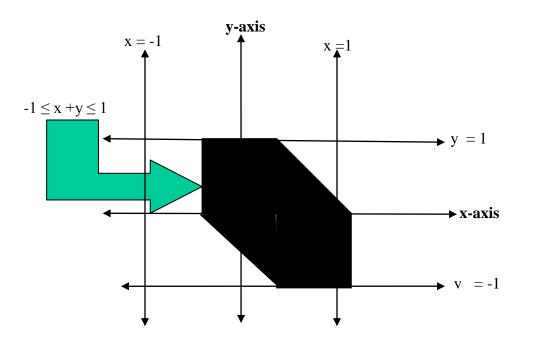
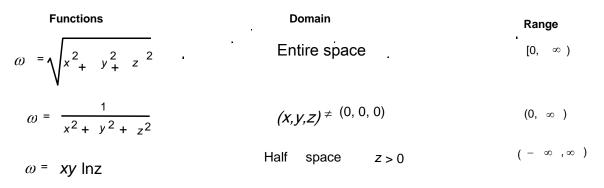
Lecture No-5 Limit of Multivariable Function $f(x,y) = \sin^{-1}(x+y)$

Domain of f is the region in which $-1 \le x + y \le 1$



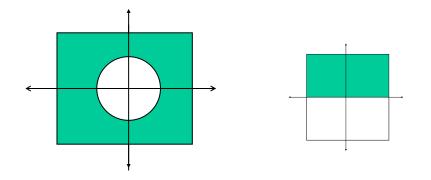
Domains and Ranges



Examples of domain of a function

 $f(x, y) = xy\sqrt{y-1}$ Domain of f consists of region in xy plane where $y \ge 1$

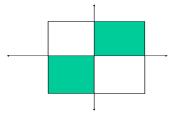
 $f(x, y) = \sqrt{x^2 + y^2 - 4}$ Domain of f consists of region in xy plane where $x^2 + y^2 \ge 4$ As shown in the figure



f(x, y) = lnxy

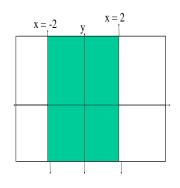
Domain of f consists of region lying in first and third quadrants in xy plane as shown in above figure right side.

 $f(x, y,z) = e^{xyz}$ Domain of f consists of region of three dimensional space



 $f(x,y) = \frac{\sqrt{4-x^2}}{y^2+3}$

Domain of f consists of region in xy plane x 2 \leq 4, - 2 \leq x \leq 2



 $f(x, y, z) = 25 - x^2 - y^2 - z^2$

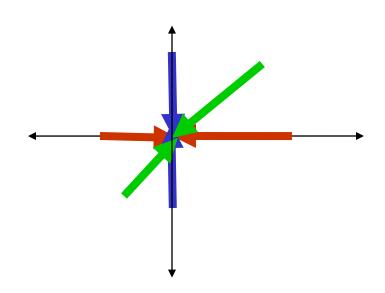
Domain of f consists of region in three dimensional space occupied by sphere centre at (0, 0, 0) and radius 5.

$$f(x, y) = \frac{x^3 + 2x^2y - xy - 2y^2}{x + 2y}$$

f(0,0) is not defined but we see that limit exits.

Approaching to (0,0) through x-axis	f (x,y)	Approaching to (0,0) through y-axis	f (x,y)
(0.5,0)	0.25	(0,0.1)	-0.1
(0.25,0)	0.0625	(0,0.001)	-0.001
(0.1,0)	0.01	(0,0.00001)	0.00001
(-0.25,0)	0.0625	(0,-0.001)	0.001
(-0.1,0)	0.01	(0,-0.00001)	0.00001

Approaching to $(0,0)$ through y = x	f (x,y)
(0.5,0.5)	-0.25
(0.1,0.1)	-0.09
(0.01,0.01)	-0.0099
(-0.5,-0.5)	0.75
(-0.1,-0.1)	0.11
(-0.01,-0.01)	0.0101



Example

$$f(x,y) = \frac{xy}{x^2 + y^2}$$

f(0,0) is not defined and we see that limit also does not exit.

Approaching to (0,0) through x-axis $(y = 0)$	f (x,y)	Approaching to (0,0) through y = x	f (x,y)
(0.5,0)	0	(0.5,0.5)	0.5
(0.1,0)	0	(0.25,0.25)	0.5
(0.01,0)	0	(0.1,0.1)	0.5
(0.001,0)	0	(0.05,0.05)	0.5
(0.0001,0)	0	(0.001,0.001)	0.5
(-0.5,0)	0	(-0.5,-0.5)	0.5
(-0.1,0)	0	(-0.25,-0.25)	0.5
(-0.01,0)	0	(-0.1,-0.1)	0.5
(-0.001,0)	0	(-0.05,-0.05)	0.5
(-0.0001,0)	0	(-0.001,-0.001)	0.5

 $\lim_{(x,y)\to(0,0)} \frac{xy}{x^2 + y^2} = 0 \text{ (along } y = 0)$ $\lim_{(x,y)\to(0,0)} \frac{xy}{x^2 + y^2} = 0.5 \text{ (along } y = x)$ $\lim_{(x,y)\to(0,0)} \frac{xy}{x^2 + y^2} \text{ does not exist.}$

Example

$$(x, y) \xrightarrow{\lim} (0, 0) \frac{xy}{x^2 + y^2}$$

Let (x, y) approach $(0, 0)$ along the line $y = x$.
$$f(x, y) = \frac{xy}{x^2 + y^2} = \frac{x \cdot x}{x^2 + x^2} = \frac{1}{1+1} \quad x \neq 0.$$
$$= \frac{1}{2}$$

Let (x, y) approach (0, 0) along the line y = 0

$$f(x, y) = \frac{x \cdot (0)}{x^2 + (0)^2} = 0 \quad \text{,} \quad x \neq 0.$$

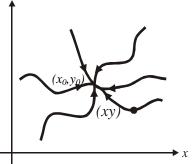
Thus f(x, y) assumes two different

values as (x,y) approaches (0,0)

along two different paths.

 $\lim_{(x, y) \to (0, 0)} f(x, y) \text{ does not exist.}$

We can approach a point in space through infinite paths some of them are shown in the figure below.



Rule for Non-Existence of a Limit

If in

$$(x, y) \xrightarrow{\text{Lim}} (a, b) \xrightarrow{f(x, y)}$$

We get two or more different values as we approach (a, b) along different paths, then

$$(x, y) \xrightarrow{\text{Lim}} (a, b)^{f(x, y)}$$

does not exist.

The paths along which (a, b) is approached may be <u>straight lines or plane curves</u> <u>through (a, b).</u>

Example

$$(x, y) \xrightarrow{\text{Lim}} (2, 1) \frac{x^{3} + x^{2} y - x - y^{2}}{x + 2y}$$
$$= \frac{(x, y) \xrightarrow{\text{Lim}} (2, 1)}{(x, y) \xrightarrow{\text{Lim}} (2, 1)} (x^{3} + 2 x^{2} y - xy - 2y^{2})}{(x, y) \xrightarrow{\text{Lim}} (2, 1)} (x + 2y)$$

$$= \frac{(x, y) \stackrel{\text{Lim}}{\to} (2, 1)}{(x, y) \stackrel{\text{Lim}}{\to} (2, 1)} \frac{(x^3 + 2 \ x^2 \ y - x \ - \ y^2)}{(x, y) \stackrel{\text{Lim}}{\to} (2, 1)}$$

Example

$$(x, y) \xrightarrow{\text{Lim}} (0, 0) \overline{\sqrt{x^2 + y^2}}$$

We set

$$x = r \cos \theta, \ y = r \sin \theta$$

then
$$\frac{x}{\sqrt{x^2 + y^2}} = \frac{r \cos \theta \cdot r \sin \theta}{\sqrt{r^2 \cos^2 \theta + r^2 \sin^2 \theta}}$$

$$= r \cos \theta \sin \theta , \text{ for } r > 0$$

Since

$$r = \sqrt{x^2 + y^2}, r \to 0 \text{ as } (x, y) \to (0, 0),$$

$$\lim_{(x, y) \to (0, 0)} \frac{x}{\sqrt{x^2 + y^2}} = \lim_{r \to 0} r \cos\theta \sin\theta = 0,$$

since $|\cos \theta \sin \theta| \le 1$ for all value of θ .

RULES FOR LIMIT

If $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = L_1$ and $\lim_{(x,y)\to(x_0,y_0)} g(x,y) = L_2$ Then

(a) $\lim_{(x,y)\to(x_0,y_0)} cf(x,y) = cL_1 \quad \text{(if } c \text{ is constant)}$

(b)
$$\lim_{(x,y)\to(x_0,y_0)} \{f(x,y) + g(x,y)\} = L_1 + L_2$$

$$\lim_{(x,y)\to(x_0,y_0)} \{f(x,y) - g(x,y)\} = L_1 - L_2$$

(d)
$$\lim_{(x,y)\to(x_0,y_0)} \{f(x,y)g(x,y)\} = L_1 L_2$$

(e)
$$\lim_{(x,y)\to(x_0,y_0)} \frac{f(x,y)}{g(x,y)} = \frac{L_1}{L_2} \quad \text{(if } L_2 = 0\text{)}$$
$$\lim_{(x,y)\to(x_0,y_0)} c = c \quad (c \text{ a constant}), \quad \lim_{(x,y)\to(x_0,y_0)} x_0 = x_0, \quad \lim_{(x,y)\to(x_0,y_0)} y_0 = y_0$$

Similarly for the function of three variables.

Overview of lecture# 5

In this lecture we recall you all the limit concept which are prerequisite for this course and you can find all these concepts in the chapter # 16 (topic # 16.2)of your Calculus By Howard Anton.