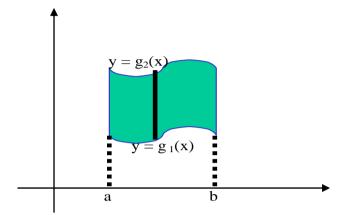
Lecture No -20 Double integral for non-rectangular region

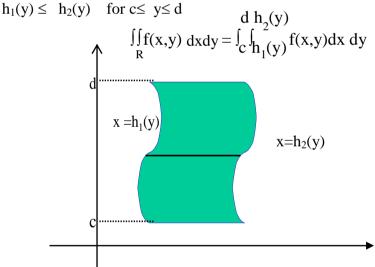
Double integral for non-rectangular region

Type I region is bounded the left and right by vertical lines x=a and x=b and is bounded below and above by curves $y=g_1(x)$ and $y=g_2(x)$ where $g_1(x) \le g_2(x)$ for $a \le x \le b$

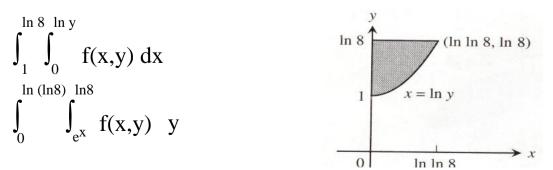
$$\iint_{R} f(x, y) dA = \int_{a}^{b} g_{2}(x) f(x, y) dy dx$$



Type II region is bounded below and above by the horizontal lines y=c and y=d and is bounded on the left and right by the continuous curves $x=h_1(y)$ and $x=h_2(y)$ satisfying $h_1(y) \leq h_2(y)$ for $y \leq y \leq d$.



Write double integral of the function f(x,y) on the region whose sketch is given



Write double integral of the function f(x,y) on the region whose sketch is given



Draw the region and evaluate an equivalent integral with the order of integration reversed $\frac{2}{2} \frac{2x}{2x}$

$$\int_{0}^{2} \int_{x}^{2x} (4x+2) \, dy \, dx$$

The region of integration is given by the inequalities $x^2 \le y \le 2x$ and $0 \le x \le 2$.

$$\int_{0}^{4} \int_{y/2}^{\sqrt{y}} (4x + 2) \, dx \, dy.$$

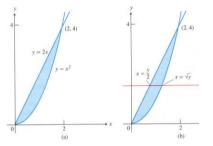
$$= \int_{0}^{4} \left| 2x^{2} + 2x \right|_{y/2}^{\sqrt{y}} dy$$

$$= \int_{0}^{4} \left[2y + 2\sqrt{y} - \frac{y}{2} - y \right] dy$$

$$= \left| y^{2} + \frac{4}{3} y^{3/2} - \frac{y^{3}}{6} - \frac{y^{2}}{2} \right|_{0}^{4}$$

$$= \left[16 + \frac{4}{3} (4)^{3/2} - \frac{(4)^{3}}{6} - 8 \right]$$

$$= 16 + \frac{4}{3} (8) - \frac{64}{6} - 8 = 8$$



EXAMPLE Evaluate $I = \int_0^4 \int_y^2 y \cos x^5 \, dx \, dy$ The integral is over the region $0 \le y \le 4$, $x = \sqrt{y}$ and x = 2 $I = \int_0^2 \int_0^{x^2} y \cos x^5 \, dy \, dx$

$$= \int_{0}^{2} \left[\frac{y^{2}}{2} \cos x^{5} \right]_{0}^{x^{2}} dx$$
$$= \int_{0}^{2} \frac{x^{4}}{2} \cos x^{5} dx$$
$$= \frac{1}{10} \int_{0}^{2} \cos x^{5} . (5x^{4}) dx$$
$$= \left[\frac{1}{10} \sin x^{5} \right]_{0}^{2} = \frac{1}{10} \sin 32$$

Evaluate
$$I = \int_0^{1/2} \int_{2x}^1 e^{y^2} dy dx$$

The integral cannot be evaluated I the given order since e^{y^2} has no antiderivative. We shall change the order of integration. The region R which integration is performed is given by $0 \le x \le \frac{1}{2}$, y = 2x and y = 1

This region is also enclosed by

Thus region is use choiced by

$$x = 0, \quad x = \frac{y}{2} \text{ and } 0 \le y \le 1$$

Thus
 $I = \int_{0}^{1} \int_{0}^{y/2} e^{y^{2}} dx dy$
 $= \int_{0}^{1} \frac{y}{2} e^{y^{2}} dy$
 $= \left[\frac{1}{4} - e^{y^{2}}\right]_{0}^{1} = \frac{1}{4} (e - 1)$
 $\int_{1}^{3} \int_{0}^{\ln x} x dy dx$
Reversing the order of
integration
 $= \int_{0}^{\ln 3} \int_{e^{y}}^{3} x dx dy$
 $= \int_{0}^{\ln 3} \left|\frac{x^{2}}{2}\right|_{e^{y}}^{3} dy = \frac{1}{2} \int_{0}^{\ln 3} [9 - e^{2y}] dy$

 $= \frac{1}{2} \left| 9y - \frac{e^{2y}}{2} \right|_{0}^{\ln 3}$ $= \frac{1}{2} \left[9 \ln 3 - \frac{e^{2\ln 3}}{2} + \frac{e^{0}}{2} \right]$ $= \frac{1}{2} \left[9 \ln 3 - \frac{9}{2} + \frac{1}{2} \right]$ $= \frac{1}{2} \left[9 \ln 3 - 4 \right]$ $= \frac{9}{2} \ln 3 - 2$

Over view of Lecture # 20

Book Calsulus By Howard Anton Chapter # !7 Article # 17.2 Page (858-863) Exercise set 17.2 21,22,23,25,27,35,37,38