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Lecture No -28           Limits of Vector Valued Functions 

 

 

The limit of a vector-valued functions is defined to be the vector that results by taking the 

limit of each component. Thus, for a function r(t) = x (t)i + y (t)j in 2-space we define. 

lim
t

 r(t) = (lim
t

 x(t))i + (lim
t

 y(t))j 

and for a function r(t) = x(t)i + y(t)j + z(t)k  

in 3-space we define. 

lim
t

r(t)=(lim
t

x(t))i+(lim
t

y(t))j+(lim
t

z(t))k 

If the limit of any component does not exist,  

then we shall agree that the limit of r (t) does not exist. 

These definitions are also applicable to the one-sided  

and infinite limits lim
t

+ , lim
t

 lim
t+

, and lim
t

. It follows from (1) and (2) that 

lim
t

r(t) = L 

if and only if the components of r(t) approach the components of L as  

t  a. Geometrically, this is equivalent to stating that the length and direction of r (t) 

approach the length and direction of L as t    

 

CONTINUITY OF VECTOR-VALUED FUNCTIONS 

The definition of continuity for vector-valued functions is similar to that for real-valued 

functions. We shall say that r is continuous at t0 if  

1. r (t0) is defined; 

2. lim
tt

0

r(t) exists; 

3. lim
tt

0

r(t) = r (t0). 

It can be shown that r is continuous at t0 if and only if each component of r is continuous. 

As with real-valued functions, we shall call r continuous everywhere or simply 

continuous if r is continuous at al real values of t. geometrically, the graph of a 

continuous vector-valued function is an unbroken curve. 

 

DERIVATIVES OF VECOR-VALUED FUNCTIONS 

The definition of a derivative for vector-valued functions is analogous to the definition 

for real-valued functions. 

 

DEFINITION 

The derivative r/(t) of a vector-valued function r(t) is defined by 

r/(t) = lim
h0

 
r (t+h)  r (t)

h
  

Provided this limit exists. 
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For computational purposes the following theorem is extremely useful; it states that the 

derivative of a vector-valued function can be computed by differentiating each 

components. 

 

THEOREM 

(a)  If r(t) = x(t)i + y(t)j is a vector-valued function in 2-space, and if x(t) and y(t) are 

differentiable, then 

   r/(t) = x/(t)i + y/(t)j 

(b) If r(t) = x(t)i + y(t)j + z(t)k is a vector-valued function in 3-space, and if x(t), y(t), 

and z(t) are differentiable, then 

  r/(t) = x/(t)i + y/(t)j + z/(t)k 

We shall prove part (a). The proof of (b) is similar. 

Proof (a):  

r/(t)  =  lim
h0

r(t + h)  r (t)

h
  = lim

h0
 
[x(t+h)x(t)]

h
i  + lim

h0
  
[y(t+h)  y(t)]

h
 j 

=  x/(t)i + y/(t)j 

As with real-valued functions, there are various notations for the derivative of a vector-

valued function. If r = r (t), then some possibilities are 
d

dt
 [r(t)], 

dr

dt
  , r/(t), and r/ 

 

EXAMPLE 

Let r(t) = t
2
i +t

3
j. Find r/(t) and r/(1) 

r/(t) =  
d

dt
 [t

2
] i +  

d

dt
 [t

3
] j  

 = 2t i  3t
2 

j 

Substituting t=1 yields 

 r/(1) = 2i+3j. 

 

TAGENT VECTORS AND TANGENT LINES 

GEOMETRIC INTERPRETATIONS OF THE DERIVATIVE. 

Suppose that C is the graph of a vector-valued  

function r(t) and that r/(t) exists and is nonzero 

 for a given value of t. If the vector r/(t) is  

positioned with its initial point at the terminal 

point of the radius vector 
 

DEFINITION 

Let P be a point on the graph of a vector-valued 

 function r(t), and let r(t0) be the radius vector from  

the origin to P 

If r/(t0) exists and r/(t0)  0, then we call r/(t0) 

 the tangent vector to the graph of r at r(t0) 

 

REMARKS 

Observe that the graph of a vector-valued function can fail to have a tangent vector at a 

point either because the derivative in (4) does not exist or because the derivative is zero at 
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the point.If a vector-valued function r(t) has a tangent vector r/(t0) at a point onits graph, 

then the line that is parallel to r/(t0) and passes through the tip of the radius vector r(t0)  

is called the tangent line of the graph of r(t) at r(t0) 

Vector equation of the tangent line is 

r = r (t0) + t r/(t0) 

 

 

EXAMPLE 

Find parametric equation of the tangent line to the circular helix 

x = cost,   y = sint,         z = 1       at the point where t = /6 

To find a vector equation of the tangent line, then we shall equate components to obtain 

the parametric equations. A vector equation r=r(t) of the helix is 

 

xi + yj + zk = (cost)i + (sin t)j + tk 

 

Thus,  r(t) = (cos t)i + (sin t)j + tk   

r/(t) = ( sin t)i + (cos t)j + k 

 

At the point where t = /6, these vectors are  

    r 








6
  = 

3

2
 i + 

1

2
 j + 



6
 k        and     

   r/









6
  =  

1

2
 i + 

3

2
 j + k 

so from (5) with t0 = /6 a vector equation of the tangent line is 

r 








6
  + t r/









6
  =  







3

2
 i + 

1

2
j + 



6
k  + t 









 
1

2
 i + 

3

2
j + k   

Simplifying, then equating the resulting components with the corresponding components 

of  r = xi + yj + zk yields the parametric equation. 

 x = 
3

2
   

1

2
 t ,   y = 

1

2
  + 

3

2
 t  ,z = 



6
 + t 

 

EXAMPLE 

The graph of r(t) = t
2
i + t

3
j is called a  semicubical parabola 

Find a vector equation of the tangent line to the graph of r(t) at  

(a) the point (0,0) (b)  the point  (1,1) 

The derivative of r(t) is  

r/(t) = 2ti + 3t
2
j 

(a)  The point (0, 0) on the graph of r corresponds  

to t = 0. As this point we have r/(0) = 0, so there is no 

 tangent vector at the point and consequently a tangent line does not exist at this point. 

(b)  The point (1, 1) on the graph of r corresponds to t = 1, so from (5) a vector equation 

of the tangent line at this point is  r  = r(1) + t r/(1) 

From the formulas for r (t) and r/(t) with t = 1, this equation becomes  

                            r = (i + j) + t (2i + 3j) 

If r is a vector-valued function in 2-space or 3-space, then we say that r(t) is smoothly 

parameterized or that r is a smooth function of t if the components of r have continuous 
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derivatives with respect to t and r/(t)  0 for any value of t. Thus, in  

3-space  r (t) = x(t)i + y (t)j + z(t)k 

is a smooth function of t if x/(t), y/(t), and z/(t) are continuous and there is no value of t at 

which al three derivatives are zero. A parametric curve C in 2-space or 3-space will be 

called smooth if it is the graph of some smooth vector-valued function. 

It can be shown that a smooth vector-valued function has a tangent line at every point on 

its graph.  

PROPERTIES OF DERIVATIVES 

(Rules of Differentiation).  

In either 2-space or 3-space let r(t), r1(t), and r2(t) be vector-valued functions, f(t) a real-

valued function, k a scalar, and c a fixed (constant) vector. Then the following rules of 

differentiation hold: 

 
d

dt
  [c] = 0 

d

dt
 [kr(t)] = k 

d

dt
 [r(t)] 

d

dt
  [r1(t) + r2(t)]=

d

dt
 [r1(t)]+

d

dt
 [r2 (t)] 

d

dt
 [r1(t)r2(t)]=  

d

dt
 [r1(t)]  

d

dt
 [r2(t)] 

d

dt
 [f(t)r(t)] = f(t)

d

dt
 [r(t)]+r(t)

d

dt
 [f (t)] 

 

In addition to the rules listed in the foregoing theorem, we have the following rules for 

differentiating dot products in 2-space or 3-space and cross products in 3-space: 

 
d

dt
 [r1(t).r2(t)] = r1.

dr2

dt
 + 

dr1

dt
 . r2     (6) 

d

dt
 [r1(t)r2(t)]=r1

dr2

dt
 +

dr1

dt
 r2      (7) 

 

REMARK: 

In (6), the order of the factors in each term on the right does not matter, but in (7) it does. 

In plane geometry one learns that a tangent line to a circle is perpendicular to the radius at 

the point of tangency. Consequently, if a point moves along a circular arc in 2-space, one 

would expect the radius vector and the tangent vector at any point on the arc to be 

perpendicular. This is the motivation for the following useful theorem, which is 

applicable in both 2-space and 3-space. 

 

THEOREM: 
If r (t) is a vector-valued function in 2-space or 3-space and ||r(t)|| is constant for all 

t, then  r(t) . r/(t) = 0 

that is, r(t) and r/(t) are orthogonal vectors for all t.It follows from (6) with  

r1(t)=r2(t)=r (t)   that 

 
d

dt
 [r(t).r(t)] = r(t).

dr

dt
  + 

dr

dt
  . r(t) 
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or, equivalently, 
d

dt
  [||r(t)||]

2
 = 2r(t) . 

dr

dt
  

But ||r(t)||
2
 is constant, so its derivative is zero. Thus 2r(t).

dr

dt
  = 0 that is r(t) . 

dr

dt
 = 0 

That is the r(t) is perpendicular 
dr

dt
  

 

EXAMPLE 

Just as a tangent line to a circular arc in 2-space is perpendicular to the radius at the point 

of tangency, so a tangent line to a curve on the surface of a sphere in 3-space is 

perpendicular to the radius at the point of tangency. 

 

To see that  this is so, suppose that the graph of r(t) lies  

on the surface of the sphere of radius k > 0 centered 

 at the origin.For each value of t we have ||r(t)||=k,  

r(t). r/(t) = 0 

which implies that the radius vector r(t) and the 

 tangent vector r/(t) are perpendicular. This completes the argument because the tangent 

line, where it exists, is parallel to the tangent vector. 

 

INTEGRALS OF VECTOR VALUED FUNCTION 

 

(a) If r(t)=x(t)I +y(t) j is a vector-valued function in 2-space ,the we define. 

( ) ( ( ) ) ( ( ) ) (1 )

( ) ( ( ) ) ( ( ) ) (1 )

b b b

a a a

r t dt x t dt i y t dt j a

r t dt x t dt i y t dt j b

 

 

  

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) If r(t) = x (t) i  + y(t) j  + z(t)k is a  

vector - valued function in    

3 - space, then we define.   

 r (t)dt= (  x(t)dt ) i + (  y(t) dt ) j + (  z(t)dt ) k          (2a) 

          

 
b 

a 
r(t)dt= (  

b 

a 
x(t)dt ) i + (  

b 

a 
y(t)dt ) j + (  

b 

a 
z(t)dt ) k               (2b) 
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2

2

0

2 2

2 3 2 3 2 3 2 3

1 2 1 2 1 2

1 2

( ) 2 3

( ) ( ) ( ) ( )

( ) (2 3 ) ( 2 ) ( 3 )

( ) ( )

tan int

( ) ( )

Let r t ti t j

a r t dt b r t dt

r t dt ti t j dt tdt i t dt j

t C i t C j t i C i t j C j t i t j C i C j t i t j C

WhereC C i C j is an arbitrary vector cons t of egration

b r t dt

 

   

             

 

 

   

2 2 2 2
2 2

2 2 2 3 2 3

0 0
0 0 0 0

(2 3 ) ( 2 ) ( 3 ) (2 0) (2 0) 4 8ti t j dt tdt i t dt j t i t j i j i j                    

 

 

PROPERTEIS OF INTEGRALS 

 cr(t) dt = c  r (t) dt  (3) 

 [r1(t)+r2(t)] dt =  r1(t)dt +  r2(t) dt 

    (4) 

 [r1(t)r2(t)]dt = r1(t) dtr2(t) dt 

    (5) 

These properties also hold for definite integrals of vector-valued functions. In addition, 

we leave it for the reader to show that if r is a vector-valued function in 2-space or 3-

space, then   
d

dt
  [r(t) dt] = r (t)  (6) 

This shows that an indefinite integrals of r(t) is, in fact, the set of antiderivatives of r(t), 

just as for real-valued functions. 

If r(t) is any antiderivative or r(t) in the sense that R
/
(t) = r(t), then  

r(t) dt = R(t) + C  (7) 

where C is an arbitrary vector constant of integration. Moreover, 


b

a
 r(t) dt = R(t) ]

b

a
  =  R(b)  R(a).  

 

 

 

 

 

 

 

 

 


