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integration   
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where R is the triangle in the xy- plane bounded by the x-axis ,the line y=x and the line x=1 
  

We integrate first with respect  

to y and then with respect to x,  

we find 
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To evaualte this integral , we express is as an equivalent iterated integral with the order if 

integration reversed . For the inside integration, y is fixed and x varies from he line 

 x = y/2 to the line x = 1. For the outside integration, y varies from 0 to 2, so the given 

iterated integral is equal to a double integral over the triangular region R. 

 

To reverse the order of integration, we treat R as a  

type I region, which enables us to write the given  

integral  as 
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Use a double integral to find the volume of the solid that is bounded above by the palne 

Z=4-x-y and below by the rectangle  
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R = {(x,y):0  <  x  <  1, 0  <  y  <  2}   



21-Examples                                                                                                                                                 VU 

 
EXAMPLE  

Use a double integral to find the volume of the tetrahedron bounded by the coordinate 

planes and the plane z=4-4x-2y The tetrahedron is bounded above by  the plane. 

z=4-4x-2y  ------------------(1) 

and below by the triangular region R  

 

 
Find the volume of the solid bounded by the cylinder x2+y2 = 4 and the planes y + z = 4 

and z = 0.                                

 
 

 

 

 

 

The solid is bounded above by the 

plane z = 4  y and below by the 

region R within the circle x
2
 + y

2
 = 4. 

The volume is given by 
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 (4  y) dA 

Treating R as a type I region we obtain 
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 Thus, the volume is given by 
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The region R is bounded by the x-axis, 

the y-axis, and the line y = 2  2x [set 

z = 0 in (1)], so that treating R as a 

type I region yields. 
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EXAMPLE 

Use double integral to find the volume of the solid that is bounded above by the 

paraboiled z=9x
2
 + y

2
 ,below by the plane z=0 and laterally by the planes  

 x = 0,    y = 0,     x = 3,    y = 2 
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