Lecture No -22 Examples

EXAMPLE

 $\iint_{R} xy \, dA$

R is the region bounded by the Trapezium with the vertices (1, 3) (5, 3) (2, 1) (4, 1)

Slope of AD =
$$\frac{3-1}{1-2} = -2$$

Equation of line AD
 $y - 1 = -2 (x - 2)$
 $y - 1 = -2x + 4$
 $-2x = y - 5$
 $x = -\frac{y-5}{2}$
Slope of BC = $\frac{3-1}{5-4} = 2$
Equation of line BC
 $y - 1 = 2 (x - 4) \Rightarrow y - 1 = 2x - 8 \Rightarrow 2x = y + 7 \Rightarrow x = \frac{y + 7}{2}$
 $\int_{1-(y-5)/2}^{3} \frac{(y+7)/2}{xy \, dx \, dy} = \int_{1}^{3} \frac{(y+7)/2}{(y-5)/2} y \, dy$
 $= \left| y^3 + \frac{3y^2}{2} \right|^3 = (3)^3 + \frac{3(3)^2}{2} - 1 - \frac{3}{2} = 38$

EXAMPLE

Use double integral to find the volume of the wedge cut from the cylinder $4x^2+y^2=9$ by the plane z=0 and z=y+3 **Solution:**

Since we can write
$$4x^2 + y^2 = 9$$
 as $\frac{x^2}{\left(\frac{3}{2}\right)^2} + \frac{y^2}{9} = 1$ this is equation of

ellipse.

Now the Lower and upper limits for "x" are $x = \frac{-\sqrt{9-y^2}}{2}$ and $x = \frac{\sqrt{9-y^2}}{2}$

And upper and lower limits for "x" are -3 and 3 respectively. So the required volume is

given by $\int_{-3}^{3} \frac{\sqrt{9-y^2}}{2} (y+3) dx dy$

$$= \int_{-3}^{3} |xy + 3x| \frac{\sqrt{9-y^{2}}}{2} dy$$

$$= \int_{-3}^{3} \left[y \left(\frac{\sqrt{9-y^{2}}}{2} \right) + 3 \left(\frac{\sqrt{9-y^{2}}}{2} \right) + y \left(\frac{\sqrt{9-y^{2}}}{2} \right) + 3 \left(\frac{\sqrt{9-y^{2}}}{2} \right) \right] dy$$

$$= \int_{-3}^{3} \left[y \sqrt{9-y^{2}} + 3 \sqrt{9-y^{2}} \right] dy$$

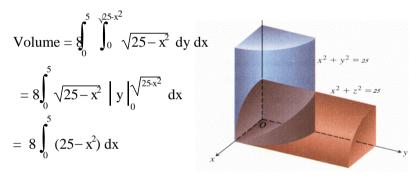
$$= -\frac{1}{2} \int_{-3}^{3} \sqrt{9-y^{2}} (-2y) dy + 3 \int_{-3}^{3} \sqrt{9-y^{2}} dy$$

$$= -\frac{1}{2} \cdot \frac{2}{3} \left| (9-y^{2})^{\frac{3}{2}} \right|_{-3}^{3} + 3 \int_{-3}^{3} \sqrt{9-y^{2}} dy$$

$$= -\frac{1}{3} \cdot \left[0 \right] + 3 \int_{-3}^{3} \sqrt{9-y^{2}} dy = 3 \left| \frac{y}{2} \sqrt{9-y^{2}} + \frac{9}{2} \sin^{-1} \left(\frac{y}{2} \right) \right|_{-3}^{3} = \frac{27\pi}{2}$$

EXAMPLE

Use double integral to find the volume of solid common to the cylinders $x^2 + y^2 = 25$ and $x^2 + z^2 = 25$



$$= 8 \left| 25x - \frac{x^3}{3} \right|_0^5 = 8 \left(125 - \frac{125}{3} \right) = 8 \left(\frac{375 - 125}{3} \right) = 8 \left(\frac{250}{3} \right) = \frac{2000}{3}$$

AREA CALCUALTED AS A DOUBLE INTEGRAL

$$V = \iint_{P} 1 \, dA = \iint_{P} dA \tag{1}$$

However, the solid has congruent cross sections taken parallel to the xy-plan so that V = area of base x height=area of R.1 = area of R

)

Combining this with (1) yields the area formula $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty$

area of
$$R = \iint_R dA$$
 (2)

EXAMPLE

Use a double integral to find the area of the region R enclosed between the parabola $y = \frac{1}{2} x^2$ and the line y=2x

area of R=
$$\iint_R dA$$

= $\int_0^4 \int_{x^{2/2}}^{2x} dy dx$

$$= \int_{0}^{4} \left[y \right]_{y=x^{2}/2}^{2x} dx = \int_{0}^{4} \left(2x - \frac{1}{2} x^{2} \right) dx = \left[x^{2} - \frac{x^{3}}{6} \right]_{0}^{4} = \frac{16}{3}$$

Treating R as type II yields.

area of R=
$$\iint_{R} dA = \iint_{0}^{8} \int_{y/2}^{y/2} dx dy$$

= $\int_{0}^{8} \left[x \right]_{y=x^{2}/2}^{\sqrt{2x}} dx = \int_{0}^{8} \left(\sqrt{2y} - \frac{1}{2} y \right) dy = \left[\frac{2\sqrt{2}}{3} y^{3/2} - \frac{y^{2}}{4} \right]_{0}^{8} = \frac{16}{3}$

EXAMPLE

Find the area of the region R enclosed by the parabola $y=x^2$ and the line y=x+2

$$\int_{-1}^{2} \int_{y=x^{2}}^{y=x+2} dy dx$$

= $\int_{-1}^{2} \left[y \right]_{x^{2}}^{x+2} dx$
= $\int_{-1}^{2} \left[x + 2 - x^{2} \right] dx$
= $\left[\frac{x^{2}}{2} + 2x - \frac{x^{3}}{3} \right]_{-1}^{2} = \frac{9}{2}$

