Lecture No -24 Sketching

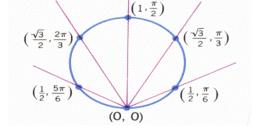
Draw graph of the curve having the equation $r = \sin \theta$

By substituting values for θ at increments of $\frac{\pi}{6}(30^{\circ})$ and calculating r, we can construct The following table:

θ (radians)	0	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{5\pi}{6}$
$r = \sin \theta$	0	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$

θ (radians)	π	$\frac{7\pi}{6}$	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$	$\frac{11 \pi}{6}$	2π
$r = \sin \theta$	0	$-\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	0

Note that there are 13 pairs listed in Table, but only 6 points plotted in This is because the pairs from $\theta = \pi$ on yield duplicates of the preceding points. For example, $(-\frac{1}{2}, 7\pi/6)$ and $(1/2, \pi/6)$ represent the same point.



The points appear to lie on a circle.

hat this is indeed the case may be seen by expressing the given equation in terms of x and y. We first multiply the given equation through by r to obtain $r^2 = r \sin \theta$ which can be rewritten as

$$x^2 + y^2 = y$$
 or $x^2 + y^2 - y = 0$
or on completing the square $x^2 + \left(y - \frac{1}{2}\right)^2 = \frac{1}{4}$. This is a circle of radius 1\2 centered at the point (0,1/2) in the xy-plane.

Sketching of Curves in Polar Coordinates

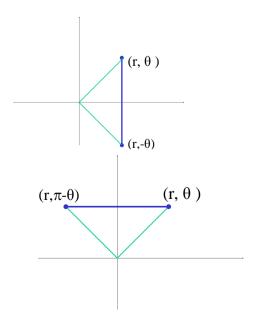
1.SYMMETRY

(i) Symmetry about the Initial Line

If the equation of a curve remains unchanged when (r, θ) is replaced by either $(r, -\theta)$ in its equation ,then the curve is symmetric about initial line.

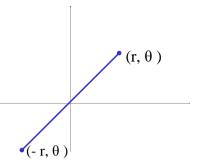
(ii) Symmetry about the y-axis

If when (r, θ) is replaced by either $(r, \pi - \theta)$ in The equation of a curve and an equivalent equation is obtained ,then the curve is symmetric about the line perpendicular to the initial i.e, the y-axis



(ii) Symmetry about the Pole

If the equation of a curve remains unchanged when either (-r, θ) or is substituted for (r, θ) in its equation ,then the curve is symmetric about the pole. In such a case ,the center of the curve.



2. Position Of The Pole Relative To The Curve

See whether the pole on the curve by putting r=0 in the equation of the curve and solving for θ .

3. Table Of Values

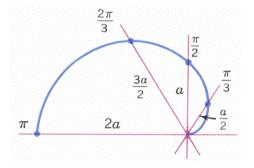
Construct a sufficiently complete table of values. This can be of great help in sketching the graph of a curve.

II Position Of The Pole Relative To The Curve.

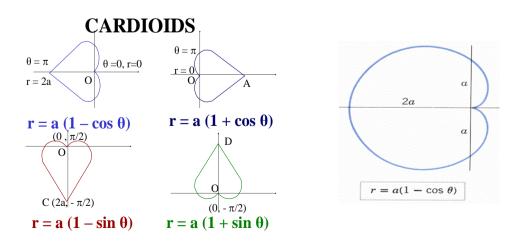
When r = 0, $\theta = 0$. Hence the curve passes through the pole.

III. Table of Values

θ	0	π/3	$\pi/2$	$2\pi/3$	π	
$r=a(1-\cos\theta)$	0	a/2	а	3a/2	2a	
As θ varies from 0 to π , cos θ decreases						
steadily from 1 to -1 , and $1 - \cos \theta$						
increases steadily from 0 to 2. Thus, as θ						
varies from 0 to π , the value of						
$r = a (1 - \cos \theta)$ will increase steadily from						
an initial value of $r = 0$ to a final value of						
r = 2a.						



On reflecting the curve in about the x-axis, we obtain the curve.

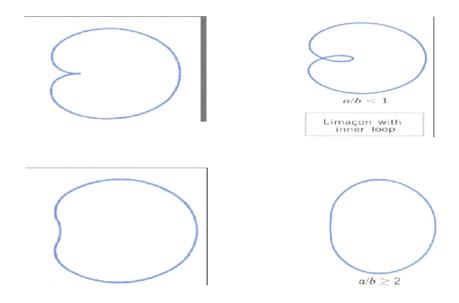


CARDIDOIDS AND LIMACONS

$r=a+b \sin \theta$, $r=a-b \sin \theta$

 $r=a+b\cos\theta$, $r=a-b\cos\theta$

The equations of above form produce polar curves called limacons. Because of the heartshaped appearance of the curve in the case a = b, limacons of this type are called cardioids. The position of the limacon relative to the polar axis depends on whether $\sin \theta$ or $\cos \theta$ appears in the equation and whether the + or – occurs.

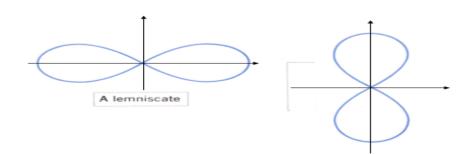


LEMINSCATE

If a > 0, then equation of the form

 $r^{2} = a^{2} \cos 2\theta$, $r^{2} = -a^{2} \cos 2\theta$ $r^{2} = a^{2} \sin 2\theta$, $r^{2} = -a^{2} \sin 2\theta$

represent propeller-shaped curves, called lemiscates (from the Greek word "lemnicos" for a looped ribbon resembling the Fig 8. The lemniscates are centered at the origin, but the position relative to the polar axis depends on the sign preceding the a^2 and whether sin 2 θ or cos 2 θ appears in the equation.

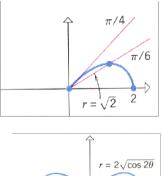


Example

$$r^2 = 4 \cos 2 \theta$$

The equation represents a lemniscate. The graph is **symmetric** about the **x-axis** and the **y-axis**. Therefore, we can obtain each graph by first sketching the portion

of the graph in the range $0 \le \theta < \pi/2$ and then reflecting that portion about the x- and y-axes. The curve passes through the origin when $\theta = \pi/4$, so the line $\theta = \pi/4$ is tangent to the curve at the origin. As θ varies from 0 to $\pi/4$, the value of cos2 θ decreases steadily from 1 to 0, so that rdecreases steadily from 2 to 0. For θ in the range $\pi/4 < \theta < \pi/2$, the quantity cos2 θ is negative, so there are no real values of r satisfying first equation. Thus, there are no points on the graph for such θ . The entire graph is obtained by reflecting the curve about the x-axis and then reflecting the resulting curve about the y-axis.

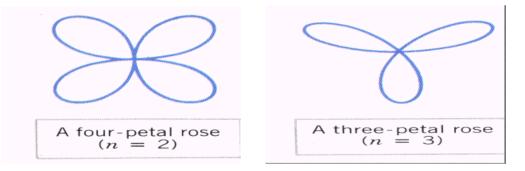


ROSE CURVES

Equations of the form

$r = a \sin n\theta$ and $r = a \cos n\theta$

represent flower-shaped curves called roses. The rose has **n** equally spaced petals or loops if **n** is odd and 2**n** equally spaced petals if **n** is even



The

orientation of the rose relative to the polar axis depends on the sign of the constant a and whether $\sin\theta$ or $\cos\theta$ appears in the equation.

SPIRAL

A curve that "winds around the origin" infinitely many times in such a way that r increases (or decreases) steadily as θ increases is called a spiral. The most common example is the spiral of Archimedes, which has an equation of the form.

 $r = a\theta$ $(\theta \ge 0)$ or $r = a\theta$ $(\theta \le 0)$

In these equations, θ is in radians and a is positive.

EXAMPLE

Sketch the curve $\mathbf{r} = \mathbf{\theta}$ ($\mathbf{\theta} \ge \mathbf{0}$) in polar coordinates.

This is an equation of spiral with a = 1; thus, it represents an Archimedean spiral.

Since r = 0 when $\theta = 0$, the origin is on the curve and the polar axis is tangent to the spiral.

A reasonably accurate sketch may be obtained by plotting the intersections of the spiral with the x and y axes and noting that r increases steadily as θ increases. The intersections with the x-axis occur when

 $\theta = 0, \pi, 2\pi, 3\pi, \dots$ at which points r has the values $r = 0, \pi, 2\pi, 3\pi, \dots$ and the intersections with the y-axis occur when

 $\theta = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, \frac{7\pi}{2}, \dots$

at which points r has the values

$$r = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, \frac{7\pi}{2}, \dots$$

Starting from the origin, the Archimedean spirals $r = \theta$ ($\theta \ge 0$) loops counterclockwise around the origin.

