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Lecture No. 7

Geometric Meaning of Partial Derivative

Geometric meaning of partial derivative

z = f(x, y)

Partial derivative of f with respect of x is denoted by .
x
forfor

x
z

x 





Partial derivative of f with respect of y is denoted by .
y
forfor

y
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y 



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Partial Derivatives

Let z = f(x, y) be a function of two variables defined on a certain domain D.

For a given change ∆x in x, keeping y as constant, the change ∆z in z, is given by

),(),( yxfyxxfz 

If the ratio
x

yxfyxxf
x
z






 ),(),( approaches to a finite limit as ∆x →0, then this limit is

called Partial derivative of f with respect of x.

Similarly for a given change ∆y in y, keeping x as constant, the change ∆z in z, is given by

),(),( yxfyyxfz 

If the ratio
y

yxfyyxf
y
z






 ),(),( approaches to a finite limit as ∆y →0, then this limit is

called Partial derivative of f with respect of y.

Geometric Meaning of Partial Derivatives

Suppose z = f(x, y) is a function of two variables. The graph of f is a surface. Let P be a point on
the graph with the coordinates )),(,,( 0000 yxfyx . If a point starting from P, changes its position
on the surface such that y is constant, then the locus of this point is the curve of intersection of

z = f(x, y) and y = constant. On this curve,
x
z

 is a derivative of z = f(x, y) with respect to x with

y constant.



7-Geometric Meaning of Partial Derivative VU

© Copyright Virtual University of Pakistan

Thus,
x
z

 = slope of the tangent to this curve at P.

Similarly,
y
z

 is the gradient of the tangent at P to this curve of intersection of z = f(x, y) and

x = constant.

As shown in the figure below (left). Also together these tangent lines are shown in figure below
(right).
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Partial Derivatives of Higher Orders

The partial derivatives fx and fy of a function f of two variables x and y, being functions of x and
y, may possess derivatives. In such cases, the second order partial derivatives are defined as
below:
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Thus there are four second order partial derivatives for a function z = f(x, y). The partial
derivatives fxy and fyx are called Mixed Second partials and are not equal in general. Partial
derivatives of order more than two can be defined in a similar manner.
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Example 2
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Laplace’s Equation

For a function ),,( zyxfw , the equation
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is called Laplace’s equation.

Example 3: Show that the function xeyeyxf yx cossin),(  satisfies the Laplace’s equation.

Solution: xeyeyxf yx cossin),( 
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Adding both partial second order derivatives, we have
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Euler’s Theorem

The Mixed Derivative Theorem

If f(x, y) and its partial derivatives f
x
, f

y
, f

xy
and f

yx
are defined throughout an open region

containing a point (a, b) and are all continuous at (a, b), then

fxy(a , b) = fyx (a , b)

Advantage of  Euler’s theorem
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The symbol
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 2

tells us to differentiate first with respect to y and then with respect to x.

However, if we postpone the differentiation with respect to y and differentiate first with respect
to x, we get the answer more quickly.
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