Lecture No -13 Orthogonal Surface

In this Lecture we will study the following topics

- Normal line
- Orthogonal Surface
- Total differential for function of one variable
- Total differential for function of two variables

Normal line

Let $P_0(x_0,y_0,z_0)$ be any point on the surface f(x,y,z)=0 If f(x,y,z) is differentiable at P (x_0,y_0,z_0) then the normal line at the point $P_0(x_0,y_0,z_0)$ has the equation

 $x = x_0 + f_x(P_0)t$, $y = y_0 + f_y(P_0)t$, $z = z_0 + f_z(P_0)t$

Here f_x means that the function f(x,y,z) is partially differentiable with respect to x And $f_x(P_0)$ means that the function f(x,y,z) is partially differentiable with respect to x at the point $P_0(x_0,y_0,z_0)$

 f_y means that the function f(x,y,z) is partially differentiable with respect to y And $f_y(P_0)$ means that the function f(x,y,z) is partially differentiable with respect to y at the point $P_0(x_0,y_0,z_0)$

Similarly

fz means that the function f(x,y,z) is partially differentiable with respect to z And **fz**(**P**₀) means that the function **f**(**x**,**y**,**z**) is partially differentiable with respect to z at the point **P**₀(**x**₀,**y**₀,**z**₀)

EXAMPLE

Find the Equation of the tangent plane and normal of the surface $f(x,y,z) = x^2+y^2+z^2-4$ at the point P(1,-2,3)

$$\begin{split} \mathbf{f}(\mathbf{x}, \mathbf{y}, \mathbf{z}) &= \mathbf{x}^2 + \mathbf{y}^2 + \mathbf{z}^2 - \mathbf{14} \\ & \mathbf{P} \; (\mathbf{1}, -\mathbf{2}, \mathbf{3}). \\ & \mathbf{f}_x = 2\mathbf{x}, \qquad \mathbf{f}_y = 2\mathbf{y}, \qquad \mathbf{f}_z = 2\mathbf{z} \\ & \mathbf{f}_x(\mathbf{p}_0) = 2, \qquad \mathbf{f}_y \; (\mathbf{P}_0) = -\mathbf{4}, \quad \mathbf{f}_z \; (\mathbf{P}_0) = \mathbf{6} \end{split}$$

Equation of the tangent p lane to the surface at P is

$$2(x - 1) - 4 (y + 2) + 6 (z - 3) = 0$$

x - 2y + 3z- 14 = 0
Equations of the normal line of the
surface through P are

$$\frac{x-1}{2} = \frac{y+2}{-4} = \frac{z-3}{6}$$
$$\frac{x-1}{1} = \frac{y+2}{-2} = \frac{z-3}{3}$$

EXAMPLE

Find the equation of the tangent plane and normal plane

$$4x^{2}-y^{2} + 3z^{2} = 10 P (2, -3, 1)$$

$$f(x,y,z) = 4x^{2} - y^{2} + 3z^{2} - 10$$

$$f_{x} = 8x, \quad f_{y} = -2y, \quad f_{z} = 6z$$

$$f_{x} (P) = 16, \quad f_{y} (P) = 6, \quad f_{z} (P) = 6$$

Equations of Tangent Plane to the surface through P is

$$16(x - 2) + 6(y+3) + 6(z - 1) = 0$$

 $8x + 3y + 3z = 10$
Equations of the normal line to the

surface through P are

x-2	<u>y + 3</u>	<u>z – 1</u>
16	⁼ 6	= 6
x = 2	<u>y + 3</u>	<u>z – 1</u>
8	=3	= 3

Example

$$z = \frac{1}{2} x^{7} y^{2}$$

$$f(x,y,z) = \frac{1}{2} x^{7} y^{2} - z$$

$$f_{x} = \frac{7}{2} x^{6} y^{2}, \quad f_{y} = -x^{7} y^{3}, \quad f_{z} = -1$$

$$f_{x} (2, 4, 4) = \frac{7}{2} (2)^{6} (4)^{-2} = 14$$

$$f_{y} (2, 4, 4) = -(2)^{7} (4)^{3} = -2$$

$$f_{z} (2, 4, 4) = -1$$

Equation of Tangent at (2, 4, 4) is given by $f_x(2,4,4)(x-2)+f_y(2,4,4)(y-4)+f_z(2,4,4)(z-4) = 0$ 14 (x - 2) + (-2) (y-4) - (z-4) = 0 14x - 2y - z - 16 = 0The normal line has equation $x = 2+f_x(2,4,4)t, y = 4+f_y(2,4,4)t, z = 4+f_z(2,4,4)t$ x = 2 + 14t, y = 4-2t, z = 4-t

ORTHOGONAL SURFACES

Two surfaces are said to be orthogonal at a point of their intersection if their normals at that point are orthogonal. They are Said to intersect orthogonally if they are orthogonal at every point common to them.

CONDITION FOR ORTHOGONAL SURFACES

Let (x, y, z) be any point of intersection of

f(x, y, z) = 0 - - - (1)and g(x, y, z) = 0 - - - (2)Direction ratios of a line normal to (1) are f_x, f_y, f_z

Similarly, direction rations of a line normal to (2)

are g_x, g_y, g_z

The two normal lines are orthogonal if and only if

$$\mathbf{f}_{\mathbf{x}}\,\mathbf{g}_{\mathbf{x}}\,+\,\mathbf{f}_{\mathbf{y}}\,\mathbf{g}_{\mathbf{y}}\,+\,\mathbf{f}_{\mathbf{z}}\,\mathbf{g}_{\mathbf{z}}=\mathbf{0}$$

EXAMPLE

Show that given two surfaces are orthogonal or not $f(x,y,z) = x^2 + y^2 + z - 16$ (1) $g(x,y,z) = x^2 + y^2 - 638$ (2) Adding (1) and (2) $x^2 + y^2 = \frac{63}{4}$, $z = \frac{1}{4}$ (3) $f_x = 2x$, $f_y = 2y$ $f_z = 1$ $g_x = 2x$, $g_y = 2y$ $g_z = -63$ $f_x g_x + f_y g_y + f_z g_z$ $= 4 (x^2 + y^2) - 63$ using (3) $f_x g_x + f_y g_y + f_z g_z$ $= 4 (\frac{63}{4}) - 63 = 0$

Since they satisfied the condition of orthogonality so they are orthogonal.

Differentials of a functions

For a function y = f(x) dy = f'(x) dyis called the differential of functions f(x)

dx the differential of x is the same as the actual change in x

i.e. $dx = \nabla x$ where as dy the

differential of y is the approximate change in the value of the functions which is different from the actual change ∇y in the value of the functions.

Distinction between the increment Δy and the differential dy

If *f* is differentiable at x, then the tangent line to the curve y = f(x)at x_0 is a reasonably good approximation to the curve y = f(x) for value of x near x_0 Since the tangent line passes

through the point $(x_0, f(x_0))$ and has slope $f(x_0)$, the point-slope form of its equation is

$$y - f'(x_0) = f(x_0)(x - x_0)$$
 or
 $y = f(x_0) + f'(x_0) (x - x_0)$

EXAMPLE

$$f(x) = \sqrt[4]{x}$$

$$x = 4 \text{ and } dx = \Delta x = 3y = \sqrt{3}$$

$$\Delta y = \sqrt{x + \Delta x} - \sqrt{x}$$

$$= \sqrt{7} - \sqrt{4} \approx .65$$
If $y = \sqrt{x}$, then
$$\frac{dy}{dx} = \frac{1}{2\sqrt{x}} \text{ so } dy = \frac{1}{2\sqrt{x}} dx$$

$$= \frac{1}{2\sqrt{x}} (3) = \frac{3}{4} = .75$$

EXAMPLE

Using differentials approximation for the value of cos 61°. Let $y = \cos x$ and x = 60°then dx = 61° - 60° = 1° $\Delta y \approx dy = -\sin x dx = -\sin 60° (1°)$ $= \sqrt{\frac{3}{2}} \left(\frac{1}{180}\pi\right)$ Now $y = \cos x$ $y + \Delta y = \cos (x + \Delta x) = \cos (x + dx)$ $= \cos (60° + 1°) = \cos 61°$ $\cos 61° = y + \Delta y = \cos x + \Delta y$ $\approx \cos 60° - \frac{\sqrt{3}}{2} \left(\frac{1}{180}\pi\right)$ $\cos 61° \approx \frac{1}{2} - \frac{\sqrt{3}}{2} \left(\frac{1}{180}\pi\right)$ = 0.5 - 0.01511 = 0.48489 $\cos 61° \approx 0.48489$

EXAMPLE

A box with a square base has its height twice is width. If the width of the box is 8.5 inches with a possible error of \pm 0.3 inches

> Let x and h be the width and the height of the box respectively, then its volume V is given by $V = x^2h$ Since h = 2x, so (1) take the form $V = 2x^3$ $dV = 6x^2 dx$ Since x = 8.5, dx = ±0.3, so putting these values in (2), we have $dV = 6 (8.5)^2 (\pm 0.3) = \pm 130.05$ This shows that the possible error in the volume of the box is ±130.05.

TOTAL DIFFERENTIAL

If we move from (x_0, y_0) to a point $(x_0 + dx, y_0 + dy)$ nearby, the resulting differential in f is $df = fx (x_0, y_0) dx + fy (x_0, y_0) dy$

This change in the linearization of

f is called the total differential of f.

EXACT CHANGE

Area = xy

 $\begin{array}{ll} x = 10, \ y = 8 & Area = 80 \\ x = 10.03 \ y = 8.02 & Area = 80.4406 \\ Exact Change in area = 80.4406 - 80 \\ = 0.4406 \end{array}$

EXAMPLE

A rectangular plate expands in such a way that its length changes from 10 to 10.03 and its breadth changes from 8 to 8.02.

Let x and y the length and breadth of the rectangle respectively, then its area is A = xy $dA = A_x dx + A_y dy = y dx + x dy$ By the given conditions x = 10, dx = 0.03, y = 8, dy = 0.02.dA = 8(0.03) + 10(0.02) = 0.44

Which is exact Change

EXAMPLE

The volume of a rectangular parallelepiped is given by the formula V = xyz. If this solid is compressed from above so that z is decreased by 2% while x and y each is increased by 0.75% approximately

$$V = xyz$$

$$dV = V_x d x + V_y dy + V_z dx$$

$$dV = yz dx + xz dy + zy dz$$
 (1)

$$dx = \frac{0.75}{100} x, dy = \frac{0.75}{100} y, dz = -\frac{2}{100} z$$

Putting these values in (1), we have

$$dV = \frac{0.75}{100} xyz + \frac{0.75}{100} xyz - \frac{2}{100} xyz$$

$$= -\frac{0.5}{100} xyz = -\frac{0.5}{100} V$$

This shows that there is 0.5 %
decrease in the volume.

EXAMPLE

A formula for the area Δ of a triangle is $\Delta = \frac{1}{2}$ ab sin C. Approximately what error is made in computing Δ if a is taken to be 9.1 instead of 9, b is taken to be 4.08 instead of 4 and C is taken to be 30°3′ instead of 30°.

By the given conditions

$$a = 9, b = 4, C = 30^{\circ},$$

 $da = 9.1 - 9 = 0.1,$
 $db = 4.08 - 4 = 0.08$
 $dC = 30^{\circ}3' - 3' = \left(\frac{3}{60}\right)^{\circ}$
 $= \frac{3}{60} \times \frac{\pi}{180}$ radians
Putting these values in (1), we have
 $\Delta = \frac{1}{2}$ ab sin C
 $d\Delta = \frac{\partial}{\partial a} \left(\frac{1}{2} ab \sin C\right) da + \frac{\partial}{\partial b} \left(\frac{1}{2} ab \sin C\right) db$
 $+ \frac{\partial}{\partial C} \left(\frac{1}{2} ab \sin C\right) dC$
 $d\Delta = \frac{1}{2}$ b sin Cda $+ \frac{1}{2}$ a sin C db
 $+ \frac{1}{2}$ ab cos CdC

$$d\Delta = \frac{1}{2} 4 \sin 30^{\circ}(0.1) + \frac{1}{2} 9 \sin 30^{\circ}(0.08) + \frac{1}{2} 36\cos 30^{\circ} \left(\frac{\pi}{3600}\right) \\ d\Delta = 2\left(\frac{1}{2}\right)(0.1) + \frac{1}{2}\left(\frac{1}{2}\right)(0.08) + 18\left(\frac{\sqrt{3}}{2}\right)\left(\frac{3.14}{3600}\right) = 0.293 \\ \text{\% change in area} = \frac{0.293}{\Delta} \times 100 \\ = \frac{0.293}{9} \times 10 = 3.25\%$$