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where R is the triangle in the xy- plane bounded by the x-axis ,the line y=x and the line x=1

We integrate first with respect
to y and then with respect to X,
we find
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1
= Isin xdx =-cos(0) +1~0.46
0

1
= jsin xdx =—-cos(0) +1~0.46
0

EXAMPLE
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Since there is no elementary antiderivative of e , the integral
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[ ] ex2 dxdy
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cannot be evaluated by performing the x-integration first.

To evaualte this integral , we express is as an equivalent iterated integral with the order if
integration reversed . For the inside integration, y is fixed and x varies from he line

X =y/2 to the line x = 1. For the outside integration, y varies from 0 to 2, so the given
iterated integral is equal to a double integral over the triangular region R.

To reverse the order of integration, we treat R as a
type | region, which enables us to write the given

integral as
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By changing the order of integration we get,
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EXAMPLE

Use a double integral to find the volume of the solid that is bounded above by the palne
Z=4-x-y and below by the rectangle R = {(x,y):k x<1,0<y<2}
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V= f f (4-x-y) dA

J I (4-x-y) dx dy
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EXAMPLE

Use a double integral to find the volume of the tetrahedron bounded by the coordinate

planes and the plane z=4-4x-2y The tetrahedron is bounded above by the plane.
Z2=4-4X-2Y -----mmmmmmmmeee @

and below by the triangular region R

Thus, the volume is given by
V = [](4-4x-2y) dA
R

The region R is bounded by the x-axis, i
the y-axis, and the line y = 2 — 2x [set
z =0 in (1)], so that treating R as a
type | region yields.
V =[] (4-4x-2y) dA
R
12-2x
:JOI o (4—4x-2y)dy dx
2- 2x
—JO [4y-4xy- y]
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= JO (4-8x+4x%)dx
4

~ 3
Find the volume of the solid bounded by the cylinder x2+y2 = 4 and the planesy +z =4
and z = 0.
The solid is bounded above by the
plane z = 4 — y and below b}/ the
region R within the circle x* + y* =
The volume is given by
V=] é (4-y)dA

Treating R as atype | region we obtain
2 A -x2

V= I.[ (4—y)dydx

V4-x2

=.[{4y—§y} dx

y=- ~N4-x2

-,[84 X~ dx
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2
-8X 4-Xx +4 1 X
= 5 2sm 2_2

= 8| 2sin*(1) -2sin™(-1)|

= 8[2(5) + 2(5)]
=8(2n) = 167

EXAMPLE
Use double integral to find the volume of the solid that is bounded above by the
paraboiled z=9x* + y* ,below by the plane z=0 and laterally by the planes

x=0, y=0, x=3, y=2

Volume = J I (9%° + y?) dy dx
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= J; [18x2+§ dx
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