Lecture No -7 Geometric meaning of partial derivative

Geometric meaning of partial derivative
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Partial Derivatives
Let z = f(x, y) be a function of two variable defined on a certain domain D.
For a given change Ax in x, keeping y as it is, the change Az in z, is given by

Az=f(x+Ax,y)-T(X,y)
If the ratio

Az fx+4x y)-f(x,y)
AX A X

approaches to a finite limit as Ax —0, then this limit is called Partial derivative of f with

respect of x.

Similarly for a given change Ay in y, keeping x as it is, the change Az in z, is given by
Az=1f(x,y+Ay)-T(X,y)

If the ratio
Az f(x, y+ ay) —f(x, y)
dy Ay

approaches to a finite limit as Ay —0, then this limit is called Partial derivative of f with
respect of y.

Geometric Meaning of Partial Derivatives
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Suppose z= f(x,y) is a function of two variables x and y. The graph of f is a surface.
Let P be a point on the graph with coordinates (x,, Y,, f(X,.Y,) . If a point starting from
P, changes its position on the surface such that y remains constant, then locus of this
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point is a curve of intersection of z=f(x,y) and y = constant. On this curve, g— isa
X

derivative of z= f (X, y) with respect to x with y constant.

Thus @: the slope of the tangent to the curve at P

Similarly, % is the gradient of the tangent at P to the curve of intersection of z=f(x,y)

and x = constant. As shown in the figures given below:
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Partial Derivatives of Higher Orders

The partial derivative f_and f, of function of f of two variables x and y, being

functions of x and y, may possess derivatives. In such cases, the second order partial
derivatives are defined as below:
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Thus, there are four second order partial derivatives for a function z=f(x,y). The
partial derivatives f,, and f, are called mixed second partials and are not equal in
general. Partial derivatives of order more than two can be defined in similar manner.
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f(x,y) = x cosy +y e*
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Laplace’s Equation
For a functionw = f(x,y, z), the equation
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is called Laplace’s equation.

Example
f(x,y) = e*siny + e’ cos x,
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Adding both partial second order derivative, we have
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Euler’s theorem
The mixed derivative theorem

If f(x,y) and its partial derivatives fX, fy, fxy and fyx are defined throughout
an open region containing a point (a, b) and are all continuous at (a, b), then

fy(@.b) =1, (a.b)



Advantage of Euler’s theorem
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However, if we postpone the differentiation with respect to y and differentiate first with
respect to x, we get the answer more quickly.

tell us to differentiate first with respect to y and then with respect to x.
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