110010→ 00001101→
000011102 ↔ −(8+ 4+ 2)10 = −1410. So the answer
is −1410.

31. 5710 = (32+ 16+ 8+ 1)10 = 1110012 → 00111001−
11810 = −(64+ 32+ 16+ 4+ 2)10 = −1110110→
01110110→ 10001001→ 10001010. So the 8-bit rep-
resentations of 57 and −118 are 00111001 and 10001010.
Adding the 8-bit representations gives

0 0 1 1 1 0 0 1
+

1 0 0 0 1 0 1 0

1 1 0 0 0 0 1 1

Since the leading bit of this number is a 1, the answer is
negative. Converting back to decimal form gives

11000011→ 00111100→−001111012
= −(32+ 16+ 8+ 4+ 1)10 = −6110.

So the answer is −61.

32. 6210 = (32+ 16+ 8+ 4+ 2)10

= 1111102 → 00111110

−1810 = −(16+ 2)10

= −100102 → 00010010→ 11101101→ 11101110

Thus the 8-bit representations of 62 and −18 are 00111110
and 11101110. Adding the 8-bit representations gives

0 0 1 1 1 1 1 0
+

1 1 1 0 1 1 1 0

0 0 1 0 1 1 0 01

Truncating the 1 in the 28th position gives 00101100. Since
the leading bit of this number is a 0, the answer is positive.
Converting back to decimal form gives

00101100→ 1011002 = (32+ 8+ 4)10 = 4410.

So the answer is 44.

33. −610 = −(4+ 2)10

= −1102 → 00000110→ 11111001→ 11111010

−7310 = −(64+ 8+ 1)10 =
−10010012→ 01001001→ 10110110→ 10110111

Thus the 8-bit representations of−6 and−73 are 11111010
and 10110111. Adding the 8-bit representations gives

1 1 1 1 1 0 1 0
+

1 0 1 1 0 1 1 1

1 0 1 1 0 0 0 11

Truncating the 1 in the 28th position gives 10110001. Since
the leading bit of this number is a 1, the answer is negative.
Converting back to decimal form gives

10110001→ 01001110→−010011112
= −(64+ 8+ 4+ 2+ 1)10 = −7910.

So the answer is −79.
38. A2BC16 = 10 ·163 + 2 ·162 + 11 ·16+ 12 = 4166010
41. 0001110000001010101111102
44. 2E16

47. a. 6 ·84 + 1 ·83 + 5 ·82 + 0 ·8+ 2 ·1 = 25,41010

Section 3.1
1. a. False b. True
2. a. The statement is true. The integers correspond to cer-

tain of the points on a number line, and the real numbers
correspond to all the points on the number line.

b. The statement is false; 0 is neither positive nor negative.
c. The statement is false. For instance, let r = −2. Then
−r = −(−2) = 2, which is positive.
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3.1 Solutions and Hints to Selected Exercises A-15

d. The statement is false. For instance, the number 1
2 is a

real number, but it is not an integer.

3. a. P(2) is “2 >
1
2 ,” which is true.

P
(
1
2

)
is “ 12 >

1
1
2

.” This is false because 1
1
2

= 2, and

1
2 ≯ 2.

P(−1) is “−1 >
1
−1 .” This is false because

1
−1 = −1,

and −1 ≯ −1.
P
(
− 1

2

)
is “− 1

2 >
1

−1
2

.” This is true because 1

−1
2

=

−2 and −1
2 > −2.

P(−8) is “−8 >
1
−8 .” This is false because

1
−8 = −

1
8

and −8 ≯ − 1
8 .

b. If the domain of P(x) is the set of all real numbers, then
its truth set is the set of all real numbers x for which
either x > 1 or −1 < x < 0.

c. If the domain of P(x) is the set of all positive real num-
bers, then its truth set is the set of all real numbers x for
which x > 1.

4. b. If the domain of Q(n) is the set of all integers, then its
truth set is {−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5}.

5. a. Q(−2,1) is the statement “If −2 < 1 then (−2)2 < 12.”
The hypothesis of this statement is −2 < 1, which
is true. The conclusion is (−2)2 < 12, which is
false because (−2)2 = 4 and 12 = 1 and 4 �< 1. Thus
Q(−2, 1) is a conditional statement with a true hypoth-
esis and a false conclusion. So Q(−2, 1) is false.

c. Q(3,8) is the statement “If 3 < 8 then 32 < 82.” The
hypothesis of this statement is 3 < 8, which is true. The
conclusion is 32 < 82, which is also true because 32 = 9
and 82 = 64 and 9 < 64. Thus Q(3, 8) is a conditional
statement with a true hypothesis and a true conclusion.
So Q(3, 8) is true.

7. a. The truth set is the set of all integers d such that 6/d
is an integer, so the truth set is {−6,−3,−2,−1, 1, 2,
3, 6}.

c. The truth set is the set of all real numbers x with the
property that 1 ≤ x2 ≤ 4, so the truth set is {x ∈ R |
− 2 ≤ x ≤ −1 or 1 ≤ x ≤ 2}. In other words, the truth
set is the set of all real numbers between −2 and −1
inclusive together with those between 1 and 2 inclusive.

8. a. {−9,−8,−7,−6,−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5,
6, 7, 8, 9}

9. Counterexample: Let x = 1 : 1 ≯ 1
1 . (This is one coun-

terexample among many.)

11. Counterexample: Let m = 1 and n = 1. Then m ·n =
1 ·1 = 1 and m + n = 1+ 1 = 2. But 1 � 2, and so
m ·n � m + n. (This is one counterexample among many.)

13. (a), (e), (f) 14. (b), (c), (e), (f)

15. a. Partial answer: Every rectangle is a quadrilateral.
b. Partial answer: At least one set has 16 subsets.

16. a. ∀ dinosaurs x, x is extinct.
c. ∀ irrational numbers x, x is not an integer.
e. ∀ integers x, x2 does not equal 2, 147, 581, 953.

17. a. ∃ an exercise x such that x has an answer.

18. a. ∃s ∈ D such that E(s) and M(s). (Or: ∃s ∈ D such that
E(s) ∧ M(s).)

b. ∀s ∈ D, ifC(s) then E(s). (Or:∀s ∈ D,C(s) → E(s).)
e. (∃s ∈ D such that C(s) ∧ E(s)) ∧ (∃s ∈ D such that

C(s) ∧ ∼E(s))

19. (b), (d), (e)

20. Partial answer: The square root of a positive real number is
positive.

21. a. The total degree of G is even, for any graph G.
c. p is even, for some prime number p

22. a. ∀x , if x is a Java program, then x has at least 5 lines.

23. a. ∀x if x is an equilateral triangle, then x is isosceles.

24. a. ∃ a hatter x such that x is mad.
∃x such that x is a hatter and x is mad.

25. a. ∀ nonzero fractions x , the reciprocal of x is a fraction.
∀x , if x is a nonzero fraction, then the reciprocal of x is
a fraction.

c. ∀ triangles x , the sum of the angles of x is 180◦.
∀x , if x is a triangle, then the sum of the angles of x is
180◦.

e. ∀ even integers x and y, the sum of x and y is even.
∀x and y, if x and y are even integers, then the sum of x
and y is even.

26. b. ∀x(Int(x) −→ Ratl(x)) ∧ ∃x(Ratl(x)∧ ∼Int(x))
27. a. False. Figure b is a circle that is not gray.

b. True. All the gray figures are circles.

28. b. One answer among many: If a real number is negative,
then when its opposite is computed, the result is a posi-
tive real number.

This statement is true because for all real numbers
x,−(−|x |) = |x | (and any negative real number can be
represented as −|x |, for some real number x).

d. One answer among many: There is a real number that is

not an integer. This statement is true. For instance, 12 is
a real number that is not an integer.

30. b. One answer among many: If an integer is prime, then it
is not a perfect square.

This statement is true because a prime number is an
integer greater than 1 that is not a product of two smaller
positive integers. So a prime number cannot be a perfect
square because if it were, it would be a product of two
smaller positive integers.

31. Hint:Your answer should have the appearance shown in the
following made-up example:
Statement: “If a function is differentiable, then it is contin-
uous.”
Formal version: ∀ functions f , if f is differentiable, then
f is continuous.
Citation: Calculus by D. R. Mathematician, Best Publish-
ing Company, 2004, page 263.
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32. a. True: Any real number that is greater than 2 is greater
than 1.

c. False: (−3)2 > 4 but −3 ≯ 2.

33. a. True. Whenever both a and b are positive, so is their
product.

b. False. Let a = −2 and b = −3. Then ab = 6, which is
not less than zero.

Section 3.2
1. (a) and (e) are negations.

3. a. ∃ a fish x such that x does not have gills.
c. ∀movies m,m is less than or equal to 6 hours long. (Or:
∀ movies m,m is no more than 6 hours long.)

In 4–6 there are other correct answers in addition to those
shown.

4. a. Some dogs are unfriendly. (Or: There is at least one
unfriendly dog.)

c. All suspicions were unsubstantiated. (Or: No suspicions
were substantiated.)

5. a. There is a valid argument that does not have a true con-
clusion. (Or: At least one valid argument does not have
a true conclusion.)

6. a. Sets A and B have at least one point in common.

7. The statement is not existential.
Informal negation: There is at least one order from store A
for item B.
Formal version of statement: ∀ orders x , if x is from store
A, then x is not for item B.

9. ∃ a real number x such that x > 3 and x2 ≤ 9.

11. The proposed negation is not correct. Consider the given
statement: “The sum of any two irrational numbers is irra-
tional.” For this to be false means that it is possible to find
at least one pair of irrational numbers whose sum is ratio-
nal. On the other hand, the negation proposed in the exer-
cise (“The sum of any two irrational numbers is rational”)
means that given any two irrational numbers, their sum is
rational. This is a much stronger statement than the actual
negation: The truth of this statement implies the truth of
the negation (assuming that there are at least two irrational
numbers), but the negation can be true without having this
statement be true.
Correct negation: There are at least two irrational numbers
whose sum is rational.
Or: The sum of some two irrational numbers is rational.

13. The proposed negation is not correct. There are two mis-
takes: The negation of a “for all” statement is not a “for all”
statement; and the negation of an if-then statement is not an
if-then statement.
Correct negation: There exists an integer n such that n2 is
even and n is not even.

15. a. True: All the odd numbers in D are positive.
c. False: x = 16, x = 26, x = 32, and x = 36 are all

counterexamples.

16. ∃ a real number x such that x2 ≥ 1 and x ≯ 0. In other
words, ∃ a real number x such that x2 ≥ 1 and x ≤ 0.

18. ∃ a real number x such that x(x + 1) > 0 and both x ≤ 0
and x ≥ −1.

20. ∃ integers a, b, and c such that a − b is even and b − c is
even and a − c is not even.

22. There is an integer such that the square of the integer is odd
but the integer is not odd. (Or: At least one integer has an
odd square but is not itself odd.)

24. a. If a person is a child in Tom’s family, then the person is
female.
If a person is a female in Tom’s family, then the person
is a child.
The second statement is the converse of the first.

25. a. Converse: If n + 1 is an even integer, then n is a prime
number that is greater than 2.
Counterexample: Let n = 15. Then n + 1 is even but n
is not a prime number that is greater than 2.

26. Statement: ∀ real numbers x , if x2 ≥ 1 then x > 0.
Contrapositive: ∀ real numbers x , if x ≤ 0 then x2 < 1.
Converse: ∀ real numbers x , if x > 0 then x2 ≥ 1.
Inverse: ∀ real numbers x , if x2 < 1 then x ≤ 0.
The statement and its contrapositive are false. As a coun-
terexample, let x = −2. Then x2 = (−2)2 = 4, and so
x2 ≥ 1. However x ≯ 0.
The converse and the inverse are also false. As a coun-
terexample, let x = 1/2. Then x2 = 1/4, and so x > 0 but
x2 � 1.

28. Statement: ∀x ∈ R, if x(x + 1) > 0 then x > 0 or x < −1.
Contrapositive: ∀x ∈ R, if x ≤ 0 and x ≥ −1, then
x(x + 1) ≤ 0.
Converse: ∀x ∈ R, if x > 0 or x < −1 then x(x + 1) > 0.
Inverse: ∀x ∈ R, if x(x + 1) ≤ 0 then x ≤ 0 and x ≥ −1.
The statement, its contrapositive, its converse, and its
inverse are all true.

30. Statement: ∀ integers a, b, and c, if a − b is even and b − c
is even, then a − c is even.
Contrapositive: ∀ integers a, b, and c, if a − c is not even,
then a − b is not even or b − c is not even.
Converse: ∀ integers a, b and c, if a − c is even then a − b
is even and b − c is even.
Inverse: ∀ integers a, b, and c, if a − b is not even or b − c
is not even, then a − c is not even.
The statement is true, but its converse and inverse are false.
As a counterexample, let a = 3, b = 2, and c = 1. Then
a − c = 2, which is even, but a − b = 1 and b − c = 1, so
it is not the case that both a − b and b − c are even.

32. Statement: If the square of an integer is odd, then the integer
is odd.
Contrapositive: If an integer is not odd, then the square of
the integer is not odd.
Converse: If an integer is odd, then the square of the integer
is odd.
Inverse: If the square of an integer is not odd, then the inte-
ger is not odd.
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3.3 Solutions and Hints to Selected Exercises A-17

The statement, its contrapositive, its converse, and its
inverse are all true.

34. a. If n is divisible by some prime number strictly between
1 and

√
n, then n is not prime.

36. a. One possible answer: Let P(x) be “2x �= 1.” The state-
ment “∀x ∈ Z, 2x �= 1” is true, but the statements
“∀x ∈Q, 2x �= 1” and “∀x ∈ R, 2x �= 1” are both false.

37. The claim is “∀x , if x = 1 and x is in the sequence 0204,
then x is to the left of all the 0’s in the sequence.”
The negation is “∃x such that x = 1 and x is in the sequence
0204, and x is not to the left of all the 0’s in the sequence.”
The negation is false because the sequence does not contain
the character 1. So the claim is vacuously true (or true by
default).

39. If a person earns a grade of C− in this course, then the
course counts toward graduation.

41. If a person is not on time each day, then the person will not
keep this job.

43. It is not the case that if a number is divisible by 4, then that
number is divisible by 8. In other words, there is a number
that is divisible by 4 and is not divisible by 8.

45. It is not the case that if a person has a large income, then
that person is happy. In other words, there is a person who
has a large income and is not happy.

48. No. Interpreted formally, the statement says, “If carriers do
not offer the same lowest fare, then you may not select
among them,” or, equivalently, “If you may select among
carriers, then they offer the same lowest fare.”

Section 3.3
1. a. True: Tokyo is the capital of Japan.

b. False: Athens is not the capital of Egypt.

2. a. True: 22 > 3 b. False: 12 ≯ 1

3. a. y = 1
2 b. y = −1

4. a. Let n = 16. Then n > x because 16 > 15.83.

5. The statement says that no matter what circle anyone might
give you, you can find a square of the same color. This is
true because the only circles are a, c, and b, and given a or
c, which are blue, square j is also blue, and given b, which
is gray, squares g and h are also gray.

7. This is true because triangle d is above every square.

9. a. There are five elements in D. For each, an element in
E must be found so that the sum of the two equals 0.
So: if x = −2, take y = 2; if x = −1, take y = 1; if
x = 0, take y = 0; if x = 1, take y = −1; if x = 2, take
y = −2.

Alternatively, note that for each integer x in D, the
integer −x is also in D, including 0 (because −0 = 0),
and for all integers x, x + (−x) = 0.

10. a. True. Every student chose at least one dessert: Uta chose
pie, Tim chose both pie and cake, and Yuen chose pie.

c. This statement says that some particular dessert was
chosen by every student. This is true: Every student
chose pie.

11. a. There is a student who has seen Casablanca.
c. Every student has seen at least one movie.
d. There is a movie that has been seen by every student.

(There are many other acceptable ways to state these
answers.)

12. a. Negation: ∃x in D such that ∀y in E, x + y �= 1.
The negation is true. When x = −2, the only number y
with the property that x + y = 1 is y = 3, and 3 is not
in E .

b. Negation: ∀x in D, ∃y in E such that x + y �= −y.
The negation is true and the original statement is false.
To see that the original statement is false, take any x in
D and choose y to be any number in E with y �= − x

2 .
Then 2y �= −x , and adding x and subtracting y from
both sides gives x + y �= −y.

In 13–19 there are other correct answers in addition to those
shown.

13. a. Statement: For every color, there is an animal of that
color.
There are animals of every color.

b. Negation: ∃ a color C such that ∀ animals A, A is not
colored C .
For some color, there is no animal of that color.

14. Statement: There is a book that all people have read.
Negation: There is no book that all people have read.
(Or: ∀ books b, ∃ a person p such that p has not read b.)

15. a. Statement: For every odd integer n, there is an integer k
such that n = 2k + 1.
Given any odd integer, there is another integer for which
the given integer equals twice the other integer plus 1.
Given any odd integer n, we can find another integer k
so that n = 2k + 1.
An odd integer is equal to twice some other integer plus 1.
Every odd integer has the form 2k+ 1 for some integer k.

b. Negation: ∃ an odd integer n such that ∀ integers k, n �=
2k + 1.
There is an odd integer that is not equal to 2k + 1 for
any integer k.
Some odd integer does not have the form 2k + 1 for any
integer k.

18. a. Statement: For every real number x , there is a real num-
ber y such that x + y = 0.
Given any real number x , there exists a real number y
such that x + y = 0.
Given any real number, we can find another real num-
ber (possibly the same) such that the sum of the given
number plus the other number equals 0.
Every real number can be added to some other real num-
ber (possibly itself) to obtain 0.

b. Negation: ∃ a real number x such that ∀ real numbers
y, x + y �= 0.
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A-18 Appendix B Solutions and Hints to Selected Exercises

There is a real number x for which there is no real num-
ber y with x + y = 0.
There is a real number x with the property that
x + y �= 0 for any real number y.
Some real number has the property that its sum with any
other real number is nonzero.

20. Statement (1) says that no matter what square anyone might
give you, you can find a triangle of a different color. This is
true because the only squares are e, g, h, and j , and given
squares g and h, which are gray, you could take triangle d,
which is black; given square e, which is black, you could
take either triangle f or i , which are gray; and given square
j , which is blue, you could take either triangle f or h,
which are gray, or triangle d, which is black.

21. a. (1) The statement “∀ real numbers x, ∃ a real number
y such that 2x + y = 7” is true.

(2) The statement “∃ a real number x such that ∀ real
numbers y, 2x + y = 7” is false.

b. Both statements (1) “∀ real numbers x, ∃ a real number
y such that x + y = y + x” and (2) “∃ a real number x
such that ∀ real numbers y, x + y = y + x” are true.

22. a. Given any real number, you can find a real number so
that the sum of the two is zero. In other words, every
real number has an additive inverse. This statement is
true.

b. There is a real number with the following property: No
mattter what real number is added to it, the sum of the
two will be zero. In other words, there is one particular
real number whose sum with any real number is zero.
This statement is false; no one number will work for all
numbers. For instance, if x + 0 = 0, then x = 0, but in
that case x + 1 = 1 �= 0.

24. a. ∼(∀x ∈ D(∀y ∈ E(P(x, y))))

≡ ∃x ∈ D(∼(∀y ∈ E(P(x, y))))

≡ ∃x ∈ D(∃y ∈ E(∼P(x, y)))

25. This statement says that all of the circles are above all of
the squares. This statement is true because the circles are
a, b, and c, and the squares are e, g, h, and j , and all of
a, b, and c lie above all of e, g, h, and j .
Negation: There is a circle x and a square y such that x is
not above y. In other words, at least one of the circles is not
above at least one of the squares.

27. The statement says that there are a circle and a square with
the property that the circle is above the square and has
a different color from the square. This statement is true.
For example, circle a lies above square e and is differ-
ently colored from e. (Several other examples could also
be given.)

29. a. Version with interchanged quantifiers: ∃x ∈ R such that
∀y ∈ R, x < y.

b. The given statement says that for any real number x ,
there is a real number y that is greater than x . This is
true: For any real number x , let y = x + 1. Then x < y.
The version with interchanged quantifiers says that there

is a real number that is less than every other real number.
This is false.

31. ∀ people x, ∃ a person y such that x is older than y.

32. ∃ a person x such that ∀ people y, x is older than y.

33. a. Formal version: ∀ people x, ∃ a person y such that x
loves y.

b. Negation: ∃ a person x such that ∀ people y, x does not
love y. In other words, there is someone who does not
love anyone.

34. a. Formal version: ∃ a person x such that ∀ people y, x
loves y.

b. Negation: ∀ people x, ∃ a person y such that x does
not love y. In other words, everyone has someone whom
they do not love.

37. a. Statement: ∀ even integers n, ∃ an integer k such that
n = 2k.

b. Negation: ∃ an even integer n such that ∀ integers
k, n �= 2k.
There is some even integer that is not equal to twice any
other integer.

39. a. Statement: ∃ a program P such that ∀ questions Q posed
to P , P gives the correct answer to Q.

b. Negation: ∀ programs P , there is a question Q that can
be posed to P such that P does not give the correct
answer to Q.

40. a. ∀ minutes m, ∃ a sucker s such that s was born in
minute m.

41. a. This statement says that given any positive integer, there
is a positive integer such that the first integer is one more
than the second integer. This is false. Given the posi-
tive integer x = 1, the only integer with the property that
x = y + 1 is y = 0, and 0 is not a positive integer.

b. This statement says that given any integer, there is an
integer such that the first integer is one more than the
second integer. This is true. Given any integer x , take
y = x − 1. Then y is an integer, and y + 1 = (x − 1)+
1 = x .

e. This statement says that given any real number, there is
a real number such that the product of the two is equal to
1. This is false because 0 · y = 0 �= 1 for every number
y. So when x = 0, there is no real number y with the
property that xy = 1.

42. ∃ε > 0 such that ∀ integers N , ∃ an integer n such that
n> N and either L − ε ≥ an or an ≥ L + ε. In other
words, there is a positive number ε such that for all inte-
gers N , it is possible to find an integer n that is greater than
N and has the property that an does not lie between L − ε

and L + ε.

44. a. This statement is true. The unique real number with the
given property is 1. Note that

1 · y = y for all real numbers y,

and if x is any real number such that for instance,
x ·2= 2, then dividing both sides by 2 gives x = 2/2= 1.
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3.4 Solutions and Hints to Selected Exercises A-19

46. a. True. Both triangles a and c lie above all the squares.
b. Formal version: ∃x(Triangle(x) ∧ (∀y(Square(y)→

Above(x, y))))
c. Formal negation: ∀x(∼Triangle(x) ∨ (∃y (Square (y)∧
∼Above(x, y))))

48. a. False. There is no square to the right of circle k.
b. Formal version: ∀x(Circle(x)→ (∃y(Square(y) ∧

RightOf(y, x))))
c. Formal negation: ∃x(Circle(x) ∧ (∀y(∼Square(y) ∨
∼RightOf(y, x))))

51. a. False. There is no object that has a different color from
every other object.

b. Formal version: ∃y(∀x(x �= y→∼SameColor(x, y)))
c. Formal negation: ∀y(∃x(x �= y ∧ SameColor(x, y)))

53. a. False
b. Formal version: ∃x(Circle(x) ∧ (∃y(Square(y) ∧

SameColor(x, y))))
c. Formal negation: ∀x(∼Circle(x) ∨ (∀y(∼Square(y) ∨
∼SameColor(x, y))))

55. a. No matter what the domain D or the predicates P(x)
and Q(x) are, the given statements have the same truth
value. If the statement “∀x in D, (P(x) ∧ Q(x))” is
true, then P(x) ∧ Q(x) is true for every x in D, which
implies that both P(x) and Q(x) are true for every x
in D. But then P(x) is true for every x in D, and
also Q(x) is true for every x in D. So the statement
“(∀x in D, P(x)) ∧ (∀x, in D, Q(x))” is true. Con-
versely, if the statement “(∀x in D, P(x)) ∧ (∀x in
D, Q(x))” is true, then P(x) is true for every x in D,
and also Q(x) is true for every x in D. This implies
that both P(x) and Q(x) are true for every x in D, and
so P(x) ∧ Q(x) is true for every x in D. Hence the state-
ment “∀x in D, (P(x) ∧ Q(x))” is true.

59. a. Yes b. X = w1, X = w2 c. X = b2, X = w2

Section 3.4
1. b. ( fi + f j )2 = f 2i + 2 fi f j + f 2j

c. (3u + 5v)2 = (3u)2 + 2(3u)(5v)+ (5v)2

(= 9u2 + 30uv + 25v2)

d. (g(r)+ g(s))2 = (g(r))2 + 2g(r)g(s)+ (g(s))2

2. 0 is even.

3. 2
3 +

4
5 =

(2 ·5+3 ·4)
(3 ·5)

(
= 22

15

)
5. 1

0 is not an irrational number.

7. Invalid; converse error

8. Valid by universal modus ponens (or universal instantia-
tion)

9. Invalid; inverse error

10. Valid by universal modus tollens

16. Invalid; converse error

19. ∀x , if x is a good car, then x is not cheap.
a. Valid, universal modus ponens (or universal instantia-

tion)
b. Invalid, converse error

21. Valid. (A valid argument can have false premises and a true
conclusion!)

mortals

mice

people

The major premise says the set of people is included in
the set of mice. The minor premise says the set of mice
is included in the set of mortals. Assuming both of these
premises are true, it must follow that the set of people is
included in the set of mortals. Since it is impossible for the
conclusion to be false if the premises are true, the argument
is valid.

23. Valid. The major and minor premises can be diagrammed
as follows:

beings who
occasionally

make mistakes

teachers

gods

According to the diagram, the set of teachers and the set of
gods can have no common elements. Hence, if the premises
are true, then the conclusion must also be true, and so the
argument is valid.

25. Invalid. Let C represent the set of all college cafeteria food,
G the set of all good food, andW the set of all wasted food.
Then any one of the following diagrams could represent the
given premises.

G

G

C W

WC

1

3

G

C W

2

G

WC

4
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A-20 Appendix B Solutions and Hints to Selected Exercises

Only in drawing (1) is the conclusion true. Hence it is possi-
ble for the premises to be true while the conclusion is false,
and so the argument is invalid.

28. (3) Contrapositive form: If an object is gray, then it is a
circle.
(2) If an object is a circle, then it is to the right of all the
blue objects.
(1) If an object is to right of all the blue objects, then it is
above all the triangles.
∴ If an object is gray, then it is above all the triangles.

31. 4. If an animal is in the yard, then it is mine.
1. If an animal belongs to me, then I trust it.
5. If I trust an animal, then I admit it into my study.
3. If I admit an animal into my study, then it will beg when

told to do so.
6. If an animal begs when told to do so, then that animal is

a dog.
2. If an animal is a dog, then that animal gnaws bones.
∴ If an animal is in the yard, then that animal gnaws bones;

that is, all the animals in the yard gnaw bones.

33. 2. If a bird is in this aviary, then it belongs to me.
4. If a bird belongs to me, then it is at least 9 feet high.
1. If a bird is at least 9 feet high, then it is an ostrich.
3. If a bird lives on mince pies, then it is not an ostrich.
Contrapositive: If a bird is an ostrich, then it does not
live on mince pies.

∴ If a bird is in this aviary, then it does not live on mince
pies; that is, no bird in this aviary lives on mince pies.

Section 4.1
1. a. Yes: −17 = 2(−9)+ 1

b. Yes: 0 = 2 ·0
c. Yes: 2k − 1 = 2(k − 1)+ 1 and k − 1 is an integer

because it is a difference of integers.

2. a. Yes: 6m + 8n = 2(3m + 4n) and (3m + 4n) is an inte-
ger because 3, 4,m, and n are integers, and products and
sums of integers are integers.

b. Yes: 10mn + 7 = 2(5mn + 3)+ 1 and 5mn + 3 is an
integer because 3, 5,m, and n are integers, and products
and sums of integers are integers.

c. Not necessarily. For instance, if m = 3 and n = 2,
then m2 − n2 = 9− 4 = 5, which is prime. (Note that
m2 − n2 is composite for many values of m and n
because of the identity m2 − n2 = (m − n)(m + n).)

4. For example, let m = n = 2. Then m and n are inte-

gers such that m > 0 and n > 0 and 1
m +

1
n =

1
2 +

1
2 = 1,

which is an integer.

7. For example, let n = 7. Then n is an integer such that n > 5
and 2n − 1 = 127, which is prime.

9. For example, 25, 9, and 16 are all perfect squares, because
25 = 52, 9 = 32, and 16 = 42, and 25 = 9 + 16. Thus 25
is a perfect square that can be written as a sum of two other
perfect squares.

11. Counterexample: Let a = −2 and b = −1. Then a < b
because −2 < −1, but a2 ≮ b2 because (−2)2 = 4 and
(−1)2 = 1 and 4 ≮ 1. [So the hypothesis of the statement is
true but its conclusion is false.]

14. This property is true for some integers and false for other
integers. For instance, if a = 0 and b = 1, the property is
true because (0+ 1)2 = 02 + 12, but if a = 1 and b = 1,
the property is false because (1+ 1)2 = 4 and 12 + 12 = 2
and 4 �= 2.

15. Hint: This property is true for some integers and false for
other integers. To justify this answer you need to find exam-
ples of both.

17. 2 = 12 + 12, 4 = 22, 6 = 22 + 12 + 12,

8 = 22 + 22, 10 = 32 + 12, 12 = 22 + 22 + 22,

14 = 32 + 22 + 12, 16 = 42,

18 = 32 + 32 = 42 + 12 + 12, 20 = 42 + 22,

22 = 32 + 32 + 22, 24 = 42 + 22 + 22

19. a. ∀ integersm and n, ifm is even and n is odd, then m + n
is odd.
∀ even integers m and odd integers n, m + n is odd.
If m is any even integer and n is any odd integer, then
m + n is odd.

b. (a) any odd integer (b) integer r
(c) 2r + (2s + 1) (d) m + n is odd

20. a. If an integer is greater than 1, then its reciprocal is
between 0 and 1.

b. Start of proof: Supposem is any integer such thatm > 1.
Conclusion to be shown: 0 < 1/m < 1.

22. a. If the product of two integers is 1, then either both are 1
or both are −1.

b. Start of proof: Suppose m and n are any integers with
mn = 1.
Conclusion to be shown: m = n = 1 or m = n = −1.

24. Two versions of a correct proof are given below to illustrate
some of the variety that is possible.
Proof 1: Suppose n is any [particular but arbitrarily chosen]
even integer. [We must show that −n is even.] By definition
of even, n = 2k for some integer k. Multiplying both side
by −1 gives that

−n = −(2k) = 2(−k).
Let r = −k. Then r is an integer because r = −k = (−1)k,
−1 and k are integers, and a product of two integers is an
integer. Hence, −n = 2r for some integer r , and so −n is
even [as was to be shown].
Proof 2: Suppose n is any even integer. By definition of
even, n = 2k for some integer k. Then

−n = −2k = 2(−k).
But −k is an integer because it is a product of integers −1
and k. Thus −n equals twice some integer, and so −n is
even by definition of even.
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4.1 Solutions and Hints to Selected Exercises A-21

25. Proof: Suppose a is any even integer and b is any odd inte-
ger. [We must show that a − b is odd.] By definition of even
and odd, a = 2r and b = 2s + 1 for some integers r and s.
By substitution and algebra,

a − b = 2r − (2s + 1) = 2r − 2s − 1 = 2(r − s − 1)+ 1.

Let t = r − s − 1. Then t is an integer because differences
of integers are integers. Thus a − b = 2t + 1, where t is an
integer, and so, by definition of odd, a − b is odd [as was to
be shown].

26. Hint: The conclusion to be shown is that a certain quantity
is odd. To show this, you need to show that the quantity
equals twice some integer plus one.

29. Proof: Suppose n is any [particular but arbitrarily chosen]
odd integer. [We must show that 3n + 5 is even.] By defini-
tion of odd, there is an integer r such that n = 2r + 1. Then

3n + 5 = 3(2r + 1)+ 5 by substitution

= 6r + 3+ 5

= 6r + 8

= 2(3r + 4) by algebra.

Let t = 3r + 4. Then t is an integer because products and
sums of integers are integers. Hence, 3n + 5 = 2t , where t
is an integer, and so, by definition of even, 3n + 5 is even
[as was to be shown].

31. Proof: Suppose k is any [particular but arbitrarily chosen]
odd integer and m is any even integer. [We must show that
k2 + m2 is odd.] By definition of odd and even, k = 2a + 1
and m = 2b for some integers a and b. Then

k2 + m2 = (2a + 1)2 + (2b)2 by substitution

= 4a2 + 4a + 1+ 4b2

= 4(a2 + a + b2)+ 1

= 2(2a2 + 2a + 2b2)+ 1 by algebra.

But 2a2 + 2a + 2b2 is an integer because it is a sum of
products of integers. Thus k2 + m2 is twice an integer
plus 1, and so k2 + m2 is odd [as was to be shown].

33. Proof: Suppose n is any even integer. Then n = 2k for some
integer k. Hence

(−1)n = (−1)2k = ((−1)2)k = 1k = 1

[by the laws of exponents from algebra]. This is what was to
be shown.

35. The negation of the statement is “For all integers m ≥ 3,
m2 − 1 is not prime.”
Proof of the negation: Supposem is any integer withm ≥ 3.
By basic algebra,m2 − 1 = (m − 1)(m + 1). Becausem ≥
3, both m − 1 and m + 1 are positive integers greater than
1, and each is smaller than m2 − 1. So m2 − 1 is a product
of two smaller positive integers, each greater than 1, and
hence m2 − 1 is not prime.

38. The incorrect proof just shows the theorem to be true in the
one case where k = 2. A real proof must show that it is true
for all integers k > 0.

39. The mistake in the “proof” is that the same symbol, k,
is used to represent two different quantities. By setting
m = 2k and n = 2k + 1, the proof implies that n = m + 1,
and thus it deduces the conclusion only for this one situ-
ation. When m = 4 and n = 17, for instance, the compu-
tations in the proof indicate that n − m = 1, but actually
n − m = 13. In other words, the proof does not deduce the
conclusion for an arbitrarily chosen even integer m and odd
integer n, and hence it is invalid.

40. This incorrect proof exhibits circular reasoning. The word
since in the third sentence is completely unjustified. The
second sentence tells only what happens if k2 + 2k + 1 is
composite. But at that point in the proof, it has not been
established that k2 + 2k + 1 is composite. In fact, that is
exactly what is to be proved.

43. True. Proof: Suppose m and n are any odd integers. [We
must show that mn is odd.] By definition of odd, n = 2r + 1
and m = 2s + 1 for some integers r and s. Then

mn = (2r + 1)(2s + 1) by subsitution

= 4rs + 2r + 2s + 1

= 2(2rs + r + s)+ 1 by algebra.

Now 2rs + r + s is an integer because products and sums
of integers are integers and 2, r , and s are all integers.
Hence mn = 2 · (some integer) + 1, and so, by definition
of odd, mn is odd.

44. True. Proof: Suppose n is any odd integer. [We must show
that −n is odd.] By definition of odd, n = 2k + 1 for some
integer k. By substitution and algebra,

−n = −(2k + 1) = −2k − 1 = 2(−k − 1)+ 1.

Let t = −k − 1. Then t is an integer because differences of
integers are integers. Thus−n = 2t + 1, where t is an inte-
ger, and so, by definition of odd, −n is odd [as was to be
shown].

45. False. Counterexample: Both 3 and 1 are odd, but their dif-
ference is 3− 1 = 2, which is even.

47. False. Counterexample: Let m = 1 and n = 3. Then
m + n = 4 is even, but neither summand m nor summand
n is even.

54. Proof: Suppose n is any integer. Then

4(n2 + n + 1)− 3n2 = 4n2 + 4n + 4− 3n2

= n2 + 4n + 4 = (n + 2)2

(by algebra). But (n + 2)2 is a perfect square because n + 2
is an integer (being a sum of n and 2). Hence 4(n2 + n +
1)− 3n2 is a perfect square, as was to be shown.

56. Hint: This is true.

62. Hint: The answer is no.
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Section 4.2
1. −356 = −35

6

3. 4
5 +

2
9 =

4 ·9+2 ·5
45 = 46

45
4. Let x = 0.3737373737 . . ..

Then 100x = 37.37373737 . . . , and so
100x − x = 37.37373737 . . .− 0.3737373737 . . ..

Thus 99x = 37, and hence x = 37
99 .

6. Let x = 320.5492492492 . . ..
Then 10000x = 3205492.492492 . . ., and
10x = 3205.492492492 . . . , and so
10000x − 10x = 3205492− 3205.
Thus 9990x = 3202287, and hence x = 3202287

9990 .

8. b. ∀ real numbers x and y, if x �= 0 and y �= 0 then xy �= 0.

9. Because a and b are integers, b − a and ab2 are both inte-
gers (since differences and products of integers are inte-
gers). Also, by the zero product property, ab2 �= 0 because
neither a nor b is zero. Hence (b − a)/ab2 is a quotient of
two integers with nonzero denominator, and so it is rational.

11. Proof: Suppose n is any [particular but arbitrarily chosen]
integer. Then n = n ·1, and so n = n/1 by by dividing both
sides by 1. Now n and 1 are both integers, and 1 �= 0. Hence
n can be written as a quotient of integers with a nonzero
denominator, and so n is rational.

12. (a) any [particular but arbitrarily chosen] rational number
(b) integers a and b (c) (a/b)2 (d) b2

(e) zero product property (f) r 2 is rational

13. a. ∀ real numbers r , if r is rational then −r is rational.
Or: ∀r , if r is a rational number then −r is rational.
Or: ∀ rational numbers r, −r is rational.

b. The statement is true. Proof: Suppose r is a [particular
but arbitrarily chosen] rational number. [We must show
that −r is rational.] By definition of rational, r = a/b
for some integers a and b with b �= 0. Then

−r = −a

b
by substitution

= −a
b

by algebra.

But since a is an integer, so is −a (being the product
of −1 and a). Hence −r is a quotient of integers with a
nonzero denominator, and so−r is rational [as was to be
shown].

15. Proof: Suppose r and s are rational numbers. By definition
of rational, r = a/b and s = c/d for some integers a, b, c,
and d with b �= 0 and d �= 0. Then

rs = a

b
· c
d

by substitution

= ac

bd
by the rules of algebra for multiplying fractions.

Now ac and bd are both integers (being products of inte-
gers) and bd �= 0 (by the zero product property). Hence rs
is a quotient of integers with a nonzero denominator, and
so, by definition of rational, rs is rational.

16. Hint: Counterexample: Let r be any rational number and
s = 0. Then r and s are both rational, but the quotient of
r divided by s is undefined and therefore is not a rational
number.
Revised statement to be proved: For all rational numbers r
and s, if s �= 0 then r/s is rational.

17. Hint: The conclusion to be shown is that a certain quantity
(the difference of two rational numbers) is rational. To show
this, you need to show that the quantity can be expressed as
a ratio of two integers with a nonzero denominator.

18. Hint:
a/b+c/d

2 = (ad + bc)/(bd)

2
= ad + bc

2bd
19. Hint: If a < b then a + a < a + b (by T19 of Appendix

A), or equivalently 2a < a + b. Thus a <
a+b
2 (by T20

Appendix A).

21. True. Proof: Supposem is any even integer and n is any odd
integer. [We must show that m2 + 3n is odd.] By properties 1
and 3 of Example 4.2.3, m2 is even (because m2 = m ·m)
and 3n is odd (because both 3 and n are odd). It follows
from property 5 [and the commutative law for addition] that
m2 + 3n is odd [as was to be shown].

24. Proof: Suppose r and s are any rational numbers. By
Theorem 4.2.1, both 2 and 3 are rational, and so,
by exercise 15, both 2r and 3s are rational. Hence, by The-
orem 4.2.2, 2r + 3s is rational.

27. Let

x =
1− 1

2n+1

1− 1

2

=
1− 1

2n+1
1

2

=
1− 1

2n+1
1

2

· 2
n+1

2n+1
= 2n+1− 1

2n
·

But 2n+1 − 1 and 2n are both integers (since n is a non-
negative integer) and 2n �= 0 by the zero product property.
Therefore, x is rational.

31. Proof: Suppose c is a real number such that

r3c
3 + r2c

2 + r1c + r0 = 0,

where r0, r1, r2, and r3 are rational numbers. By defini-
tion of rational, r0 = a0/b0, r1 = a1/b1, r2 = a2/b2, and
r3 = a3/b3 for some integers, a0, a1, a2, a3, and nonzero
integers b0, b1, b2, and b3. By substitution,

r3c3 + r2c2 + r1c + r0

= a3
b3

c3 + a2
b2

c2 + a1
b1

c + a0
b0

= b0b1b2a3
b0b1b2b3

c3 + b0b1b3a2
b0b1b2b3

c2 + b0b2b3a1
b0b1b2b3

c + b1b2b3a0
b0b1b2b3

= 0.

Multiplying both sides by b0b1b2b3 gives

b0b1b2a3 ·c3+ b0b1b3a2 ·c2+ b0b2b3a1 ·c+ b1b2b3a0= 0.

Let n3 = b0b1b3a3, n2 = b0b1b3a2, n1 = b0b2b3a1, and
n0 = b1b2b3a0. Then n0, n1, n2, and n3 are all integers
(being products of integers). Hence c satisfies the equation
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n3c
3 + n2c

2 + n1c + n0 = 0.

where n0, n1, n2, and n3 are all integers. This is what was
to be shown.

33. a. Hint:Note that (x − r)(x − s) = x2 − (r + s)x + rs. If
both r and s are odd, then r + s is even and rs is odd.
So the coefficient of x2 is 1 (odd), the coefficient of x is
even, and the constant coefficient, rs, is odd.

35. This “proof” assumes what is to be proved.

37. By setting both r and s equal to a/b, this incorrect proof
violates the requirement that r and s be arbitrarily chosen
rational numbers. If both r and s equal a/b, then r = s.

Section 4.3
1. Yes, 52 = 13 ·4 2. Yes, 56 = 7 ·8
4. Yes, (3k + 1)(3k + 2)(3k + 3) =

3 [(3k + 1)(3k + 2)(k + 1)], and
(3k + 1)(3k + 2)(k + 1) is an integer because k is an
integer and sums and products of integers are integers.

6. No, 29/3 ∼= 9.67, which is not an integer.

7. Yes, 66 = (−3)(−22).
8. Yes, 6a(a + b) = 3a[2(a + b)], and 2(a + b) is an integer

because a and b are integers and sums and products of inte-
gers are integers.

10. No, 34/7 ∼= 4.86, which is not an integer.

12. Yes, n2 − 1 = (4k + 1)2 − 1 = (16k2 + 8k + 1)− 1 =
16k2 + 8k = 8(2k2 + k), and 2k2 + k is an integer because
k is an integer and sums and products of integers are inte-
gers.

14. (a) a | b (b) b = a ·r (c) −r (d) a | (−b)
15. Proof: Suppose a, b, and c are any integers such that a | b

and a | c. [We must show that a | (b + c).] By definition of
divides, b = ar and c = as for some integers r and s. Then

b + c = ar + as = a(r + s) by algebra.

Let t = r + s. Then t is an integer (being a sum of inte-
gers), and thus b + c = at where t is an integer. By defini-
tion of divides, then, a | (b + c) [as was to be shown].

16. Hint: The conclusion to be shown is that a certain quantity
is divisible by a. To show this, you need to show that the
quantity equals a times some integer.

17. a. ∀ integers n if n is a multiple of 3 then −n is a multiple
of 3.

b. The statement is true. Proof: Suppose n is any integer
that is a multiple of 3. [We must show that −n is a mul-
tiple of 3.] By definition of multiple, n = 3k for some
integer k. Then

−n = −(3k) by substitution

= 3(−k) by algebra.

Hence, by definition of multiple, −n is a multiple of 3 [as
was to be shown].

18. Counterexample: Let a = 2 and b = 1. Then a + b =
2+ 1 = 3, and so 3 | (a + b) because 3 = 3 ·1. On the other
hand, a − b = 2− 1 = 1, and 3 � 1 because 1/3 is not an
integer. Thus 3 � (a − b). [So the hypothesis of the statement
is true but its conclusion is false.]

19. Start of proof : Suppose a, b, and c are any integers such
that a divides b. [We must show that a divides bc.]

22. Hint: The given statement can be rewritten formally as
“∀ integers n, if n is divisible by 6, then n is divisible by
2.” This statement is true.

24. The statement is true. Proof: Suppose a, b, and c are any
integers such that a | b and a | c. [We must show that a | (2b −
3c).] By definition of divisibility, we know that b = am
and c = an for some integers m and n. It follows that
2b − 3c = 2(am)− 3(an) (by substitution) = a(2m − 3n)
(by basic algebra). Let t = 2m − 3n. Then t is an integer
because it is a difference of products of integers. Hence
2b − 3c = at , where t is an integer, and so a | (2b − 3c)
by definition of divisibility [as was to be shown].

25. The statement is false. Counterexample: Let a = 2, b = 3,
and c = 8. Then a | c because 2 divides 8, but ab � c
because ab = 6 and 6 does not divide 8.

26. Hint: The statement is true.

27. Hint: The statement is false.

32. No. Each of these numbers is divisible by 3, and so their
sum is also divisible by 3. But 100 is not divisible by 3.
Thus the sum cannot equal $100.

36. a. The sum of the digits is 54, which is divisible by 9.
Therefore, 637,425,403,705,125 is divisible by 9 and
hence also divisible by 3 (by transitivity of divisibil-
ity). Because the rightmost digit is 5, then 637,425,
403,705,125 is not divisible by 5. And because the two
rightmost digits are 25, which is not divisible by 4, then
637,425,403,705,125 is not divisible by 4.

37. a. 1176 = 23 ·3 ·72
38. a. p2e11 p2e22 . . . p2ekk

b. n = 42, 25 ·3 ·52 ·73 ·n = 58802

40. a. Because 12a = 25b, the unique factorization theorem
guarantees that the standard factored forms of 12a and
25b must be the same. Thus 25b contains the factors
22 ·3(= 12). But since neither 2 nor 3 divide 25, the fac-
tors 22 ·3 must all occur in b, and hence 12 | b. Similarly,
12a contains the factors 52 = 25, and since 5 is not a
factor of 12, the factors 52 must occur in a. So 25 | a.

41. Hint: 458 ·885 = (32 ·5)8 · (23 ·11)5 = 316 ·58 ·215 ·115.
How many factors of 10 does this number contain?

42. a. 6! = 6 ·5 ·4 ·3 ·2 ·1 = 2 ·3 ·5 ·2 ·2 ·3 ·2 = 24 ·32 ·5
44. Proof: Suppose n is a nonnegative integer whose deci-

mal representation ends in 0. Then n = 10m + 0 = 10m
for some integer m. Factoring out a 5 yields n = 10m =
5(2m), and 2m is an integer since m is an integer. Hence
10m is divisible by 5, which is what was to be shown.
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47. Hint: You may take it as a fact that for any positive
integer k,

10k = 99 . . . 9︸ ︷︷ ︸ + 1; that is,
k of these

10k = 9 ·10k−1 + 9 ·10k−2 + · · · + 9 ·101 + 9 ·100 + 1.

Section 4.4
1. q = 7, r = 7 3. q = 0, r = 36

5. q = −5, r = 10 7. a. 4 b. 7

11. a. When today is Saturday, 15 days from today is two
weeks (which is Saturday) plus one day (which is Sun-
day). Hence DayN should be 0. According to the for-
mula, when today is Saturday, DayT = 6, and so when
N = 15,

DayN = (DayT + N ) mod 7

= (6+ 15) mod 7

= 21 mod 7 = 0, which agrees.

13. Solution 1: 30 = 4 ·7+ 2. Hence the answer is two days
after Monday, which is Wednesday.
Solution 2:By the formula, the answer is (1+ 30)mod 7 =
31 mod 7 = 3, which is Wednesday.

14. Hint: There are two ways to solve this problem. One is
to find that 1,000 = 7 ·142+ 6 and note that if today is
Tuesday, then 1,000 days from today is 142 weeks plus
6 days from today. The other way is to use the formula
DayN = (DayT + N ) mod 7, with DayT = 2 (Tuesday)
and N = 1000.

16. Because d | n, n = dq + 0 for some integer q. Thus the
remainder is 0.

18. Proof: Suppose n is any odd integer. By definition of odd,
n = 2q + 1 for some integer q. Then n2 = (2q + 1)2 =
4q2 + 4q + 1 = 4(q2 + q)+ 1 = 4q(q + 1)+ 1. By the
result of exercise 17, the product q(q + 1) is even, so
q(q + 1) = 2m for some integer m. Then, by substitution,
n2 = 4 ·2m + 1 = 8m + 1.

20. Because a mod 7 = 4, the remainder obtained when a
is divided by 7 is 4, and so a = 7q + 4 for some inte-
ger q. Multiplying this equation through by 5 gives that
5a = 35q + 20 = 35q + 14+ 6 = 7(5q + 2)+ 6. Because
q is an integer, 5q + 2 is also an integer, and so 5a =
7 · (an integer)+ 6. Thus, because 0 ≤ 6 < 7, the remain-
der obtained when 5a is divided by 7 is 6, and so
5a mod 7 = 6.

23. Proof: Suppose n is any [particular but arbitrarily chosen]
integer such that n mod 5 = 3. Then the remainder obtained
when n is divided by 5 is 3, and so n = 5q + 3 for some
integer q. By substitution,

n2 = (5q + 3)2 = 25q2 + 30q + 9

= 25q2 + 30q + 5+ 4 = 5(5q2 + 6q + 1)+ 4.

Because products and sums of integers are integers, 5q2 +
6q + 1 is an integer, and hence n2 = 5 · (an integer) + 4.

Thus, since 0 ≤ 4 < 5, the remainder obtained when n2 is
divided by 5 is 4, and so n2 mod 5 = 4.

26. Hint: You need to show that (1) for all nonnegative inte-
gers n and positive integers d, if n is divisible by d then
n mod d = 0; and (2) for all nonnegative integers n and
positive integers d, if n mod d = 0 then n is divisible by d .

27. Proof: Suppose n is any integer. By the quotient-remainder
theorem with d = 3, there exist integers q and r such that
n = 3q + r and 0 ≤ r < 3. But the only nonnegative inte-
gers r that are less than 3 are 0, 1, and 2. Therefore,
n = 3q + 0 = 3q, or n = 3q + 1, or n = 3q + 2 for some
integer q.

28. a. Proof: Suppose n, n + 1, and n + 2 are any three con-
secutive integers. [We must show that n(n + 1)(n + 2) is
divisible by 3.] By the quotient-remainder theorem, n
can be written in one of the three forms, 3q, 3q + 1, or
3q + 2 for some integer q. We divide into cases accord-
ingly.
Case 1 (n = 3q for some integer q): In this case,

n(n + 1)(n + 2)

= 3q(3q + 1)(3q + 2) by substitution

= 3 · [q(3q + 1)(3q + 2)] by factoring out a 3.

Let m = q(3q + 1)(3q + 2). Then m is an integer
because q is an integer, and sums and products of inte-
gers are integers. By substitution,

n(n + 1)(n + 2) = 3m where m is an integer.

And so, by definition of divisible, n(n + 1)(n + 2) is
divisible by 3.
Case 2 (n = 3q+ 1 for some integer q): In this case,

n(n + 1)(n + 2)

= (3q + 1)((3q + 1)+ 1)((3q + 1)+ 2)
by substitution

= (3q + 1)(3q + 2)(3q + 3)

= (3q + 1)(3q + 2)3(q + 1)

= 3 · [(3q + 1)(3q + 2)(q + 1)] by algebra.

Let m = (3q + 1)(3q + 2)(q + 1). Then m is an inte-
ger because q is an integer, and sums and products of
integers are integers. By substitution,

n(n + 1)(n + 2) = 3m where m is an integer.

And so, by definition of divisible, n(n + 1)(n + 2) is
divisible by 3.
Case 3 (n = 3q+ 2 for some integer q): In this case,

n(n + 1)(n + 2)

= (3q + 2)((3q + 2)+ 1)((3q + 2)+ 2)
by substitution

= (3q + 2)(3q + 3)(3q + 4)

= (3q + 2)3(q + 1)(3q + 4)

= 3 · [(3q + 2)(q + 1)(3q + 4)] by algebra
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Let m = (3q + 2)(q + 1)(3q + 4). Then m is an inte-
ger because q is an integer, and sums and products of
integers are integers. By substitution,

n(n + 1)(n + 2) = 3m where m is an integer.

And so, by definition of divisible, n(n + 1)(n + 2) is
divisible by 3.
In each of the three cases, n(n + 1)(n + 2) was seen to
be divisible by 3. But by the quotient-remainder theo-
rem, one of these cases must occur. Therefore, the prod-
uct of any three consecutive integers is divisible by 3.

b. For all integers n, n(n + 1)(n + 2) mod 3 = 0.

29. a. Hint: Given any integer n, begin by using the quotient-
remainder theorem to say that n can be written in
one of the three forms: n = 3q, or n = 3q + 1, or
n = 3q + 2 for some integer q. Then divide into three
cases according to these three possibilities. Show that
in each case either n2 = 3k for some integer k, or
n2 = 3k + 1 for some integer k. For instance, when
n = 3q + 2, then n2 = (3q + 2)2 = 9q2 + 12q + 4 =
3(3q2 + 4q + 1)+ 1, and 3q2 + 4q + 1 is an integer
because it is a sum of products of integers.

31. b. If m2 − n2 = 56, then 56 = (m + n)(m − n). Now
56 = 23 ·7, and by the unique factorization theorem, this
factorization is unique. Hence the only representations
of 56 as a product of two positive integers are 56 =
7 ·8 = 14 ·4 = 28 ·2 = 56 ·1. By part (a), m and n must
both be odd or both be even. Thus the only solutions
are either m + n = 14 and m − n = 4 or m + n = 28
and m − n = 2. This gives either m = 9 and n = 5 or
m = 15 and n = 13 as the only solutions.

32. Under the given conditions, 2a − (b + c) is even.
Proof: Suppose a, b, and c are any integers such that a − b
is even and b − c is even. [We must show that 2a − (b + c)
is even.] Note first that 2a − (b + c) = (a − b)+ (a − c).
Also note that (a − b)+ (b − c) is a sum of two even inte-
gers and hence is even by Example 4.2.3 #1. But (a − b)+
(b − c) = a − c, and so a − c is even. Hence 2a − (b + c)
is a sum of two even integers, and thus it is even [as was to
be shown].

34. Hint: Express n using the quotient-remainder theorem with
d = 3.

36. Hint: Use the quotient-remainder theorem (as in Exam-
ple 3.4.5) to say that n = 4q, n = 4q + 1, n = 4q + 2, or
n = 4q + 3 and divide into cases accordingly.

38. Hint: Given any integer n, consider the two cases where n
is even and where n is odd.

39. Hint: Given any integer n, analyze the sum n + (n + 1)+
(n + 2)+ (n + 3).

42. Hint: Use the quotient-remainder theorem to say that n
must have one of the forms 6q, 6q + 1, 6q + 2, 6q + 3,
6q + 4, or 6q + 5 for some integer q.

44. Hint: There are three cases: Either x and y are both pos-
itive, or they are both negative, or one is positive and the
other is negative.

47. a. 7609+ 5 = 7614

49. Answer to first question: No. Counterexample: Let m =
1, n = 3, and d = 2. Then m mod d = 1 and n mod d = 1
but m �= n.
Answer to second question: Yes. Proof: Suppose m, n, and
d are integers such that m mod d = n mod d . Let r =
m mod d = n mod d. By definition of mod, m = dp + r
and n = dq + r for some integers p and q. Then m − n =
(dp + r)− (dq + r) = d(p − q). But p − q is an integer
(being a difference of integers), and so m − n is divisible
by d by definition of divisible.

Section 4.5
1. �37.999� = 37, �37.999� = 38

3. �−14.00001� = −15, �−14.00001� = −14
8. �n/7�. The floor notation is more appropriate. If the ceiling

notation is used, two different formulas are needed, depend-
ing on whether n/7 is an integer or not. (What are they?)

10. a. (i) (2050 +
⌊
2049
4

⌋
−
⌊
2049
100

⌋
+
⌊
2049
400

⌋)
mod 7

= (2050+ 512− 20+ 5) mod 7 = 2547 mod 7

= 6,which corresponds to a Saturday

b. Hint:One day is added every four years, except that each
century the day is not added unless the century is a mul-
tiple of 400.

12. Proof: Suppose n is any even integer. By definition of even,
n = 2k for some integer k. Then⌊n

2

⌋
=

⌊
2k

2

⌋
= �k� = k because k is an integer

and k ≤ k < k − 1.

But k = n

2
because n = 2k.

Thus, on the one hand,
⌊
n
2

⌋
= k, and on the other hand,

k = n
2 . It follows that

⌊
n
2

⌋
= n

2 [as was to be shown].

14. False. Counterexample: Let x = 2 and y = 1.9. Then
�x − y� = �2− 1.9� = �0.1� = 0, whereas �x� − �y� =
�2� − �1.9� = 2 = 1 = 1.

15. True. Proof: Suppose x is any real number. Let m = �x�.
By definition of floor, m ≤ x < m + 1. Subtracting 1 from
all parts of the inequality gives that

m − 1 ≤ x − 1 < m,

and so, by definition of floor, �x − 1� = m − 1. It follows
by substitution that �x − 1� = �x� − 1.

17. Proof for the case where n mod 3 = 2:
In the case where n mod 3 = 2, then n = 3q + 2 for some
integer q by definition of mod . By substitution,
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⌊n
3

⌋
=

⌊
3q + 2

3

⌋

=
⌊
3q

3
+ 2

3

⌋

=
⌊
q + 2

3

⌋
= q because q is an integer and

q ≤ q + 2/3 < q + 1.

But

q = n − 2

3
by solving n = 3q + 2 for q .

Thus, on the one hand,
⌊
n
3

⌋
= q, and on the other hand,

q = n−2
3 . It follows that

⌊
n
3

⌋
= n−2

3 .

18. Hint: This is false.

19. Hint: This is true.

23. Proof: Suppose x is a real number that is not an integer.
Let �x� = n. Then, by definition of floor and because n is
not an integer, n < x < n + 1. Multiplying both sides by
−1 gives −n > −x > −n − 1, or equivalently, −n − 1 <

−x < −n. Since −n − 1 is an integer, it follows by defini-
tion of floor that �−x� = −n − 1. Hence

�x� + �−x� = n + (−n − 1) = n − n − 1 = −1,
as was to be shown.

25. Hint: Let n =
⌊
x
2

⌋
and consider the two cases: n is even

and n odd.

26. Proof: Suppose x is any real number such that

x − � x � <
1
2 . Multiplying both sides by 2 gives

2x − 2�x� < 1, or 2x < 2�x� + 1.

Now by definition of floor, �x� ≤ x . Hence, 2�x� ≤ 2x .
Putting the two inequalities involving 2x together gives

2�x� ≤ 2x < 2�x� + 1.

Thus, by definition of floor (and because 2�x� is an inte-
ger), �2x� = 2�x�. This is what was to be shown.

30. This incorrect proof exhibits circular reasoning. The equal-

ity
⌊
n
2

⌋
= (n−1)

2 is what is to be shown. By substituting

2k + 1 for n into both sides of the equality and working
from the result as though it were known to be true, the proof
assumes the truth of the conclusion to be proved.

Section 4.6
1. (a) A contradiction

(b) A positive real number
(c) x
(d) Both sides by 2
(e) Contradiction

3. Proof: Suppose not. That is, suppose there is an integer n
such that 3n + 2 is divisible by 3. [We must derive a contra-
diction.] By definition of divisibility, 3n + 2 = 3k for some
integer k. Subtracting 3n from both sides gives that 2 =
3k − 3n = 3(k − n). So, by definition of divisibility, 3 | 2.

But by Theorem 4.3.1 this implies that 3 ≤ 2, which con-
tradicts the fact that 3 > 2. [Thus for all integers n, 3n + 2 is
not divisible by 3.]

5. Negation of statement: There is a greatest even integer.
Proof of statement: Suppose not. That is, suppose there is
a greatest even integer; call it N . Then N is an even inte-
ger, and N ≥ n for every even integer n. [We must deduce
a contradiction.] Let M = N + 2. Then M is an even inte-
ger since it is a sum of even integers, and M > N since
M = N + 2. This contradicts the supposition that N ≥ n
for every even integer n. [Hence the supposition is false and
the statement is true.]

8. (a) a rational number
(b) an irrational number
(c) a

b
(d) c

d
(e) a

b −
c
d

(f) integers
(g) integers
(h) zero product property
(i) rational

9. a. The mistake in this proof occurs in the second sentence
where the negation written by the student is incorrect:
Instead of being existential, it is universal. The prob-
lem is that if the student proceeds in a logically correct
manner, all that is needed to reach a contradiction is one
example of a rational and an irrational number whose
sum is irrational. To prove the given statement, however,
it is necessary to show that there is no rational number
and no irrational number whose sum is rational.

10. Proof by contradiction: Suppose not. That is, suppose there
is an irrational number x such that the square root of x is
rational. [We must derive a contradiction.] By definition of
rational,

√
x = a

b for some integers a and b with b �= 0. By
substitution,

(
√
x)2 =

(a
b

)2
,

and so, by algebra,

x = a2

b2
.

But a2 and b2 are both products of integers and thus are
integers, and b2 is nonzero by the zero product property.

Thus a2

b2 is rational. It follows that x is both irrational
and rational, which is a contradiction. [This is what was to
be shown.]

11. Proof: Suppose not. That is, suppose ∃ a nonzero rational
number x and an irrational number y such that xy is ratio-
nal. [We must derive a contradiction.] By definition of ratio-
nal, x = a/b and xy = c/d for some integers a, b, c, and
d with b �= 0 and d �= 0. Also a �= 0 because x is nonzero.
By substitution, xy = (a/b)y = c/d. Solving for y gives
y = bc/ad. Now bc and ad are integers (being products of
integers) and ad �= 0 (by the zero product property). Thus,
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4.6 Solutions and Hints to Selected Exercises A-27

by definition of rational, y is rational, which contradicts
the supposition that y is irrational. [Hence the supposition
is false and the statement is true.]

13. Hint: Suppose n2 − 2 is divisible by 4, and consider the two
cases where n is even and n is odd. (An alternative solution
uses Proposition 4.6.4.)

14. Hint: a2 = c2 − b2 = (c − b)(c + b)

15. Hint: (1) For any integer c, if 2 divides c, then 4 divides c2.
(2) The result of exercise 13 may be helpful.

16. Hint: Suppose a, b, and c are odd integers, z is a solution
to ax2 + bx + c = 0, and z is rational. Then z = p/q for
some integers p and q with q �= 0. We may assume p and
q have no common factor. (Why? If p and q do have a com-
mon factor, we can divide out their greatest common factor
to obtain two integers p′ and q ′ that (1) have no common
factor and (2) satisfy the equation z = p′/q ′. Then we can
redefine q = q ′ and p = p′.) Note that because p and q
have no common factor, they are not both even. Substi-
tute p/q into ax2 + bx + c = 0, and multiply through by
q2. Show that (1) the assumption that p is even leads to
a contradiction, (2) the assumption that q is even leads to
a contradiction, and (3) the assumption that both p and
q are odd leads to a contradiction. The only remaining
possibility is that both p and q are even, which has been
ruled out.

18. a. 5 | n b. 5 | n2 c. 5k d. (5k)2 e. 5 | n2

19. Proof (by contraposition): [To go by contraposition, we must
prove that ∀ positive real numbers, r and s, if r ≤ 10 and
s ≤ 10, then rs ≤ 100.] Suppose r and s are positive
real numbers and r ≤ 10 and s ≤ 10. By the algebra of
inequalities, rs ≤ 100. [To derive this fact, multiply both
sides of r ≤ 10 by s to obtatin rs ≤ 10s. And multiply both
sides of s ≤ 10 by 10 to obtain 10s ≤ 10 ·10 = 100. By tran-
sitivity of ≤, then, rs ≤ 100.] But this is what was to be
shown.

21. a. Proof by contradiction: Suppose not. That is, suppose
there is an integer n such that n2 is odd and n is even.
Show that this supposition leads logically to a contra-
diction.

b. Proof by contraposition: Suppose n is any integer such
that n is not odd. Show that n2 is not odd.

23. a. The contrapositive is the statement “∀ real numbers x ,
if −x is not irrational, then x is not irrational.” Equiva-
lently (because −(−x) = x), “∀ real numbers x , if x is
rational then −x is rational.”
Proof by contraposition: Suppose x is any rational num-
ber. [We must show that −x is also rational.] By defini-
tion of rational, x = a/b for some integers a and b with
b �= 0. Then x = −(a/b) = (−a)/b. Since both−a and
b are integers and b �= 0,−x is rational [as was to be
shown].

b. Proof by contradiction: Suppose not. [We take the nega-
tion and suppose it to be true.] That is, suppose ∃ an irra-
tional number x such that−x is rational. [We must derive
a contradiction.] By definition of rational, −x = a/b for

some integers a and b with b �= 0. Multiplying both
sides by −1 gives x = −(a/b) = −a/b. But −a and b
are integers (since a and b are) and b �= 0. Thus x is a
ratio of the two integers −a and b with b �= 0. Hence x
is rational (by definition of rational), which is a contra-
diction. [This contradiction shows that the supposition is
false, and so the given statement is true.]

25. Hints: See the answer to exercise 21 and look carefully at
the two proofs for Proposition 4.6.4.

26. a. Proof by contraposition: Suppose a, b, and c are any
[particular but arbitrarily chosen] integers such that a | b.
[We must show that a | bc.] By definition of divides, b =
ak for some integer k. Then bc = (ak)c = a(kc). But
kc is an integer (because it is a product of the integers k
and c). Hence a | bc by definition of divisibility [as was
to be shown].

b. Proof by contradiction: Suppose not. [We take the nega-
tion and suppose it to be true.] Suppose ∃ integers a, b,
and c such that a |/ bc and a | b. Since a | b, there exists
an integer k such that b = ak by definition of divides.
Then bc = (ak)c = a(kc) [by the associative law of alge-
bra]. But kc is an integer (being a product of integers),
and so a | bc by definition of divides. Thus a |/ bc and
a | bc, which is a contradiction. [This contradiction shows
that the supposition is false, and hence the given statement
is true.]

27. a. Hint: The contrapositive is “For all integers m and n, if
m and n are not both even and m and n are not both odd,
then m + n is not even.” Equivalently: “For all integers
m and n, if one of m and n is even and the other is odd,
then m + n is odd.”

b. Hint: The negation of the given statement is the follow-
ing: ∃ integers m and n such that m + n is even, and
either m is even and n is odd, or m is odd and n is
even.

30. The negation of “Every integer is rational” is “There is
at least one integer that is irrational” not “Every integer
is irrational.” Deriving a contradiction from an incorrect
negation of a statement does not prove the statement is
true.

31. a. Proof: Suppose r, s, and n are integers and r >
√
n and

s >
√
n. Note that r and s are both positive because

√
n

cannot be negative. By multiplying both sides of the first
inequality by s and both sides of the second inequal-
ity by

√
n (Appendix A, T20), we have that rs >

√
ns

and
√
ns >

√
n
√
n = n. Thus, by the transitive law for

inequality (Appendix A, T18), rs > n.

32. a.
√
667 ∼= 25.8, and so the possible prime factors to be

checked are 2, 3, 5, 7, 11, 13, 17, 19, and 23. Test-
ing each in turn shows that 667 is not prime because
667 = 23 ·29.

b.
√
557 ∼= 23.6, and so the possible prime factors to be

checked are 2, 3, 5, 7, 11, 13, 17, 19, and 23. Testing
each in turn shows that none divides 557. Therefore, 557
is prime.
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34. a.
√
9269 ∼= 96.3, and so the possible prime factors to be

checked are all among those you found for exercise
33. Testing each in turn shows that 9,269 is not prime
because 9,269 = 13 ·713.

b.
√
9103 ∼= 95.4, and so the possible prime factors to be

checked are all among those you found for exercise 33.
Testing each in turn shows that none divides 9,103.
Therefore, 9,103 is prime.

35. Hint: Is it possible for all three of n − 4, n − 6, and n − 8
to be prime?

Section 4.7
1. The value of

√
2 given by a calculator is an approximation.

Calculators can give exact values only for numbers that can
be represented using at most the number of decimal digits
in the calculator display. In particular, every number in a
calculator display is rational, but even many rational num-
bers cannot be represented exactly. For instance, consider
the number formed by writing a decimal point and follow-
ing it with the first 1 million digits of

√
2. By the discussion

in Section 4.2, this number is rational, but you could not
infer this from the calculator display.

3. Proof by contradiction: Suppose not. That is, suppose 6−
7
√
2 is rational. [We must prove a contradiction.] By defini-

tion of rational, there exist integers a and b �= 0 with

6− 7
√
2 = a

b
.

Then
√
2 = 1

−7
(a
b
− 6

) by subtracting 6 from both
sides and dividing both sides
by −7

and so
√
2 = a − 6b

−7b by the rules of algebra.

But a − 6b and −7b are both integers (since a and b are
integers and products and difference of integers are inte-
gers), and−7b �= 0 by the zero product property. Hence

√
2

is a ratio of the two integers a − 6b and−7b with−7b �= 0,
so
√
2 is a rational number (by definition of rational). This

contradicts the fact that
√
2 is irrational, and so the suppo-

sition is false and 6− 7
√
2 is irrational.

5. This is false.
√
4 = 2 = 2/1, which is rational.

7. Counterexample: Let x = √2 and let y = −√2. Then x
and y are irrational, but x + y = 0 = 0/1, which is ratio-
nal.

9. True.
Formal version of the statement: ∀ positive real numbers r ,
if r is irrational, then

√
r is irrational.

Proof by contraposition: Suppose r is any positive real
number such that

√
r is rational. [We must show that r is

rational.] By definition of rational,
√
r = a

b for some inte-

gers a and b with b �= 0. Then r = (√
r
)2 = (

a
b

)
2 = a2

b2 .

But both a2 and b2 are integers because they are products
of integers, and b2 �= 0 by the zero product property. Thus
r is rational [as was to be shown].
(The statement may also be proved by contradiction.)

13. Hint: Can you think of any “nice” integers x and y that are
greater than 1 and have the property that x2 = y3?

16. a. Proof by contradiction: Suppose not. That is, suppose
there is an integer n such that n = 3q1 + r1 = 3q2 + r2,
where q1, q2, r1, and r2 are integers, 0 ≤ r1 < 3, 0 ≤
r2 < 3, and r1 �= r2. By interchanging the labels for r1
and r2 if necessary, we may assume that r2 > r1. Then
3(q1 − q2) = r2 − r1 > 0, and because both r1 and r2
are less than 3, either r2 − r1 = 1 or r2 − r1 = 2. So
either 3(q1 − q2) = 1 or 3(q1 − q2) = 2. The first case
implies that 3 | 1, and hence, by Theorem 4.3.1, that
3 ≤ 1, and the second case implies that 3 | 2, and hence,
by Theorem 4.3.1, that 3 ≤ 2. These results contradict
the fact that 3 is greater than both 1 and 2. Thus in either
case we have reached a contradiction, which shows that
the supposition is false and the given statement is true.

b. Proof by contradiction: Suppose not. That is, suppose
there is an integer n such that n2 is divisible by 3 and
n is not divisible by 3. [We must deduce a contradic-
tion.] By definition of divisible, n2 = 3q for some inte-
ger q, and by the quotient-remainder theorem and part
(a), n = 3k + 1 or n = 3k + 2 some integer k.
Case 1 (n = 3k + 1 for some integer k): In this case

n2 = (3k + 1)2 = 9k2 + 6k + 1 = 3(3k2 + 2k)+ 1.

Let s = 3k2 + 2k. Then n2 = 3s + 1, and s is an inte-
ger because it is a sum of products of integers. It follows
that n2 = 3q = 3s + 1 for some integers q and s, which
contradicts the result of part (a).
Case 2 (n = 3k + 2 for some integer k): In this case

n2 = (3k + 2)2 = 9k2 + 12k + 4 = 3(3k2 + 6k + 1)+ 1.

Let t = 3k2 + 6k + 1. Then n2 = 3t + 1, and t is an
integer because it is a sum of products of integers. It
follows that n2 = 3q = 3t + 1 for some integers q and
t , which contradicts the result of part (a).
Thus in either case, a contradiction is reached, which
shows that the supposition is false and the given state-
ment is true.

c. Proof by contradiction: Suppose not. That is, suppose√
3 is rational. By definition of rational,

√
3 = a

b for
some integers a and b with b �= 0. Without loss of gen-
erality, assume that a and b have no common factor. (If
not, divide both a and b by their greatest common fac-
tor to obtain integers a′ and b′ with the property that a′

and b′ have no common factor and
√
3 = a′

b′ . Then rede-
fine a = a′ and b = b′.) Squaring both sides of

√
3 = a

b

gives 3 = a2

b2 , and multiplying both sides by b2 gives

3b2 = a2(∗).

Thus a2 is divisible by 3, and so, by part (b), a is also
divisible by 3. By definition of divisibility, then, a = 3k
for some integer k, and so

a2 = 9k2(∗∗).
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Substituting equation (**) into equation (∗) gives 3b2 =
9k2, and dividing both sides by 3 yields

b2 = 3k2.

Hence b2 is divisible by 3, and so, by part (b), b is also
divisible by 3. Consequently, both a and b are divisible
by 3, which contradicts the assumption that a and b have
no common factor. Thus the supposition is false, and so√
3 is irrational.

18. Hint: The proof is a generalization of the one given in the
solution for exercise 16(a).

19. Hint: (1) The parts of the proof are similar to those in exer-
cise 16(b) and 16(c). (2) Use the result of exercise 18.

20. Hint: This statement is true. If a2 − 3 = 9b, then a2 =
9b + 3 = 3(3b + 1), and so a2 is divisible by 3. Hence,
by exercise 16(b), a is divisible by 3. Thus a2 = (3c)2 for
some integer c.

21. Proof by contradiction: Suppose not. That is, suppose
√
2 is

rational. [We will show that this supposition leads to a contra-
diction.] By definition of rational, we may write

√
2 = a/b

for some integers a and b with b �= 0. Then 2 = a2/b2, and
so a2 = 2b2. Consider the prime factorizations for a2 and
for 2b2. By the unique factorization of integers theorem,
these factorizations are unique except for the order in which
the factors are written. Now because every prime factor of
a occurs twice in the prime factorization of a2, the prime
factorization of a2 contains an even number of 2’s. (If 2
is a factor of a, then this even number is positive, and if
2 is not a factor of a, then this even number is 0.) On the
other hand, because every prime factor of b occurs twice
in the prime factorization of b2, the prime factorization of
2b2 contains an odd number of 2’s. Therefore, the equation
a2 = 2b2 cannot be true. So the supposition is false, and
hence

√
2 is irrational.

23. Hint: By the result of exercise 22,
√
6 is irrational.

25. Hint:
2 ·3 ·5 ·7+ 1

2
= 3 ·5 ·7+ 1

2
and

2 ·3 ·5 ·7+ 1

3
= 2 ·5 ·7+ 1

3
.

26. Hint: You can deduce that p = 3.

27. a. Hint: For example, N4 = 2 ·3 ·5 ·7+ 1 = 211.

29. Hint: By Theorem 4.3.4 (divisibility by a prime) there is a
prime number p such that p | (n! − 1). Show that the suppo-
sition that p ≤ n leads to a contradiction. It will then follow
that n < p < n!.

30. Hint: Every odd integer can be written as 4k + 1 or as
4k + 3 for some integer k. (Why?) If p1 p2 . . . pn + 1 =
4k + 1, then 4 | p1 p2 . . . pn . Is this possible?

31. a. Hint: Prove the contrapositive: If for some integer
n > 2 that is not a power of 2, xn + yn = zn has a
positive integer solution, then for some prime number
p > 2, x p + y p = z p has a positive integer solution.
Note that if n = kp, then xn = xkp = (xk)p .

32. Existence proof: When n = 2, then n2 − 1 = 3, which is
prime. Hence there exists a prime number of the form
n2 − 1, where n is an integer and n ≥ 2.

Uniqueness proof (by contradiction): Suppose to the con-
trary that m is another integer satisfying the given con-
ditions. That is, m > 2 and m2 − 1 is prime. [We must
derive a contradiction.] Factor m2 − 1 to obtain m2 − 1 =
(m − 1)(m + 1)). But m > 2, and so m − 1 > 1 and m +
1 > 1. Hence m2 − 1 is not prime, which is a contradic-
tion. [This contradiction shows that the supposition is false,
and so there is no other integer m > 2 such that n2 − 1 is
prime.]

Uniqueness proof (direct): Suppose m is any integer such
that m ≥ 2 and m2 − 1 is prime. [We must show that
m = 2.] By factoring, m2 − 1 = (m − 1)(m + 1). Since
m2 − 1 is prime, either m − 1 = 1 or m + 1 = 1. But
m + 1 ≥ 2+ 1 = 3. Hence, by elimination, m − 1 = 1,
and so m = 2.

34. Proof (by contradiction): Suppose not. That is, suppose
there are two distinct real numbers a1 and a2 such that for
all real numbers r ,

(1) a1 + r = r and (2) a2 + r = r

Then

a1 + a2 = a2 by (1) with r = a2

and

a2 + a1 = a1 by (2) with r = a1.

It follows that

a2 = a1 + a2 = a2 + a1 = a1

which implies that a2 = a1. But this contradicts the suppo-
sition that a1 and a2 are distinct. [Thus the supposition is false
and there is at most one real number a such that a + r = r for
all real numbers r .]
Proof (direct): Suppose a1 and a2 are real numbers such that
for all real numbers r ,

(1) a1 + r = r and (2) a2 + r = r

Then

a1 + a2 = a2 by (1) with r = a2

and

a2 + a1 = a1 by (2) with r = a1.

It follows that

a2 = a1 + a2 = a2 + a1 = a1.

Hence a2 = a1. [Thus there is at most one real number a such
that a + r = r for all real numbers r .]
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Section 4.8
1. z = 0 3. a. z = 18 4. a = 17

12
6.

Iteration Number
0 1 2 3

a 26

d 7

q 0 1 2 3

r 26 19 12 5

8. a.
A 69 19 9

q 2

d 1

n 1

p 4

9. gcd(27, 72) = 9 10. gcd(5, 9) = 1

13. Divide the larger number, 1,188, by the smaller, 385,
to obtain a quotient of 3 and a remainder of 33. Next
divide 385 by 33 to obtain a quotient of 11 and a
remainder of 22. Then divide 33 by 22 to obtain a quo-
tient of 1 and a remainder of 11. Finally, divide 22
by 11 to obtain a quotient of 2 and a remainder of 0.
Thus, by Lemma 4.8.2, gcd(1188, 385) = gcd(385, 33) =
gcd(33, 22) = gcd(22, 11) = gcd(11, 0), and by Lemma
4.8.1, gcd(11, 0) = 11. So gcd (1188, 385) = 11.

14. Divide the larger number, 1,177, by the smaller, 509, to
obtain a quotient of 2 and a remainder of 159. Next divide
509 by 159 to obtain a quotient of 3 and a remainder
of 32. Next divide 159 by 32 to obtain a quotient of 4
and a remainder of 31. Then divide 32 by 31 to obtain
a quotient of 1 and a remainder of 1. Finally, divide 31
by 1 to obtain a quotient of 31 and a remainder of 0.
Thus, by Lemma 4.8.2, gcd(1177, 509) = gcd(509, 159) =
gcd(159, 32) = gcd(32, 31) = gcd(31, 1) = gcd(1, 0), and
by Lemma 4.8.1, gcd(1, 0) = 1. So gcd(1177, 509) = 1.

17. A 1,001

B 871

r 130 91 39 13 0

b 871 130 91 39 13 0

a 1,001 871 130 91 39 13

gcd 13

19. Hint: Divide the proof into two parts. In part 1 suppose a
and b are any positive integers such that a | b, and derive the
conclusion that gcd(a, b) = a. To do this, note that because
it is also the case that a | a, a is a common divisor of a and
b. Thus, by definition of greatest common divisor, a is less
than or equal to the greatest common divisor of a and b.
In symbols, a ≤ gcd(a, b). Then show that a ≥ gcd(a, b)

by using Theorem 4.3.1. In part 2 of the proof, suppose a
and b are any positive integers such that gcd(a, b) = a, and
deduce that a | b.

22. a. Hint 1: If a = dq − r , then −a = −dq + r = −dq −
d + d − r = d(−q − 1)+ (d − r).

Hint 2: If 0 ≤ r < d, then 0 ≥ −r > −d. Add d to all
parts of this inequality and see what results.

23. a. Proof: Suppose a, d, q, and r are integers such that a =
dq + r and 0 ≤ r < d. [We must show that q =

⌊
a
d

⌋
and r = a−d

⌊
a
d

⌋
.] Solving a = dq + r for r gives

r = a − dq, and substituting into 0 ≤ r < d gives 0 ≤
a − dq < d. Add dq to both sides to obtain dq ≤
a < d + dq = d(q + 1). Then divide through by d to
obtain q ≤ a

d < q + 1. Therefore, by definition of floor,⌊
a
d

⌋
= q. Finally, substitution into a = dq + r gives

a = d
⌊
a
d

⌋
+ r , and subtracting d

⌊
a
d

⌋
from both sides

yields r = a − d
⌊
a
d

⌋
[as was to be shown].

24. b. Iteration Number
0 1 2 3 4

a 630 294 294 252 210

b 336 336 42 42 42

gcd

Iteration Number
5 6 7 8 9

a 168 126 84 42 0

b 42 42 42 42 42

gcd 42

25. a. lcm(12, 18) = 36

26. Proof: Part 1: Let a and b be positive integers, and sup-
pose d = gcd(a, b) = 1cm(a, b). By definition of great-
est common divisor and least common multiple, d >

0, d | a, d | b, a | d, and b | d. Thus, in particular, a = dm
and d = an for some integers m and n. By substitution,
a = dm = (an)m = anm. Dividing both sides by a gives
1 = nm. But the only divisors of 1 are 1 and −1 (Theorem
4.3.2), and som = n = ±1. Since both a and d are positive,
m = n = 1, and hence a = d. Similar reasoning shows that
b = d also, and so a = b.
Part 2: Given any positive integers a and b such that
a = b, we have gcd(a, b) = gcd(a, a) = a and 1cm(a, b)
= 1cm(a, a) = a, and hence gcd(a, b) = 1cm(a, b).

29. Hint: Divide the proof into two parts. In part 1, suppose a
and b are any positive integers, and deduce that

gcd(a, b) · 1cm(a, b) ≤ ab.

Derive this result by showing that 1cm (a, b) ≤ ab
gcd(a,b) .

To do this, show that ab
gcd(a,b) is a multiple of both
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5.1 Solutions and Hints to Selected Exercises A-31

a and b. For instance, to see that ab
gcd(a,b) is a multiple of

b, note that because gcd (a, b) divides a, a = gcd (a, b) ·k
for some integer k, and thus ab = gcd(a, b) ·kb. Divide
both sides by gcd(a, b) to obtain ab

gcd(a,b) = kb. But since

k is an integer, this equation implies that ab
gcd(a,b) is

a multiple of b. The argument that ab
gcd(a,b) is a mul-

tiple of a is almost identical. In part 2 of the proof,
use the definition of least common multiple to show that

ab
1cm(a,b) | a and ab

1cm(a,b) | b. Conclude that ab
1cm(a,b) ≤

gcd(a, b) and hence that ab ≤ gcd(a, b) · 1cm(a, b).

Section 5.1
1. 1

11 ,
2
12 ,

3
13 ,

4
14 3. 1,−1

3 ,
1
9 ,− 1

27 5. 0, 0, 2, 2

8. g1 = �log2 1� = 0
g2 = �log2 2� = 1, g3 = �log2 3� = 1
g4 = �log2 4� = 2, g5 = �log2 5� = 2
g6 = �log2 6� = 2, g7 = �log2 7� = 2
g8 = �log2 8� = 3, g9 = �log2 9� = 3
g10 = �log2 10� = 3, g11 = �log2 11� = 3
g12 = �log2 12� = 3, g13 = �log2 13� = 3
g14 = �log2 14� = 3, g15 = �log2 15� = 3

When n is an integral power of 2, gn is the exponent of that
power. For instance, 8 = 23 and g8 = 3. More generally, if
n = 2k , where k is an integer, then gn = k. All terms of
the sequence from gn up to gm , where m = 2k+1 is the next
integral power of 2, have the same value as gn , namely k.
For instance, all terms of the sequence from g8 through g15
have the value 3.

Exercises 10–16 have more than one correct answer.

10. an = (−1)n , where n is an integer and n ≥ 1.

11. an = (n − 1)(−1)n , where n is an integer and n ≥ 1.

12. an = n

(n + 1)2
, where n is an integer and n ≥ 1

14. an = n2

3n
, where n is an integer and n ≥ 1

18. a. 2+ 3+ (−2)+ 1+ 0+ (−1)+ (−2) = 1
b. a0 = 2
c. a2 + a4 + a6 = −2+ 0+ (−2) = −4
d. 2 ·3 ·(−2) ·1 ·0 · (−1) ·(−2) = 0

19. 2+ 3+ 4+ 5+ 6 = 20 20. 22 ·32 ·42 = 576

23. 1(1+ 1) = 2

27.
(
1

1
− 1

2

)
+
(
1

2
− 1

3

)
+
(
1

3
− 1

4

)
+
(
1

4
− 1

5

)

+
(
1

5
− 1

6

)
+
(
1

6
− 1

7

)
+
(
1

7
− 1

8

)
+
(
1

8
− 1

9

)

+
(
1

9
− 1

10

)
+
(

1

10
− 1

11

)
= 1− 1

11
= 10

11

29. (−2)1 + (−2)2 + (−2)3 + · · · + (−2)n
= −2+ 22 − 23 + · · · + (−1)n2n

31.
n+1∑
k=0

1
k! = 1

0! + 1
1! + 1

2! + · · · + 1
(n+1)!

33. 1
1! = 1

35.
(

1
1+1

) (
2

2+1
) (

3
3+1

) =( 12) (23) (34) = 1
4

37.
k+1∑
k=1

i(i !) =
k∑

k=1
i(i !)+ (k + 1)(k + 1)!

40.
k∑

k=1
i3 + (k + 1)3 =

k+1∑
k=1

i3

Exercises 43–52 have more than one correct answer.

43.
7∑

k=1
(−1)k+1k2 or

6∑
k=0

(−1)k(k + 1)2

46.
6∑
j=2

(−1) j j
( j + 1)( j + 2)

or
7∑

k=3

(−1)k+1(k − 1)

k(k + 1)

47.
5∑

i=0
(−1)i r i 49.

n∑
k=1

k3

51.
n−1∑
i=0

(n − i)

53. When k = 0, then i = 1. When k = 5, then i = 6. Since
i = k + 1, then k = i − 1. Thus,

k(k − 1) = (i − 1)((i − 1)− 1) = (i − 1)(i − 2),

and so
5∑

k=0
k(k − 1) =

6∑
i=1

(i − 1)(i − 2)

55. When i = 1, then j = 0. When i = n + 1, then j = n.
Since j = i − 1, then i = j + 1. Thus,

(i − 1)2

i ·n = (( j + 1)− 1)2

( j + 1) ·n = j2

jn + n
.

(Note that n is constant as far as the sum is concerned.)

So
∑n+1

i=1
(i − 1)2

i ·n =
∑n

j=0
j2

jn + n
.

56. When i = 3, then j = 2. When i = n then j = n − 1.
Since j = i − 1, then i = j + 1. Thus,

n∑
i=3

i

i + n − 1
=

n−1∑
j=2

j + 1

( j + 1)+ n − 1

=
n−1∑
j=2

j + 1

j + n
.

59.
n∑

k=1
[3(2k − 3)+ (4− 5k)]

=
n∑

k=1
[(6k − 9)+ (4− 5k)] =

n∑
k=1

(k − 5)
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A-32 Appendix B Solutions and Hints to Selected Exercises

62.
4 ·3 ·2 ·1
3 ·2 ·1 = 4

65.
n(n − 1)(n − 2) · · · 3 ·2 ·1
(n − 1)(n − 2) · · · 3 ·2 ·1 = n

66.
(n − 1)(n − 2) · · · 3 ·2 ·1

(n + 1)n(n − 1)(n − 2) · · · 3 ·2 ·1 =
1

n(n + 1)

68.
[(n + 1)n(n − 1)(n − 2) · · · 3 ·2 ·1]2
[n(n − 1)(n − 2) · · · 3 ·2 ·1]2 = (n + 1)2

69.
n(n − 1)(n − 2) · · · (n − k + 1)(n − k)(n − k − 1) · · · 2 ·1

(n − k)(n − k − 1) · · · 2 ·1
= n(n − 1)(n − 2) · · · (n − k + 1)

71.
(
5
3

)
= 5!

(3!)(5−3)! =
5 ·4 ·3 ·2 ·1

(3 ·2 ·1)(2 ·1) = 10

73.
(
3
0

)
= 3!

(0!)(3−0)! =
3!

(1)(3!) = 1

75.
(

n
n − 1

)
= n!

(n−1)!(n−(n−1))! =
n(n−1)!

(n−1)!(n−n+1)! =
n
1 = n

77. a. Proof: Let n be an integer such that n ≥ 2. By definition
of factorial,

n! =
⎧⎨
⎩
2 ·1 if n = 2
3 ·2 ·1 if n = 3
n ·(n − 1) · · · 2 ·1 if n > 3.

In each case, n! has a factor of 2, and so n! = 2k for
some integer k. Then

n! + 2 = 2k + 2 by substitution

= 2(k + 1) by factoring out the 2.

Since k + 1 is an integer, n! + 2 is divisible by 2 [as was
to be shown].

c. Hint: Consider the sequence m! + 2,m! + 3,m! + 4,
. . . ,m! + m.

78. Proof: Suppose n and r are nonnegative integers with
r + 1 ≤ n. The right-hand side of the equation to be
shown is

n − r

r + 1
·
(
n
r

)
= n − r

r + 1
· n!
r !(n − r)!

= n − r

r + 1
· n!
r !(n − r) ·(n − r − 1)!

= n!
(r + 1)! ·(n − r − 1)!

= n!
(r + 1)! ·(n − (r + 1))!

=
(

n
r + 1

)
,

which is the left-hand side of the equation to be shown.

80. a. m − 1, sum +a[i + 1]

81. 0 remainder = r [6] = 1
2 1 remainder = r [5] = 0

2 2 remainder = r [4] = 1
2 5 remainder = r [3] = 1

2 11 remainder = r [2] = 0
2 22 remainder = r [1] = 1

2 45 remainder = r [0] = 0
2 90

Hence 9010 = 10110102.

84. a 23

i 0 1 2 3 4 5

q 23 11 5 2 1 0

r[0] 1

r[1] 1

r[2] 1

r[3] 0

r[4] 1

88. 0 remainder 1 = r [2] = 116
16 1 remainder 1 = r [1] = 116

16 17 remainder 15 = r [0] = F16
16 287

Hence 28710 = 11F16.

Section 5.2
1. Proof: Let P(n) be the property “n cents can be obtained

by using 3-cent and 8-cent coins.”

Show that P(14) is true:

Fourteen cents can be obtained by using two 3-cent coins
and one 8-cent coin.

Show that for all integers k ≥ 14, if P(k) is true, then
P(k+ 1) is true:

Suppose k cents (where k ≥ 14) can be obtained using 3-
cent and 8-cent coins. [Inductive hypothesis] We must show
that k + 1 cents can be obtained using 3-cent and 8-cent
coins. If the k cents includes an 8-cent coin, replace it by
three 3-cent coins to obtain a total of k + 1 cents. Other-
wise the k cents consists of 3-cent coins exclusively, and so
there must be least five 3-cent coins (since the total amount
is at least 14 cents). In this case, replace five of the 3-
cent coins by two 8-cent coins to obtain a total of k + 1
cents. Thus, in either case, k + 1 cents can be obtained
using 3-cent and 8-cent coins. [This is what we needed to
show.]

[Since we have proved the basis step and the inductive step,
we conclude that the given statement is true for all integers
n ≥ 14.]
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5.2 Solutions and Hints to Selected Exercises A-33

3. a. P(1) is “12 = 1 · (1+1) · (2 ·1+1)
6 .” P(1) is true because

12 = 1 and
1 · (1+1) · (2+1)

6 = 2 ·3
6 = 1 also.

b. P(k) is “12 + 22 + · · · + k2 = k(k+1)(2k+1)
6 .”

c. P(k + 1) is “12 + 22 + · · · + (k + 1)2

= (k+1)((k+1)+1)(2 · (k+1)+1)
6 .”

d. Must show: If for some integer k ≥ 1,

12 + 22 + · · · + k2 = k(k+1)(2k+1)
6 , then

12 + 22 + · · · + (k + 1)2

= (k+1)[(k+1)+1][(2(k+1)+1)]
6 .

5. a. 12 b. k2

c. 1+ 3+ 5+ · · · + [2(k + 1)− 1]
d. (k + 1)2

e. the odd integer just before 2k + 1 is 2k − 1
f. inductive hypothesis

6. Proof: For the given statement, the property P(n) is the
equation

2+ 4+ 6+ · · · + 2n = n2 + n. ← P(n)

Show that P(1) is true:

To prove P(1), we must show that when 1 is substituted
into the equation in place of n, the left-hand side equals
the right-hand side. But when 1 is substituted for n, the
left-hand side is the sum of all the even integers from 2
to 2 ·1, which is just 2, and the right-hand side is 12 + 1,
which also equals 2. Thus P(1) is true.

Show that for all integers k ≥ 1, if P(k) is true then P(k+1)
is true:

Let k be any integer with k ≥ 1, and suppose P(k) is true.
That is, suppose

2+ 4+ 6+ · · · + 2k = k2 + k. ← P(k)
inductive hypothesis

We must show that P(k + 1) is true. That is, we must show
that

2+ 4+ 6+ · · · + 2(k + 1) = (k + 1)2 + (k + 1).

Because (k + 1)2 + (k + 1) = k2 + 2k + 1+ k + 1 =
k2 + 3k + 2, this is equivalent to showing that

2+ 4+ 6+ · · · + 2(k + 1) = k2 + 3k + 2. ← P(k + 1)

But the left-hand side of P(k + 1) is

2+ 4+ 6+ · · · + 2(k + 1)

= 2+ 4+ 6+ · · · + 2k + 2(k + 1)
by making the next-to-last
term explicit

= (k2 + k)+ 2(k + 1) by substitution from the
inductive hypothesis

= k2 + 3k + 2, by algebra,

and this is the right-hand side of P(k + 1). Hence P(k + 1)
is true.
[Since both the basis step and the inductive step have been
proved, P(n) is true for all integers n ≥ 1.]

8. Proof: For the given statement, the property P(n) is the
equation

1+ 2+ 22 + · · · + 2n = 2n+1 − 1. ← P(n)

Show that P(0) is true:

The left-hand side of P(0) is 1, and the right-hand side is
20+1 − 1 = 2− 1 = 1 also. Thus P(0) is true.

Show that for all integers k ≥ 0, if P(k) is true then P(k+1)
is true:

Let k be any integer with k ≥ 0, and suppose P(k) is true.
That is, suppose

1+ 2+ 22 + · · · + 2k = 2k+1 − 1. ← P(k) inductive
hypothesis

We must show that P(k + 1) is true. That is, we must show
that

1+ 2+ 22 + · · · + 2k+1 = 2(k+1)+1 − 1,

or, equivalently,

1+ 2+ 22 + · · · + 2k+1 = 2k+2 − 1.← P(k + 1)

But the left-hand side of P(k + 1) is

1+ 2+ 22 + · · · + 2k+1

= 1+ 2+ 22 + · · · + 2k + 2k+1

by making the next-to-last
term explicit

= (2k+1 − 1)+ 2k+1 by substitution from the
inductive hypothesis

= 2 ·2k+1 − 1 by combining like terms

= 2k+2 − 1, by the laws of exponents,

and this is the right-hand side of P(k + 1). Hence the prop-
erty is true for n = k + 1.

[Since both the basis step and the inductive step have been
proved, P(n) is true for all integers n ≥ 0.]

10. Proof: For the given statement, the property is the equation

12 + 22 + 32 + · · · + n2

= n(n + 1)(2n + 1)

6
. ← P(n)

Show that P(1) is true:

The left-hand side of P(1) is 12 = 1, and the right-hand

side is
1(1+1)(2 ·1+1)

6 = 2 ·3
6 = 1 also. Thus P(1)

is true.

Show that for all integers k ≥ 1, if P(k) is true then P(k+1)
is true:

Let k be any integer with k ≥ 1, and suppose P(k) is true.
That is, suppose
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12 + 22 + 32 + · · · + k2

= k(k + 1)(2k + 1)

6
. ← P(k)

inductive hypothesis

We must show that P(k + 1) is true. That is, we must show
that

12 + 22 + 32 + · · · + (k + 1)2

= (k + 1)((k + 1)+ 1)(2(k + 1)+ 1)

6
,

or, equivalently,

12 + 22 + 32 + · · · + (k + 1)2

= (k + 1)(k + 2)(2k + 3)

6
. ← P(k + 1)

But the left-hand side of P(k + 1) is

12 + 22 + 32 + · · · + (k + 1)2

= 12 + 22 + 32 + · · · + k2 + (k + 1)2 by making the next-
to-last term explicit

= k(k + 1)(2k + 1)

6
+ (k + 1)2

by substitution from the
inductive hypothesis

= k(k + 1)(2k + 1)

6
+ 6(k + 1)2

6

because
6
6 = 1

= k(k + 1)(2k + 1)+ 6(k + 1)2

6
by adding fractions

= (k + 1)[k(2k + 1)+ 6(k + 1)]
6

by factoring out
(k + 1)

= (k + 1)(2k2 + 7k + 6)

6
by multiplying out and
combining like terms

= (k + 1)(k + 2)(2k + 3)

6
because (k + 2)
(2k+ 3)= 2k2+ 7k+ 6,

and this is the right-hand side of P(k + 1). Hence the prop-
erty is true for n = k + 1.

[Since both the basis step and the inductive step have been
proved, P(n) is true for all integers n ≥ 1.]

13. Proof: For the given statement, the property P(n) is the
equation

n−1∑
i=1

i(i + 1) = n(n − 1)(n + 1)

3
. ← P(n)

Show that P(2) is true:

The left-hand side of P(2) is
∑1

i=1 i(i+1) =1·(1+1)=2,

and the right-hand side is
2(2−1)(2+1)

3 = 6
3 = 2 also.

Thus P(2) is true.

Show that for all integers k ≥ 2, if P(k) is true then
P(k+ 1) is true:

Let k be any integer with k ≥ 2, and suppose P(k) is true.
That is, suppose

k−1∑
i=1

i(i + 1) = k(k − 1)(k + 1)

3
← P(k)
inductive hypothesis

We must show that P(k + 1) is true. That is, we must show
that

(k+1)−1∑
i=1

i(i + 1) = (k + 1)((k + 1)− 1)((k + 1)+ 1)

3
,

or, equivalently,

k∑
i=1

i(i + 1) = (k + 1)k(k + 2)

3
. ← P(k + 1)

But the left-hand side of P(k + 1) is

k∑
i=1

i(i + 1)

=
k−1∑
i=1

i(i + 1)+ k(k + 1)
by writing the last
term separately

= k(k − 1)(k + 1)

3
+ k(k + 1)

by substitution from the
inductive hypothesis

= k(k − 1)(k + 1)

3
+ 3k(k + 1)

3
because

3
3 = 1

= k(k − 1)(k + 1)+ 3k(k + 1)

3
by adding the fractions

= k(k + 1)[(k − 1)+ 3]
3

by factoring out k(k + 1)

= k(k + 1)(k + 2)

3
, by algebra,

and this is the right-hand side of P(k + 1). Hence P(k + 1)
is true.

[Since both the basis step and the inductive step have been
proved, P(n) is true for all integers n ≥ 0.]

15. Hint: To prove the basis step, show that
∑1

i=1 i(i !) =
(1+ 1)! − 1. To prove the inductive step, suppose that∑k

i=1 i(i !) = (k + 1)! − 1 for some integer k ≥ 1 and show
that

∑k+1
i=1 i(i !) = (k + 2)! − 1. Note that [(k + 1)! − 1] +

(k + 1)[(k + 1)!] = (k + 1)![1+ (k + 1)] − 1.

18. Hints: sin2 x + cos2 x = 1, cos(2x) = cos2 x − sin2 x =
1− 2 sin2 x , sin(a + b) = sin a cos b + cos a sin b,
sin(2x)= 2 sin x cos x, cos(a + b)= cos a cos b −
sin a sin b.

20. 4+ 8+ 12+ 16+ · · · + 200 = 4(1+ 2+ 3+ · · · + 50)

= 4
(
50 ·51

2

)
= 5100

22. 3+ 4+ 5+ 6+ · · · + 1000 = (1+ 2+ 3+ 4+ · · · +
1000)− (1+ 2) =

(
1000 · 1001

2

)
−3 = 500,497

24.
(k−1)((k−1)+1)

2 = k(k−1)
2
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5.3 Solutions and Hints to Selected Exercises A-35

25. a.
226 − 1

2− 1
= 226 − 1 = 67,108,863

b. 2+ 22 + 23 + · · · + 226

= 2(1+ 2+ 22 + · · · + 225)

= 2 ·(67,108,863) by part (a)

= 134,217,726

28.

(
1

2

)n+1
− 1

1

2
− 1

=
1

2n+1
− 1

−1

2

=
(

1

2n+1
− 1

)
(−2)

= − 2

2n+1
+ 2 = 2− 1

2n

30. Hint: c + (c + d)+ (c + 2d)+ · · · + (c + nd)

= (n + 1) c + d · n(n+1)2 .

33. In the inductive step, both the inductive hypothesis and
what is to be shown are wrong. The inductive hypothesis
should be

Suppose that for some integer k ≥ 1,

12 + 22 + · · · + k2 = k(k + 1)(2k + 1)

6
.

And what is to be shown should be

12 + 22 + · · · + (k + 1)2

= (k + 1)((k + 1)+ 1)(2(k + 1)+ 1)

6
.

34. Hint: See the Caution note for Example 5.1.8.

35. Hint: See the subsection Proving an Equality on page 254.

37. Hint: Form the sum n2 + (n + 1)2 + (n + 2)2 + · · · +
(n + (p − 1))2, and show that it equals

pn2 + 2n(1+ 2+ 3+ · · · + (p − 1))

+ (1+ 4+ 9+ 16+ · · · + (p − 1)2).

Section 5.3
1. General formula:

∏n
i=2

(
1− 1

i

) = 1
n for all integers n ≥ 2.

Proof (by mathematical induction): Let the property P(n)
be the equation

n∏
i=2

(
1− 1

i

)
= 1

n
. ← P(n)

Show that P(2) is true:

The left-hand side of P(2) is
∏2

i=2
(
1− 1

i

)
= 1− 1

2 =
1
2 ,

which equals the right-hand side.

Show that for all integers k ≥ 2, if P(k) is true then
P(k+ 1) is also true:

Suppose that k is any integer with k ≥ 2 such that

k∏
i=2

(
1− 1

i

)
= 1

k .
← P(k)
Inductive hypothesis

We must show that
k+1∏
i=2

(
1− 1

i

)
= 1

k+1 . ← P(k + 1)

But by the laws of algebra and substitution from the induc-
tive hypothesis, the left-hand side of P(k + 1) is

k+1∏
i=2

(
1− 1

i

)

=
k∏

i=2

(
1− 1

i

)(
1− 1

k + 1

)

=
(
1

k

)(
1− 1

k + 1

)
=

(
1

k

)(
(k + 1)− 1

k + 1

)

= 1

k + 1
which is the right-hand side of P(k + 1)

[as was to be shown].

3. General formula: 1
1 ·3 + 1

3 ·5 + · · · + 1
(2n−1)(2n+1) =

n
2n+1 for all integers n ≥ 1.

Proof (by mathematical induction): Let the property P(n)
be the equation

1
1 ·3 + 1

3 ·5 + · · · + 1
(2n−1)(2n+1) =

n
2n+1 .

Show that P(1) is true:

The left-hand side of P(1) equals 1
1 ·3 , and the right-hand

side equals 1
2 ·1+1 . But both of these equal 1

3 , so P(1) is
true.

Show that for any integer k ≥ 1, if P(k) is true then
P(k+ 1) is true:

Suppose that k is any integer with k ≥ 1, and

1

1 ·3 +
1

3 ·5 + · · · +
1

(2k − 1)(2k + 1)
= k

2k + 1
↑ P(k) inductive hypothesis

We must show that

1

1 ·3 +
1

3 ·5 + · · · +
1

(2(k + 1)− 1)(2(k + 1)+ 1)

= k + 1

2(k + 1)+ 1
.

or, equivalently,

1

1 ·3 +
1

3 ·5 + · · · +
1

(2k + 1)(2k + 3)
= k + 1

2k + 3
.

↑ P(k + 1)
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But the left-hand side of P(k + 1) is

1

1 ·3 +
1

3 ·5 + · · · +
1

(2k + 1)(2k + 3)

= 1

1 ·3 +
1

3 ·5 + · · · +
1

(2k − 1)(2k + 1)

+ 1

(2k + 1)(2k + 3)

= k

2k + 1
+ 1

(2k + 1)(2k + 3)
by inductive
hypothesis

= k(2k + 3)

(2k + 1)(2k + 3)
+ 1

(2k + 1)(2k + 3)

= 2k2 + 3k + 1

(2k + 1)(2k + 3)

= (2k + 1)(k + 1)

(2k + 1)(2k + 3)

= k + 1

2k + 3
by algebra,

and this is the right-hand side of P(k + 1) [as was to be
shown].

4. Hint 1: The general formula is

1− 4+ 9− 16+ · · · + (−1)n−1n2

= (−1)n−1(1+ 2+ 3+ · · · + n) in expanded form

Or:
n∑

i=1
(−1)i−1i2 = (−1)n−1

(
n∑

i=1
i

)
in summation
notation.

Hint 2: In the proof, use the fact that

1+ 2+ 3+ · · · + n =
n∑

i=1
i = n(n + 1)

2
.

6. a. P(0) is “50 − 1 is divisible by 4.” P(0) is true because
50 − 1 = 0, which is divisible by 4.

b. P(k) is “5k − 1 is divisible by 4.”
c. P(k + 1) is “5k+1 − 1 is divisible by 4.”
d. Must show: If for some integer k ≥ 0, 5k − 1 is divisible

by 4, then 5k+1 − 1 is divisible by 4.

8. Proof (by mathematical induction): For the given state-
ment, the property is the sentence “5n − 1 is divisible by 4.”

Show that P(0) is true:

P(0) is the sentence “50 − 1 is divisible by 4.” But
50 − 1 = 1− 1 = 0, and 0 is divisible by 4 because 0 =
4 ·0. Thus P(0) is true.

Show that for all integers k ≥ 0, if P(k) is true then
P(k+ 1) is true:

Let k be any integer with k ≥ 0, and suppose P(k) is true.
That is, suppose 5k − 1 is divisible by 4. [This is the induc-
tive hypothesis.] We must show that P(k + 1) is true. That
is, we must show that 5k+1 − 1 is divisible by 4. Now

5k+1 − 1 = 5k ·5− 1

= 5k · (4+ 1)− 1 = 5k ·4+ (5k − 1). (*)

By the inductive hypothesis 5k − 1 is divisible by 4, and so
5k − 1 = 4r for some integer r . By substitution into equa-
tion (∗),

5k+1 − 1 = 5k ·4+ 4r = 4(5k + r).

But 5k + r is an integer because k and r are integers. Hence,
by definition of divisibility, 5k+1 − 1 is divisible by 4 [as
was to be shown].

An alternative proof of the inductive step goes as follows:
Suppose that for some integer k ≥ 0, 5k − 1 is divisible
by 4. Then 5k − 1 = 4r for some integer r , and hence
5k = 4r + 1.
It follows that 5k+1 = 5k ·5 = (4r + 1) ·5 = 20r + 5. Sub-
tracting 1 from both sides gives that 5k+1 − 1 = 20r + 4 =
4(5r + 1). But 5r + 1 is an integer, and so, by definition of
divisibility, 5k+1 − 1 is divisible by 4.

11. Proof (by mathematical induction): For the given state-
ment, the property P(n) is the sentence “32n − 1 is divisible
by 8.”

Show that P(0) is true:

P(0) is the sentence “32 · 0 − 1 is divisible by 8.” But
32 · 0 − 1 = 1− 1 = 0, and 0 is divisible by 8 because
0 = 8 ·0. Thus P(0) is true.

Show that for all integers k ≥ 0, if P(k) is true then
P(k+ 1) is true:

Let k be any integer with k ≥ 0, and suppose P(k) is true.
That is, suppose 32k − 1 is divisible by 8. [This is the induc-
tive hypothesis.] We must show that P(k + 1) is true. That
is, we must show that 32(k+1) − 1 is divisible by 8, or equiv-
alently, 32k+2 − 1 is divisible by 8. Now

32k+2 − 1 = 32k ·32 − 1 = 32k ·9− 1

= 32k · (8+ 1)− 1 = 32k ·8+ (32k − 1) · (*)

By the inductive hypothesis 32k − 1 is divisible by 8, and
so 32k − 1 = 8r for some integer r . By substitution into
equation (∗),

32k+2 − 1 = 32k ·8+ 8r = 8(32k + r).

But 32k + r is an integer because k and r are integers.
Hence, by definition of divisibility, 32k+2 − 1 is divisible
by 8 [as was to be shown].

13. Hint: xk+1 − yk+1 = xk+1 − x · yk + x · yk − yk+1

= x · (xk − yk)+ yk ·(x − y)

14. Hint 1: (k + 1)3 − (k + 1) = k3 + 3k2 + 3k + 1− k − 1

= (k3 − k)+ 3k2 + 3k

= (k3 − k)+ 3k(k + 1)

Hint 2: k(k + 1) is a product of two consecutive integers.
By Theorem 4.4.3, one of these must be even.
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16. Proof (by mathematical induction): For the given state-
ment, let the property P(n) be the inequality 2n < (n + 1)!.
Show that P(2) is true:

P(2) says that 22 < (2+ 1)!. The left-hand side is 22 = 4
and the right-hand side is 3! = 6. So, because 4 < 6, P(2)
is true.

Show that for all integers k ≥ 2, if P(k) is true then
P(k+ 1) is true:

Let k be any integer with k ≥ 2, and suppose P(k) is
true. That is, suppose 2k < (k + 1)!. [This is the induc-
tive hypothesis.] We must show that P(k + 1) is true. That
is, we must show that 2k+1 < ((k + 1)+ 1), or, equiva-
lently, 2k+1 < (k + 2)!. By the laws of exponents and the
inductive hypothesis,

2k+1 = 2 ·2k < 2(k + 1)!. (*)

Since k ≥ 2, then 2 < k + 2, and so

2(k + 1)! < (k + 2)(k + 1)! = (k + 2)!. (**)

Combining inequalities (∗) and (∗∗) gives

2k+1 < (k + 2)!
[as was to be shown].

19. Proof (by mathematical induction): For the given state-
ment, let the property P(n) be the inequality n2 < 2n .

Show that P(5) is true:

P(5) says that 52 < 25. But 52 = 25 and 25 = 32, and
25 < 32. Hence P(5) is true.

Show that for any integer k ≥ 5, if P(k) is true then
P(k+ 1) is true:

Let k be any integer with k ≥ 5, and suppose P(k) is true.
That is, suppose k2 < 2k . [This is the inductive hypothesis.]
We must show that P(k + 1) is true. That is, we must show
that (k + 1)2 < 2k+1. But

(k + 1)2 = k2 + 2k + 1 < 2k + 2k + 1

by inductive hypothesis
Also, by Proposition 5.3.2,

2k + 1 < 2k Prop. 5.3.2 applies since k ≥ 5 ≥ 3.

Putting these inequalities together gives

(k + 1)2 < 2k + 2k + 1 < 2k + 2k = 2k+1

[as was to be shown].

24. Proof (by mathematical induction): For the given state-
ment, let the property P(n) be the equation an = 3 ·7n−1.
Show that P(1) is true:

The left-hand side of P(1) is a1, which equals 3 by defi-
nition of the sequence. The right-hand side is 3 ·71−1 = 3
also. Thus P(1) is true.

Show that for all integers k ≥ 1, if P(k) is true then
P(k+ 1) is true:

Let k be any integer with k ≥ 1, and suppose P(k) is
true. That is, suppose ak = 3 ·7k−1. [This is the inductive

hypothesis.] We must show that P(k + 1) is true. That
is, we must show that ak+1 = 3 ·7(k+1)−1, or, equivalently,
ak+1 = 3 ·7k . But the left-hand side of P(k + 1) is

ak+1 = 7ak
by definition of the sequence
a1, a2, a3, . . .

= 7(3 ·7k−1) by inductive hypothesis

= 3 ·7k by the laws of exponents,

and this is the right-hand side of P(k + 1) [as was to be
shown].

30. The inductive step fails for going from n = 1 to n = 2,
because when k = 1,

A = {a1, a2} and B = {a1},
and no set C can be defined to have the properties claimed
for the C in the proof. The reason is that C = {a1} = B,
and so an element of A, namely a2, is not in either B or C .

Since the inductive step fails for going from n = 1 to
n = 2, the truth of the following statement is never proved:
“All the numbers in a set of two numbers are equal to each
other.” This breaks the sequence of inductive steps, and so
none of the statements for n > 2 is proved true either.

Here is an explanation for what happens in terms of
the domino analogy. The first domino is tipped backward
(the basis step is proved). Also, if any domino from the
second onward tips backward, then it tips the one behind
it backward (the inductive step works for n ≥ 2). However,
when the first domino is tipped backward, it does not tip the
second one backward. So only the first domino falls down;
the rest remain standing.

31. Hint: Is the basis step true?

32. Hint: Consider the problem of trying to cover a 3× 3
checkerboard with trominoes. Place a checkmark in certain
squares as shown in the following figure.

� �

� �

Observe that no two squares containing checkmarks can be
covered by the same tromino. Since there are four check-
marks, four tromiones would be needed to cover these
squares. But, since each tromino covers three squares, four
trominoes would cover twelve squares, not the nine squares
in this checkerboard. It follows that such a covering is
impossible.

34. a. Hint: For the inductive step, note that a 3× (2(k + 1))
checkerboard can be split into a 3× 2k checkerboard and
a 3× 2 checkerboard.

35. b. Hint: Consider a 3× 5 checkerboard, and refer to the
hint for exercise 32. Figure out a way to place six
checkmarks in squares so that no two of the squares that
contain checkmarks can be covered by the same tromino.

37. Hint: Use proof by contradiction. If the statement is false,
then there exists some ordering of the integers from 1
to 30, say x1, x2, . . . , x30, such that x1 + x2 + x3 < 45,
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x2 + x3 + x4 < 45, . . . , and x30 + x1 + x2 < 45. Evalu-
ate the sum of all these inequalities using the fact that∑30

i=1 xi =
∑30

i=1 i and Theorem 4.2.2.

38. Hint:Given k + 1 a’s and k + 1 b’s arrayed around the out-
side of the circle, there has to be at least one location where
an a is followed by a b as one travels in the clockwise direc-
tion. In the inductive step, temporarily remove such an a
and the b that follows it, and apply the inductive hypothesis.

Section 5.4
1. Proof (by strong mathematical induction): Let the property

P(n) be the sentence “an is odd.”

Show that P(1) and P(2) are true:

Observe that a1 = 1 and a2 = 3 and both 1 and 3 are odd.
Thus P(1) and P(2) are true.

Show that for any integer k ≥ 2, if P(i) is true for all inte-
gers i with 1 ≤ i ≤ k, then P(k+ 1) is true:

Let k ≥ 2 be any integer, and suppose ai is odd for all
integers i with 1 ≤ i ≤ k. [This is the inductive hypothe-
sis.] We must show that ak+1 is odd. We know that ak+1 =
ak−1 + 2ak by definition of a1, a2, a3, . . . . Moreover, k − 1
is less than k + 1 and is greater than or equal to 1 (because
k ≥ 2). Thus, by inductive hypothesis, ak−1 is odd. Also,
every term of the sequence is an integer (being a sum of
products of integers), and so 2ak is even by definition of
even. Hence ak+1 is the sum of an odd integer and an even
integer and hence is odd (by exercise 19, in Section 4.1).
[This is what was to be shown.]

4. Proof (by strong mathematical induction): Let the property
P(n) be the inequality dn ≤ 1.

Show that P(1) and P(2) are true:

Observe that d1 = 9
10 and d2 = 10

11 and both 9
10 ≤ 1 and

10
11 ≤ 1. Thus P(1) and P(2) are true.

Show that for any integer k ≥ 2, if P(i) is true for all inte-
gers i with 1 ≤ i ≤ k, then P(k+ 1) is true:

Let k ≥ 2 be any integer, and suppose di ≤ 1 for all
integers i with 1 ≤ i ≤ k. [This is the inductive hypoth-
esis.] We must show that dk+1 ≤ 1. But, by defini-
tion of d1, d2, d3, . . . , dk+1 = dk ·dk−1. Now dk ≤ 1 and
dk−1 ≤ 1 by inductive hypothesis [since 1 ≤ k < k + 1 and
1 ≤ k − 1 < k + 1 because k ≥ 2.]. Consequently, dk+1 =
dk ·dk−1 ≤ 1 because if two positive numbers are each less
than or equal to 1, then their product is less than or equal to
1. [If 0 < a ≤ 1 and 0 < b ≤ 1, then multiplying a ≤ 1 by b
gives ab ≤ b, and since b ≤ 1, then by transitivity of order,
ab ≤ 1.] This is what was to be shown. [Since we have
proved both the basis step and the inductive step, we conclude
that dn ≤ 1 for all integers n ≥ 1.]

5. Proof (by strong mathematical induction): Let the property
P(n) be the equation en = 5 ·3n + 7 ·2n .
Show that P(0) and P(1) are true.

We must show that e0 = 5 ·30 + 7 ·20 and e1 = 5 ·31 +
7 ·21. The left-hand side of the first equation is 12 (by

definition of e0, e1, e2, . . .), and its right-hand side is 5 ·1+
7 ·1 = 12 also. The left-hand side of the second equation is
29 (by definition of e0, e1, e2, . . .), and its right-hand side is
5 ·3+ 7 ·2 = 29 also. Thus P(0) and P(1) are true.

Show that for any integer k ≥ 1, if P(i) is true for all inte-
gers i with 0 ≤ i ≤ k, then P(k+ 1) is true:

Let k ≥ 1 be an integer, and suppose ei = 5 ·3i + 7 ·2i for
all integers i with 0 ≤ i ≤ k. [Inductive hypothesis]Wemust
show that ek+1 = 5 ·3k+1 + 7 ·2k+1.
But

ek+1 = 5ek − 6ek−1 by definition of e0, e1, e2, . . .

= 5(5 ·3k + 7 ·2k)− 6(5 ·3k−1 + 7 ·2k−1)
by inductive hypothesis

= 25 ·3k + 35 ·2k − 30 ·3k−1 − 42 ·2k−1
= 25 ·3k + 35 ·2k − 10 ·3 ·3k−1 − 21 ·2 ·2k−1
= 25 ·3k + 35 ·2k − 10 ·3k − 21 ·2k
= (25− 10) ·3k + (35− 21) ·2k
= 15 ·3k + 14 ·2k
= 5 ·3 ·3k + 7 ·2 ·2k
= 5 ·3k+1 + 7 ·2k+1 by algebra.

[This is what was to be shown.]

10. Hint: In the basis step, show that P(14), P(15), and P(16)
are all true. For the inductive step, note that k + 1 =
[(k + 1)− 3] + 3, and if k ≥ 16, then (k + 1)− 3 ≥ 14.

11. Proof (by strong mathematical induction): Let the property
P(n) be the sentence

“A jigsaw puzzle consisting of n pieces
takes n − 1 steps to put together.”

Show that P(1) is true:
A jigsaw puzzle consisting of just one piece does not take
any steps to put together. Hence it is correct to say that it
takes zero steps to put together.
Show that for any integer k ≥ 1, if P(i) is true for all inte-
gers i with 1 ≤ i ≤ k then P(k+ 1) is true:

Let k ≥ 1 be an integer and suppose that for all integers
i with 1 ≤ i ≤ k, a jigsaw puzzle consisting of i pieces
takes i − 1 steps to put together. [This is the inductive
hypothesis.] We must show that a jigsaw puzzle consist-
ing of k + 1 pieces takes k steps to put together. Con-
sider assembling a jigsaw puzzle consisting of k + 1 pieces.
The last step involves fitting together two blocks. Suppose
one of the blocks consists of r pieces and the other con-
sists of s pieces. Then r + s = k + 1, and 1 ≤ r ≤ k and
1 ≤ s ≤ k. Thus by inductive hypothesis, the numbers of
steps required to assemble the blocks are r − 1 and s − 1,
respectively. Then the total number of steps required to
assemble the puzzle is (r − 1)+ (s − 1)+ 1 = (r + s)−
1 = (k + 1)− 1 = k [as was to be shown].

12. Hint: For any collection of cans, at least one must contain
enough gasoline to enable the car to get to the next can.
(Why?) Imagine taking all the gasoline from that can and
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pouring it into the can that immediately precedes it in the
direction of travel around the track.

13. Sketch of proof: Given any integer k > 1, either k is prime
or k is a product of two smaller positive integers, each
greater than 1. In the former case, the property is true. In
the latter case, the inductive hypothesis ensures that both
factors of k are products of primes and hence that k is also
a product of primes.

14. Proof (by strong mathematical induction): Let the property
P(n) be the sentence “Any product of n odd integers is
odd.”

Show that P(2) is true:

We must show that any product of two odd integers is odd.
But this was established in Chapter 4 (exercise 43 of Sec-
tion 4.1).

Show that for any integer k ≥ 2, if P(i) is true for all inte-
gers i with 2 ≤ i ≤ k then P(k+ 1) is true:

Let k be any integer with k ≥ 2, and suppose that for all
integers i with 2 ≤ i ≤ k, any product of i odd integers
is odd. [Inductive hypothesis] Consider any product M of
k + 1 odd integers. Some multiplication is the final one that
is used to obtain M . Thus there are integers A and B such
that M = AB, and each of A and B is a product of between
1 and k odd integers. (For instance, if M = ((a1a2)a3)a4,
then A = (a1a2)a3 and B = a4.) By inductive hypothesis,
each of A and B is odd, and, as in the basis step, we
know that any product of two odd integers is odd. Hence
M = AB is odd.

16. Hint: Let the property P(n) be the sentence “If n is even,
then any sum of n odd integers is even, and if n is odd, then
any sum of n odd integers is odd.” For the inductive step,
consider any sum S of k + 1 odd integers. Some addition is
the final one that is used to obtain S. Thus there are integers
A and B such that S = A + B, and A is a sum of r odd
integers and B is a sum of (k + 1)− r odd integers. Con-
sider the two cases where k + 1 is even and k + 1 is odd,
and for each case consider the two subcases where r is even
and where r is odd.

17. 41 = 4, 42 = 16, 43 = 64, 44 = 256, 45 = 1024,
46 = 4096, 47 = 16384, and 48 = 65536.

Conjecture: The units digit of 4n equals 4 if n is odd and
equals 6 if n is even.

Proof by strong mathematical induction: Let the property
P(n) be the sentence “The units digit of 4n equals 4 if n
is odd and equals 6 if n is even.”

Show that P(1) and P(2) are true:

When n = 1, 4n = 41 = 4, and the units digit is 4. When
n = 2, then 4n = 42 = 16, and the units digits is 6. Thus
P(1) and P(2) are true.

Show that for any integer k ≥ 2, if the property is true for
all integers i with 1 ≤ i ≤ k then it is true for k+1:

Let k by any integer with k ≥ 2, and suppose that for all
integers i with 0 ≤ i ≤ k, the units digit of 4i equals 4 if i
is odd and equals 6 if i is even. [Inductive hypothesis] We

must show that the units digit of 4k+1 equals 4 if k + 1 is
odd and equals 6 if k + 1 is even.

Case 1 (k+ 1 is odd): In this case, k is even, and so,
by inductive hypothesis, the units digits of 4k is 6. Thus
4k = 10q + 6 for some nonnegative integer q. It follows
that 4k+1 = 4k ·4 = (10q + 6) ·4 = 40q + 24 = 10(4q +
2)+ 4. Thus the units digit of 4k+1 is 4 [as was to be shown].
Case 2 (k+ 1 is even): In this case, k is odd, and so,
by inductive hypothesis, the units digit of 4k is 4. Thus
4k = 10q + 4 for some nonnegative integer q. It follows
that 4k+1 = 4k ·4 = (10q + 4) ·4 = 40q + 16 = 10(4q +
1)+ 6. Thus the units digit of 4k+1 is 6 [as was to be
shown].

20. Proof: Let n be any integer greater than 1. Consider the
set S of all positive integers other than 1 that divide n.
Since n | n and n > 1, there is at least one element in S.
Hence, by the well-ordering principle for the integers, S
has a smallest element; call it p. We claim that p is prime.
For suppose p is not prime. Then there are integers a
and b with 1 < a < p, 1 < b < p, and p = ab. By defi-
nition of divides, a | p. Also p | n because p is in S and
every element in S divides n. Therefore, a | p and p | n,
and so, by transitivity of divisibility, a | n. Consequently,
a ∈ S. But this contradicts the fact that a < p, and p is
the smallest element of S. [This contradiction shows that the
supposition that p is not prime is false.] Hence p is prime,
and we have shown the existence of a prime number that
divides n.

22. a. Proof: Suppose r is any rational number. [We need to
show that there is an integer n such that r < n.]

Case 1 (r ≤ 0): In this case, take n = 1. Then r < n.

Case 2 (r > 0): In this case, r = a
b for some positive

integers a and b (by definition of rational and because r
is positive). Note that r = a

b < n if, and only if, a < nb.
Let n = 2a. Multiply both sides of the inequality 1 < 2
by a to obtain a < 2a, and multiply both sides of the
inequality 1 < b by 2a to obtain 2a < 2ab = nb. Thus
a < 2a < nb, and so, by transitivity of order, a < nb.
Dividing both sides by b gives that a

b < n, or, equiva-
lently, that r < n.
Hence, in both cases, r < n [as was to be shown].

23. Hint: If r is any rational number, let S be the set of all inte-
gers n such that r < n. Use the results of exercises 22(a),
22(c), and the well-ordering principle for the integers to
show that S has a least element, say v, and then show that
v − 1 ≤ r < v.

24. Proof: Let S be the set of all integers r such that n = 2i ·r
for some integer i . Then n ∈ S because n = 20 ·n, and so
S �= ∅. Also, since n ≥ 1, each r in S is positive, and so, by
the well-ordering principle, S has a least element m. This
means that n = 2k ·m (*) for some nonnegative integer k
and m ≤ r for every r in S. We claim that m is odd. The
reason is that if m were even, then m = 2p for some inte-
ger p. Substituting into equation (*) gives

n = 2k ·m = 2k ·2p = (2k ·2)p = 2k+1 · p.
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It follows that p ∈ S and p < m, which contradicts the fact
thatm is the least element of S. Hencem is odd, and so n =
m ·2k for some odd integer m and nonnegative integer k.

29. Hint: In the inductive step, divide into cases depending
upon whether k can be written as k = 3x or k = 3x + 1 or
k = 3x + 2 for some integer x .

30. Hint: In the inductive step, let an integer k ≥ 0 be given
and suppose that there exist integers q ′ and r ′ such that
k = dq ′ + r ′ and 0 ≤ r ′ < d. You must show that there
exist integers q and r such that

k + 1 = dq + r and 0 ≤ r < d.

To do this, consider the two cases r ′ < d − 1 and r ′ =
d − 1.

31. Hint: Given a predicate P(n) that satisfies conditions (1)
and (2) of the principle of mathematical induction, let S be
the set of all integers greater than or equal to a for which
P(n) is false. Suppose that S has one or more elements, and
use the well-ordering principle to derive a contradiction.

32. Hint: Suppose S is a set containing one or more integers,
all of which are greater than or equal to some integer a,
and suppose that S does not have a least element. Let the
property P(n) be the sentence “i /∈ S for any integer i with
a ≤ i ≤ n.” Use mathematical induction to prove that P(n)
is true for all integers n ≥ a, and explain how this result
contradicts the supposition that S does not have a least
element.

Section 5.5
1. Proof: Suppose the predicate m + n = 100 is true before

entry to the loop. Then

mold + nold = 100.

After execution of the loop,

mnew = mold + 1 and nnew = nold − 1,

so

mnew + nnew = (mold + 1)+ (nold − 1)

= mold + nold = 100.

3. Proof: Suppose the predicate m3 > n2 is true before entry
to the loop. Then

m3
old > n2

old.

After execution of the loop,

mnew = 3 ·mold and nnew = 5 ·nold,

so

m3
new = (3 ·mold)

3 = 27 ·m3
old > 27 ·n2

old.

But since nnew = 5 ·nold, then nold = 1
5nnew. Hence

m3
new > 27 ·n2

old = 27 ·
(
1

5
nnew

)2

= 27 · 1
25

n2
new

= 27

25
·n2

new > n2
new.

6. Proof: [The wording of this proof is almost the same as that of
Example 5.5.2.]

I. Basis Property: [I (0) is true before the first iteration of
the loop.]
I (0) is “exp = x0 and i = 0.” According to the pre-
condition, before the first iteration of the loop exp = 1
and i = 0. Since x0 = 1, I (0) is evidently true.

II. Inductive Property: [If G ∧ I (k) is true before a loop
iteration (where k ≥ 0), then I (k + 1) is true after the
loop iteration.]

Suppose k is a nonnegative integer such that G ∧ I (k)
is true before an iteration of the loop. Then as execu-
tion reaches the top of the loop, i �= m, exp = xk , and
i = k. Since i �= m, the guard is passed and statement
1 is executed. Now before execution of statement 1,

expold = xk,

so execution of statement 1 has the following effect:

expnew = expold · x = xk · x = xk+1.

Similarly, before statement 2 is executed,

iold = k,

so after execution of statement 2,

inew = iold + 1 = k + 1.

Hence after the loop iteration, the two statements
exp = xk+1 and i = k + 1 are true, and so I (k + 1) is
true.

III. Eventual Falsity of Guard: [After a finite number of
iterations of the loop, G becomes false.]

The guard G is the condition i �= m, and m is a non-
negative integer. By I and II, it is known that

for all integers n ≥ 0, if the loop is iterated n
times, then exp = xn and i = n.

So after m iterations of the loop, i = m. Thus G
becomes false after m iterations of the loop.

IV. Correctness of the Post-Condition: [If N is the least
number of iterations after which G is false and I (N ) is
true, then the value of the algorithm variables will be as
specified in the post-condition of the loop.]

According to the post-condition, the value of exp after
execution of the loop should be xm . But when G is
false, i = m. And when I (N ) is true, i = N and exp =
x N . Since both conditions (G false and I (N ) true) are
satisfied, m = i = N and exp = xm , as required.

8. Proof:
I. Basis Property: I (0) is “i = 1 and sum = A[1].”

According to the pre-condition, this statement is
true.

II. Inductive Property: Suppose k is a nonnegative inte-
ger such that G ∧ I (k) is true before an iteration of the
loop. Then as execution reaches the top of the loop,
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i �= m, i = k + 1, and sum = A[1] + A[2] + · · · +
A[k + 1]. Since i �= m, the guard is passed and
statement 1 is executed. Now before execution of state-
ment, 1, iold = k + 1. So after execution of statement
1, inew = iold + 1 = (k + 1)+ 1 = k + 2. Also before
statement 2 is executed, sumold = A[1] + A[2] +
· · · + A[k + 1]. Execution of statement 2 adds A[k +
2] to this sum, and so after statement 2 is
executed, sumnew = A[1] + A[2] + · · · + A[k + 1] +
A[k + 2]. Thus after the loop iteration, I (k + 1) is
true.

III. Eventual Falsity of Guard: The guard G is the con-
dition i �= m. By I and II, it is known that for all
integers n ≥ 1, after n iterations of the loop, I (n)
is true. Hence, after m − 1 iterations of the loop,
I (m) is true, which implies that i = m and G is
false.

IV. Correctness of the Post-Condition: Suppose that N
is the least number of iterations after which G is
false and I (N ) is true. Then (since G is false) i =
m and (since I (N ) is true) i = N + 1 and sum =
A[1] + A[2] + · · · + A[N + 1]. Putting these together
gives m = N + 1, and so sum = A[1] + A[2] + · · · +
A[m], which is the post-condition.

10. Hint: Assume G ∧ I (k) is true for a nonnegative integer k.
Then aold �= 0 and bold �= 0 and
(1) aold and bold are nonnegative integers with

gcd(aold, bold) = gcd(A, B).

(2) At most one of aold and bold equals 0.
(3) 0 ≤ aold + bold ≤ A + B − k.

It must be shown that I (k + 1) is true after the loop itera-
tion. That means it is necessary to show that
(1) anew and bnew are nonnegative integers with

gcd(anew, bnew) = gcd(A, B).
(2) At most one of anew and bnew equals 0.
(3) 0 ≤ anew + bnew ≤ A + B − (k + 1).

To show (3), observe that

anew + bnew =
{
aold − bold + bold if aold ≥ bold
bold − aold + aold if aold < bold

[The reason for this is that when aold ≥ bold, then anew =
aold − bold and bnew = b old, and when aold < bold, then bnew =
b old − aold and anew = aold.]
Thus

anew + bnew =
{
aold if aold ≥ bold
bold if aold < bold

But since aold �= 0 and bold �= 0 and a old and bold are
nonnegative integers, then aold ≥ 1 and bold ≥ 1. Hence
aold − 1 ≥ 0 and b old − 1 ≥ 0 and aold ≤ aold + bold − 1
and bold ≤ bold + aold − 1. It follows that anew + bnew ≤
aold + bold − 1 ≤ (A + B − k)− 1 by the truth of (3) going
into the kth iteration. Hence anew + bnew < A + B − (k +
1) by algebraic simplification.

Section 5.6
1. a1 = 1, a2 = 2a1 + 2 = 2 ·1+ 2 = 4,

a3 = 2a2 + 3 = 2 ·4+ 3 = 11,

a4 = 2a3 + 4 = 2 ·11+ 4 = 26

3. c0 = 1, c1 = 1 ·(c0)2 = 1 · (1)2 = 1,

c2 = 2(c1)
2 = 2 ·(1)2 = 2,

c3 = 3(c2)
2 = 3 ·(2)2 = 12

5. s0 = 1, s1 = 1, s2 = s1 + 2s0 = 1+ 2 ·1 = 3,

s3 = s2 + 2s1 = 3+ 2 ·1 = 5

7. u1 = 1, u2 = 1, u3 = 3u2 − u1 = 3 ·1− 1 = 2,

u4 = 4u3 − u2 = 4 ·2− 1 = 7

9. By definition of a0, a1, a2, . . ., for each integer k ≥ 1,

(*) ak = 3k + 1 and

(**) ak−1 = 3(k − 1)+ 1.

Then ak−1 + 3

= 3(k − 1)+ 1+ 3

= 3k − 3+ 1+ 3

= 3k + 1

= ak

11. By definition of c0, c1, c2, . . ., cn = 2n − 1, for each integer
n ≥ 0. Substitute k and k − 1 in place of n to get

(*) ck = 2k − 1 and

(**) ck−1 = 2k−1 − 1

for all integers k ≥ 1. Then

2ck−1 + 1 = 2(2k−1 − 1)+ 1 by substitution from (**)

= 2k − 2+ 1

= 2k − 1 by basic algebra

= ck by substitution from (*)

13. By definition of t0, t1, t2, . . ., tn = 2+ n, for each integer
n ≥ 0. Substitute k, k − 1, and k − 2 in place of n to get

(*) tk = 2+ k,

(**) tk−1 = 2+ (k − 1), and

(***) tk−2 = 2+ (k − 2)

for each integer k ≥ 2. Then

2tk−1 − tk−2
= 2(2+ (k − 1)− (2+ (k − 2)) by substitution from

(**) and (***)

= 2(k + 1)− k

= 2+ k by basic algebra

= tk by substitution
from (*).
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15. Hint: Mathematical induction is not needed for the proof.
Start with the right-hand side of the equation and use
algebra to transform it into the left-hand side of the
equation.

17. a. a1 = 2

a2 = 2 (moves to move the top disk from pole A to
pole C)

+ 1 (move to move the bottom disk from
pole A to pole B)

+ 2 (moves to move the top disk from
pole C to pole A)

+ 1 (move to move the bottom disk
from pole B to pole C)

+ 2 (moves to move top disk
from pole A to pole C)

= 8

a3 = 8+ 1+ 8+ 1+ 8 = 26

c. For all integers k ≥ 2.

ak = ak−1 (moves to move the top k − 1 disks from
pole A to pole C)

+ 1 (move to move the bottom disk from
pole A to pole B)

+ ak−1 (moves to move the top disk
from pole C to pole A)

+ 1 (move to move the bottom
disks from pole B to
pole C)

+ ak−1 (moves to move
the top disks from
pole A to pole C)

= 3ak−1 + 2.

18. b. b4 = 40
e. Hint:One solution is to use mathematical induction and

apply the formula from part (c). Another solution is to
prove by mathematical induction that when a most effi-
cient transfer of n disks from one end pole to the other
end pole is performed, at some point all the disks are on
the middle pole.

19. a. s1 = 1, s2 = 1+ 1+ 1 = 3,
s3 = s1 + (1+ 1+ 1)+ s1 = 5

b. s4 = s2 + (1+ 1+ 1)+ s2 = 9

20. b. Call the poles A, B, and C . Compute c2 by using the
following sequence of steps to transfer two disks from
A to B:
1 (move to move the top disk for A to B)
+1 (move to move the top disk from B to C)
+1 (move to move the bottom disk from A to B)
+1 (move to move the top disk from C to A)
+1 (move to move the top disk from A to B)

This sequence of steps is the least possible, and so
c2 = 5.

A tower of 3 disks can be transferred from A to B by
using the following sequence of steps:
1 (move to move the top disk from A to B)
+1 (move to move the top disk from B to C)
+1 (move to move the middle disk from A to B)
+1 (move to move the top disk from C to A)
+1 (move to move the middle disk from B to C)
+1 (move to move the top disk from A to B)
+1 (move to move the top disk from B to C).

After these 7 steps have been completed, the bottom
disk can be moved from A to B. At that point the top
two disks are on C , and a modified version of the ini-
tial seven steps can be used to move them from C to B.
Thus the total number of steps is 7+ 1+ 7 = 15, and
15 < 21 = 4c2 + 1.

21. b. t3 = 14

22. b. r0 = 1, r1 = 1, r2 = 1+ 4 ·1 = 5, r3 = 5+ 4 ·1 = 9,

r4 = 9+ 4 ·5 = 29, r5 = 29+ 4 ·9 = 65,

r6 = 65+ 4 ·29 = 181

23. c. There are 904 rabbit pairs, or 1,808 rabbits, after 12
months.

25. a. Each term of the Fibonacci sequence beyond the second
equals the sum of the previous two. For any integer
k ≥ 1, the two terms previous to Fk+1 are Fk and Fk−1.
Hence, for all integers k ≥ 1, Fk+1 = Fk + Fk−1.

26. By repeated use of definition of the Fibonacci sequence, for
all integers k ≥ 4,

Fk = Fk−1 + Fk−2 = (Fk−2 + Fk−3)+ (Fk−3 + Fk−4)

= ((Fk−3 + Fk−4)+ Fk−3)+ (Fk−3 + Fk−4)

= 3Fk−3 + 2Fk−4.
27. For all integers k ≥ 1,

F2
k − F2

k−1
= (Fk − Fk−1)(Fk + Fk−1) by basic algebra (difference

of two squares)

= (Fk − Fk−1)Fk+1 by definition of the
Fibonacci sequence

= Fk Fk+1 − Fk−1Fk+1

32. Hint:Use mathematical induction. In the inductive step, use
Lemma 4.8.2 and the fact that Fk+2 = Fk+1 + Fk to deduce
that

gcd(Fk+2, Fk+1) = gcd(Fk+1, Fk).

34. Hint: Let L = lim
n→∞

Fn+1
Fn

and show that L = 1
L + 1.

Deduce that L = 1+√5
2 .

35. Hint: Use the result of exercise 30 to prove that the infi-

nite sequence
F0
F1

,
F2
F3

,
F4
F5

, . . . is strictly decreasing and that

the infinite sequence
F1
F2

,
F3
F4

,
F5
F6

, . . . is strictly increasing.

The first sequence is bounded below by 0, and the second
sequence is bounded above by 1. Deduce that the limits of
both sequences exist, and show that they are equal.
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37. a. Because the 4% annual interest is compounded quar-
terly, the quarterly interest rate is (4%)/4 = 1%. Then
Rk = Rk−1 + 0.01Rk−1 = 1.01Rk−1.

b. Because one year equals four quarters, the amount
on deposit at the end of one year is R4 = $5203.02
(rounded to the nearest cent).

c. The annual percentage rate (APR) for the account is
$5203.02−$5000.00

$5000.00 = 4.0604%.

39. When one is climbing a staircase consisting of n stairs, the
last step taken is either a single stair or two stairs together.
The number of ways to climb the staircase and have the
final step be a single stair is cn−1; the number of ways to
climb the staircase and have the final step be two stairs
is cn−2. Therefore, cn = cn−1 + cn−2. Note also that c1 = 1
and c2 = 2 [because either the two stairs can be climbed one
by one or they can be climbed as a unit].

41. Proof (by mathematical induction): Let the property,
P(n), be the equation

∑n
i=1 cai = c

∑n
i=1 ai , where

a1, a2, a3, . . . , an and c are any real numbers.

Show that P(1) is true:

Let a1 and c be any real numbers. By the recursive defi-
nition of sum,

∑1
i=1(cai ) = ca1 and

∑1
i=1 ai = a1. There-

fore,
∑1

i=1(cai ) = c
∑1

i=1 ai , and so P(1) is true.

Show that for all integers k ≥ 1, if P(k) is true, then
P(k+ 1) is true:

Let k be any integer with k ≥ 1. Suppose that for any real
numbers a1, a2, a3, . . . , ak and c,

∑k
i=1(cai ) = c

∑k
i=1 ai .

[This is the inductive hypothesis]. [We must show that for any

real numbers a1, a2, a3, . . . ak+1 and c,
k+1∑
i=1

(cai ) = c
∑k+1

i=1 ai .]

Let a1, a2, a3, . . . , ak+1 and c be any real numbers.
Then

k+1∑
i=1

cai =
k∑

i=1
cai + cak+1

by the recursive
definition of �

= c
k∑

i=1
ai + cak+1

by inductive
hypothesis

= c

( k∑
i=1

ai + ak+1

)
by the distributive law
for the real numbers

= c
k+1∑
i=1

ai
by the recursive
definition of �.

44. Hint: Let the property be the inequality∣∣∣∣∣
n∑

i=1
ai

∣∣∣∣∣ ≤
n∑

i=1
|ai |.

To prove the inductive step, note that because
∣∣∑k+1

i=1 ai
∣∣ =∣∣∑k

i=1 ai + ak+1
∣∣, you can use the triangle inequality for

absolute value (Theorem 4.4.6) to deduce∣∣∑k
i=1 ai + ak+1

∣∣ ≤ ∣∣∑k
i=1 ai

∣∣+ |ak+1|.

Section 5.7
1. a. 1+ 2+ 3+ · · · + (k − 1)

= (k − 1)((k − 1)+ 1)

2
= (k − 1)k

2
b. 3+ 2+ 4+ 6+ 8+ · · · + 2n

= 3+ 2(1+ 2+ 3+ · · · + n)

= 3+ 2
n(n+ 1)

2
= 3+ n(n+ 1)

= n2 + n + 3

2. a. 1+ 2+ 22 + · · · + 2i−1 = 2(i−1)+1 − 1

2− 1
= 2i − 1

c. 2n + 2n− 2 ·3+ 2n− 3 ·3+ · · · + 22 ·3+ 2 ·3+ 3

= 2n + 3(2n− 2+ 2n− 3+ · · · + 22+ 2+ 1)

= 2n + 3(1+ 2+ 22+ · · · + 2n− 3+ 2n− 2)

= 2n + 3

(
2(n−2)+1 − 1

2− 1

)
= 2n + 3(2n−1 − 1)

= 2 ·2n−1 + 3 ·2n−1 − 3

= 5 ·2n−1 − 3
3. a0 = 1

a1 = 1 ·a0 = 1 ·1 = 1

a2 = 2a1 = 2 ·1
a3 = 3a2 = 3 ·2 ·1
a4 = 4a3 = 4 ·3 ·2 ·1

...

Guess:

an = n(n − 1) · · · 3 ·2 ·1 = n!
5. c1 = 1

c2 = 3c1 + 1 = 3 ·1+ 1 = 3+ 1

c3 = 3c2 + 1 = 3 · (3+ 1)+ 1 = 32 + 3+ 1

c4 = 3c3 + 1 = 3 · (32 + 3+ 1)+ 1

= 33 + 32 + 3+ 1
...

Guess:

cn = 3n−1 + 3n−2 + · · · + 33 + 32 + 3+ 1

= 3n − 1

3− 1
by Theorem 5.2.3 with r = 3

= 3n − 1

2
6. Hint:

dn = 2n + 2n−2 ·3+ 2n−3 ·3+ · · · + 22 ·3+ 2 ·3+ 3

= 5 ·2n−1 − 3 for all integers n ≥ 1
9. Hint: For any positive real numbers a and b,

a

b
a

b
+ 2
=

a

b
a

b
+ 2
· b
b
= a

a + 2b
.
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10. h0 = 1

h1 = 21 − h0 = 21 − 1

h2 = 22 − h1 = 22 − (21 − 1) = 22 − 21 + 1

h3 = 23 − h2 = 23 − (22 − 21 + 1)

= 23 − 22 + 21 − 1

h4 = 24 − h3 = 24 − (23 − 22 + 22 − 1)

= 24 − 23 + 22 − 21 + 1
...

Guess:

hn = 2n − 2n−1 + · · · + (−1)n ·1
= (−1)n[1− 2+ 22 − · · · + (−1)n ·2n]
= (−1)n[1+ (−2)
+ (−2)2 − · · · + (−2)n] by basic algebra

= (−1)n
[
(−2)n+1 − 1

(−2)− 1

]
by Theorem 5.2.3

= (−1)n+1 · [(−2)n+1 − 1]
(−1) ·(−3)

= 2n+1 − (−1)n+1
3

by basic algebra

12. s0 = 3

s1 = s0 + 2 ·1 = 3+ 2 ·1
s2 = s1 + 2 ·2 = [3+ 2 ·1] + 2 ·2
= 3+ 2 · (1+ 2)

s3 = s2 + 2 ·3 = [3+ 2 · (1+ 2)] + 2 ·3
= 3+ 2 · (1+ 2+ 3)

s4 = s3 + 2 ·4 = [3+ 2 · (1+ 2+ 3)] + 2 ·4
= 3+ 2 · (1+ 2+ 3+ 4)
...

Guess:

sn = 3+ 2 · (1+ 2+ 3+ · · · + (n − 1)+ n)

= 3+ 2 · n(n + 1)

2
by Theorem 5.2.2

= 3+ n(n + 1) by basic algebra

14. x1 = 1
x2 = 3x1 + 2 = 3+ 2

x3 = 3x2 + 3 = 3(3+ 2)+ 3 = 32 + 3 ·2+ 3

x4 = 3x3 + 4 = 3(32 + 3 ·2+ 3)+ 4

= 33 + 32 ·2+ 3 ·3+ 4

x5 = 3x4 + 5 = 3(33 + 32 ·2+ 3 ·3+ 4)+ 5

= 34 + 33 ·2+ 32 ·3+ 3 ·4+ 5

x6 = 3x5 + 6

= 3(34 + 33 ·2+ 32 ·3+ 4 ·3+ 5)+ 6

= 35 + 34 ·2+ 33 ·3+ 32 ·4+ 3 ·5+ 6
...

Guess:

xn = 3n−1 + 3n−2 ·2+ 3n−3 ·3+ · · · + 3(n − 1)+ n

= 3n−1 + 3n−2 + 3n−2︸ ︷︷ ︸+ 3n−3 + 3n−3 + 3n−3︸ ︷︷ ︸ +
2 times 3 times

+ 3+ 3+ · · · + 3︸ ︷︷ ︸+ 1+ 1+ · · · + 1︸ ︷︷ ︸
(n − 1) times n times

= (3n−1 + 3n−2 + · · · + 32 + 3+ 1)

+ (3n−2 + 3n−3 + · · · + 32 + 3+ 1)+ · · ·
+ (32 + 3+ 1)+ (3+ 1)+ 1

= 3n − 1

2
+ 3n−1 − 1

2
+ · · · + 33 − 1

2

+ 32 − 1

2
+ 3− 1

2

= 1
2 [(3n + 3n−1 + · · · + 32 + 3)− n]

= 1
2 [3(3n−1 + 3n−2 + · · · + 3+ 1)− n]

= 1
2

(
3

(
3n − 1

3− 1

)
− n

)
= 1

4 (3n+1 − 3− 2n)

18. Proof: Let d be any fixed constant, and let a0, a1, a2, . . .
be the sequence defined recursively by ak = ak−1 + d for
all integers k ≥ 1. The property P(n) is the equation an =
a0 + nd. We show by mathematical induction that P(n) is
true for all integers n ≥ 0.

Show that P(0) is true:

When n = 0, the left-hand side of the equation is a0, and
the right-hand side is a0 + 0 ·d = a0, which equals the left-
hand side. Thus P(0) is true.

Show that for all integers k ≥ 0, if P(k) is true, then
P(k + 1) is true:

Suppose

ak = a0 + kd, for some integer k ≥ 0.

[This is the inductive hypothesis.]

We must show that ak+1 = a0 + (k + 1)d . But

ak+1 = ak + d by definition of a0, a1, a2, . . .

= [a0 + kd] + d by substitution from the
inductive hypothesis

= a0 + (k + 1)d by basic algebra

[as was to be shown].

19. Let Un = the number of units produced on day n. Then

Uk = Uk−1 + 2 for all integers k ≥ 1,

U0 = 170.

Hence U0,U1,U2, . . . is an arithmetic sequence with fixed
constant 2. It follows that when n = 30,
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5.7 Solutions and Hints to Selected Exercises A-45

Un = U0 + n ·2 = 170+ 2n = 170+ 2 ·30
= 230 units.

Thus the worker must produce 230 units on day 30.

24.
20∑
k=0

5k = 521 − 1

4
∼= 1.192× 1014 ∼=

119,200,000,000,000 ∼= 119 trillion people (This is about
20,000 times the current population of the earth!)

26. b. Hint: Before simplification,
An = 1000(1.0025)n + 200[(1.0025)n−1 +
(1.0025)n−1 + · · · + (1.0025)2 + 1.0025+ 1].

d. A240
∼= $67,481.15, A480

∼= $188,527.05
e. Hint: Use logarithms to solve the equation An =

10,000, where An is the expression found (after simpli-
fication) in part (b).

27. a. Hint: APR ∼= 19.6%
c. Hint: approximately two years

28. Proof: Let a0, a1, a2, . . . be the sequence defined recur-
sively by a0 = 1 and ak = kak−1 for all integers k ≥ 1. Let
the property P(n) be the equation an = n!. We show by
mathematical induction that P(n) is true for all integers
n ≥ 0.

Show that P(0) is true:

When n = 0, the right-hand side of the equation is 0! = 1,
and by definition of a0, a1, a2, . . . , the left-hand side of
the equation, a0, is also 1. Thus the property is true for
n = 0.

Show that for all integers k ≥ 0, if P(k) is true, then
P(k + 1) is true:

Suppose

ak = k! for some integer k ≥ 0.

[This is the inductive hypothesis.]

We must show that ak+1 = (k + 1)!. But
ak+1 = (k + 1) ·ak by definition of a0, a1, a2, . . .

= (k + 1) ·k! by substitution from the
inductive hypotheses

= (k + 1)! by definition of factorial.

[Hence if P(k) is true, then P(k + 1) is true.]

30. Proof: Let c1, c2, c3, . . . be the sequence defined recur-
sively by c1 = 1 and ck = 3ck−1 + 1 for all integers k ≥ 2.

Let the property P(n) be the equation cn = 3n−1
2 . We show

by mathematical induction that P(n) is true for all integers
n ≥ 1.

Show that P(1) is true:

When n = 1, the right-hand side of the equation is 31−1
2 =

3−1
2 = 1, and by definition of c1, c2, c3, . . . , the left-hand

side of the equation, c1, is also 1. Thus the property is true
for n = 1.

Show that for all integers k ≥ 1, if P(k) is true, then
P(k + 1) is true:

Suppose that

ck = 3k − 1

2
for some integer k ≥ 1.

[This is the inductive hypothesis.]

We must show that ck+1 = 3k+1 − 1

2
. But

ck+1 = 3ck + 1 by definition of c1, c2, c3, . . .

= 3

(
3k − 1

2

)
+ 1 by substitution from the

inductive hypothesis

= 3k+1 − 3

2
+ 2

2

= 3k+1 − 1

2
by basic algebra.

35. Hint: 2k+1 − 2k+1 − (−1)k+1
3

= 3 ·2k+1
3

− 2k+1 − (−1)k+1
3

= 2 ·2k+1 + (−1)k+1
3

= 2k+2 − (−1)k+2
3

37. Hint: [3+ k(k + 1)] + 2(k + 1)

= 3+ k2 + k + 2k + 2 = 3+ [k2 + 3k + 2]
= 3+ (k + 1)(k + 2)

= 3+ (k + 1)[(k + 1)+ 1]
39. Proof: Let x1, x2, x3, . . . be the sequence defined recur-

sively by x1 = 1 and xk = 3xk−1 + k for all integers k ≥ 2.

Let the property, P(n), be the equation xn = 3n+1−2n−3
4 .

We show by mathematical induction that P(n) is true for
all integers n ≥ 1.

Show that P(1) is true:

When n = 1, the right-hand side of the equation

is 31+1−2 ·1−3
4 = 32−2−3

4 = 1, and by definition of
x1, x2, x3, . . . , the left-hand side of the equation, x1, is also
1. Thus P(1) is true.

Show that for all integers k ≥ 1, if P(k) is true for, then
P(k + 1) is true.

Suppose that for some integer k ≥ 0, xk = 3k+1−2k−3
4 .

[Inductive hypothesis] We must show that

xk+1 = 3(k+1)+1 − 2(k + 1)− 3

4
, or, equivalently,

xk+1 = 3k+2 − 2k − 5

4
. But

xk+1 = 3xk + k by definition
of x1, x2, x3,

= 3

(
3k+1 − 2k − 3

4

)
+ k + 1 by inductive

hypothesis

= 3 ·3k+1 − 3 ·2k − 3 ·3
4

+ 4(k + 1)

4
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A-46 Appendix B Solutions and Hints to Selected Exercises

= 3k+2 − 6k − 9+ 4k + 4

4

= 3k+2 − 2k − 5

4
by algebra.

[This is what was to be shown.]

43. a. a0 = 2

a1 = a0
2a0 − 1

= 2

2 ·2− 1
= 2

3

a2 = a1
2a1 − 1

=
2
3

2 · 23−3
3

=
2
3
1
3

= 2

a3 = a2
2a2 − 1

= 2

2 ·2− 1
= 2

3

a4 = a3
2a3 − 1

=
2
3

2 · 23 −
3
3

=
2
3
1
3

= 2

Guess: an =
{
2 if n is even
2
3 if n is odd

.

b. Proof: Let a0, a1, a2, . . . be the sequence defined recur-
sively by x0 = 2 and ak = ak−1

2ak−1−1 for all integers

k ≥ 1. Let the property, P(n), be the equation

an =
{
2 if n is even
2
3 if n is odd

.

We show by strong mathematical induction that P(n)
is true for all integers n ≥ 1.

Show that P(0) and P(1) are true:
The results of part (a) show that P(0) and P(1) are
true.

Show that for all integers k ≥ 0, if P(k) is true for all
integers i with 0 ≤ i ≤ k, then P(k + 1) is true:

Let k be any integer with k ≥ 0, and suppose that for
all integers i with 0 ≤ i ≤ k,

ai =
{
2 if i is even
2
3 if i is odd

. [Inductive hypothesis]

We must show that

ak+1 =
{
2 if k is even
2
3 if k is odd

.

But

ak+1 = ak
2ak − 1

by definition of
a0, a1, a2, . . .

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2
2 ·2−1 if k is even

2
3

2 · 23−1
if k is odd

by inductive hypothesis

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2
3 if k is even

2
3
1
3

if k is odd

=

⎧⎪⎨
⎪⎩

2
3 if k + 1 is odd

2 if k + 1 is even

because k + 1 is odd
when k is even

and k + 1 is even when
k is odd.

[This is what was to be shown.]

45. v1 = 1

v2 = v�2/2� + v�3/2� + 2 = v1 + v1 + 2

= 1+ 1+ 2

v3 = v�3/2� + v�4/2� + 2 = v1 + v2 + 2

= 1+ (1+ 1+ 2)+ 2 = 3+ 2 ·2
v4 = v�4/2� + v�5/2� + 2 = v2 + v2 + 2

= (1+ 1+ 2)+ (1+ 1+ 2)+ 2

= 4+ 3 ·2
v5 = v�5/2� + v�6/2� + 2 = v2 + v3 + 2

= (3+ 2 ·2)+ (1+ 1+ 2)+ 2

= 5+ 4 ·2
v6 = v�6/2� + v�7/2� + 2 = v3 + v3 + 2

= (3+ 2 ·2)+ (3+ 2 ·2)+ 2

= 6+ 5 ·2
...

Guess:

vn = n + 2(n − 1) = 3n − 2 for all integers n ≥ 1

b. Proof: Let v1, v2, v3, . . . be the sequence defined recur-
sively by v1 = 1 and vk = v�k/2� + v�(k+1)/2� + 2 for all
integers k ≥ 1. Let the property, P(n), be the equation

vn = 3n − 2.

We show by strong mathematical induction that P(n) is
true for all integers n ≥ 1.

Show that P(1) is true:

When n = 1, the right-hand side of the equation
is 3 ·1− 2 = 1, which equals v1 by definition of
v1, v2, v3, . . . . Thus P(1) is true.

Show that for all integers k ≥ 1, if P(i) is true for all
integers i with 0 ≤ i ≤ k, then P(k + 1) is true:

Let k be any integer with k ≥ 1, and suppose that for all
integers i with 1 ≤ i ≤ k, vi = 3i − 2.
[This is the inductive hypothesis.] We must show that
vk+1 = 3(k + 1)− 2 = 3k + 1.

vk+ 1 = v�(k+ 1)/2� + v�(k+ 2)/2� + 2 by definition of
v1, v2, v3, . . .

=
(
3
⌊
k+1
2

⌋
−2

)
+
(
3
⌊
k+2
2

⌋
−2

)
+ 2
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5.8 Solutions and Hints to Selected Exercises A-47

= 3
(⌊

k+ 1
2

⌋
+
⌊
k+ 2
2

⌋)
− 2

=

⎧⎪⎨
⎪⎩
3
(
k
2 +

k+2
2

)
− 2 if k is even

3
(
k+1
2 + k+1

2

)
− 2 if k is odd

= 3
(
2k+2
2

)
− 2

= 3(k + 1)− 2

= 3k + 1 by the laws of algebra.

[This is what was to be shown.]

46. Hint: Show that for all integers n ≥ 0, s2n = 2n and
s2n+1 = 2n+1. Then combine these formulas using the ceil-
ing function to obtain sn = 2�n/2�.

48. a. Hint: wn =

⎧⎪⎨
⎪⎩
(
n+ 1
2

)2
if n is odd

n
2

(
n
2 + 1

)
if n is even

49. a. Hint: Express the answer using the Fibonacci sequence.

50. The sequence does not satisfy the formula. According to
the formula, a4 = (4− 1)2 = 9. But by definition of the
sequence, a1 = 0, a2 = 2 ·0+ (2+ 1) = 1, a3 = 2 ·1+
(3− 1) = 4, and so a4 = 2 ·4+ (4− 1) = 11. Hence the
sequence does not satisfy the formula for n = 4.

52. a. Hint: The maximum number of regions is obtained
when each additional line crosses all the previous
lines, but not at any point that is already the inter-
section of two lines. When a new line is added, it
divides each region through which it passes into two
pieces. The number of regions a newly added line
passes through is one more than the number of lines it
crosses.

53. Hint: The answer involves the Fibonacci numbers!

Section 5.8
1. (a), (d), and (f)

3. a. a0 = C ·20 + D = C + D = 1
a1 = C ·21 + D = 2C + D = 3

}

⇔
{
D = 1− C
2C + (1− C) = 3

}
⇔

{
C = 2
D = −1

a2 = 2 ·22 + (−1) = 7

4. a. b0 = C ·30 + D ·(−2)0 = C + D = 0
b1 = C ·31 + D ·(−2)1 = 3C − 2D = 5

}

⇔
{
D = −C
3C − 2(−C) = 5

}
⇔

{
C = 1
D = −1

b2 = 32 + (−1)(−2)2 = 9− 4 = 5

5. Proof: Given that an = C ·2n + D, then for any choice of
C and D and integer k > 2,

ak = C ·2k + D,

ak−1 = C ·2k−1 + D,

ak−2 = C ·2k−2 + D.

Hence

3ak−1 − 2ak−2 = 3(C ·2k−1 + D)− 2(C ·2k−2 + D)

= 3C ·2k−1 + 3D − 2C ·2k−2 − 2D

= 3C ·2k−1 − C ·2k−1 + D

= 2C ·2k−1 + D

= C ·2k + D = ak .

8. a. If for all k > 2, t k = 2t k−1+ 3t k−2 and t �= 0 then
t2= 2t + 3 [by dividing by tk−2], and so t2 − 2t −
3= 0. But t2 − 2t − 3= (t − 3)(t + 1); hence t = 3 or
t = − 1.

b. It follows from (a) and the distinct roots theorem that
for some constants C and D, a0, a1, a2, . . . satisfies the
equation

an = C ·3n + D ·(−1)n for all integers n ≥ 0.

Since a0 = 1 and a1 = 2, then

a0 = C ·30 + D ·(−1)0 = C + D = 1
a1 = C ·31 + D ·(−1)1 = 3C − D = 2

}

⇔
{
D = 1− C
3C − (1− C) = 2

}

⇔
{
D = 1− C
4C − 1 = 2

}

⇔
{
C = 3/4
D = 1/4

Thus an = 3
4 (3n)+ 1

4 (−1)n for all integers n ≥ 0.

11. Characteristic equation: t2 − 4 = 0. Since t2 − 4 = (t −
2)(t + 2), t = 2 and t = −2 are the roots. By the distinct
roots theorem, for some constants C and D

dn = C ·(2n)+ D ·(−2)n for all integers n ≥ 0.

Since d0 = 1 and d1 = −1, then
d0 = C ·20 + D · (−2)0 = C + D = 1
d1 = C ·21 + D · (−2)1 = 2C − 2D = −1

}

⇔
{
D = 1− C
2C − 2(1− C) = −1

}

⇔
{
D = 1− C
4C − 2 = −1

}

⇔
⎧⎨
⎩C = 1

4

D = 3
4

Thus dn = 1
4 (2

n)+ 3
4 (−2)n for all integers n ≥ 0.

13. Characteristic equation: t2 − 2t + 1 = 0. By the quadratic
formula,

t = 2±√4− 4 ·1
2

= 2

2
= 1.
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By the single root theorem, for some constants C and D

rn = C · (1n)+ Dn · (1n)
= C + nD for all integers n ≥ 0.

Since r0 = 1 and r1 = 4, then

r0 = C + 0 ·D = C = 1
r1 = C + 1 ·D = C + D = 4

}
⇔

{
C = 1
1+ D = 4

}

⇔
{
C = 1
D = 3

Thus rn = 1+ 3n for all integers n ≥ 0.

16. Hint: For all integers n ≥ 0,

sn =
√
3+ 2

2
√
3

(
1+√3

)n +
√
3− 2

2
√
3

(
1−√3

)n
.

19. Proof: Suppose r, s, a0, and a1 are numbers with r �= s.
Consider the system of equations

C + D = a0

Cr + Ds = a1.

By solving for D and substituting, we find that

D = a0 − C

Cr + (a0 − C)s = a1.

Hence

C(r − s) = a1 − a0s.

Since r �= s, both sides may be divided by r − s. Thus the
given system of equations has the unique solution

C = a1 − a0s

r − s

and

D = a0 − C = a0 − a1 − a0s

r − s

= a0r − a0s − a1 + a0s

r − s
= a0r − a1

r − s
.

Alternative solution: Since the determinant of the sys-
tem is 1 ·s − r ·1 = s − r and since r �= s, the given sys-
tem has a nonzero determinant and therefore has a unique
solution.

21. Hint:Use strong mathematical induction. First note that the
formula holds for n = 0 and n = 1. To prove the inductive
step, suppose that for some k ≥ 2, the formula holds for
all i with 0 ≤ i ≤ k. Then show that the formula holds for
k + 1. Use the proof of Theorem 5.8.3 (the distinct roots
theorem) as a model.

22. The characteristic equation is t2 − 2t + 2 = 0. By the
quadratic formula, its roots are

t = 2±√4− 8

2
= 2± 2i

2
=

{
1+ i

1− i
.

By the distinct roots theorem, for some constants C and D

an = C(1+ i)n + D(1− i)n

for all integers n ≥ 0.

Since a0 = 1 and a1 = 2, then

a0 = C(1+ i)0 + D(1− i)0 = C + D = 1

a1 = C(1+ i)1 + D(1− i)1

= C(1+ i)+ D(1− i) = 2

⇔
{
D = 1− C
C(1+ i)+ (1− C)(1− i) = 2

}

⇔
{
D = 1− C
C(1+ i − 1+ i)+ 1− i = 2

}

⇔
{

D = 1− C
C(2i) = 1+ i

}

⇔
⎧⎨
⎩
D = 1− C

C = 1+ i

2i
= 1+ i

2i
· i
i
= i − 1

−2 =
1− i

2

⎫⎬
⎭

⇔

⎧⎪⎪⎨
⎪⎪⎩
D = 1− 1− i

2
= 2− 1+ i

2
= 1+ i

2

C = 1− i

2

⎫⎪⎪⎬
⎪⎪⎭

Thus for all integers n ≥ 0,

an =
(
1− i

2

)
(1+ i)n +

(
1+ i

2

)
(1− i)n .

Section 5.9
1. a. (1) p, q, r , and s are Boolean expressions by I.

(2) ∼s is a Boolean expression by (1) and II(c).
(3) (r ∨ ∼s) is a Boolean expression by (1), (2), and

II(b).
(4) (q ∧ (r ∨ ∼s)) is a Boolean expression by (1), (3),

and II(a).
(5) ∼p is a Boolean expression by (1) and II(c).
(6) (∼p ∨ (q ∧ (r ∨ ∼s))) is a Boolean expression by

(4), (5), and II(b).

2. a. (1) ε ∈ S by I.
(2) a = εa ∈ S by (1) and II(a).
(3) aa ∈ S by (2) and II(a).
(4) aab ∈ S by (3) and II(b).

3. a. (1) MI is in the MIU system by I.
(2) MI I is in the MIU system by (1) and II(b).
(3) MI I I I is in the MIU system by (3) and II(b).
(4) MI I I I I I I I is in the MIU system by (3) and II(b).
(5) MIU I I I I is in the MIU system by (4) and II(c).
(6) MIUU I is in the MIU system by (5) and II(c).
(7) MIU I is in the MIU system by (6) and II(d).

4. a. (1) 2, 0.3, 4.2, and 7 are arithmetic expressions by I.
(2) (0.3− 4.2) is an arithmetic expression by (1) and

II(d).
(3) (2 ·(0.3− 4.2)) is an arithemetic expression by (1),

(2), and II(e).
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5.9 Solutions and Hints to Selected Exercises A-49

(4) (−7) is an arithmetic expression by (1) and II(b).
(5) ((2 ·(0.3− 4.2))+ (−7)) is an arithmetic expression

by (3), (4), and II(c).

5. Proof by structural induction: Let the property be the fol-
lowing sentence: The string ends in a 1.

Show that each object in the BASE for S satisfies the prop-
erty:

The only object in the base is 1, and the string 1 ends in a 1.

Show that for each rule in the RECURSION for S, if the
rule is applied to an object in S that satisfies the property,
then the objects defined by the rule also satisfy the prop-
erty:
The recursion for S consists of two rules denoted II(a) and
II(b). Suppose s is a string in S that ends in a 1. In the case
where rule II(a) is applied to s, the result is the string 1s,
which also ends in a 1. In the case where rule II(b) is applied
to s, the result is the string 1s, which also ends in a 1. Thus
when each rule in the RECURSION is applied to a string
in S that ends in a 1, the result is also a string that ends
in a 1.

7. Proof by structural induction: Let the property be the fol-
lowing sentence: The string contains an even number
of a’s.
Show that each object in the BASE for S satisfies the prop-
erty:
The only object in the base is ε, which contains 0 a’s.
Because 0 is an even number, ε contains an even number
of a’s.

Show that for each rule in the RECURSION for S, if the
rule is applied to an object in S that satisfies the property,
then the objects defined by the rule also satisfy the prop-
erty:

The recursion for S consists of four rules denoted II(a), II(b),
II(c), and II(d). Suppose s is a string in S that contains an
even number of a’s. In the case where either rule II(a) or
rule II(b) is applied to s, the result is the string bs or the
string sb, each of which contain the same number of a’s as
s and hence an even number of a’s. In the case where either
rule II(c) or rule II(d) is applied to s, the result is the string
aas or the string saa, each of which contain two more a’s
than the number of a’s in s. Because two more than any even
integer is an even integer, both aas and saa contain an even
number of a’s. Thus when each rule in ‘the RECURSION is
applied to a string in S that contains an even number of a’s,
the result is also a string that contains even number of a’s.

9. Hint: Let the property be the following sentence: The string
represents an odd integer. In the decimal notation, a string
represents an odd integer if, and only if, it ends in 1, 3, 5, 7
or 9.

10. Hint: By divisibility results from Chapter 3 (exercises 15
and 16 of Section 3.3), if both s and t are divisible by 5,
then so are s + t and s − t .

12. Hint: Can the number of I ’s in a string in the MIU system
be a multiple of 3? How do rules II(a)–(d) affect the number
of I ’s in a string?

13. a. (1) ( ) is in P by I.
(2) (( )) is in P by (1) and II(a).
(3) ( )(( )) is in P by (1), (2), and II(b).

14. a. This structure is not in P . Define a function f : P → Z
as follows: For each parenthesis structure S in P , let

f (S) =
[
the number of left
parentheses in S

]
−
[
the number of right
parentheses in S

]
.

Observe that for all S in P, f (S) = 0. To see why, use
the reasoning of structural induction:

1. The base element of P is sent by f to 0: f [()] =
0 [because there is one left and one right parenthesis
in ( )].

2. For all S ∈ P , if f [S] = 0 then f [(S)] = 0 [because
if k − m = 0 then (k + 1)− (m + 1) = 0].

3. For all S and T in P , if f [S] = 0 and f [T ] = 0, then
f [ST ] = 0 [because if k − m = 0 and n − p = 0, then
(k + n)− (m + p) = 0].

Items (1), (2), and (3) show that all parenthesis struc-
tures obtainable from the base structure ( ) by repeated
application of II(a) and II(b) are sent to 0 by f . But
by III (the restriction condition), there are no other ele-
ments of P besides those obtainable from the base ele-
ment by applying II(a) and II(b). Hence f (S) = 0 for all
S ∈ P .
Now if ( )(( ) were in P , then it would be sent to 0 by f .
But f [( )(( )] = 3− 2 = 1 �= 0. Thus ( )(( ) /∈ P .

15. Let S be the set of all strings of 0’s and 1’s with the same
number of 0’s and 1’s. The following is a recursive defini-
tion of S.
I. BASE: The null string ε ∈ S.
II. RECURSION: If s ∈ S, then

a. 01s ∈ S b. s01 ∈ S c. 10s ∈ S
d. s10 ∈ S e. 0s1 ∈ S f. 1s0 ∈ S

III. RESTRICTION: There are no elements of S other that
those obtained from I and II.

17. Let T be the set of all strings of a’s and b’s that contain an
odd number of a’s. The following is a recursive definition
of T .
I. BASE: The a ∈ T .
II. RECURSION: If t ∈ T , then

a. bt ∈ T b. tb ∈ T c. aat ∈ T
d. ata ∈ T e. taa ∈ T

III. RESTRICTION: There are no elements of T other
than those obtained from I and II.

19. a. M(86) = M(M(97)) since 86 ≤ 100

= M(M(M(108))) since 97 ≤ 100

= M(M(98)) since 108 > 100

= M(M(M(109))) since 98 < 100

= M(M(99)) since 109 > 100

= M(91) by Example 5.9.6
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21. a. A(1, 1) = A(0, A(1, 0)) by (5.9.3) with m = 1
and n = 1

= A(1, 0)+ 1 by (5.9.1) with n = A(1, 0)

= A(0, 1)+ 1 by (5.9.2) with m = 1

= (1+ 1)+ 1 by (5.9.1) with n = 1

= 3

Alternative solution:

A(1, 1) = A(0, A(1, 0)) by (5.9.3) with m = 1
and n = 1

= A(0, A(0, 1)) by (5.9.2) with m = 1

= A(0, 2) by (5.9.1) with n = 1

= 3 by (5.9.1) with n = 2

22. a. Proof by mathematical induction: Let the property,
P(n), be the equation A(1, n) = n + 2.
Show that P(0) is true:
When n = 0,

A(1, n) = A(1, 0) by substitution

= A(0, 1) by (5.9.2)

= 1+ 1 by (5.9.1)

= 2.

On the other hand, n + 2 = 0+ 2 also. Thus A(1, n) =
n + 2 for n = 0.
Show that for all integers k ≥ 0, if P(k) is true, then
P(k + 1) is true:
Let k be an integer with k ≥ 1 and suppose P(k) is
true. In other words, suppose A(1, k) = k + 2. [This is
the inductive hypothesis.] We must show that P(k + 1) is
true. In other words, we must show that A(1, k + 1) =
(k + 1)+ 2 = k + 3. But

A(1, k + 1) = A(0, A(1, k)) by (5.9.3)

= A(1, k)+ 1 by (5.9.1)

= (k + 2)+ 1 by inductive hypothesis

= k + 3.

[This is what was to be shown.]
[Since both the basis and the inductive steps have been
proved, we conclude that the equation holds for all nonneg-
ative integers n.]

24. Suppose F is a function. Then F(1) = 1, F(2) = F(1) =
1, F(3) = 1+ F(5 ·3− 9) = 1+ F(6) = 1+ F(3). Sub-
tracting F(3) from the extreme left and extreme right of this
sequence of equations gives 1 = 0, which is false. Hence F
is not a function.

Section 6.1
1. a. A = {2, {2}, (√2)2} = {2, {2}, 2} = {2, {2}} and B =

{2, {2}, {{2}}}. So A ⊆ B because every element in A
is in B, but B � A because {{2}} ∈ B and {{2}} �∈ A.
Also A is a proper subset of B because {{2}} is in B
but not A.

c. A = {{1, 2}, {2, 3}} and B = {1, 2, 3}. So A � B
because {1, 2} ∈ A and {1, 2} �∈ B. Also B � A
because 1 ∈ B and 1 �∈ A.

e. A =
{√

16, {4}
}
= {4, {4}} and B = {4}. Then B ⊆ A

because the only element in B is 4 and 4 is in A,
but A � B because {4} ∈ A and {4} �∈ B. Also B is a
proper subset of A because {4} is in A but not B.

2. Proof That B ⊆ A:
Suppose x is a particular but arbitrarily chosen element
of B.

[We must show that x ∈ A. By definition of A, this
means we must show that x = 2 · (some integer).]

By definition of B, there is an integer b such that x =
2b − 2.

[Given that x = 2b − 2, can x also be expressed
as 2 · (some integer)? I.e., is there an integer,
say a, such that 2b − 2 = 2a ? Solve for a to obtain
a = b − 1. Check to see if this works.]

Let a = b − 1.
[First check that a is an integer.]

Then a is an integer because it is a difference of integers.
[Then check that x = 2a.]

Also 2a = 2(b − 1) = 2b − 2 = x ,
Thus, by definition of A, x is an element of A,

[which is what was to be shown].

3. a. No. R � T because there are elements in R that are not
in T . For example, the number 2 is in R but 2 is not in
T since 2 is not divisible by 6.

b. Yes. T ⊆ R because every number divisible by 6 is
divisible by 2. To see why this is so, suppose n is
any number that is divisible by 6. Then n = 6m for
some integer m. Since 6m = 2(3m) and since 3m is
an integer (being a product of integers), it follows that
n = 2 · (some integer), and, hence, that n is divisible
by 2.

5. a. C ⊆ D Proof: [We will show that every element of C is
in D.] Suppose n is any element of C . Then n = 6r − 5
for some integer r . Let s = 2r − 2. Then s is an integer
(because products and differences of integers are inte-
gers), and

3s + 1 = 3(2r − 2)+ 1 = 6r − 6+ 1 = 6r − 5,

which equals n. Thus n satisfies the condition for being
in D. Hence, every element in C is in D.

b. D � C because there are elements of D that are not in
C . For example, 4 is in D because 4 = 3 ·1+ 1. But 4
is not in C because if it were, then 4 = 6r − 5 for some
integer r , which would imply that 9 = 6r , or, equiva-
lently, that r = 3/2, and this contradicts the fact that r
is an integer.

6. c. Sketch of proof that B ⊆ C : If r is any element of B
then there is an integer b such that r = 10b − 3. To show
that r is in C , you must show that there is an integer c
such that r = 10c + 7. In scratch work, assume that c
exists and use the information that 10b − 3 would have
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to equal 10c + 7 to deduce the only possible value for ċ.
Then show that this value is (1) an integer and (2) satis-
fies the equation r = 10c + 7, which will allow you to
conclude that r is an element of C .
Sketch of proof that C ⊆ B: If s is any element of C
then there is an integer c such that s = 10c + 7. To show
that s is in B, you must show that there is an integer b
such that s = 10c − 3. In scratch work, assume that b
exists and use the information that 10c + 7 would have
to equal 10b − 3 to deduce the only possible value for
b. Then show that this value is (1) an integer and (2) sat-
isfies the equation s = 10b − 3, which will allow you to
conclude that s is an element of B.

8. a. The set of all x in U such that x is in A and x is in B.
The shorthand notation is A ∩ B.

9. a. x �∈ A and x �∈ B

10. a. {1, 3, 5, 6, 7, 9} b. {3, 9}
c. {1, 2, 3, 4, 5, 6, 7, 8, 9} d. ∅ e. {1, 5, 7}

11. a. A ∪ B = {x ∈ R | 0 < x < 4}
b. A ∩ B = {x ∈ R | 1 ≤ x ≤ 2}
c. Ac = {x ∈ R | x ≤ 0 or x > 2}
d. A ∪ C = {x ∈ R | 0 < x ≤ 2 or 3 ≤ x < 9}
e. A ∩ C = ∅
f. Bc = {x ∈ R | x < 1 or x ≥ 4}
g. Ac ∩ Bc = {x ∈ R | x ≤ 0 or x ≥ 4}
h. Ac ∪ Bc = {x ∈ R | x < 1 or x > 2}
i. (A ∩ B)c = {x ∈ R | x < 1 or x > 2}
j. (A ∪ B)c = {x ∈ R | x ≤ 0 or x ≥ 4}

13. b. False. Many negative real numbers are not rational. For
example, −√2 ∈ R but −√2 /∈ Q.

d. False. 0 ∈ Z but 0 /∈ Z− ∪ Z+.
14. a.

U
B

A C

15. a.
U

C

A

B

16. a. A ∪ (B ∩ C) = {a, b, c}, (A ∪ B) ∩ C = {b, c}, and
(A ∪ B) ∩ (A ∪ C) = {a, b, c, d} ∩ {a, b, c, e} =
{a, b, c}.
Hence A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C).

17. a.

A B

C

U

18. a. The number 0 is not in ∅ because ∅ has no elements.
b. No. The left-hand set is the empty set; it does not have

any elements. The right-hand set is a set with one ele-
ment, namely ∅.

19. A1 = {1, 12} = {1}, A2 = {2, 22} = {2, 4},
A3 = {3, 32} = {3, 9}, A4 = {4, 42} = {4, 16}

a. A1 ∪ A2 ∪ A3 ∪ A4 = {1} ∪ {2, 4} ∪ {3, 9} ∪ {4, 16}
= {1, 2, 3, 4, 9, 16}

b. A1 ∩ A2 ∩ A3 ∩ A4 = {1} ∩ {2, 4} ∩ {3, 9} ∩ {4, 16}
= ∅

c. A1, A2, A3, and A4 are not mutually disjoint
because A2 ∩ A4 = {4} = ∅.

21. C0 = {0,−0} = {0}, C1 = {1,−1}, C1 = {2,−2},
C1 = {3,−3}, C1 = {4,−4}
a.

4⋃
i=0

Ci = {0} ∪ {1,−1} ∪ {2,−2} ∪ {3,−3} ∪ {4,−4} =
{−4,−3,−2,−1, 0, 1, 2, 3, 4}

b.
4⋂

i=0
Ci = {0} ∩ {1,−1} ∩ {2,−2} ∩ {3,−3} ∩ {4,−4}

= ∅
c. C0, C1, C2, . . . are mutually disjoint because no two of

the sets have any elements in common.

d.
n⋃

i=0
Ci = {−n,−(n − 1), . . . ,−2,−1, 0, 1, 2, . . . ,

(n − 1), n}
e.

n⋂
i=0

Ci = ∅

f.
∞⋃
i=0

Ci = Z, the set of all integers

g.
∞⋂
i=0

Ci = ∅
22. D0 = [−0, 0] = {0}, D1 = [−1, 1], D2 = [−2, 2],

D3 = [−3, 3], D4 = [−4, 4]
a.

4⋃
i=0

Di = {0} ∪ [−1, 1] ∪ [−2, 2] ∪ [−3, 3] ∪ [−4, 4]
= [−4, 4]

b.
4⋂

i=0
Di = {0} ∪ [−1, 1] ∪ [−2, 2] ∪ [−3, 3] ∪ [−4, 4]

= {0}
c. D0, D1, D2, . . . are not mutually disjoint. In fact, each

Dk ⊆ Dk+1.

d.
n⋃

i=0
Di = [−n, n]

e.
n⋂

i=0
Di = {0}
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f.
∞⋃
i=0

Di = R, the set of all real numbers

g.
∞⋂
i=0

Di = {0}
24. W0 = (0,∞),W1 = (1,∞),W2 = (2,∞),

W3 = (3,∞),W4 = (4,∞)

a.
4⋃

i=0
Wi = (0,∞) ∪ (1,∞) ∪ (2,∞) ∪ (3,∞) ∪

(4,∞) = (0,∞)

b.
4⋂

i=0
Wi = (0,∞) ∩ (1,∞) ∩ (2,∞) ∩ (3,∞) ∩

(4,∞) = (4,∞)

c. W0,W1,W2, . . . are not mutually disjoint. In fact,
Wk+1 ⊆ Wk for all integers k ≥ 0.

d.
n⋃

i=0
Wi = (0,∞)

e.
n⋂

i=0
Wi = (n,∞)

f.
∞⋃
i=0

Wi = (0,∞)

g.
∞⋂
i=0

Wi = ∅
27. a. No. The element d is in two of the sets.

b. No. None of the sets contains 6.
28. Yes. Every integer is either even or odd, and no integer is

both even and odd.

31. a. A ∩ B = {2}, so P(A ∩ B) = {∅, {2}}.
b. A = {1, 2}, so P(A) = {∅, {1}, {2}, {1, 2}}.
c. A ∪ B = {1, 2, 3}, so P(A ∪ B) = {∅, {1}, {2}, {3},
{1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

d. A × B = {(1, 2), (1, 3), (2, 2), (2, 3)}, so
P(A × B) = {∅, {(1, 2)}, {(1, 3)}, {(2, 2)}, {(2, 3)},
{(1, 2), (1, 3)}, {(1, 2), (2, 2)},
{(1, 2), (2, 3)}, {(1, 3), (2, 2)}, {(1, 3), (2, 3)},
{(2, 2), (2, 3)}, {(1, 2), (1, 3), (2, 2)},
{(1, 2), (1, 3), (2, 3)},
{(1, 2), (2, 2), (2, 3)}, {(1, 3), (2, 2), (2, 3)},
{(1, 2), (1, 3), (2, 2), (2, 3)}}.

32. a. P(A × B) = {∅, {(1, u)}, {(1, v)}, {(1, u), (1, v)}}
33. b. P(P(∅)) =P({∅}) = {∅, {∅}}
34. a. A1 × (A2 × A3) = {(1, (u,m)), (2, (u,m)),

(3, (u,m)), (1, (u, n)), (2, (u, n)), (3, (u, n)),
(1, (v,m)), (2, (v,m)), (3, (v,m)), (1, (v, n)),
(2, (v, n)), (3, (v, n))}

35. a. A × (B ∪ C) = {a, b} × {1, 2, 3}
= {(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)}

b. (A × B) ∪ (A × C) = {(a, 1), (a, 2), (b, 1), (b, 2),
(a, 2), (a, 3), (b, 2), (b, 3)}

= {(a, 1), (a, 2), (b, 1), (b, 2),
(a, 3), (b, 3)}

36.
→ → →

→
i 1 2 3 4

j 1 2 3 1 2 3 4 1 2

found no yes no yes no yes

answer A ⊆ B

Section 6.2
1. a. (1) A (2) B ∪ C

b. (1) A ∩ B (2) C

2. a. (1) A − B (2) A (3) A (4) B
b. (1) x ∈ A (2) A (3) B (4) A

3. (a.) A (b) C (c) B (d) C (e) B ⊆ C

5. Proof: Suppose A and B are sets.

B − A ⊆ B ∩ Ac: Suppose x ∈ B − A. By definition
of set difference, x ∈ B and x /∈ A. But then by definition
of complement, x ∈ B and x ∈ Ac, and so by definition of
intersection, x ∈ B ∩ Ac. [Thus B − A ⊆ B ∩ Ac by defini-
tion of subset].

B ∩ Ac ⊆ B − A: Suppose x ∈ B ∩ Ac. By definition
of intersection, x ∈ B and x ∈ Ac. But then by definition
of complement, x ∈ B and x /∈ A, and so by definition of
set difference, x ∈ B − A. [Thus B ∩ Ac ⊆ B − A by defi-
nition of subset.]

[Since both set containments have been proved, B − A =
B ∩ Ac by definition of set equality.]

6. Partial answers
a. (A ∩ B) ∪ (A ∩ C) b. A c. B ∪ C
d. x ∈ C e. A ∩ B f. by definition of intersection,

x ∈ A ∩ C , and so by definition of union,
x ∈ (A ∩ B) ∪ (A ∩ C).

7. Hint: This is somewhat similar to the proof in Example
6.2.3.

8. Proof: Suppose A and B are any sets.
Proof that (A ∩ B) ∪ (A ∩ Bc) ⊆ A: Suppose
x ∈ (A ∩ B) ∪ (A ∩ Bc). [We must show that x ∈ A.] By
definition of union, x ∈ A ∩ B or x ∈ (A ∩ Bc).
Case 1 (x ∈ A ∩ B): In this case x is in A and x is in B,
and so, in particular, x ∈ A.
Case 2 (x ∈ A ∩ Bc): In this case x is in A and x is not in
B, and so, in particular, x ∈ A.
Thus, in either case, x ∈ A [as was to be shown]. [Thus
(A ∩ B) ∪ (A ∩ Bc) ⊆ A by definition of subset.]
Proof that A ⊆ (A ∩ B) ∪ (A ∩ Bc): Suppose x ∈ A. [We
must show that x ∈ (A ∩ B) ∪ (A ∩ Bc).] Either x ∈ B or
x �∈ B.
Case 1 (x ∈ B): In this case we know that x is in A and
we are also assuming that x is in B. Hence, by definition of
intersection, x ∈ A ∩ B.
Case 2 (x ∈ A ∩ Bc): In this case we know that x is in A
and we are also assuming that x is in Bc. Hence, by defini-
tion of intersection, x ∈ A ∩ Bc.
Thus, x ∈ A ∩ B or x ∈ A ∩ Bc, and so, by definition of
union, x ∈ (A ∩ B) ∪ (A ∩ Bc) [as was to be shown. Thus
A ⊆ (A ∩ B) ∪ (A ∩ Bc) by definition of subset.]
Conclusion: Since both set containments have been
proved, it follows by definition of set equality that
(A ∩ B) ∪ (A ∩ Bc) = A.

9. Partial proof: Suppose A, B, and C are any sets. To
show that (A − B) ∪ (C − B) = (A ∪ C)− B, we must
show that (A − B) ∪ (C − B) ⊆ (A ∪ C)− B and that
(A ∪ C)− B ⊆ (A − B) ∪ (C − B).
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(A − B) ∪ (C − B) ⊆ (A ∪ C) − B: Suppose that x is
any element in (A − B) ∪ (C − B). [We must show that
x ∈ (A ∪ C)− B.] By definition of union, x ∈ A − B or
x ∈ C − B.

Case 1 (x ∈ A − B): Then, by definition of set difference,
x ∈ A and x /∈ B. But because x ∈ A, we have that x ∈
A ∪ C by definition of union. Hence x ∈ A ∪ C and x /∈ B,
and so, by definition of set difference, x ∈ (A ∪ C)− B.

Case 2 (x ∈ C − B): Then, by definition of set difference,
x ∈ C and x /∈ B. But because x ∈ C , we have that x ∈
A ∪ C by definition of union. Hence x ∈ A ∪ C and x /∈ B,
and so, by definition of set difference, x ∈ (A ∪ C)− B.

Thus, in both cases, x ∈ (A ∪ C)− B [as was to be shown].
So (A − B) ∪ (C − B) ⊆ (A ∪ C)− B.

11. Partial proof: Suppose A and B are any sets. We will
show that A ∪ (A ∩ B) ⊆ A. Suppose x is any element
in A ∪ (A ∩ B). [We must show that x ∈ A.] By defini-
tion of union, x ∈ A or x ∈ A ∩ B. In the case where
x ∈ A, clearly x ∈ A. In the case where x ∈ A ∩ B, x ∈ A
and x ∈ B (by definition of intersection). Thus, in par-
ticular, x ∈ A. Hence, in both cases x ∈ A [as was to be
shown].
To complete the proof that A ∪ (A ∩ B) = A, you must
show that A ⊆ A ∪ (B ∩ A).

12. Proof: Let A be a set. [We must show that A ∪ ∅ = A.]

A ∪ ∅ ⊆ A: Suppose x ∈ A ∪ ∅. Then x ∈ A or x ∈ ∅ by
definition of union. But x /∈ ∅ since ∅ has no elements.
Hence x ∈ A.

A ⊆ A ∪ ∅: Suppose x ∈ A. Then the statement “x ∈ A
or x ∈ ∅” is true. Hence x ∈ A ∪ ∅ by definition of union.
[Alternatively, A ⊆ A ∪ ∅ by the inclusion in union property.]
Since A ∪ ∅ ⊆ A and A ⊆ A ∪ ∅, then A ∪ ∅ = A by defi-
nition of set equality.

13. Proof: Suppose A, B, and C are sets and A ⊆ B. Let x ∈
A ∩ C . By definition of intersection, x ∈ A and x ∈ C . But
since A ⊆ B and x ∈ A, then x ∈ B. Hence x ∈ B and
x ∈ C , and so, by definition of intersection, x ∈ B ∩ C .
[Thus A ∩ C ⊆ B ∩ C by definition of subset.]

16. Hint: The proof has the following outline:
Suppose A, B, and C are any sets such that A ⊆ B and
A ⊆ C .

...

Therefore, A ⊆ B ∩ C .

18. Proof: Suppose A, B, and C are arbitrarily chosen sets.

A × (B ∪ C) ⊆ (A × B) ∪ (A × C): Suppose (x, y) ∈
A × (B ∪ C). [We must show that (x, y) ∈ (A × B) ∪ (A ×
C).] Then x ∈ A and y ∈ B ∪ C . By definition of union,
this means that y ∈ B or y ∈ C .

Case 1 ( y ∈ B): Then, since x ∈ A, (x, y) ∈ A × B by
definition of Cartesian product. Hence (x, y) ∈ (A × B) ∪
(A × C) by the inclusion in union property.

Case 2 ( y ∈ C): Then, since x ∈ A, (x, y) ∈ A × C by
definition of Cartesian product. Hence (x, y) ∈ (A × B) ∪
(A × C) by the inclusion in union property.

Hence, in either case, (x, y) ∈ (A × B) ∪ (A × C) [as was
to be shown].

Thus A × (B ∪ C) ⊆ (A × B) ∪ (A × C) by definition of
subset.

(A × B) ∪ (A × C) ⊆ A × (B ∪ C): Suppose (x, y) ∈
(A × B) ∪ (A × C). Then (x, y) ∈ A × B or
(x, y) ∈ A × C .

Case 1 ((x, y) ∈ A × B): In this case, x ∈ A and y ∈ B.
By definition of union, since y ∈ B, then y ∈ B ∪ C . Hence
x ∈ A and y ∈ B ∪ C , and so, by definition of Cartesian
product, (x, y) ∈ A × (B ∪ C).

Case 2 ((x, y) ∈ A × C): In this case, x ∈ A and y ∈ C .
By definition of union, since y ∈ C , then y ∈ B ∪ C . Hence
x ∈ A and y ∈ B ∪ C , and so, by definition of Cartesian
product, (x, y) ∈ A × (B ∪ C).

Thus, in either case, (x, y) ∈ A × (B ∪ C). [Hence, by def-
inition of subset, (A × B) ∪ (A × C) ⊆ A × (B ∪ C).]

[Since both subset relations have been proved, we can con-
clude that A × (B ∪ C) = (A × B) ∪ (A × C) by definition of
set equality.]

20. There is more than one error in this “proof.” The most seri-
ous is the misuse of the definition of subset. To say that A is
a subset of B means that for all x, if x ∈ A then x ∈ B. It
does not mean that there exists an element of A that is also
an element of B. The second error in the proof occurs in
the last sentence. Just because there is an element in A that
is in B and an element in B that is in C , it does not follow
that there is an element in A that is in C . For instance, sup-
pose A = {1, 2}, B = {2, 3}, and C = {3, 4}. Then there is
an element in A that is in B (namely 2) and there is an ele-
ment in B that is in C (namely 3), but there is no element
in A that is in C .

21. Hint: The statement “since x /∈ A or x /∈ B, x /∈ A ∪ B” is
fallacious. Try to think of an example of sets A and B and
an element x such that the statement “x /∈ A or x /∈ B” is
true and the statement “x /∈ A ∪ B” is false.

23. a.

A B

C

U

Entire shaded region is A � (B � C ). 
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A B

C

U

Darkly shaded region is (A � B) � (A � C ). 

24. (a) (A − B) ∩ (B − A) (b) intersection (c) B − A
(d) B (e) A (f) A (g) (A − B) ∩ (B − A) = ∅

25. Proof by contradiction: Suppose not. That is, suppose there
exist sets A and B such that (A ∩ B) ∩ (A ∩ Bc) �= ∅.
Then there is an element x in (A ∩ B) ∩ (A ∩ Bc). By
definition of intersection, x ∈ (A ∩ B) and x ∈ (A ∩ Bc).
Applying the definition of intersection again, we have
that since x ∈ (A ∩ B), x ∈ A and x ∈ B, and since
x ∈ (A ∩ Bc), x ∈ A and x /∈ B. Thus, in particular, x ∈ B
and x /∈ B, which is a contradiction. It follows that the sup-
position is false, and so (A ∩ B) ∩ (A ∩ Bc) = ∅.

27. Proof: Let A be a subset of a universal set U . Suppose
A ∩ Ac �= ∅, that is, suppose there is an element x such
that x ∈ A ∩ Ac. Then by definition of intersection, x ∈ A
and x ∈ Ac, and so by definition of complement, x ∈ A
and x /∈ A. This is a contradiction. [Hence the supposition
is false, and we conclude that A ∩ Ac = ∅.]

29. Proof: Let A be a set. Suppose A × ∅ �= ∅. Then there
would be an element (x, y) in A × ∅. By definition of
Cartesian product, x ∈ A and y ∈ ∅. But there are no ele-
ments y such that y ∈ ∅. Hence there are no elements (x, y)
such that x ∈ A and y ∈ ∅. Consequently, (x, y) /∈ A × ∅.
[Thus the supposition is false, and so A × ∅ = ∅.]

30. Proof: Let A and B be sets such that A ⊆ B. [We must show
that A ∩ Bc = ∅.] Suppose A ∩ Bc �= ∅; that is, suppose
there were an element x such that x ∈ A ∩ Bc. Then x ∈ A
and x ∈ Bc by definition of intersection. So x ∈ A and
x /∈ B by definition of complement. But A ⊆ B by hypoth-
esis. So since x ∈ A, x ∈ B by definition of subset. Thus
x /∈ B and also x ∈ B, which is a contradiction. Hence the
supposition that A ∩ Bc �= ∅ is false, and so A ∩ Bc = ∅.

33. Proof: Let A, B, and C be any sets such that C ⊆ B − A.
Suppose A ∩ C �= ∅. Then there is an element x such that
x ∈ A ∩ C . By definition of intersection, x ∈ A and x ∈ C .
Since C ⊆ B − A, then x ∈ B and x /∈ A. So x ∈ A and
x /∈ A, which is a contradiction. Hence the supposition is
false, and thus A ∩ C = ∅.

36. a. Start of proof that A ∪ B ⊆ (A − B) ∪ (B − A) ∪ (A ∩
B): Given any element x in A ∪ B, by definition of
union x is in at least one of A and B. Thus x satisfies
exactly one of the following three conditions:
(1) x ∈ A and x /∈ B (x is in A only)
(2) x ∈ B and x /∈ A (x is in B only)
(3) x ∈ A and x ∈ B (x is in both A and B)

b. To show that (A − B), (B − A), and (A ∩ B) are mutu-
ally disjoint, we must show that the intersection of any
two of them is the empty set. But, by definition of set
difference and set intersection, saying that x ∈ A − B
means that (1) x ∈ A and x /∈ B, saying that x ∈ B − A
means that (2) x ∈ B and x /∈ A, and saying that x ∈
A ∩ B means that (3) x ∈ A and x ∈ B. Conditions (1)–
(3) are mutually exclusive, and so no two of them can
be satisfied at the same time. Thus no element can be
in the intersection of any two of the sets, and, therefore,
the intersection of any two of the sets is the empty set.
Hence, (A − B), (B − A), and (A ∩ B) are mutually
disjoint.

37. Suppose A and B1, B2, B3, . . . , Bn are any sets.

Proof that A ∩
(

n⋃
i=1

Bi

)
⊆

n⋃
i=1

(A ∩ Bi ):

Suppose x is any element in A ∩
(

n⋃
i=1

Bi

)
. [We must

show that x ∈
n⋃

i=1
(A ∩ Bi ).] By definition of intersection,

x ∈ A and x ∈
n⋃

i=1
Bi . Since x ∈

n⋃
i=1

Bi , the definition of

general union implies that x ∈ Bi for some i = 1, 2, . . . , n,
and so, since x ∈ A, the definition of intersection implies
that x ∈ A ∩ Bi . Thus, by definition of general union,

x ∈
n⋃

i=1
(A ∩ Bi ) [as was to be shown].

Proof that
n⋃

i=1
(A ∩ Bi ) ⊆ A ∩

(
n⋃

i=1
Bi

)
:

Suppose x is any element in
n⋃

i=1
(A ∩ Bi ). [We must show

that x ∈ A ∩
(

n⋃
i=1

Bi

)
.] By definition of general union, x ∈

A ∩ Bi for some i = 1, 2, . . . , n. Thus, by definition of
intersection, x ∈ A and x ∈ Bi . Since x ∈ Bi for some i =
1, 2, . . . , n, by definition of general union, x ∈

n⋃
i=1

Bi .

Thus we have that x ∈ A and x ∈
n⋃

i=1
Bi , and so, by defini-

tion of intersection, x ∈ A ∩
(

n⋃
i=1

Bi

)
[as was to be shown].

Conclusion: Since both set containments have been proved,

it follows by definition of set equality that A ∩
(

n⋃
i=1

Bi

)
=

n⋃
i=1

(A ∩ Bi ).

38. Proof sketch: If x ∈
n⋃

i=1
(Ai − B), then x ∈ Ai − B for

some i = 1, 2, . . . , n, and so, (1) for some i = 1, 2, . . . , n,

x ∈ Ai (which implies that x ∈
(

n⋃
i=1

Ai

)
) and (2) x �∈ B.

Conversely, if x ∈
(

n⋃
i=1

Ai

)
− B, then x ∈

n⋃
i=1

Ai and

x �∈ B, and so, by definition of general union, x ∈ Ai for
some i = 1, 2, . . . , n, x ∈ Ai and x �∈ B. This implies that
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there is an integer i such that x ∈ Ai − B, and thus that

x ∈
n⋃

i=1
(Ai − B).

40. Suppose A and B1, B2, B3, . . . , Bn are any sets.

Proof that
n⋃

i=1
(A × Bi ) ⊆ A ×

(
n⋃

i=1
Bi

)
:

Suppose (x, y) is any element in
n⋃

i=1
(A × Bi ). [We must

show that (x, y) ∈ A ×
(

n⋃
i=1

Bi

)
.] By definition of gen-

eral union, (x, y) ∈ A × Bi for some i = 1, 2, . . . , n. By
definition of Cartesian product, this implies that (1)
x ∈ A and (2) y ∈ Bi for some i = 1, 2, . . . , n. By defi-

nition of general union, (2) implies that y ∈
n⋃

i=1
Bi . Thus

x ∈ A and y ∈
n⋃

i=1
Bi , and so by definition of Cartesian

product, (x, y) ∈ A ×
(

n⋃
i=1

Bi

)
[as was to be shown].

Proof that A ×
(

n⋃
i=1

Bi

)
⊆

n⋃
i=1

(A × Bi ):

Suppose (x, y) is any element in A ×
(

n⋃
i=1

Bi

)
. [We must

show that (x, y) ∈
n⋃

i=1
(A × Bi ).] By definition of Cartesian

product, (1) x ∈ A and (2) y ∈
n⋃

i=1
Bi . By definition of gen-

eral union, (2) implies that y ∈ Bi for some i = 1, 2, . . . , n.
Thus x ∈ A and y ∈ Bi for some i = 1, 2, . . . , n, and so, by
definition of Cartesian product, (x, y) ∈ A × Bi for some
i = 1, 2, . . . , n. It follows from the definition of general

union that (x, y) ∈
n⋃

i=1
(A × Bi ) [as was to be shown].

Conclusion: Since both set containments have been proved,

it follows by definition of set equality that
n⋃

i=1
(A × Bi ) =

A ×
(

n⋃
i=1

Bi

)
.

Section 6.3
1. Counterexample: Any sets A, B, and C where C con-

tains elements that are not in A will serve as a counterex-
ample. For instance, let A = {1, 3}, B = {2, 3}, and C =
{4}. Then (A ∩ B) ∪ C = {3} ∪ {4} = {3, 4}, whereas A ∩
(B ∪ C) = {1, 3} ∩ {2, 3, 4} = {3}. Since {3, 4} �= {3},
(A ∩ B) ∪ C �= A ∩ (B ∪ C).

3. Counterexample: Any sets, A, B, and C where A ⊆ C and
B contains at least one element that is not in either A or
C will serve as a counterexample. For instance, let A =
{1}, B = {2}, and C = {1, 3}. Then A � B and B � C but
A ⊆ C .

5. False. Counterexample: Any sets A, B, and C where
A and C have elements in common that are not in
B will serve as a counterexample. For instance, let
A = {1, 2, 3}, B = {2, 3}, and C = {3}. Then B − C =

{2}, and so A − (B − C) = {1, 2, 3} − {2} = {1, 3}. On
the other hand A − B = {1, 2, 3} − {2, 3} = {1}, and
so (A − B)− C = {1} − {3} = {1}. Since {1, 3} �= {1},
A − (B − C) �= (A − B)− C .

6. True. Proof: Let A and B be any sets.

A ∩ (A ∪ B) ⊆ A: Suppose x ∈ A ∩ (A ∪ B). By defi-
nition of intersection, x ∈ A and x ∈ A ∪ B. In particular
x ∈ A. Thus, by definition of subset, A ∩ (A ∪ B) ⊆ A.

A ⊆ A ∩ (A ∪ B): Suppose x ∈ A. Then by definition
of union, x ∈ A ∪ B. Hence x ∈ A and x ∈ A ∪ B, and
so, by definition of intersection x ∈ A ∩ (A ∪ B). Thus, by
definition of subset, A ⊆ A ∩ (A ∪ B).

Because both A ∩ (A ∪ B) ⊆ A and A ⊆ A ∩ (A ∪ B)

have been proved, we conclude that A ∩ (A ∪ B) = A.

9. True. Proof: Suppose A, B, and C are sets and A ⊆ C and
B ⊆ C . Let x ∈ A ∪ B. By definition of union, x ∈ A or
x ∈ B. But if x ∈ A then x ∈ C (because A ⊆ C), and if
x ∈ B then x ∈ C (because B ⊆ C). Hence, in either case,
x ∈ C . [So, by definition of subset, A ∪ B ⊆ C.]

11. Hint: The statement is false. Consider sets U, A, B, and
C as follows: U = {1, 2, 3, 4}, A = {1, 2}, B = {1, 2, 3},
and C = {2}.

12. Hint: The statement is true. Sketch of proof : If
x ∈ A ∩ (B − C), then x ∈ A and x ∈ B and x /∈ C . So
it is true that x ∈ A and x ∈ B and that x ∈ A and x /∈ C .
Conversely, if x ∈ (A ∩ B)− (A ∩ C), then x ∈ A and
x ∈ B, but x /∈ A ∩ C , and so x /∈ C .

14. Hint: The statement is false. Show that the follow-
ing is a counterexample: A = {1, 3}, B = {1, 2, 3}, and
C = {2, 3}.

15. Hint: The statement is true. Sketch of proof : Suppose
x ∈ A. [We must show that x ∈ B.] Either x ∈ C or x /∈ C .
In case x ∈ C , make use of the fact that A ∩ C ⊆ B ∩ C to
show that x ∈ B. In case x /∈ C , make use of the fact that
A ∪ C ⊆ B ∪ C to show that x ∈ B.

17. True. Proof: Suppose A and B are any sets with A ⊆ B. [We
must show that P(A) ⊆P(B).] So suppose X ∈P(A).
Then X ⊆ A by definition of power set. But because
A ⊆ B, we also have that X ⊆ B by the transitive prop-
erty for subsets, and thus, by definition of power set,
X ∈P(B). This proves that for all X , if X ∈P(A)

then X ∈P(B), and so P(A) ⊆P(B) [as was to be
shown].

18. False. Counterexample: For any sets A and B,P(A) ∪
P(B) contains only sets that are subsets of either A or B,
whereas the sets in P(A ∪ B) can contain elements of both
A and B. Thus, if at least one of A or B contains elements
that are not in the other set, P(A) ∪P(B) and P(A ∪ B)

will not be equal. For instance, let A = {1} and B = {2}.
Then {1, 2} ∈P(A ∪ B) but {1, 2} /∈P(A) ∪P(B).

19. Hint: The statement is true. To prove it, suppose A and
B are any sets, and suppose X ∈P(A) ∪P(B). Show
that X ⊆ A ∪ B, and deduce the conclusion from this
result.
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22. a. Statement: ∀ sets S, ∃ a set T such that S ∩ T = ∅.
Negation: ∃ a set S such that ∀ sets T, S ∩ T �= ∅.
The statement is true. Given any set S, take T = Sc.
Then S ∩ T = S ∩ Sc = ∅ by the complement law for
∩. Alternatively, T could be taken to be ∅.

23. Hint: S0 = {∅}, S1 = {{a}, {b}, {c}}
25. a. S1 = {∅, {t}, {u}, {v}, {t, u}, {t, v}, {u, v}, {t, u, v}}

b. S2 = {{w}, {t, w}, {u, w}, {v,w}, {t, u, w}, {t, v, w},
{u, v, w}, {t, u, v, w}}

c. Yes

26. Hint: Use mathematical induction. In the inductive step,
you will consider the set of all nonempty subsets
of {2, . . . , k} and the set of all nonempty subsets of
{2, . . . , k + 1}. Any subset of {2, . . . , k + 1} either con-
tains k + 1 or does not contain k + 1. Thus⎡
⎣the sum of all products
of elements of nonempty
subsets of {2, . . . , k + 1}

⎤
⎦

=

⎡
⎢⎢⎣
the sum of all products
of elements of nonempty
subsets of {2, . . . , k + 1}
that do not contain k + 1

⎤
⎥⎥⎦+

⎡
⎢⎢⎣
the sum of all products
of elements of nonempty
subsets of {2, . . . , k + 1}
that contain k + 1

⎤
⎥⎥⎦

But any subset of {2, . . . , k + 1} that does not contain k + 1
is a subset of {2, . . . , k}. And any subset of {2, . . . , k + 1}
that contains k + 1 is the union of a subset of {2, . . . , k}
and {k + 1}.

27. a. commutative law for ∩
b. distributive law
c. commutative law for ∩

28. Partial answer:
a. set difference law
b. set difference law
c. commutative law for ∩
d. De Morgan’s law

29. Hint: Remember to use the properties in Theorem 6.2.2
exactly as they are written. For example, the distributive law
does not state that for all sets A, B, and C, (A ∪ B) ∩ C =
(A ∩ C) ∪ (B ∩ C).

30. Proof: Let sets A, B, and C be given. Then

(A ∩ B) ∪ C
= C ∪ (A ∩ B) by the commutative law for ∪
= (C ∪ A) ∩ (C ∪ B) by the distributive law

= (A ∪ C) ∩ (B ∪ C) by the commutative law for ∪.
31. Proof: Suppose A and B are sets. Then

A ∪ (B − A)

= A ∪ (B ∩ Ac) by the set difference law

= (A ∪ B) ∩ (A ∪ Ac) by the distributive law

= (A ∪ B) ∩U by the complement law for ∪
= A ∪ B by the identity law for ∩.

36. Proof: Let A, B, and C be any sets. Then

((Ac ∪ Bc)− A)c

= ((Ac ∪ Bc) ∩ Ac)c by the set difference law

= (Ac ∪ Bc)c ∪ (Ac)c by De Morgan’s law

= ((Ac)c ∩ (Bc)c) ∪ (Ac)c by De Morgan’s law

= (A ∩ B) ∪ A by the double
complement law

= A ∪ (A ∩ B) by the commutative law for ∪
= A by the absorption law

39. Partial proof: Let A and B be any sets. Then

(A − B) ∪ (B − A)

= (A ∩ Bc) ∪ (B ∩ Ac) by the set difference law

= [(A ∩ Bc) ∪ B] ∩ [(A ∩ Bc) ∪ Ac)]
by the distributive law

= [(B ∪ (A ∩ Bc)] ∩ [Ac ∪ (A ∩ Bc)]
by the commutative law for ∪

= [(B ∪ A) ∩ (B ∪ Bc)] ∩ [(Ac ∪ A) ∩ (Ac ∪ Bc)]
by the distributive law

= [(A ∪ B) ∩ (B ∪ Bc)] ∩ [(A ∪ Ac) ∩ (Ac ∪ Bc)]
by the commutative law for ∪

41. Hint: The answer is ∅.
44. a. Proof: Suppose not. That is, suppose there exist sets A

and B such that A − B and B are not disjoint. [We must
derive a contradiction.] Then (A − B) ∩ B �= ∅, and so
there is an element x in (A − B) ∩ B. By definition
of intersection, x ∈ A − B and x ∈ B, and by defini-
tion of difference, x ∈ A and x /∈ B. Hence x ∈ B and
also x /∈ B, which is a contradiction. Thus the suppo-
sition is false, and we conclude that A − B and B are
disjoint.

b. Let A and B be any sets. Then

(A − B) ∩ B
= (A ∩ Bc) ∩ B by the set difference law

= A ∩ (Bc ∩ B) by the associative law for ∩
= A ∩ (B ∩ Bc) by the commutative law for ∩
= A ∩ ∅ by the complement law for ∩
= ∅ by the universal bound law for ∩.

46. a. A)B = (A − B) ∪ (B − A) = {1, 2} ∪ {5, 6} =
{1, 2, 5, 6}

47. Proof: Let A and B be any subsets of a universal set. By def-
inition of ), showing that A)B = B)A is equivalent to
showing that (A − B) ∪ (B − A) = (B − A) ∪ (A − B).
But this follows immediately from the commutative law
for ∪.
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48. Proof: Let A be any subset of a universal set. Then

A)∅
= (A − ∅) ∪ (∅ − A) by definition of �

= (A ∩ ∅c) ∪ (∅ ∩ Ac) by the set difference law

= (A ∩U ) ∪ (Ac ∩ ∅) by the complement of U law and
the commutative law for ∩

= A ∪ ∅ by the identity law for ∩ and the
universal bound law for ∩

= A. by the identity law for ∪
51. Hint: First show that for any sets A and B and for any

element x ,

x ∈ A)B ⇔ (x ∈ A and x /∈ B) or (x ∈ B and x /∈ A),

and

x /∈ A)B ⇔ (x /∈ A and x /∈ B) or (x ∈ B and x ∈ A).

52. Same hint as for exercise 51.

53. Start of proof : Suppose A and B are any subsets of a univer-
sal set U . By the universal bound law for union, B ∪U =
U , and so, by the commutative law for union, U ∪ B = U .
Take the intersection of both sides of the equation with A.

Section 6.4
1. a. because 1 is an identity for ·

b. by the complement law for +
c. by the distributive law for + over ·
d. by the complement law for ·
e. because 0 is an identity for +

4. Proof: For all elements a in B,

a ·0 = a ·(a ·a) by the complement law for ·
= (a ·a) ·a by the associative law for ·
= a ·a by exercise 48

= 0. by the complement law for ·

6. a. Proof: 0 ·1 = 0 because 1 is an identity for · , and 0+
1 = 1+ 0 = 1 because + is commutative and 0 is an
identity for +. Thus, by the uniqueness of the comple-
ment law, 0 = 1.

7. a. Proof: Suppose 0 and 0′ are elements of B both of
which are identities for +. Then both 0 and 0′ satisfy
the identity, complement, and universal bound laws. [We
will show that 0 = 0′.] By the identity law for +, for all
a ∈ B,

a + 0 = a and a + 0′ = a.

It follows that

⇒
⇒
⇒
⇒
⇒
⇒

a + 0 = a + 0′

ā · (a + 0) = ā · (a + 0′)
(ā ·a)+ (ā ·0) = (ā ·a)+ (ā ·0′)

(a · ā)+ 0 = (a · ā)+ 0′

0 ·0 = 0′ ·0′
0 = 0′

because both quantities equals a
by “multiplying” both sides by ā
by the distributive law
by the universal bound law for ·
by the complement law for ·
by the universal bound law for ·

[This is what was to be shown.]

b. Hint: Suppose 1 and 1′ are elements of B both of which
are identities for · . Then for all a ∈ B, by the identity
law for · , a ·1 = a and a ·1′ = a. It follows that a ·1 =
a ·1′, and ā + a ·1 = ā + a ·1′. Etc.

8. Proof: Suppose B is a Boolean algebra and a and b are any
elements of B. We first prove that (a ·b)+ (a + b) = 1.

a ·b + (a + b)

= (a + b)+ (a ·b)
by the commutative law for +

= ((a + b)+ a) ·((a + b)+ b)
by the distributive law of + over ·

= ((b + a)+ a) ·(a + (b + b))
by the commutative and
associative laws for +

= (b + (a + a)) ·(a + (b + b))
by the associative and
commutative laws for +

= (b + (a + a)) ·(a + 1)
by the commutative and
complement laws for +

= (b + 1) ·1 by the complement and
universal bound laws for +

= 1 ·1 by the universal bound law for +
= 1 by the identity law for · .

Next we prove that (a ·b) ·(a + b) = 0.

(a ·b) ·(a + b)

= ((a ·b) ·a)+ (((a ·b) ·b)
by the distributive law of · over +

= ((b ·a) ·a)+ ((a ·(b ·b))
by the commutative and associative laws for ·

= (b ·(a ·a))+ (a ·0)
by the associative and complement laws for ·

= (b ·0)+ 0
by the complement and universal bound laws for ·

= 0+ 0 by the universal bound law for ·
= 0 by the identity law for +.

Because both (a ·b)+ (a + b) = 1 and (a ·b) ·(a + b) =
0, it follows, by the uniqueness of the complement law, that
a ·b = a + b.

10. Hint: One way to prove the statement is to use the result of
exercise 3. Some stages in the proof are the following:

y = (y + x) · y = (x · y)+ (z · y) = z · (x + y) = z.
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11. a. (i) Because S has only two distinct elements, 0 and 1, we
only need to check that 0+ 1 = 1+ 0. But this is true
because both sums equal 1.
(v) Partial answer:

0+ (0 ·0) = 0+ 0 = 0 and (0+ 0) ·(0+ 0) = 0 ·0 = 0 also

0+ (0 ·1) = 0+ 0 = 0 and (0+ 0) ·(0+ 1) = 0 ·1 = 0 also

0+ (1 ·0) = 0+ 0 = 0 and (0+ 1) ·(0+ 0) = 1 ·0 = 0 also

0+ (1 ·1) = 0+ 1 = 1 and (0+ 1) ·(0+ 1) = 1 ·1 = 1 also

b. Hint: Verify that 0+ x = x and that 1 · x = x for all
x ∈ S.

12. Hints: (1) Because the proofs of the absorption laws do not
use the associative laws, the absorption laws may be used
at any stage of the derivation.
(2) Show that for all x, y, and z in B, x (x + (y + z)) · x =
x and ((x + y)+ z)) · x = x .
(3) Show that for all a, b, and c in B, both a + (b + c) and
(a + b)+ c equal ((a + b)+ c) ·(a + (b + c)).
(4) Use De Morgan’s laws and the double complement law
to deduce the associative law for · .

13. The sentence is not a statement because it is neither true
nor false. If the sentence were true, then because it declares
itself to be false, the sentence would be false. Therefore, the
sentence is not true. On the other hand, if the sentence were
false, then it would be false that “This sentence is false,”
and so the sentence would be true. Consequently, the sen-
tence is not false.

14. This sentence is a statement because it is true. Recall that
the only way for an if-then statement to be false is for the
hypothesis to be true and the conclusion false. In this case
the hypothesis is not true. So regardless of what the con-
clusion states, the sentence is true. (This is an example of a
statement that is vacuously true, or true by default.)

17. This sentence is not a statement because it is neither true
nor false. If the sentence were true, then either the sentence
is false or 1+ 1 = 3. But 1+ 1 �= 3, and so the sentence is
false. Therefore, the sentence is not true. On the other hand,
if the sentence were false, then it would be true that “This
sentence is false or 1+ 1 = 3,” and so the sentence would
be true. Consequently, the sentence is not false.

20. Hint: Suppose that apart from statement (ii), all of Nixon’s
other assertions about Watergate are evenly split between
true and false.

21. No. Suppose there were a computer program P that had
as output a list of all computer programs that do not list
themselves in their output. If P lists itself as output, then
it would be on the output list of P , which consists of all
computer programs that do not list themselves in their out-
put. Hence P would not list itself as output. But if P does
not list itself as output, then P would be a member of the
list of all computer programs that do not list themselves in
their output, and this list is exactly the output of P . Hence
P would list itself as output. This analysis shows that the
assumption of the existence of such a program P is contra-
dictory, and so no such program exists.

25. Hint: Show that any algorithm that solves the printing prob-
lem can be adapted to produce an algorithm that solves the
halting problem.

Section 7.1
1. a. domain of f = {1, 3, 5}, co-domain of f = {s, t, u, v}

b. f (1) = v, f (3) = s, f (5) = v

c. range of f = {s, v}
d. yes, no
e. inverse image of s = {3}, inverse image of u = ∅,

inverse image of v = {1, 5}
f. {(1, v), (3, s), (5, v)}

3. a. True. The definition of function says that for any input
there is one and only one output, so if two inputs are
equal, their outputs must also be equal.

c. True. The definition of function does not prohibit this
occurrence.

4. a. There are four functions from X to Y as shown below.

a

b

X Y

u

v

a

b

X Y

u

v

a

b

X Y

u

v

a

b

X Y

u

v

5. a. IZ(e) = e

b. IZ
(
b j k
i

)
= b j k

i

6. a. The sequence is given by the function f : Znonneg → R
defined by the rule

f (n) = (−1)n
2n + 1

for all nonnegative integers n.

7. a. 1 [because there is an odd number of elements in {1, 3, 4}]
c. 0 [because there is an even number of elements in {2, 3}]

8. a. F(0) = (03 + 2 ·0+ 4) mod 5 = 4 mod 5 = 4
b. F(1) = (13 + 2 ·1+ 4) mod 5 = 7 mod 5 = 2

9. a. S(1) = 1 b. S(15) = 1+ 3+ 5+ 15 = 24
c. S(17) = 1+ 17 = 18

10. a. T (1) = {1} b. T (15) = {1, 3, 5, 15}
c. T (17) = {1, 17}

11. a. F(4, 4) = (2 ·4+ 1, 3 ·4− 2) = (9, 10)
b. F(2, 1) = (2 ·2+ 1, 3 ·1− 2) = (5, 1)

12. a. G(4, 4) = ((2 ·4+ 1) mod 5, (3 ·4− 2) mod 5) =
(9 mod 5, 10 mod 5) = (4, 0)

b. G(2, 1) = ((2 ·2+ 1) mod 5, (3 ·1− 2) mod 5) =
(5 mod 5, 1 mod 5) = (0, 1)
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13. x f (x) g(x)

0 42 mod 5 = 1 (02 + 3 ·0+ 1) mod 5 = 1

1 52 mod 5 = 0 (12 + 3 ·1+ 1) mod 5 = 0

2 62 mod 5 = 1 (22 + 3 ·2+ 1) mod 5 = 1

3 72 mod 5 = 4 (32 + 3 ·3+ 1) mod 5 = 4

4 82 mod 5 = 4 (42 + 3 ·4+ 1) mod 5 = 4

The table shows that f (x) = g(x) for all x in J5. Thus, by
definition of equality of functions, f = g.

15. F ·G and G ·F are equal because for all real numbers x ,
(F ·G)(x) = F(x) ·G(x) by definition of F ·G

= G(x) ·F(x) by the commutative law for
multiplication of real numbers

= (G ·F)(x) by definition of G · F .
17. a. 23 = 8 c. 41 = 4
18. a. log3 81 = 4 because 34 = 81

c. log3
(

1
27

)
= −3 because 3−3 = 1

27

19. Let b be any positive real number with b �= 1. Since b1 = b,
by definition of logarithm, logb b = 1.

21. Proof: Suppose b and u are any positive real numbers. [We

must show that logb
(
1
u

)
= − logb(u).] Let v = logb

(
1
u

)
.

By definition of logarithm, bv = 1
u . Multiplying both sides

by u and dividing by bv gives u = b−v , and thus, by defini-
tion of logarithm, −v = logb(u). Now multiply both sides
of this equation by −1 to obtain v = − logb(u). Therefore,

logb
(
1
u

)
= − logb(u) because both expressions equal v.

[This is what was to be shown.]

22. Hint: Use a proof by contradiction. Suppose log3 7 is ratio-
nal. Then log3 7 = a

b for some integers a and b with b �= 0.

Apply the definition of logarithm to rewrite log3 7 = a
b in

exponential form.

23. Suppose b and y are positive real numbers with logb y = 3.
By definition of logarithm, this implies that b3 = y. Then

y = b3 = 1
1
b3

= 1(
1
b

)3 =
(
1

b

)−3
.

Thus, by definition of logarithm (with base 1/b),
log1/b(y) = −3.

25. a. p1(2, y) = 2, p1(5, x) = 5, range of p1 = {2, 3, 5}
26. a. mod(67, 10) = 7 and div(67, 10) = 6 since 67 =

10 ·6+ 7.

27. f (aba) = 0 [because there are no b’s to the left
of the left-most a in aba]

f (bbab) = 2 [because there are two b’s to the left
of the left-most a in bbab]

f (b) = 0 [because the string b contains no a’s]

range of f = Znonneg

28. a. E(0110) = 000111111000 and
D(111111000111) = 1101

29. a. H(10101, 00011) = 3

30. a. Domain of f Co-domain of f

(1, 1)
(1, 0)
(0, 1)
(0, 0)

1

0

32. a. f (1, 1, 1)= (4 ·1+ 3 ·1+ 2 ·1) mod 2= 9 mod 2= 1
f (0, 0, 1)= (4 ·0+ 3 ·0+ 2 ·1) mod 2= 2 mod 2= 0

33. If g were well defined, then g(1/2) = g(2/4) because
1/2 = 2/4. However, g(1/2) = 1− 2 = −1 and g(2/4) =
2− 4 = −2. Since −1 �= −2, g(1/2) �= g(2/4). Thus g is
not well defined.

35. Student B is correct. If R were well defined, then R(3)
would have a uniquely determined value. However, on the
one hand, R(3) = 2 because (3 ·2) mod 5 = 1, and, on the
other hand, R(3) = 7 because (3 ·7) mod 5 = 1. Hence
R(3) does not have a uniquely determined value, and so
R is not well defined.

38. a.
a

b

c

r
s
t
u
v
w

b. f (A) = {v}, f (X) = {t, v}, f −1(C) = {c},
f −1(D) = {a, b}, f −1(E) = ∅ f −1(Y ) =
{a, b, c} = X

40. Partial answer: (a) y ∈ F(A) or y ∈ F(B), (b) some,
(c) A ∪ B, (d) F(A ∪ B)

41. The statement is true. Proof: Let F be a function from X to
Y , and suppose A ⊆ X, B ⊆ X , and A ⊆ B. Let y ∈ F(A).
[We must show that y ∈ F(B).] Then, by definition of image
of a set, y = F(x) for some x ∈ A. Since A ⊆ B, x ∈ B,
and so y = F(x) for some x ∈ B. Hence y ∈ F(B) [as was
to be shown].

43. The statement is false. Counterexample: Let X = {1, 2, 3},
let Y = {a, b}, and define a function F: X → Y by the
arrow diagram shown below.

1
2
3

a

b

F

Let A={1, 2} and B={1, 3}. Then F(A)={a, b}= F(B),
and so F(A) ∩ F(B)={a, b}. But F(A ∩ B)= F({1})=
{a} �= {a, b}. And so F(A) ∩ F(B) � F(A ∩ B).
(This is just one of many possible counterexamples.)

45. The statement is true. Proof: Let F be a function from a set
X to a set Y , and suppose C ⊆ Y, D ⊆ Y , and C ⊆ D. [We
must show that F−1(C) ⊆ F−1(D).] Suppose x ∈ F−1(C).
Then F(x) ∈ C . Since C ⊆ D, F(x) ∈ D also. Hence by
definition of inverse image, x ∈ F−1(D). [So F−1(C) ⊆
F−1(D).]
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46. Hint: x ∈ F−1(C ∪ D)⇔ F(x) ∈ C ∪ D ⇔ F(x) ∈ C or
F(x) ∈ D

51. a. φ(15) = 8 [because 1, 2, 4, 7, 8, 11, 13, and 14
have no common factors with 15 other
than ±1]

b. φ(2) = 1 [because the only positive integer less
than or equal to 2 having no common fac-
tors with 2 other than ±1 is 1]

c. φ(5) = 4 [because 1, 2, 3, and 4 have no common
factors with 5 other than ±1]

52. Proof: Let p be any prime number and n any integer with
n ≥ 1. There are pn−1 positive integers less than or equal
to pn that have a common factor other than ±1 with pn ,
namely p, 2p, 3p, . . . , (pn−1)p. Hence, by the difference
rule, there are pn − pn−1 positive integers less than or equal
to pn that have no common factor with pn except ±1.

53. Hint: Use the result of exercise 52 with p = 2.

Section 7.2
1. The second statement is the contrapositive of the first.

2. a. most b. least

3. Hint: One counterexample is given and explained below.
Give a different counterexample and accompany it with
an explanation. Counterexample: Consider the function
defined by the following arrow diagram:

a

b

u

v

f

Observe that a is sent to exactly one element of Y , namely,
u, and b is also sent to exactly one element of Y , namely,
u also. So it is true that every element of X is sent to
exactly one element of Y . But f is not one-to-one because
f (a) = f (b) but a �= b. [Note that to say, “Every element of
X is sent to exactly one element of Y” is just another way of
saying that in the arrow diagram for the function there is only
one arrow coming out of each element of X. But this statement
is part of the definition of any function, not just of a one-to-one
function.]

4. Hint: The statement is true.

5. Hint: One of the incorrect ways is (b).

6. a. f is not one-to-one because f (1) = 4 = f (9) and 1 �=
9. f is not onto because f (x) �= 3 for any x in X .

b. g is one-to-one because g(1) �= g(5), g(1) �= g(9), and
g(5) �= g(9). g is onto because each element of Y is the
image of some element of X: 3 = g(5), 4 = g(9), and
7 = g(1).

7. a. F is not one-to-one because F(c) = x = F(d) and
c �= d. F is onto because each element of Y is the image
of some element of X: x = F(c) = F(d), y = F(a),
and z = F(b).

9. a. One example of many is the following:

1
2
3

X Y

1
2
3
4

f

10. a. (i) f is one-to-one: Suppose f (n1) = f (n2) for some
integers n1 and n2. [We must show that n1 = n2.] By
definition of f, 2n1 = 2n2, and dividing both sides
by 2 gives n1 = n2, as was to be shown.

(ii) f is not onto: Consider 1 ∈ Z. We claim that 1 �=
f (n), for any integer n, because if there were an
integer n such that 1 = f (n), then, by definition
of f, 1 = 2n. Dividing both sides by 2 would give
n = 1/2. But 1/2 is not an integer. Hence 1 �= f (n)
for any integer n, and so f is not onto.

b. h is onto: Suppose m ∈ 2Z. [We must show that there
exists an integer n such that h(n) = m.] Since m ∈ 2Z,

m = 2k for some integer k. Let n = k. Then h(n) =
2n = 2k = m. Hence there exists an integer (namely, n)
such that h(n) = m. This is what was to be shown.

11. Hints: a. (i) g is one-to-one (ii) g is not onto
b. G is onto. Proof: Suppose y is any element of R.

[We must show that there is an element x in R such that
G(x) = y. What would x be if it exists? Scratch work
shows that x would have to equal (y + 5)/4. The proof must
then show that x has the necessary properties.] Let x =
(y + 5)/4. Then (1) x ∈ R, and (2) G(x) = G((y +
5)/4) = 4[(y + 5)/4] − 5 = (y + 5)− 5 = y [as was
to be shown].

13. a. (i) H is not one-to-one: H(1) = 1 = H(−1) but
1 �= −1.

(ii) H is not onto: H(x) �= −1 for any real number x
(since no real numbers have negative squares).

14. The “proof” claims that f is one-to-one because for each
integer n there is only one possible value for f (n). But to
say that for each integer n there is only one possible value
for f (n) is just another way of saying that f satisfies one
of the conditions necessary for it to be a function. To show
that f is one-to-one, one must show that any integer n has a
different function value from that of the integerm whenever
n �= m.

15. f is one-to-one. Proof: Suppose f (x1) = f (x2) where x1
and x2 are nonzero real numbers. [We must show that x1 =
x2.] By definition of f ,

x1 + 1

x1
= x2 + 1

x2

cross-multiplying gives

x1x2 + x2 = x1x2 + x1,

and so
x1 = x2 by subtracting x1x2 from

both sides

[This is what was to be shown.]
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16. f is not one-to-one. Note that
x1

x21 + 1
= x2

x22 + 1
⇒ x1x

2
2 + x1 = x2x

2
1 + x2

⇒ x1x
2
2 − x2x

2
1 = x2 − x1

⇒ x1x2(x2 − x1) = x2 − x1

⇒ x1 = x2 or x1x2 = 1.

Thus for a counterexample take any x1 and x2 with x1 �=
x2 but x1x2 = 1. For instance, take x1 = 2 and x2 = 1/2.
Then f (x1) = f (2) = 2/5 and f (x2) = f (1/2) = 2/5,
but 2 �= 1/2.

19. a. Note that because 417302072
7

∼= 59614581.7 and

417302072− 7 ·59614581 = 5, h(417-30-2072) = 5.
But position 5 is already occupied, so the next position
is checked. It is free, and thus the record is placed in
position 6.

20. Recall that �x� = that unique integer n such that n ≤ x <

n + 1.
a. Floor is not one-to-one:

Floor(0) = 0 = Floor (1/2) but 0 �= 1/2.
b. Floor is onto: Suppose m ∈ Z. [We must show that there

exists a real number y such that Floor(y)=m.] Let y=m.
Then Floor(y) = Floor(m) = m since m is an integer.
(Actually, Floor takes the valuem for all real numbers in
the interval m ≤ x < m + 1.) Hence there exists a real
number y such that Floor(y) = m. This is what was to
be shown.

21. a. l is not one-to-one: l(0) = l(1) = 1 but 1 �= 0.
b. l is onto: Suppose n is a nonnegative integer. [We must

show that there exists a string s in S such that l(s) = n.] Let

s =
{
ε (the null string) if n = 0
00 . . . 0 if n > 0

.

︸ ︷︷ ︸
n 0’s

Then l(s) = the length of s = n. This is what was to be
shown.

23. a. F is not one-to-one: Let A = {a} and B = {b}. Then
F(A) = F(B) = 1 but A �= B.

24. b. N is not onto: The number −1 is in Z but N (s) �= −1
for any string s in S because no string has a negative
number of a’s.

26. S is not one-to-one. Counterexample: S(6) = 1+ 2+ 3+
6 = 12 and S(11) = 1+ 11 = 12. So S(6) = S(11) but
6 �= 11.
S is not onto. Counterexample: In order for there to be a
positive integer n such that S(n) = 5, n would have to
be less than 5. But S(1) = 1, S(2) = 3, S(3) = 4, and
S(4) = 7. Hence there is no positive integer n such that
S(n) = 5.

27. Hint: a. T is not one-to-one. b. T is not onto.

28. a. G is one-to-one. Proof: Suppose (x1, y1) and (x2, y2) are
any elements ofR× R such that G(x1, y1) = G(x2, y2).
[We must show that (x1, y1) = (x2, y2).] Then, by defini-
tion of G, (2y1,−x1) = (2y2,−x2), and, by definition
of ordered pair,

2y1 = 2y2 and − x1 = −x1.
Dividing both sides of the left equation by 2 and both
sides of the right equation by −1 gives that

y1 = y2 and x1 = x2,

and so, by definition of ordered pair, (x1, y1) = (x2, y2)
[as was to be shown].

b. G is onto. Proof: Suppose (u, v) is any element of
R× R. [We must show that there is an element (x, y)
in R× R such that G(x, y) = (u, v).] Let (x, y) =
(−v, u/2). Then (1) (x, y) ∈ R× R and (2) G(x, y) =
(2y,−x) = (2(u/2),−(−v)) = (u, v) [as was to be
shown.]

31. a. Hint: F is one-to-one. Use the unique factorization of
integers theorem in the proof.

32. a. Let x = log8 27 and y= log2 3. [The question is: Is
x = y?] By definition of logarithm, both of these equa-
tions can be written in exponential form as

8x = 27 and 2y = 3.

Now 8 = 23. So

8x = (23)x = 23x .

Also 27 = 33 and 3 = 2y . So

27 = 33 = (2y)3 = 23y .

Hence, since 8x = 27,

23x = 23y .

By (7.2.5), then,

3x = 3y,

and so

x = y.

But x = log8 27 and y = log2 3, and so log8 27 = y =
log2 3 and the answer to the question is yes.

33. Proof: Suppose that b, x, and y are positive real numbers
and b �= 1. Let u = logb(x) and v = logb(y). By defini-
tion of logarithm, bu = x and bv = y. By substitution, xy =
bu

bv = bu−v [by (7.2.3) and the fact that b−v = 1
bv ]. Translat-

ing x
y = bu−v into logarithmic form gives logb

(
x
y

)
= u −

v, and so, by substitution, logb
(
x
y

)
= logb(x)− logb(y)

[as was to be shown].

35. Start of Proof: Suppose a, b, and x are [particular but arbi-
trarily chosen] real numbers such that b and x are positive
and b �= 1. [We must show that logb(xa) = a logbx .] Let

r = logb(x
a) and s = logb x .

36. No. Counterexample: Define f : R→ R and g: R→ R as
follows: f (x) = x and g(x) = −x for all real numbers
x . Then f and g are both one-to-one [because for all
real number x1 and x2, if f (x1) = f (x2) then x1 = x2, and
if g(x1) = g(x2) then −x1 = −x2 and so x1 = x2 also], but
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f + g is not one-to-one [because f + g satisfies the equa-
tion ( f + g)(x) = x + (−x) = 0 for all real numbers x, and
so, for instance, ( f + g)(1) = ( f + g)(2) but 1 �= 2].

38. Yes. Proof: Let b be a one-to-one function from R to R,
and let c be any nonzero real number. Suppose (c f )(x1) =
(c f )(x2). [We must show that x1 = x2.] It follows by def-
inition of c f that c f (x1) = c f (x2). Since c �= 0, we may
divide both sides of the equation by c to obtain f (x1) =
f (x2). But since f is one-to-one, this implies that x1 = x2
[as was to be shown].

40. a. Hint: The assumption that F is one-to-one is needed
in the proof that F−1(F(A)) ⊆ A. If F(r) ∈ F(A), the
definition of image of a set implies that there is an
element x in A such that F(r) = F(x).

b. Hint: The assumption that F is one-to-one is needed
in the proof that F(A1) ∩ F(A2) ⊆ F(A1 ∩ A2). If u ∈
F(A1) and u ∈ F(A2), then the definition of image of
a set implies that there are elements x1 in A1 and x2 in
A2 such that F(x1) = u and F(x2) = u and, thus, that
F(x1) = F(x2).

42.

s
t
u
v

w

F –1

a
b
c
d
e

44. The function is not onto. Hence it is not a one-to-one cor-
respondence.

45. The answer to exercise 10(b) shows that h is onto. To show
that h is one-to-one, suppose h(n1) = h(n2). By definition
of h, this implies that 2n1 = 2n2. Dividing both sides by 2
gives n1 = n2. Hence h is one-to-one.
Given any even integer m, if m = h(n), then by definition
of h,m = 2n, and so n = m/2. Thus

h−1(m) = m

2
for all m ∈ 2Z.

46. The function g is not a one-to-one correspondence because
it is not onto. For instance, if m = 2, it is impossible to
find an integer n such that g(n) = m. (This is because if
g(n) = m, then 4n − 5 = 2, which implies that n = 7/4.
Thus the only number n with the property that g(n) = m is
7/4. But 7/4 is not an integer.)

47. The answer to exercise 11b shows that G is onto. In addi-
tion, G is one-to-one. To prove this, suppose G(x1) =
G(x2) for some x1 and x2 inR. [We must show that x1 = x2.]
By definition of G, 4x1 − 5 = 4x2 − 5. Add 5 to both
sides of this equation and divide both sides by 4 to obtain
x1 = x2 [as was to be shown]. We claim that G−1(y) =
(y + 5)/4. By definition of inverse function, this is true
if, and only if, G((y + 5)/4) = y. But G((y + 5)/4) =
4((y + 5)/4)− 5 = (y + 5)− 5 = y, so it is the case that
G−1(y) = (y + 5)/4.

50. The function is not one-to-one. Hence it is not a one-to-one
correspondence.

52. The answer to exercise 15 shows that f is one-to-one, and
if the co-domain is taken to be the set of all real numbers
not equal to 1, then f is also onto. [The reason is that given

any real number y �= 1, if we take x = 1
y−1 , then

f (x) = f

(
1

y − 1

)
=

1

y − 1
+ 1

1

y − 1

= 1+ (y − 1)

1
= y.]

f −1(y) = 1

y − 1
for each real number y �= 1.

53. Hint: Is there a real number x such that f (x) = 1?

57. Hint:Let a function F be given and suppose the
domain of F is represented as a one-dimensional array
a[1], a[2], . . . , a[n]. Introduce a variable answer whose
initial value is “one-to-one.” The main part of the body of
the algorithm could be written as follows:

while (i ≤ n − 1 and answer = “one-to-one”)
j := i + 1
while ( j ≤ n and answer = “one-to-one”)

if (F(a[i]) = F(a[ j]) and a[i] �= a[ j])
then answer := “not one-to-one”
j := j + 1

end while
i := i + 1

end while

What can you say if execution reaches this point?

58. Hint: Let a function F be given and suppose the domain and
co-domain of F are represented by the one-dimensional
arrays a[1], a[2], . . . , a[n] and b[1], b[2], . . . , b[m],
respectively. Introduce a variable answer whose initial
value is “onto.” For each b[i] from i = 1 to m, make
a search through a[1], a[2], . . . , a[n] to check whether
b[i] = F(a[ j]) for some a[ j]. Introduce a Boolean vari-
able to indicate whether a search has been successful. (Set
the variable equal to 0 before the start of each search, and
let it have the value 1 if the search is successful.) At the end
of each search, check the value of the Boolean variable. If
it is 0, then F is not onto. If all searches are successful,
then F is onto.

Section 7.3
1. g◦ f is defined as follows:

(g◦ f )(1) = g( f (1)) = g(5) = 1,

(g◦ f )(3) = g( f (3)) = g(3) = 5,

(g◦ f )(5) = g( f (5)) = g(1) = 3.

f ◦g is defined as follows:

( f ◦g)(1) = f (g(1)) = f (3) = 3,

( f ◦g)(3) = f (g(3)) = f (5) = 1,

( f ◦g)(5) = f (g(5)) = f (1) = 5.

Then g◦ f �= f ◦g because, for example, (g◦ f )(1) �=
( f ◦g)(1).
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7.4 Solutions and Hints to Selected Exercises A-63

3. (G ◦F)(x) = G(F(x)) = G(x3) = x3 − 1 for all real
numbers x .
(F ◦G)(x) = F(G(x)) = F(x − 1) = (x − 1)3 for all real
numbers x .
G ◦F �= F ◦G because, for instance, (G ◦F)(2) =
23 − 1 = 7, whereas (F ◦G)(2) = (2− 1)3 = 1.

6. (G ◦F)(0) = G(F(0)) = G(7.0) = G(0) = 0 mod 5 = 0

(G ◦F)(1) = G(F(1)) = G(7.1) = G(7) = 7 mod 5 = 2

(G ◦F)(2) = G(F(2)) = G(7.2) = G(14) = 14 mod 5 = 4

(G ◦F)(3) = G(F(3)) = G(7.3) = G(21) = 21 mod 5 = 1

(G ◦F)(4) = G(F(4)) = G(7.4) = G(28) = 28 mod 5 = 3

8. a. (L ◦M)(12) = L(M(12)) = L(12 mod 5) = L(2)

= 22 = 4

(M ◦ L)(12) = M(L(12)) = M(122) = M(144)

= 144 mod 5 = 4

(L ◦M)(9) = L(M(9)) = L(9 mod 5) = L(4)

= 42 = 16

(M ◦ L)(9) = M(L(9)) = M(92) = M(81)

= 81 mod 5 = 1

9. (F−1 ◦F)(x) = F−1(F(x)) = F−1(3x + 2)

= (3x + 2)− 2

3
= 3x

3
= x = IR(x)

for all x in R. Hence F−1 ◦F = IR by definition of equality
of functions.

(F ◦F−1)(y) = F(F−1(y)) = F

(
y − 2

3

)

= 3

(
y − 2

3

)
+ 2 = (y − 2)+ 2

= y = IR(y)

for all y in R. Hence F ◦F−1 = IR by definition of equality
of functions.

12. a. By definition of logarithm with base b, for each real
number x, logb(b

x ) is the exponent to which b must
be raised to obtain bx . But this exponent is just x . So
logb(b

x ) = x .

13. Hint: Suppose f is any function from a set X to a set Y ,
and show that for all x in X , (IY ◦ f )(x) = f (x).

15. a. sk = sm
16. No. Counterexample: Define f and g by the arrow dia-

grams below.

X

a

b

Z

x

y

Y

1

2

3

f g

Then g◦ f is one-to-one but g is not one-to-one. (So it is
false that both f and g are one-to-one by De Morgan’s
law!) (This is one counterexample among many. Can you
construct a different one?)

18. Hint: Suppose f : X → Y and g: Y → Z are functions and
g◦ f is one-to-one. Given x1 and x2 in X , if f (x1) = f (x2)
then (g◦ f )(x1) = (g◦ f )(x2). (Why?) Then use the fact
that g◦ f is one-to-one.

19. Hint: Suppose f : X → Y and g: Y → Z are functions and
g◦ f is onto. Given z ∈ Z , there is an element x in X such
that (g◦ f )(x) = z. (Why?) Let y = f (x). Then g(y) = z.

21. True. Proof: Suppose X is any set and f, g, and h are func-
tions from X to X such that h is one-to-one and h ◦ f =
h ◦g. [We must show that for all x in X, f (x) = g(x).] Sup-
pose x is any element in X . Because h ◦ f = h ◦g, we
have that (h ◦ f )(x) = (h ◦g)(x) by definition of equality of
functions. Then, by definition of composition of functions,
h( f (x) = h(g(x)). But since h is one-to-one, this implies
that f (x) = g(x) [as was to be shown].

23.
X Z

u
v

w

a
b
c

g* f

XZ

u
v

w

a
b
c

 f –1*g–1

Z X

u
v

w

a
b
c

(g* f )–1

Z Y

u
v

w

x
y
z

g–1 Y X

x
y
z

a
b
c

f –1

The functions (g◦ f )−1 and f −1◦g−1 are equal.
26. Hints: (1) Theorems 7.3.3 and 7.3.4 taken together insure

that g◦ f is one-to-one and onto. (2) Use the inverse func-
tion property: F−1(b) = a ⇔ F(a) = b, for all a in the
domain of F and b in the domain of F−1.

Section 7.4
1. The student should have replied that for A to have the same

cardinality as B means that there is a function from A to B
that is one-to-one and onto. A set cannot have the property
of being one-to-one or onto another set; only a function can
have these properties.

2. Define a function f : Z+ → S as follows: For all positive
integers k, f (k) = k2.
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f is one-to-one: [We must show that for all k1, k2 ∈ Z+, if
f (k1) = f (k2) then k1 = k2.] Suppose k1 and k2 are positive
integers and f (k1)= f (k2). By definition of f, (k1)2=(k2)2,
so k1 = ±k2. But k1 and k2 are positive. Hence k1 = k2.

f is onto: [We must show that for all n ∈ S, there exists
k ∈ Z+ such that n = f (k).] Suppose n ∈ S. By definition
of S, n = k2 for some positive integer k. But then by defi-
nition of f, n = f (k).
Since there is a one-to-one, onto function (namely, f ) from
Z+ to S, the two sets have the same cardinality.

3. Define f : Z→ 3Z by the rule f (n) = 3n for all integers n.
The function f is one-to-one because for any integers n1

and n2, if f (n1) = f (n2) then 3n1 = 3n2 and so n1 = n2.
Also f is onto because if m is any element in 3Z, then m =
3k for some integer k. But then f (k) = 3k = m by defini-
tion of f . Thus, since there is a function f : Z→ 3Z that is
one-to-one and onto, Z has the same cardinality as 3Z.

6. Hint: If m ∈ 2Z, show that J (m) = J (m + 1) = m.

7. b. For each positive integer n, F(n) = (−1)n
⌊
n
2

⌋
.

8. It was shown in Example 7.4.2 that Z is countably infi-
nite, which means that Z+ has the same cardinality as Z.
By exercise 3, Z has the same cardinality as 3Z. It follows
by the transitive property of cardinality (Theorem 7.4.1 (c))
that Z+ has the same cardinality as 3Z. Thus 3Z is count-
ably infinite [by definition of countably infinite], and hence
3Z is countable [by definition of countable].

10. Proof: Define f : S→ U by the rule f (x) = 2x for all real
numbers x in S. Then f is one-to-one by the same argu-
ment as in exercise 10a of Section 7.2 with R in place of
Z. Furthermore, f is onto because if y is any element in U ,
then 0 < y < 2 and so 0 < y/2 < 1. Consequently, y/2 ∈
S and f (y/2) = 2(y/2) = y. Hence f is a one-to-one cor-
respondence, and so S and U have the same cardinality.

11. Hint: Define h: S→ V as follows: h(x) = 3x + 2, for all
x ∈ S.

13.

y = tan   x –
2( )

0.5 x

y

1

It is clear from the graph that f is one-to-one (since it is
increasing) and that the image of f is all of R (since the
lines x = 0 and x = 1 are vertical asymptotes). Thus S and
R have the same cardinality.

16. In Example 7.4.4 it was shown that there is a one-to-one
correspondence from Z+ to Q+. This implies that the posi-
tive rational numbers can be written as an infinite sequence:
r1, r2, r3, r4, . . . .Now the setQ of all rational numbers con-
sists of the numbers in this sequence together with 0 and
the negative rational numbers:−r1,−r2,−r3,−r4, . . . . Let
r0 = 0. Then the elements of the set of all rational numbers
can be “counted” as follows:

r0, r1,−r1, r2,−r2, r3,−r3, r4,−r4, . . . .
In other words, we can define a one-to-one correspondence

G(n) =
{
rn/2 if n is even
−r(n−1)/2 if n is odd

for all integers n ≥ 1.

Therefore, Q is countably infinite and hence countable.

18. Hint: No.

19. Hint: Suppose r and s are real numbers with s > r > 0.

Let n be an integer such that n >

√
2

s−r . Then s − r >

√
2
n .

Let m =
⌊
nr√
2

⌋
+ 1. Then m >

nr√
2
≥ m − 1. Use the

fact that s = r + (s − r) to show that r <

√
2m
n < s.

22. Hint: Use the unique factorization of integers theorem
(Theorem 4.3.5) and Theorem 7.4.3.

23. a. Define a function G: Znonneg → Znonneg × Znonneg as fol-
lows: Let G(0) = (0, 0), and then follow the arrows in
the diagram, letting each successive ordered pair of inte-
gers be the value of G for the next successive inte-
ger. Thus, for instance, G(1) = (1, 0), G(2) = (0, 1),
G(3) = (2, 0), G(4) = (1, 1), G(5) = (0, 2), G(6) =
(3, 0), G(7) = (2, 1), G(8) = (1, 2), and so forth.

b. Hint: Observe that if the top ordered pair of any given
diagonal is (k, 0), the entire diagonal (moving from top
to bottom) consists of (k, 0), (k − 1, 1), (k − 2, 2), . . . ,
(2, k − 2), (1, k − 1), (0, k). Thus for all the ordered
pairs (m, n) within any given diagonal, the value of
m + n is constant, and as you move down the ordered
pairs in the diagonal, starting at the top, the value of the
second element of the pair keeps increasing by 1.

25. Hint: There are at least two different approaches to this
problem. One is to use the method discussed in Section 4.2.
Another is to suppose that 1.999999 . . . < 2 and derive
a contradiction. (Show that the difference between 2 and
1.999999 . . . can be made smaller than any given positive
number.)

26. Proof: Let A be an infinite set. Construct a countably infi-
nite subset a1, a2, a3, . . . of A, by letting a1 be any element
of A, letting a2 be any element of A other than a1, letting a3
be any element of A other than a1 or a2, and so forth. This
process never stops (and hence a1, a2, a3, . . . is an infinite
sequence) because A is an infinite set. More formally,
1. Let a1 be any element of A.
2. For each integer n ≥ 2, let an be any element of A −
{a1, a2, a3, . . . , an−1}. Such an element exists, for other-
wise A − {a1, a2, a3, . . . , an−1} would be empty and A
would be finite.
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27. Proof: Suppose A is any countably infinite set, B is any
set, and g: A→ B is onto. Since A is countably infi-
nite, there is a one-to-one correspondence f : Z+ → A.
Then, in particular, f is onto, and so by Theorem 7.3.4,
g◦ f is an onto function from Z+ to B. Define a func-
tion h: B → Z+ as follows: Suppose x is any element
of B. Since g◦ f is onto, {m ∈ Z+ | (g◦ f )(m) = x} �= ∅.
Thus, by the well-ordering principle for the integers, this
set has a least element. In other words, there is a least
positive integer n with (g◦ f )(n) = x . Let h(x) be this
integer.

We claim that h is a one-to-one. For suppose h(x1) =
h(x2) = n. By definition of h, n is the least positive inte-
ger with (g◦ f )(n) = x1. But also by definition of h, n
is the least positive integer with (g◦ f )(n) = x2. Hence
x1 = (g◦ f )(n) = x2.

Thus h is a one-to-one correspondence between B and a
subset S of positive integers (the range of h). Since any
subset of a countable set is countable (Theorem 7.4.3), S
is countable, and so there is a one-to-one correspondence
between B and a countable set. Hence, by the transitive
property of cardinality, B is countable.

29. Hint: Suppose A and B are any two countably infinite sets.
Then there are one-to-one correspondences f : Z+ → A
and g : Z+ → B.
Case 1 (A ∩ B = ∅): In this case define h : Z+ → A ∪ B
as follows: For all integers n ≥ 1,

h(n)

{
f (n/2) if n is even

g((n + 1)/2) if n is odd.

Show that h is one-to-one and onto.
Case 2 (A ∩ B �∈ ∅): In this case let C = B − A. Then
A ∪ B = A ∪ C and A ∩ C = ∅. If C is countably infinite,
use the result of case 1 to complete the proof. If C is finite,
use the result of exercise 28 to complete the proof.

30. Hint:Use proof by contradiction and the fact that the set of
all real numbers is uncountable.

31. Hint:Consider the following cases: (1) A and B are both
finite, (2) at least one of A or B is infinite and A ∩ B = ∅,
(3) at least one of A or B is infinite and A ∩ B �= ∅. In case
3 use the fact that A ∪ B = (A − B) ∪ (B − A) ∪ (A ∩ B)

and that the sets (A − B), (B − A), and (A ∩ B) are mutu-
ally disjoint.

32. Hint:Use the one-to-one correspondence F: Z+ → Z of
Example 7.4.2 to define a function G: Z+ × Z+ → Z× Z
by the formula G(m, n) = (F(m), F(n)). Show that G is
a one-to-one correspondence, and use the result of exercise
22 and the transitive property of cardinality.

34. Hint for Solution 1:Define a function f :P(S)→ T as
follows: For each subset A of S, let f (A) = χA, the
characteristic function of A, where χA: S→ {0, 1} is
defined by the rule

χA(x) =
{
1 if x ∈ A

0 if x /∈ A for all x ∈ S
.

Show that f is one-to-one (for all A1, A2 ⊆ S, if χA1 =
χA2 then A1 = A2) and that f is onto (given any function
g: S→ {0, 1}, there is a subset A of S such that g = χA).

Hint for Solution 2: Define H: T →P(S) by letting
H( f ) = {x ∈ S | f (x) = 1}. Show that H is a one-to-one
correspondence?

35. Partial proof (by contradiction): Suppose not. Suppose
there is a one-to-one, onto function f : S→P(S). Let

A = {x ∈ S | x /∈ f (x)}.
Then A ∈P(S) and since f is onto, there is a z ∈ S such
that A = f (z). [Now derive a contradiction!]

37. Hint: Since A and B are countable, their elements can be
listed as

A: a1, a2, a3, . . . and B: b1, b2, b3, . . .
Represent the elements of A × B in a grid:

(a1, b1) (a1, b2) (a1, b3) . . .

(a2, b1) (a2, b2) (a2, b3) . . .

(a3, b1) (a3, b2) (a3, b3) . . .

...
...

...

Now use a counting method similar to that of Exam-
ple 7.4.4.

Section 8.1
1. a. 0 E 0 because 0− 0 = 0 = 2 ·0, so 2 | (0− 0).

5 �E 2 because 5− 2 = 3 and 3 �= 2k for any integer k
so 2 � | (5− 2).
(6, 6) ∈ E because 6− 6 = 0 = 2 ·0, so 2 | (6− 6).
(−1, 7) ∈ E because −1− 7 = −8 = 2 ·(−4), so
2 | (−1− 7).

2. Hint: To show a statement of the form p↔ (q ∨ r), you
need to show p→ (q ∨ r) and (q ∨ r)→ p. To show
a statement of the form p→ (q ∨ r), you can show
(p∧ ∼q)→ r (since these two statement forms are log-
ically equivalent). To show a statement of the form
(q ∨ r)→ p, you can show (q → p) ∧ (r → p) (since
these two statement forms are logically equivalent). In this
case, supposem and n are any integers, and let p be “m − n
is even,” let q be “m and n are both even,” and let r be
“m − n is even,” let q be “m and n are both even,” and let r
be “m and n are both odd.”

3. a. 10 T 1 because 10− 1 = 9 = 3 ·3, so 3 | (10− 1).
1 T 10 because 1− 10 = −9 = 3 ·(−3), so 3 | (1− 10).
2 T 2 because 2− 2 = 0 = 3 ·0, so 3 | (2− 2).
8 T/ 1 because 8− 1 = 7 �= 3k, for any integer k. So

3 � | (8− 1).
b. One possible answer: 3, 6, 9,−3,−6
e. Hint: All integers of the form 3k + 1, for some integer

k, are related by T to 1.
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4. a. Yes, because 15 and 25 are both divisible by 5, which is
prime.

b. No, because 22 and 27 have no common prime factor.

5. a. Yes, because both {a, b} and {b, c} have two elements.

6. a. No, because {a} ∩ {c} = ∅.
7. a. Yes. 1 R(−9)⇔ 5|(12 − (−9)2). But 12 − (−9)2 =

1− 81 = −80, and 5|(−80) because −80 = 5 · (−16).
8. a. Yes, because both abaa and abba have the same first

two characters ab.
b. No, because the first two characters of aabb are different

from the first two characters of bbaa.

9. a. Yes, because the sum of the characters in 0121 is 4 and
the sum of the characters in 2200 is also 4.

b. No, because the sum of the characters in 1011 is 3
whereas the sum of the characters in 2101 is 4.

10. R = {(3, 4), (3, 5), (3, 6), (4, 5), (4, 6), (5, 6)}
R−1 = {(4, 3), (5, 3), (6, 3), (5, 4), (6, 4), (6, 5)}

12. a. No. If F: X → Y is not onto, then F−1 is not defined
on all of Y . In other words, there is an element y in
Y such that (y, x) /∈ F−1 for any x ∈ X . Consequently,
F−1 does not satisfy property (1) of the definition of
function.

13.

0

2

1

3

15.

2

3

8

4

5

6

7

16. Hint: See Example 8.1.6.

19. A × B = {(2, 6), (2, 8), (2, 10), (4, 6), (4, 8), (4, 10)}
R = {(2, 6), (2, 8), (2, 10), (4, 8)}
S = {(2, 6), (4, 8)}
R ∪ S = R, R ∩ S = S

21.

x

y

The shaded region
is R.  The dashed
line is not included.

x

y

S consists of the
points on this line.

x

y

The shaded region
is R    S.  The line
y = x is included.

Note that the union of the
“less than” relation, <, and
the “equals” relation, =, is
the “less than or equal to”
relation,   .

The graph of the intersection of R and S is obtained by
finding the set of all points common to both graphs. But
there are no points for which both x < y and x = y. Hence
R ∩ S = ∅ and the graph consists of no points at all.

24. a. 574329 Tak Kurosawa
011985 John Schmidt

Section 8.2
1. R1:

a.

0

2

1

3

b. R1 is not reflexive: 2 �R1 2.
c. R1 is not symmetric: 2 R1 3 but 3 �R1 2.
d. R1 is not transitive: 1 R1 0 and 0 R1 3 but 1 �R1 3.

3. R3:
a.

2 3

0 1
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b. R3 is not reflexive: (0, 0) /∈ R3

c. R3 is symmetric. (If R3 were not symmetric, there
would be elements x and y in A = {0, 1, 2, 3} such that
(x, y) ∈ R3 but (y, x) /∈ R3. It is clear by inspection that
no such elements exist.)

d. R3 is not transitive: (2, 3) ∈ R3 and (3, 2) ∈ R3 but
(2, 2) /∈ R3

6. R6:
a.

2 3

0 1

b. R6 is not reflexive: (0, 0) /∈ R6

c. R6 is not symmetric: (0, 1) ∈ R6 but (1, 0) /∈ R6.
d. R6 is transitive. (If R6 were not transitive, there would be

elements x, y, and z in {0, 1, 2, 3} such that (x, y) ∈ R6

and (y, z) ∈ R6 and (x, z) /∈ R6. It is clear by inspection
that no such elements exist.)

9. R is reflexive: R is reflexive ⇔ for all real numbers
x, x R x . By definition of R, this means that for all real
numbers x, x ≥ x . In other words, for all real numbers
x, x > x or x = x . But this is true.
R is not symmetric: R is symmetric⇔ for all real numbers
x and y, if x R y then y R x . By definition of R, this means
that for all real numbers x and y, if x ≥ y then y ≥ x . But
this is false. As a counterexample, take x = 1 and y = 0.
Then x ≥ y but y � x because 1 ≥ 0 but 0 � 1.
R is transitive: R is transitive⇔ for all real numbers x, y,
and z, if x R y and y R z then x R z. By definition of R,
this means that for all real numbers x, y and z, if x ≥ y and
y ≥ z then x ≥ z. But this is true by definition of ≥ and
the transitive property of order for the real numbers. (See
Appendix A, T18.)

11. D is reflexive: For D to be reflexive means that for all real
numbers x, x D x . But by definition of D, this means that
for all real numbers x, xx = x2 ≥ 0, which is true.
D is symmetric: For D to be symmetric means that for all
real numbers x and y, if x D y then y D x . But by defini-
tion of D, this means that for all real numbers x and y, if
xy ≥ 0 then yx ≥ 0, which is true by the commutative law
of multiplication.
D is not transitive: For D to be transitive means that for all
real numbers x, y, and z, if x D y and y D z then x D z. By
definition of D, this means that for all real numbers x, y,
and z, if xy ≥ 0 and yz ≥ 0 then xz ≥ 0. But this is false:
there exist real numbers x, y, and z such that xy ≥ 0 and
yz ≥ 0 but xz � 0. As a counterexample, let x = 1, y = 0,
and z = −1. Then x D y and y D z because 1 ·0 ≥ 0 and
0 ·(−1) ≥ 0. But x �D z because 1 · (−1) � 0.

12. E is reflexive: [We must show that for all integers m,
m E m.] Suppose m is any integer. Since m − m = 0 and
2 | 0, we have that 2 | (m − m). Consequently, m E m by
definition of E .

E is symmetric: [We must show that for all integers m and n,
if m E n then n E m.] Supposem and n are any integers such
that m E n. By definition of E , this means that 2 | (m − n),
and so, by definition of divisibility, m − n = 2k for some
integer k. Now n − m = −(m − n). Hence, by substitu-
tion, n − m = −(2k) = 2(−k). It follows that 2 | (n − m)

by definition of divisibility (since −k is an integer), and
thus n E m by definition of E .

E is transitive: [We must show that for all integers m, n and
p if m E n and n E p then m E p.] Suppose m, n, and p
are any integers such that m E n and n E p. By defini-
tion of E this means that 2 | (m − n) and 2 | (n − p), and
so, by definition of divisibility, m − n = 2k for some inte-
ger k and n − p = 2l for some integer l. Now m − p =
(m − n)+ (n − p). Hence, by substitution, m − p = 2k +
2l = 2(k + l). It follows that 2 | (m − p) by definition of
divisibility (since k + l is an integer), and thusmEp by def-
inition of E .

15. D is reflexive: [We must show that for all positive integers
m,m D m.] Suppose m is any positive integer. Since m =
m ·1, by definition of divisibility m |m. Hence m D m by
definition of D.

D is not symmetric: For D to be symmetric would mean
that for all positive integers m and n, if m D n then n D m.
By definition of divisibility, this would mean that for all
positive integers m and n, if m | n then n |m. But this is
false. As a counterexample, take m = 2 and n = 4. Then
m | n because 2 | 4 but n � | m because 4 � | 2.
D is transitive: To prove transitivity of D, we must show
that for all positive integers m, n, and p, if m D n and
n D p then m D p. By definition of D, this means that
for all positive integers m, n, and p, if m | n and n | p then
m | p. But this is true by Theorem 4.3.3 (the transitivity of
divisbility).

18. Hint: Q is reflexive, symmetric, and transitive.

20. E is reflexive: E is reflexive⇔ for all subsets A of X , A E A.
By definition of E, this means that for all subsets A of X, A

has the same number of elements as A. But this is true.

E is symmetric: E is symmetric⇔ for all subsets A and B

of X , if A E B then B E A. By definition of E, this means
that if A has the same number of elements as B, then B has
the same number of elements as A. But this is true.

E is transitive: E is transitive ⇔ for all subsets A, B, and
C of X , if A E B and B E C, then A E C. By definition of
E, this means that for all subsets, A, B, and C of X , if A has
the same number of elements as B and B has the number of
elements as C, then A has the same number of elements as
C. But this is true.

23. S is reflexive: S is reflexive⇔ for all subsets A of X, ASA.
By definition of S, this means that for all subsets A of
X, A ⊆ A. But this is true because every set is a subset of
itself.

S is not symmetric: S is symmetric⇔ for all subsets A and
B of X , if ASB then BSA. By definition of S, this means
that for all subsets A and B of X , if A ⊆ B then B ⊆ A. But
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this is false because X �= ∅ and so there is an element a
in X . As a counterexample, take A = ∅, and B = {a}. Then
A ⊆ B but B � A.

S is transitive: S is transitive⇔ for all subsets A, B, and C

of X , if ASB and BSC, then A S C. By definition of S, this
means that for all subsets A, B, and C of X , if A ⊆ B and
B ⊆ C then A ⊆ C. But this is true by the transitive prop-
erty of subsets (Theorem 6.2.1 (3)).

25. R is reflexive: Suppose s is any string in A. Then s R s
because s has the same first two characters as s.

R is symmetric: Suppose s and t are any strings in A such
that s R t. By definition of R, s has the same first two char-
acters as t . It follows that t has the same first two characters
as s, and so t R s.

R is transitive: Suppose s, t, and u, are any strings in A such
that s R t and t R u. By definition of R, s has the same first
two characters as t and t has the same first two characters
as u. It follows that s has the same two characters as u, and
so s R u.

27. I is reflexive: [We must show that for all statements p, p I p.]
Suppose p is a statement. The only way a conditional state-
ment can be false is for its hypothesis to be true and its
conclusion false. Consider the statement p→ p. Both the
hypothesis and the conclusion have the same truth value.
Thus it is impossible for p→ p to be false, and so p→ p
must be true.
I is not symmetric: I is symmetric ⇔ for all statements p
and q, if p I q then q I p. By definition of I, this means
that for all statements p and q, if p→ q then q → p. But
this false. As a counterexample, let p be the statement “10
is divisible by 4” and let q be “10 is divisible by 2.” Then
p→ q is the statement “If 10 is divisible by 4, then 10
is divisible by 2.” This is true because its hypothesis, p,
is false. On the other hand, q → p is the statement “If 10
is divisible by 2, then 10 is divisible by 4.” This is false
because its hypothesis, q, is true and its conclusion, p, is
false.
I is transitive: [We must show that for all statements p, q, and
r, if p I q and q I r then p I r .] Suppose p, q, and r are
statements such that p I q and q I r . By definition of I, this
means that p→ q and q → r are both true. By transitivity
of if-then (Example 2.3.6 and exercise 20 of Section 2.3),
we can conclude that p→ r is true. Hence, by definition of
I, p, I r .

28. F is reflexive: F is reflexive⇔ for all elements (x, y) in R
× R, (x, y) F (x, y). By definition of F, this means that for
all elements (x, y) in R× R, x = x . But this is true.
F is symmetric: [We must show that for all elements
(x1, y1) and (x2, y2) in R× R, if (x1, y1)F(x2, y2) then
(x2, y2)F(x1, y1).] Suppose (x1, y1) and (x2, y2) are ele-
ments of R× R such that (x1, y1), F(x2, y2). By definition
of F, this means that x1 = x2. By symmetry of equality,
x2 = x1. Thus, by definition of F, (x2, y2)F(x1, y1).
F is transitive: [We must show that for all elements
(x1, y1), (x2, y2) and (x3, y3) in R× R, if (x1, y1)F(x2, y2)
and (x2, y2)F(x3, y3) then (x1, y1)F(x3, y3).] Suppose

(x1, y1), (x2, y2), and (x3, y3) are elements of R× R
such that (x1, y1)F(x2, y2) and (x2, y2)F(x3, y3). By def-
inition of F, this means that x1 = x2 and x2 = x3. By
transitivity of equality, x1 = x3. Hence, by definition of
F, (x1, y1)F(x3, y3).

31. R is reflexive: R is reflexive⇔ for all people p in A, p R p.
By definition of R, this means that for all people p living
in the world today, p lives within 100 miles of p. But this
is true.
R is symmetric: [We must show that for all people p and q in
A, if p R q then q R p.] Suppose p and q are people in A
such that p R q . By definition of R, this means that p lives
within 100 miles of q. But this implies that q lives within
100 miles of p. So, by definition of R, q R p.

R is not transitive: R is transitive ⇔ for all people p, q
and r , if p R q and q R r then p R r . But this is false. As
a counterexample, take p to be an inhabitant of Chicago,
Illinois, q an inhabitant of Kankakee, Illinois, and r an
inhabitant of Champaign, Illinois. Then p R q because
Chicago is less then 100 miles from Kankakee, and q R r
because Kankakee is less than 100 miles from Champaign,
but p �R r because Chicago is not less than 100 miles from
Champaign.

34. Proof: Suppose R is any reflexive relation on a set A. [We
must show that R−1 is reflexive. To show this, we must show
that for all x in A, x R−1 x.] Given any element x in A, since
R is reflexive, x R x, and by definition of relation, this means
that (x, x) ∈ R. It follows, by definition of the inverse of a
relation, that (x, x) ∈ R−1, and so, by definition of relation,
x R−1 x [as was to be shown].

37. a. R ∩ S is reflexive: Suppose R and S are reflexive. [To
show that R ∩ S is reflexive, we must show that ∀x ∈ A,

(x, x) ∈ R ∩ S.] So suppose x ∈ A. Since R is reflexive,
(x, x) ∈ R, and since S is reflexive, (x, x) ∈ S. Thus,
by definition of intersection, (x, x) ∈ R ∩ S [as was to
be shown].

38. Hint: The answer is yes.

41. Yes. To prove this we must show that for all x and y in A, if
(x, y) ∈ R ∪ S then (y, x) ∈ R ∪ S. So suppose (x, y) is a
particular but arbitrarily chosen element in R ∪ S. [We must
show that (y, x) ∈ R ∪ S.] By definition of union, (x, y) ∈
R or (x, y) ∈ S. If (x, y) ∈ R, then (y, x) ∈ R because
R is symmetric. Hence (y, x) ∈ R ∪ S by definition of
union. But also, if (x, y) ∈ S then (y, x) ∈ S because
S is symmetric. Hence (y, x) ∈ R ∪ S by definition of
union. Thus, in either case, (y, x) ∈ R ∪ S [as was to be
shown].

43. R1 is not irreflexive because (0, 0) ∈ R1. R1 is not asym-
metric because (0, 1) ∈ R1 and (1, 0) ∈ R1. R1 is not
intransitive because (0, 1) ∈ R1 and (1, 0) ∈ R1 and
(0, 0) ∈ R1.

45. R3 is irreflexive. R3 is not asymmetric because (2, 3) ∈ R3

and (3, 2) ∈ R3. R3 is intransitive.

48. R6 is irreflexive. R6 is asymmetric. R6 is intransitive (by
default).
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51. Rt = R ∪ {(0, 0), (0, 3), (1, 0), (3, 1), (3, 2), (3, 3),
(0, 2), (1, 2)}

= {(0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2),
(1, 3), (2, 2), (3, 0), (3, 1), (3, 2)(3, 3)}

54. Algorithm—Test for Reflexivity
[The input for this algorithm is a binary relation R defined
on a set A, that is represented as the one-dimensional array
a[1], a[2], . . . , a[n]. To test whether R is reflexive, the variable
answer is initially set equal to “yes,” and each element a[i] of
A is examined in turn to see whether it is related by R to itself.
If any element is not related to itself by R, then answer is set
equal to “no,” the while loop is not repeated, and processing
terminates.]

Input: n [a positive integer], a[1], a[2], . . . , a[n] [a one-
dimensional array representing a set A], R [a subset
of A × A]

Algorithm Body:

i := 1, answer := “yes”
while (answer = “yes” and i ≤ n)

if (a[i], a[i]) /∈ R then answer := “no”
i := i + 1

end while

Output: answer [a string]

Section 8.3
1. a. cRc b. bRa, cRb, eRd c. aRc

d. cRc, bRa, cRb, eRd, aRc, cRa

2. a. R = {(0, 0), (0, 2), (1, 1), (2, 0), (2, 2), (3, 3), (3, 4),
(4, 3), (4, 4)}

3. {0, 4}, {1, 3}, {2}
5. {1, 5, 9, 13, 17}, {2, 6, 10, 14, 18}, {3, 7, 11, 15, 19},
{4, 8, 12, 16, 20}

7. {(1, 3), (3, 9)}, {(2, 4), (−4,−8), (3, 6)}, {(1, 5)}
8. {∅}, {{a}, {b}, {c}}, {{a, b}, {a, c}, {b, c}}, {{a, b, c}}

11. [0] = {x ∈ A | 4 | (x2 − 0)} = {x ∈ A | 4 | x2} =
{−4,−2, 0, 2, 4} [1] = {x ∈ A | 4 | (x2 − 12)} =
{x ∈ A | 4 | (x2 − 1)} = {−3,−1, 1, 3}

13. {aaaa, aaab, aaba, aabb}, {abaa, abab, abba, abbb},
{baaa, baab, baba, babb}, {bbaa, bbab, bbba, bbbb}

15. a. True. 17− 2 = 15 and 5 | 15.
16. a. [7] = [4] = [19], [−4] = [17], [−6] = [27]
17. a. Proof: Suppose that m and n are integers such that

m ≡ n (mod 3). [We must show that m mod 3 = n mod 3.]
By definition of congruence, 3 | (m − n), and so by
definition of divisibility, m − n = 3k for some integer
k. Let m mod 3r =. Then m = 3l + r for some inte-
ger l. Since m − n = 3k, then by substitution, (3l +
r)− n = 3k, or, equivalently, n = 3(l − k)+ r . Since
l − k is an integer and 0 ≤ r < 3, it follows, by def-
inition of mod, that n mod 3 = r also. So m mod 3 =
n mod 3.

Suppose that m and n are integers such that
m mod 3 = n mod 3. [We must show that m ≡ n (mod 3).]
Let r = m mod 3 = nmod 3. Then, by definition of
mod, m = 3p + r and n = 3q + r for some integers
p and q. By substitution, m − n = (3p + r)− (3q +
r) = 3(p − q). Since p − q is an integer, it follows that
3 | (m − n), and so, by definition of congruence, m ≡ n
(mod 3).

18. a. For example, let A = {1, 2} and B = {2, 3}. Then A �=
B, so A and B are distinct. But A and B are not disjoint
since 2 ∈ A ∩ B.

19. a. (1) Proof: R is reflexive because it is true that for each
student x at a college, x has the same major (or double
major) as x .
R is symmetric because it is true that for all students
x and y at a college, if x has the same major (or double
major) as y, then y has the same major (or double major)
as x .
R is transitive because it is true that for all students x, y,
and z at a college, if x has the same major (or double
major) as y and y has the same major (or double major)
as z, then x has the same major (or double major) as z.
R is an equivalence relation because it is reflexive, sym-
metric, and transitive.

(2) There is one equivalence class for each major and
double major at the college. Each class consists of all
students with that major (or double major).

20. (1) Hint: See the solution to exercise 15 in Section 10.2.
(2) Two distinct classes: {x ∈ Z | x = 2k, for some integer k}
and {x ∈ Z | x = 2k + 1, for some integer k}.

25. (1) Proof: A is reflexive because each real number has the
same absolute value as itself.
A is symmetric because for all real numbers x and y, if
|x | = |y| then |y| = |x |.
A is transitive because for all real numbers x, y, and z, if
|x | = |y| and |y| = |z| then |x | = |z|.
A is an equivalence relation because it is reflexive, symmet-
ric, and transitive.

(2) The distinct classes are all sets of the form {x,−x},
where x is a real number.

26. Hints: (1) D is reflexive, symmetric, and transitive. The
proofs are very similar to the proofs in exercise 17.

(2) There are two distinct equivalence classes. Note that
m2 − n2 = (m − n)(m + n) for all integers m and n. In
addition, 3 | (m − n) or 3 | (m + n)⇔ either m − n = 3r
or m + n = 3r , for some integer r

28. (1) Proof: I is reflexive because the difference between
each real number and itself is 0, which is an integer.

I is symmetric because for all real numbers x and y, if
x − y is in integer, then y − x = (−1)(x − y), which is
also an integer.

I is transitive because for all real numbers x, y, and z, if
x − y is an integer and y − z is an integer, then x − z =
(x − y)+ (y − z) is the sum of two integers and thus an
integer.
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I is an equivalence relation because it is reflexive, symmet-
ric, and transitive.

(2) There is one class for each real number x with 0 ≤ x <

1. The distinct classes are all sets of the form {y ∈ R | y =
n + x, for some integer n}, where x is a real number such
that 0 ≤ x < 1.

29. (1) Proof: P is reflexive because each ordered pair of real
numbers has the same first element as itself.
P is symmetric for the following reason: Suppose (w, x)
and (y, z) are ordered pairs of real numbers such that
(w, x)P(y, z). Then, by definition of P, w = y. But by the
symmetric property of equality, this implies that y = w,
and so, by definition of P, (y, z)P(w, x).
P is transitive for the following reason: Suppose
(u, v), (w, x), and (y, z) are ordered pairs of real numbers
such that (u, v)P(w, x) and (w, x)P(y, z). Then, by defini-
tion of P, u = w and w = y. But by the transitive property
of equality, this implies that u = w, and so, by definition of
P, (u, v)P(w, x).
P is an equivalence relation because it is reflexive, symmet-
ric, and transitive.

(2) There is one equivalence class for each real number.
The distinct equivalence classes are all sets of ordered pairs
{(x, y) ∈ R× R | x = a}, for each real number a. Equiva-
lently, the equivalence classes consist of all vertical lines in
the Cartesian plane.

32. Solution for (2): There is one equivalence class for each real
number t such that 0 ≤ t < π . One line in each class goes
through the origin, and that line makes an angle of t with
the positive horizontal axis.

line L

t

Alternatively, there is one equivalence class for every pos-
sible slope: all real numbers plus “undefined.”

34. No. If points p, q, and r all lie on a straight line with q in
the middle, and if p is c units from q and q is c units from
r , than p is more then c units from r .

36. Proof: Suppose R is an equivalence relation on a set A and
a ∈ A. Because R is an equivalence relation, R is reflex-
ive, and because R is reflexive, each element of A is related
to itself by R. In particular, a R a. Hence by definition of
equivalence class, a ∈ [a].

38. Proof: Suppose R is an equivalence relation on a set A and
a, b, and c are elements of A with b R c and c ∈ [a]. Since
c ∈ [a], then c R a by definition of equivalence class. But R
is transitive since R is an equivalence relation. Thus since
b R c and c R a, then b R a. It follows that b ∈ [a] by
definition of class.

40. Proof: Suppose a, b and x are in A, a R b, and x ∈ [a]. By
definition of equivalence class, x R a. So x R a and a R b,
and thus, by transitivity, x R b. Hence x ∈ [b].

41. Hint: To show that [a] = [b], show that [a] ⊆ [b] and [b] ⊆
[a]. To show that [a] ⊆ [b], show that for all x in A, if
x ∈ [a] then x ∈ [b].

42. c. For example (2, 6), (−2,−6), (3, 9), (−3,−9).
43. a. Suppose that (a, b), (a′, b′), (c, d) and (c′, d ′) are

any elements of A such that [(a, b)] = [(a′, b′)] and
[(c, d)] = [(c′, d ′)]. By definition of the relation, ab′ =
ba′ (*) and cd ′ = dc′ (**). We must show that [(a, b)] +
[(c, d)] = [(a′, b′)] + [(c′, d ′)]. By definition of the
addition, this equation is true if, and only if,

[(ad + bc, bd)] = [(a′d ′ + b′c′, b′d ′)].
And, by definition of the relation, this equation is true if,
and only if,

(ad + bc)b′d ′ = bd(a′d ′ + b′c′),

which is equivalent to

adb′d ′ + bcb′d ′ = bda′d ′ + bdb′c′, by multiplying out.

But this equation is equivalent to

(ab′)(dd ′)+ (cd ′)(bb′)

= (ba′)(dd ′) + (dc′)(bb′) by regrouping

and, by substitution from (*) and (**), this last equation
is true.

c. Suppose that (a, b) is any element of A. We must show
that [(a, b)] + [(0, 1)] = [(a, b)]. By definition of the
addition, this equation is true if, and only if,

[(a ·1+ b ·0, b ·1)] = [(a, b)].
But this last equation is true because a ·1+ b ·0 = a
and b ·1 = b.

e. Suppose that (a, b) is any element of A. We must
show that [(a, b)] + [(−a, b)] = [(−a, b)] + [(a, b)] =
[(0, 1)]. By definition of the addition, this equation is
true if, and only if,

[(ab + b(−a), bb)] = [(0, 1)],
or, equivalently,

[(0, bb)] = [(0, 1)]
By definition of the relation, this last equation is true if,
and only if, 0 ·1 = bb ·0, which is true.

44. a. Let (a, b) be any element of Z+ × Z+. We must show
that (a, b)R(a, b). By definition of R, this relationship
holds if, and only if, a + b = b + a. But this equation
is true by the commutative law of addition for real num-
bers. Hence R is reflexive.

c. Hint: You will need to show that for any positive inte-
gers a, b, c, and d, if a + d = c + b and c + f = d +
e, then a + f = b + e.

d. One possible answer: (1, 1), (2, 2), (3, 3), (4, 4), (5, 5)
g. Observe that for any positive integers a and b, the

equivalence class of (a, b) consists of all ordered pairs
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in Z+ × Z+ for which the difference between the first
and second coordinates equals a − b. Thus there is one
equivalence class for each integer: positive, negative,
and zero. Each positive integer n corresponds to the
class of (n + 1, 1); each negative integer −n corre-
sponds to the class of (1, n + 1); and zero corresponds
to the class (1, 1).

47. c. “Ways and Means”

Section 8.4
1. a. ZKUHUH VKDOO ZH PHHW

b. IN THE CAFETERIA

3. a. The relation 3 | (25− 19) is true because 25− 19 = 6
and 3 | 6 (since 6 = 3 ·2).

b. By definition of congruence modulo n, to show that
25 ≡ 19 (mod 3), one must show that 3 | (25− 19). This
was verified in part (a).

c. To show that 25 = 19+ 3k for some integer k, one
solves the equation for k and checks that the result is
an integer. In this case, k = (25− 19)/3 = 2, which is
an integer. Thus 25 = 19+ 2 ·3.

d. When 25 is divided by 3, the remainder is 1 because
25 = 3 ·8+ 1. When 19 is divided by 3, the remainder
is also 1 because 19 = 3 ·6+ 1. Thus 25 and 19 have
the same remainder when divided by 3.

e. By definition, 25 mod 3 is the remainder obtained when
25 is divided by 3, and 19 mod 3 is the remainder
obtained when 19 is divided by 3. In part (d) these two
numbers were shown to be equal.

6. Hints: (1) Use the quotient-remainder theorem and
Theorem 8.4.1 to show that given any integer a, a is in
one of the classes [0], [1], [2], . . . [n − 1]. (2) Use Theo-
rem 4.3.1 to prove that if 0 ≤ a < n, 0 ≤ b < n, and a ≡ b
(mod n), then a = b.

7. a. 128 ≡ 2 (mod 7) because 128− 2 = 126 = 7 ·18, and
61 ≡ 5 (mod 7) because 61− 5 = 56 = 7 ·8

b. 128+ 61 ≡ (2+ 5) (mod 7) because 128+ 61 = 189,
2+ 5 = 7, and 189− 7 = 182 = 7 ·26

c. 128− 61 ≡ (2− 5) (mod 7) because 128− 61 = 67,
2− 5 = −3, and 67− (−3) = 70 = 7 ·10

d. 128 ·61 ≡ (2 ·5) (mod 7) because 128 ·61 = 7808,
2 ·5 = 10, and 7808− (10) = 7798 = 7 ·1114

e. 1282 ≡ 22(mod 7) because 1282 = 16384, 22 = 4, and
16384− 4 = 16380 = 7 ·2340.

9. a. Proof: Suppose a, b, c, d, and n are integers
with n > 1, a ≡ c (mod n), and b ≡ d (mod n). By
Theorem 8.4.1, a − c = nr and b − d = ns for some
integers r and s. Then

(a + b)− (c + d) = (a − c)+ (b − d) = nr + ns

= n(r + s).

But r + s is an integer, and so, by Theorem 8.4.1,
a + b ≡ (c + d)(mod n).

12. a. Proof (by mathematical induction): Let the property
P(n) be the congruence 10n ≡ 1 (mod 9).

Show that P(0) is true:

When n = 0, the left-hand side of the congruence is
100 = 1 and the right-hand side is also 1.

Show that for all integers k ≥ 0, if P(k) is true, then
P(k + 1) is true.

Let k be any integer with k ≥ 0, and suppose
P(k) is true. That is, suppose 10k ≡ 1 (mod 9). (*)
[This is the inductive hypothesis.] By Theorem 8.4.1,
10 ≡ 1 (mod 9)(**) because 10− 1 = 9 = 9 ·1. And by
Theorem 8.4.3, we can multiply the left- and right-hand
sides of (*) and (**) to obtain 10k ·10 ≡ 1 ·1 (mod 9),
or, equivalently, 10k+1 ≡ 1 (mod 9). Hence P(k + 1)
is true.

Alternative Proof: Note that 10 ≡ 1 (mod 9) because
10− 1 = 9 and 9|9. Thus by Theorem 8.4.3(4), 10n ≡
1n ≡ 1 (mod 9).

14. 141 mod 55 = 14
142 mod 55 = 196mod 55 = 31
144 mod 55 = (142 mod 55)2 mod 55 = 312 mod 55 = 26
148 mod 55 = (144 mod 55)2 mod 55 = 262 mod 55 = 16
1416 mod 55 = (148 mod 55)2 mod 55 = 162 mod 55 = 36

15. 427 mod 55 = 1416+8+2+1 mod 55
= {

(1416 mod 55)(148 mod 55)(142 mod 55)
(141 mod 55)

}
mod 55

= (36 ·16 ·31 ·14)mod 55 = 249984mod 55 = 9

16. Note that 307 = 256+ 32+ 16+ 2+ 1.

6751 mod 713 = 675
6752 mod 713 = 18
6754 mod 713 = 182 mod 713 = 324
6758 mod 713 = 3242 mod 713 = 165
67516 mod 713 = 1652 mod 713 = 131
67532 mod 713 = 1312 mod 713 = 49
67564 mod 713 = 492 mod 713 = 262
675128 mod 713 = 2622 mod 713 = 196
675256 mod 713 = 1962 mod 713 = 627

Thus

675307 mod 713 = 675256+32+16+2+1 mod 713
= (675256 ·67532 ·67516 ·6752 ·6751)mod 713
= (627 ·49 ·131 ·18 ·675)mod 713 = 3.

19. The letters in HELLO translate numercially into 08, 05, 12,
12, and 15. By Example 8.4.9, the H is encrypted as 17.
To encrypt E, we compute 53 mod 55 = 15. To encrypt L,
we compute 123 mod 55 = 23. And to encrypt 0, we com-
pute 153 mod 55 = 20. Thus the ciphertext is 17 15 23
23 20. (In practice, individual letters of the alphabet are
grouped together in blocks during encryption so that deci-
phering cannot be accomplished through knowledge of fre-
quency patterns of letters or words.)

22. By Example 8.4.10, the decryption key is 27. Thus
the residues modulo 55 for 1327, 2027, and 927 must be
found and then translated into letters of the alphabet.
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Because 27 = 16+ 8+ 2+ 1, we first perform the follow-
ing computations:

131 ≡ 13 (mod 55) 201 ≡ 20 (mod 55)
132 ≡ 4 (mod 55) 202 ≡ 15 (mod 55)
134 ≡ 42 ≡ 16 (mod 55) 204 ≡ 152 ≡ 5 (mod 55)
138 ≡ 162 ≡ 36 (mod 55) 208 ≡ 252 ≡ 5 (mod 55)
1316 ≡ 362 ≡ 31 (mod 55) 2016 ≡ 252 ≡ 20 (mod 55)

91 ≡ 9 (mod 55)
92 ≡ 26 (mod 55)
94 ≡ 262 ≡ 16 (mod 55)
98 ≡ 162 ≡ 36 (mod 55)
916 ≡ 362 ≡ 31 (mod 55)

Then we compute

1327 mod 55 = (31 ·36 ·4 ·13)mod 55 = 7,
2027 mod 55 = (20 ·25 ·15 ·20)mod 55 = 15,
927 mod 55 = (31 ·36 ·26 ·9)mod 55 = 4.

Finally, because 7, 15, and 4 translate into letters as G, O,
and D, we see that the message is GOOD.

25. Hint: By Theorem 5.2.3, using a in place of r and n − 1

in place of n, we have 1+ a + a2 + · · · + an−1 = an−1
a−1 .

Multiplying both sides by a − 1 gives

an − 1 = (a − 1)(1+ a + a2 + · · · + an−1).
26. Step 1: 6664 = 765 ·8+ 544, and so 544 = 6664− 765 ·8

Step 2: 765 = 544 ·1+ 221, and so 221 = 765− 544
Step 3: 544 = 221 ·2+ 102, and so 102 = 544− 221 ·2
Step 4: 221 = 102 ·2+ 17, and so 17 = 221− 102 ·2
Step 5: 102 = 17 ·6+ 0

Thus gcd(6664, 765) = 17 (which is the remainder
obtained just before the final division). Substitute back
through steps 4–1 to express 17 as a linear combination of
6664 and 765:

17 = 221− 102 ·2
= 221− (544− 221 ·2) = 221 ·5− 544 ·2
= (765− 544) ·5− 544 ·2 = 765 ·5− 544 ·7
= 765 ·5− (6664− 765 ·8) ·7 = (−7) ·6664+ 61 ·765.

(When you have finished this final step, it is wise to verify
that you have not made a mistake by checking that the final
expression really does equal the greatest common divisor.)

28. a 330 156 18 12 6

b 156 18 12 6 0

r 18 12 6 0

q 2 8 1 2

s 1 0 1 −8 9

t 0 1 −2 17 −19
u 0 1 −8 9 −26
v 1 −2 17 −19 55

newu 1 −8 9 −26
newv −2 17 −19 55

sa + tb 330 18 −6 6 6

31. a. Step 1: 210 = 13 ·16+ 2, and so 2 = 210− 16 ·13
Step 2: 13 = 2 ·6+ 1, and so 1 = 13− 2 ·6
Step 3: 6 = 1 ·6+ 0, and so gcd(210, 13) = 1

Substitute back through steps 2–1:

1 = 13− 2 ·6
= 13− (210− 16 ·13) ·6 = (−6) ·210+ 97 ·13

Thus 210 · (−6) ≡ 1 (mod 13), and so −6 is an inverse
for 210 modulo 13.

b. Compute 13− 6 = 7, and note that 7 ≡ −6 (mod 13)
because 7− (−6) = 13 = 13 ·1. Thus, by Theo-
rem 8.4.3(3), 210 ·7 ≡ 210 · (−6) (mod 13). It fol-
lows, by the transitive property of congruence, that
210 ·7 ≡ 1 (mod 13), and so 7 is a positive inverse for
210 modulo 13.

c. This problem can be solved using either the result of part
(a) or that of part (b). By part (b) 210 ·7 ≡ 1 (mod 13).
Multiply both sides by 8 and apply Theorem 8.4.3(3) to
obtain 210 ·56 ≡ 8 (mod 13). Thus a positive solution
for 210x ≡ 8 (mod 13) is x = 56. Note that the least
positive residue corresponding to this solution is also a
solution. By Theorem 8.4.1, 56 ≡ 4 (mod 13) because
56 = 13 ·4+ 4, and so, by Theorem 8.4.3(3), 210 ·56 ≡
210 ·4 ≡ 9 (mod 13). This shows that 4 is also a solu-
tion for the congruence, and because 0 ≤ 4 < 13, 4 is
the least positive solution for the congruence.

33. Hint: If as + bt = 1 and c = au = bv, then c = asc +
btc = as(bv)+ bt (au).

35. Proof: Suppose a, n, s and s ′ are integers such that as ≡
as ′ ≡ 1 (mod n). Consider the quantity as ′s, and note that
as ′s = (as ′) ·s = (as) ·s ′. By Theorem 8.4.3(3), (as ′) ·s ≡
1 ·s = s (mod n) and (as ′) ·s ′ ≡ 1 ·s ′ = s ′ (mod n). Thus
by transitivity of congruence modulo n, s ≡ s ′ (mod n).
This shows that any two inverses for a are congruent
modulo n.

36. The numeric equivalents of H, E, L, and P are 08, 05, 12 and
16. To encrypt these letters, the following quantities must
be computed: 843 mod 713, 543 mod 713, 1243 mod 713, and
1643 mod 713. We use the fact that 43 = 32+ 8+ 2+ 1.

H: 8 ≡ 8 (mod 713)
82 ≡ 64 (mod 713)
84 ≡ 642 ≡ 531 (mod 713)
88 ≡ 5312 ≡ 326 (mod 713)
816 ≡ 3262 ≡ 39 (mod 713)
832 ≡ 392 ≡ 95 (mod 713)
Thus the ciphertext is
843 mod 713
= (95 ·326 ·64 ·8)mod 713 = 233.

E: 5 ≡ 5 (mod 713)
52 ≡ 25 (mod 713)
54 ≡ 625 (mod 713)
58 ≡ 6252 ≡ 614 (mod 713)
516 ≡ 6142 ≡ 532 (mod 713)
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532 ≡ 5322 ≡ 676 (mod 713)
Thus the ciphertext is
543 mod 713
= (676 ·614 ·25 ·5)mod 713 = 129.

L: 12 ≡ 12 (mod 713)
122 ≡ 144 (mod 713)
124 ≡ 1442 ≡ 59 (mod 713)
128 ≡ 592 ≡ 629 (mod 713)
1216 ≡ 6292 ≡ 639 (mod 713)
1232 ≡ 6392 ≡ 485 (mod 713)
Thus the ciphertext is
1243 mod 713
= (485 ·629 ·144 ·12)mod 713 = 48.

P: 16 ≡ 16 (mod 713)
162 ≡ 256 (mod 713)
164 ≡ 2562 ≡ 653 (mod 713)
168 ≡ 6532 ≡ 35 (mod 713)
1616 ≡ 352 ≡ 512 (mod 713)
1632 ≡ 5122 ≡ 473 (mod 713)
Thus the ciphertext is
1643 mod 713
= (473 ·35 ·256 ·16)mod 713 = 128.

Therefore, the encrypted message is 233 129 048 128.
(Again, note that in practice, individual letters of the alpha-
bet are grouped together in blocks during encryption so that
deciphering cannot be accomplished through knowledge of
frequency patterns of letters or words. We kept them sep-
arate so that the numbers in the computations would be
smaller and easier to work with.)

39. By exercise 38, the decryption key, d, is 307. Hence, to
decrypt the message, the following quantities must be com-
puted: 675307 mod 713, 89307 mod 713, and 48307 mod 713.
We use the fact that 307 = 256+ 32+ 16+ 2+ 1.

675 ≡ 675 (mod 713)
6752 ≡ 18 (mod 713)
6754 ≡ 182 ≡ 324 (mod 713)
6758 ≡ 3242 ≡ 165 (mod 713)
67516 ≡ 1652 ≡ 131 (mod 713)
67532 ≡ 1312 ≡ 49 (mod 713)
67564 ≡ 492 ≡ 262 (mod 713)
675128 ≡ 2622 ≡ 196 (mod 713)
675256 ≡ 1962 ≡ 627 (mod 713)

89 ≡ 89 (mod 713)
892 ≡ 78 (mod 713)
894 ≡ 782 ≡ 380 (mod 713)
898 ≡ 3802 ≡ 374 (mod 713)
8916 ≡ 3742 ≡ 128 (mod 713)
8932 ≡ 1282 ≡ 698 (mod 713)
8964 ≡ 6982 ≡ 225 (mod 713)
89128 ≡ 2252 ≡ 2 (mod 713)
89256 ≡ 22 ≡ 4 (mod 713)

48 ≡ 48 (mod 713)
482 ≡ 165 (mod 713)
484 ≡ 131 (mod 713)
488 ≡ 49 (mod 713)
4816 ≡ 262 (mod 713)
4832 ≡ 196 (mod 713)
4864 ≡ 627 (mod 713)
48128 ≡ 6272 ≡ 266 (mod 713)
48256 ≡ 2662 ≡ 169 (mod 713)

Thus the decryption for 675 is

675307 mod 713 = (675256+32+16+2+1) mod 713
= (627 ·49 ·131 ·18 ·675) mod 713 = 3, which

corresponds to the letter C .
The decryption for 89 is

89307 mod 713 = (89256+32+16+2+1) mod 713
= (4 ·698 ·128 ·78 ·89) mod 713 = 15, which

corresponds to the letter O .

The decryption for 48 is

48307 mod 713 = (48256+32+16+2+1) mod 713
= (169 ·196 ·262 ·165 ·48) mod 713 = 12, which

corresponds to the letter L .

Thus the decrypted message is COOL.

41. a. Hint: For the inductive step, assume p | q1q2 . . . qs+1 and
let a = q1q2 . . . qs . Then p | aqs+1, and either p = qs+1
or Euclid’s lemma and the inductive hypothesis can be
applied.

42. a. When a = 15 and p = 7, ap−1 = 156 = 11390625 ≡
1 (mod 7) because 11390625− 1 = 7 ·1627232.

Section 8.5
1. a.

0

3

1

2

R1 is not antisymmetric: 1 R1 3
and 3 R1 1 and 1 � 3.

b.

0

3

1

2

R2 is antisymmetric: There are
no cases where a R b and
b R a and a � b.
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2. R is not antisymmetric. Let x and y be any two distinct
people of the same age. Then x R y and y R x but x �= y.

5. R is a partial order relation.

Proof:
R is reflexive: Suppose (a, b) ∈ R× R. Then
(a, b) R (a, b) because a = a and b ≤ b.
R is antisymmetric: Suppose (a, b) and (c, d) are ordered
pairs of real numbers such that (a, b) R (c, d) and
(c, d) R (a, b). Then

either a < c or both a = c and b ≤ d

and

either c < a or both c = a and d ≤ b.

Thus

a ≤ c and c ≤ a

and so

a = c.

Consequently,

b ≤ d and d ≤ b

and so

b = d.

Hence (a, b) = (c, d).
R is transitive: Suppose (a, b), (c, d), and (e, f ) are
ordered pairs of real numbers such that (a, b) R (c, d) and
(c, d) R (e, f ). Then

either a < c or both a = c and b ≤ d

and

either c < e or both c = e and d ≤ f.

It follows that one of the following cases must occur.
Case 1 (a < c and c < e): Then by transitivity of<, a < e,
and so (a, b) R (e, f ) by definition of R.

Case 2 (a < c and c = e): Then by substitution, a < e, and
so (a, b) R (e, f ) by definition of R.

Case 3 (a = c and c < e): Then by substitution, a < e, and
so (a, b) R (e, f ) by definition of R.

Case 4 (a = c and c = e): Then by definition of R, b ≤ d
and d ≤ f , and so by transitivity of≤, b ≤ f . Hence a = e
and b ≤ f , and so (a, b) R (e, f ) by definition of R.
In each case, (a, b) R (e, f ). Therefore, R is transitive.
Since R is reflexive, antisymmetric, and transitive, R is a
partial order relation.

8. R is not a partial order relation because R is not antisym-
metric.

Counterexample: 1 R 3 (because 1+ 3 is even) and 3 R 1
(because 3+ 1 is even) but 1 �= 3.

10. No. Counterexample: Define relations R and S on the set
{1, 2} as follows: R = {(1, 2)} and S = {(2, 1)}. Then both
R and S are antisymmetric, but R ∪ S = {(1, 2), (2, 1)}

is not antisymmetric because (1, 2) ∈ R ∪ S and (2, 1) ∈
R ∪ S but 1 �= 2.

11. a. This follows from (1).
b. False. By (1), bba � bbab.

13. R1 = {(a, a), (b, b)}, R2 = {(a, a), (b, b), (a, b)},
R3 = {(a, a), (b, b), (b, a)}

14. a. R1 = {(a, a), (b, b), (c, c)},
R2 = {(a, a), (b, b), (c, c), (b, a)},
R3 = {(a, a), (b, b), (c, c), (c, a)},
R4 = {(a, a), (b, b), (c, c), (b, a), (c, a)},
R5 = {(a, a), (b, b), (c, c), (c, b), (c, a)},
R6 = {(a, a), (b, b), (c, c), (b, c), (b, a)},
R7 = {(a, a), (b, b), (c, c), (c, b), (b, a), (c, a)},
R8 = {(a, a), (b, b), (c, c), (b, c), (b, a), (c, a)},
R9 = {(a, a), (b, b), (c, c), (b, c)},
R10 = {(a, a), (b, b), (c, c), (c, b)}

15. Hint: R is the identity relation on A: x R x for all x ∈ A
and x �R y if x �= y.

16. a. 20

10 154

2 5

1

17. a. {0, 1}

{1}{0}

∅

18.
(1, 1)

(1, 0)

(0, 1)

(0, 0)

21. a. Proof: [We must show that for all a and b in A, a | b or
b | a.] Let a and b be particular but arbitrarily chosen
elements of A. By definition of A, there are nonnegative
integers r and s such that a = 2r and b = 2s . Now either
r ≤ s or s < r . If r ≤ s, then

b = 2s = 2r ·2s−r = a ·2s−r ,
where s − r ≥ 0. It follows, by definition of divisibil-
ity, that a | b. By a similar argument, if s < r , then b | a.
Hence either a | b or b | a [as was to be shown].
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b.
1 2 22 23 24

22. Greatest element: none; least element: 1;
Maximal elements: 15, 20; minimal element: 1

24. Greatest element: {0, 1}; least element: ∅;
Maximal elements: {0, 1}; minimal elements: ∅

26. Greatest element: (1, 1); least element: (0, 0);
Maximal elements: (1, 1); minimal elements: (0, 0)

30. a. No greatest element, no least element
b. Least element is 0, greatest element is 1

31. R is a total order relation because it is reflexive, antisym-
metric, and transitive (so it is a partial order) and because
[b, a, c, d] is a chain that contains every element of A:
bRc, cRa, and aRd .

34. Hint: Let R′ be the restriction of R to B and show that R′

is reflexive, antisymmetric, and transitive. In each case, this
follows almost immediately from the fact that R is reflex-
ive, antisymmetric, and transitive.

35. ∅ ⊆ {w} ⊆ {w, x} ⊆ {w, x, y} ⊆ {w, x, y, z}
36. Proof: Suppose A is a partially ordered set with respect

to a relation �. By definition of total order, A is totally
ordered if, and only if, any two elements of A are compara-
ble. By definition of chain, this is true if, and only if, A is a
chain.

39. Proof (by mathematical induction): Let A be a set that
is totally ordered with respect to a relation 	, and let
the property P(n) be the sentence “Every subset of A
with n elements has both a least element and a greatest
element.”

Show that P(1) is true:

If A = ∅, then P(1) is true by default. So assume that A has
at least one element, and suppose S = {a1} is a subset of A
with one element. Because 	 is reflexive, a1 	 a1. So, by
definition of least element and greatest element, a1 is both
a least element and a greatest element of S, and thus the
property is true for n = 1.

Show that for all integers k ≥ 1, if P(k) is true, then
P(k + 1) is true:

Let k be any integer with k ≥ 1, and suppose that any subset
of A with k elements has both a least element and a great-
est element. [Inductive hypothesis] We must show that any
subset of A with k + 1 elements has both a least element
and a greatest element. If A has fewer than k + 1 elements,
then the statement is true by default. So assume that A has
at least k + 1 elements and that S = {a1, a2, . . . , ak+1} is a
subset of A with k + 1 elements. By inductive hypothesis,
S − {ak+1} has both a least element s and a greatest element
b. Now because A is totally ordered, ak+1 and s are com-
parable. If ak+1 	 s, then, by transitivity of 	, ak+1 is the
least element of S; otherwise, s remains the least element
of S. And if b 	 ak+1, then, by transitivity of 	, ak+1 is the
greatest element of S; otherwise, b remains the greatest ele-
ment of S. Thus S has both a greatest element and a least
element [as was to be shown].

40. a. Proof by contradiction: Suppose not. Suppose A is a
finite set that is partially ordered with respect to a rela-
tion � and A has no minimal element. Construct a
sequence of elements x1, x2, x3, . . . of A as follows:

1. Pick any element of A and call it x1.
2. For each i = 2, 3, 4, . . . , pick xi to be an element of

A for which xi � xi−1 and xi �= xi−1. [Such an ele-
ment must exist because otherwise xi−1 would be mini-
mal, and we are supposing that no element of A is min-
imal.] Now xi �= x j for any i �= j . [If xi = x j where
i < j , then on the one hand, x j � x j−1 � . . . � xi+1 �
xi and so xi � xi+1, and on the other hand, since xi =
x j then x j = xi 4 xi+1, and so x j 4 xi+1. Hence by
antisymmetry, x j = xi+1, and so xi = xi+1. But this con-
tradicts the definition of the sequence x1, x2, x3, . . . .]
Thus x1, x2, x3, . . . is an infinite sequence of distinct
elements, and consequently {x1, x2, x3, . . .} is an infi-
nite subset of the finite set A. This is impossible.
Hence the supposition is false and we conclude that
any partially ordered subset of a finite set has a min-
imal element.

42. c d

a b

44. One such total order is 1, 5, 2, 15, 10, 4, 20.

46. One such total order is (0, 0), (1, 0), (0, 1), (1, 1).

50. a. One possible answer: 1, 6, 10, 9, 5, 7, 2, 4, 8, 3

51. b. Critical path: 1, 2, 5, 8, 9.

Section 9.1
2. 3/4, 1/2, 1/2

3. {1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 1 ,

2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 }, probabil-
ity = 20/52 ∼= 38.5%

5. {10♣, J♣, Q♣, K♣, A♣, 10 , J , Q , K , A , 10 ,
J , Q , K , A , 10♠, J♠,Q♠,K♠,K♠,A♠} prob-
ability = 20/52 = 5/13 ∼= 38.5%.

7. {26, 35, 44, 53, 62}, probability = 5/36 ∼= 13.9%

9. {11, 12, 13, 14, 15, 21, 22, 23, 24, 31, 32, 33, 41, 42, 51}
probability = 15/36 = 41 2

3%

11. a. {HHH , HHT , HT H , HTT , T HH , T HT , T T H ,
T T T }

b. (i) {HTT , T HT , T T H}, probability = 3/8 ∼= 37.5%

12. a. {BBB, BBG, BGB, BGG, GBB, GBG, GGB,
GGG}

b. (i) {GBB, BGB, BBG} probability = 3/8 = 37.5%

13. a. {CCC , CCW , CWC , CWW , WCC , WCW , WWC ,
WWW }

b. (i) {CWW , WCW , WWC}, probability = 3/8 =
37.5%
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14. a. probability = 3/8 = 37.5%

16. a. {RRR, RRB, RRY , RBR, RBB, RBY , RY R, RY B,
RYY , BRR, BRB, BRY , BBR, BBB, BBY , BY R,
BY B, BYY , Y RR, Y RB, Y RY , Y BR, Y BB, Y BY ,
YY R, YY B, YYY }

b. {RBY, RY B, Y BR, BRY, BY R, Y RB}, probability =
6/27 = 2/9 ∼= 22.2%

c. {RRB, RBR, BRR, RRY , RY R, Y RR, BBR, BRB,
RBB, BBY , BY B, Y BB, YY R, Y RY , RYY , YY B,
Y BY , BYY } probability = 18/27 = 2/3 = 66 2

3%

18. a. {B1B1, B1B2, B1W , B2B1, B2B2, B2W , WB1, WB2,
WW }

b. {B1B1, B1B2, B2B1, B2B2} probability = 4/9 ∼= 44.4%
c. {B1W , B2W , WB1, WB2} probability = 4/9 ∼= 44.4%

21. a. 10 11 12 13 14 15 16 17 18 . . . 96 97 98 99
( ( ( ( (

3 ·4 3 ·5 3 ·6 3 ·32 3 ·33
The above diagram shows that there are as many posi-
tive two-digit integers that are multiples of 3 as there are
integers from 4 to 33 inclusive. By Theorem 9.1.1, there
are 33− 4+ 1, or 30, such integers.

b. There are 99− 10+ 1 = 90 positive two-digit inte-
gers in all, and by part (a), 30 of these are multiples
of 3. So the probability that a randomly chosen pos-
itive two-digit integer is a multiple of 3 is 30/90 =
1/3 = 33 1

3%.
c. Of the integers from 10 through 99 that are multi-

ples of 4, the smallest is 12 (= 4 ·3) and the largest is

96 (= 4 ·24). Thus there are 24− 3+ 1 = 22 two-digit
integers that are multiples of 4. Hence the probability
that a randomly chosen two-digit integer is a multiple of
4 is 22/90 = 36 2

3%.

23. c. Probability = m−3+1
n = m−2

n

d. Because
⌊
39
2

⌋
= 19, the probability is 39−19+1

39 = 21
39 .

24. a. (i) If n is even, there are
⌊
n
2

⌋
= n

2 elements in the sub-
array.

(ii) If n is odd, there are
⌊
n
2

⌋
= n−1

2 elements in the

sub-array.
b. There are n elements in the array, so

(i) The probability that an element is in the given sub-

array when n is even is

n
2
n =

1
2 ,

(ii) The probability that an element is in the given sub-

array when n is odd is

n−1
2
n = n−1

2n .

26. Let k be the 27th element in the array. By Theorem 9.1.1,
k − 42+ 1 = 27, and so k = 42+ 27− 1 = 68. Thus the
27th element in the array is A[68].

28. Let m be the smallest of the integers. By Theorem 9.1.1,
279− m + 1 = 56, and som = 279− 56+ 1 = 224. Thus
the smallest of the integers is 224.

31. 1 2 3 4 5 6 7 8 9 . . . 999 1000 1001
( ( ( (

3 ·1 3 ·2 3 ·3 3 ·333
Thus there are 333 multiples of 3 between 1 and 1001.

32. a. M Tu W Th F Sa Su M Tu W Th F Sa Su · · · F Sa Su M
1 2 3 4 5 6 7 8 9 10 11 12 13 14 362 363 364 365

( ( (
7 ·1 7 ·2 7 ·52

Sundays occur on the 7th day of the year, the 14th day of the year, and in fact on all
days that are multiples of 7. There are 52 multiples of 7 between 1 and 365, and so
there are 52 Sundays in the year.

Section 9.2
1.

Start:
A has
won 3

Game 4 Game 5 Game 6 Game 7

A (A wins)
(A wins)

(A wins)
(A wins)

(B wins)

B

A

B

A

B

A

B

There are five ways to complete the series:
A, B–A, B–B–A, B–B–B–A, and B–B–B–B.

3. Four ways: A–A–A–A, B–A–A–A–A, B–B–A–A–A–A, and
B–B–B–A–A–A–A.

4. Two ways: A–B–A–B–A–B–A and B–A–B–A–B–A–B

6. a. Step 1:
Choose urn.

Step 2:
Choose ball 1.

Step 3:
Choose ball 2.

Start

Urn 1

Urn 2

B1

B2

W

B

W1

W2

B2

W

B1

W

B1

B2

W1

W2

B

W2

B

W1
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9.2 Solutions and Hints to Selected Exercises A-77

b. There are 12 equally likely outcomes of the experiment.

c. 2/12 = 1/6 = 16 2
3% d. 8/12 = 2/3 = 66 2

3%

8. By the multiplication rule, the answer is 3 ·2 ·2 = 12.

9. a. In going from city A to city B, one may take any of the
3 roads. In going from city B to city C , one may take
any of the 5 roads. So, by the multiplication rule, there
are 3 ·5 = 15 ways to travel from city A to city C via
city B.

b. A round-trip journey can be thought of as a four-step
operation:

Step 1: Go from A to B.
Step 3: Go from B to C .
Step 2: Go from C to B.
Step 4: Go from B to A.

Since there are 3 ways to perform step 1, 5 ways to
perform step 2, 5 ways to perform step 3, and 3 ways
to perform step 4, by the multiplication rule, there are
3 ·5 ·5 ·3 = 225 round-trip routes.

c. In this case the steps for making a round-trip journey are
the same as in part (b), but since no route segment may
be repeated, there are only 4 ways to perform step 3 and
only 2 ways to perform step 4. So, by the multiplica-
tion rule, there are 3 ·5 ·4 ·2 = 120 round-trip routes in
which no road is traversed twice.

11. a. Imagine constructing a bit string of length 8 as an eight-
step process:

Step 1: Choose either a 0 or a 1 for the left-most
position,

Step 2: Choose either a 0 or a 1 for the next position to
the right.

Step 3: Choose either a 0 or a 1 for the next position to
the right.

Since there are 2 ways to perform each step, the total
number of ways to accomplish the entire operation,
which is the number of different bit strings of length 8,
is 2 ·2 ·2 ·2 ·2 · 2 ·2 ·2 = 28 = 256.

b. Imagine that there are three 0’s in the three left-most
positions, and imagine filling in the remaining 5 posi-
tions as a 5-step process, where step i is to fill in the
(i + 3)rd position. Since there are 2 ways to perform
each of the 5 steps, there are 25 ways to perform the
entire operation. So there are 25, or 32, 8-bit strings that
begin with three 0’s.

12. a. There are 9 hexadecimal digits from 3 through B and 11
hexadecimal digits from 5 through F. Thus the answer is
9 ·16 ·16 ·16 ·11 = 405,504.

13. a. In each of the four tosses there are two possible results:
Either a head (H) or a tail (T ) is obtained. Thus, by the
multiplication rule, the number of outcomes is
2 ·2 ·2 ·2 = 24 = 16.

b. There are six outcomes with two heads:
HHTT, HT HT, HTT H, T HHT, T HT H, T T HH .
Thus the probability of obtaining exactly two heads is
6/16 = 3/8.

14. a. Let each of steps 1–4 be to choose a letter of the alpha-
bet to put in positions 1–4, and let each of steps 5–7
be to choose a digit to put in positions 5–7. Since there
are 26 letters and 10 digits (0–9), the number of license
plates is

26 ·26 ·26 ·26 ·10 ·10 ·10 = 456,976,000.

b. In this case there is only one way to perform step 1
(because the first letter must be an A) and only one
way to perform step 7 (because the last digit must
be a 0). Therefore, the number of license plates is
26 ·26 ·26 ·10 ·10 = 17,576, 000.

d. In this case there are 26 ways to perform step 1, 25 ways
to perform step 2, 24 ways to perform step 3, 10 ways to
perform step 4, 9 ways to perform step 5, and 8 ways
to perform step 6, so the number of license plates is
26 ·25 ·24 ·23 ·10 ·9 ·8 = 258,336,000.

16. a. Two solutions:
(i) number of integers

=
⎡
⎣number of
ways to pick
first digit

⎤
⎦
⎡
⎣number of
ways to pick
second digit

⎤
⎦ = 9 ·10 = 90

(ii) Using Theorem 9.1.1, number of integers =
99− 10+ 1 = 90.

b. Odd integers end in 1, 3, 5, 7, or 9.
number of odd integers

=
⎡
⎣number of
ways to pick
first digit

⎤
⎦
⎡
⎣number of
ways to pick
second digit

⎤
⎦ = 9 ·5 = 45

Alternative solution: Use the listing method shown in the
solution for Example 9.1.4.

c.
[
number of integers
with distinct digits

]

=
⎡
⎣number of
ways to pick
first digit

⎤
⎦
⎡
⎣number of
ways to pick
second digit

⎤
⎦

= 9 ·9 = 81

d.
[
number of odd integers
with distinct digits

]

=
⎡
⎣number of
ways to pick
second digit

⎤
⎦
⎡
⎣number of
ways to pick
first digit

⎤
⎦

= 5 ·8 = 40 because the first digit
can’t equal 0, nor can it
equal the second digit

e. 81/90 = 9/10, 40/90 = 4/9

18. a. Let step 1 be to choose either the number 2 or one of
the letters corresponding to the number 2 on the keypad,
let step 2 be to choose either the number 1 or one of
the letters corresponding to the number 1 on the keypad,
and let steps 3 and 4 be to choose either the number 3 or
one of the letters corresponding to the number 3 on the
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keypad. There are 4 ways to perform step 1, 3 ways
to perform step 2, and 4 ways to perform each of
steps 3 and 4. So by the multiplication rule, there are
4 ·3 ·4 ·4 = 192 ways to perform the entire operation.
Thus there are 192 different PINs that are keyed the
same as 2133. Note that on a computer keyboard, these
PINs would not be keyed the same way.

19. Step 1:
Choose the
secretary.

Step 2:
Choose the
treasurer.

Step 3:
Choose the
president.

Ann

Bob

Dan

Cyd

Dan

Ann

Cyd

Dan

Ann

Cyd

Bob

Bob

Bob

Bob

Cyd

Cyd

Cyd

Cyd

Dan

Dan

Dan

Ann

Ann

Ann

There are 14 different paths from “root” to “leaf” of this
possibility tree, and so there are 14 ways the officers can
be chosen. Because 14 = 2 ·7, reordering the steps will not
make it possible to use the multiplication rule alone to solve
this problem.

20. a. The number of ways to perform step 4 is not constant; it
depends on how the previous steps were performed. For
instance, if 3 digits had been chosen in steps 1–3, then
there would be 10− 3 = 7 ways to perform step 4, but if
3 letters had been chosen in steps 1–3, then there would
be 10 ways to perform step 4.

21. Hint:
a. The answer is 2mn . b. The answer is nm .

22. a. The answer is 4 ·4 ·4 = 43 = 64. Imagine creating a
function from a 3-element set to a 4-element set as a
three-step process: Step 1 is to send the first element
of the 3-element set to an element of the 4-element set
(there are four ways to perform this step); step 2 is to
send the second element of the 3-element set to an ele-
ment of the 4-element set (there are also four ways to
perform this step); and step 3 is to send the third ele-
ment of the 3-element set to an element of the 4-element
set (there are four ways to perform this step). Thus the
entire process can be performed in 4 ·4 ·4 different ways.

24. The outer loop is iterated 30 times, and during each iter-
ation of the outer loop there are 15 iterations of the inner
loop. Hence, by the multiplication rule, the total number of
iterations of the inner loop is 30 ·15 = 450.

27. The outer loop is iterated 50− 5+ 1 = 46 times, and dur-
ing each iteration of the outer loop there are 20− 10+ 1 =
11 iterations of the inner loop. Hence, by the multiplica-
tion rule, the total number of iterations of the inner loop is
46 ·11 = 506.

29. Hints: One solution is to add leading zeros as needed to
make each number five digits long. For instance, write 1
as 00001. Let some of the steps be to choose positions for
the given digits. The answer is 720. Another solution is
to consider separately the cases of four-digit and five-digit
numbers.

31. a. There are a + 1 divisors: 1, p, p2, . . . , pa .
b. A divisor is a product of any one of the a + 1 numbers

listed in part (a) times any one of the b + 1 numbers
1, q, q2, . . . , qb. So, by the multiplication rule, there are
(a + 1)(b + 1) divisors in all.

32. a. Since the nine letters of the word ALGORIT HM are
all distinct, there are as many arrangements of these let-
ters in a row as there are permutations of a set with nine
elements: 9! = 362, 880.

b. In this case there are effectively eight symbols to be per-
muted (because AL may be regarded as a single sym-
bol). So the number of arrangements is 8! = 40,320.

34. The same reasoning as in Example 9.2.9 gives an answer of
4! = 24.

35. WX , WY , WZ , XW , XY , X Z , YW , Y X , Y Z , ZW , Z X ,
ZY

37. a. P(6, 4) = 6!
(6− 4)! =

6 ·5 ·4 ·3 ·2 ·1
2 ·1 = 360

38. a. P(5, 3) = 5 ·4 ·3 ·2!
2! = 60

39. a. P(9, 3) = 9 ·8 ·7 ·6!
6! = 504

c. P(8, 5) = 8 ·7 ·6 ·5 ·4 ·3!
3! = 6,720

41. Proof: Let n be an integer and n ≥ 2. Then

P(n + 1, 2)− P(n, 2)

= (n + 1)!
[(n + 1)− 2]! −

n!
(n − 2)! =

(n + 1)!
(n − 1)! −

n!
(n − 2)!

= (n + 1) ·n ·(n − 1)!
(n − 1)! − n ·(n − 1) ·(n − 2)!

(n − 2)!
= n2 + n − (n2 − n) = 2n = 2 · n · (n − 1)!

(n − 1)!
= 2 · n!

(n − 1)! = 2P(n, 1).

This is what was to be proved.

45. Hint: In the inductive step, suppose there exist k! permu-
tations of a set with k elements. Let X be a set with k + 1
elements. The process of forming a permutation of the ele-
ments of X can be considered a two-step operation where
step 1 is to choose the element to write first. Step 2 is to
write the remaining elements of X in some order.
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47. a. 1 2 3 1 2 3 1 2 3
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
1 2 3 2 1 3 3 2 1

1 2 3 1 2 3 1 2 3
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
1 3 2 2 3 1 3 1 2

c. 1 2 3 1 2 3
↓ ↓ ↓ ↓ ↓ ↓
2 3 1 3 1 2

Section 9.3
1. a. Set of Bit Strings Consisting of from 1 through 4 Bits

bit strings
consisting
of 1 bit

bit strings
consisting
of 2 bits

bit strings
consisting
of 3 bits

bit strings
consisting
of 4 bits

There are
2 of these.

There are
22 of these.

There are
24 of these.

There are
23 of these.

Applying the addition rule to the figure above shows that
there are 2+ 22 + 23 + 24 = 30 bit strings consisting of
from one through four bits.

b. By reasoning similar to that of part (a), there are
25 + 26 + 27 + 28 = 480 bit strings of from five through
eight bits.

3. a.
[
number of integers from 1 through 999
with no repeated digits

]

=
⎡
⎣number of integers
from 1 through 9
with no repeated digits

⎤
⎦+

⎡
⎣number of integers
from 10 through 99
with no repeated digits

⎤
⎦

+
⎡
⎣number of integers from
100 through 999 with
no repeated digits

⎤
⎦

= 9+ 9 ·9+ 9 ·9 ·8 = 738

b.
[
number of integers from 1 through 999
with at least one repeated digit

]

=
⎡
⎣total number of
integers from
1 through 999

⎤
⎦−

⎡
⎣number of integers
from 1 through 999
with no repeated digits

⎤
⎦

= 999− 738 = 261

c. The probability that an integer chosen at random has at
least one repeated digit is 261/999 ∼= 26.1%.

4.

arrangements
of no more
than 1 letter

arrangements

Set of Arrangements (without repetition)
or No More Than 3 Letters of NETWORK

of no more
than 2 letters

arrangements
of no more
than 3 letters

There are
7 of these.

There are
7⋅6⋅5 of these.

There are
7⋅6 of these.

Applying the addition rule to the figure above shows
that there are 7+ 7 ·6+ 7 ·6 ·5 = 259 arrangements of
three letters of the word NETWORK if repetition of let-
ters is not permitted.

6. a. There are 1+ 26+ 262 + 263 arrangements of from 0
through 3 letters of the alphabet. Any of these may be
paired with all but one arrangement of from 0 through 4
digits, and there are 1+ 10+ 102 + 103 + 104 arrange-
ments of from 0 through 4 digits. So, by the multiplica-
tion rule and the difference rule, the number of license
plates is

(1+ 26+ 262 + 263)
·(1+ 10+ 102 + 103 + 104)− 1 = 203,097,968

↑
the blank plate

b. (1+ 26+ 262 + 263 − 85)
·(1+ 10+ 102 + 103 + 104)− 1 = 202,153,533

7. c. Hint: The answer is 774,372,096.

8. a. 503 + 504 + 505 = 318,875,000

9. a. Each column of the table below corresponds to a pair
of values of i and j for which the inner loop will be
iterated.

→ → →i 1 2 3 4
j 1 1 2 1 2 3 1 2 3 4︸︷︷︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸

1 2 3 4

Since there are 1+ 2+ 3+ 4 = 10 columns, the inner
loop will be iterated ten times.

11. a. The answer is the number of permutations of the five
letters in QUICK, which equals 5! = 120.

b. Because QU (in order) is to be considered as a single
unit, the answer is the number of permutations of the
four symbols QU , I,C, K . This is 4! = 24.

c. By part (b), there are 4! arrangements of QU , I,C, K .

Similarly, there are 4! arrangements of UQ , I,C, K .
Therefore, by the addition rule, there are 4! + 4! = 48
arrangements in all.

13. a.
[
number of ways to place eight people
in a row keeping A and B together

]

=
[
number of ways to arrange

AB CDEFGH

]

+
[
number of ways to arrange

BA CDEFGH

]

= 7! + 7! = 5,040+ 5,040 = 10,080

b.
[
number of ways to arrange the eight
people in a row keeping A and B apart

]

=
⎡
⎣total number of ways
to place the eight
people in a row

⎤
⎦−

⎡
⎢⎢⎢⎢⎣
number of ways
to place the eight
people in a row
keeping A and B
together

⎤
⎥⎥⎥⎥⎦
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= 8! − 10,080 = 40,320− 10,080
= 30,240

14. number of variable names

=
[
number of numeric
variable names

]
+
[
number of string
variable names

]
= (26+ 26 ·36)+ (26+ 26 ·36) = 1,924

15. Hint: In exercise 14 note that

26+ 26 ·36 = 26
1∑

k=0
36k .

Generalize this idea here. Use Theorem 5.2.3 to evaluate
the expression you obtain.

16. a. 10 ·9 ·8 ·7 ·6 ·5 ·4 = 604,800

b.
[
number of phone numbers with
at least one repeated digit

]

=
[
total number of
phone numbers

]
−
[
number of phone numbers
with no repeated digits

]
= 107 − 604, 800 = 9,395,200

c. 9,395,200/107 ∼= 93.95%

18. a. Proof: Let A and B be mutually disjoint events in a sam-
ple space S. By the addition rule, N (A ∪ B) = N (A)+
N (B). Therefore, by the equally likely probability for-
mula,

P(A ∪ B) = N (A ∪ B)

N (S)
= N (A)+ N (B)

N (S)

= N (A)

N (S)
+ N (B)

N (S)
= P(A)+ P(B).

19. Hint: Justify the following answer: 39 ·38 ·38.
20. a. Identify the integers from 1 to 100,000 that contain the

digit 6 exactly once with strings of five digits. Thus, for
example, 306 would be identified with 00306. It is not
necessary to use strings of six digits, because 100,000
does not contain the digit 6. Imagine the process of
constructing a five-digit string that contains the digit 6
exactly once as a five-step operation that consists of fill-
ing in the five digit positions

1 2 3 4 5
.

Step 1: Choose one of the five positions for the 6.

Step 2: Choose a digit for the left-most remaining posi-
tion.

Step 3: Choose a digit for the next remaining position to
the right.

Step 4: Choose a digit for the next remaining position to
the right.

Step 5: Choose a digit for the right-most position.

Since there are 5 choices for step 1 (any one of the
five positions) and 9 choices for each of steps 2–5 (any
digit except 6), by the multiplication rule, the number of
ways to perform this operation is 5 ·9 ·9 ·9 ·9 = 32,805.
Hence there are 32,805 integers from 1 to 100,000 that
contain the digit 6 exactly once.

21. Hint: The answer is 2/3.

23. a. Let A = the set of integers that are multiples of 4 and
B = the set of integers that are multiples of 7. Then
A ∩ B = the set of integers that are multiples of 28.

But n(A) = 250 since 1 2 3 4 5 6 7 8 . . . 999 1000,
( ( (

4 ·1 4 ·2 . . . 4 ·250
or, equivalently, since 1,000 = 4 ·250.

Also n(B) = 142 since 1 2 3 4 5 6 7. . . 14 . . . 994 995 . . . 1000
( ( (

7 ·1 7 ·2 . . . 7 ·142
or, equivalently, since 1,000 = 7 ·142+ 6.

and n(A ∩ B) = 35 since 1 2 3 . . . 28 . . . 56 . . . 980 . . . 1000,
( ( (

28 ·1 28 ·2. . . 28 ·35
or, equivalently, since 1,000 = 28 ·35+ 20.

So n(A ∪ B) = 250+ 142− 35 = 357.

25. a. Length 0: ε
Length 1: 0, 1
Length 2: 00, 01, 10, 11
Length 3: 000, 001, 010, 011, 100, 101, 110
Length 4: 0000, 0001, 0010, 0011, 0100, 0101, 0110,

1000, 1001, 1010, 1011, 1100, 1101
b. By part (a), d0 = 1, d1 = 2, d2 = 4, d3 = 7,

and d4 = 13.
c. Let k be an integer with k ≥ 3. Any string of length k

that does not contain the bit pattern 111 starts either
with a 0 or with a 1. If it starts with a 0, this can
be followed by any string of k − 1 bits that does not
contain the pattern 111. There are dk−1 of these. If the
string starts with a 1, then the first two bits are 10 or 11.
If the first two bits are 10, then these can be followed by
any string of k − 2 bits that does not contain the pattern
111. There are dk−2 of these. If the string starts with a
11, then the third bit must be 0 (because the string does
not contain 111), and these three bits can be followed by
any string of k − 3 bits that does not contain the pattern
111. There are dk−3 of these. Therefore, for all integers
k ≥ 3, dk = dk−1 + dk−2 + dk−3.

d. By parts (b) and (c), d5 = d4 + d3 + d2 = 13+ 7+ 4 =
24. This is the number of bit strings of length five that
do not contain the pattern 111.

26. c. Hint: sk = 2sk−1 + 2sk−2
e. Hint: For all integers n ≥ 0,

sn =
√
3+ 2

2
√
3

(1+√3)n +
√
3− 2

2
√
3

(1−√3)n .

28. a. a3 = 3 (The three permutations that do not move more
than one place from their “natural” positions are 213,
132, and 123.)

29. a. 110010102 = 2+ 23 + 26 + 27 = 202,
001110002 = 23 + 24 + 25 = 56,
011010112 = 1+ 2+ 23 + 25 + 26 = 107,
111011102 = 2+ 22 + 23 + 25 + 26 + 27 = 238
So the answer is 202.56.107.238.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
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b. The network ID for a Class A network consists of
8 bits and begins with 0. If all possible combina-
tions of eight 0’s and 1’s that start with a 0 were
allowed, there would be 2 choices (0 or 1) for each
of the 7 positions from the second through the eighth.
This would give 27 = 128 possible ID’s. But because
neither 00000000 nor 01111111 is allowed, the total
is reduced by 2, so there are 126 possible Class A
networks.

c. Let w.x .y.z be the dotted decimal form of the IP
address for a computer in a Class A network. Because
the network IDs for a Class A network go from
00000001 (= 1) through 01111110 (= 126), w can be
any integer from 1 through 126. In addition, each of
x, y, and z can be any integer from 0 (= 00000000)
through 255 (= 11111111), except that x, y, and z
cannot all be 0 simultaneously and cannot all be 255
simultaneously.

d. Twenty-four positions are allocated for the host ID in a
Class A network. If each could be either 0 or 1, there
would be 224 = 16,777,216 possible host IDs. But nei-
ther all 0’s nor all 1’s is allowed, which reduces the total
by 2. Thus there are 16,777,214 possible host IDs in a
Class A network.

i. Observe that 140 = 128+ 8+ 4 = 100011002, which
begins with 10. Thus the IP address comes from a
Class B network. An alternative solution uses the
result of Example 9.3.5: Network IDs for Class B net-
works range from 128 through 191. Thus, since 128 ≤
140 ≤ 191, the given IP address is from a Class B
network.

31. a. There are 12 possible birth months for A, 12 for B, 12
for C , and 12 for D, so the total is 124 = 20,736.

b. If no two people share the same birth month, there are
12 possible birth months for A, 11 for B, 10 for C , and
9 for D. Thus the total is 12 ·11 ·10 ·9 = 11,880.

c. If at least two people share the same birth month,
the total number of ways birth months could be asso-
ciated with A, B,C , and D is 20,736− 11,880 =
8,856.

d. The probability that at least two of the four people share

the same birth month is 8856
20736

∼= 42.7%.

e. When there are five people, the probability that at least

two share the same birth month is 125−12 ·11 ·10 ·9 ·8
125∼= 61.8%, and when there are more than five people,

the probability is even greater. Thus, since the proba-
bility for four people is less than 50%, the group must
contain five or more people for the propability to be
at least 50% that two or more share the same birth
month.

32. Hint: Analyze the solution to exercise 31.

33. a. The number of students who checked at least one of
the statements is N (H)+ N (C)+ N (D)− N (H ∩ C)

− N (N ∩ D)− N (C ∩ D)+ N (H ∩ C ∩ D) =
28+ 26+ 14− 14− 4− 8+ 2 = 45

b. By the difference rule, the number of students who
checked none of the statements is the total number of
students minus the number who checked at least one
statement. This is 100− 45 = 55.

d. The number of students who checked #1 and #2 but not
#3 is N (H ∩ C)− N (N ∩ C ∩ D) = 14− 2 = 12.

35. Let

M = the set of married people in the sample,

Y = the set of people between 20 and 30 in the sample, and

F = the set of females in the sample.

Then the number of people in the set M ∪ Y ∪ F is less
than or equal to the size of the sample. And so

1,200 ≥ N (M ∪ Y ∪ F)

= N (M)+ N (Y )+ N (F)− N (M ∩ Y )

− N (M ∩ F)− N (Y ∩ F)+ N (M ∩ Y ∩ F)

= 675+ 682+ 684− 195− 467− 318+ 165

= 1,226.

This is impossible since 1,200 < 1,226, so the polltaker’s
figures are inconsistent. They could not have occurred as a
result of an actual sample survey.

37. Let A be the set of all positive integers less than 1,000
that are not multiples of 2, and let B be the set of all
positive integers less than 1,000 that are not multiples of
5. Since the only prime factors of 1,000 are 2 and 5, the
number of positive integers that have no common factors
with 1,000 is N (A ∩ B). Let the universe U be the set of
all positive integers less than 1,000. Then Ac is the set of
positive integers less than 1,000 that are multiples of 2,
Bc is the set of positive integers less than 1,000 that are
multiples of 5, and Ac ∩ Bc is the set of positive integers
less than 1,000 that are multiples of 10. By one of the pro-
cedures discussed in Section 9.1 or 9.2, it is easily found
that N (Ac) = 499, N (Bc) = 199, and N (Ac ∩ Bc) = 99.
Thus, by the inclusion/exclusion rule,

N (Ac ∪ Bc) = N (Ac)+ N (Bc)− N (Ac ∩ Bc)

= 499+ 199− 99 = 599.

But by De Morgan’s law, N (Ac ∪ Bc) = N ((A ∩ B)c),
and so

N ((A ∩ B)c) = 599. (*)

Now since (A ∩ B)c = U − (A ∩ B), by the difference
rule we have

N ((A ∩ B)c) = N (U )− N (A ∩ B). (**)

Equating the right-hand sides of (∗) and (∗∗) gives N (U )−
N (A ∩ B) = 599. And because N (U ) = 999, we con-
clude that 999− N (A ∩ B) = 599, or, equivalently, N (A ∩
B) = 999− 599 = 400. So there are 400 positive integers
less than 1,000 that have no common factor with 1,000.

40. Hint: Let A and B be the sets of all positive integers less
than or equal to n that are divisible by p and q, respectively.
Then φ(n) = n − (N (A ∪ B)).
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42. c. Hint: If k ≥ 6, any sequence of k games must begin
with W, LW , or LLW , where L stands for “lose” and
W stands for “win.”

43. c. Hint: Divide the set of all derangements into two
subsets: one subset consists of all derangements in
which the number 1 changes places with another
number, and the other subset consists of all derange-
ments in which the number 1 goes to position i �= 1
but i does not go to position 1. The answer is dk =
(k − 1)dk−1 + (k − 1)dk−2. Can you justify it?

48. Hint: Use the associative law for sets and the gen-
eralized distributive law for sets from exercise 37,
Section 6.2.

49. Hint: Use the solution method described in Section 5.8.
The answer is sk = 2sk−1 + 3sk−2 for k ≥ 4.

Section 9.4
1. a. No. For instance, the aces of the four different suits

could be selected.
b. Yes. Let x1, x2, x3, x4, x5 be the five cards. Consider the

function S that sends each card to its suit.

x1

x2

x3

x4

x5

S

S(xi ) = the suit

5 cards (pigeons) 4 suits (pigeonholes)

club

diamond

heart

spade

of xi

By the pigeonhole principle, S is not one-to-one:
S(xi ) = S(x j ) for some two cards xi and x j . Hence at
least two cards have the same suit.

3. Yes. Denote the residents by x1, x2, . . . , x500. Consider the
function B from residents to birthdays that sends each resi-
dent to his or her birthday:

x1

x2

x3

x500

B

Jan 1

Jan 2

Jan 3

Dec 31

B(xi) = the birthday

500 residents (pigeons) 366 birthdays (pigeonholes)

of xi

By the pigeonhole principle, B is not one-to-one: B(xi ) =
B(x j ) for some two residents xi and x j . Hence at least two
residents have the same birthday.

5. a. Yes. There are only three possible remainders that can
be obtained when an integer is divided by 3: 0, 1, and
2. Thus, by the pigeonhole principle, if four integers are
each divided by 3, then at least two of them must have
the same remainder.

More formally, call the integers n1, n2, n3, and n4,
and consider the function R that sends each inte-
ger to the remainder obtained when that integer is
divided by 3:

n1

n2

n3

n4

R

R(ni ) = the remainder

4 integers (pigeons) 3 remainders (pigeonholes)

0

1

2
obtained when ni
is divided by 3

By the pigeonhole principle, R is not one-to-one,
R(ni ) = R(n j ) for some two integers ni and n j . Hence
at least two integers must have the same remainder.

b. No. For instance, {0, 1, 2} is a set of three inte-
gers no two of which have the same remainder when
divided by 3.

7. Hint: Look at Example 9.4.3.

9. a. Yes.

Solution 1: Only six of the numbers from 1 to 12 are
even (namely, 2, 4, 6, 8, 10, 12), so at most six even
numbers can be chosen from between 1 and 12 inclu-
sive. Hence if seven numbers are chosen, at least one
must be odd.

Solution 2: Partition the set of all integers from 1
through 12 into six subsets (the pigeonholes), each con-
sisting of an odd and an even number: {1, 2}, {3, 4},
{5, 6}, {7, 8}, {9, 10}, {11, 12}. If seven integers (the
pigeons) are chosen from among 1 through 12, then, by
the pigeonhole principle, at least two must be from the
same subset. But each subset contains one odd and one
even number. Hence at least one of the seven numbers
is odd.

Solution 3: Let S = {x1, x2, x3, x4, x5, x6, x7} be a set of
seven numbers chosen from the set T = {1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11, 12}, and let P be the following par-
tition of T : {1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}, and
{11, 12}. Since each element of S lies in exactly one
subset of the partition, we can define a function F
from S to P by letting F(xi ) be the subset that
contains xi .
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9.4 Solutions and Hints to Selected Exercises A-83

x1

x2

x3

x4

x5

x6

x7

{1, 2}

{3, 4}

{5, 6}

{7, 8}

{9, 10}

{11, 12}

S (pigeons) P (pigeonholes)

F

F(xi ) = the subset
that
contains xi

Since S has 7 elements and P has 6 elements, by the
pigeonhole principle, F is not one-to-one. Thus two dis-
tinct numbers of the seven are sent to the same subset,
which implies that these two numbers are the two dis-
tinct elements of the subset. Therefore, since each pair
consists of one odd and one even integer, one of the
seven numbers is odd.

b. No. For instance, none of the 10 numbers 1, 3, 5, 7, 9,
11, 13, 15, 17, 19 is even.

10. Yes. There are n even integers in the set {1, 2, 3, . . . , 2n},
namely 2(= 2 ·1), 4(= 2 ·2), 6(= 2 ·3), . . . , 2n(= 2 ·n).
So the maximum number of even integers that can be cho-
sen is n. Thus if n + 1 integers are chosen, at least one of
them must be odd.

12. The answer is 27. There are only 26 black cards in a stan-
dard 52-card deck, so at most 26 black cards can be chosen.
Hence if 27 are taken, at least one must be red.

14. There are 61 integers from 0 to 60 inclusive. Of these, 31
are even (0 = 2 ·0, 2 = 2 ·1, 4 = 2 ·2, . . . , 60 = 2 ·30) and
so 30 are odd. Hence if 32 integers are chosen, at least one
must be odd, and if 31 integers are chosen, at least one must
be even.

17. The answer is 8. (There are only seven possible remainders
for division by 7: 0, 1, 2, 3, 4, 5, 6.)

20. The answer is 20,483 [namely, 0, 1, 2, . . . , 20482].

22. This number is irrational; the decimal expansion neither ter-
minates nor repeats.

24. Let A be the set of the thirteen chosen numbers, and let B
be the set of all prime numbers between 1 and 40. Note that
B = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37}. For each x
in A, let F(x) be the smallest prime number that divides x .
Since A has 13 elements and B has 12 elements, by the
pigeonhole principle F is not one-to-one. Thus F(x1) =
F(x2) for some x1 �= x2 in A. By definition of F , this means
that the smallest prime number that divides x1 equals the
smallest prime number that divides x2. Therefore, two num-
bers in A, namely x1 and x2, have a common divisor greater
than 1.

25. Yes. This follows from the generalized pigeonhole princi-
ple with 30 pigeons, 12 pigeonholes, and k = 2, using the
fact that 30 > 2 ·12.

26. No. For instance, the birthdays of the 30 people could be
distributed as follows: three birthdays in each of the six
months January through June and two birthdays in each of
the six months July through December.

29. The answer is x = 3. There are 18 years from 17 through
34. Now 40 > 18 ·2, so by the generalized pigeonhole prin-
ciple, you can be sure that there are at least x = 3 stu-
dents of the same age. However, since 18 ·3 > 40, you can-
not be sure of having more than three students with the
same age. (For instance, three students could be each of
the ages 17 through 20, and two could be each of the ages
from 21 through 34.) So x cannot be taken to be greater
than 3.

31. Hint: Use the same type of reasoning as in Example 9.4.6.

32. Hints: (1) The number of subsets of the six integers is
26 = 64. (2) Since each integer is less than 13, the largest
possible sum is 57. (Why? What gives this sum?)

33. Hint: The power set of A has 26 = 64 elements, and so
there are 63 nonempty subsets of A. Let k be the small-
est number in the set A. Then the sums over the elements in
the nonempty subsets of A lie in the range from k through
k + 10+ 11+ 12+ 13+ 14 = k + 60. How many num-
bers are in this range?

35. Hint: Let X be the set consisting of the given 52 pos-
itive integers, and let Y be the set containing the fol-
lowing elements: {00}, {50}, {01, 99}, {02, 98}, {03, 97},
. . . , {48, 52}, {49, 51}. Define a function F from X to Y
by the rule F(x) = the set containing the last two dig-
its of x . Use the pigeonhole principle to argue that F
is not one-to-one, and show how the desired conclusion
follows.

36. Hint:Represent each of the 101 integers xi as ai2ki where ai
is odd and ki ≥ 0. Now 1 ≤ xi ≤ 200, and so 1 ≤ ai ≤ 199
for all i . There are only 100 odd integers from 1 to 199
inclusive.

37. b. Hint: For each k = 1, 2, . . . , n, let ak = x1 + x2 +
· · · + xk . If some ak is divisible by n, then the problem
is solved: the consecutive subsequence is x1, x2, . . . , xk .
If no ak is divisible by n, then a1, a2, a3, . . . , an sat-
isfies the hypothesis of part (a). Hence a j − ai is
divisible by n for some integers i and j with j > i .
Write a j − ai in terms of the xi ’s to derive the given
conclusion.

38. Hint: Let a1, a2, . . . , an2+1 be any sequence of n2 + 1 dis-
tinct real numbers, and suppose that this sequence con-
tains neither a strictly increasing subsequence of length
n + 1 nor a strictly decreasing subsequence of length
n + 1. Let S be the set of all ordered pairs of integers
(i, d), where 1 ≤ i ≤ n and 1 ≤ d ≤ n. For each term
ak in the sequence, let F(ak) = (ik, dk), where ik is the
length of the longest increasing sequence starting at ak,
and dk is the length of the longest decreasing sequence
starting at ak . Suppose that F is one-to-one and derive a
contradiction.
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Section 9.5
1. a. 2-combinations: {x1, x2}, {x1, x3}, {x2, x3}.

Hence,

(
3
2

)
= 3.

b. Unordered selections: {a, b, c, d}, {a, b, c, e},
{a, b, d, e}, {a, c, d, e}, {b, c, d, e}.

Hence,

(
5
4

)
= 5.

3. P(7, 2) =
(
7
2

)
·2!

5. a.
(
6
0

)
= 6!

0!(6−0)! =
6!
1.6! = 1

b.
(
6
1

)
= 6!

1!(6−1)! =
6.5!
1.5! = 6

6. a. number of committees of 6

=
(
15
6

)
= 15!

(15− 6)!6!
7 5

= 15 ·14 ·13 ·12 ·11 ·10 ·9!
9! ·6 ·5 ·4 ·3 ·2 = 5,005

b.

⎡
⎣number of committees
that don’t contain A
and B together

⎤
⎦

=

⎡
⎢⎢⎣
number of
committees with A
and five others—
none of them B

⎤
⎥⎥⎦+

⎡
⎢⎢⎣
number of
committees with B
and five others—
none of them A

⎤
⎥⎥⎦

+
[
number of committees
with neither A nor B

]

=
(
13
5

)
+
(
13
5

)
+
(
13
6

)
= 1,287+ 1,287+ 1,716 = 4,290

Alternative solution:⎡
⎣number of committees
that don’t contain A
and B together

⎤
⎦

=
[
total number
of committees

]
−
[
number of committees
that contain both A and B

]

=
(
15
6

)
−
(
13
4

)
= 5,005− 715 = 4,290

c.

⎡
⎣number of
committees with
both A and B

⎤
⎦+

⎡
⎣number of
committees with
neither A and B

⎤
⎦

=
(
13
4

)
+
(
13
6

)
= 715+ 1,716 = 2,431

d. (i)

⎡
⎣number of subsets
of three men
chosen from eight

⎤
⎦ ·

⎡
⎣number of subsets
of three women
chosen from seven

⎤
⎦

=
(
8
3

)(
7
3

)
= 56 ·35 = 1,960

(ii)

[
number of committees
with at least one woman

]

=
[
total number of
committees

]
−
[
number of all-male
committees

]

=
(
15
6

)
−
(
8
6

)
= 5,005− 28

= 4,977

e.

⎡
⎣number of
ways to choose
two freshmen

⎤
⎦ ·

⎡
⎣number of
ways to choose two
sophomores

⎤
⎦

·
[
number of ways
to choose two juniors

]
·
[
number of ways
to choose two seniors

]

=
(
3
2

)(
4
2

)(
3
2

)(
5
2

)

= 540
8. Hint: The answers are a. 1001, b. (i) 420, (ii) all 1001

require proof, (iii) 175, c. 506, d. 561

9. b.
(24
3

)(16
3

)
+
(24
4

)(16
2

)
+
(24
5

)(16
1

)
+
(24
6

)(16
0

)
=

3,223,220

11. a. (1) 4 (because there are as many royal flushes as there
are suits)

(2) 4(52
5

) = 4
2,598,960

∼= 0.0000015

c. (1) 13 ·
(48
1

)
= 624 (because one can first choose the

denomination of the four-of-a-kind and then choose
one additional card from the 48 remaining)

(2) 624(52
5

) = 624
2,598,960 = 0.00024

f. (1) Imagine constructing a straight (including a straight
flush and a royal flush) as a six-step process: step 1 is
to choose the lowest denomination of any card of the
five (which can be any one of A, 2, . . . , 10), step 2
is to choose a card of that denomination, step 3 is to
choose a card of the next higher denomination, and
so forth until all five cards have been selected. By the
multiplication rule, the number of ways to perform
this process is

10 ·
(
4

1

)(
4

1

)(
4

1

)(
4

1

)(
4

1

)
= 10 ·45 = 10,240.

By parts (a) and (b), 40 of these numbers represent
royal or straight flushes, so there are 10,240− 40 =
10,200 straights in all.

(2) 10,200(52
5

) = 10,200
2,598,960

∼= 0.0039

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



9.5 Solutions and Hints to Selected Exercises A-85

13. a. 210 = 1,024

d.
[
number of outcomes
with at least one head

]

=
[
total number
of outcomes

]
−
[
number of outcomes
with no heads

]
= 1,024− 1 = 1,023

15. a. 50 b. 50
c. To get an even sum, both numbers must be even or both

must be odd. Hence[
number of subsets of two integers from
1 to 100 inclusive whose sum is even

]

=

⎡
⎢⎢⎣
number of subsets
of two even
integers chosen from
the 50 possible

⎤
⎥⎥⎦+

⎡
⎢⎢⎣
number of subsets
of two odd
integers chosen from
the 50 possible

⎤
⎥⎥⎦

=
(
50
2

)
+
(
50
2

)
= 2,450.

d. To obtain an odd sum, one of the numbers must be even

and the other odd. Hence the answer is
(50
1

)
·
(50
1

)
=

2,500. Alternatively, note that the answer equals the
total number of subsets of two integers chosen from 1
through 100 minus the number of such subsets for which
the sum of the elements is even. Thus the answer is(100

2

)
− 2,450 = 2,500.

17. a. Two points determine a line. Hence⎡
⎣number of straight
lines determined
by the ten points

⎤
⎦ =

⎡
⎣number of subsets
of two points
chosen from ten

⎤
⎦

=
(
10
2

)
= 45.

19. a.
10!

2!1!1!3!2!1! = 151,200 since there are 2 A’s, 1 B,
1 H, 3 L’s, 2 O’s, and 1 U

b.
8!

2!1!1!2!2! = 5,040 c.
9!

1!2!1!3!2! = 15,120

23. Rook must move seven squares to the right and seven
squares up, so

⎡
⎣the number of
paths the rook
can take

⎤
⎦ =

⎡
⎢⎢⎣
the number
of orderings
of seven R’s
and seven U’s

⎤
⎥⎥⎦ where R stands

for “right” and U
stands for “up”

= 14!
7!7! = 3,432.

24. b. Solution 1:One factor can be 1, and the other factor can
be the product of all the primes. (This gives 1 factoriza-
tion.) One factor can be one of the primes, and the other
factor can be the product of the other three. (This gives(4
1

)
= 4 factorizations.) One factor can be a product of

two of the primes, and the other factor can be a product

of the two other primes. The number
(4
2

)
= 6 counts

all possible sets of two primes chosen from the four
primes, and each set of two primes corresponds to a
factorization. Note, however, that the set {p1, p2} cor-
responds to the same factorization as the set {p3, p4},
namely, p1 p2 p3 p4 (just written in a different order). In
general, each choice of two primes corresponds to the
same factorization as one other choice of two primes.
Thus the number of factorizations in which each factor

is a product of two primes is

(4
2

)
2 = 3. (This gives 3

factorizations.) The foregoing cases account for all the
possibilities, so the answer is 4+ 3+ 1 = 8.

Solution 2: Let S = {p1, p2, p3, p4}. Let p1 p2 p3 p4 =
P , and let f1 f2 be any factorization of P . The product
of the numbers in any subset A ⊆ S can be used for f1,
with the product of the numbers in Ac being f2. There
are as many ways to write f1 f2 as there are subsets
of S, namely 24 = 16 (by Theorem 6.3.1). But given
any factors f1 and f2, f1 f2 = f2 f1. Thus counting the
number of ways to write f1 f2 counts each factorization

twice, so the answer is 16
2 = 8.

25. a. There are four choices for where to send the first ele-
ment of the domain (any element of the co-domain may
be chosen), three choices for where to send the second
(since the function is one-to-one, the second element of
the domain must go to a different element of the co-
domain from the one to which the first element went),
and two choices for where to send the third element
(again since the function is one-to-one). Thus the answer
is 4 ·3 ·2 = 24.

b. none
e. Hint: The answer is n(n − 1) · · · (n − m + 1).

26. a. Let the elements of the domain be called a, b, and c and
the elements of the co-domain be called u and v. In order
for a function from {a, b, c} to {u, v} to be onto, two ele-
ments of the domain must be sent to u and one to v, or
two elements must be sent to v and one to u. There are as
many ways to send two elements of the domain to u and
one to v as there are ways to choose which elements of

{a, b, c} to send to u, namely,
(3
2

)
= 3. Similarly, there

are
(3
2

)
= 3 ways to send two elements of the domain

to v and one to u. Therefore, there are 3+ 3 = 6 onto
functions from a set with three elements to a set with
two elements.

c. Hint: The answer is 6.
d. Consider functions from a set with four elements to

a set with two elements. Denote the set of four ele-
ments by X = {a, b, c, d} and the set of two elements
by Y = {u, v}. Divide the set of all onto functions from
X to Y into two categories. The first category consists
of all those that send the three elements in {a, b, c} onto
{u, v} and that send d to either u or v. The functions in
this category can be defined by the following two-step
process:
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Step 1: Construct an onto function from {a, b, c} to
{u, v}.

Step 2: Choose whether to send d to u or to v.

By part (a), there are six ways to perform step 1, and,
because there are two choices for where to send d, there
are two ways to perform step 2. Thus, by the multiplication
rule, there are 6 ·2 = 12 ways to define the functions in the
first category.

The second category consists of all those onto functions
from X to Y that send all three elements in {a, b, c} to
either u or v and that send d to whichever of u or v

is not the image of the others. Because there are only
two choices for where to send the elements in {a, b, c},
and because d is simply sent to wherever the others
do not go, there are just two functions in the second
category.

Every onto function from X to Y either sends at least two
elements of X to f (d) or it does not. If it sends at least
two elements of X to f (d) then it is in the second cat-
egory. If it does not, then the image of {a, b, c} is {u, v}
and so the “restriction” of the function to {a, b, c} is onto.
Therefore, the function is one of those included in the
first category. Thus all onto functions from X to Y are
in one of the two categories and no function is in both
categories, and so the total number of onto functions is
12+ 2 = 14.

Hints: a. (i) g is one-to-one (ii) g is not onto
b. G is onto. Proof: Suppose y is any element of R.

[We must show that there is an element x in R such that
G(x) = y. Use of scratch work to determine what x would
have to be if it exists shows that x would have to equal
(y + 5)/4. The proof must then show that x has the neces-
sary properties.] Let x = (y + 5)/4. Then (1) x ∈ R, and
(2) G(x) = G((y + 5)/4) = 4[(y + 5)/4] − 5 = (y +
5)− 5 = y [as was to be shown].

27. a. A relation on A is any subset of A × A, and A × A
has 82 = 64 elements. So there are 264 binary relations
on A.

c. Form a symmetric relation by a two-step process: (1)
pick a set of elements of the form (a, a) (there are eight
such elements, so 28 sets); (2) pick a set of pairs of ele-
ments of the form (a, b) and (b, a) where a �= b (there
are (64− 8)/2 = 28 such pairs, so 228 such sets). The
answer is therefore 28 ·228 = 236.

28. Hint: Use the difference rule and the generalization of the
inclusion/exclusion rule for 4 sets. (See exercise 48 in Sec-
tion 9.3.)

31. Call the set X , and suppose that X = {x1, x2, . . . , xn}.
For each integer i = 0, 1, 2, . . . , n − 1, we can consider
the set of all partitions of X (let’s call them parti-
tions of type i) where one of the subsets of the parti-
tion is an (i + 1)-element set that contains xn and i ele-
ments chosen from {x1, . . . , xn−1}. The remaining sub-
sets of the partition will be a partition of the remain-
ing (n − 1)− i elements of {x1, . . . , xn−1}. For instance,

if X = {x1, x2, x3}, there are five partitions of the various
types, namely,

Type 0: two partitions where one set is a 1-element set con-
taining x3: [{x3}, {x1}, {x2}], [{x3}, {x1, x2}]

Type 1: two partitions where one set is a 2-element set con-
taining x3: [{x1, x3}, {x2}], [{x2, x3}, {x1}]

Type 2: one partition where one set is a 3-element set con-
taining x3 : {x1, x2, x3}

In general, we can imagine constructing a partition of type
i as a two-step process:

Step 1: Select out the i elements of {x1, . . . , xn−1} to put
together with xn ,

Step 2: Choose any partition of the remaining (n − 1)− i
elements of {x1, . . . , xn−1} to put with the set
formed in step 1.

There are
(n−1

i

)
ways to perform step 1 and P(n−1)−i ways

to perform step 2. Therefore, by the multiplication rule,
there are

(n−1
i

) · P(n−1)−i partitions of type i . Because any
partition of X is of type i for some i = 0, 1, 2, . . . , n − 1,
it follows from the addition rule that the total number of
partitions is(
n − 1
0

)
Pn−1 +

(
n − 1
1

)
Pn−2

+
(
n − 1
2

)
Pn−3 + · · · +

(
n − 1
n − 1

)
P0.

33. S5,2 = S4,1 + 2S4,2 = 1+ 2 ·7 = 15

36. Proof (by mathematical induction): Let the property P(n)
be the equation Sn,2 = 2n−1 − 1.

Show that P(2) is true:

We must show that S2,2 = 22−1 − 1. By Example 9.5.13,
S2,2 = 1, and 22−1 − 1 = 2− 1 = 1 also. So P(2) is true.

Show that for all integers k ≥ 2, if P(k) is true, then
P(k+1) is true:

Let k be any integer with k ≥ 2, and suppose that Sk,2 =
2k−1 − 1. [Inductive hypothesis.] We must show that
Sk+1,2 = 2(k+1)−1 − 1 = 2k − 1. But according to Exam-
ple 9.5.13, Sk+1,2 = Sk,1 + 2Sk,2 and Sk,1 = 1. So by sub-
stitution and the inductive hypothesis,

Sk+1,2 = 1+ 2Sk,2 = 1+ 2(2k−1 − 1)

= 1+ 2k − 2 = 2k − 1

[as was to be shown].

38. Hint: Observe that the number of onto functions from
X = {x1, x2, x3, x4} to Y = {y1, y2, y3} is S4,3 ·3! because
the construction of an onto function can be thought of as a
two-step process where step 1 is to choose a partition of X
into three subsets and step 2 is to choose, for each subset of
the partition, an element of Y for the elements of the subset
to be sent to.
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Section 9.6
1. a.

(5+3−1
5

)
=
(7
5

)
= 7 ·6

2 = 21.

b. The three elements of the set are 1, 2 and 3. The
5-combinations are [1, 1, 1, 1, 1], [1, 1, 1, 1, 2],
[1, 1, 1, 1, 3], [1, 1, 1, 2, 2], [1, 1, 1, 2, 3], [1, 1, 1, 3, 3],
[1, 1, 2, 2, 2], [1, 1, 2, 2, 3], [1, 1, 2, 3, 3], [1, 1, 3, 3, 3],
[1, 2, 2, 2, 2], [1, 2, 2, 2, 3], [1, 2, 2, 3, 3], [1, 2, 3, 3, 3],
[1, 3, 3, 3, 3], [2, 2, 2, 2, 2], [2, 2, 2, 2, 3], [2, 2, 2, 3, 3],
[2, 2, 3, 3, 3], [2, 3, 3, 3, 3], and [3, 3, 3, 3, 3].

2. a.
(4+3−1

4

)
=
(6
4

)
= 6 ·5

2 = 15

3. a.
(20+6−1

20

)
=
(25
20

)
= 53,130

b. If at least three are eclairs, then 17 additional pastries
are selected from six kinds. The number of selections is(17+6−1

17

)
=
(22
17

)
= 26,334.

Note: In parts (a) and (b), it is assumed that the selec-
tions being counted are unordered.

c. Let T be the set of selections of pastry that may be any
one of the six kinds, let E≥3 be the set of selections con-
taining three or more eclairs, and let E≤2 be the set of
selections containing two or fewer eclairs. Then

N (E≤2) = N (T )− N (E≥3) because T = E≤2 ∪ E≥3
andE≤2 ∩ E≥3 = ∅

= 53, 130− 26, 334 by parts (a) and (b)

= 26, 796.

Thus there are 26,796 selections of pastry containing at
most two eclairs.

5. The answer equals the number of 4-combinations with rep-
etition allowed that can be formed from a set of n elements.
It is (

4+ n − 1
4

)
=

(
n + 3
4

)

= (n + 3)(n + 2)(n + 1)n(n − 1)!
4!(n − 1)!

= n(n + 1)(n + 2)(n + 3)

24
.

8. As in Example 9.6.4, the answer is the same as the num-
ber of quadruples of integers (i, j, k,m) for which 1 ≤ i ≤
j ≤ k ≤ m ≤ n. By exercise 5, this number is

(n+3
4

)
=

n(n+1)(n+2)(n+3)
24 .

10. Think of the number 20 as divided into 20 individual units
and the variables x1, x2, and x3 as three categories into
which these units are placed. The number of units in cat-
egory xi indicates the value of xi in a solution of the equa-
tion. By Theorem 9.6.1, the number of ways to select 20

objects from the three categories is
(20+3−1

20

)
=
(22
20

)
=

22 ·21
2 = 231, so there are 231 nonnegative integer solu-

tions to the equation.

11. The analysis for this exercise is the same as for exercise
10 except that since each xi ≥ 1, we can imagine taking 3
of the 20 units, placing one in each category x1, x2, and
x3, and then distributing the remaining 17 units among
the three categories. The number of ways to do this is(17+3−1

17

)
=
(19
17

)
= 19 ·18

2 = 171, so there are 171 pos-

itive integer solutions to the equation.

16. a. Let L≥7 be the set of selections that include at least
seven cans of lemonade. In this case an additional eight
cans can be selected from the five types of soft drinks,
and so

N (L≥7) =
(
8+ 5− 1

8

)
=

(
12
8

)
= 495.

Let T be the set of selections of cans in which the soft
drink may be any one of the five types, and let L≤6 be
the set of selections that contain at most six cans of
lemonade. Then

N (L≤6) = N (T )− N (L≥7)
because T = L≤6 ∪ L≥7
and L≤6 ∩ L≥7 = ∅

= 3, 876− 495 by the above and part (a)
of Example 9.6.2= 3, 381.

Thus there are 3,381 selections of fifteen cans of soft
drinks that contain at most six cans of lemonade.

b. Let R≤5 be the set of selections containing at most five
cans of root beer, and let L≤6 be the set of selections
containing at most six cans of lemonade. The answer
to the question can be represented as N (R≤5 ∩ L≤6).
As in part (a), let T be the set of all the selections of
fifteen cans in which the soft drink may be any one
of the five types. If you remove all the selections con-
taining at least six cans of root beer or at least seven
cans of lemonade from T , then you are left with all
the selections containing at most five cans of root beer
and at most six cans of lemonade. Thus, in the nota-
tion of part (a) and Example 9.6.2, N (R≤5 ∩ L≤6) =
N (T )− N (R≥6 ∪ L≥7).

Use the inclusion/exclusion rule as follows to compute
N (R≥6 ∪ L≥7):

N (R≥6 ∪ L≥7) = N (R≥6)+ N (L≥7)− N (R≥6 ∩ L≥7).

To find N (R≥6 ∩ L≥7), observe that if at least six cans
of root beer and at least seven cans of lemonade are
selected, then at most two additional cans of soft drink
can be chosen from the other three types to make up the
total of fifteen cans. A selection of two such cans can be
represented by a string of 2×’s and 3|’s, and a selection
of one such can can be represented by a string of 1×
and 3|’s. Hence

N (R≥6 ∩ L≥7) =
(
2+ 3− 1

2

)
=

(
1+ 3− 1

1

)

=
(
4
2

)
+
(
3
1

)
= 6+ 3 = 9.
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It follows that

N (R≥6 ∪ L≥7) = N (R≥6)+ N (L≥7) by the inclusion/
exclusion rule− N (R≥6 ∩ L≥7)

= 715+ 495− 15 by part (a), the
computation
above, and part (b)
of Example 9.6.2

= 1,201.

Putting together the information from earlier in the
solution gives that

N (R≤5 ∩ L≤6) = N (T )− N (R≥6 ∪ L≥7)

= 3,876− 1,201 = 2,675.

Thus there are 2,681 selections of fifteen soft drinks that
contain at most five cans of root beer and at most six
cans of lemonade.

17. Hints: a. The answer is 10,295,472. b. See the solution to
part (c) of Example 9.6.2. The answer is 9,949,368. c. The
answer is 9,111,432.

d. Let T denote the set of all the selections of thirty
balloons, let R≤12 denote the set of selections contain-
ing at most twelve red balloons, let B≤8 denote the set
of selections containing at most eight blue balloons, let
R≥13 denote the set of selections containing at least thir-
teen red balloons, and let B≥9 denote the set of selections
containing at least nine blue balloons.. Then the answer
to the question can be represented as N (R≤12 ∩ B≤8). Out
of the total of all the balloon selections, if you remove
the selections containing at least thirteen red or at least
nine blue balloons, then you are left with the selections
containing at most twelve red and at most eight blue
balloons. Thus N (R≤12 ∩ B≤8) = N (T )− N (R≥13 ∪ B≥9).
Compute N (R≥13 ∩ B≥9), and use the inclusion/exclusion
rule to find N (R≥13 ∪ B≥9).

19. Hints: The answers are a. 51,128 b. 46,761

Section 9.7
1.

(
n
0

)
= n!

0!(n − 0)! =
n!
1 ·n! = 1

3.
(
n

2

)
= n!

(n − 2)! ·2! =
n ·(n − 1) ·(n − 2)!

(n − 2)! ·2!
= n(n − 1)

2
5. Proof: Suppose n and r are nonnegative integers and r ≤ n.

Then(
n
r

)
= n!

r !(n − r)! by Theorem 9.5.1

= n!
(n − (n − r))!(n − r)! since n − (n − r) =

n − n + r = r

= n!
(n − r)!(n − (n − r))!

by interchanging the
factors in the denominator

=
(

n
n − r

)
by Theorem 9.5.1.

6. Solution 1: Apply formula (9.7.2) with m + k in place of n.
This is legal because m + k ≥ 1.
Solution 2:(

m + k
m + k − 1

)
= (m+k)!

(m+k−1)![(m+k)−(m+k−1)]!

= (m+k)· (m+k−1)!
(m+k−1)!(m+k−m−k+1)!

= (m+k)· (m+k−1)!
(m+k−1)! ·1! = m + k

10. a.
(
6
2

)
=

(
5
2

)
+
(
5
1

)
= 10+ 5 = 15,(

6
3

)
=

(
5
3

)
+
(
5
2

)
= 10+ 10 = 20

b.
(
6
4

)
=

(
5
4

)
+
(
5
3

)
= 5+ 10 = 15,(

6
5

)
=

(
5
5

)
+
(
5
4

)
= 1+ 5 = 6,(

7
3

)
=

(
6
3

)
+
(
6
2

)
= 20+ 15 = 35,(

7
4

)
=

(
6
4

)
+
(
6
3

)
= 15+ 20 = 35,(

7
5

)
=

(
6
5

)
+
(
6
4

)
= 6+ 15 = 21

c. Row for n = 7 : 1 7 21 35 35 21 7 1

13. Proof by mathematical induction: Let the property P(n) be
the formula

n+1∑
i=2

(
i
2

)
=

(
n + 2
3

)
. ← P(n)

Show that P(1) is true:

To prove P(1) we must show that

1+1∑
i=2

(
i
2

)
=

(
1+ 2
3

)
. ← P(1)

But

1+1∑
i=2

(
i
2

)
=

2∑
i=2

(
i
2

)
=

(
2
2

)
= 1 =

(
3
3

)
=

(
1+ 2
3

)
,

so P (1) is true.

Show that for all integers k ≥ 1, P(k) is true, then P(k+1)
is true:

Let k be any integer with k ≥ 1, and suppose that

k+1∑
i=2

(
i
2

)
=

(
k + 2
3

) ← P(k)
inductive hypothesis

We must show that

(k+1)+1∑
i=2

(
i
2

)
=

(
(k + 1)+ 2

3

)
,
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or, equivalently,

k+2∑
i=2

(
i
2

)
=

(
k + 3
3

)
. ← P(k + 1)

But the left-hand side of P(k+1) is

k+2∑
i=2

(
i
2

)
=

k+1∑
i=1

(
i
2

)
+
(
k + 2
2

)
by writing the last
term separately

=
(
k + 2
3

)
+
(
k + 2
2

)
by inductive hypothesis

=
(
(k + 2)+ 1

3

)
by Pascal’s formula

=
(
k + 3
3

)
,

which is the right-hand side of P(k+ 1) [as was to be shown].
[Since we have proved the basis step and the inductive step, we
conclude that P(n) is true for all n ≥ 1.]

14. Hint: Use the results of exercises 3 and 13.

17. Hint: This follows by letting m = n = r in exercise 16 and
using the result of Example 9.7.2.

19. 1+ 7x +
(7
2

)
x2 +

(7
3

)
x3 +

(7
4

)
x4 +

(7
5

)
x5 +

(7
6

)
x6 +

x7 = 1+ 7x + 21x2 + 35x3 + 35x4 + 21x5 + 7x6 + x7

21. 1+ 6(−x)+
(6
2

)
(−x)2 +

(6
3

)
(−x)3 +

(6
4

)
(−x)4 +(6

5

)
(−x)5 + (−x)6 = 1− 6x + 15x2 − 20x3 + 15x4 −

6x5 + x6

23. (p − 2q)4 =
4∑

k=0

(
4
k

)
p4−k(−2q)k

=
(
4
0

)
p4(−2q)0 +

(
4
1

)
p3(−2q)1

+
(
4
2

)
p2(−2q)2 +

(
4
3

)
p1(−2q)3

+
(
4
4

)
p0(−2q)4

= p4 − 8p3q + 24p2q2 − 32pq3 + 16q4

25.
(
x + 1

x

)5

=
5∑

k=0

(
5
k

)
x5−k

(
1

x

)k

=
(
5
0

)
x5

(
1

x

)0

+
(
5
1

)
x4

(
1

x

)1

+
(
5
2

)
x3

(
1

x

)2

+
(
5
3

)
x2

(
1

x

)3

+
(
5
4

)
x1

(
1

x

)4

+
(
5
5

)
x0

(
1

x

)5

= x5 + 5x3 + 10x + 10

x
+ 5

x3
+ 1

x5

29. The term is
(9
3

)
x6y3 = 84x6y3, so the coefficient is 84.

31. The term is
(12
7

)
a5(−2b)7 = 792a5(−128)b7 =

− 101,376a5b7, so the coefficient is −101,376.
33. The term is

(15
8

)
(3p2)8(−2q)7 =

(15
8

)
38(−2)7 p16q7, so

the coefficient is
(15
8

)
38(−2)7 = −5, 404,164,480.

36. Proof: Let a = 1, let b = −1, and let n be a positive integer.
Substitute into the binomial theorem to obtain

(1+ (−1))n =
n∑

k=0

(
n
k

)
·1n−k ·(−1)k

=
n∑

k=0

(
n
k

)
(−1)k since 1n−k = 1.

But (1+ (−1))n = 0n = 0, so

0 =
n∑

k=0

(
n
k

)
(−1)k

=
(
n
0

)
−
(
n
1

)
+
(
n
2

)
−
(
n
3

)
+ · · · + (−1)n

(
n
n

)
.

37. Hint: 3 = 1+ 2

38. Proof: Letm be any integer withm ≥ 0, and apply the bino-
mial theorem with a = 2 and b = −1. The result is

1 = 1m = (2+ (−1))m =
m∑
i=0

(
m
i

)
2m−i (−1)i

=
m∑
i=0

(−1)i
(
m
i

)
2m−i .

41. Hint:Apply the binomial theorem with a = −1
2 and b = 1,

and analyze the resulting equation when n is even and when
n is odd.

43.
n∑

k=0

(
n

k

)
5k =

n∑
k=0

(
n

k

)
1n−k5k = (1+ 5)n = 6n

45.
n∑

i=0

(
n

i

)
xi =

n∑
i=0

(
n

i

)
1n−i x i = (1+ x)n

47.
2n∑
j=0

(−1) j
(
2n

j

)
x j =

2n∑
j=0

(
2n

j

)
12n− j (−x) j = (1− x)2n

51.
m∑
i=0

(−1)i
(
m

i

)
1

2i
=

m∑
i=0

(
m

i

)
1m−i

(
−1

2

)i

=
(
1− 1

2

)m

= 1

2m

53.
n∑

i=0
(−1)i

(
n

i

)
5n−i2i =

n∑
i=0

(
n

i

)
5n−i (−2)i = (5− 2)n = 3n

55. b. n(1+ x)n−1 =
n∑

k=1

(
n
k

)
kxk−1.

[The term corresponding to k = 0 is zero because
d
dx (x0)= 0.]
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c. (i) Substitute x = 1 in part (b) above to obtain

n(1+ 1)n−1 =
n∑

k=1

(
n
k

)
k ·1k−1 =

n∑
k=1

(
n
k

)
k

=
(
n
1

)
·1+

(
n
2

)
·2+

(
n
3

)
·3+ · · · +

(
n
n

)
n.

Dividing both sides by n and simplifying gives

2n−1 = 1

n

[(
n
1

)
+ 2

(
n
2

)
+ 3

(
n
3

)
+ · · · + n

(
n
n

)]
.

Section 9.8
1. By probability axiom 2, P(∅) = 0.

2. a. By probability axiom 3, P(A ∪ B) = P(A)+ P(B) =
0.3+ 0.5 = 0.8.

b. Because A ∪ B ∪ C = S,C = S − (A ∪ B). Thus, by
the formula for the probability of the complement
of an event, P(C) = P((A ∪ B)c) = 1− P(A ∪ B) =
1− 0.8 = 0.2.

4. By the formula for the probability of a general union
of two events, P(A ∪ B) = P(A)+ P(B)− P(A ∩ B) =
0.8+ 0.7− 0.6 = 0.9.

7. a. P(A ∪ B) = 0.4+ 0.3 = 0.7
b. P(C) = P((A ∪ B)c) = 1− P(A ∪ B) =

1− 0.7 = 0.3
c. P(A ∪ C) = 0.4+ 0.3 = 0.7
d. P(Ac) = 1− P(A) = 1− 0.4 = 0.6
e. P(Ac ∩ Bc) = P((A ∪ B)c) = 1− P(A ∪ B) =

1− 0.7 = 0.3
f. P(Ac ∪ Bc) = P((A ∩ B)c) = P(∅c) = P(S) = 1

9. a. P(A ∪ B) = P(A)+ P(B)− P(A ∩ B) =
0.4+ 0.5− 0.2 = 0.7

d. P(Ac ∩ Bc) = P((A ∪ B)c) = 1− P(A ∪ B) =
1− 0.7 = 0.3

11. Hint: V = (U ∪ (V −U ))

12. Hint:Use the fact that for all setsU and V,U ∪ (V −U ) =
U ∪ V .

13. Hint: (A1 ∪ A2 ∪ · · · ∪ Ak) ∩ Ak+1 = ∅ and
A1 ∪ A2 ∪ · · · ∪ Ak ∪ Ak+1 = (A1 ∪ A2 ∪ · · · ∪ Ak) ∪
Ak+1.

14. Solution 1: The net gain of the grand prize winner is
$2,000,000 − $2 = $1,999,998. Each of the 10,000 sec-
ond prize winners has a net gain of $20 − $2 = $18, and
each of the 50,000 third prize winners has a net gain of
$4 − $2 = $2. The number of people who do not win any-
thing is 1,500,000 − 1 − 10,000 −50,000 = 1,439,999,
and each of these people has a net loss of $2. Because all
of the 1,500,000 tickets have an equal chance of winning a
prize, the expected gain or loss of a ticket is

1

1500000
($1,999,998 ·1+ $18 ·10000
+ $2 ·50000+ (−$2) ·1,439,999) = −$0.40.

Solution 2: The total income to the lottery organizer is
$2 (per ticket) · 1,500,000 (tickets) = $3,000,000. The
payout the lottery organizer must make is $2,000,000+
($20)(10,000)+ ($4)(50,000) = $2,400,000, so the net
gain to the lottery organizer is $600,000, which amounts

to $600,000
1,500,000 = $0.40 per ticket. Thus the expected net loss

to a purchaser of a ticket is $0.40.

16. Let 21 and 22 denote the two balls with the number 2, and

let 5 and 6 denote the other two balls. There are
(6
2

)
= 4

subsets of 2 balls that can be chosen from the urn. The fol-
lowing table shows the sums of the numbers on the balls in
each set and the corresponding probabilities:

Subset Sum s Probability that the sum = s

{21, 22} 4 1/6

{21, 5}, {22, 5} 7 2/6

{21, 6}{22, 6} 8 2/6

{5, 6} 11 1/6

So the expected value is 4 · 16 + 7 · 26 + 8 · 26 + 11 · 16 = 7.5.

19. The following table displays the sum of the numbers show-
ing face up on the dice:

1 2 3 4 5 6

1 2 3 4 5 6 7

2 3 4 5 6 7 8

3 4 5 6 7 8 9

4 5 6 7 8 9 10

5 6 7 8 9 10 11

6 7 8 9 10 11 12

Each cell in the table represents an outcome whose proba-

bility is 1
36 . Thus the expected value of the sum is

2
(

1
36

)
+ 3

(
2
36

)
+ 4

(
3
36

)
+ 5

(
4
36

)
+ 6

(
5
36

)
+ 7

(
6
36

)
+ 8

(
5
36

)
+ 9

(
4
36

)
+ 10

(
3
36

)
+ 11

(
2
36

)
+ 12

(
1
36

)
= 252

36 = 7.

20. Hint: The answer is about 7.7 cents.

22. Hint: The answer is 1.875.

23. Hint: To derive P20, use the distinct roots theorem from

Section 5.8. The answer is P20 = 5300−520
5300−1 ∼= 1.

Section 9.9
1. P(B) = P(A ∩ B)

P(A | B)
= 1/6

1/2
= 1

3
3. Hint: The answer is 60%.

4. a. Proof: Suppose S is any sample space and A and B are
any events in S such that P(B) �= 0. Note that
(1) A ∪ Ac = S by the complement law for ∪.
(2) B ∩ S = B by the identity law for ∩.
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(3) B ∩ (A ∪ Ac) = (A ∩ B) ∪ (Ac ∩ B) by the dis-
tributive law and commutative laws for sets.

(4) (A ∩ B) ∩ (Ac ∩ B) = ∅ by the complement law
for ∩ and the commutative and associative laws for
sets.

Thus B = (A ∩ B) ∪ (Ac ∩ B), and, by probability
axiom 3, P(B) = P(A ∩ B)+ P(Ac ∩ B). Therefore,
P(Ac ∩ B) = P(B)− P(A ∩ B). By definition of con-
ditional probability, it follows that

P(Ac | B) = P(Ac ∩ B)

P(B)
= P(B)− P(A ∩ B)

P(B)

= 1− P(A ∩ B)

P(B)
= 1− P(A|B).

5. Hints: (1) A = (A ∩ B) ∪ (A ∩ Bc).

(2) The answer is P(A | Bc) = P(A)− P(A | B)P(B)

1− P(B)
.

6. a. Let R1 be the probability that the first ball is red, and let
R2 be the probability that the second ball is red. Then
Rc
1 is the probability that the first ball is not red, and Rc

2

is the probability that the second ball is not red. The tree
diagram shows the various relations among the proba-
bilities.

P(R1) =
 — = —

5
825

40

P(R 2  R 1
) = — = —

8
1324

39

P(R c) = — = —3
8

15
40

R1     R2

R1

R1     R2  
c

P(R  c       R
1) = — = —5

13

15
39

R  
c

1

14
39

P(R  c  
 R  c

 ) = —2
1

2

25
39P(R    R  

c
 ) = —

1 R 
c     R21

R 
c     R 

c
21

1

2

Then

P(R1 ∩ R2) = P(R2 | R1) · P(R1)

= 8

13
· 5
8
= 5

13
∼= 38.5%,

P(R1 ∩ R c
2 ) = P(R c

2 | R1) · P(R1)

= 5

13
· 5
8
= 25

104
∼= 24%,

P(R c
1 ∩ R2) = P(R2 | R c

1 ) · P(R c
1 )

= 25

39
· 3
8
= 25

104
∼= 24%,

P(R c
1 ∩ R c

2 ) = P(R c
2 | R c

1 ) · P(R c
1 )

=14

39
· 3
8
= 14

104
∼= 13.5%

So the probability that both balls are red is 5/13, the
probability that the first ball is red and the second is not
is 25/104, the probability that the first ball is not red and
the second ball is red is 25/104, and the probability that
neither ball is red is 14/104.

b. Note that

R2 =(R2 ∩ R1) ∪ (R2 ∩ R c
1 ) and

(R2 ∩ R1) ∩ (R2 ∩ R c
1 ) = ∅.

Thus the probability that the second ball is red is

P(R2) = P(R2 ∩ R1)+ P(R2 ∩ R c
1 )

= 5

13
+ 25

104
= 65

104
∼= 62.5%.

c. If exactly one ball is red, then either the first ball is red
and the second is not or the first ball is not red and the
second is red, and these possibilities are mutually exclu-
sive. Thus

P(exactly one ball is red) = P(R1 ∩ R c
2 )+ P(R c

1 ∩ R2)

= 25

104
+ 25

104
= 50

104

= 25

52
∼= 48.1%.

The probability that both balls are red is P(R1 ∩ R2) =
5
13
∼= 38.5%. Then

P(at least one ball is red) =P(exactly one ball is red)

+ P(both balls are red)

= 25

52
+ 5

13

= 45

52
∼= 86.5%.

8. a. Let W1 be the event that a woman is chosen on the first
draw,
W2 be the event that a woman is chosen on the second
draw,
M1 be the event that a man is chosen on the first draw,
M2 be the event that a man is chosen on the second draw.

Then P(W1) = 3
10 and P(W2 |W1) = 2

9 , and thus

P(W1 ∩W2) = P(W2 |W1)P(W1) = 2
9 ·

3
10 =

1
15 =

623%.

c. Hint: The answer is 7
15 = 4623 %.

9. Hint: Use the facts that P(Bk | A) = P(Bk ∩ A)

P(A)
and that

(A ∩ B1) ∪ (A ∩ B2) = A.

11. a. Let U1 be the event that the first urn is chosen, U2 the
event that the second urn is chosen, and B the event that
the chosen ball is blue. Then

P(B |U1) = 12
19 and P(B |U2) = 8

27 .

P(B ∩U1) = P(B |U1)P(U1) = 12
19 ·

1
2 =

12
38 .

Also

P(A ∩U2) = P(B |U2)P(U2) = 8
27 ·

1
2 =

8
54 .
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Now B is the disjoint union of B ∩U1 and B ∩U2. So

P(B) = P(B ∩U1)+ P(B ∩U2) = 12
38 +

8
54
∼= 46.4%.

Thus the probability that the chosen ball is blue is
approximately 46.4%.

b. Given that the chosen ball is blue, the probability that it
came from the first urn is P(U1 | B). By Bayes’ theorem
and the computations in part (a),

P(U1 | B) = P(B |U1)P(U1)

P(B |U1)P(U1)+ P(B |U2)P(U2)

= (12/19)(0.5)

(12/19)(0.5)+ (8/27)(0.5)
∼= 68.1%

13. Hint: The answers to parts (a) and (b) are approximately
52.9% and 54.0%, respectively.

14. Let A be the event that a randomly chosen person tests pos-
itive for drugs, let B1 be the event that a randomly cho-
sen person uses drugs, and let B2 be the event that a ran-
domly chosen person does not use drugs. Then Ac is the
event that a randomly chosen person does not test positive
for drugs, and P(B1) = 0.04, P(B2) = 0.96, P(A | B2) =
0.03, and P(Ac | B1) = 0.02. Hence P(A | B1) = 0.97 and
P(Ac | B2) = 0.98.

a. P(B1 | A) = P(A | B1)P(B1)

P(A | B1)P(B1)+ P(A | B2)P(B2)

= (0.97)(0.04)

(0.97)(0.04)+ (0.03)(0.96)
∼= 57.4%

b. P(B2 | Ac) = P(Ac | B2)P(B2)

P(Ac | B1)P(B1)+ P(Ac | B2)P(B2)

= (0.98)(0.96)

(0.02)(0.04)+ (0.98)(0.96)
∼= 99.9%

16. Hint: The answers to parts (a) and (b) are 11.25% and
21 1

3%, respectively.

17. Proof: Suppose A and B are events in a sample space S,
and P(A|B) = P(A) �= 0. Then

P(B|A) = P(B ∩ A)

P(A)
= P(A|B)P(B)

P(A)

= P(A)P(B)

P(A)
= P(B).

19. As in Example 6.9.1, the sample space is the set of all 36
outcomes obtained from rolling the two dice and noting the
numbers showing face up on each. Let A be the event that
the number on the blue die is 2 and B the event that the
number on the gray die is 4 or 5. Then

A = {21, 22, 23, 24, 25, 26},
B = {14, 24, 34, 44, 54, 64, 15, 25, 35, 45, 55, 65}, and

A ∩ B = {24, 25}.
Since the dice are fair (so all outcomes are equally likely),

P(A) = 6
36 , P(B) = 12

36 and P(A ∩ B) = 2
36 . By defini-

tion of conditional probability,

P(A | B) = P(A ∩ B)

P(B)
=

2
36
12
36

= 1
6 and

P(B|A) = P(A∩B)

P(A)
=

2
36
6
36

= 1
3 .

But P(A) = 6
36 =

1
6 and P(B) = 12

36 =
1
3 . Hence

P(A|B) = P(A) and P(B | A) = P(B).

23. Let A be the event that the student answers the first question
correctly, and let B be the event that the student answers
the second answer correctly. Because two choices can be

eliminated on the first question, P(A) = 1
3 , and because no

choices can be eliminated on the second question, P(B) =
1
5 . Thus P(Ac) = 2

3 and P(Bc) = 4
5 .

a. Hint: The probability that the student answers both
questions correctly is

P(A ∩ B) = P(A)P(B) = 1

3
· 1
5
= 1

15
= 6

2

3
%.

b. The probability that the student answers exactly one
question correctly is

P((A ∩ Bc) ∪ (Ac ∩ B))

= P(A ∩ Bc)+ P(Ac ∩ B)

= P(A)P(Bc)+ P(Ac)P(B)

= 1
3 ·

4
5 +

2
3 ·

1
5 =

6
15 =

2
5 = 40%.

c. One solution is to say that the probability that the stu-
dent answers both questions incorrectly is P(Ac ∩ Bc),
and P(Ac ∩ Bc) = P(Ac)P(Bc) by the result of exer-
cise 22. Thus the answer is

P(Ac)P(Bc) = 2

3
· 4
5
= 8

15
= 53

1

3
%.

Another solution uses the fact that the event that the student
answers both questions incorrectly is the complement of
the event that the student answers at least one question cor-
rectly. Thus, by the results of parts (a) and (b), the answer

is 1−
(

1
15 +

2
5

)
= 8

15 = 5313%.

25. Let Hi be the event that the result of toss i is heads, and
let Ti be the event that the result of toss i is tails. Then
P(Hi ) = 0.7 and P(Ti ) = 0.3 for i = 1, 2.
b. The probability of obtaining exactly one head is

P((H1 ∩ T2) ∪ (T1 ∩ H2))

= P(H1 ∩ T2)+ P(T1 ∩ H2)

= P(H1)P(T2)+ P(T1)P(H2)

= (0.7)(0.3)+ (0.3)(0.7) = 42%.

27. Hint: The answer is 1
2 .
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28. a. P(seven heads)

=
⎡
⎣the number of different
ways seven heads can
be obtained in ten tosses

⎤
⎦ (0.7)7(0.3)3

= 120(0.7)7(0.3)3 ∼= 0.267 = 26.7%.

29. a. P(none is defective)

=
⎡
⎣the number of different
ways of having 0 defective
items in the sample of 10

⎤
⎦ (0.03)0(0.97)10

= 1 · (0.3.)0(0.97)10 ∼= 0.737 = 73.7%

30. b. The probability that a woman will have at least one false
positive result over a period of ten years is
1− (0.96)10 ∼= 33.5%.

31. a. P(none is male) ∼= 1.3%
b. P(at least one is male) = 1− P(none is male) ∼=

1− 0.013 = 98.7%

Section 10.1
1. V (G) = {v1, v2, v3, v4}, E(G) = {e1, e2, e3}

Edge-endpoint function:

Edge Endpoints

e1 {v1, v2}
e2 {v1, v3}
e3 {v3}

3.

v1

e1

e2
v2 v4 v5

v3

e3

e4

5. Imagine that the edges are strings and the vertices are knots.
You can pick up the left-hand figure and lay it down again
to form the right-hand figure as shown below.

v5

v2

v6

v1 v3

v4

e6

e5

e4

e7

e1 e2

e3

8. (i) e1, e2, and e3 are incident on v1.
(ii) v1, v2, and v3 are adjacent to v3.
(iii) e2, e8, e9, and e3 are adjacent to e1.
(iv) Loops are e6 and e7.
(v) e8 and e9 are parallel; e4 and e5 are parallel.
(vi) v6 is an isolated vertex.

(vii) degree of v3 = 5
(viii) total degree = 20

10. a. Yes. According to the graph, Sports Illustrated is an
instance of a sports magazine, a sports magazine is a
periodical, and a periodical contains printed writing.

12. To solve this puzzle using a graph, introduce a notation in
which, for example, wc/ f g means that the wolf and the
cabbage are on the left bank of the river and the ferry-
man and the goat are on the right bank. Then draw those
arrangements of wolf, cabbage, goat, and ferryman that can
be reached from the initial arrangement (wgc f/) and that
are not arrangements to be avoided (such as (wg/ f c)). At
each stage ask yourself, “Where can I go from here?” and
draw lines or arrows pointing to those arrangements. This
method gives the graph shown at the top of the next column.

wc/fg

wg f /c

w/cfg

cg f /w

c/wfg

wcf /g

wgcf /

gf /wc

/wgcf

g/wfc

Start

End

Examination of the diagram shows the solutions

(wgc f/)→ (wc/g f )→ (wc f/g)→ (w/gc f )→
(wg f/c)→ (g/wc f )→ (g f/wc)→ (/wgc f )

and

(wgc f/)→ (wc/g f )→ (wc f/g)→ (c/wg f )→
(gc f/w)→ (g/wc f )→ (g f/wc)→ (/wgc f )

14. Hint: The answer is yes. Represent possible amounts of
water in jugs A and B by ordered pairs. For instance, the
ordered pair (1, 3) would indicate that there is one quart of
water in jug A and three quarts in jug B. Starting with (0,
0), draw arrows from one ordered pair to another if it is
possible to go from the situation represented by one pair to
that represented by the other by either filling a jug, empty-
ing a jug, or transferring water from one jug to another. You
need only draw arrows from states that have arrows point-
ing to them; the other states cannot be reached. Then find a
directed path (sequence of directed edges) from the initial
state (0, 0) to a final state (1, 0) or (0, 1).
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15. The total degree of the graph is 0+ 2+ 2+ 3+ 9 = 16, so
by Theorem 10.1.1, the number of edges is 16/2 = 8.

17. One such graph is

a

b

c

de

18. If there were a graph with four vertices of degrees 1, 2, 3,
and 3, then its total degree would be 9, which is odd. But
by Corollary 10.1.2, the total degree of the graph must be
even. [This is a contradiction.]Hence there is no such graph.
(Alternatively, if there were such a graph, it would have
an odd number of vertices of odd degree. But by Proposi-
tion 10.1.3 this is impossible.)

21. Suppose there were a simple graph with four vertices of
degrees 1, 2, 3, and 4. Then the vertex of degree 4 would
have to be connected by edges to four distinct vertices other
than itself because of the assumption that the graph is sim-
ple (and hence has no loops or parallel edges.) This con-
tradicts the assumption that the graph has four vertices in
total. Hence there is no simple graph with four vertices of
degrees 1, 2, 3, and 4.

24. v1 v2

v4 v3

26. a. The nonempty subgraphs are as follows:

v1

v2

e1

e2

v2

v1

e2

v1

v2

v2

v1

v2

v1

e1

1 2 3

4 5 6

27. a. Suppose that, in a group of 15 people, each person had
exactly three friends. Then you could draw a graph rep-
resenting each person by a vertex and connecting two
vertices by an edge if the corresponding people were
friends. But such a graph would have 15 vertices, each
of degree 3, for a total degree of 45. This would contra-
dict the fact that the total degree of any graph is even.
Hence the supposition must be false, and in a group of
15 people it is not possible for each to have exactly three
friends.

31. We give two proofs for the following statement, one less
formal and the other more formal.

For all integers n ≥ 0, if a1, a2, a3, . . . , a2n+1 are
odd integers, then

∑2n+1
i=1 ai is odd.

Proof 1 (by mathematical induction): It is certainly true
that the “sum” of one odd integer is odd. Suppose that for
a certain positive odd integer r , the sum of r odd integers
is odd. We must show that the sum of r + 2 odd integers is
odd (because r + 2 is the next odd integer after r ). But any
sum of r + 2 odd integers equals a sum of r odd integers
(which is odd by inductive hypothesis) plus a sum of two
more odd integers (which is even). Thus the total sum is an
odd integer plus an even integer, which is odd. [This is what
was to be shown.]

Proof 2 (by mathematical induction): Let the property
P(n) be the following sentence: “If a1, a2, a3, . . . , a2n+1
are odd integers, then

∑2n+1
i=1 ai is odd.

Show that P(0) is true:

Suppose a1 is an odd integer. Then
∑2 · 0+1

i=1 ai =∑1
i=1 ai =

a1, which is odd.

Show that for all integers k ≥ 0, if P(k) is true then
P(k + 1) is true:

Let k be an integer with k ≥ 0, and suppose that

if a1, a2, . . . , a2k+1 are odd integers, then
2k+1∑
i=1

ai is odd.

[This is the inductive hypothesis P(k).]

Suppose a1, a2, a3, . . . , a2(k+1)+1 are odd integers. [We must
show P(k + 1), namely that

∑2(k+1)+1
i=1 ai is odd, or, equiva-

lently, that
∑2k+3

i=1 ai is odd.] But

2k+3∑
i=1

ai =
2k+1∑
i=1

ai + (a2k+2 + a2k+3).

Since the sum of any two odd integers is even, a2k+2 + a2k+3
is even, and, by inductive hypothesis,

∑2k+1
i=1 ai is odd.

Therefore,
∑2k+3

i=1 ai is the sum of an odd integer and an
even integer, which is odd. [This is what was to be shown.]

32. Hint: Use proof by contradiction.
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10.1 Solutions and Hints to Selected Exercises A-95

33. a. K6:

v1

v6

v3

v4

v5

v2

b. A proof of this fact was given in Section 5.6 using recur-
sion. Try to find a different proof.

Hint for Proof 1: There are as many edges in Kn as there
are subsets of two vertices (the endpoints) that can be
chosen from a set of n vertices.

Hint for Proof 2: Use mathematical induction. A com-
plete graph on k + 1 vertices can be obtained from a
complete graph on k vertices by adding one vertex and
connecting this vertex by k edges to each of the other
vertices.
Hint for Proof 3: Use the fact that the number of edges
of a graph is half the total degree. What is the degree of
each vertex of Kn?

35. Suppose G is a simple graph with n vertices and 2n edges
where n is a positive integer. By exercise 34, its num-

ber of edges cannot exceed
n(n−1)

2 . Thus 2n ≤ n(n−1)
2 ,

or 4n ≤ n2 − n. Equivalently, n2 − 5n ≥ 0, or n(n − 5) ≥
0. This implies that n ≥ 5 since n > 0. Hence a simple
graph with twice as many edges as vertices must have at
least five vertices. But a complete graph with five vertices

has
5(5−1)

2 = 10 edges and 10 = 2 ·5. Consequently, the
answer to the question is yes because K5 is a graph with
twice as many edges as vertices.

36. a. K4,2: v1

v2

v3

v5

v6

v4

37. a. This graph is bipartite.

v1

v3

v2

v4

b. Suppose this graph is bipartite. Then the vertex set can
be partitioned into two mutually disjoint subsets such
that vertices in each subset are connected by edges only

to vertices in the other subset and not to vertices in the
same subset. Now v1 is in one subset of the partition, say
V1. Since v1 is connected by edges to v2 and v3, both v2
and v3 must be in the other subset, V2. But v2 and v3
are connected by an edge to each other. This contradicts
the fact that no vertices in V2 are connected by edges to
other vertices in V2. Hence the supposition is false, and
so the graph is not bipartite.

39. a. v2

v4

v1 v3

41. b. A

B

C

D

E

42. Hint: Consider the graph obtained by taking the vertices
and edges of G plus all the edges of G ′. Use exercise 33(b).

44. c. Hint: Suppose there were a simple graph with n ver-
tices (where n ≥ 2) each of which had a different
degree. Then no vertex could have degree more than
n − 1 (why?), so the degrees of the n vertices must be
0, 1, 2, . . . , n − 1 (why?). This is impossible (why?).

45. Hint: Use the result of exercise 44(c).

46.

b c

e

d

g

f

a
1

2

2

3

2

3
1

Vertex e has maximal degree, so color it with color #1. Ver-
tex a does not share an edge with e, and so color #1 may
also be used for it. From the remaining uncolored vertices,
all of d, g, and f have maximal degree. Choose any one of
them, say d, and use color #2 for it. Observe that vertices
b, c, and f do not share an edge with d, but c and f share
an edge with each other, which means that color #2 may be
used for only one of c or f . So color b with color #2, and
choose to color f with color #2 because the degree of f is
greater than the degree of c. From the remaining uncolored
vertices, g has maximal degree, so color it with color #3.
Then observe that because g does not share an edge with c,
color #3 may also be used for c. At this point, all vertices
have been colored.
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47. Hint: There are two solutions:
(1) Time 1: hiring, library

Time 2: personnel, undergraduate education,
colloquium
Time 3: graduate education

(2) Time 1: hiring, library
Time 2: graduate education, colloquium
Time 3: personnel, undergraduate education

Section 10.2
1. a. trail (no repeated edge), not a path (repeated vertex−v1),

not a circuit
b. walk, not a trail (has repeated edge−e9), not a circuit
c. closed walk (starts and ends at the same vertex), trail

(no repeated edge since no edge), not a path or a circuit
(since no edge)

d. circuit, not a simple circuit (repeated vertex, v4)
e. closed walk (starts and ends at the same vertex but has

repeated edges −{v2, v3} and {v3, v4})
f. path

3. a. No. The notation v1v2v1 could equally well refer to
v1e1v2e2v1 or to v1e2v2e1v1, which are different walks.

4. a. Three (There are three ways to choose the middle edge.)
b. 3! + 3 = 9 (In addition to the three paths, there are

3! with vertices v1, v2, v3, v2, v3, v4. The reason is that
from v2 there are three choices of an edge to go to v3,
then two choices of different edges to go back to v2, and
then one choice of different edge to return to v3. This
makes 3! trails from v2 to v3.)

c. Infinitely many (Since a walk may have repeated edges,
a walk from v1 to v4 may contain an arbitrarily large
number of repetitions of edges joining a pair of vertices
along the way.)

6. a. {v1, v3}, {v2, v3}, {v4, v3}, and {v5, v3} are all the
bridges.

8. a. Three connected components.

a

b g

d

c e hf

1 2 3

9. a. No. This graph has two vertices of odd degree, whereas
all vertices of a graph with an Euler circuit have even
degree.

12. One Euler circuit is e4e5e6e3e2e7e8e1.

14. One Euler circuit is iabihbchgcdg f de f i .

19. There is an Euler path since deg(u) and deg(w) are
odd, all other vertices have positive even degree, and the
graph is connected. One Euler path is uv1v0v7uv2v3v4
v2v6v4wv5v6w.

23. v0v7v1v2v3v4v5v6v0

25. Hint: See the solution to Example 10.2.8.

26. Here is one sequence of reasoning you could use: Call the
given graph G, and suppose G has a Hamiltonian circuit.
Then G has a subgraph H that satisfies conditions (1)–(4)
of Proposition 10.2.6. Since the degree of b in G is 4 and
every vertex in H has degree 2, two edges incident on b
must be removed from G to create H . Edge {a, b} cannot
be removed because doing so would result in vertex d hav-
ing degree less than 2 in H . Similar reasoning shows that
edge {b, c} cannot be removed either. So edges {b, i} and
{b, e}must be removed from G to create H . Because vertex
e must have degree 2 in H and because edge {b, e} is not
in H , both edges {e, d} and {e, f } must be in H . Similarly,
since both vertices c and g must have degree 2 in H , edges
{c, d} and {g, d} must also be in H . But then three edges
incident on d, namely {e, d}, {c, d}, and {g, d}, must be all
in H , which contradicts the fact that vertex d must have
degree 2 in H .

28. Hint: This graph does not have a Hamiltonian circuit.

32. Partial answer:

v0
v1

v4

v2

v3

This graph has an Euler circuit v0v1v2v3v1v4v0 but no
Hamiltonian circuit.

33. Partial answer:

v0 v2

v1

This graph has a Hamiltonian circuit v0v1v2v0 but no Euler
circuit.

34. Partial answer:

v0 v2

v1

The walk v0v1v2v0 is both an Euler circuit and a Hamilto-
nian circuit for this graph.
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10.3 Solutions and Hints to Selected Exercises A-97

35. Partial answer:

v0

v3 v1

v2

e1

e2

e3

e4

e5

e6

This graph has the Euler circuit e1e2e3e4e5e6 and the Hamil-
tonian circuit v0v1v2v3v0. These are not the same.

37. a. Proof: Suppose G is a graph and W is a walk in G that
contains a repeated edge e. Let v and w be the endpoints
of e. In case v = w, then v is a repeated vertex of W . In
case v �= w, then one of the following must occur: (1)
W contains two copies of vew or of wev (for instance,
W might contain a section of the form vewe′vew, as
illustrated below); (2) W contains separate sections of
the form vew and wev (for instance, W might contain
a section of the form vewe′wev, as illustrated below);
or (3) W contains a section of the form vewev or of the
form wevew (as illustrated below). In cases (1) and (2),
both vertices v and w are repeated, and in case (3), one
of v or w is repeated. In all cases, there is at least one
vertex in W that is repeated.

v w

e

v w
e

v
we

e'

1 2

3

e'

38. Proof: Suppose G is a connected graph and v and w are
any particular but arbitrarily chosen vertices of G. [We must
show that u and v can be connected by a path.] Since G is
connected, there is a walk from v to w. If the walk contains
a repeated vertex, then delete the portion of the walk from
the first occurrence of the vertex to its next occurrence.
(For example, in the walk ve1v2e5v7e6v2e3w, the vertex v2
occurs twice. Deleting the portion of the walk from one
occurrence to the next gives ve1v2e3w.) If the resulting
walk still contains a repeated vertex, do the above dele-
tion process another time. Then check again for a repeated
vertex. Continue in this way until all repeated vertices
have been deleted. (This must occur eventually, since the
total number of vertices is finite.) The resulting walk con-
nects v to w but has no repeated vertex. By exercise 37(b),
it has no repeated edge either. Hence it is a path from
v to w.

40. The graph to the right contains a circuit, any edge of
which can be removed without disconnecting the graph.

For instance, if edge e is removed, then the following walk
can be used to go from v1 to v2: v1v5v3v2.

v0
v1

v2

v5

v3
v4

e

42. Hint: Look at the answer to exercise 40 and use the fact
that all graphs have a finite number of edges.

44. Proof: Let G be a connected graph and let C be a circuit
in G. Let G ′ be the subgraph obtained by removing all the
edges of C from G and also any vertices that become iso-
lated when the edges of C are removed. [We must show that
there exists a vertex v such that v is in both C and G ′.] Pick
any vertex v of C and any vertex w of G ′. Since G is con-
nected, there is a path from v to w (by Lemma 10.2.1(a)):

v = v0e1v1e2v2 . . . vi−1eivi ei+1vi+1 . . . vn−1envn = w.

↑ ↑ ↑ ↑
in C in C not in C in G ′

Let i be the largest subscript such that vi is in C . If i = n,
then vn = w is in C and also in G ′, and we are done. If
i < n, then vi is in C and vi+1 is not in C . This implies
that ei+1 is not in C (for if it were, both endpoints would
be in C by definition of circuit). Hence when G ′ is formed
by removing the edges and resulting isolated vertices from
G, then ei+1 is not removed. That means that vi does not
become an isolated vertex, so vi is not removed either.
Hence vi is in G ′. Consequently, vi is in both C and G ′ [as
was to be shown].

45. Proof: Suppose G is a graph with an Euler circuit. If G
has only one vertex, then G is automatically connected.
If v and w are any two vertices of G, then v and w each
appear at least once in the Euler circuit (since an Euler cir-
cuit contains every vertex of the graph). The section of the
circuit between the first occurrence of one of v or w and
the first occurrence of the other is a walk from one of the
two vertices to the other.

Section 10.3
1. a. Equating corresponding entries shows that

a + b = 1,

a − c = 0,

c = −1,
b − a = 3.

Thus a − c = a − (−1) = 0, and so a = −1. Conse-
quently, a + b = (−1)+ b = 1, and hence b = 2. The
last equation should be checked to make sure the answer
is consistent: b − a = 2− (−1) = 3, which agrees.
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2. a.

⎡
⎣

v1 v2 v3

v1 0 1 1
v2 1 0 0
v3 0 0 0

⎤
⎦

3. a.
v2

v1

v4

v3

Any labels may be
applied to the edges
because the adjacency
matrix does not
determine edge
labels.

4. a.

⎡
⎢⎢⎣

v1 v2 v3 v4

v1 0 0 1 1
v2 0 0 2 0
v3 1 2 0 0
v4 1 0 0 1

⎤
⎥⎥⎦ c.

⎡
⎢⎢⎣

v1 v2 v3 v4

v1 0 1 1 1
v2 1 0 1 1
v3 1 1 0 1
v4 1 1 1 0

⎤
⎥⎥⎦

5. a.

v2v1

v3

Any labels may be
applied to the edges
because the adjacency
matrix does not
determine edge labels.

6. a. The graph is connected.

8. a. 2 ·1+ (−1) ·3 = −1
9. a.

[
3 −3 12
1 −5 2

]
10. a. no product (A has three columns, and B has two rows.)

b. BA =
[−2 −2 2

1 −5 2

]
f. B2 =

[
4 0
1 9

]

i. AC =
[

2 −1
−5 −2

]

12. One among many possible examples is A = B =
[
0 1
0 0

]
.

14. Hint: If the entries of them × m identity matrix are denoted

by δik , then δik =
{
0 if i �= k

1 if i = k
. The i j th entry of IA is

m∑
k=1

δik Ak j .

15. Proof: Suppose A is an m × m symmetric matrix. Then for
all integers i and j with 1 ≤ i, j ≤ m,

(A2)i j =
m∑

k=1
Aik Akj and (A2) j i =

m∑
k=1

A jk Aki .

But since A is symmetric, Aik = Aki and Akj = A jk for
all i, j , and k, and thus Aik Akj = A jk Aki [by the commuta-
tive law for multiplication of real numbers]. Hence (A2)i j =
(A2) j i for all integers i and j with 1 ≤ i, j ≤ m.

17. Proof (by mathematical induction): Let the property P(n)
be the equation AnA = AAn.

Show that P(1) is true:

We must show that A1A = AA1. But this is true because
A1 = A and AA = AA.

Show that for all integers k ≥ 1, if P(k) is true, then
P(k + 1) is true:

Let k be any integer such that k ≥ 1, and suppose that
AkA = AAk. [This is the inductive hypothesis.] We must
show that Ak+1A = AAk+1. But

Ak+1A = (AAk)A by definition of matrix power

= A(AkA) by exercise 16

= A(AAk) by inductive hypothesis

= A Ak+1 by definition of matrix power.

19. a.
A2 =

⎡
⎣1 1 2
1 0 1
2 1 0

⎤
⎦
⎡
⎣1 1 2
1 0 1
2 1 0

⎤
⎦ =

⎡
⎣6 3 3
3 2 2
3 2 5

⎤
⎦

A3 =
⎡
⎣1 1 2
1 0 1
2 1 0

⎤
⎦
⎡
⎣6 3 3
3 2 2
3 2 5

⎤
⎦ =

⎡
⎣15 9 15

9 5 8
15 8 8

⎤
⎦

20. a. 2 since (A2)23 = 2
b. 3 since (A2)34 = 3
c. 6 since (A3)14 = 6
d. 17 since (A3)23 = 17

22. b. Hint: If G is bipartite, then its vertices can be partitioned
into two sets V1 and V2 so that no vertices in V1 are con-
nected to each other by an edge and no vertices in V2 are
connected to each other by an edge. Label the vertices
in V1 as v1, v2, . . . , vk and label the vertices in V2 as
vk+1, vk+2, . . . , vn . Now look at the matrix of G formed
according to the given vertex labeling.

23. b. Hint: Consider the i j th entry of

A+ A2 + A3 + · · · + An .

If G is connected, then given the vertices vi and v j , there
is a walk connecting vi and v j . If this walk has length
k, then by Theorem 10.3.2, the i j th entry of Ak is not
equal to 0. Use the facts that all entries of each power
of A are nonnegative and a sum of nonnegative numbers
is positive provided that at least one of the numbers is
positive.
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Section 10.4
1. The graphs are isomorphic. One way to define the isomor-

phism is as follows:

v1
v2
v3
v4

w1
w2
w3
w4

g

e1
e2
e3
e4

f1
f2
f3
f4

h

2. The graphs are not isomorphic. G has five vertices and G ′

has six.

6. The graphs are isomorphic. One isomorphism is the follow-
ing:

v1
v2
v3
v4

w1
w2
w3
w4

g

8. The graphs are not isomorphic. G has a simple circuit of
length 3; G ′ does not.

10. The graphs are isomorphic. One way to define the isomor-
phism is as follows:

a

b

c

d

e

f

g

t

u

v

w

x

y

z

g

12. These graphs are isomorphic. One isomorphism is the fol-
lowing:

a

b

c

d

e

f

g

h

s

t

u

v

w

x

y

z

g

14.

1 2

3 4

16.

1 2 3

4 5 6

7 8 9
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18. Hint: There are 20.

19.

1 2 3

4 5 6

7 8

10 11

9

21. Proof: Suppose G and G ′ are isomorphic graphs and G has
n vertices, where n is a nonnegative integer. [We must show
that G ′ has n vertices.] By definition of graph isomorphism,
there is a one-to-one correspondence g: V (G)→ V (G ′)
sending vertices of G to vertices of G ′. Since V (G) is a
finite set and g is a one-to-one correspondence, the number
of vertices in V (G ′) equals the number of vertices in V (G).
Hence G ′ has n vertices [as was to be shown].

23. Proof: Suppose G and G ′ are isomorphic graphs and
suppose G has a circuit C of length k, where k is a
nonnegative integer. Let C be v0e1v1e2 . . . ekvk(= v0). By
definition of graph isomorphism, there are one-to-one cor-
respondences g: V (G)→ V (G ′) and h: E(G)→ E(G ′)
that preserve the edge-endpoint functions in the sense
that for all v in V (G) and e in E(G), v is an end-
point of e⇔ g(v) is an endpoint of h(e). Let C ′ be
g(v0)h(e1)g(v1)h(e2) . . . . h(ek)g(vk)(= g(v0)). Then C ′ is
a circuit of length k in G ′. The reason is that (1) because
g and h preserve the edge-endpoint functions, for all i =
0, 1, . . . , k − 1 both g(vi ) and g(vi+1) are incident on
h(ei+1) so that C ′ is a walk from g(v0) to g(v0), and (2)
sinceC is a circuit, then e1, e2, . . . , ek are distinct, and since
h is a one-to-one correspondence, h(e1), h(e2), . . . , h(ek)
are also distinct, which implies that C ′ has k distinct edges.
Therefore, G ′ has a circuit C of length k.

25. Hint: Suppose G and G ′ are isomorphic and G has m
vertices of degree k; call them v1, v2, . . . , vm . Since G
and G ′ are isomorphic, there are one-to-one correspon-
dences g: V (G)→ V (G ′) and h: E(G)→ E(G ′). Show
that g(v1), g(v2), . . . , g(vm) are m distinct vertices of G ′

each of which has degree k.

27. Hint: Suppose G and G ′ are isomorphic and G is con-
nected. To show that G ′ is connected, suppose w and x are
any two vertices of G ′. Show that there is a walk connecting
w with x by finding a walk connecting the corresponding
vertices in G.

Section 10.5
1. a. Math 110

2. a.

< sentence >

< noun phrase > < verb phrase >

< article > < adjective > < noun > < verb >

caught

< noun phrase >

< article > < noun >

the man

the young ball

3. Hint: The answer is 2n − 2. To obtain this result, use the
relationship between the total degree of a graph and the
number of edges of the graph.

4. a. H

H

H C

H

H

C

H

H

C H

d. Hint: Each carbon atom in G is bonded to four other
atoms in G, because otherwise an additional hydrogen
atom could be bonded to it, and this would contra-
dict the assumption that G has the maximum number
of hydrogen atoms for its number of carbon atoms.
Also each hydrogen atom is bonded to exactly one car-
bon atom in G, because otherwise G would not be
connected.

5. Hint: Revise the algorithm given in the proof of Lemma
10.5.1 to keep track of which vertex and edge were cho-
sen in step 1 (by, say, labeling them v0 and e0). Then after
one vertex of degree 1 is found, return to v0 and search for
another vertex of degree 1 by moving along a path outward
from v0 starting with e0.

7. a. Internal vertices: v2, v3, v4, v6
Terminal vertices: v1, v5, v7

8. Any tree with nine vertices has eight edges, not nine. Thus
there is no tree with nine vertices and nine edges.
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9. One such graph is

a

i

b c d

h g f

e

10. One such graph is

a

b

i

c

h

d

g

e

f

11. There is no tree with six vertices and a total degree of 14.
Any tree with six vertices has five edges and hence (by The-
orem 10.1.1) a total degree of 10, not 14.

12. One such tree is shown.

a
b

c

d

e

13. No such graph exists. By Theorem 10.5.4, a connected
graph with six vertices and five edges is a tree. Hence such
a graph cannot have a nontrivial circuit.

14.

v1 v2

22. Yes. Since it is connected and has 12 vertices and 11 edges,
by Theorem 10.5.4 it is a tree. It follows from Lemma
10.5.1 that it has vertex of degree 1.

25. Suppose there were a connected graph with eight vertices
and six edges. Either the graph itself would be a tree or
edges could be eliminated from its circuits to obtain a
tree. In either case, there would be a tree with eight ver-
tices and six or fewer edges. But by Theorem 10.5.2, a
tree with eight vertices has seven edges, not six or fewer.
This contradiction shows that the supposition is false, so
there is no connected graph with eight vertices and six
edges.

26. Hint: See the answer to exercise 25.

27. Yes. Suppose G is a circuit-free graph with ten vertices and
nine edges. Let G1,G2, . . . ,Gk be the connected compo-
nents of G [To show that G is connected, we will show that
k = 1.] Each Gi is a tree since each Gi is connected and
circuit-free. For each i = 1, 2, . . . , k, let Gi have ni ver-
tices. Note that since G has ten vertices in all,

n1 + n2 + · · · + nk = 10.

By Theorem 10.5.2,

G1 has n1 − 1 edges,

G2 has n2 − 1 edges,
...

Gk has nk − 1 edges.

So the number of edges of G equals

(ni − 1)+ (n2 − 1)+ · · · + (nk − 1)

= (n1 + n2 + · · · + nk)− (1+ 1+ · · · + 1)︸ ︷︷ ︸
k 1’s

= 10− k.

But we are given that G has nine edges. Hence 10− k = 9,
and so k = 1. Thus G has just one connected component,
G1, and so G is connected.

28. Hint: See the answer to exercise 27.

31. b. Hint: There are six.

Section 10.6
1. a. 3 b. 0 c. 5 d. u, v

e. d f. k, l g. m, s, t, x, y

3. a.

d

c +a b

–

· /

e

Exercises 4 and 8–10 have other answers in addition to the ones
shown.

4. a

b

d e f g

c

h i j k

5. There is no full binary tree with the given properties
because any full binary tree with five internal vertices has
six terminal vertices, not seven.

6. Any full binary tree with four internal vertices has five ter-
minal vertices for a total of nine, not seven, vertices in all.
Thus there is no full binary tree with the given properties.

7. There is no full binary tree with 12 vertices because any full
binary tree has 2k + 1 vertices, where k is the number of
internal vertices. But 2k + 1 is always odd, and 12 is even.
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8. a

b

d e
f g

c

h i

9.

m nl

a

b

d e f g

c

h i j k

10. a

b

d e
f g

c

h i j k

11. There is no binary tree that has height 3 and nine termi-
nal vertices because any binary tree of height 3 has at most
23 = 8 terminal vertices.

20. a. Height of tree ≥ log2 25 ∼= 4.6. Since the height of any
tree is an integer, the height must be at least 5.

Section 10.7
1.

a b a b

d c d c

a b

d c

3. One of many spanning trees is as follows:

a
b

d

e

f

c

g

5. Minimum spanning tree:

a

b c

d

e

f

g

1
7

4

2

3

6

Order of adding the edges:
{a, b}, {e, f }, {e, d}, {d, c}, {g, f }, {b, c}

7. Minimum spanning tree: same as in exercise 5
Order of adding the edges:
{a, b}, {b, c}, {c, d}, {d, e}, {e, f }, { f, g}

9. There are four minimum spanning trees:

a b

g f

e

d

c
3

1

34
7

10

a b

g f

e

d

c
3

1

3

4

7

10

a b

g f

e

d

c
3

1

34

7

10

a b

g f

e

d

c
3

1

3

4
7 10

When Prim’s algorithm is used, edges are added in any of
the orders obtained by following one of the eight paths from
left to right across the diagram below.

{a, b} {a, e} {b, c}{e, f}

{a, e} {a, b} {e, c}{a, g}

{ f, g}
{c, d}

When Kruskal’s algorithm is used, edges are added in any
of the orders obtained by following one of the eight paths
from left to right across the diagram below.

{a, e} {a, g} {b, c}

{a, b}

{a, b}

{a, e} {e, f } {e, c}

{c, d}{g, f }
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12. Let N = Nashville, S = St. Louis, Lv = Louisville, Ch = Chicago, Cn = Cincinnati, D = Detroit, Mw = Milwaukee, and
Mn =Minneapolis.

Step V(T) E(T) F

0 {N } ∅ {N }
1 {N } ∅ {Lv,Mn}
2 {N , Lv} {{N ,Lv}} {Mn, S,Cn,Ch,D,Mw}
3 {N , Lv,Cn} {{N ,Lv}, {Lv,Ci}} {Mn, S,Ch,D,Mw}
4 {N , Lv,Cn, S} {{N ,Lv}, {Lv,Ci},{Lv, S}} {Mn,Ch,D,Mw}
5 {N , Lv,Cn, S,Ch} {{N ,Lv}, {Lv,Ci},{Lv, S},{Lv,Ch}} {Mn,D,Mw}
6 {N , Lv,Cn, S,Ch,D} {{N ,Lv}, {Lv,Ci},{Lv, S},{Lv,Ch}{Lv,D}} {Mn,Mw}
7 {N , Lv,Cn, S,Ch,D,Mw} {{N ,Lv}, {Lv,Ci},{Lv, S},{Lv,Ch}{Lv,D},{Ch,Mw}} {Mn}
8 {N , Lv,Cn, S,Ch,D,Mw,Mn}

Step L(N) L(S) L(Lv) L(Cn) L(Ch) L(D) L(Mw) L(Mn)

0 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞
1 0 ∞ 151 ∞ ∞ ∞ ∞ 695
2 0 393 151 234 420 457 499 695
3 0 393 151 234 420 457 499 695
4 0 393 151 234 420 457 499 695
5 0 393 151 234 420 457 494 695
6 0 393 151 234 420 457 494 695
7 0 393 151 234 420 457 494 695

Thus the shortest path from Nashville to Minneapolis has length L(Mn) = 695 miles.

13. Step V(T) E(T) F L(a) L(b) L(c) L(d) L(e) L(z)

0 {a} ∅ {a} 0 ∞ ∞ ∞ ∞ ∞
1 {a} ∅ {b, d} 0 2 ∞ 1 ∞ ∞
2 {a, d} {{a, d}} {b, c, e} 0 2 6 1 11 ∞
3 {a, b, d} {{a, d}, {a, b}} {c, e} 0 2 5 1 6 ∞
4 {a, b, c, d} {{a, d}, {a, b}, {b, c}} {e, z} 0 2 5 1 6 13
5 {a, b, c, d, e} {{a, d}, {a, b}, {b, c}, {c, e}} {z} 0 2 5 1 6 8
6 {a, b, c, d, e, z} {{a, d}, {a, b}, {b, c}, {c, e}, {e, z}}

Thus the shortest path from a to z has length L(z) = 8.

18. b. Proof: Suppose not. Suppose that for some tree T, u
and v are distinct vertices of T , and P1 and P2

are two distinct paths joining u and v. [We must deduce
a contradiction. In fact, we will show that T contains a cir-
cuit.] Let P1 be denoted u = v0, v1, v2, . . . , vm = v, and
let P2 be denoted u = w0, w1, w2, . . . , wn = v. Because
P1 and P2 are distinct, and T has no parallel edges,
the sequence of vertices in P1 must diverge from the
sequence of vertices in P2 at some point. Let i be the
least integer such that vi �= wi . Then vi−1 = wi−1. Let j
and k be the least integers greater than i so that v j = wk .
(There must be such integers because vm = wn). Then

vi−1vivi+1 . . . v j (= wk)wk−1 . . . wiwi−1(= vi−1)

is a circuit in T . The existence of such a circuit con-
tradicts the fact that T is a tree. Hence the supposition
must be false. That is, given any tree with vertices u and
v, there is a unique path joining u and w.

20. Proof: Suppose G is a connected graph, T is a circuit free
subgraph of G, and if any edge e of G not in T is added to
T , the resulting graph contains a circuit. Suppose that T is
not a spanning tree for G. [We must derive a contradiction.]
Case 1 (T is not connected): In this case, there are vertices
u and v in T such that there is no walk in T from u to v.
Now, since G is connected, there is a walk in G from u to
v, and hence, by Lemma 10.2.1, there is a path in G from u
to v. Let e1, e2, . . . , ek be the edges of this path that are not
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in T . When these edges are added to T , the result is a graph
T ′ in which u and v are connected by a path. In addition,
by hypothesis, each of the edges ei creates a circuit when
added to T . Now remove these edges one by one from T ′.
By the same argument used in the proof of Lemma 10.5.3,
each such removal leaves u and v connected since each ei
is an edge of a circuit when added to T . Hence, after all the
ei have been removed, u and v remain connected. But this
contradicts the fact that there is no walk in T from u to v.

Case 2 (T is connected ): In this case, since T is not a span-
ning tree and T is circuit-free, there is a vertex v in G such
that v is not in T . [For if T were connected, circuit-free, and
contained every vertex in G, then T would be a spanning tree
for G.] Since G is connected, v is not isolated. Thus there
is an edge e in G with v as an endpoint. Let T ′ be the
graph obtained from T by adding e and v. [Note that e is
not already in T because if it were, its endpoint v would also
be in T and it is not.] Then T ′ contains a circuit because,
by hypothesis, addition of any edge to T creates a circuit.
Also T ′ is connected because T is and because when e is
added to T, e becomes part of a circuit in T ′. Now deletion
of an edge from a circuit does not disconnect a graph, so
if e is deleted from T ′ the result is a connected graph. But
the resulting graph contains v, which means that there is an
edge in T connecting v to another vertex of T . This implies
that v is in T [because both endpoints of any edge in a graph
must be part of the vertex set of the graph], which contradicts
the fact that v is not in T .

Thus, in either case, the supposition that T is not a spanning
tree leads to a contradiction. Hence the supposition is false,
and T is a spanning tree for G.

21. a. No. Counterexample: Let G be the following graph.

v1

e1

e2

v2

Then G has the spanning trees shown below.

v1

e1

v2 v1

e2

v2

These trees have no edge in common.

22. Hint: Suppose e is contained in every spanning tree of
G and the graph obtained by removing e from G is con-
nected. Let G ′ be the subgraph of G obtained by removing
e, and let T ′ be a spanning tree for G ′. How is T ′ related
to G?

24. Proof: Suppose that w(e′) > w(e). Form a new graph
T ′ by adding e to T and deleting e′. By exercise 20,
addition of an edge to a spanning tree creates a cir-
cuit, and by Lemma 10.5.3, deletion of an edge from
a circuit does not disconnect a graph. Consequently, T ′

is also a spanning tree for G. Furthermore, w(T ′) <

w(T ) because w(T ′) = w(T )− w(e′)+ w(e) = w(T )−

(w(e′)− w(e)) < w(T ) [since w(e′) > w(e), which implies
that w(e′)− w(e) > 0]. But this contradicts the fact that T
is a minimum spanning tree for G. Hence the supposition
is false, and so w(e′) ≤ w(e).

25. Hint: Suppose e is an edge that has smaller weight than any
other edge of G, and suppose T is a minimum spanning tree
for G that does not contain e. Create a new spanning tree T ′

by adding e to T and removing another edge of T (which
one?). Then w(T ′) < w(T ).

26. Yes. Proof by contradiction: SupposeG is a weighted graph
in which all the weights of all the edges are distinct, and
suppose G has two distinct minimum spanning trees T1
and T2. Let e be the edge of least weight that is in one
of the trees but not the other. Without loss of general-
ity, we may say that e is in T1. Add e to T2 to obtain
a graph G ′. By exercise 19, G ′ contains a nontrivial cir-
cuit. At least one other edge f of this circuit is not in T1
because otherwise T1 would contain the complete circuit,
which would contradict the fact that T1 is a tree. Now f
has weight greater than e because all edges have distinct
weights, f is in T2 and not in T1, and e is the edge of
least weight that is in one of the trees and not the other.
Remove f fromG ′ to obtain a tree T3. Thenw(T3) < w(T2)
because T3 is the same as T2 except that it contains e rather
than f and w(e) < w( f ). Consequently, T3 is a spanning
tree for G of smaller weight than T2. This contradicts the
supposition that T2 is a minimum spanning tree for G.
Thus G cannot have more than one minimum spanning
tree.

28. The output will be a “minimum spanning forest” for the
graph. It will contain a minimum spanning tree for each
connected component of the input graph.

Section 11.1
1. a. f (0) is positive.

b. f (x) = 0 when x = −2 and x = 3 (approximately)
c. x1 = −1 and x2 = 2 (approximately)

d. x = 1 or x = −1
2 (approximately)

e. increase
f. decrease

3.

y = x1/3

y = x1/4

y

x0.5 1 1.5 2

0.5

1

1.5

When 0 < x < 1, x1/3 < x1/4. When x > 1, x1/3 > x1/4.
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5.

x1–1–2–3–4 2 3 4
–1

1

2

3

4

5

6

–3

–4

–5

–6

y

y = 2�x�

1–1–2–3–4 2 3 4

1

2

3

4

5

6

–3

–4

–5

–6

y

x

y = �2x�

The graphs show that 2�x� �= �2x� for many values of x .

6.

1–1–2–3–4 2 3 4

1

2

3

–3

–2

–1

y

x

g(x) = �x�
Graph of g

8.
x F(x) = ⌊

x1/2
⌋

0 0
1

2
0

1 1

2 1

3 1

4 2

1 4 9 12 16

1

2

3

4

y

x

Graph of F

10.
n f (n) = |n|
0 0

1 1

2 2

3 3

−1 1

−2 2

−3 3

1–1–2–3 2 3

1

2

3
Graph of f

12.
n h(n) =

⌊n
2

⌋
0 0

1 0

2 1

3 1

4 2

5 2

6 3

7 3

8 4

9 4
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1 2 3 4 5 6 7 8 9

1

2

3

4

Graph of h

14. f is increasing on the intervals
{x ∈ R | − 3 < x < −2} and
{x ∈ R | 0 < x < 2.5}, and f is decreasing on
{x ∈ R | − 2 < x < 0} and {x ∈ R | 2.5 < x < 4} (approx-
imately).

15. Proof: Suppose x1 and x2 are particular but arbitrarily cho-
sen real numbers such that x1 < x2. [We must show that
f (x1) < f (x2).] Since

x1 < x2

then 2x1 < 2x2

and 2x1 − 3 < 2x2 − 3

by basic properties of inequalities. But then, by definition
of f ,

f (x1) < f (x2)

[as was to be shown]. Hence f is increasing on the set of all
real numbers.

17. a. Proof: Suppose x1 and x2 are real numbers with x1 <

x2 < 0. [We must show that h(x1) > h(x2).]Multiply both
sides of x1 < x2 by x1 to obtain (x1)2 > x1x2 [by T23
of Appendix A since x1 < 0], and multiply both sides of
x1 < x2 by x2 to obtain x1x2 > (x2)2 [by T23 of Appendix
A since x2 < 0]. By transitivity of order [Appendix A,
T18] (x2)2 < (x1)2, and so, by definition of h, h(x2) <

h(x1).

18. a. Preliminaries: If both x1 and x2 are positive, then by the
rules for working with inequalities (see Appendix A),

x1 − 1

x1
<

x2 − 1

x2
⇒ x2(x1 − 1) < x1(x2 − 1)

by multiplying both sides
by x1x2 (which is positive)

⇒ x1x2 − x2 < x1x2 − x1
by multiplying out

⇒ −x2 < −x1
by subtracting x1x2 from
both sides

⇒ x2 > x1 by multiplying by −1.
Are these steps reversible? Yes!

Proof: Suppose that x1 and x2 are positive real numbers
and x1 < x2. [We must show that k(x1) < k(x2).] Then

x1 < x2

⇒ −x2 < −x1 by multiplying by −1
⇒ x1x2 − x2 < x1x2 − x1 by adding x1x2

to both sides

⇒ x2(x1 − 1) < x1(x2 − 1) by factoring both sides

⇒ x1 − 1

x1
<

x2 − 1

x2

by dividing both sides by
the positive number x1x2

⇒ k(x1) < k(x2) by definition of k.

[This is what was to be shown.]

19. Proof: Suppose f : R→ R is increasing. [We must show that
f is one-to-one. In other words, we must show that for all real
numbers x1 and x2, if x1 �= x2 then f (x1) �= f (x2).] Suppose
x1 and x2 are real numbers and x1 �= x2. By the trichotomy
law [Appendix A, T17] x1 < x2, or x1 > x2. In case x1 < x2,
then since f is increasing, f (x1) < f (x2) and so f (x1) �=
f (x2). Similarly in case x1 > x2, then f (x1) > f (x2) and
so f (x1) �= f (x2). Thus in either case, f (x1) �= f (x2) [as
was to be shown].

21. a. Proof: Suppose u and v are nonnegative real numbers
with u < v. [We must show that f (u) < f (v).] Note that
v = u + h for some positive real number h. By substi-
tution and the binomial theorem,

vm = (u + h)m

= um +
[(

m
1

)
um−1h +

(
m
2

)
um−2h2 + · · ·

+
(

m
m − 1

)
uhm−1 + hm

]
.

The bracketed sum is positive because u ≥ 0 and h > 0,
and a sum of nonnegative terms that includes at least one
positive term is positive. Hence

vm = um + a positive number,

and so f (u) = um < vm = f (v) [as was to be shown].

22.

1

1

–3

2

3

–2–3–5–6 2 3 4 5 6

Graph of 3 f
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24. Proof: Suppose that f is a real-valued function of a real
variable, f is decreasing on a set S, and M is any positive
real number. [We must show that M f is decreasing on S. In
other words, we must show that for all x1 and x2 in S, if x1 < x2
then (M f )(x1) > (M f )(x2).] Suppose x1 and x2 are in S
and x1 < x2. Since f is decreasing on S, f (x1) > f (x2),
and since M is positive, M f (x1) > M f (x2) [because when
both sides of an inequality are multiplied by a positive num-
ber, the direction of the inequality is unchanged]. It follows
by definition of M f that (M f )(x1) > (M f )(x2) [as was to
be shown].

27. To find the answer algebraically, solve the equation 2x2 =
x2 + 10x + 11 for x . Subtracting x2 from both sides gives
x2 − 10x − 11 = 0, and either factoring x2 − 10x − 11 =
(x − 11)(x + 1) or using the quadratic formula gives x =
11 (since x > 0). To find an approximate answer with a
graphing calculator, plot both f (x) = x2 + 10x + 11 and
2g(x) = 2x2 for x > 0, as shown in the figure, and find
that 2g(x) > f (x) when x > 11 (approximately). You can
obtain only an approximate answer from a graphing cal-
culator because the calculator computes values only to an
accuracy of a finite number of decimal places.

x

y

2 4 6 8 10 12 14 16 18 20

100

200

300

400

500

600

700

2g(x) = 2x2

f (x) = x2 + 10x + 11

Section 11.2
1. a. ∀ positive real numbers a and A, ∃x > a such that

A|g(x)| > | f (x)|.
b. No matter what positive real numbers a and A might be

chosen, it is possible to find a number x greater than a
with the property that A|g(x)| > | f (x)|.

4. 5x8 − 9x7 + 2x5 + 3x − 1 is O(x8)

5.
(x2 − 1)(12x + 25)

3x2 + 4
is �(x)

6.
(x2 − 7)2(10x1/2 + 3)

x + 1
is �(x7/2)

10. Proof: Suppose f and g are real-valued functions of a real
variable that are defined on the same set of nonnegative real
numbers, and suppose g(x) is O( f (x)). By definition of
O-notation, there exist positive real numbers b and B such
that |g(x)| ≤ B| f (x)| for all real numbers x > b. Divide

both sides of the inequality by B to obtain 1
B |g(x)| ≤

| f (x)|. Let A = 1
B and let a = b. Then A|g(x)| ≤ | f (x)|

for all real numbers x > a, and so, by definition of �-
notation, f (x) is �(g(x)).

12. Proof: Suppose f, g, h, and k are real-valued functions
of a real variable that are defined on the same set
D of nonnegative real numbers, and suppose f (x) is
O(h(x)) and g(x) is O(k(x)). By definition of O-notation,
there exist positive real numbers b1, B1, b2, and B2 such
that | f (x)| ≤ B1|h(x)| for all real numbers x > b1, and
|g(x)| ≤ B2|k(x)| for all real numbers x > b2. For each
x in D, define G(x) = max(|h(x)|, |k(x)|), and let b =
max(b1, b2) and B = B1 + B2. Note that the triangle
inequality for absolute value (Theorem 4.4.6) implies that

| f (x)+ g(x)| ≤ | f (x)| + |g(x)|
for all real numbers x in D. Suppose that x > b. Then
because b is greater than both b1 and b2,

| f (x)| ≤ B1|h(x)| and |g(x)| ≤ B2|h(x)|,
and so, by adding the inequalities (Appendix A, T26), we
get

| f (x)| + |g(x)| ≤ B1|h(x)| + B2|k(x)|.
Thus, by the transitive law for inequalities (Appendix A,
T18),

| f (x)+ g(x)| ≤ B1|h(x)| + B2|k(x)|.
Now, because each value of G(x) = |G(x)| is greater than
or equal to |h(x)| and |k(x)|,
B1|h(x)| + B2|k(x)| ≤ B1|G(x)|

+ B2|G(x)| ≤ (B1 + B2)|G(x)|.
Hence, again by transitivity and because B = B1 + B2,

| f (x)+ g(x)| ≤ B|G(x)| for all real numbers x > b.

Therefore, by definition of O-notation, f (x)+ g(x) is
O(G(x)).

14. Start of proof: Suppose f, g, h, and k are real-valued
functions of a real variable that are defined on the same
set D of nonnegative real numbers, and suppose f (x) is
O(h(x)) and g(x) is O(k(x)). By definition of O-notation,
there exist positive real numbers b1, B1, b2, and B2 such
that | f (x)| ≤ B1|h(x)| for all real numbers x > b1, and
|g(x)| ≤ B2|k(x)| for all real numbers x > b2. Let B =
B1B2 and let b = max(b1, b2).

15. b. Hint: By the laws of exponents, xn−m = xn

xm . Thus if

xn−m > 1, then xn

xm > 1.

16. a. For all real numbers x > 1, x2 + 15x + 4 ≥ 0 because
all terms are nonnegative. Adding x2 to both sides gives
2x2 + 15x + 4 ≥ x2. By the nonnegativity of all terms
when x > 1, absolute value signs may be added to both
sides of the inequality. Thus |x2| ≤ |2x2 + 15x + 4| for
all real numbers x > 1.
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b. For all real numbers x > 1,

|2x2 + 15x + 4| = 2x2 + 15x + 4
because 2x2 + 15x + 4
is positive (since x > 1)

⇒ |2x2 + 15x + 4| ≤ 2x2 + 15x2 + 4x2

because since x > 1,
then x < x2 and 1 < x2

⇒ |2x2 + 15x + 4| ≤ 21x2 because 2+ 15+ 4 = 21

⇒ |2x2 + 15x + 4| ≤ 21|x2| because x2 is positive.

c. Let A = 1 and a = 1. Then by part (a), A|x2| ≤ |2x2 +
15x + 4| for all real numbers x > a, and so, by defini-
tion of �-notation, 2x2 + 15x + 4 is �(x2).
Let B = 21 and b = 1. Then, by part (b), |2x2 + 15x +
4| ≤ B|x2| for all real numbers x > b, and so, by defi-
nition of O-notation, 2x2 + 15x + 4 is O(x2).

d. Let k = 1, A = 1, and B = 21. By parts (a) and (b), for
all real numbers x > k,

A|x2| ≤ |2x2 + 15x + 4| ≤ B|x2|
and thus, by definition of �-notation, 2x2 + 15x + 4
is �(x2). In other words, 2x2 + 15x + 4 has order x2.
(Alternatively, Theorem 11.2.1(1) could be used to
derive this result.)

18. First observe that for all real numbers x > 1, 4x3 + 65x +
30 ≥ 0 because all terms are nonnegative. Adding x3 to
both sides gives 5x3 + 65x + 30 ≥ x3. By the nonnega-
tivity of the terms when x > 1, absolute value signs may
be added to both sides of the inequality to obtain |x3| ≤
|5x3 + 65x + 30| for all real numbers x > 1. Let a = 1
and A = 1. Then A|x3| ≤ |5x3 + 65x + 30| (*) for all real
numbers x > a.

Second, note that when x > 1,

|5x3 + 65x + 30| ≤ 5x3 + 65x + 30
because all the terms are
positive since x > 1.

⇒ |5x3 + 65x + 30| ≤ 5x3 + 65x3 + 30x3

because since x > 1, then
65x ≤ 65x3 and 30 ≤ 30x3

⇒ |5x3 + 65x + 30| ≤ 100x3

because 5+ 65+ 30 = 100

⇒ |5x3 + 65x + 30| ≤ 100|x3|
because x3 is positive since x > 1.

Let b = 1 and B = 100. Then |5x3 + 65x + 30| ≤ B|x3|
(**) for all real numbers x > b.

Let k = max(a, b). Putting inequalities (*) and (**)
together gives that for all real numbers x > k,

A|x3| ≤ |5x3 + 65x + 30| ≤ B|x3|.
Hence, by definition of �-notation, 5x3 + 65x + 30 is
�(x3); in other words, 5x3 + 65x + 30 has order x3.

20. a. By definition of ceiling, for any real number x,
⌈
x2
⌉
is

that integer n such that n − 1 < x2 ≤ n, and thus, by

substitution, x2 ≤ ⌈
x2
⌉
. Since x > 1, both sides of the

inequality are positive, and so |x2| ≤ ∣∣⌈x2⌉∣∣.
b. As in part (a),

⌈
x2
⌉
is that integer n such that n − 1 <

x2 ≤ n. Adding 1 to all parts of this inequality gives
n < x2 + 1 ≤ n + 1, so

⌈
x2
⌉

< x2 + 1. Thus if x is any
real number with x > 1, then∣∣⌈x2⌉∣∣ ≤ ⌈

x2
⌉

because
⌈
x2
⌉
is positive

⇒ ∣∣⌈x2⌉∣∣ ≤ x2 + 1 by the argument above

⇒ ∣∣⌈x2⌉∣∣ ≤ x2 + x2 because 1 < x2 since x > 1

⇒ ∣∣⌈x2⌉∣∣ ≤ 2x2

⇒ ∣∣⌈x2⌉∣∣ ≤ 2
∣∣x2∣∣ because x2 is positive.

c. Let A = 1 and a = 1. Then, by part (a),
∣∣x2∣∣ ≤ A|�x2�|

for all real numbers x > a, and thus, by definition of
�-notation,

⌈
x2
⌉
is �(x2).

Let B = 2 and b = 1. Then, by part (b),
∣∣x2∣∣ ≤ B

∣∣⌈x2⌉∣∣
for all real numbers x > b, and thus, by definition of O-
notation,

⌈
x2
⌉
is O(x2).

d. We conclude that
⌈
x2
⌉
is�(x2) by part (c) and Theorem

11.2.1(1). Alternatively, we can use the results of parts
(a) and (b), letting k = max(a, b), to obtain the result
that for all real numbers x > k,

A
∣∣x2∣∣ ≤ ∣∣⌈x2⌉∣∣ ≤ B

∣∣x2∣∣
and conclude directly from the definition of �-notation
that

⌈
x2
⌉
is �(x2).

22. a. For all real numbers x > 1,

|7x4 − 95x3 + 3| ≤ |7x4| + |95x3| + |3|
by the triangle inequality

⇒ |7x4 − 95x3 + 3| ≤ 7x4 + 95x3 + 3

because all terms are positive
since x > 1

⇒ |7x4 − 95x3 + 3| ≤ 7x4 + 95x4 + 3x4

because x > 1 implies that
x3 ≤ x4 and 1 ≤ x4

⇒ |7x4 − 95x3 + 3| ≤ 105|x4|
because 7+ 95+ 3 = 105
and x4 > 0.

b. 7x4 − 95x3 + 3 is O(x4)

25. Hint: Use an argument by contradiction similar to the one
in Example 11.2.8.

26. Proof: Suppose a0, a1, a2, . . . , an are real numbers and
an �= 0. By the generalized triangle inequality,

|anxn + an−1xn−1 + · · · + a1x + a0|
≤ |anxn| + |an−1xn−1| + · · · + |a1x | + |a0|,

and because the absolute value of a product is the product
of the absolute values (exercise 44, Section 4.4),

|anxn | + |an−1xn−1| + · · · + |a1x | + |a0|
≤ |an||xn| + |an−1||xn−1| + · · · + |a1||x | + |a0|.
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In addition, when x > 1, property (11.2.1) implies that

xn ≤ xn, xn−1 ≤ xn, . . . , x2 ≤ xn, x ≤ xn, 1 ≤ xn,

and also xn = |xn | because x > 1. Thus∣∣anxn + an−1xn−1 + · · · + a1x + a0
∣∣

≤ |an ||xn| + |an−1||xn| + · · · + |a1||xn | + |a0||xn|
≤ (|an| + |an−1| + · · · + |a1| + |a0|)|xn|.

Let b = 1 and B = |an | + |an−1| + · · · + |a1| + |a0|. Then
for all real numbers x > b,∣∣anxn + an−1xn−1 + · · · + a1x + a0| ≤ B|xn∣∣
and so, by definition of O-notation,

anx
n + an−1xn−1 + · · · + a1x + a0 is O(xn).

28. Let a =
(
95+3
7

)
·2 = 28, and let A = 7

2 . If x > a, then

x ≥
(
95+3
7

)
·2

⇒ x ≥ 95
7 ·2+

3
7 ·2

⇒ x ≥ 95
7 ·2+

3
7 ·2

1

x3

because
1
x3 < 1 since x > 28

⇒ 7
2 x

4 ≥ 95x3 + 3
by multiplying both sides by 7x3

2

⇒
(
7− 7

2

)
x4 ≥ 95x3 − 3

because 95x3 + 3 ≥ 95x3 − 3

and 7− 7
2 =

7
2

⇒ 7x4 − 7
2 x

4 ≥ 95x3 − 3
by multiplying out

⇒ 7x4 − 95x3 + 3 ≥ 7
2 x

4

by adding 7
2 x

4 − 95x3 + 3
to both sides

⇒ 7x4 − 95x3 + 3 ≥ Ax4

because A = 7
2

⇒ |7x4 − 95x3 + 3| ≥ A|x4|
because both sides are nonnegative.

Hence, by definiton of �-notation, 7x4 − 95x3 + 3 is
�(x4).

31. By exercise 22, 7x4 − 95x3 + 3 is O(x4), and by exercise
28, 7x4 − 95x3 + 3 is �(x4). Thus, by Theorem 11.2.1(1),
7x4 − 95x3 + 3 is �(x4).

34.
(x+1)(x−2)

4 = x2−x−2
4 = 1

4 x
2 − 1

4 x −
1
2 is �(x2)

by the theorem on polynomial orders.

37.
n(n+1)(2n+1)

6 = 2n3+3n2+n
6 = 1

3n
3 + 1

2n
2 + 1

6n,

which is �(n3) by the theorem on polynomial orders.

40. By exercise 10 of Section 5.2, 12 + 22 + 32 + · · · + n2 =

n(n+1)(2n+1)
6 , and, by exercise 37 above,

n(n+1)(2n+1)
6 is

�(n3). Hence 12 + 22 + 32 + · · · + n2 is �(n3).

42. By Theorem 5.2.2, 2+ 4+ 6+ · · · + 2n = 2
(
n(n+1)

2

)
=

n2 + n, and by the theorem on polynomial orders, n2 + n is
�(n2). Thus 2+ 4+ 6+ · · · + 2n is �(n2).

44. By direct calculation or by Theorem 5.1.1,
∑n

i=1(4i − 9) =
4
∑n

i=1 i −
∑n

i=1 9 = 4
(
n(n+1)

2

)
− 9n. The last equality

holds because of Theorem 5.2.2 and the fact that∑n
i=1 9 = 9+ 9+ · · · + 9 (n summands) = 9n.

Then 4
(
n(n+1)

2

)
− 9n = 2n2 + 2n − 9n = 2n2 − 7n, and

hence
∑n

i=1(4i − 9) = 2n2 − 7n. But 2n2 − 7n is �(n2)

by the theorem on polynomial orders. Thus
∑n

i=1(4i − 9)
is �(n2).

46. Hint: Use the result of exercise 13 from Section 5.2.

48. Hints:

a.
anxn + an−1xn−1 + · · · + a1x + a0

anxn

= 1+ an−1
an
· 1
x
+ an−2

an
· 1
x2
+ · · · + a1

an
· 1

xn−1
+ a0

an
· 1
xn

.

b. limn→∞ f (x) = L means that given any real number
ε > 0, there is a real number M > 0 such that L − ε <

f (x) < L + ε for all real numbers x > M . Apply the

definition of limit to the result of part (a), using ε = 1
2 .

49. a. Let f, g, and h be functions from R to R, and sup-
pose f (x) is O(h(x)) and g(x) is O(h(x)). Then there
exist real numbers b1, b2, B1, and B2 such that | f (x)| ≤
B1|h(x)| for all x > b1 and |g(x)| ≤ B2|h(x)| for all
x > b2. Let B = B1 + B2, and let b be the greater of
b1 and b2. Then, for all x > b,

| f (x)+ g(x)| < | f (x)| + |g(x)|
by the triangle inequality

⇒ | f (x)+ g(x)| ≤ B1|h(x)| + B2|h(x)|
by hypothesis

⇒ | f (x)+ g(x)| ≤ (B1 + B2)|h(x)|
by algebra

⇒ | f (x)+ g(x)| ≤ B|h(x)| because B = B1 + B2.

Hence, by definition of O-notation, f (x)+ g(x) is
O(h(x)).

b. By exercise 15, for all x > 1, x2 < x4. Hence |x2| ≤
1 · |x4| for all x > 1. Thus, by definition of O-notation,
x2 is O(x4). Clearly also, |x4| ≤ 1 · |x4| for all x , and so
x4 is O(x4). It follows by part (a) that x2 + x4 is O(x4).

50. d. Hint: If p, q, and s are positive integers, r is a
nonnegative integer, and

p
q >

r
s , then ps > qr and

so ps − qr > 0. Also x p/q

xr/s = x (p/q−r/s) = x (pq−rs)/qs .
Apply part (c) to x1/qs , and use the fact that ps − qr
is an integer and ps − qr > 0 to make use of the result
of exercise 15.
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51. By part (d) of exercise 50, for all x > 1, x ≤ x4/3 and
1 = x0 ≤ x4/3. Hence, by definition of O-notation (since
all expressions are positive), x is O(x4/3) and 1 is O(x4/3).
Also, by exercise 13, x4/3 is O(x4/3). By part (c) of
exercise 49, then, −15x = (−15)x is O(x4/3) and 7 =
7 ·1 is O(x4/3). It follows, by part (a) of exercise 49
(applied twice), that 4x4/3 − 15x + 7 = 4x4/3 + (−15x)+
7 is O(x4/3).

53. Hint: The proof is similar to the solution in Example 11.2.8.
(Choose a real number x so that x > B1/(r−s), x > 1, and
x > b.)

54. f (x) =
√
x(3x + 5)

2x + 1
= 3x3/2 + 5x1/2

2x + 1
. The numerator of

f (x) is a sum of rational power functions with highest
power 3/2, and the denominator is a sum of rational power
functions with highest power 1. Because 3/2− 1 = 1/2,
Theorem 11.2.4 implies that f (x) is �(x1/2).

57. a. Proof (by mathematical induction): Let the property
P(n) be the inequality

√
1+√2+√3+ · · · + √n ≤ n3/2.

Show that P(1) is true:

When n = 1, the left-hand side of the inequality is 1, and
the right-hand side is 13/2, which is also 1. Thus P(1) is
true.

Show that for all integers k ≥ 1, if P(k) is true, then
P(k + 1) is true:

Let k be any integer with k ≥ 1, and suppose
√
1+√2+√3+ · · · + √k ≤ k3/2.

[inductive hypothesis]

We must show that
√
1+√2+√3+ · · · + √k + 1 ≤ (k + 1)3/2.

But √
1+√2+√3+ · · · + √k + 1

= √1+√2+√3+ · · · + √k +√k + 1
by making the next-to-
last term explicit

⇒ √
1+√2+√3+ · · · + √k + 1 ≤ k3/2 +√k + 1

by inductive hypothesis

⇒ √
1+√2+√3+ · · · + √k + 1 ≤ k

√
k +√k + 1

because k3/2 = k
√
k

⇒ √
1+√2+√3+ · · · + √k + 1

≤ k
√
k + 1+√k + 1

because
√
k <
√
k + 1

⇒ √
1+√2+√3+ · · · + √k + 1 ≤ (k + 1)

√
k + 1

by factoring out
√
k + 1

⇒ √
1+√2+√3+ · · · + √k + 1 ≤ (k + 1)3/2.

[This is what was to be shown.]

b. Hint: When k ≥ 1, k2 ≥ k2 − 1. Use the fact that k2 −
1 = (k − 1)(k + 1) and divide both sides by k(k − 1)

to obtain k
k−1 ≥

k+1
k . But k+1

k ≥ 1, and any number
greater than or equal to 1 is greater than or equal to its

own square root. Thus k
k−1 ≥

k+1
k ≥

√
k+1
k =

√
k+1√
k

.

Hence k
√
k ≥ (k − 1)

√
k + 1 = (k + 1− 2)

√
k + 1 =

(k + 1)
√
k + 1− 2

√
k + 1, and so k

√
k + 2

√
k + 1 ≥

(k + 1)
√
k + 1.

c.
√
1+√2+√3+ · · · + √n is �(x3/2).

59. Proof: Suppose f (x) is o(g(x)). By definition of o-

notation, limx→∞
f (x)
g(x) = 0. By definition of limit, this

implies that given any real number ε > 0, there exists a

real number x0 such that
∣∣∣ f (x)g(x) − 0

∣∣∣ < ε for all x > x0.

Let b = max(x0, 1). Then | f (x)| ≤ ε|g(x)| for all x > b.
Choose ε = 1, and set B = 1. Then there exists a real num-
ber b such that | f (x)| ≤ B|g(x)| for all x > b. Hence, by
definition of O-notation, f (x) is O(g(x)).

Section 11.3
1. a. log2(200) = ln 200

ln 2
∼= 7.6 nanoseconds =

0.0000000076 second
d. 2002 = 40,000 nanoseconds = 0.00004 second
e. 2008 = 2.56× 1018 nanoseconds ∼=

2.56×1018
109 ·60 ·60 ·24 · (365.25) years ∼= 81.1215 years

[because there are 109 nanoseconds in a second, 60 sec-
onds in a minute, 60 minutes in an hour, 24 hours in a day
and approximately 365.25 days in a year on average].

2. a. When the input size is increased fromm to 2m, the num-
ber of operations increases from cm2 to c(2m)2 = 4cm2.

b. By part (a), the number of operations increases by a fac-
tor of (4cm2)/cm2 = 4.

c. When the input size is increased by a factor of 10 (from
m to 10m), the number of operations increases by a fac-
tor of (c(10m)2)/(cm2) = (100cm2)/cm2 = 100.

4. a. Algorithm A has order n2 and algorithm B has order
n3/2.

b. Algorithm A is more efficient than algorithm B when
2n2 < 80n3/2. This occurs exactly when

n2 < 40n3/2 ⇔ n2

n3/2
< 40⇔ n1/2 < 40⇔ n < 402.

Thus, algorithm A is more efficient than algorithm B
when n < 1,600.

c. Algorithm B is at least 100 times more efficient than
algorithm A for values of n with 100(80n3/2) ≤ 2n2.
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This occurs exactly when 8,000n3/2 ≤ 2n2 ⇔ 4, 000 ≤
n2

n3/2
⇔ 4,000 ≤ √n ⇔ 16,000,000 ≤ n. Thus, algo-

rithm B is at least 100 times more efficient than algo-
rithm A when n ≥ 16,000,000.

6. a. There are two multiplications, one addition, and one
subtraction for each iteration of the loop, so there are
four times as many operations as there are iterations of
the loop. The loop is iterated (n − 1)− 3+ 1 = n − 3
times (since the number of iterations equals the top
minus the bottom index plus 1). Thus the total number
of operations is 4(n − 3) = 4n − 12.

b. By the theorem on polynomial orders, 4n − 12 is �(n),
so the algorithm segment has order n.

8. a. There is one subtraction for each iteration of the loop,
and there are �n/2� iterations of the loop.

b. �n/2� =
{
n/2 if n is even

(n − 1)/2 if n is odd

is �(n) by theorem on polynomial orders, so the algo-
rithm segment has order n.

9. a. For each iteration of the inner loop, there are two mul-
tiplications and one addition. There are 2n iterations of
the inner loop for each iteration of the outer loop, and
there are n iterations of the outer loop. Therefore, the
number of iterations of the inner loop is 2n ·n = 2n2. It
follows that the total number of elementary operations
that must be performed when the algorithm is executed
is 3 ·2n2 = 6n2.

b. Since 6n2 is �(n2) (by the theorem on polynomial
orders), the algorithm segment has order n2.

11. a. There is one addition for each iteration of the inner
loop. The number of iterations in the inner loop can be
deduced from the table on the right, which shows the
values of k and j for which the inner loop is executed.

Hence the total number of iterations of the inner loop is

2+ 3+ · · · + n = (1+ 2+ 3+ · · · + n)− 1

= n(n + 1)

2
− 1 = 1

2
n2 + 1

2
n − 1

(by Theorem 5.2.2). Because one operation is performed
for each iteration of the inner loop, the total number of

operations is 1
2n

2 + 1
2n − 1.

b. By the theorem on polynomial orders, 12n
2 + 1

2n − 1 is

�(n2), and so the algorithm segment has order n2.

k 1 2 3 . . . n−1

j 1 2 1 2 3 1 2 3 4 . . . 1 2 3 . . . n︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸ ︸ ︷︷ ︸
2 3 4 n

14. a. There is one addition for each iteration of the inner loop,
and there is one additional addition and one multipli-
cation for each iteration of the outer loop. The number
of iterations in the inner loop can be deduced from the
following table, which shows the values of i and j for
which the inner loop is executed.

i 1 2 3 · · · n

j 1 1 2 1 2 3 · · · 1 2 3 · · · n︸︷︷︸︸ ︷︷ ︸︸ ︷︷ ︸ ︸ ︷︷ ︸
1 2 3 n

Hence the total number of iterations of the inner loop is

1+ 2+ 3+ · · · + n = (1+ 2+ 3+ · · · + n)

= n(n + 1)

2
= 1

2
n2 + 1

2
n

(by Theorem 5.2.2). Because one addition is performed
for each iteration of the inner loop, the number of oper-
ations performed when the inner loop is executed is
1
2n

2 + 1
2 . Now an additional two operations are per-

formed each time the outer loop is executed, and because
the outer loop is executed n times, this gives an addi-
tional 2n operations. Therefore, the total number of
operations is

1

2
n2 + 1

2
n + 2n = 1

2
n2 + 5

2
n.

b. By the theorem on polynomial orders, 1
2n

2 + 5
2n is

�(n2), and so the algorithm segment has order n2.

17. a. There are two subtractions and one multipliction for
each iteration of the inner loop.

If n is odd, the number of iterations of the inner loop
can be deduced from the following table, which shows
the values of i and j for which the inner loop is exe-
cuted.

i 1 2 3 4 5 6 . . . n − 1 . . . n . . .⌊
i+1
2

⌋
1 1 2 2 3 3 . . .

n−1
2 . . .

n+1
2 . . .

j 1 1 1 2 1 2 1 2 3 1 2 3 . . . 1 2 · · · n−1
2 1 2 . . .

n+1
2︸︷︷︸︸︷︷︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

1 1 2 2 3 3
n−1
2

n+1
2
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Thus the number of iterations of the inner loop is

1+ 1+ 2+ 2+ · · · + n − 1

2
+ n − 1

2
+ n + 1

2

= 2 ·
(
1+ 2+ 3+ · · · + n − 1

2

)
+ n + 1

2

= 2 ·
n − 1

2

(
n − 1

2
+ 1

)
2

+ n + 1

2
by Theorem 5.2.2

= n2 − 2n + 1

4
+ n − 1

2
+ n + 1

2

= 1

4
n2 + 1

2
n + 1

4
.

By similar reasoning, if n is even, then the number of
iterations of the inner loop is

1+ 1+ 2+ 2+ 3+ 3+ · · · + n

2
+ n

2

= 2 ·
(
1+ 2+ 3+ · · · + n

2

)

= 2 ·

⎛
⎝ n

2

(n
2
+ 1

)
2

⎞
⎠

by Theorem 5.2.2

= n2

4
+ n

2
.

Because three operations are performed for each itera-

tion of the inner loop, the answer is 3

(
n2

4 +
n
2

)
when

n is even and 3
(

1
4n

2 + 1
2n + 1

4

)
when n is odd.

b. Since 3

(
n2

4 +
n
2

)
is �(n2) and 3

(
1
4n

2 + 1
2n +

1
4

)
is

also �(n2) (by the theorem on polynomial orders), this
algorithm segment has order n2.

19. Hint: See Section 9.6 for a discussion of how to count the
number of iterations of the innermost loop.

20. a[1] a[2] a[3] a[4] a[5]
Initial order 6 2 1 8 4

Result of step 1 2 6 1 8 4

Result of step 2 1 2 6 8 4

Result of step 3 1 2 6 8 4

Final order 1 2 4 6 8

22. n 5

a[1] 6 2 1

a[2] 2 6 2

a[3] 1 6 4

a[4] 8 8 6

a[5] 4 8

k 2 3 4 5 6

x 2 1 8 4

j 1 0 2 1 0 3 4 3 2

24. There are 14 comparisons. Each iteration of the while loop
involves two comparisons, one to test whether j �= 0 and
one in the if statement to compare x and a[ j]. When k = 2,
the while loop executes one time, giving 2 comparisons;
when k = 3, it executes twice, giving 4 comparisons, when
k = 4, it executes once, giving 2 comparisons and when
k = 5, it executes three times, giving 6 comparisons. Thus
the total is 2+ 4+ 2+ 6 = 14 comparisons.

27. Hint: The answer to part (a) is En = 3+ 4+ · · · + (n + 1),
which equals (1+ 2+ 3+ · · · + (n + 1))− (1+ 2).

28. The top row of the table below shows the initial values of
the array, and the bottom row shows the final values. The
result for each value of k is shown in a separate row.

a[1] a[2] a[3] a[4] a[5]
5 3 4 6 2

2 3 4 6 5

2 3 4 6 5

2 3 4 6 5

2 3 4 5 6

30. n 5

a[1] 5 2

a[2] 3

a[3] 4

a[4] 6 5

a[5] 2 5 6

k 1 2 3 4 5

IndexOfMin 1 2 5 2 3 4 5

i 2 3 4 5 3 4 5 4 5 5

temp 5 6

32. There is one comparison for each combination of values of
k and i : namely, 4+ 3+ 2+ 1 = 10.

35. b. n − 3+ 1 = n − 2 d. Hint: The answer is n2.
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36. n 3

a[0] 2

a[1] 1

a[2] −1
a[3] 3

x 2

polyval 2 4 0 24

i 1 2 3

term 1 2 −1 −2 −4 3 6 12 24

j 1 1 2 1 2 3

38. Number of multiplications

= number of iterations of the inner loop

= 1+ 2+ 3+ · · · + n

= n(n + 1)

2
by Theorem 5.2.2

number of additions

= number of iterations of the outer loop

= n

Hence the total number of multiplications and additions is

n(n + 1)

2
+ n = 1

2
n2 + 3

2
n.

40. n 3

a[0] 2

a[1] 1

a[2] −1
a[3] 3

x 2

polyval 3 5 11 24

i 1 2 3

42. Hint: The answer is tn = 2n.

Section 11.4
1.

x f (x) = 3x

0 30 = 1

1 31 = 3

2 32 = 9

−1 3−1 = 1/3

−2 3−2 = 1/9

1/2 31/2 ∼= 1.7

−(1/2) 3−(1/2) ∼= 0.6

x

y

1 2 3–1–2–3

1

2

3

4

(1, 3)

y = 3x

3.
x h(x) = log10 x

1 0

10 1

100 2

1/10 −1
1/100 −2

x

y

5 10 15 20–1

1
h(x) = log10 x

5.
x �log2 x�

1 ≤ x < 2 0

2 ≤ x < 4 1

4 ≤ x < 8 2

8 ≤ x < 16 3

1/2 ≤ x < 1 −1
1/4 ≤ x < 1/2 −2

2 4 6 8 10 12 14 16

1

–1

–2

2

3

4

y

x

F(x) = �log2 x�

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



A-114 Appendix B Solutions and Hints to Selected Exercises

7.
x x log2 x

1 1 ·0 = 0

2 2 ·1 = 2

4 4 ·2 = 8

8 8 ·3 = 24

1/8 (1/8) ·(−3) = −3/8
1/4 (1/4) ·(−2) = −1/2
3/8 (3/8) ·(log2(3/8)) ∼= −0.53

2 4 6 8

8

16

24

x

y

y = x log2 x

9. The distance above the axis is (264 units) ·
(
1
4

inch
unit

)
=

264

4 inches = 264

4 ·12 ·5280 miles ∼= 72,785,448,520,000

miles. The ratio of the height of the point to the aver-
age distance of the earth to the sun is approximately
72785448520000/93000000 ∼= 782,639. (If you perform
the computation using metric units and the approximation
0.635 cm ∼= 1/4 inch, the ratio comes out to be approxi-
mately 780,912.)

10. b. By definition of logarithm, logb x is the exponent to
which b must be raised to obtain x . Thus when b is
actually raised to this exponent, x is obtained. That is,
blogb x = x .

11. b.

1

1

3

5

–1–3–5 3 5

–3

–5

–1
x

y

y = x
(3, 5)

(5, 3)

(4, 1)

(1, 4)

(–3, 1)

(–4, –2)

(–2, –4)

(1, –3)

Each pair of points
(u, v) and (v, u) are
"mirror image reflections"
across the line y = x.

13. Hints: (1) �log10 x� = m, (2) See Example 11.4.1.

15. No. Counterexample: Let n = 2. Then
�log2(n − 1)� = �log2 1� = �0� = 0,
whereas �log2 n� = �log2 2� = �1� = 1.

16. Hint: The statement is true.

18. �log2 148206� + 1 = 18

21. a. a1 = 1

a2 = a�2/2� + 2 = a1 + 2 = 1+ 2

a3 = a�3/2� + 2 = a1 + 2 = 1+ 2

a4 = a�4/2� + 2 = a2 + 2 = (1+ 2)+ 2

= 1+ 2 ·2
a5 = a�5/2� + 2 = a2 + 2 = (1+ 2)+ 2

= 1+ 2 ·2
a6 = a�6/2� + 2 = a3 + 2 = (1+ 2)+ 2

= 1+ 2 ·2
a7 = a�7/2� + 2 = a3 + 2 = (1+ 2)+ 2

= 1+ 2 ·2
a8 = a�8/2� + 2 = a4 + 2

= (1+ 2 ·2)+ 2 = 1+ 3 ·2
a9 = a�9/2� + 2 = a4 + 2

= (1+ 2 ·2)+ 2 = 1+ 3 ·2
...

a15 = a�15/2� + 2 = a7 + 2

= (1+ 2 ·2)+ 2 = 1+ 3 ·2
a16 = a�16/2� + 2 = a8 + 2

= (1+ 3 ·2)+ 2 = 1+ 4 ·2
...

Guess:

an = 1+ 2�log2 n�
b. Proof: Suppose the sequence a1, a2, a3, . . . is defined

recursively as follows: a1 = 1 and ak = a�k/2� + 2 for
all integers k ≥ 2. We will show by strong mathemat-
ical induction that the following property, P(n), is true
for all integers n ≥ 2 : an = 1+ 2�log n�.
Show that P(1) is true: P(1) is the equation
1+ 2�log2 1� = 1+ 2 ·0 = 1, which is the value of a1.

Show that for any integer k ≥ 1, if P(i) is true for
all integers i from 1 through k, then P(k+ 1) is true:
Let k be any integer with k ≥ 1, and suppose ai =
1+ 2�log2 i� for all integers i from 1 through k. [This
is the inductive hypothesis.] We must show that ak+1 =
1+ 2�log2(k + 1)�.
Case 1 (k is odd): In this case k + 1 is even, and

ak+1 = a�(k+1)/2� + 2

by the recursive definition of a1, a2, a3, . . .

= a(k+1)/2 + 2

because k + 1 is even (Theorem 4.5.2)
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= 1+ 2�log2((k + 1)/2)� + 2
by inductive hypothesis

= 3+ 2�log2(k + 1)− log2 2�
by Theorem 7.2.1(b)

= 3+ 2�log2(k + 1)− 1�
because log2 2 = 1

= 3+ 2(�log2(k + 1)� − 1)
because for all real numbers x, �x − 1� = �x� − 1
by exercise 15, Section 4.5

= 1+ 2�log2(k + 1)�
by algebra.

Case 2 (k is even): In this case k + 1 is odd, and

ak+1 = a�(k+1)/2� + 2
by the recursive definition of a1, a2, a3, · · ·

= ak/2 + 2
by Theorem 4.5.2 because k + 1 is odd.

= 1+ 2�log2(k/2)� + 2
by inductive hypothesis

= 3+ 2�log2 k − log2 2�
by Theorem 7.2.1(b)

= 3+ 2�log2 k − 1�
because log2 2 = 1

= 3+ 2(�log2 k� − 1)
because for all real numbers x, �x − 1� =
�x� − 1 by exercise 15, Section 4.5

= 1+ 2�log2 k�
by algebra.

= 1+ 2�log2(k + 1)�
by property 11.4.3.

Thus in either case, ak+1 = 1+ 2�log2(k + 1)� [as was
to be shown].

23. Hint: When k ≥ 2, then k2 ≥ 2k, and so k ≤ k2

2 . Hence
k2

2 + k ≤ k2

2 +
k2

2 = k2. Also when k ≥ 2, then k2 > 1,

and so 1
2 <

k2

2 . Consequently, k
2

2 +
1
2 <

k2

2 +
k2

2 = k2.

24. Hint: Here is the argument for the inductive step in the case
where k is odd and k + 1 is even.

ck+1 = 2c�(k+1)/2� + (k + 1)
by the recursive definition of c1, c2, c3, · · ·

⇒ ck+1 = c(k+1)/2 + (k + 1)
by Theorem 4.5.2 because k + 1 is even

⇒ ≤ 2
⌊
k+1
2 log2

(
k+1
2

)⌋
+ (k + 1)

by inductive hypothesis
⇒ ≤ (k + 1)(log2(k + 1)− log2 2)+ (k + 1)

by algebra and Theorem 7.2.1(b)
⇒ ≤ (k + 1)(log2(k + 1)− 1)+ (k + 1)

because log2 2 = 1
⇒ ≤ (k + 1)(log2(k + 1))

by algebra

25. Solution 1: One way to solve this problem is to compare
values for log2 x and x1/10 for conveniently chosen, large
values of x . For instance, if powers of 10 are used, the
following results are obtained: log2(10

10) = 10 log2 10 ∼=

33.2 and (1010)1/10 = 1010 · (1/10) = 101 = 10. Thus the
value x = 1010 does not work.

However, since log2(10
20) = 20 log2 10 ∼= 66.4 and

(1020)1/10 = 1020 · (1/10) = 102 = 100, and since 66.4 <

100, the value x = 1020 works.

Solution 2:Another approach is to use a graphing calculator
or computer to sketch graphs of y = log2 x and y = x1/10,
taking seriously the hint to “think big” in choosing the inter-
val size for the x’s. A few tries and use of the zoom and
trace features make it appear that the graph of y = x1/10

crosses above the graph of y = log2 x at about 4.9155×
1017. Thus, for values of x larger than this, x1/10 > log2 x .

27. As with exercise 25, you can solve this problem either by
numerical exploration or by exploring with a graphing cal-
culator or computer. For instance, if you raise 1.0001 to
successive large powers of 10, you can find the solution
x = 106 = 1,000,000. That is,
(1.0001)1000000 > 2.67× 1043 > 1,000,000.
(This is the first power of 10 that works.)

Alternatively, you can use a graphing calculator or com-
puter to sketch graphs of y1 = (1.0001)x and y2 = x and
look to see where the graph of y1 = (1.0001)x rises above
the graph of y2 = x . You will need to zoom in carefully to
obtain an accurate answer. If you use this method, you will
find that if x > 116703, then (1.0001)x > x .

29. 7x2 + 3x log2 x is �(x2).

30. [To show that 2x + log2 x is �(x), we must find positive real
numbers A, B, and k such that A|x | ≤ |2x + log2 x | ≤ B|x |
for all x > k.] It is clear from the graphs of y = log2 x and
y = x that for all x > 0, log2 x ≤ x . Adding 2x to both
sides gives 2x + log2 x ≤ 3x , or, because all terms are pos-
itive,

|2x + log2 x | ≤ 3|x |.
Also, when x > 1, then log2 x > 0, and so 0 < x + log2 x .
Adding x to both sides gives x < 2x + log2 x . Thus when
x > 1,

|x | ≤ |2x + log2 x |
Therefore, let k = 1, A = 1, and B = 3. Then for all real
numbers x > k,

A|x | ≤ |2x + log2 x | ≤ B|x |
and hence, by definition of �-notation, 2x + log2 x is
�(x).

32. For all integers n, 2n ≤ n2 + 2n . Also, by property
(11.4.10), there is a real number k such that n2 ≤ 2n for all
n > k. Adding 2n to both sides gives n2 + 2n ≤ 2n + 2n =
2 ·2n . Because all quantities are nonnegative, we can write

|2n| ≤ |n2 + 2n | ≤ 2 · |2n| for all integers n > k.

Let A = 1 and B = 2. Then

A|2n | ≤ |n2 + 2n | ≤ B|2n | for all integers n > k,

and hence, by definition of �-notation, n2 + 2n is �(2n).
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33. Hint: 2n+1 = 2 ·2n
34. Hint: Use a proof by contradiction. Start by supposing

that there are positive real numbers B and b such that
4n ≤ B ·2n for all real numbers n > b, and use the fact that
4n

2n =
(
4
2

)n = 2n to obtain a contradiction.

35. By Theorem 5.2.3, for all integers n ≥ 0,

1+ 2+ 22 + · · · + 2n = 2n+1 − 1

2− 1
= 2n+1 − 1.

Also

2n+1 − 1 ≤ 2n+1 = 2 ·2n .
Thus, by transitivity of order,

1+ 2+ 22 + · · · + 2n ≤ 2 ·2n . (*)

Moreover, if n > 0, then

2n ≤ 1+ 2+ 22 + · · · + 2n . (**)

Combining (*) and (**) gives

1 ·2n ≤ 1+ 2+ 22 + · · · + 2n ≤ 2 ·2n,
and so, because all parts are positive,

1 · |2n| ≤ |1+ 2+ 22 + · · · + 2n | ≤ 2 · |2n|.
Let A = 1, B = 2, and k = 1. Then for all integers n > k,

A · |2n| ≤ |1+ 2+ 22 + · · · + 2n | ≤ B · |2n|.
Thus, by definition of �-notation, 1+ 2+ 22 + · · · + 2n is
�(2n).

36. Hint: This is similar to the solution for exercise 35.
Use the fact that 4+ 42 + 43 + · · · + 4n =
4(1+ 4+ 42 + 43 + · · · + 4n−1).

39. Factor out the n to obtain

n + n

2
+ n

4
+ · · · + n

2n

= n

(
1+ 1

2
+ 1

4
+ · · · + 1

2n

)

= n

⎛
⎜⎝
(
1
2

)n+1 − 1

1
2 − 1

⎞
⎟⎠ by Theorem 5.2.3

= n

(
1− 2n+1

2n(1− 2)

)
by multiplying numerator
and denominator by 2n+1

= n

(
2n+1 − 1

2n

)

= n

(
2− 1

2n

)
by algebra.

Now 1 ≤ 2− 1

2n
≤ 2 when n > 1. Thus

1 ·n ≤ n

(
2− 1

2n

)
≤ 2 ·n,

and so, by substitution,

1 ·n ≤ n + n

2
+ n

4
+ · · · + n

2n
≤ 2 ·n.

Let A = 1, B = 2, and k = 1. Then, because all quantities
are positive, for all integers n > k,

A · |n| ≤
∣∣∣n + n

2
+ n

4
+ · · · + n

2n

∣∣∣ ≤ B · |n|.

Hence, by definition of �-notation, n + n
2 +

n
4 + · · · +

n
2n

is �(n).

43. If n is any integer with n ≥ 3, then

n + n

2
+ n

3
+ · · · + n

n
= n

(
1+ 1

2
+ 1

3
+ · · · + 1

n

)
.

By Example 11.4.7,

ln(n) ≤ 1+ 1

2
+ 1

3
+ · · · + 1

n
≤ 2 ln(n).

If n > 1, then we may multiply through by n and use the
fact that all quantities are positive to obtain

|n ln(n)| ≤
∣∣∣n + n

2
+ n

3
+ · · · + n

n

∣∣∣ ≤ 2 |n ln(n)|.
Let A = 1, B = 2, and k = 1. Then for all integers n > k,

A · |n ln(n)| ≤
∣∣∣n + n

2
+ n

3
+ · · · + n

n

∣∣∣ ≤ B · |n ln(n)|

and so, by definition of �-notation, n + n
2 +

n
3 + · · · +

n
n

is �(n ln(n)).

46. Proof (by mathematical induction): Let the property P(n)
be the inequality n ≤ 10n .

Show that P(1) is true:

When n = 1, the inequality is 1 ≤ 10, which is true.

Show that for all integers k ≥ 1, if P(k) is true, then
P(k + 1) is true:

Let k be any integer with k ≥ 1, and suppose k ≤ 10k .
[This is the inductive hypothesis.] We must show that
k + 1 ≤ 10k+1. By inductive hypothesis, k ≤ 10k . Adding
1 to both sides gives k + 1 ≤ 10k + 1. But when
k ≥ 1, 10k + 1 ≤ 10k + 9 ·10k = 10 ·10k = 10k+1. Thus,
by transitivity of order, k + 1 ≤ 10k+1 [as was to be shown].

47. Hint: To prove the inductive step, use the fact that if k > 1,
then k + 1 ≤ 2k. Apply the logarithmic function with base
2 to both sides of this inequality, and use properties of log-
arithms.

48. Hint: 2 ·2 ·2 · · · 2︸ ︷︷ ︸ ≤ 2 ·(2 ·3 ·4 · · · n) = 2 ·n!
n factors

49. a. Proof: Suppose n is a variable that takes positive integer
values. Then

n! = n ·(n − 1) ·(n − 2) · . . . ·2 ·1︸ ︷︷ ︸
n factors

≤ n ·n ·n ·n · . . . ·n︸ ︷︷ ︸ = nn

n factors

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



11.5 Solutions and Hints to Selected Exercises A-117

because (n − 1) ≤ n, (n − 2) ≤ n, . . . , and 1 ≤ n. Let
B = 1 and b = 1. It follows from the displayed inequal-
ity and the fact that n! and nn are positive that |n!| ≤
B · |nn| for all integers n > b. Hence, by definition of
O-notation, n! is O(nn).

c. Hint: (n!)2 = n! ·n! = (1 ·2 ·3 · · · n)(n ·(n − 1) · · · 3 ·2 ·1)
=

(
n∏

r=1
r

)(
n∏

r=1
(n − r + 1)

)
=

n∏
r=1

r(n − r + 1). Show

that for all integers r = 1, 2, . . . , n, nr − n2 +
r ≥ n.

50. a. Let n be a positive integer. For any real number x > 1,
properties of exponents and logarithms (see Sec-
tion 7.2) imply that 0 ≤ log2(x) = log2((x

1/n)n) =
n log2(x

1/n) < nx1/n (where the last inequality holds by
substituting x1/n in place of u in log2 u < u).

b. Let B = n and b = 1. Then if x > x0, | log2 x | =
log2 x ≤ B · |x1/n|, and so log2 x is O(x1/n).

52. Let n be a positive integer, and suppose that x > (2n)2n . By
properties of logarithms,

log2 x = (2n)

(
1

2n

)
(log2 x)

= (2n) log2
(
x

1
2n

)
< 2nx

1
2n (*)

(where the last inequality holds by substituting x
1
2n in place

of u in log2 u < u). But raising both sides of x > (2n)2n to
the 1/2 power gives x1/2 > ((2n)2n)1/2 = (2n)n . When both
sides are multiplied by x1/2, the result is x = x1/2x1/2 >

x1/2(2n)n = x1/2(2n)n , or, more compactly,

x1/2(2n)n < x .

Then, since the power function defined by x → x1/n is
increasing for all x > 0 (see exercise 21 of Section 11.1),
we can take the nth root of both sides of the inequality and
use the laws of exponents to obtain

(x1/2(2n)n)1/n < x1/n

or, equivalently,

2nx
1
2n < x1/n . (**)

Now use transitivity of order (Appendix A, T18) to com-
bine (*) and (**) and conclude that log2 x < x1/n [as was to
be shown].

54. Proof (by mathematical induction): Let b be a real number
with b > 1, and let the property P(n) be the equation

lim
x→∞

(
xn

bx

)
= 0.

Show that P(1) is true:

By L’Hôpital’s rule, limx→∞

(
x1

bx

)
= limx→∞

(
1

bx (ln b)

)
=

0. Thus P(1) is true.

Show that for all integers k ≥ 1, if P(k) is true, then
P(k + 1) is true:

Let k be any integer with k ≥ 1, and suppose

limx→∞

(
xk

bx

)
= 0. [This is the inductive hypothesis.] We

must show that limx→∞

(
xk+1
bx

)
= 0. But by

L’Hôpital’s rule, limx→∞
xk+1
bx = limx→∞

(k+1)xk
(ln b)bx =

(k+1)
(ln b) limx→∞

xk

bx =
(k+1)
(ln b) ·0 [by inductive hypothesis]= 0.

[This is what was to be shown.]
b. By the result of part (a) and the definition of limit,

given any real number ε > 0, there exists an integer N

such that | xnbn − 0| < ε for all x > N . In this case take

ε = 1. It follows that for all x > N , | xnbx | = |
xn

bx | < 1.
Multiply both sides by |bx | to obtain |xn| < |bx |. Let
B = 1 and b = N . Then |xn| < B · |bx | for all x > b.
Hence, by definition of O-notation, xn is O(bx ).

Section 11.5
1. log2 1000 = log2(10

3) = 3 log2 10 ∼= 3(3.32) ∼= 9.96
log2(1,000,000) = log2(10

6) = 6 log2 10 ∼= 6(3.32)
∼= 19.92

log2(1,000,000,000,000) = log2(10
12) = 12 log2 10∼= 12(3.32) = 39.84

2. a. If m = 2k , where k is a positive integer, then the algo-
rithm requires c�log2(2k)� = c�k� = ck operations. If
the input size is increased to m2 = (2k)2 = 22k , then
the number of operations required is c�log2(22k)� =
c�2k� = 2(ck). Hence the number of operations dou-
bles.

b. As in part (a), for an input of size m = 2k , where
k is a positive integer, the algorithm requires ck
operations. If the input size is increased to m10 =
(2k)10 = 210k , then the number of operations required is
c�log2(210k)� = c�10k� = 10(ck). Thus the number of
operations increases by a factor of 10.

c. When the input size is increased from 27 to 228, the
factor by which the number of operations increases is
c�log2(228)�
c�log2(27)�

= 28c

7c
= 4.

3. A little numerical exploration can help find an initial
window to use to draw the graphs of y = x and y =⌊
50 log2 x

⌋
. Note that when x = 28 = 256,

⌊
50 log2 x

⌋ =⌊
50 log2(2

8)
⌋ = �50 ·8� = �400� = 400 > 256 = x . But

when x = 29 = 512,
⌊
50 log2 x

⌋ = ⌊
50 log2(2

9)
⌋ =

�50 ·9� = �450� = 450 < 512 = x . So a good choice of
initial window would be the interval from 256 to 512.
Drawing the graphs, zooming if necessary, and using the
trace feature reveal that when n < 438, n <

⌊
50 log2 n

⌋
.

5. a. index 0 1

bot 1

top 10 4 1

mid 5 2 1
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b. index 0

bot 1 6 7

top 10 7 6

mid 5 8 6 7

7. a. top− bot+ 1
b. Proof: Suppose top and bot are particular but arbitrar-

ily chosen positive integers such that top− bot+ 1 is
an odd number. Then, by definition of odd, there is an
integer k such that

top− bot+ 1 = 2k + 1

Adding 2 ·bot− 1 to both sides gives

bot+ top = 2 ·bot− 1+ 2k + 1

= 2(bot+ k).

But bot+ k is an integer. Hence, by definition of even,
bot+ top is even.

8. n 27 13 6 3 1 0

9. For each positive integer n, n div 2 = �n/2�. Thus when the
algorithm segment is run for a particular n and the while
loop has iterated one time, the input to the next iteration is
�n/2�. It follows that the number of iterations of the loop
for n is one more than the number of iterations for �n/2�.
That is, an = 1+ a�n/2�. Also a1 = 1.

10. The recurrence relation and initial condition of
a1, a2, a3, . . . derived in exercise 9 are the same as those
for the sequence w1, w2, w3, . . . discussed in the worst-
case analysis of the binary search algorithm. Thus the gen-
eral formulas for the two sequences are the same. That is,
an = 1+ ⌊

log2 n
⌋
, for all integers n ≥ 1.

11. In the analysis of the binary search algorithm, it was shown
that 1+ ⌊

log2 n
⌋
is �(log2 n). Thus the algorithm segment

has order log2 n.

14. Hint: The formula is bn = 1+ ⌊
log3 n

⌋
.

20.

1 2 3 4 5 6 7 8

5

6

3

9

12

4

2

7

9

11

9 10

22.

R G

R

R

R

R

G

G

G

B

B U

B

B

B

G

U

U

U

U

R G B U

C F H G

B C F G G H R U

C

C

F

G

F

F

C

C

H

H

G

F

G

G

H

H

C F H G

Initial array:

Final array:

split

split split

split

merge

merge merge

merge

split split

split

merge merge

merge

24. b. Refer to Figure 11.5.3 and observe that when k is odd,
the subarray a[bot], a[bot+ 1], . . . , a[mid] has length
(k + 1)/2 = �k/2� and that when k is even, it also has
length k/2 = �k/2�.

25. Hint: The following are the steps for part (a) in the case
where k is odd and k + 1 is even:

mk+1 = m�(k+1)/2� + m�(k+1)/2� + (k + 1)− 1

⇒ mk+1 = m(k+1)/2 + m(k+1)/2 + (k + 1)− 1
by Theorem 4.5.2 and exercise 19 in
Section 4.5 because k + 1 is even

⇒ mk+1 = 2m(k+1)/2 + k

⇒ mk+1 ≥ 2 · [ 12 · ( k+12 )
log2

(
k+1
2

)]+ k
by inductive hypothesis

⇒ mk+1 ≥ (
k+1
2

) [log2(k + 1)− log2 2] + k

⇒ mk+1 ≥ 1
2 (k + 1)[log2(k + 1)− 1] + k

⇒ mk+1 ≥ 1
2 (k + 1) log2(k + 1)− (

k+1
2

)+ 2k
2

⇒ mk+1 ≥ 1
2 (k + 1) log2(k + 1)+ k−1

2

⇒ mk+1 ≥ 1
2 (k + 1) log2(k + 1)

Section 12.1
1. a. L1 = {ε, x, y, xx, yy, xxx, xyx, yxy, yyy, xxxx,

xyyx, yxxy, yyyy}
b. L2 = {x, xx, xy, xxx, xxy, xyx, xyy}

3. a. (a + b) ·(c + d)
b. Partial answer: 11∗ = 1 ·1 = 1, 12∗ = 1 ·2 = 2,

21/ = 2/1 = 2
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12.2 Solutions and Hints to Selected Exercises A-119

4. L1L2 is the set of all strings of a’s and b’s that start with an
a and contain an odd number of a’s.

L1 ∪ L2 is the set of all strings of a’s and b’s that contain an
even number of a’s or that start with an a and contain only
that one a. (Note that because 0 is an even number, both ε

and b are in L1 ∪ L2.)

(L1 ∪ L2)
∗ is the set of all strings of a’s and b’s. The reason

is that a and b are both in L1 ∪ L2, and thus every string in
a and b is in (L1 ∪ L2)

∗.
7. (a | ((b∗)b))((a∗) | (ab))

10. (ab∗ | cb∗)(ac | bc)
13. L(ε | ab) = L(ε) ∪ L(ab) = {ε} ∪ L(a)L(b)

= {ε} ∪ {xy | x ∈ L(a) and y ∈ L(b)}
= {ε} ∪ {xy | x ∈ {a} and y ∈ {b}}
= {ε} ∪ {ab} = {ε, ab}

16. Here are five strings out of infinitely many: 0101, 1, 01,
10000, and 011100.

19. The language consists of all strings of a’s and b’s that con-
tain exactly three a’s and end in an a.

22. aaaba is in the language but baabb is not because if a
string in the language contains a b to the right of the left-
most a, then it must contain another a to the right of the
all b’s.

25. One solution is 0∗10∗(0∗10∗10∗)∗.
28. L((r | s)t) = L(r | s)L(t) = (L(r) ∪ L(s))L(t)

= {xy | x ∈ (L(r) ∪ L(s)) and y ∈ L(t)}
= {xy | (x ∈ L(r) or x ∈ L(s)) and y ∈ L(t)}
= {xy | (x ∈ L(r) and y ∈ L(t)) or

(x ∈ L(s) and y ∈ L(t))}
= {xy | xy ∈ L(r t) or xy ∈ L(st)}
= L(r t) ∪ L(st)
= L(r t | st)

31. pre[a − z]+
34. [a − z]∗(a | e | i | o | u)[a − z]∗
37. [0− 9]{3} - [0− 9]{2} - [0− 9]{4}
39. ([+ −] | ε)[0− 9]∗(\. | ε)[0− 9]∗
40. Hint: Leap years from 1980 to 2079 are 1980, 1984, 1988,

1992, 1996, 2000, 2004, etc. Note that the fourth digit
is 0, 4, or 8 for the ones whose third digit is even and
that the fourth digit is 2 or 6 for those whose third digit
is odd.

Section 12.2
1. a. $1 or more deposited

2. a. s0, s1, s2 b. 0, 1 c. s0 d. s2
e. Annotated next-state table:

Input
0 1

→ s0 s1 s0
State s1 s1 s2

� s2 s2 s2

5. a. A, B,C, D, E, F b. x, y c. A d. D, E
e. Annotated next-state table:

Input
x y

→ A C B
B F D

State C E F
� D F D
� E E F

F F F

7. a. s0, s1, s2, s3 b. 0, 1 c. s0 d. s0, s2
e. Annotated next-state table:

Input
0 1

→ � s0 s0 s1
State s1 s1 s2

� s2 s2 s3
s3 s3 s0

8. a. s0, s1, s2 b. 0, 1 c. s0 d. s2
e.

0

1 1

1

0

0
s0

s2

s1

10. a. N (s1, 1) = s2, N (s0, 1) = s3
c. N ∗(s0, 10011) = s2, N ∗(s1, 01001) = s2

11. a. N (s3, 0) = s4, N (s2, 1) = s4
c. N ∗(s0, 010011) = s3, N ∗(s3, 01101) = s4

Note that multiple correct answers exist for part (d) of exercises
12 and 13, part (b) of exercises 14–19, and for exercises 20–48.

12. a. (i) s2 (ii) s2 (iii) s1
b. those in (i) and (ii) but not (iii)
c. The language accepted by this automaton is the set of all

strings of 0’s and 1’s that contain at least one 0 followed
(not necessarily immediately) by at least one 1.

d. 1∗00∗1(0 | 1)∗
14. a. The language accepted by this automaton is the set of all

strings of 0’s and 1’s that end 00.
b. (0 | 1)∗00

15. a. The language accepted by this automaton is the set of all
strings of x’s and y’s of length at least two that consist
either entirely of x’s or entirely of y’s.

b. xxx∗ | yyy∗
17. a. The language accepted by this automaton is the set of

all strings of 0’s and 1’s with the following property: If
n is the number of 1’s in the string, then n mod 4 = 0
or n mod 4 = 2. This is equivalent to saying that n is
even.

b. 0∗ | (0∗10∗10∗)∗
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18. a. The language accepted by this automaton is the set of all
strings of 0’s and 1’s that end in 1.

b. (0 | 1)∗1
20. a. Call the automaton being constructed A. Acceptance of

a string by A depends on the values of three consecutive
inputs. Thus A requires at least four states:

s0: initial state

s1: state indicating that the last input character was a 1

s2: state indicating that the last two input characters were
1’s

s3: state indicating that the last three input characters
were 1’s, the acceptance state

If a 0 is input to A when it is in state s0, no progress is
made toward achieving a string of three consecutive 1’s.
Hence A should remain in state s0. If a 1 is input to A
when it is in state s0, it goes to state s1, which indicates
that the last input character of the string is a 1. From state
s1, A goes to state s2 if a 1 is input. This indicates that
the last two characters of the string are 1’s. But if a 0 is
input, A should return to s0 because the wait for a string
of three consecutive 1’s must start all over again. When
A is in state s2 and a 1 is input, then a string of three
consecutive 1’s is achieved, so A should go to state s3.
If a 0 is input when A is in state s2, then progress toward
accumulating a sequence of three consecutive 1’s is lost,
so A should return to s0. When A is in a state s3 and a 1
is input, then the final three symbols of the input string
are 1’s, and so A should stay in state s3. If a 0 is input
when A is in state s3, then A should return to state s0 to
await the input of more 1’s. Thus the transition diagram
is as follows:

11 1
1

s1s0 s2 s3

0 0

0

0

b. (0 | 1)∗111
21. Hint: Use five states: s0 (the initial state), s1 (the state indi-

cating that the previous input symbol was an a), s2 (the state
indicating that the previous input symbol was a b), s3 (the
state indicating that the previous two input symbols were
a’s), and s4 (the state indicating that the previous two input
symbols were b’s).

23. a.

s0 s1

s3

s2
0 1

0

10
1

0

1

b. 01(0 | 1)∗

25. a.

0

1

0

0

1

1

s0 s1 s2

b. (0 | 1)∗10
26. a.

a a a, b
a

s0 s1 s3s2
b b b

b. a∗ba∗ba∗

28. a.
1 0

0, 1

s0 s1 s2 s3
0 1

1

0

b. (0 | 1)∗010(0 | 1)∗
29.

0

1

0, 1

s0 s1

31.

x

y

x

y

y
y

x

x

s1 s3s2

s4

s0

33.

s0 s1 s2

s4

s3
1

1

1 1

0

0

0

0, 1

0

36.
0

1

1

0

s0 s1

39. Let P̂ denote a list of all letters of a lower-case alphabet
except p, R̂ denote a list of all the letters of a lower-case
alphabet except r , and Ê denote a list of all the letters of a
lower-case alphabet except e.
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s0 s1

s5

s2 s3 s4
p r [a–z]

[a–z]
e

P̂
R̂ Ê

42. Let C denote a list of all the consonants in a lower-case
alphabet.

s0 s1
a, e, i, o, u

[a–z]

45.

s0 s1 s2 s3

s12

s4 s5

s11

[0–9] [0–9] [0–9]

[0–9]

–

– –

–
––

–
[0–9], –

[0–9]

s10 s9 s8 s7 s6
[0–9]

[0–9]
[0–9]

[0–9][0–9][0–9] –

– – –

51. Hint: This proof is virtually identical to that of Example
12.2.8. Just take p and q in that proof so that p > q. From
the fact that A accepts apbp , you can deduce that A accepts
aqbp . Since p > q, this string is not in L .

53. Hint: Suppose the automaton A has N states. Choose an
integer m such that (m + 1)2 − m2 > N . Consider strings
of a’s of lengths between m2 and (m + 1)2.
Since there are more strings than states, at least two strings
must send A to the same state si :

(m + 1)2︷ ︸︸ ︷
aa . . . a︸ ︷︷ ︸aa . . . aaa . . . aaa . . . a

m2 ↑ ↗
after both of these
inputs, A is in state si

It follows (by removing the a’s shown in color) that the
automaton must accept a string of the form ak , where
m2 < k < (m + 1)2.

Section 12.3
1. a. 0-equivalence classes: {s0, s1, s3, s4}, {s2, s5}

1-equivalence classes: {s0, s3}, {s1, s4}, {s2, s5}
2-equivalence classes: {s0, s3}, {s1, s4}, {s2, s5}

b. 1

01[s0] [s1] [s2]

0 1 0

4. a. 0-equivalence classes: {s0, s1, s2}, {s3, s4, s5}
1-equivalence classes: {s0, s1, s2}, {s3, s5}, {s4}
2-equivalence classes: {s0, s2}, {s1}, {s3, s5}{s4}
3-equivalence classes: {s0, s2}, {s1}, {s3, s5}, {s4}

b.

1

0

0

0

1

1

[s0]

[s1]

[s4][s3]
0, 1

6. a. Hint: The 3-equivalence classes are {s0}, {s1}, {s2}, {s3},
{s4}, {s5}, and {s6}.

7. Yes. For A:

0-equivalence classes: {s0, s2}, {s1, s3}
1-equivalence classes: {s0}, {s2}, {s1, s3}
2-equivalence classes: {s0}, {s2}, {s1, s3}

Transition diagram for A :
[s2]

[s1]

0

[s0]

1
0

0

1

1

For A′:

0-equivalence classes:
{
s ′0, s

′
1, s

′
2

}
,
{
s ′3
}

1-equivalence classes:
{
s ′0, s

′
2

}
,
{
s ′1
}
,
{
s ′3
}

2-equivalence classes:
{
s ′0, s

′
2

}
,
{
s ′1
}
,
{
s ′3
}

Transition diagram for A′ :
[s'1]

[s'3]

0

[s'0]

1
0

0

1

1

Except for the labeling of the states, the transition diagrams
for A and A′ are identical. Hence A and A′ accept the same
language, and so, by Theorem 12.3.3, A and A′ also accept
the same language. Thus A and A′ are equivalent automata.
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9. For A:

0-equivalence classes: {s1, s2, s4, s5}, {s0, s3}
1-equivalence classes: {s1, s2}, {s4, s5}, {s0, s3}
2-equivalence classes: {s1}, {s2}, {s4, s5}, {s0, s3}
3-equivalence classes: {s1}, {s2}, {s4, s5}, {s0, s3}

Therefore, the states of A are the 3-equivalence classes
of A.

For A′:

0-equivalence classes:
{
s ′2, s

′
3, s

′
4, s

′
5

}
,
{
s ′0, s

′
1

}
1-equivalence classes:

{
s ′2, s

′
3, s

′
4, s

′
5

}
,
{
s ′0, s

′
1

}
Therefore, the states of A′ are the 1-equivalence classes
of A′.
According to the text, two automata are equivalent if, and
only if, their quotient automata are isomorphic, provided
inaccessible states have first been removed. Now A and A′

have no inaccessible states, and A has four states whereas
A′ has only two states. Therefore, A and A′ are not equiva-
lent.

This result can also be obtained by noting, for example, that
the string 11 is accepted by A′ but not by A.

11. Partial answer: Suppose A is a finite-state automaton with
set of states S and relation R∗ of ∗-equivalence of states.
[To show that R∗ is an equivalence relation, we must show that
R is reflexive, symmetric, and transitive.]

Proof that R∗ is symmetric:
[We must show that for all states s and t, if s R∗ t then t R∗ s.]
Suppose that s and t are states of A such that sR∗t . [We
must show that t R∗ s.] Since s R∗ t , then for all input
strings w,[

N ∗(s, w) is an
accepting state

]
⇔

[
N ∗(t, w) is an
accepting state

]

where N ∗ is the eventual-state function on A. But then,
by symmetry of the⇔ relation, it is true that for all input
strings w,[

N ∗(t, w) is an
accepting state

]
⇔

[
N ∗(s, w) is an
accepting state

]
Hence t R∗ s [as was to be shown], so R∗ is symmetric.

12. The proof is identical to the proof of property (12.3.1) given
in the solution to exercise 11 provided each occurrence of
“for all input strings w” is replaced by “for all input strings
w of length less than or equal to k.”

13. Proof: By property (12.3.2), for each integer k ≥ 0, k-
equivalence is an equivalence relation. But by Theorem
10.3.4, the distinct equivalence classes of an equivalence
relation form a partition of the set on which the relation is
defined. In this case, the relation is defined on the states of
the automaton. So the k-equivalence classes form a parti-
tion of the set of all states of the automaton.

15. Hint 1: Suppose Ck is a particular but arbitrarily chosen k-
equivalence class. You must show that there is a (k − 1)-
equivalence class Ck−1 such that Ck ⊆ Ck−1.
Hint 2: If s is any element in Ck , then s is a state of
the automaton. Now the (k − 1)-equivalence classes par-
tition the set of all states of the automaton into a union
of mutually disjoint subsets, so s ∈ Ck−1 for some (k − 1)-
equivalence class Ck−1.
Hint 3: To show that Ck ⊆ Ck−1, you must show that for
any state t , if t ∈ Ck , then t ∈ Ck−1.

17. Hint: If m < k, then every input string of length less than
or equal to m has length less than or equal to k.

19. Hint: Suppose two states s and t are equivalent. You must
show that for any input symbol m, the next-states N (s,m)

and N (t,m) are equivalent. To do this, use the definition of
equivalence and the fact that for any stringw′, input symbol
m, and state s, N ∗(N (s,m), w′) = N ∗(s,mw′).
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INDEX

Abduction, 142
Absolute value, 187
Absolute value function, 722
Absorption laws, 35, 355, 376
Accepting state of machine (automaton), 792–793, 795–796, 798–799
Ackermann, Wilhelm, 332–333
Ackermann function, 332–333
Acquaintance graph, 637–638
Aczel, Amir D., 160n
Addition

in binary notation, 81
circuits for computer, 82–84
negative integers and computer, 87–90

Addition rule, 540–541
Additive identity, 213
Additive inverse, 4
Adjacency matrix, 662–664, 672–673
Adjacent edges, 626

sequences of, 644
Adjacent to itself (vertex), 626
Adjacent vertices, 626

sequences of, 644
Adleman, Leonard, 479–480
Airline route scheduling, 701–703, 705, 707–708, 710–711
Aldous, David, 518
Algebra, Boolean, 374–377
Algebraic expression

divisibility of, 172
representation of, 696–697

Algebraic proof
of binomial theorem, 592, 598–600
of Pascal’s formula, 595
of set identities, 370–372

Algol (computer language), 685
Algorithm(s)

binary search, 765–772
to check whether one set is subset of another, 348–349
to convert from base 10 to base 2 using repeated division by 2,

240–242
correctness of, 279–288
definition of, 214
Dijkstra’s shortest path, 710–714
division, 218–219, 284–286
efficiency of, 739–747, 764–776
Euclidean, 220–224, 286–288,

485–487, 497
execution times of, 740–741
finite-state automata simulated

by, 800–801
insertion sort, 740, 744–747
intractable, 775–776
Kruskal’s, 704–707
loop invariants and, 281–284

merge sort, 772–775
with nested loop, order for, 743–744
notation for, 218
number theory and, 214–224
order, 742–744
origin of word, 218
polynomial-time, 776
pre-/post-conditions, 280–281
Prim’s, 707–709
selection sort, 749
sequential search, 739–740
space efficiency of, 776
time efficiency of, 740–747
tractable, 775–776

Algorithmic language
conditional statement in, 214–215
description of, 214–217
for-next loop in, 215, 217
if-then-else statements and, 215–216
if-then statements and, 215–216
as pseudocode, 214
variables and expressions in, 214
while loop in, 215–217

Algorithm segments, computing orders
of, 742–744

Alice in Wonderland (Carroll), 146, 214
al-Kashi, Ghiyâth al-Dîn Jamshîd, 433
al-Khowârizmî, Abu Ja’far Mohammed ibn Mûsâ, 218
Alphabet

Caesar cipher and, 478–480
formal language over, 780–781
input, 793
regular expressions over, 783
sets of strings over, 329
string of characters of, 780–781

Alternating sequence, 229
Ambiguous language, 122–123
Ambiguous premises, 57
American Standard Code for information Interchange (ASCII), 437
Analytical Engine (Babbage’s), 739
Ancestor, 695
Anderson, John, 54
AND-gate, 66–67

multiple-input, 71
And statement

negation of, 32–34, 112
truth values for, 29
when to use, 34

Annotated next-state table, 794–795
Annual percentage rate (APR), 299–300
Antecedent, 40
Antisymmetry, 499
Any, misuse of, 158
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I-2 Index

APR. See Annual percentage rate
Archimedes of Syracuse, 129n
Archimedian principle, 129n
Archimedian property for rational

numbers, 278
Area code strings, 807
Arguing from examples, 156–157
Argument(s)

definition of, 51
direct, 561
element, 337, 352, 354
indirect, when to use, 211
indirect, with contradiction and contraposition, 198–205, 561
logical form of, 23–24
by mathematical induction, 245
with “no,” 139
with quantified statements, 131–142
quantified statements, validity

of, 135–139
sound/unsound, 59
Tarski’s World, evaluating, 140–141

Argument form, 51
creating additional, 140–141
invalid, 52
valid, 51–52, 61, 135

Arguments, valid and invalid
contradictions and valid, 59–60
definition of, 51, 135
determining, 52
fallacies and, 57–59
invalid with true conclusion/premises, 59
modus ponens/modus tollens and, 52–54
proof by division into cases for, 56
rules of inference and, 54–57
valid with false conclusion/premises, 58

Aristotle, 23, 208
Arithmetic

fundamental theorem of, 176
modular, 482–487
sequence, 306–307

Array(s)
See also One-dimensional arrays
action of insertion on, 745
middle elements of, 765–766
search algorithms for, 765–772

Arrow diagrams
for functions, 384–386
of relations, 16

Artificial intelligence, 127, 142, 359, 631
Art of Computer Programming, The (Knuth), 598n, 739
ASCII (American Standard Code for information Interchange), 437
Assignment statement, 214
Associative laws, 35, 355, 375

generalized, 372
matrix multiplication and, 668–669

Assumptions, 51
At least, 571
At most, 571
Augusta, Ada, Countess of Lovelace, 214
Automaton/automata

See also Finite-state automata
equivalent, 808, 816–817
nonaccepting states of, 795
push-down, 780
quotient, 809, 813–815

Average case order, for insertion sort
algorithm, 746–747

Axiom(s)
of extension, 7, 339
power set, 346
probability, 605–610

Babbage, Charles, 214, 739
Bachmann, Paul, 726
Backus, John, 685
Backus-Naur notation, 685, 780–781
Backward chaining, 359
Barber puzzle, 378–379
Barwise, Jon, 105
Base, 328
Base 2 notation, 78, 240–242
Base 10 notation, 240–242
Base 16 notation, 91
Basis property, 282
Basis step, 247, 268
Bayer, Dave, 518
Bayes, Thomas, 616
Baye’s theorem, 615–617
Beal, Andrew, 212
Beal’s conjecture, 212
Berry, G. G., 382
Best case orders

See also Average case order, for
insertion sort algorithm;
Worst case orders

of g (n), 741
for sequential search algorithm, 740

Biconditional
conditional statements as, 48
only if and, 44–46
truth tables for, 45

Binary notation, 78–79
addition/subtraction in, 81
bits needed to represent integer in, 755
conversions to and from, 241–242
hexadecimal notation converting

to/from, 92–93
for integers, 79

Binary relation, 442, 447
on set A, 446

Binary representation
bits in, 755
of integers, 273–274

Binary search algorithm, 765–772
efficiency of, 768–772
as logarithmic, 771–772
tracing, 767
verification of, 770–771
while loops in, maximum number

of, 768
Binary trees, 695–700

existence of, 700
Binomial, 596
Binomial coefficient, 600
Binomial probabilities, 622
Binomial theorem, 592–602

algebraic proof of, 592, 598–600
combinatorial proof of, 592, 600–602
substitutions into, 367, 601
sum simplified with, 602

Bioinformatics, 787
Bipartite graph, 641

complete, 633
Birthday problem, 552
Birthdays (example), 554–555
Bits, 65, 79

in binary notation, representing
integer, 755

in binary representation, 755
Bit string, 529

with fixed number of 1’s, 575
Black boxes, 65–66
Boole, George, 23, 69, 375
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Index I-3

Boolean algebra, 374–377
Boolean expressions

circuits and, 69–72
combinational circuits and, 73–74
digital logic circuits and, 69–72
for input/output tables, 72–73
legal, 329
recursive definition of, 328–329

Boolean functions, 390–391
Boolean variable, 69, 214
Branch vertex, 688
Bridge, 657
Bridges of Königsberg (puzzle), 642–644
Bruner, Jerome S., 554
But, 25

Caesar, Julius, 478–479
Caesar cipher, 478–480
Cancellation theorem for congruence

modulo n, 493
Cannibals and vegetarians (example), 631–632
Cantor, Georg, 6–7, 10, 336, 378–379, 433
Cantor diagonalization process, 433–437
Cardinality

computability and, 428–439
countable sets and, 430–432,

435–436
properties of, 428–429
of set of all real numbers, 436–437
sets with same, 428–430
uncountable sets and, 431, 434–435

Cardinal number, 428
Cards

poker hand problems in, 574–575
probabilities for deck of, 518–519

Carroll, Lewis, 51, 144, 146, 214,
459–460, 565

Carry, 82
Cartesian plane, 12, 717
Cartesian products, 14, 346–348

elements in, 528
function defined by, 388
n-ary relations and, 446–447
sets and, 10–11

Catalan, Eugène, 212, 292
Catalan numbers, 292
Caylely, Arthur, 685
Ceiling, 191–196
Ceiling functions, 383, 719
Chain, 506–507
Chaining, backward and forward, 359
Character classes, 787–788
Characteristic equation of recurrence

relation, 318–320
Characteristic function of subset, 396
Characters of string, 529
Children

in binary tree, 696
in rooted tree, 695

Chomsky, Noam, 684, 779–780
Church, Alonzo, 779
Church-Turing thesis, 779
Chu Shih-chieh, 603
Ciphertext, 478
Circle relation, 15
Circuit-free graph, 683
Circuits

Boolean expressions and, 69–72
combinational, 66–67, 73–74, 791
for computer addition, 82–84

computer memory, 791
connectedness and, 646–648
digital logic, 64–75
digital logic, equivalence classes

of, 470–471
digital logic, equivalence

of, 463–464
Euler, 648–653
full-adder, 83
graphs and, 642–656
half-adder, 82–83
Hamiltonian, 653–656
input/output tables, designing, 73–74
sequential, 67, 791
simple, 644–645
simplifying combinational, 73–74
with two input signals, input/output

tables for, 528–529
Circular reasoning, 57
Cities visited in order

Hamiltonian circuit and, 653–656
spanning trees for, 701–703

Class(es)
of a, 465
character, 787–788
equivalence, 465–474
isomorphism, finding representatives

of, 678–679
NP, 776
P, 776

Clay Mathematics Institute, 776
Closed form, 251, 602
Closed walk, 644–645
Code generator, 780
Coding theory, 389
Co-domain, 384, 397
Coefficients

binomial, 600
constant, 317–326
polynomial function with

negative, 731–733
Collatz, Luther, 333
Collision, 401
Collision resolution methods, 401
Colmerauer, A., 127
Columns, multiplying, 666–667
Combinational circuit, 66, 791

Boolean expressions and, 73–74
rules for, 67

Combinations
permutations and, 567–569
r -, 566, 584–590
of sets, 565–581
of teams, calculating, 569–574
3-, 566

Combinatorial proof
of binomial theorem, 592, 600–602
of Pascal’s formula, 595–596

Common logarithms, 407
Commutative laws, 35, 355, 375
Comparable elements, 505–506
Compatible partial order relations, 507–508
Compiler, computer, 780, 787

identifiers and, 464
Complement(s)

See also One’s complement; Two’s complements
in Boolean algebra, 375–377
of event, probability of, 543,

605–606
of graph, 641
of sets, 341–342
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I-4 Index

Complement(s) (cont.)
of universal/null sets, 355
of 0 and 1, 376

Complement laws, 355, 375
See also Double complement laws
uniqueness of, 375–376

Complete enumeration, 567
Complete graphs, 633
Complete set of residues modulo n, 481
Composing, 417
Composite integers, 148
Composite numbers, 148
Composition of functions, 416–426

finite sets defining, 418
formulas defining, 417–418
with identity function, 418–420
with inverse functions, 420–421
one-to-one functions and, 421–423
onto functions and, 423–426

Compound interest, calculating, 298–300
Compound statements, 25–29

truth values/tables for, 28–29
Computability, cardinality and, 428–439
Computer addition

circuits for, 82–84
with negative integers and two’s complements, 87–90

Computer algorithms. See Algorithm(s)
Computer compiler, 780, 787

identifiers and, 464
Computer languages

Algol, 685
Backus-Naur notation for, 685
Java, 477
variables in, 214

Computer memory circuit, 791
Computer programming

correctness of, 279–288
countability of, 437–438
sequences in, 239–240

Computer representation of negative integers and two’s complements,
84–86

Computer science, theoretical foundations of, 779–780
Concatenation, 415, 783
Conclusion(s), 40

in conditional statement, 47–48
invalid argument with true, 59
jumping to, 57, 157
universal modus ponens for drawing, 133–134
universal modus tollens for drawing, 135
valid argument with false, 58

Conditional probability, 611–615
Conditional statements, 2, 39–51

in algorithmic language, 214–215
as biconditional, 48
contrapositive of, 43
converse and inverse of, 43–44
definition of, 39–40
with hypothesis, 40
hypothesis and conclusion in, 47–48
if-then as or, 41–42
logical equivalences and, 40
negation of, 42
only if and biconditional, 44–46
proof for, 363
truth table for, 40
vacuously true, 40

Congruence modulo 2 relation, 443
Congruence modulo 3 relation, 448

equivalence classes of, 471–473
properties of, 455–456

Congruence modulo n

cancellation theorem for, 493
properties of, 480–482

Congruences, evaluating, 473
Conjunction, 25

truth tables for, 27
Connected components, 647–648

matrices and, 656–666
Connected graphs, 646–647
Connected subgraph, 647
Connected vertices, 626
Consecutive integers, 163, 178

with opposite parity, 183–185
Consequent, 40
Constant coefficients, 317–326
Constant function, 20
Constructive proofs of existence, 148–149
Context-free languages, 780
Contradiction

definition of, 34
indirect argument by, 198–205, 561
logical equivalence and, 35
method of proof by, 198–201
proof by contraposition compared to, 203–204
rule, 59
valid arguments and, 59–60

Contradictory statement, 34
Contraposition

indirect argument by, 198–205, 561
method of proof by, 202–203
proof by contradiction compared to, 203–204

Contrapositive
of conditional statements, 43
of generalized pigeonhole principle, 560–561
of universal conditional statements, 113–114

Converse
of conditional statements, 43–44
of universal conditional statements, 113–114

Converse error, 57–58
quantified form of, 138, 141–142

Corollary, 167–168
Countable sets, 430–432, 435–436
Counterexamples

direct proof and I, 146–161
direct proof and II (rational numbers), 163–168
direct proof and III (divisibility), 170–177
direct proof and IV (division into cases and quotient-remainder

theorem), 180–189
direct proof and V (floor and ceiling), 191–196
divisibility and, 175–176
for set identity, 367–368
to universal statements, 98–99
universal statements disproved by, 149–150

Counting, 516–624
advice about, 577–578
Baye’s theorem and, 615–617
binomial theorem and, 592–602
conditional probability and, 611–615
double, 577–578
elements of a list, 520–522
elements of disjoint sets, 540–549
elements of one-dimensional arrays, 521–522
expected value and, 608–610
of general union elements, 546–547
independent events and, 617–622
integers divisible by five, 541
of intersection elements, 547–549
iterations in nested loop, 529–530
iterations of loop, 588
of passwords, 540–541
PINs, 527–528
PINs, with repeated symbols, 542–543
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Index I-5

possibility trees and multiplication
rule, 525–536

probability and, 516–522
probability axioms and, 605–610
of Python identifiers, 543–544
r -combinations, 584–590
subsets of a set, 565–581
triples, 587–588
walks of length n, 671–673

Courses required for degree, 510
CPM (Critical Path Method), 510–512
Critical path, 512
Critical Path Method (CPM), 510–512
Critical row, 52
Cross products, 473
Cryptography

definition of, 478
inverse modulo n in, 488–490
number theory and, 496
public-key, 479–480, 491
RSA, 484, 490–492, 494–496

Database, simple, 447
Data type, 214
Dates, regular expressions for, 788–789
da Vinci, Leonardo, 1
Davis, Philip J., 191, 367
Day of the week, computing, 182
Decimal, repeating/terminal, 557
Decimal digits, 179
Decimal expansion of fractions, 557–559
Decimal notation, 78

binary notation conversions to and
from, 80

conversions to and from, 241–242
hexadecimal notation to, 91–92

Decimal representation, 179
Decision tree, 684
Decoding functions, 389
Decreasing functions, 722–723
Decrypting, 478

with Caesar cipher, 478–480
with RSA cryptography, 492

Dedekind, Richard, 474
Deductive reasoning, 258

universal instantiation and, 132
Degree of a vertex, 634–638
De Morgan, Augustus, 23, 32, 246
De Morgan’s laws for sets, 355, 376

proof of, 359–361
De Morgan’s laws of logic, 35, 112

applying, 32–33
definition of, 32
inequalities of, 33–34

Derangement of sets, 553
Descartes, René, 117, 717, 751
Descendent, 695
Diaconis, Persi, 518
Diagrams

See also Arrow diagrams
Hasse, 503–505, 511
invalidity shown with, 138–139
transition, 793–794
validity tested with, 136–137

Dice, probability in rolling pair of, 519
Dictionary order, 502
Difference rule, 541–545
Differences of sets, 341–342
Digital logic circuits, 64–75

background of, 64–65
black boxes and gates in, 65–66

Boolean expressions and, 69–72
equivalence classes of, 470–471
equivalence of, 463–464
equivalent, 74
input/output table for, 66–69

Digraph, 629
Dijkstra, Edsger W., 279–280, 336, 710
Dijkstra’s shortest path algorithm,

710–714
Dirac, P. A. M., 449
Direct argument, 561
Directed edge, 629
Directed graphs, 267, 629

matrices and, 662–664
of partial order relation, 505
of relation, 446

Direct proof
counterexample I and, 146–161
counterexample II and (rational numbers), 163–168
counterexample III and (divisibility), 170–177
counterexample IV and (division into cases and quotient-remainder

theorem), 180–189
counterexample V and (floor and ceiling), 191–196
method of, 152
of theorem, 152–154

Dirichlet, Lejeune, 384, 554
Dirichlet box principle, 554
Disconnected graphs, 646–647
Discourse, universe of, 341
Discourse on Method (Descartes), 717
Discovery, 146
Discrete mathematics, 8
Disjoint events, 618
Disjoint sets, 344–345

counting elements of, 540–549
mutually, 345

Disjunction, 25
truth tables for, 28

Disjunctive normal form, 72
Disproof

of alleged property of floor, 192–193
of alleged set property, 367–638
of existential statement, 159
of subsets, 337–338
of universal statements by counterexample, 149–150

Disquisitiones Arithmeticae (Gauss), 472
Distinct equivalence class, 467–470
Distinct-roots case, 318–324
Distinct-roots theorem, 321–322
Distributive laws, 35, 310, 355, 375

generalized, 363–364
proof of, 356–359

div, 181–183, 196
as function, 383

Divide-and-conquer strategy, 765
binary search algorithm, 765–772
merge sort algorithm, 772–775

Divides, 170
“Divides” relation

Hasse diagrams for, 503–504
on positive integers, 501

Divisibility, 170–177
of algebraic expression, 172
checking non-, 172
counterexamples and, 175–176
definition of, 170
mathematical induction to prove, 259–261
by prime numbers, 172, 174–175, 269–270
proofs for properties of, 173–175
transitivity of, 173–174
unique factorization theorem and, 176–177
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I-6 Index

Division algorithm, 218–219
correctness of, 284–286

Division into cases, proof by, 56, 184–185
Division rule, 583
Divisor(s)

greatest common, 220–224
positive, 171
of zero and one, 171–172

Dodecahedron, 653–654
Domain, 384

co-, 384, 397
Domino, 264
Dot product, 666
Double complement laws, 355, 375

proof of, 377
Double counting, 577–578
Double negative laws, 35
Double negative property, 31
Double of rational number, 168
Doubly indexed sequence, 578
Drawing graphs, 628–629
Dual identity, 376
Duality principle, 376
Dummy variable, 235

in loop, 239–240

EBCDIC (Extended Binary-Coded Decimal Interchange Code), 437, 538
Edge-endpoint function, 626
Edges

adjacent, 626, 644
bridge from, 657
definition of, 311, 626
directed, 629
incident on its endpoints, 626
parallel, 626

Edinburgh prolog, 128n
Edison, Thomas Alva, 317
8-bit representation, 86–87
Einstein, Albert, 540
Element argument, 337, 352, 354
Elementary operations, 741
Elements

in cartesian products, 528
comparable, 505–506
counting, 520–522
of disjoint set, counting, 540–549
of general union, counting, 546–547
greatest, 507
of intersection, counting, 547–549
least, 507
maximal, 507
minimal, 507
noncomparable, 505
ordered selection of, 566
permutations of, 533–536
in set, 562
unordered selection of, 566–567

Elements of Geometry (Euclid), 208, 210
Elements of set

disjoint set, 540–549
least, 275–276
permutations with repeated, 576–577
selection methods in, 566

Elimination, 55
Elkies, Noam, 160
Ellipsis, 7, 227
Empty graph, 626
Empty set, 344, 361–364

deriving set identity using properties
of, 371

proof of, 363

uniqueness of, 362
Encoding functions, 389
Encrypting, 478

with Caesar cipher, 478–480
with RSA cryptography, 492

End of world, calculating, 293–296, 310
Endpoints, 626, 629
End while, 216, 281
Enumeration, complete, 567
Equality

of functions, 21, 386
properties of, 453–454
proving, 254–255
relations, 453
set, 339

Equally likely probability formula, 518
Equivalence classes

of a, 465
of congruence modulo 3, 471–473
of digital logic circuits, 470–471
distinct, 467–470
of equivalence relations, 465–474
of identifiers, 466–467
of identity relation, 467–470
rational numbers as, 473–474
of relation as ordered pair, 465–466
of relation on subset, 466
representative of, 472

Equivalence of states of finite-state automata, 809–810
Equivalence relations, 459–474

congruence modulo n as, 481–482
definition of, 462–465
equivalence classes of, 465–474
finite-state automata and, 809–817
graph isomorphism of, 677–678
modular, 480–482
on set of subsets, 463

Equivalent automata, 808, 816–817
Equivalent digital logic circuits, 74, 463–464
Eratosthenes, 206–207
Escape character, 784
Etchemendy, John, 105
Euclid, 176, 208, 210, 220
Euclidean algorithm, 220–224

correctness of, 286–288
extended version of, 485–487, 497

Euclid’s lemma, 492–493
Euler, Leonhard, 160, 642–643
Euler circuits, 648–653
Euler phi function, 396
Euler’s conjecture, 160
Euler trail, 652–653
Even integers, 199–200

countability of all, 432
definition of, 147
deriving additional results about, 167
Goldbach’s conjecture about, 160
square of, 202–203
sum of, 152–154

Even parity, strings with, 786
Event(s)

disjoint, 618
independent, 617–622
mutually independent, 620–621
pairwise independent, 620
probability of, 518
probability of compliment of, 543, 605–606
probability of general union of two, 606–608

Eventual-state function, 796–797
Examples, arguing from, 156–157
Exclusive or, 28–29
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Index I-7

Execution times, of algorithm, 740–741
Exhaustion, method of, 99, 150
Existence of graphs, 636–637
Existential instantiation, 153
Existential quantifier, 99–100

as implicit, 103
Existential statements, 2

disproof of, 159
equivalent forms of, 103
negation of, 109
proofs of, 148–149
true/false, 99–100

Existential universal statements, 4
rewriting, 5

Expanded form, 230–231
Expected value, 608–610

of lottery, 608–609
of tossing loaded coin twice, 620

Expert systems, 142
Explicit formula

for Fibonacci sequence, 323–324
finding, 305–307
for geometric sequence, 252–256, 307–308
for given initial term, 229–230
incorrect, 313–314
mathematical induction checking correctness of, 312–314
for sequences, 228–229
simplifying, 309–312
for Tower of Hanoi, 310

Exponential functions
with base b, 405–407
graphs of, 751–752
one-to-oneness of, 407

Exponential orders, 757–762
Exponents

laws of, 406
modular arithmetic computations using, 484–485

Expressions
See also Regular expression(s)
in algorithmic language, 214
numerical, 305

Extended Binary-Coded Decimal Interchange Code (EBCDIC), 437, 538
Extended Euclidean algorithm, 485–487, 497
Extension, axiom of, 7, 339

Factor, 170
growth, 299

Factorial notation, 237–239
Factorization theorem for integers, unique, 492–493
Fallacies, 57–59
False positive/false negative, 616–617
Fantasy rule for mathematical proof, 354
Fermat, Pierre de, 159–160, 170, 211, 246, 520

last theorem, 160, 160n, 211–212
little theorem, 494

Fermat primes, 211
Fibonacci (Leonardo of Pisa), 297
Fibonacci numbers, 297–298
Fibonacci sequence, explicit formula for, 323–324
Final term, 228

adding on/separating off, 232
Finite relation

antisymmetry of, 499
inverse of, 444–445

Finite sets, 561–562
composition of functions defined on, 418
definition of, 428, 561–562
functions and relations on, 17–18
one-to-one and onto for, 562–563
one-to-one functions defined on, 397
onto functions defined on, 403

relations on, properties of, 451–453
Finite-state automata, 780, 791–805

algorithms simulating, 800–801
definition of, 793–795
designing, 797–799
equivalence relations and, 809–817
eventual-state function and, 796–797
inaccessible states of, 817
as input/output devices, 816
k-equivalent states of, 810–812
language accepted by, 795–796
nondeterministic, 803
pigeonhole principle and, 804–805
regular expressions and, 801–804
simplifying, 808–817
software simulating, 799–801
strings accepted by, 798–799

First-order logic, language of, 127
Floor, 191–196
Floor functions, 383, 744

graphs of, 719–720
Floyd, Robert W., 280
For all statements, 3, 5

negation of, 112
Forest, 683
Formal language(s), 780–783

informal language v., 100–101
multiply-quantified statements translated to, 121–122
notation for, 781
over alphabet, 780–781

Formal logical notation, 125–127
Formulas

See also Explicit formula
choosing, 590
composition of functions defined by, 417–418
functions defined by, 20
Pascal’s, 592–596
summation of first n integers, 248–252, 311–312, 735

For-next loop, 215, 217, 239
Forster, E. M., 64
Forward chaining, 359
Fractions, decimal expansion of, 557–559
Frege, F. L. G., 474
Frege, Gottlob, 98
Friedl, Jeffrey E. F., 801n
Frye, Roger, 160
Full-adder, 82–84
Full binary tree, 696

existence of, 698–700
Fuller, R. Buckminster, 675
Function(s)

See also Composition of functions; Exponential functions;
Finite-state automata; Logarithmic functions

absolute value, 722
algorithm efficiency and, 739–747, 764–776
arrow diagrams for, 384–386
Boolean, 390–391
cardinality with applications to computability, 428–439
Cartesian product defining, 388
ceiling, 383, 719
composed of rational power functions, 735–736
constant, 20
decreasing, 722–723
defining, 16–17
definition of, 384
div as, 383
encoding and decoding, 389
equality of, 21, 386
Euler phi, 396
eventual-state, 796–797
examples of, 387–390
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I-8 Index

Function(s) (cont.)
f (x), 384
on finite sets, 17–18
floor, 383, 719–720, 744
formulas defining, 20
general sets defining, 383–393
graphing, defined on sets of integers, 720
graph of, 626, 718
Hamming distance, 389–390
hash, 401
identity, composition of functions with, 418–420
identity, on a set, 387
increasing, 722–723
input/output tables defining, 390
of Integer variables, 734–735
inverse, 397, 410–413, 420–421
machines, 19–20
mod as, 383
multiple of, 721, 723
noncomputable, 438
not well defined, 391–392
one-to-one, 397–400, 421–423
onto, 402–405, 423–426
pigeonhole principle and, 554–563
polynomial, 730–734
power, 718–719, 729–730, 734–736
power sets defining, 387–388
probability, 605
propositional, 96
real-valued, of real variable, 717–723
recursive, 332–333
sequences as, 387
on sets of real numbers, 18–19
squaring, 20, 416–417
string-reversing, 409
on subsets of set, 392
successor, 20, 416–417
with union, 392–393
value of, 384
well-defined, 391–392

Fundamental theorem of arithmetic, 176

Galilei, Galileo, 428
Gambler’s ruin (example), 609–610
Gates, 65–66
Gauss, Carl Friedrich, 176, 251, 472
gcd. See Greatest common divisor
General formula for sequence, 228
Generalization, 54–55
Generalized associative law, 372
Generalized pigeonhole principle, 559–561
Generalizing from the generic particular, method of, 151–152, 160, 165
General recursive definitions, 328–333
Geometric sequence

definition of, 307
explicit formula for, 307–308
explicit formula for summation of, 252–256

Germain, Marie-Sophie, 211–212
Gibbs, Josh Willard, 13
Gilbert, William S., 592
Glaser, 78
Gleick, James, 160
Gödel, Escher, Bach (Hofstadter), 328, 330, 354
Gödel, Kurt, 379
Goldbach, Christian, 160
Goldbach conjecture, 160
Golden ratio, 328
Golomb, Solomon, 264–265
Grammars, 780
Graph(s), 625–681

See also Directed graphs

of absolute value function, 722
acquaintance, 637–638
bipartite, 641
circuit-free, 683
circuits and, 642–656
complement of, 641
complete, 633
complete bipartite, 633
connected, 646–647
definition of, 625–627
degree of a vertex and, 634–638
disconnected, 646–647
drawing, 628–629
empty, 626
of equation, 626
examples of, 629–632
existence of, 636–637
of exponential functions, 751–752
of f , 718
of floor functions, 719–720
forest, 683
of function, 626, 718
of function, defined on set of integers, 720
isomorphic, 675–681
knowledge represented with, 631
of logarithmic functions, 752–754
matrix representations of, 661–673
of multiple of function, 721, 723
network represented with, 629–630
nonempty, 626
nonisomorphic, 679–680
paths in, 642–656
pictorial representation of, 628–629
of power function, 718–719
properties of, 625–627
real-valued functions of real variable

and, 717–723
simple, 632–633
sub-, 634
terminology of, 627
total degree of, 635–636
total weight of, 703–704
tree, 683, 690
undirected, 664
weighted, 703–704
World Wide Web represented by, 630

Graph theory, origin of, 642–644
Greatest common divisor (gcd), 220–224

as linear combination, 486–487
subtraction computing, 226

Greatest element, 507
Green, Ben Joseph, 211
Gries, David, 280
Griggs, Jerrold, 354
Growth factor, 299
Guard condition, 215, 281

eventual falsity of, 282

Hairs on heads example, 555
Half-adder, 82–83
Hall, Monty, 519–520
Halting problem, 379–380
Hamilton, Sir William Rowan, 653
Hamiltonian circuits, 653–656
Hamming, Richard W., 389
Hamming distance function, 389–390
Handshake theorem/lemma, 635–636
Hanoi, Tower of, 293–296

explicit formula for, 310
Hardy, G. H., 198, 227, 478, 496
Harmonic sums, 760–762
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Index I-9

Hash functions, 401
Hasse, Helmit, 503
Hasse diagrams, 503–505

sideways, 511
Hausdorff, Felix, 10
Height (rooted tree), 695
Hersh, Reuben, 191, 367
Hexadecimal notation, 91

binary notation converting to/from, 92–93
decimal notation converted from, 91–92

Hilbert, David, 374, 793
Hoare, C. A. R., 282
Hofstadter, Douglas, 328, 330, 352, 354
Horizontal axes, 717
Horner’s rule, 750
HTTP (hypertext transfer protocols), 630
Hydrocarbon, saturated, 686
Hydrocarbon molecules, structure of, 686–687
Hypertext transfer protocols (HTTPs), 630
Hypothesis, 51

in conditional statement, 47–48
conditional statement with, 40
inductive, 247, 268

Idempotent laws, 35, 355, 376
proof of, 377

Identifiers
computer compilers and, 464
equivalence class of, 466–467
Python, 543–544
relation on set of, 464–465

Identity, 355
See also Set identities

Identity function
composition of functions with, 418–420
on a set, 387

Identity laws, 35, 355, 375
Identity matrices, 669–670
Identity relation, equivalence class of, 467–470
If, misuse of, 158
If-then-else statements, 184, 215–216
If-then statements, 3

necessary/sufficient conditions and, 47
negation of, 42
only if converted to, 45–46
or statements and, 41–42

ijth entry of matrix, 661
of power of adjacency matrix, 672–673

Image(s), 397
inverse, 384
of X under F , 384

Implication arrow, 731n
Implicit universal quantification, 103–104
Inaccessible states of finite-state automata, 817
Incident on (edge), 626
Inclusion/exclusion rule, 545–549
Inclusion in union, 352
Inclusion of intersection, 352
Increasing functions, 722–723
Independent events, 617–622
Index, 228

of summation, 230–231
variable, 766

Indexed collection of sets, 343
Indirect argument

classical theorems of, 207–212
contradiction and contraposition

and, 198–205, 561
when to use, 211

Induction, 258–259
See also Mathematical induction

Inductive hypothesis, 247, 268
Inductive property, 282
Inductive step, 247, 268
Inequalities, 26

De Morgan’s laws of logic and, 33–34
logarithmic, 758–759
mathematical induction to prove, 261–263
triangle, 187–189

Inference, rules of
summary of, 60–61
valid/invalid arguments and, 54–57

Infinite relation, inverse of, 445
Infinite sequence, 228
Infinite set(s)

countability of, 431–432
definition of, 428, 562
one-to-one functions defined on, 399–400
onto functions defining, 403–405
relations on, properties of, 453–456

Infinite tree, 693
Infinities, search for larger, 432–437
Infinitude of set of prime numbers, 210–211
Infix notation, 782
Informal language

formal language v., 100–101
multiply-quantified statements translated from, 121–122
simple conditionals in, 48

Initial conditions, 290
linear combinations satisfying, 320–322

Initial state, 793
Initial term, 228

explicit formula to fit given, 229–230
Input alphabet, 793
Input/output devices, finite-state automata as, 816
Input/output table(s)

Boolean expressions for, 72–73
Circuits designed for, 73–74
for circuit with two input signals, 528–529
for digital logic circuits, 66–69
full-adder, 83
function defined by, 390
half-adder, 82–83
for recognizer, 70

Inputs, 384
Input signals, 66

output signals determined for, 68
Insertion sort algorithm, 740, 744–745

average case order for, 746–747
trace table for, 745–746
worst case order for, 746

Integer powers of real numbers, nonnegative, 598
Integers

binary notation for, 79
binary representation of, 273–274
bits to represent, in binary notation, 755
composite, 148
consecutive, 163, 178
consecutive, with opposite parity, 183–185
countability of, 431–432
counting number of, divisible by five, 541
“divides” relation on positive, 500
divisibility by prime numbers and, 269–270
even, 147, 199–200
formula for sum of first n, 248–252, 311–312, 735
graphing functions defined on sets of, 720
greatest, 198–199
linear combination of, 486–487
multiple of, 170
negative, computer addition with, 87–90
negative, two’s complements and computer representation of, 84–86
odd, 147, 199–200
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I-10 Index

Integers (cont.)
1 expressed as linear combination of relatively prime, 488–489
parity of, 183–185
pigeonhole principle and, 556–557
positive, 171
prime, 148
quotients of, 163–168
representations of, 183–187
set of all (Z), 8
smallest positive, 121
square of an odd, 185–187
in standard factored form, 177
study of properties of, 170–177
unique factorization theorem for, 176–177, 492–493
well-ordering principle for, 275–276

Integer variables, order for functions of, 734–735
Integral solutions of equation, 589
Internal vertices, 688–690
Internet addresses, 544–545
Internet Protocol address (IP address), 544
Intersections

counting number of elements in, 547–549
definition of, 343
inclusion of, 352
of independent events, probability of, 619
of sets, 341–344
union with subsets and, 361

Intervals, 342
Intractable algorithms, 775–776
Invalid arguments. See Arguments, valid and invalid
Inverse

of conditional statements, 43–44
image, 384
modulo n, 488–490
of relation, 444–445
of universal conditional statements, 113–114

Inverse error, 58
quantified form of, 138, 139, 141–142

Inverse functions, 397, 410–413
composition of functions with, 420–421

Inverter, 66
Irrational numbers

definition of, 163
determining rational numbers v., 163–165
irrationality of square root of two, 207–209
sum of rational and, 200–201

Isolated vertex, 626
Isomers, 686
Isomorphic graphs, 675–681

simple, 680–681
Isomorphic invariants, 679
Isomorphic structures, 817
Iterations

counting number of, in nested loop, 529–530
of loop, counting, 588
method of, 305–309
recurrence relations solved by, 304–314

Iterative statements, 215–216
i th row of matrix, 661

Java computer language, 477
Job scheduling problem, 511–512
j th row of matrix, 661
Jumping to conclusion, 57, 157

Kant, Immanuel, 23, 701
k-equivalence classes, finding, 811–812
k-equivalent states of finite-state

automata, 810–812
Killian, Charles, 354
Kirchoff, Gustav, 686

Kleene, Stephen C., 779, 781, 783, 801
Kleene closure of L , 783
Kleene closure of r , 783
Kleene closure of �, 781
Kleene’s theorem, 801–804
Knights and knaves example, 60
Knowledge, represented with graphs, 631
Knuth, Donald E., 154, 598n, 726, 739–740
Kolmogrov, Andrei Nikolaevich, 518,

605–606
Königsberg, bridges of (puzzle), 642–644
Kripke, Saul, 382
Kronecker, Leopold, 669
Kronecker delta, 669
Kruskal, Joseph, 704
Kruskal’s algorithm, 704–707
Kuratowski, Kazimierz, 10–11

Lagrange, Joseph Louis, 230
Lamé, Gabriel, 222
Language(s)

See also Computer languages; Formal language; Informal language
ambiguous, 122–123
concatenation of, 783
context-free, 780
finite-state automata accepting, 795–796
of first-order logic, 127
nonregular, 804–805
quotient automata accepting, 814
regular, 780, 804–805
regular expression defining, 783–787
union of, 783

Language of First-Order Logic, The (Barwise and Etchemendy), 105
Laplace, Pierre-Simon, 520, 605, 611
Laws of exponents, 406
lcm (least common multiple), 226
Leaf, 688–690
Least common multiple (lcm), 226
Least element, 507

finding, 275–276
Least nonnegative residues

modulo n, 481
Left child, 696
Left subtree, 696
Legal expressions (Boolean), 329
Leibniz, Gottfried Wilhelm, 23, 137
Lemma, 187–188

Euclid’s, 492–493
handshake, 635–636

Length
of chain, 506
of string, 389, 529, 780–781
of walk, 671–673

Leonardo of Pisa, 297
Less than, properties of, 454
“Less than or equal to”

relation, 501
Less-than relation, 442
Level of vertex, 694
Lexical scanner, 780
Lexicographic order, 502–503
Limit, of a sequence, 122
Linear, 317
Linear combinations of integers, 486

gcd as, 486–487
Linear combinations satisfying initial conditions, 320–322
Linguistics, 685
List, counting elements of, 520–522
Little theorem, Fermat’s, 494
Lobachevsky, Nicolai Ivanovitch, 498
Löb’s paradox, 382
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Index I-11

Local call string, 807
Logarithmic functions

with base b, 388–389, 405–407, 752–753
with base b of x , 388
graphs of, 752–754

Logarithmic inequalities, 758–759
Logarithmic orders, 757–762
Logarithms

common, 407
natural, 407
properties of, 406, 415, 752–753
recurrence relations solved with, 755–757

Logic, 23
See also De Morgan’s laws of logic

Logical equivalence
conditional statements and, 40
contradictions and, 35
double negative property and, 31
nonequivalence and, 31
of quantified statements, 109
statements/statement forms and, 30
summary of, 35–36
tautologies and, 35
types of, 35

Logical form, of arguments, 23–24
Logical operators, order of operations for, 46
Loop

See also Nested loop
counting iterations in, 588
definition of, 626

Loop invariants
algorithms and, 281–284
procedure for, 280
theorem, 282

Lottery, expected value of, 608–609
Lovelace, Countess of, 214
Lower limit of summation, 230
Lucas, Édouard, 293
Łukasiewicz, Jan, 782
Lynch, John, 160n

Mach, Ernst, 442
Main diagonal of matrix, 661–662
Manin, I., 258
Mann, Thomas, 661
Mastering Regular Expressions (Friedl), 801n
Matching socks (example), 556
Mathematical Analysis of Logic, The (Boole), 375
Mathematical Experience, The (Davis and Hersh), 191
Mathematical induction, 227, 244–265

See also Strong mathematical induction; Well-ordering principle
argument by, 245
definition of, 244–246
divisibility proven with, 259–261
explicit formulas checked with, 312–314
geometric sequence, formula for, 252–256
inequality proven with, 261–263
method of proof by, 247
principle of, 246
property of sequence proven with, 263–264, 270–271
for recursively defined sets, 331
strong, 268–274
summation of first n integers, formula for, 248–252
trominoes and, 264–266

Mathematical structure, 817
Matrix(ces)

adjacency, 662–664, 672–673
connected components and, 656–666
definition of, 661
directed graphs and, 662–664
graph representations of, 661–673

identity, 669–670
ijth entry of, 661
i th row of, 661
j th row of, 661
main diagonal of, 661–662
multiplication, 666–671
multiplicative identity of, 669–670
powers of, 670–671
products of, 666–668
square, 661
symmetric, 664–665
terminology of, 662
transpose of, 675

Maurolico, Francesco, 246
Maximal element, 507
McCarthy, John, 332
McCarthy’s 91 function, 332
McCulloch, Warren S., 779
Memory circuit, computer, 791
Memory dump, reading, 93–94
Menge, 336
Merge sort algorithm, 772–775
Mersenne, Marin, 211
Mersenne primes, 211
Messages, coding, 389
Method

collision resolution, 401
of complete enumeration, 567
of direct proof, 152
of exhaustion, 99, 150
of generalizing from the generic particular, 151–152, 160, 165
of iteration, 305–309
of proof by contradiction, 198–201
of proof by contraposition, 202–203
of proof by mathematical induction, 247

Middle elements of array, 765–766
Mill, John Stuart, 131
Minimal element, 507
Minimum spanning trees, 704–707, 709–710
MIU-system, 330
mod/modulo, 181–183, 185, 196

congruence modulo 2 relation, 443, 448
congruence modulo 3 relation, 448, 455–456, 471–473
congruence modulo n, 480–482, 493
as function, 383
inverse modulo n, 488–490

Modular arithmetic, 482–487
exponents and, 484–485
practical use of, 483

Modular equivalence relations, 480–482
Modus ponens

conclusions with universal, 133–134
proof with universal, 134
recognizing, 54
universal, 133–134, 136
valid/invalid arguments

and, 52–54
Modus tollens

conclusion drawn with universal, 135
recognizing, 54
universal, 134–135
valid/invalid arguments and, 52–54

Monty Hall problem, 519–520
Multiple

of function, 721, 723
of integer, 170
least common, 226

Multiple-input
AND-gate, 71
OR-gate, 71–72

Multiple quantifiers, statements with, 117–128

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



I-12 Index

Multiplication(s)
matrix, 666–671
needed to multiply n numbers, 272–274

Multiplication rule
as difficult or impossible to apply, 530–531
possibility trees and, 525–536
subtle use of, 531

Multiplicative identity, 213
of matrix, 669–670

Multiply-quantified statements
from informal to formal language, 121–122
interpreting, 120
negations of, 123–124
Tarski’s World, truth of, 118–119
truth value of, 120
writing, 118

Multiset of size r , 584
Mutually disjoint sets, 345
Mutually independent events, 620–621

n! (n factorial), 237
NAND-gates, 74–75
Napier, John, 752
n-ary relations, 442, 446–447
National Security Agency, 478
Natural logarithms, 407
Natural numbers, set of (N), 8
Naur, Peter, 685
n choose r, 237–238
Necessary conditions

definition of, 46
if-then statements and, 47
interpreting, 47
universal conditional statements and, 114–115

Negation(s)
of for all statement, 112
in Boolean algebra, 375
of conditional statement, 42
of existential statement, 109
of if-then statements, 42
laws, 35
of multiply-quantified statements, 123–124
of quantified statements, 109–111
of and statements, 32–34, 112
of or statements, 32–34, 112
in Tarski’s World, 124
truth values for, 26
of universal conditional statements, 111
of universal statement, 109

Negative integers
two’s complements and computer addition with, 87–90
two’s complements and computer representation of, 84–86

Neither-nor, 25
Nested loop

counting number of iterations in, 529–530
order for algorithm with, 743–744

Network, graph representing, 629–630
Newton, Isaac, 137
Next-state function, 793
Next-state table, 793

annotated, 794–795
Nonaccepting states of automaton, 795
Noncomparable elements, 505
Noncomputable functions, 438
Nonconstructive proof of existence, 149
Nondeterministic finite-state automata, 803
Nondeterministic polynomial-time algorithm (NP), 776n
Nondivisibility, 172
Nonempty graph, 626
Nonequivalence, 31
Nonisomorphic graphs, 679–680

Nonisomorphic trees, 690–692
Nonnegative integer powers of real numbers, 598
Nonregular languages, 804–805
Non-trees, 683–684
NOR-gates, 74–75
Notation

See also Binary notation; Omega-notation; O-notation;
Theta-notation

for algorithms, 218
Backus-Naur, 685, 780
base 2, 78, 240–242
base 10, 240–242
base 16, 91
decimal, 78, 80, 91–92, 241–242
factorial, 237–239
for formal language, 781
formal logical, 125–127
hexadecimal, 91–93
for implicit universal quantification, 103–104
infix, 782
octal, 95
Polish, 782
postfix, 782
prefix, 782
product, 233
reverse Polish, 782
set-builder, 8–9
set-roster, 7–8
for sets, to describe language defined by regular expression, 784–785
of summations, 230–233
for walks, 645

NOT-gate, 66–67
Not well-defined functions, 391–392
NP (Nondeterministic polynomial-time algorithm), 776n
NP-complete, 776
n-tuples, 390

ordered, 346–347
Null set, 344, 355, 361–364

deriving set identity using properties of, 371
Null string, 529, 787
Number of elements in set, 562
Numbers. See Integers; Rational numbers; Real numbers
Number theory

algorithms and, 214–224
cryptography and, 496
definition of, 170
divisibility, 170–177
Euclid’s lemma and, 492–493
floor and ceiling, 191–196
open questions in, 211–212
properties of integers, 170–177
properties of rational numbers, 165–167
quotient-remainder theorem, 180–189

Numerical expressions, 305

Octal notation, 95
Odd integers, 199–200

definition of, 147
deriving additional results about, 167
squares of, 185–187

Of order at least g, 727
Of order at most g, 727
Of order g, 727
Of order g (n), 741
Omega-notation (�-notation), 725–736

harmonic sums and, 760–762
for logarithmic inequalities, deriving order from, 758–759
polynomial function orders and, 730–731
for polynomial with negative coefficients, 732–733
properties of, 728–729
translating to, 727–728
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Index I-13

1-equivalence classes, 812, 816–817
One-dimensional arrays, 239

counting elements of, 521–522
One’s complement, 85
One-to-one correspondences, 397

strings and, 407–410
One-to-one functions, 397–400

composition of, 421–423
exponential functions as, 407
for finite sets, 562–563
finite sets defining, 397
infinite sets defining, 399–400

Only if
biconditional and, 44–46
If-then statements converted from, 45–46
universal conditional statements and, 114–115

O-notation, 725–736
description of, 726–727
for exponential and logarithmic orders, 758
for logarithmic inequalities, deriving order from, 758–759
polynomial function orders and, 730–731
for polynomial with negative coefficients, 731–732
properties of, 728–729
translating to, 727–728

Onto functions, 402–405
composition of, 423–426
for finite sets, 562–563
finite sets defining, 403
infinite sets defining, 403–405
proof for, 425–426

Onto property, 397
Open sentences, 96
Operations, order of, 25, 40

for logical operators, 46
Operations on sets, 341–344, 354
Optimistic approach to problem solving, 369
Order, algorithm, 742–744
Ordered 4-tuples, 527–528
Ordered n-tuple, 346–347
Ordered pairs, 11, 346

Equivalence classes of relation as, 465–466
vertices of, 629

Ordered selection of elements, 566
Ordered triple, 346
Order of operations. See Operations, order of
Ordinal number, 428
OR-gate, 66–67

multiple-input, 71–72
Origin, 717
Or statement, 25–26

ambiguity and, 27
if-then statements and, 41–42
negation of, 32–34, 112
when to use, 34

O’Shea, Donal, 764
Outputs, 384
Output signals, 66

See also Input/output table
input signals, determining, 68

Pairwise independent events, 620
Pairwise relatively prime integers, 488–489
Palindrome, 781
Paradox

Löb’s, 382
Russell’s, 378–380

Parallel, switches in, 64–65
Parallel adder, 84
Parallel edges, 626
Parallel processing of data, 776
Parent, 694

Parenthesis structures, 330
property of set of, 331

Parity of integers, 183–185
Parity property, 183–185
Partially ordered sets, 505–507

topological sorting and, 507–509
Partial order relations, 498–512

compatible, 507–508
CPM and PERT for, 510–512
definition of, 500
directed graph of, 505
Hasse diagrams for, 503–505
lexicographic order, 502–503
partially and totally ordered sets

and, 505–507
restriction of, 514
subset of, 500–501

Partitions
relation induced by, 460–462
of set into r subsets, 578–581
of sets, 344–346, 460

Pascal, Blaise, 163, 246, 520, 593–594
Pascal’s formula, 592–596

algebraic proof of, 595
combinatorial proof of, 595–596
new formulas from, 596

Pascal’s triangle, 592–596
Passwords, counting, 540–541
Paths in graphs, 642–656
Peano, Giuseppe, 341, 474
Peirce, Charles Sanders, 98
Perfect square, 108, 161
Permutations, 531–536

combinations and, 567–569
defining, 531
of elements, 533–536
of letters in word, 532, 535
of objects around circle, 532–533
of repeated elements of set, 576–577
r -permutation, 533–535

Personal identification numbers (PINs)
counting number of, 527–528
counting number of, with repeated symbols, 542–543

PERT (Program Evaluation and Review Technique), 510–512
Pessimistic approach to problem

solving, 369
Pictorial representation of graphs, 628–629
Pierce, C. S., 74, 233
Pierce arrow, 74–75
Pigeonhole principle, 554–563

application of, 554–555
contrapositive of generalized, 560–561
decimal expansion of fractions

and, 557–559
definition of, 554
finite-state automata and, 804–805
generalized, 559–561
integers and, 556–557
proof of, 561–563

PINs. See Personal identification numbers
Pitts, Walter, 779
Plaintext, 478
Plato, 207
Poker hand problems (example), 574–575
Polish notation, 782
Polyá, George, 6
Polynomial, root of, 169
Polynomial evaluation, term-by-term, 750
Polynomial functions

limitations on orders of, 734
with negative coefficients, O-notation approximation for, 731–732
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I-14 Index

Polynomial functions (cont.)
with negative coefficients, �-notation approximation for, 732–733
orders of, 730–734

Polynomial inequality, 730
Polynomial-time algorithms, 776
Polyomino, 264–266
Poset, 506
PositivePositive closure of �, 781
Possibility trees

double counting on,
avoiding, 578

multiplication rule and, 525–536
Post, Emil, 779
Post-conditions

algorithm, 280–281
correctness of, 282
for loop, 281

Postfix notation, 782
Power functions

defined, 718
graphs of, 718–719
orders of, 729–730, 734
rational, functions composed

of, 735–736
Powers

of adjacency matrix, 672–673
of matrix, 670–671
of ten, 309

Power sets, 346
function defined on, 387–388
relations on, 443

Pre-conditions
algorithm, 280–281
for loop, 281

Predicate(s)
quantified statements I and, 96–105
quantified statements II and, 108–115
truth values/truth sets of, 97

Predicate calculus, 96
Prefix notation, 782
Preimage, 384
Premises, 51

ambiguous, 57
definition of, 23
invalid argument with true, 59
major/minor, 52, 133, 135
valid argument with false, 58

Prim, Robert C., 704, 707
Prime, relatively, 488–489
Prime integers, 148
Prime numbers, 103, 148

divisibility by, 172, 174–175, 269–270
Fermat primes, 211
infinitude of set of, 210–211
Mersenne primes, 211
twin primes conjecture, 211

Prim’s algorithm, 707–709
Principle of mathematical induction, 246
Printing problem, 382
Probability(ies)

binomial, 622
of complement of event, 543, 605–606
conditional, 611–615
counting and, 516–522
for deck of cards, 518–519
in dice rolling, 519
equally likely formula of, 518
of events, 518
function, 605
of general union of two events, 606–608
of intersections of independent events, 619

Monty Hall problem and, 519–520
tournament play possibilities and, 525–526

Probability axioms, 605–610
Problems for the Quickening of the Mind, 640
Problem-solving strategies, 369–370
Problem-solving tool, proof as, 204–205
Procedural versions of set definitions, 353
Productions, 685
Product modulo n, computing, 484
Products

Cartesian, 10–11, 14, 346–348, 388, 446–447, 528
correctness of loop to compute, 283–284
cross, 473
dot, 666
of matrices, 666–668
notation, 233
properties of, 233–236
recursive definition of, 300–301
scalar, 666

Program Evaluation and Review Technique (PERT), 510–512
Projection onto number line, 437
Prolog (programming language), 127–128
Proof(s)

See also Algebraic proof; Direct proof; Disproof
algebraic, 592, 595, 598–600
of classical theorems, 207–212
combinatorial, 592, 595–596, 600–602
for conditional statement, 363
constructive, of existence, 148–149
by contradiction, method of, 198–201
by contradiction compared to contraposition, 203–204
by contraposition, method of, 202–203
defining, 145–146
of De Morgan’s laws for sets, 359–361
discovery and, 146
of distributive law, 356–359
by division into cases, 56, 184–185
of double complement laws, 377
of empty set, 363
of existential statements, 148–149
fantasy rule for, 354
floor and ceiling, 191–196
of idempotent laws, 377
indirect, 198–205
indirect, when to use, 211
mathematical induction, method of, 247
mistakes commonly made in, 156–158
nonconstructive, of existence, 149
for onto functions, 425–426
as problem-solving tool, 204–205
of properties of divisibility, 173–175
of properties of rational numbers, 165–167
of set identities, 356–361
starting, 158–159
of subset relations, 353–354
of subsets, 337–338
universal modus ponens in, 134
of universal statements, 150–156
variations among, 156
writing, for universal statements, 154–156

Proper subset, 9, 337
Proposition, 24, 203
Propositional calculus, 96
Propositional form, 28
Propositional functions, 96
Pseudocode, 214
Public-key cryptography, 479–480, 491
Push-down automaton, 780
P vs. NP problem, 776
Pythagoras, 207–208
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Pythagorean theorem, 207–208
Python identifiers, counting, 543–544

Q.E.D. (quod erat demonstrandum), 154
Quantified statements, 96–144

See also Multiply-quantified statements
arguments with, 131–142
implicit, 103–104
logical equivalence of, 109
negations of, 109–111
predicates and statements I, 96–105
predicates and statements II, 108–115
validity of arguments with, 135–139

Quantifiers
existential, 99–100
order of, 124–125
statements with multiple, 117–128
trailing, 101, 111
universal, 97–99

Quaternary relations, 447
Quod erat demonstrandum (Q.E.D.), 154
Quotient automaton, 809, 813–815
Quotient-remainder theorem, 180–181

existence part of, 276
Quotients, 180

of integers, 163–168

Rabbits, calculating reproductive rates of, 297–298
Ralston, Anthony, 244
Random process, 517
Range, 384, 397
Rational numbers

Archimedian property for, 278
definition of, 163, 473–474
determining irrational numbers v., 163–165
direct proof and counterexamples with, 163–168
double of, 168
as equivalence classes, 473–474
properties of, 165–167
set of all (Q), 8
set of all positive, countability of, 432–436
sum of irrational and, 200–201
sum of rationals is rational, 165–167

Rational power functions, functions composed of, 735–736
r -combinations, 566

with repetition allowed, 584–590
Real numbers

additive inverse and, 4
cardinality of set of, 436–437
decimals relations to, 433–434
functions and relations on sets of, 18–19
less-than relation for, 442
nonnegative integer powers of, 598
on number line, 8
number line and, 8
set of all (R), 8
smallest positive, 121–122
between 0 and 1, 434–435

Real-valued functions of real variable, 717–723
Reciprocal, 206
Recognizer, 70
Recurrence relations, 290–291, 579–581, 769

characteristic equation of, 318–320
iterations solving, 304–314
logarithms solving, 755–757
second-order linear homogenous, 317–326
sequences satisfying, 291–292
solution to, 305

Recursion, 290–335
in merge sort algorithm for, 772–773
recursively defined sequences, 290–301

Recursive definition
of Boolean expressions, 328–329
for factorials, 237
general, 328–333
of product, 300–301
for product notation, 233
of sets, 328–330
of sets, structural induction, 331
of sets of strings, 329–330
of summation, 232, 300–301

Recursive functions, 332–333
Recursive leap of faith, 293
Recursive paradigm, 293
Reduce a number modulo n, 481
Reductio ad absurdum, 198
Reductio ad impossible, 198
Reflexive property of cardinality, 428–429
Reflexivity, 449–457
Regular expression(s), 780

for dates, 788–789
finite-state automata and, 801–804
language defined by, 783–787
order of precedence for operations in, 784
over alphabet, 783
practical uses of, 787–789

Regular languages, 780, 804–805
Relational database theory, 446–447
Relations

See also “Divides” relation; Equivalence relations; Recurrence
relations

antisymmetry property of, 499
arrow diagram of, 16
binary, 442, 446, 447
circle, 15
congruence modulo 2, 443
congruence modulo 3, 448, 455–456, 471–473
definition of, 14
directed graph of, 446
of equality, 453
equivalence, finite-state automata and, 809–817
Equivalence classes of ordered pairs as, 465–466
equivalence class on subset of, 466
finite, 444–445
on finite sets, 17–18
finite sets and, properties of, 451–453
identity, equivalence classes of, 467–470
infinite, 445
infinite sets and, properties of, 453–456
inverse of, 444–445
less-than, 442
“less than or equal to,” 501
n-ary, 442, 446–447
partial order, 498–512
partition inducing, 460–462
on power set, 443
proof of subset, 353–354
quaternary, 447
reflexivity, symmetry, transitivity and, 449–457
second-order linear homogenous recurrence, 317–326
on set of identifiers, 464–465
on sets, 442–447
sets and, 13–21, 340
on sets of real numbers, 18–19
as subset, 15, 338
subset, Hasse diagram for, 504–505
ternary, 447
total order, 506
transitive closure of, 456–457
types of, 13–14

Relatively prime integers, 488–489
Remainder, 180–181
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Repeating decimal, 557
Representative of equivalence class, 472
Residue of a, 481
Residues modulo n, 481
Restriction, 328

of partial order relation, 514
Reverse Polish notation, 782
Ribet, Kenneth, 160
Right child, 696
Right subtree, 696
Ritchie, Dennis, 780n
Rivest, Ronald, 479–480
Rooted trees, 694–695
Root of polynomial, 169
Roussel, P., 127
Rows, multiplying, 666–667
r -permutation, 533–535
RSA cryptography, 484, 490–492

cipher, why it works, 494–496
decrypting using, 492
encrypting using, 491
Fermat’s little theorem and, 494

Rule(s)
addition, 540–541
difference, 541–545
division, 583
Horner’s, 750
inclusion/exclusion, 545–549
multiplication, 525–536
of universal instantiation, 132

Rules of inference. See Inference, rules of
Russell, Bertrand, 268, 304, 378–379, 382, 725
Russell’s paradox, 378–380

Sample space, 517–518
Saturated hydrocarbon, 686
Savage, Carla, 354
Sawyer, W. W., 642
Scalar product, 666
Schroeder-Bernstein theorem, 441
Search algorithm

binary, 765–772
sequential, 739–740

Second-order linear homogenous recurrence relations with constant
coefficients, 317–326

Selection sort algorithm, 749
Semantics, 686
Sentences

open, 96
variables used for writing, 2

Sequences, 227–242
See also Recursion
alternating, 229
arithmetic, 306–307
in computer programming, 239–240
doubly indexed, 578
explicit formula, 228–229
factorial notation and, 237–239
as functions, 387
general formula for, 228
geometric, 252–256, 307–308
infinite, 228
limit of, 122
linear combinations of, satisfying initial conditions, 320–322
mathematical induction proving property of, 263–264, 270–271
product notation and, 233
recurrence relations satisfied

by, 291–292
singly indexed, 578

Sequential circuits, 67, 791
Sequential search algorithm, 739–740

Series, switches in, 64–65
Set(s)

See also De Morgan’s laws for sets; Elements of set; Finite sets;
Subsets

of accepting states, 793
algorithm for checking for subsets

of, 348–349
Boolean algebra and, 374–377
cardinality and, 428–430
Cartesian products and, 10–11
combinations of, 565–581
complements of, 341–342
countable, 430–432, 435–436
counting subsets of, 565–581
definitions, procedural versions

of, 353–354
derangement of, 553
differences of, 341–342
disjoint, 344–345
elements in, 562
empty, 344, 361–364, 371
equality, 339
equivalence relation on subset and, 463
function on subsets of, 392
functions defined as general, 383–393
of identifiers, relation on, 464–465
identity function on, 387
indexed collection of, 343
intersection of, 341–344
language of, 6–7
mutually disjoint, 345
null, 344, 355, 361–364, 371
operations on, 341–344
of parenthesis structures, property of, 331
partially ordered, 505–507
partition of, 344–346, 460
partition of, into r subsets, 578–581
of positive rational numbers, countability of, 432–436
power sets of, 346
properties of, 352–364
properties of, disproof of, 367–638
of real numbers, cardinality of, 436–437
recursively defined, 328–330
relations and, 13–21, 340
relations on, 442–447
of strings, recursively defined, 329–330
of strings over alphabet, 329
structural induction for recursively defined, 331
subsets of, number of, 369–370
totally ordered, 505–507
uncountable, 431, 434–435
union of, 341–344
universal, 341, 355
Venn diagrams for operations on, 340–341, 354

Set difference law, 355
Set difference property, deriving, 371
Set identities, 355

algebraic proof of, 370–372
counterexamples for, 367–368
proving, 356–361

Set notation
builder, 8–9
to describe language defined by regular expression, 784–785
roster, 7–8

Set theory, 336–382
Shakespeare, William, 25, 108
Shamir, Adi, 479–480
Shannon, Claude, 64, 779
Sheffer, H. M., 74
Sheffer stroke, 74–75
Shortest path algorithm, 710–714
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Siblings, 694
Sieve of Eratosthenes, 206–207
Sigma, 230
Simple circuit, 644–645
Simple conditionals, 48
Simple graphs, 632–633

isomorphic, 680–681
Simple path, 644
Singh, Simon, 160n
Single-root case, 324–326
Single-root theorem, 325–326
Singly indexed sequences, 578
Smullyan, Raymond, 60
Socks, example of matching, 556
Soft drink selection (example), 586–587
Software simulating finite-state automata, 799–801
Solution to recurrence relation, 305
Some, misuse of, 158
Sorting

insertion sort algorithm for, 740,
744–747

merge sort algorithm for, 772–775
selection sort algorithm for, 749
topological, 507–509

Sound argument, 59
Space efficiency of algorithms, 776
Spanning trees, 701–710

for cities visited in order, 701–703
minimum, 704–707, 709–710

Specialization, 55
Square matrix, 661
Square of an even integer, 202–203
Square of an odd integer, 185–187
Square root of two, irrationality of, 207–209
Squaring function, 20, 416–417
Standard factored form, 177
*-equivalence (star equivalence) classes, finding, 812–813
*-equivalent (star equivalent) states of finite state automata, 810
Statement calculus, 96
Statement forms

logical equivalence of, 30
simplifying, 36
truth values for, 28

Statements
See also specific statements
compound, 25–29
conditional, 39–51
contradictory, 34
definition of, 24
logical equivalence of, 30
with multiple quantifiers, 117–128
quantified, 96–144
Tarski’s World, formalizing, 126–127
tautological, 34
truth values for, 26–27
types of, 2

States of automaton, 793
Stevin, Simon, 433–434
Stirling numbers of second kind, 578–579
String of characters of alphabet, 780–781
String-reversing function, 409
Strings

area code, 807
bit, 529, 575
characters of, 529
with even parity, 786
finite-state automata accepting, 798–799
individual, in language defined by regular expression, 785–786
length of, 389, 529, 780–781
local call, 807
null, 529, 787

one-to-one correspondences involving, 407–410
over S, 389
recursively defined sets of, 329–330
sets of, over alphabet, 329

Strong mathematical induction, 268–274
See alsoWell-ordering principle

Structural induction, 331
Structures, mathematical, 817
Subgraphs, 634

See also Spanning trees
connected, 647

Sublist, 521
Subscript, 228
Subsets

algorithm for checking for, 348–349
chain of, 506–507
characteristic function of, 396
counting, of set, 565–581
definition of, 9
equivalence class of relation on, 466
equivalence relation on set of, 463
function on, of set, 392
intersection and union with, 361
of partial order relations, 500–501
partition of sets into r -, 578–581
proof/disproof of, 337–338
proof of subset relations, 353–354
proper, 9, 337
relation, Hasse diagram for, 504–505
relations as, 15, 338
of sets, number of, 369–370
transitivity of, 352
uncountable, 435

Substitutions, into binomial theorem, 367, 601
Subtraction

in binary notation, 81
gcd computation with, 226

Subtree, left/right, 696
Successor function, 20, 416–417
Sufficient conditions

definition of, 46
if-then statements and, 47
interpreting, 47
universal conditional statements and, 114–115

Sum, 82
binomial theorem simplifying, 602
of even integers, 152–154
of rational numbers and irrational numbers, 200–201
of rational numbers is

rational, 165–167
telescoping, 232–233
variable change in transforming, 234–236

Summands, 162
Summations

binomial theorem to simplify, 602
computing, 230–231
expanded form of, 230–231
of first n integers, 248–252, 311–312, 735
of geometric sequences, 252–256
harmonic, 760–762
index of, 230–231
lower limits of, 230
notation of, 230–233
properties of, 233–236
recursive definition of, 232, 300–301
upper limits of, 230, 236

Sum-of-products form, 72
Swift, Jonathan, 290
Switches, in parallel/series, 64–65
Syllogism, 52–53
Symbolic Logic (Carroll), 144
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Symmetric difference of A and B, 373
Symmetric matrices, 664–665
Symmetric property of cardinality, 428–429
Symmetry, 449–457
Syntactic analyzer, 780
Syntactic derivation tree, 684–685
Syntax, 685

Taniyama-Shimura conjecture, 160
Tao, Terrence Chi-Shen, 211
Tarski, Alfred, 105
Tarski’s World (computer program)

argument evaluation for, 140–141
formalizing statements in, 126–127
investigating, 105
negation in, 124
quantifier order in, 124–125
truth of multiply-quantified statements in, 118–119

Tautologies
definition of, 34
logical equivalence and, 35

Teams, calculating number of, 569–574
Telescoping sum, 232–233
Term, 228
Term-by-term polynomial evaluation, 750
Terminal vertices, 688–690

maximum number of, 698–700
Terminating decimal, 557
Ternary relations, 447
Theorem

See also specific theorems
definition of, 153
direct proof of, 152–154
for trees, 688–690

There exists statement, 112
“There is” statements, 5
Theta-notation (�-notation), 725–736

for functions of integer variables, 734–735
harmonic sums and, 760–762
for logarithmic inequalities, deriving order from, 758–759
polynomial function orders and, 730–731
properties of, 728–729
translating to, 727

Thinking Machines Corporation, 160
Thompson, Kenneth, 780n
Thoreau, Henry David, 808
3-combinations, 566
3n + 1 problem, 333
3x + 1 problem, 333
Time efficiency of algorithm, 740–747
Topological sorting, 507–509
Total degree of graphs, 635–636
Totally ordered sets, 505–507
Total order relation, 506
Total weight of graph, 703–704
Tournament play possibilities, 525–526
Tower of Hanoi (example), 293–296

explicit formula for, 310
Trace table, 216–217, 219

for insertion sort algorithm, 745–746
Tractable algorithms, 775–776
Trailing quantifier, 101,111
Trails, Euler, 652–653
Transition diagrams, 793–794
Transitive closure of relation, 456–457
Transitive property of cardinality, 428–429
Transitivity, 55–56

of divisibility, 173–174
relations and, 449–457
of subsets, 352
universal, 140

Transpose of matrix, 675
Traveling salesman problem, 655–656, 776
Tree(s), 683–714

binary, 695–700
characterizing, 687–692
decision, 684
Dijkstra’s shortest path algorithm and, 710–714
examples of, 684–687
full binary, 696, 698–700
graph, 683, 690
infinite, 693
Kruskal’s algorithm and, 704–707
minimum spanning, 704–707, 709–710
multiplication rule and possibility, 525–536
nonisomorphic, 690–692
non-trees and, 683–684
parse, 684–685
Prim’s algorithm and, 707–709
rooted, 694–695
spanning, 701–710
syntactic derivation, 684–685
theorems about, 688–690
trivial, 683

Trefethen, Lloyd, 518
Trefethen, Nick, 518
Triangle inequality, 187–189
Triples, counting, 587–588
Trivial trees, 683
Trivial walks, 644
Trominoes, 264–266
True by default, 40, 113
Truth set, of predicates, 97
Truth tables

for biconditional, 45
for compound statements, 28–29
for conditional statements, 40
for conjunction, 27
for disjunction, 28
for exclusive or, 28–29

Truth values
for compound statements, 28–29
of multiply-quantified statements, 120
for negation, 26
of predicates, 97
for and statement, 29
for statement form, 28
for statements, 26–27

Tucker, Alan, 584
Turing, Alan M., 379–380, 779, 793
Turing machine, 779
Twin primes conjecture, 211
2-equivalence classes, 812, 816–817
Two-dimensional Cartesian coordinate system, 717
Two’s complements

computer addition with negative integers and, 87–90
computer representation of negative integers and, 84–86
finding, 85–86

Uncountable sets, 431, 434–435
Undirected graphs, 664
Union

counting elements of general, 546–547
definition of, 343
function with, 392–393
inclusion of, 352
intersection with subsets and, 361
of languages, 783
of sets, 341–344
of two events, probability of general, 606–608

Unique factorization theorem, 176–177
Unique factorization theorem for integers, 492–493
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Universal bound laws, 35, 355, 376
Universal conditional statements

contrapositives, converse, and inverses of, 113–114
necessary conditions and, 114–115
negations of, 111
Only if and, 114–115
rewriting, 3
sufficient conditions and, 114–115
variants of, 113–114
writing, 101–102

Universal existential statements, 3–4
rewriting, 4

Universal instantiation
deductive reasoning and, 132
with modus ponens, 133–134
rules of, 132

Universal modus ponens, 133–134, 136
Universal modus tollens, 134–135
Universal quantifiers, 97–99

implicit, 103–104
Universal set, 341, 355
Universal statements, 2

counterexamples disproving, 149–150
counterexamples to, 98–99
definition of, 98
equivalent forms of, 102–103
negation of, 109
proofs for, 150–156
true/false, 98–99
vacuous truth of, 112–113
writing proofs for, 154–156

Universal transitivity, 140
Universe of discourse, 341
UNIX utilities, 780, 787
Unordered selection of elements, 566–567
Upper limit of summation, 230, 236

Vacuously true statement, 40
Vacuously true statements, 112–113
Valid argument form, 51–52, 61, 135
Valid arguments. See Arguments, valid and invalid
Validity of arguments with quantified statements, 135–139
Value

expected, 608–610, 620
of function, 384

Vandermonde, Alexander, 603
Vandermonde convolution, 603
Variables

See also Boolean variable
in algorithmic language, 214
change of, in sum transformation, 234–236
in computer languages, 214
dummy, 235, 239–240

sentences, writing with, 2
uses of, 1–2

Vegetarians and cannibals (example), 631–632
Vending machine example, 791–793
Venn, John, 340
Venn diagrams for operations on sets, 340–341, 354
Vertex (vertices)

adjacent, 626, 644
branch, 688
connected, 626
definition of, 311, 626
degree of, 634–638
internal, 688–690
isolated, 626
level of, 694
with odd degree, 638
of ordered pairs, 629
terminal, 688–690, 698–700

Vertical axes, 717
Volterra, Vito, 383

Walks, 645–646
closed, 644–645
counting, of length n, 671–673
notation for, 645
trivial, 644

Way, 78
Weighted graph, 703–704
Weiner, Norbert, 791
Well-defined functions, 391–392
Well-ordering principle, 208n

for integers, 275–276
Weyl, Hermann, 683
Wheeler, Anna Pell, 180, 397, 525
While loops, 215–217, 219, 242, 281

binary search algorithm, maximum number of, 768
Whitehead, Alfred North, 96, 146, 416, 625, 694
Wiener, Norbert, 10
Wikipedia, 630
Wiles, Andrew, 160
World Wide Web, graph representing, 630
Worst case orders

See also Average case order, for insertion sort algorithm; Best case
orders

of g (n), 741
for insertion sort algorithm, 746
for sequential search algorithm, 740

XML, 780

0-equivalence classes, 811–812, 816
Zero factorial (0!), 237
Zero product property, 164–165
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List of Symbols

Subject Symbol Meaning Page

Formal Languages
and Finite-State
Automata

� an alphabet of a language 780

ε the null string 529

�n the set of all strings over � of length n 781

�∗ the set of all strings over � 781

�+ the set of all strings over � with 781
length at least 1

LL ′ the concatenation of languages L and L ′ 783

L∗ the Kleene closure of L 783

(rs), (r | s), (r∗) regular expressions 783

[x1 − xn], [ˆxm − xn] character classes 787

x+, x?, x{n}, x{m, n} shorthand notations for regular expressions 788

N (s,m) the value of the next-state function for a state s 793, 794
and input symbol m


→ s0 initial state 793


�sa accepting state 793

L(A) language accepted by A 795

N ∗(s, w) the value of the eventual-state function for 796, 797
a state s and input string w

s R∗ t s and t are ∗-equivalent 809

s Rk t s and t are k-equivalent 810

A the quotient automaton of A 813

Matrices A matrix 661

I identity matrix 669, 670

A + B sum of matrices A and B 675

AB product of matrices A and B 666, 667

An matrix A to the power n 678

Graphs and V (G) the set of vertices of a graph G 626
Trees E(G) the set of edges of a graph G 626

{v,w} the edge joining v and w in a simple graph 632, 633

Kn complete graph on n vertices 633

Km,n complete bipartite graph on (m, n) vertices 633

deg(v) degree of vertex v 635

v0e1v1e2 · · · envn a walk from v0 to vn 644

w(e) the weight of edge e 704

w(G) the total weight of graph G 704
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Reference Formulas

Topic Name Formula Page

Logic De Morgan’s law ∼(p ∧ q) ≡ ∼p∨ ∼q 32

De Morgan’s law ∼(p ∨ q) ≡ ∼p∧ ∼q 32

Negation of→ ∼(p→ q) ≡ p∧ ∼q 42

Equivalence of a conditional p→ q ≡ ∼q →∼p 43
and its contrapositive

Nonequivalence of a conditional p→ q �≡ q → p 44
and its converse

Nonequivalence of a conditional p→ q �≡ ∼p→∼q 44
and its inverse

Negation of a universal ∼(∀x in D, Q(x)) ≡ ∃x in D such that ∼Q(x) 109
statement

Negation of an existential ∼(∃x in D such that Q(x)) ≡ ∀x in D,∼Q(x) 109
statement

Sums Sum of the first n integers 1+ 2+ · · · + n = n(n + 1)

2
248

Sum of powers of r 1+ r + r 2 + · · · + rn = rn+1 − 1

r − 1
252

Counting and Probability in the P(E) = N (E)

N (S)
518

Probability equally likely case

Number of r -permutations P(n, r) = n!
(n − r)! 533

of a set with n elements

Number of elements in a union N (A ∪ B) = N (A)+ N (B)− N (A ∩ B) 546

Number of subsets of 568
size r of a set with

(n
r

)
= n!

r !(n − r)!
n elements

Pascal’s formula

(
n + 1

r

)
=

(
n

r − 1

)
+
(n
r

)
593
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Topic Name Formula Page

Counting and Binomial theorem (a + b)n =
n∑

k=0

(n
k

)
an−kbk 598

Probability
Probability of the complement P(Ac) = 1− P(A) 543
of an event

Probability of a union P(A ∪ B) = P(A)+ P(B)− P(A ∩ B) 606

Conditional probability P(A | B) = P(A ∩ B)

P(B)
612

Bayes’ formula 616

P(Bk | A) = P(A | Bk)P(Bk)

P(A | B1)P(B1)+ P(A | B2)P(B2)+ · · · + P(A | Bn)P(Bn)

Laws of b0 = 1 405
Exponents

b−x = 1

bx
405

bu·bv = bu+v 406
bu

bv
= bu−v 406

(bu)v = bu· v 406

(bc)u = bu·cu 406

bu = bv ⇒ u = v 406

Properties of logb x = y ⇔ by = x 406
Logarithms logb(xy) = logb(x)+ logb(y) 406

logb(x
a) = a logb(x) 406

logb

(
x

y

)
= logb(x)− logb(y) 406

logc(x) =
logb(x)

logb(c)
406

logb(u) = logb(v)⇒ u = v 406
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