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Lecture No -29     Change of parameter 

 
It is possible for different vector-valued functions to have the same graph.  

For example, the graph of the function 

r = (3 cos t)i + (3 sin t)j, 0 < t < 2 

is the circular of radius 3 centered at the origin  

with counterclockwise orientation. The parameter  

t can be interpreted geometrically as the positive 

 angle in radians from the x-axis to the radius vector. 

 For each value of t, let s be the length of the arc  

subtended by this angle on the circle 

 

The parameters s and t are related by 

t = s/3,   0 < s < 6 

if we substitute this in (10), we obtain a vector-valued function of the parameter s, namely 

r = 3 cos (s/3)i + 3 sin (s/3)j,  0 < s < 6 

whose graph is also the circle of radius 3 centered at the origin with counterclockwise 

orientation .In various problems it is helpful to change the parameter in a vector-valued 

function by making an appropriate substitution. For example, we changed the parameter 

above from t to s by substituting  t=s/3 in (10).  

In general, if g is a real-valued function, then substituting  t = g(u)  in r(t) changes the 

parameter from t to u.  

 

When making such a change of parameter, it is important to ensure that the new vector-

valued function of u is smooth if the original vector-valued function of t is smooth. It can 

be proved that this will be so if g satisfies the following conditions: 

1. g is differentiable. 

2. g/ is continuous. 

3. g/(u)  0 for any u in the domain of g. 

4. The range of g is the domain of r. 
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If g satisfies these conditions, then we call t = g(u) a smooth change of parameter. 

Henceforth, we shall assume that all changes of parameter are smooth, even if it is not 

stated explicitly. 

ARC LENGTH 

Because derivatives of vector-valued functions are calculated by differentiating 

components, it is natural do define integrals of vector-functions in terms of components. 

EXAMPLE 

If x
/
(t) and y

/
(t) are continuous for a < t < b, then the curve given by the parametric 

equations 

x = x(t),  y = y(t)   (a < t < b)      (9) 

has arc length 

L = 
b

a
   







dx

dt

2

 + 






dy

dt

2

 dt     (10) 

This result generalizes to curves in 3-spaces exactly as one would expect:  

If x
/
(t), y

/
(t), and z

/
(t) are continuous for a < t < b, then the curve given by the parametric 

equations 

x = x(t),  y = y(t),  z = z(t)  (a < t < b) 

has arc length 

L = 
b

a
   







dx

dt

2

 + 






dy

dt

2

 + 






dz

dt

2

 dt    (12) 

EXAMPLE 

Find the arc length of that portion of the circular helix  

x = cos t,  y = sin t,   z = t 

From t = 0 to t =  

The arc length is 

L = 


0
   







dx

dt

2

 + 






dy

dt

2

 + 






dz

dt

2

 dt    =  


0
 ( sin t)

2
 + (cos t)

2
 + 1 dt  

    =  


0
 2   dt  =   2    

ARC LENTH AS A PARAMETER 

 

For many purposes the best parameter to use  

for representing a curve in 2-space or  

3-space parametrically is the length of  

arc measured along the curve from some 

 fixed reference point. This can be done as follows: 

 

Step 1: Select an arbitrary point on the curve C to serve as a reference point. 

Step 2: Starting from the reference point, choose one direction along the curve to be the 

positive direction and the other to be the negative direction. 

Step 3: If P is a point on the curve, let s be the “signed” arc length along C from the 

reference point to P, where s is positive if P is in the positive direction from the 

reference point, and s is negative if P is in the negative direction. 

 

By this procedure, a unique point P on the curve is determined when a value for s is 

given. For example, s = 2 determines the point that is 2 units along the curve in the 
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positive direction from the reference point, and s =  
3

2
  determines the point that is 

3

2
  

units along the curve in the negative direction from the reference point. 

Let us now treat s as a variable. As the value of s changes, the corresponding point P 

moves along C and the coordinates of P become functions of s. Thus, in 2-space the 

coordinates of P are (x(x,), y(s)),  and in 3-space they are (x(s), y(s), z(s)). Therefore, in 

2-space the curve C is given by the parametric equations x = x(s),   y = y (s)  

and in 3-space by x = x(s),    y = y(s),  z = z (s) 

REMARKS 

When defining the parameter s, the choice of positive and negative directions is arbitrary. 

However, it may be that the curve C is already specified in terms of some other parameter 

t, in which case we shall agree always to take the direction of increasing t as the positive 

direction for the parameter s. By so doing, s will increase as t increases and vice versa. 

The following theorem gives a formula for computing an arc-length parameter s when the 

curve C is expressed in terms of some other parameter t. This result will be used when we 

want to change the parameterization for C from t to s. 

 

 

 

THEOREM 

(a)  Let C be a curve in 2-space given parametrically by 

x = x(t) ,   y = y (t) 

where x
/
(t) and y

/
(t) are continuous functions. If an arc-length parameter s is introduced 

with its reference point at (x(t0), y (t0)), then the parameters s and t are related by 

s = 
t

 
t0

   






dx

du

2

 + 






dy

du

2

 du   (13a) 

(b)  Let C be a curve in 3-space given parametrically by 

x = x(t),  y = y(t),  z = z(t) 

where x
/
(t),  y

/
(t), and z

/
(t) are continuous functions. If an arc-length parameter s is 

introduced with its reference point at (x(t0), y(t0), z(t0)), then the parameters s and t are 

related by 

s = 
t

 
t0

   






dx

du

2

 + 






dy

du

2

 + 






dz

du

2

 du  (13b) 

Proof 

If t > t0, then from (10) (with u as the variable of integration rather than t) it follows that 


t

 
t0

   






dx

du

2

 + 






dy

du

2

 du   (14) 

represents the arc length of that portion of the curve C that lies between (x(t0), y(t0)) and 

(x (t), y(t)). If t < t0, then (14) is the negative of this arc length. In either case, integral 

(14) represents the “signed” arc length s between these points, which proves (13a). 

It follows from Formulas (13a) and (13b) and the Second Fundamental Theorem of 

Calculus (Theorem 5.9.3) that in 2-space. 

ds

dt
 = 

d

dt
 









t

 
t0 






dx

du

2

+






dy

du

2

du      =   






dx

dt

2

 + 






dy

dt

2

 

and in 3-space 
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ds

dt
 = 

d

dt
 









t

 
t0 






dx

du

2

+






dy

du

2

+






dz

du

2

dt  =   






dx

dt

2

 + 






dy

dt

2

+ 






dz

dt

2

 

Thus, in 2-space and 3-space, respectively, 

ds

dt
   =   







dx

dt

2

 + 






dy

dt

2

   (15a) 

ds

dt
   =   







dx

dt

2

 + 






dy

dt

2

+ 






dz

dt

2

  (15b) 

 

 

REMARKS: 

Formulas (15a) and (15b) reveal two facts worth noting. First, ds/dt does not depend on 

t0; that is, the value of ds/dt is independent of where the reference point for the parameter 

s is located. This is to be expected since changing the position of the reference point shifts 

each value of s by a constant (the arc length between the reference points), and this 

constant drops out when we differentiate. The second fact to be noted from (15a) and 

(15b) is that ds/dt > 0 for all t. This is also to be expected since s increases with t by the 

remark preceding Theorem 15.3.2. If the curve C is smooth, then it follows from (15a) 

and (15b) that ds/dt > 0 for all t . 

 

EXAMPLE 

x = 2t + 1,  y = 3t  2  (16) 

using arc length s as a parameter, where the reference point for s is the point (1,  2). 

In formula (13a) we used u as the variable of integration because t was needed as a limit 

of integration. To apply (13a), we first rewrite the given parametric equations with u in 

place of t; this gives 

from which we obtain 

x = 2u + 1,     y = 3u  2 
dx

du
  =  2,    

dy

du
  = 3 

we see that the reference point (1,2) corresponds to t = t0 = 0 

s = 
t

 
t0

   






dx

du

2

 + 






dy

du

2

 du = 
t

 
t0

 13  du =  13u  ]
u=t

u=0
  = 13t  

Therefore,  t = 
1

13
  s  

Substituting this expression in the given parametric equations yields. 

x = 2 






1

13
s   + 1 = 

2

13
 s + 1 

y = 3 






1

13
s    2  = 

3

13
 s  2 

 

EXAMPLE 

Find parametric equations for the circle x = a cos t, y = a sin t  (0 < t < 2) 

using arc length s as a parameter, with the reference point for s being (a, 0), where a > 0. 

We first replace t by u in the given equations so that   x = a cos u,  y = a sin u 

And   
dx

du
  =  a sin u,   

dy

du
  = a cos u 

Since the reference point (a, 0) corresponds to t = 0, we obtain  
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s = 
t

 
t0

   






dx

du

2

 + 






dy

du

2

 du  = 
t

 
t0

 ( a sin u)
2
 + (a cos u)

2
  du  = 

t

 
0

a du = au ]
u=t

u=0
  = at 

Solving for t in terms of s yields  t = s/a 

Substituting this in the given parametric equations and using the fact that  s = at ranges 

from 0 to 2a as t ranges from 0 to 2, we obtain 

x=acos (s/a),  y=a sin (s/a) (0<s<2a) 

 

Example 

Find Arc length of the curve r (t) = t
3
i + tj + ½ 6 t

2
 k, 1 < t < 3 

Here x = t
3
, y = t, z = ½ 6 t

2
 

dx

dt
 =3t

2
,  

dy

dt
 = 1,  

dz

dt
  = 6 t 

Arc length=
3

1 





dx

dt

 2

+






dy

dt

 2

+






dz

dt

2

 dt = 
3

1
 9t

4
 + 1 + 6t

2
  dt = 

3

1
  (3t

2
 + 1)

2
  dt 

 =  |t3
 + t|

3

1
=  (3)

3
 + 3  (1)

3
  1=27 + 3  1  1 = 28 

 

 

EXAMPLE   

Calculate 
dr

du
 by chain Rule. 

r = e
t
i + 4e

-t
j 

dr

dt
  = e

t
i  4e

-t
j 

dt

du
  = 2u 

dr

du
  = 

dr

dt
  . 

dt

du
   =  (e

t
i  4e

t
j).(2u)  = 2u e

u2
i 8ue

-u2
j 

By expressing r in terms of u 

R = e
u
i + 4e

-u2
j 

dr

du
  = 2u e

u2
i  8ue

-u2
j 

 

 

 

 

 

 

 

 

 

 

 

 

 


