
33-Examples                                                                                                                                                 VU 

Lecture No -33         Examples 

 

Example  

Evaluate I = 
C

{3ydx + (3x+2y)dy} from A(1, 2) to B (3, 5). 

No path is given, so the integrand is doubtless an exact differential of some function z = f 

(x,y). In fact 
P

y
 = 3 = 

Q

x
. We have already dealt with the integration of exact 

differentials, so there is no difficulty. Compare with  

I = 
C

{P dx + Q dy}. 

P = 
z

x
  = 3y                z =  3ydz=3xy+f(y) --------  (i) 

Q = 
z

y
  = 3x + 2y      z = (3x+2y) dy = 3xy + y

2
+F(x)   (ii) 

For (i) and (ii) to agree   f(y) = y
2
  ;     F(x) = 0 

Hence z = 3xy + y2 

I = 
C

{3ydx + (3x+2y)dy}=  
(3,5)

(1,2)
d(3xy+y

2
)=[3xy+y

2]
 (3,5)

(1,2)
   = (45+25)  (6+4) = 60 

Example 

Evaluate I = 
C

{(x
2
+ye

x
)dx+(e

x
+y)dy} between A (0, 1) and B (1, 2). 

As before, compare with 
C

 {Pdx+Q dy}. 

P = 
z

x
 =x

2
+ye

x
     z =

x
3

3
 + ye

x
+f (y) 

Q = 
z

y
 =e

x
+y       z = ye

x 
+ 

y
2

2
 + F(x) 

For these expressions to agree, 

f(y)  =  
y

2

2
 ;  F(x) = 

x
3

3
     Then I  = 







x

3

3
 + ye

x 
+ 

y
2

2

(1,2)

(0,1)

 = 
5

6
  + 2e 

So the main points are that, if (Pdx+Qdy) is an exact differential  

(a)  I = 
C

(Pdx + Qdy) is independent of the path of integration 

(b)  I =  O
C

 (P dx + Q dy) is zero. 

If I = 
C

{P dx + Q dy} and (Pdx + Qdy) is an exact differential, 

 Then  Ic1
 = Ic2

 

Ic1
 + Ic2

 = 0 

Hence, the integration taken round a closed curve is zero, 

 provided (Pdx+Q dy) is an exact differential. 

 If (P dx + Q dy) is an exact differential,  O (P dx + Q dy) = 0 
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Exact differentials in three independent variables 

A line integral in space naturally involves three independent variables, but the method is 

very much like that for two independent variables. 

dz = Pdx + Q dy + R dw is an exact differential of z = f(x, y, w) 

 

if  
P

y
  = 

Q

x
 ;  

P

w
  = 

R

x
  ; 
R

y
  = 

Q

w
  

 

If the test is successful, then 

(a) 
C

 (P dx + Q dy + R dw) is independent of the path of integration. 

(b)   O
C

 (P dx + Q dy + R dw) is zero. 

 

Example  

Verify that dz=(3x
2
yw+6x)dx+(x

3
w8y)dy+(x

3
y+1) dw is inexact differential and hence 

evaluate 
C

 dz from A (1, 2, 4) to B (2, 1 3). 

First check that dz is an exact differential by finding the partial derivatives above, when 

 P = 3x
2
yw + 6x; Q = x

3
w  8y; and R = x

3
y + 1 

P

y
  = 3x

2
w ; 

Q

x
  = 3x

2
w   

P

y
  = 

Q

x
  

P

w
  = 3x

2
y ; 

R

x
  = 3x

2
y   

P

w
  = 

R

x
  

R

y
  = x

3
; 
Q

w
  = x

3
   

R

y
  = 

Q

w
  

 dz is an exact differential 

Now to find z. P = 
z

x
  ; Q = 

z

y
 ; R = 

z

w
  

 
z

x
 =3x

2
yw+6x   z=(3x

2
yw+6x)dx   = x

3
yw+3x

2
+f(y)+F(w) 

 
z

y
 =x

3
w8x   z = (x3

w8y)dy   = x
3
yw4y

2
+g(x)+F(w) 

 
z

w
 =x

3
y+1   z = (x3

y+1)dw    = y
3
yw+w+f(y)+g(x) 

 

For these three expressions for z to agree 

 

f(y) =  4y
2
; F(w) = w; g(x) = 3x

2
 

   z = x
3
yw + 3x

2
  4y

2
 + w 

 I = [x
3
yw + 3x

2
4y

2
+w]

(2,1,3)

(1,2,4)

            

for I = [x
3
yw + 3x

2
4y

2
+w]

(2,1,3)

(1,2,4)

  = (24+124+3)(8+316+4)=36 

The extension to line integrals in space is thus quite straightforward. 

Finally, we have a theorem that can be very helpful on occasions and which links up with 

the work we have been doing. It is important, so let us start a new section. 
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Green’s Thorem 

Let P and Q be two function of x and y that are finite 

 and continuous inside and the boundary c of a region 

 R in the xy-plane.If the first partial derivatives are 

 continuous within the region and on the boundary,  

then Green’s theorem states that. 


R








P

y
  
Q

x
  dx dy =   O

C

 (P dx+ Q dy) 

That is, a double integral over the plane region R can be transformed into a line integral 

over the boundary c of the region – and the action is reversible. 

Let us see how it works. 

 

EXAMPLE 

Evaluate I =  O
C

 {(2x  y)dx + (2y+x)dy} around the boundary c . the ellipse  

x
2
 + 9y

2
 = 16. 

The integral is of the form  

I =  O
C

 {P dx + Q dy)  where P = 2x  y    
P

y
  =  1 and Q = 2y + x    

Q

x
  = 1. 

 I =
R








P

y

Q

x
dxdy=

R

(11)dx dy= 2 
R

dx dy 

But 
R

dx dy over any closed region give the area of the figure. 

In this case, then, I = 24 where A is the area of the ellipse  

x
2
+9y

2
 = 16 i.e. 

x
2

16
 +

9y
2

16
 = 1 

  a = 4;  b = 
4

3
       A = 

16

3
         I = 2A = 

32

3
  

To demonstrate the advantage of Green’s theorem, let us work through the next example 

(a) by the previous method, and (b) by applying Green’s theorem. 

 

Example 

Evaluate I =  O
C

 {(2x+y) dx+(3x2y) dy} taken in anticlockwise manner round the triangle 

with vertices at O (0,0) A (1, 0) B (1, 2). 

I =  O
C

 {(2x + y) dx + (3x  2y) dy} 
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(a) By the previous method 

There are clearly three stages with c1,c2,c3. Work through the complete evaluation to 

determine the value of I. It will be good revision. When you have finished, check the 

result with the solution in the next frame.   I  =  2 

 (a)  (i) c1 is y = 0   dy = 0 

  I1 = 
1

0

2x dx = [x
2]

1

0

 = 1   I1 = 1 

(ii)  c2 is x = 1    dx = 0 

  I2=
2

0

(32y) dy=[3yy
2]

0

1

 =2  I2=2 

(iii) c3 is y = 2x     dy = 2 dx 

 I3 = 
0

1

{4x dx + (3x  4x) 2 dx} 

       =  
0

1

2x dx = [x
2]

0

1

 =  1    I3 =  1 

    I = I1+I2+I3 = 1+2+( 1) = 2     I = 2 

 

Now we will do the same problem by applying Green’s theorem, so more 

 

(b)  By Green’s theorem 

I =  O
C

 {(2x + y) dx + (3x  2y) dy} 

P = 2x + y      
P

y
 =1;   

Q = 3x  2y  
Q

x
  = 3 

I  =   
R








P

y
  
Q

x
  dx dy 

Finish it off. I = 2 

For I =  
R

(13) dx dy=2 
R

dx dy = 2A 

        = 2  the area of the triangle = 2  1 = 2 

   I = 2 

Application of Green’s theorem is not always the quickest method. It is useful, however, 

to have both methods available. 

If you have not already done so, make a note of Green’s theorem. 

 


R








P

y
  
Q

x
  dx dy =   O

C

  (P dx + Q dy) 

 

Note: Green’s theorem can, in fact, be applied to a region that is not simply connected 

by arranging a link between outer and inner boundaries, provided the path of integration 

is such that the region is kept on the left-hand side.

 

 


