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Lecture No. 39
Numerical Integration

To evaluate the definite integral of certain functions whose anti derivatives cannot
be found easily or in more practical situations the integrand is expressed in tabular form,
numerical techniques provide efficient way to approximate the definite integral.

A definite integral ( )
b

a
f x dx  can be interpreted as area under the curve ( )y f x

bounded by the x-axis and the line x a and x b . In numerical integration to
approximate the definite integral, we estimate the area under the curve by evaluating the
integrand ( )f x  at a set of distinct points 0 1( , ,..., )nx x x , where [ , ]ix a b for 0 i n  . Of

course, we assume that the function to be integrated is continuous on [ , ]a b .

Integration Methods

The commonly used integration methods can be classified into two groups: the
Newton-Cotes formulae that employ functional values at equally spaced points, and the
Gaussian quadrature formulae that employ unequally spaced points.

Closed Newton-Cotes Quadrature Formula

The method of integration will be based on interpolation polynomial ( )nP x of

degree n appropriate for a given function. When this polynomial ( )nP x  is used to

approximate ( )f x over [ , ]a b , and then the integral of ( )f x  is approximated by the

integral of ( )nP x , the resulting formula is called a Newton-Cotes quadrature formula.

When the sample points 0x a and nx b are used, it is called a closed Newton-Cotes

formula. Thus the idea of Newton-Cotes formulas is to replace a complicated function or
tabulated data with an approximating function that is easy to integrate.

( ) ( )
b b

na a
I f x dx P x dx  

where 2
0 1 2( ) n

n nP x a a x a x a x    

The next result gives the formulae when approximating polynomials of degree n=1, 2 are
used.

Theorem

Assume that 0 ,kx x kh  are equally spaced nodes and ( )k kf f x . The first

two closed Newton-Cotes quadrature formulae:

(1) Trapezoidal Rule  1

0
0 1( ) ( ) ( )

2

x

x

h
f x dx f x f x 
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(2) Simpson’s Rule  2

0
0 1 2( ) ( ) 4 ( ) ( )

3

x

x

h
f x dx f x f x f x  

The Trapezoidal Rule

One of the simplest ways to estimate an integral ( )
b

a
I f x dx  is to employ linear

interpolation, i.e., to approximate the curve ( )y f x  by a straight line 1( )y P x also

called secant line passing through the points ( , ( ))a f a and ( , ( ))b f b and then to compute
the area under the line i.e. area is approximated by the trapezium formed by replacing the
curve with its secant line drawn between the end points ( , ( ))a f a  and ( , ( ))b f b .

Let 0 1 1 0, , anda x b x h x x    . To approximate

1 1

0 0
1( ) ( ) ( )

b x x

a x x
f x dx f x dx P x dx   

Now the area of trapezoid is the product of its altitude and the average length of its
parallel sides. The area of trapezoid with altitude 1 0x x  is

 

0 1
1 0

0 1

( ) ( )
( )

2

( ) ( )
2

f x f x
x x

h
f x f x

   
 

 

Thus  1

0
0 1( ) ( ) ( )

2

x

x

h
f x dx f x f x 

Note: the error term involved in trapezoidal rule is
3

0 1( ) , [ , ]
12

h
f x x   

Thus the trapezoidal rule with error term is

 1

0

3

0 1( ) ( ) ( ) ( )
2 12

x

x

h h
f x dx f x f x f   
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The Trapezoidal Rule (Composite Form)

In order to evaluate the definite integral ( )
b

a
I f x dx   we divide the interval

[ , ]a b into n sub-intervals, each of size
b a

h
n


   and denote the sub-intervals by

0 1 1 2[ , ],[ , ],x x x x 1...,[ , ]n nx x , such that 0 , ,nx a x b  0and ,kx x kh  1, 2,...,k n and

then use the trapezoidal rule on each subinterval

Thus, we can write the above definite integral as a sum. Therefore,
1 2

0 0 1 1

( ) ( ) ( ) ( )
n n

n

x x x x

x x x x
I f x dx f x dx f x dx f x dx



       

The area under the curve in each sub-interval is approximated by a trapezium. The
integral I , which represents an area between the curve ( )y f x , the x-axis and the

ordinates at 0 , nx x x x  is obtained by adding all the trapezoidal areas in each sub-

interval. Now, using the trapezoidal rule into equation:

yn-1y3y2y1y0 yn

     xn = bxn-1x3x2x1        x0 = a
 XO

Y

(x2, y2)(x1, y1)

(x0, y0)

y = f(x)
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1

0

3

0 1( ) ( ) ( )
2 2

x

x

h h
f x dx y y y   

We get

0

3 3

0 1 1 1 2 2

3

1

( ) ( ) ( ) ( ) ( )
2 2 2 12

( ) ( )
2 12

nx

x

n n n

h h h h
I f x dx y y y y y y

h h
y y y

 



       

   





Where 1k kx x   , for 1, 2,..., 1k n  .

Thus, we arrive at the result

0
0 1 2 1( ) ( 2 2 2 )

2
nx

n n nx

h
f x dx y y y y y E       

Where the error term En is given by
3

1 2[ ( ) ( ) ( )]
12n n

h
E y y y        

Equation represents the trapezoidal rule over 0[ , ]nx x , which is also called the composite

form of the trapezoidal rule. The error term given by Equation:
3

1 2

3

1
1

[ ( ) ( ) ( )]
12

( ) , ( , )
12

n n

n

k k k k
k

h
E y y y

h
y x x

  

  


      

  



is called the global error.
However, if we assume that ( )y x  is continuous over 0[ , ]nx x  then there exists some ξ in

0[ , ]nx x  such that 0and nx x nh  and the maximum error incurred in the approximate

value obtained by trapezoidal rule is
3

02
where max ( ) , [ , ]

12n n

h M
E M f x x

n
    

Example (The Trapezoidal Rule):

Evaluate the integral
1

20
,

1

dx
I

x


  by using Trapezoidal rule, take
1

4
h  .

Solution
                At first, we shall tabulate the function as

x 0 1/4 1/2 3/4 1

2

1

1
y

x



1 0.9412 0.8000 0.6400 0.5000

Using trapezoidal rule, and taking
1

4
h 
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 

 

 

 

 

1

20

0 1 2 3 4

,
1

2( )
2
1

1 2(0.9412 0.8000 0.6400) 0.5000
8
1

1 2(2.3812) 0.5000
8
1

1 2(2.3812) 0.5000
8
1

6.2624
8
0.7828

dx
I

x
h

y y y y y




    

    

  

  







But the closed form solution to the given integral is

1 11
2 00

tan
1

0.7854
4

dx
x

x


   

 



Simpson’s 1/3 Rule

The trapezoidal rule tries to simplify integration by approximating the function to
be integrated by a straight line or a series of straight line segments. In Simpson’s rule we
try to approximate by a series of parabolic segments, hoping that the parabola will more
closely match a given curve ( )y f x , than would the straight line in the trapezoidal rule.

To estimate ( )
b

a
I f x dx  , the curve ( )y f x , is approximated by a parabola 2( )y P x

passing through three points 0 0 1 1 2 2( , ( )), ( , ( )), ( , ( ))x f x x f x x f x and then the area under the

parabolic segment is computed. We assume that 1x  coincides with the origin so that

0 2x x  and parabola is 2
2 ( )P x ax bx c  
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2 2

0 0
2( ) ( ) ( )

b x x

a x x
f x dx f x dx P x dx   

0 1 0 2 0, 2a x x x h and x x h b     
2 2

0 2

2

2

2 2

2

2

2 2

2 2

2

2

2 2

2 2

2

3 2

3 2

3 3 2 2
2 2 2 2

2 2

3
2

2

22
2

( ) ( )

( )

3 2

3 2

3 3 2 2

2
2

3

(2 6 ) ...............(1)
3

x x

x x

x

x

x x
x

x
x x

x x
x

x
x x

P x dx P x dx

ax bx c dx

ax bx
cx

ax bx
cx

ax ax bx bx
cx cx

ax
cx

x
ax c






 


 



  

  

  

     

 

 

 



We also have
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1 0 2 2

2 2
0 2 2 2

1

2 2
2 2 2

2
0 2

0 ( )

( ) ( )

( ) (0)

( )

( ) ( ) 2 2

h x x x x

f x f x ax bx c ah bh c

f x f c

f x ax bx c ah bh c

f x f x ah c

     

       

 

     

  
and so

2
0 1 2( ) 4 ( ) ( ) 2 6f x f x f x ah c   

Substituting this in the area formula (1), we have

 

2

0

2
2

0 1 2

( ) (2 6 )
3

( ) 4 ( ) ( )
3

x

x

h
P x dx ah c

h
f x f x f x

 

  



Thus  2

0
0 1 2( ) ( ) 4 ( ) ( )

3

x

x

h
f x dx f x f x f x  

Note: the error term involved in Simpson’s 1/3 rule is
5

( )
0 1( ) , [ , ]

90
ivh

f x x   

Thus the Simpson’s 1/3 rule with error term is

 

2

0

2

0

5
( )

0 1 2

5
( )

0 1 2

( ) ( 4 ) ( )
3 90

( ) ( ) 4 ( ) ( ) ( )
3 90

or

x iv

x

x iv

x

h h
f x dx y y y y

h h
f x dx f x f x f x f





   

   





Simpson’s 1/3 Rule (Composite Form)

In deriving equation,

2

0

5
( )

0 1 2( ) ( 4 ) ( )
3 90

x iv

x

h h
f x dx y y y y    

Geometrically, this equation represents the area between the curve ( )y f x , the x-axis

and the ordinates at 0 2andx x x  after replacing the arc of the curve between 0 0( , )x y and

2 2( , )x y  by an arc of a quadratic polynomial as in the figure.
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In Simpson’s 1/3 rule, we have used two sub-intervals of equal width. In order to get a
composite formula, we shall divide the interval of integration  [a, b] into an even number
of sub intervals say 2N, each of width (b – a)/2N, thereby we have

0 1 2, , , Nx a x x b   and 0 , 1,2, ,(2 1)kx x kh k N   
Thus, the definite integral I can be written  as

2 4 2

0 2 2 2

( ) ( ) ( ) ( )
N

N

b x x x

a x x x
I f x dx f x dx f x dx f x dx



       

Applying Simpson’s 1/3 rule as in equation
2

0

5
( )

0 1 2( ) ( 4 ) ( )
3 90

x iv

x

h h
f x dx y y y y    

to each of the integrals on the right-hand side of the above equation, we obtain

0 1 2 2 3 4[( 4 ) ( 4 )
3

h
I y y y y y y      

5 ( )
2 2 2 1 2    ( 4 )] ( )

90
iv

N N N

N
y y y h y     

That is

 xn = bxn-1x3x2x1 x0 = a
 XO

Y

(x2, y2)

(x0, y0)

y2y1y0

y = f(x)
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2

0
0 1 3 2 1 2 4 2 2 2( ) [ 4( ) 2( ) ] Error term

3
Nx

N N Nx

h
f x dx y y y y y y y y             

This formula is called composite Simpson’s 1/3 rule. The error term E, which is also
called global error, is given by

5 ( ) 4 ( )2 0( ) ( )
90 180

iv ivNx xN
E h y h y 
   

for some ξ in 0 2[ , ]Nx x .

Example (Simpson’s 1/3 Rule):

Estimate the value of
5

1
ln xdx  using Simpson’s 1/3 rule. Also, obtain the

value of h, so that the value of the integral will be accurate up to five decimal places.

Solution Let for number of sub-intervals 2 02 8, and 5, 1NN x x  

2 0

2
5 1

0.5
8

Nx x
h

N





 

k
0kx x kh  ( ) lny f x x 

1
1 1 1*0.5 1.5x    1 1 1( ) ln ln1.5 0.4055y f x x   

2
2 1 2*0.5 2x    2 2 2( ) ln ln 2.0 0.6931y f x x   

3
3 1 3*0.5 2.5x    3( ) 0.9163f x 

4
4 3.0x  4 1.0986y 

5
5 3.5x  5( ) 1.2528f x 

6
6 4.0x  1.3863

7
7 4.5x  1.5041

8
8 5x  1.6094
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Now using Simpson’s 1/3 rule,
5

0 1 3 5 7 2 4 6 81
ln [ 4( ) 2( ) ]

3
0.5

[0 4(0.4055 0.9163 1.2528 1.5041)
3

2(0.6931 1.0986 1.3863) 1.6094]

0.5
[0 4(4.0786) 2(3.178) 1.6094]

3
0.5

(24.2798) 4.0466
3

h
xdx y y y y y y y y y        

    

   

   

 



The error in Simpson’s rule is given by
4 ( )2 0 ( )

180
ivNx x

E h y 
 

(ignoring the sign)

Since

( )
2 3 4

1 1 2 6
ln , , , , ivy x y y y y

x x x x
        

( )

1 5

( )

1 5

( ) 6,

( ) 0.0096

iv

x

iv

x

Max y x

Min y x

 

 





Therefore, the error bounds are given by

4 4(0.0096)(4) (6)(4)

180 180

h h
E 

If the result is to be accurate up to five decimal places, then
4

524
10

180

h 

That is, h4 < 0.000075 or h < 0.09. It may be noted that the actual value of integrals is
5 5

11
ln [ ln ] 5ln5 4 4.0472xdx x x x    

Example (Simpson’s 1/3 Rule):

Evaluate the integral
1

20
,

1

dx
I

x


  by using Simpson’s 1/3 rule, take
1

4
h  .

Solution

                At first, we shall tabulate the function as
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X 0 ¼ ½ ¾ 1

y = 1/ 1+x2 1 0.9412 0.8000 0.6400 0.5000

Using Simpson’s 1/3 rule, and taking 1

4
h  , we have

 

 

 

 

1

20

0 1 3 2 4

,
1

4( ) 2
3

1
1 4(0.9412 0.6400) 2(0.8000) 0.5000

12
1

1 4(1.5812) 1.6 0.5000
12
1

9.4248
12
0.7854

dx
I

x
h

y y y y y




    

    

   







Exercise

Evaluate the following integrals by using
 (i) Trapezoidal rule
 (ii) Simpson’s 1/3 rule

1.
4 2

0
, 1/ 2hx dx 

2.
3

1

1
, 1/ 5h

x
dx 

b

a

f (x)dx Area


