Lecture No. 37
Higher order derivative and Leibniz theorem
Derivative of a function

The concept of Derivative is at the core of Calculus and modern mathematics. The
definition of the derivative can be approached in two different ways. One is geometrical
(as a slope of a curve) and the other one is physical (as a rate of change).

We know that if y=f(x) is a single valued function of a continuous variable, and if the

ratio %{ f(x+h)— f(x)} tends to a definite limit as the value of h tends to zero through

positive or negative directions, then we say that the function has a derivative at the point
‘x” . If the ratio has no limiting value then the function has no derivative at the point x.
Symbolically it is represented as

J'(x) =lim

fx+h)—f(x)
h

If the derivative of a function y = f{ x) is itself a continuous function y' = f( x), we can
take the derivative of f( x), which is generally referred to as the second derivative of f(x)
and written f“( x) . Similarly, the third derivative is obtained by differentiating second
derivative as given below.

f) = (")

This can continue as long as the resulting derivative is itself differentiable, with the
fourth derivative, the fifth derivative, and so on.

Any derivative beyond the first derivative can be referred to as a higher order
derivative.

Interpretation:

A first derivative tells how fast a function is changing i.e., how fast it’s going up or down
which is graphically the slope of the curve. A second derivative tells how fast the first
derivative is changing or, in other words, how fast the slope is changing. A third
derivative informs about how fast the second derivative is changing, i.e., how fast the rate

of change of the slope is changing.

Notation

Let f(x)be a function of x. The following are notations for higher order derivatives.
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2" derivative 3" derivative | 4™ derivative | nth derivative | remarks
Sf'(x) S () F9(x) £ (x) Probably the
most common
notation
'/ df d'f d"f Leibniz
i i x’ " notation.
d’ d? d* d" Another form of
— /)] —Slr@] | S@] | =@ Leibniz
notation.
D*f Df D*f D'f Euler's notation.

Because the “prime” notation for derivatives would eventually become somewhat messy,

it is preferable to use the numerical notation £ (x) = y"’(x)to denote the nth derivative

of f(x).

Example:

f(x)=15x" —=3x* +20x -5

Its first derivative is given as

f(x)=45x>—6x+20

Now, this is again a continuous function and therefore can be differentiated. Its
derivative which will be the second derivative of given function will become

/(%) =(f"(x))'=90x -6
As, this is a continuous function so we can differentiate it again. This will be called the
third derivative which is

Continuing, fourth derivative will be

1) =(f"(x))' =90

fH:'Ii_x:I: (f”{x)) —
(We have changed the notation at this point. We can keep adding on primes, but that
will get cumbersome as we calculate the derivatives higher than third. )

This process can continue but notice that we will get zero for all derivatives after this

point.

This above example leads us to the following fact about the differentiation of

polynomials.

Note:

1) If p(x) is a polynomial of degree n (i.e. the largest exponent in the polynomial)

then,

pih}[x) -0

for kza+1

2) We will need to be careful with the “non-prime” notation for derivatives.

Consider each of the following
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[P 0= 1"(x)
[P =[]

The presence of parenthesis in the exponent denotes differentiation while the absence of
parenthesis denotes exponentiation.

Example:
If

f(x)=3x"=2x" + x* —4x + 2, then

f'(x)=12x" —6x" +2x—4
f"(x)=36x" —12x+2

fM(x)=72x-12
fP(x)=172
fP(x)=0

fP0=0  (n=5)

In the above two examples, we have seen that all polynomial functions eventually go to
zero when you differentiate repeatedly. On the other hand, rational functions like

x? -8

x+5

f(x) =

get messier and messier as you take higher and higher derivatives.
Cyclical derivatives:

The higher derivatives of some functions may start repeating themselves. For example,
the derivatives of sine and cosine functions behave cyclically.

y =sinx
y'=cosx
y"=-—sinx
y"=-cosx
Y™ =sin x

The cycle repeats indefinitely with every multiple of four.
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Example:

Find the third derivative of f(x)=4sinx — % +5x with respect to x.
X+

Solution:

f(x):4sinx—L+5x
x+3

1
'(x) =4cosx+——+5
70 (x+3)

£"(x) = —4sinx - +0

(x+3)’

f"(x)=—4cosx+

(x+3)*
Some standard nth derivatives
1y

Let

y=(ax+b)" Then

y'=ma(ax +b)""

y"=m(m—1)a’(ax+b)"">

" = (m—=1)(m=2)....(m —n+1a"(ax +b)""

If mis positive integer and n < m, we can write

m! _
y" = ——a"(ax+b)""

(m—n)

if m=n, then y”’ = n!a”",a constant, so that """

Corollary 1:

1

Ifm=-1y=
Y ax+b

Therefore, y" = (~1)(=2)(-3).....(~n)a" (ax +b)""

(ax +b)"" S dx" | ax+b

_(=D'nla" _ " { 1 }
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Corollary 2:

Let y =In(ax +b) so that

a 1

= =a.
ax+b ax+b
Taking its (n - 1)th derivative, we have

'

n dn—l a

" = In(ax +b)| =

4 dx" [ ( )] dx"™! [ax+b:|
_ 4 - (n-1'a"" B D" (n-D'a"
C (ax+b)" " (ax+b)"

2)
y — eax
yV — aeax

"_ aZeax
P = M
3)

y =sin(ax +b)

y'=acos(ax+b)= asin(ax+b+%)

y"=a cos(ax+b+5) = a?sin(ax + b+ 2+ ) = a? sin(ax + b+ 2.5)
2 2 2 2

y"=a’ cos(ax+b+ 2.%)

y"=a’ sin(ax+b+2.%+%) =a’ sin(ax+b+3.%)

Y =a" sin(ax+b+ n.%)

Similarly
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n

[cos(ax+b)]=a" cos(ax+b+ n.%)

xn
Example:
If y=———— find y".
T Ly
Solution:
X X X X

YT 13x+1 20 4 2x+x+1 20+ D41(x+1)  2x+D(x+1)
Applying partial fraction

X A B
= s (1)
Cx+D(x+1) Q2x+1) (x+1)
X =A(x+1)+B(2x+1)

Rx+D(x+1) Cx+1D)(x+1)
x=A(x+1)+B(2x+1)
putx+1=0= x=-1
—1=B(-2+1)

—-1=-B

1=8B

put2x+1=0:>x=—%

EEPRTNRY
2 2 2
-1=4
put valuesof Aand Bin (1)
X _ -1 N |
Rx+D(x+1) 2x+1) (x+1)
X 1 1

Qx+D)(x+1)  (x+1) (Qx+1)
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., d" 1 B 1
Y ax" | x+1 2x+1

o d’ 1 _d" 1
dx" | x+1 dx" | 2x+1

_ D'l (=D)al2”
C(x+D)™ Q2x+ ™!

) L
=D n{(x )T 2xa) }

Leibniz theorem

In calculus, the general Leibniz rule, named after Gottfried Leibniz, generalizes the
product rule (which is also known as "Leibniz's rule".) It states that if u and v are n-times
differentiable functions, then the nth derivative of the product uv is given by

(u.v)n — ZKZJu(nk) v(k)

k=0
Where [Zj is the binomial coefficient.

Proof:

The proof of this theorem will be given through mathematical induction.

We know that

(uv)'=u'v+uv'

(uv)" = Dl[(uv)’]
=Du'v+uv'
=Dw'v)+ D(uv"
=u"v+u'v+u'v'+uv"
=u"v+2u'v'+tuv"

Which can be written as

=Cou"v+ Cu'v'+ *Cuv".
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Thus the theorem is true for n=1, 2. Suppose that the theorem is true for a particular value
of n, say n=r. then

Y =) ="Couv+"Cou" v+ Cu v+ Couv”
Differentiating both sides of the above equation, we have

P = @) ="Cy [ v +uv T+ TCLu v u Y+ TC [ "V +u ' v+ TC u v +uv]
="Cou" v +uVTCo+ Ol U G+ TG+ u VOC + C T Cay
n n _ n+l
But"C +"C ., =""C,_, forall n,so that

y(r+1) — r+1C0 u(r+1)v + r+1C1u(r)vy+ r+1C2u(,»71)v"+ L+ r+1Cru yv(r) + HICH]uV(Hl)

Thus the theorem is true for n=r+1 .By the principal of mathematical induction, the result
is true for all positive integer n. Hence the theorem is proved.

Example:

Find the »n"” derivative of
y = ¢e’'lnx By using Leibniz theorem

Solution:
Leibniz theorem states that

n

n
(u.v)' = Z u" ™ p®

o\ k
It will be expanded like
) ="Cyuv+"Ciu" "'+ "Cou" v "+ ... +'C,_ uv" " +"C uv™
_ n(n=1) - ' (ne
@y)" =u"v+nu"v'+ %u(” DV, +nuv" " +uv™ )
Here u=¢" and v=1Inx
0
e o 1_(Do
X X
1 (D'
n __ X " —
u"=e v'=—— >
X X
- (=D (n-2)!
unlzex vnlz( ) n(71 )
X
-1 (n=1)!
o PV Uy
X

Now inserting all values in (1)
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n(n ., 1

(¢".Inx)" =e' Inx+ne". e (=) +
x 2!

[hm REE
X 2x?

Example:
If y =acos(Inx)+ bsin(lnx), then prove that

22y L+ Dy + (2 + 1)y =0
Solution:
y =acos(In x)+bsin(In x)

y'=—asin(In x) 1 +bcos(In x) 1
X X

y'= 1 (—asin(In x) + b cos(In x))
X

xy'=—asin(In x)+ b cos(In x)

Differentiating it again, we get

xy"+ y'=—acos(Inx) L bsin(In x) 1
X X

xy"+y'= 1 (a cos(In x) + b sin(In x))

X2y xy'= —(a cos(In x) +bsin(Inx)) = —y

211

xy"+xy'+y=0
Differentiating 'n' times by using leibniz theorem

("Coy"?x* +"Cy" " 2x+"C,y™.2) + ("Coy" x + "Cy™) + ™

(n+2) 2

y + 2xny ®

(n+1) P S ( 1) (n+1) (n)

2y"+y

v+ 2n+Dxy™P + (n*-n+n+1)y™ =0

(n2) 2

y +2n+D)xy™™ +(n*+1)y™ =0

2y + 2n+Dxy™ + (n*+1)y™ =0

hence proved.

Example:

Find the nth order derivative of e sinx.

Solution:

We know that by using Leibniz theorem

(u v)n ™ (=D n(n—1) (n=2). w
' 2!

Here

s CD (=2

o D (=)

X

n—1

LD (=2t

xi’l

xX+ny ' +y

v+ nu V+————Uu Vit

X

=0

+nuv" ™ +uv

=0

(n)

(1" (n—l)!}

xn
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u=e v =sinx
' ax ' . T
u'=ae v :cosx:sln(x+5)
u"=a’e" V' = cos(x + 2 = sin(x + =+ 2) = sin(x + 2.2
( 2) ( 5 2) ( 2)
u"=ae” v"=cos(x+2.25) =sin(x + 2.7+ Z) =sin(x + 3.2
( 2) ( 5 2) ( 2)
y D = gD Ve = sinCet (n=1).2)
u™ =a"e™ v =sin(x + n.%)
(e“.sinx)"” =a"e™ sin x +na" e sin(x +—) + w "™ sin(x + 3. —)
+....+nae” sin(x + (n— 1).5) + e“ sin(x + n.E)
Exercise
1)
Find the third derivative of f(x)=4x’ +6x’ +2x +1 with respect to x.
2)
Find the nth order derivative of
. X
(i) =
3
(i) —
(x=1)(x-2)
3)
Prove that
n _ n '
sl a1 1
dx" | x x" 2 n-1 n
4)
If f(x)=In(1+/1-x), prove that
4x(1-x)f"(x)+2Q2-3x)f'(x)+1=0
5)
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Find the nth order derivative of e“ cosx.
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