Lecture No -9 Examples

First of all we revise the example which we did in our 8" lecture.
Consider w = f(x,y,z) Where
x =g(t), y=1(t), z=h(t)
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Consider

w = f(x), where x = g(r, s). Now it is clear from the figure that “x” is

intermediate variable and we can write.
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Intermediate variables




Consider the function w = f(x,y), Where x =g(r, s), y = h(r, s)
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Similarly if you differentiate the function “w” with respect to “s” we will get

LDependent variable

And we have
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Consider the function w = f(x,y,z), Where x = g(r, s), y = h(r,s), z = k(r, s)

Dependent variable

intermediate variables
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Independent variables

Thus we have
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Similarly if we differentiate with respect to
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then we have,

Consider the function w=x+ 2y + z?, XZL, y=r’+Ins, z=2r
First we will calculate S
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Remembering the different ?‘:or‘#\s of the chain rule:

The best thing to do is to draw appropriate tree diagram by placing the dependent
variable on top, the intermediate variables in the middle, and the selected independent
variable at the bottom. To find the derivative of dependent variable with respect to the
selected independent variable, start at the dependent variable and read down each branch
of the tree to the independent variable, calculating and multiplying the derivatives along
the branch. Then add the products you found for the different branches.

The Chain Rule for Functions

of Many Variables
Suppose o = f (X, y, ...

variables x, y, .....
set) and the X%, vy, ...,

., V) Isa
differentiable function of the
, v (a finite

differentiable functions ofp, q, , t
(another finite set). Then w is a
differentiable function of the
variables p through t and the
partial derivatives of w with
respect to these variables are
given by equations of the form
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The other equations are obtained by
replacing pbyaq, ..., t, one at a time.
One way to remember last equation
is to think of the right-hand side as
the dot product of two vectors with
components.
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Example:
w=In(e" +e°+e' +e")
Taking “In” of both sides of the given equation we get
e’ =e"+e°+e' +e"
Now Taking partial derivative with respect to “r, s, u, and t” we get
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Now since we have w. = e Now Differentiate it partially w.r.t. «s”
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Now differentiate it partially w.r.t. “t” and using the value of w, we get,

r+s—2w
=—e (—2w,)
— 2er+372wetfw

_ r+s+t-3w
Wrst - 26

Now differentiate it partially w.r.t. “u” we get,
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