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Lecture # 44 
 

Alternating Series; Conditional convergence 
 

• So far we have seen infinite series that have positive terms only. 
• We have also defined the Limit and the Sum of such infinite series 
• Now we look at series that have terms which have alternating signs, known as 

Alternating series 
 
Example 
 

1) 1-1+1-1+…                    
2) 1+2-3+4…. 

 
More generally, an alternating series has one of the two following forms 
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Note that all the terms  ka  are to be taken as being positive. 
The following theorem is the key result on convergence of alternating series. 
 
Theorem11.7.1 
(Alternating Series Test) 
An alternating series of either form (1) or (2) converges if the following two conditions are satisfied: 
 

(a)       a1>a2>a3……..>ak>…….. 
(b)       lim 0kk

a
→+∞

=  

This theorem tells us when an alternating series converges. 
 
Example 
 
Use the alternating series test to show that the following series converge 
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Solution:    

The two conditions in the alternating series test are satisfied since              1
1 1

1k ka a
k k += > =

+
  

and  
1lim lim 0kk k

a
k→+∞ →+∞

= =  

 
Note that this series is the Harmonic series, but alternates. It’s called the Alternating Harmonic 
Series. 
The harmonic series diverges. The alternating Harmonic series converges. 
Now we will look at the errors involved in approximating an alternating series with a partial sum. 
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Theorem 11.7.2 
If an alternating series satisfies the conditions of the alternating series test, and if the sum S of the 
series is approximated by the nth partial sum Sn  , thereby resulting in an error of S- Sn  ,then 
          | S- Sn | < an+1 
Moreover, the sign of error is the same as that of the coefficient of an+1in the series.  
                                       
 
 
 
Example  
The alternating series 
                          1 – 1/2  + 1/3 – 1/4 +…….+ (-1)k+1 1/k +…….  
satisfies the condition of the alternating series test ; hence the series has a sum S, which we know 
must lie between any two successive partial sums. In particular, it must lie between 
 
                    S7  = 1 – 1/2 + 1/3 – 1/4 + 1/5 – 1/6 + 1/7 = 319/420 
 
And 
 
                   S7  = 1 – 1/2 + 1/3 – 1/4 + 1/5 – 1/6 + 1/7 – 1/8 = 533/840 
 
So 
 
                   533/840 < S < 319/420 
 
If we take S = ln2 then 
            
                   533/840 < ln2 < 319/420 
                    0.6345 < ln2 < 0.7596 
 
The value of ln2, rounded to four decimal places, is .6931, which is consistent with these inequalities. 
It follows from Theorem 11.7.2 that  
 
                     | ln2 – S7 | = | ln2 – 319/420 | < a8 =1/8 
And 
               
                   | ln2 – S8 | = | ln2 – 533/840 | < a9 =1/9 
 
 
 
 
 
Absolute and Conditional Convergence 
  
The series  
                   1 – 1/2 - 1/22 +1/23 + 1/24 – 1/25 – 1/26 +………….    
 
does not fit in any of the categories studied so far, it has mixed signs ,  but is not alternating. We shall 
now develop some convergence tests that can be applied to such series.     
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Definition 11.7.3 

A series 1 2
1

........... .......k k
k

u u u u
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=

= + + + +∑  

 
is said to converge absolutely, if the series of absolutes values 

1 2
1

........... .......k k
k

u u u u
∞

=

= + + + +∑  converges. 

Example 
The series 
                 1 - 1/2 - 1/22 +1/23 + 1/24 - 1/25 - 1/26 +…………. 
Converges absolutely since the series of absolute values 
                 1 + 1/2 + 1/22 +1/23 + 1/24  + 1/25 + 1/26 +……… 
is a convergent geometric series.  
On the other hand, the alternating harmonic series 
                  1 - 1/2 + 1/3 - 1/4 + 1/5 - …………. 
does not converge absolutely since the series of absolute values 
                   1 + 1/2 + 1/3 + 1/4 + 1/5 + …………. 
diverges. 
Absolute convergence is of importance because of the following theorem. 
 
Theorem 11.7.4 

If the series 1 2
1
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k
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=

= + + + +∑  

 

Converges, then so does the series 1 2
1

........... .......k k
k

u u u u
∞

=

= + + + +∑  

 
In other words, if a series converges absolutely, then it converges.                        
 
Since the series 
                    1 - 1/2 - 1/22 +1/23 + 1/24 - 1/25 - 1/26 +…………. 
Converges absolutely. It follows from Theorem 11.7.4 that the given series converges. 
               
 
 
 
Example 
 

Show that the series        2
1

cos
k

k
k

∞

=
∑          converges. 

 
Solution: Since         cos 1k ≤          for all k, 
 

           2 2

cos 1k
k k

≤                      

 
thus 
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             2
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converges by the comparison test, and consequently 

             2
1

cos
k

k
k

∞

=
∑           converges. 

If       ku∑      diverges, no conclusion can be drawn about the convergence or 

 divergence of ku∑  
For example, consider the two series 
                    1 - 1/2  + 1/3 - 1/4 +…….+ (-1)k+1 1/k +…….              (A) 
                    - 1 - 1/2  - 1/3 - 1/4 -…….- 1/k -…….                           (B) 
Series (A), the alternating harmonic series, converges, whereas series (B), being a constant times the 
harmonic series, diverges. 
 
Yet in each case the series of absolute values is  
        1 + 1/2 + 1/3 +…… + 1/k + …….. 
which diverges. A series such as (A), which is convergent, but not absolutely convergent, is called 
conditionally convergent. 
 
Theorem 11.7.5 
(Ratio Test for Absolute Convergence) 

Let     ku∑      be a series with nonzero terms and suppose that  1lim k

k
k

u
u

ρ +

→∞
=                                   

(a) If    ρ  <1, the series  ku∑   converges absolutely and therefore converges. 
 
(b) If     ρ >1 or   ρ = +∞          , then the series  ku∑   diverges. 
 
(c) If    ρ  =1, no conclusion about convergence or absolute convergence can be drawn from this 
test.  
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Power Series in x 
 
If c0, c1, c2, ………. are constants and x is a variable, then a series of the form 

2
0 1 2 ........... .......k k
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k o
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∞

=

= + + + + +∑  is called a power series in x. 

 
Some examples of power series in x are 
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Theorem 11.8.1 
For any power series in x, exactly one of the following is true: 

(a) The series converges only for x=0 
(b)  The series converges absolutely (and hence converges) for all real values of x. 
(c)  The series converges absolutely (and hence converges) for all x in some finite open interval 

(-R, R), and diverges if x<-R or x>R. At either of the points x = R or x = -R, the series may 
converge absolutely, converge conditionally, or diverge, depending on the particular series. 

 
Radius and Interval of Convergence 
Theorem 11.8.1 states that the set of values for which a power series in x converges is always an 
interval centered at 0; we call this the interval of convergence, corresponding to this interval series 
has radius called radius of convergence. 

                                                                     
 
 
 
Example: 
Find the interval of convergence and radius of convergence of the following power series. 
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Solution: We shall apply the ratio test for absolute convergence. We have 
 

                                          
1

1lim lim lim
k

k
kk k k

k

u x x x
u x

ρ
+

+

→∞ →∞ →∞
= = = =  

 
So the ratio test for absolute convergence implies that the series converges absolutely if    1xρ = <   

and diverges if  1xρ = >   .The test is inconclusive if |x| =1 ( i.e. x = 1 or x = -1 ), so 
convergence at these points must be investigated separately . At these points the series becomes 
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Both of which diverge; thus, the interval of convergence for the given power series is  
(-1,1), and the radius of convergence is R = 1. 

 
Power series in x-a 
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This series is called power series in x-a. Some examples are 
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Theorem 11.8.1 
For any power series in    ( )k

kc x a−∑    , exactly one of the following is true: 
(a) The series converges only for x=a 
(b)  The series converges absolutely (and hence converges) for all real values of x. 
(c)  The series converges absolutely (and hence converges) for all x in some finite open interval 

(a-R,a+R), and diverges if x<a-R or x>a+R. At either of the points x =a-R or x =a+R, the 
series may converge absolutely, converge conditionally, or diverge, depending on the 
particular series. 

 
     It follows from this theorem that now interval of convergence is centered at x=a. 
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