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Geometric meaning of partial derivative 

z = f(x, y) 

Partial derivative of f with respect of x is denoted by  
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Partial derivative of f with respect of y is denoted by 
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Partial Derivatives 

Let z = f(x, y) be a function of two variable defined on a certain domain D. 

For a given change ∆x in x, keeping y as it is, the change ∆z in z, is given by 

                            

                            ∆z = f (x + ∆x, y) – f (x, y) 

If the ratio 

 
approaches to a finite limit as ∆x →0, then this limit is called Partial derivative  of f with 

respect of x. 

Similarly for a given change ∆y in y, keeping x as it is, the change ∆z in z, is  given by  

 ∆z = f (x , y + ∆y) – f (x, y) 

If the ratio 

 
 

approaches to a finite limit as ∆y →0, then this limit is called Partial derivative  of f with 

respect of y. 

Geometric Meaning of Partial Derivatives 
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Suppose ( , )z f x y is a function of two variables x and y. The graph of f is a surface. 

Let P be a point on the graph with coordinates 0 0 0 0( , , ( , )x y f x y . If a point starting from 

P, changes its position on the surface such that y remains constant, then locus of this 

point is a curve of intersection of ( , )z f x y  and y = constant. On this curve, 
z

x




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derivative of ( , )z f x y with respect to x with y constant.  
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 the slope of the tangent to the curve at P 

 

Similarly, 
z

y




is the gradient of the tangent at P to the curve of intersection of  ( , )z f x y  

and x = constant. As shown in the figures given below: 

 

 

 
 

Partial Derivatives of Higher Orders  

 

The partial derivative xf  and yf  of function of f of two variables x  and y , being 

functions of x  and y , may possess derivatives. In such cases, the second order partial 

derivatives are defined as below: 
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Thus, there are four second order partial derivatives for a function ( , )z f x y . The 

partial derivatives xyf  and yxf  are called mixed second partials and are not equal in 

general. Partial derivatives of order more than two can be defined in similar manner. 

 

 

 

Example 
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Laplace’s Equation 

For a function ( , , )w f x y z , the equation 
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                                  is called Laplace’s equation. 
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Adding both partial second order derivative, we have  

 

 

 

 

 

Euler’s theorem  

The mixed derivative theorem 

 

If f(x,y) and its partial derivatives f
x
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an open region containing a point  (a, b) and are all continuous at (a, b), then   
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Advantage of  Euler’s theorem 

 

 

 

 

The symbol 
2w

x y


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  tell us to differentiate first with respect to y and then with respect to x. 

However, if we postpone the differentiation with respect to y and differentiate first with 

respect to x, we get the answer more quickly.  
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