
Lecture No-5         Limit of Multivariable Function 

 

 

 
Domains and Ranges 

 
Examples of domain of a function 

 

 
 

 

As shown in the figure 
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f(x, y) = lnxy  

Domain of f consists of region lying in first and third quadrants in xy plane as shown in 

above figure right side. 

 

 

 

 

 

 

 

 
Domain of f consists of region in xy plane  x 2  ≤ 4 ,- 2 ≤ x ≤2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Domain of f consists of region in three dimensional space occupied by sphere centre at  

(0, 0, 0) and radius 5. 

 

 
f(0,0) is not defined but we see that limit exits. 
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Approaching to (0,0) 

through 

x-axis 

 

f (x,y) 

Approaching to (0,0) 

through 

y-axis 

 

      f (x,y) 

(0.5,0) 0.25 (0,0.1) -0.1 

(0.25,0) 0.0625 (0,0.001) -0.001 

(0.1,0) 0.01 (0,0.00001) 0.00001 

(-0.25,0) 0.0625 (0,-0.001) 0.001 

(-0.1,0) 0.01 (0,-0.00001) 0.00001 

 

Approaching to (0,0) through 

y = x 

f (x,y) 

(0.5,0.5) -0.25 

(0.1,0.1) -0.09 

(0.01,0.01) -0.0099 

(-0.5,-0.5) 0.75 

(-0.1,-0.1) 0.11 

(-0.01,-0.01) 0.0101 

 

 

 
 



Example 

 

 
f(0,0) is not defined and we see that limit also does not exit. 

 

Approaching to 

(0,0) through 

x-axis (y = 0) 

 

f (x,y) 

Approaching to 

(0,0) through 

y = x 

 

f (x,y) 

( 0.5,0 ) 0 ( 0.5,0.5 ) 0.5 

( 0.1,0 ) 0 ( 0.25,0.25 ) 0.5 

( 0.01,0 ) 0 ( 0.1,0.1 ) 0.5 

( 0.001,0 ) 0 ( 0.05,0.05 ) 0.5 

( 0.0001,0 ) 0 ( 0.001,0.001 ) 0.5 

( -0.5,0 ) 0 ( -0.5,-0.5 ) 0.5 

( -0.1,0 ) 0 ( -0.25,-0.25 ) 0.5 

( -0.01,0 ) 0 ( -0.1,-0.1 ) 0.5 

( -0.001,0 ) 0 ( -0.05,-0.05 ) 0.5 

( -0.0001,0 ) 0 ( -0.001,-0.001 ) 0.5 
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x2 + y2  = 0 (along y = 0) 
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x2 + y2  = 0.5 (along y = x) 
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x2 + y2  does not exist. 
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We can approach a point in space through infinite paths some of them are shown in the 

figure below. 

  

 

 

 

 

 

 

 

 

 

Rule for Non-Existence of a Limit 

 

If in 

 

 

We get two or more different values as we approach (a, b) along different paths, then 

 

 

 
does not exist. 

The paths along which (a, b) is approached may be  straight lines or plane curves 

through (a, b). 
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RULES FOR LIMIT 
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    Similarly for the function of three variables. 

 

 

 

Overview of lecture# 5 

 

In this lecture we recall you all the limit concept which are prerequisite for this course 

and you can find all these concepts in the chapter # 16   (topic # 16.2)of your Calculus By 

Howard Anton. 

 
 


