

Solution

Extreme Points of $5-3\sin(x)$: Minimum $\left(\frac{\pi}{2}+2\pi n,2\right)$, Maximum $\left(\frac{3\pi}{2}+2\pi n,8\right)$ Steps First Derivative Test definition Suppose that x = c is a critical point of f(x) then, If f'(x) > 0 to the left of x = c and f'(x) < 0 to the right of x = c then x = c is a local maximum. If f'(x) < 0 to the left of x = c and f'(x) > 0 to the right of x = c then x = c is a local minimum. If f'(x) is the same sign on both sides of x = c then x = c is neither a local maximum nor a local minimum. Hide Steps 🖨 Find the critical points: $x = \frac{\pi}{2} + 2\pi n, x = \frac{3\pi}{2} + 2\pi n$ Critical point definition Critical points are points where the function is defined and its derivative is zero or undefined Find where f'(x) is equal to zero or undefined Hide Steps $f'(x) = -3\cos(x)$ $\frac{d}{dx}(5-3\sin(x))$ Apply the Sum/Difference Rule: $(f \pm g)' = f' \pm g'$ $=\frac{d}{dx}(5)-\frac{d}{dx}(3\sin(x))$ $\frac{d}{dx}(5) = 0$ Hide Steps $\frac{d}{dx}(5)$ Derivative of a constant: $\frac{d}{dx}(a) = 0$ Hide Steps 🖨 $\frac{d}{dx}(3\sin(x)) = 3\cos(x)$ $\frac{d}{dx}(3\sin(x))$ Take the constant out: $(a \cdot f)' = a \cdot f'$ $=3\frac{d}{dx}(\sin(x))$ Apply the common derivative: $\frac{d}{dx}(\sin(x)) = \cos(x)$ $=3\cos(x)$ $=0-3\cos(x)$ Simplify $= -3\cos(x)$ Hide Steps Solve $-3\cos(x) = 0$: $x = \frac{\pi}{2} + 2\pi n, x = \frac{3\pi}{2} + 2\pi n$ $-3\cos(x) = 0$ Divide both sides by $\,-\,3\,$ $\frac{-3\cos(x)}{-3} = \frac{0}{-3}$

Simplify $\cos(x) = 0$ General solutions for cos(x) = 0 $x = \frac{\pi}{2} + 2\pi n, x = \frac{3\pi}{2} + 2\pi n$ $x = \frac{\pi}{2} + 2\pi n, x = \frac{3\pi}{2} + 2\pi n$ $x = \frac{\pi}{2} + 2\pi n, x = \frac{3\pi}{2} + 2\pi n$ Identify critical points not in f(x) domain Hide Steps Domain of $5 - 3\sin(x)$: $-\infty < x < \infty$ Domain definition The domain of a function is the set of input or argument values for which the function is real and defined The function has no undefined points nor domain constraints. Therefore, the domain is $-\infty < x < \infty$ All critical points are in domain $x = \frac{\pi}{2} + 2\pi n, x = \frac{3\pi}{2} + 2\pi n$ Hide Steps Domain of $5 - 3\sin(x)$: $-\infty < x < \infty$ Domain definition The domain of a function is the set of input or argument values for which the function is real and defined The function has no undefined points nor domain constraints. Therefore, the domain is $-\infty < x < \infty$ Hide Steps Periodicity of $5 - 3\sin(x)$: 2π $\sin(x)$ base periodicity is 2π $=2\pi$ Combine the critical point (s): $x = \frac{\pi}{2} + 2\pi n$, $x = \frac{3\pi}{2} + 2\pi n$ with the period: $2\pi n \le x < 2\pi + 2\pi n$ The function monotone intervals are: $2\pi n \leq x < \frac{\pi}{2} + 2\pi n, \frac{\pi}{2} + 2\pi n < x < \frac{3\pi}{2} + 2\pi n, \frac{3\pi}{2} + 2\pi n < x < 2\pi + 2\pi n$ Check the sign of $f'(x) = -3\cos(x)$ at each monotone interval Hide Steps Check the sign of $-3\cos(x)$ at $2\pi n \le x < \frac{\pi}{2} + 2\pi n$: Negative Evaluate the derivative at a point on the interval. Take the point $x = 1 + 2\pi n$ and plug it into $-3\cos(x)$ $-3\cos(1+2\pi n)$ Since f(x) is periodic, then f'(x) is also periodic: $-3\cos(x+2\pi n)=-3\cos(x)$ $-3\cos(1)$ Refine to a decimal form -1.62091...Negative Hide Steps Check the sign of $-3\cos(x)$ at $\frac{\pi}{2} + 2\pi n < x < \frac{3\pi}{2} + 2\pi n$: Positive Evaluate the derivative at a point on the interval. Take the point $x = 3 + 2\pi n$ and plug it into $-3\cos(x)$

 $-3\cos(3+2\pi n)$

Since f(x) is periodic, then f'(x) is also periodic: $-3\cos(x+2\pi n)=-3\cos(x)$

 $-3\cos(3)$

Refine to a decimal form

2.96998...

Positive

Check the sign of $-3\cos(x)$ at $\frac{3\pi}{2} + 2\pi n < x < 2\pi + 2\pi n$: Negative

Hide Steps 🖨

Evaluate the derivative at a point on the interval. Take the point $x = 5 + 2\pi n$ and plug it into $-3\cos(x)$

 $-3\cos(5+2\pi n)$

Since f(x) is periodic, then f'(x) is also periodic: $-3\cos(x+2\pi n)=-3\cos(x)$

 $-3\cos(5)$

Refine to a decimal form

-0.85099...

Negative

Summary of the monotone intervals behavior

	$2\pi n \le x < \frac{\pi}{2} + 2\pi n$	$x = \frac{\pi}{2} + 2\pi n$	$\frac{\pi}{2} + 2\pi n < x < \frac{3\pi}{2} + 2\pi n$	$x = \frac{3\pi}{2} + 2\pi n$	$\frac{3\pi}{2} + 2\pi n < x < 2\pi + 2\pi n$
Sign	_	0	+	0	_
Behavior	Decreasing	Minimum	Increasing	Maximum	Decreasing

Plug the extreme point $x=\frac{\pi}{2}+2\pi n$ into $5-3\sin(x)$ \Rightarrow y=2

Minimum $\left(\frac{\pi}{2} + 2\pi n, 2\right)$

Plug the extreme point $x=\frac{3\pi}{2}+2\pi n$ into $5-3\sin(x) \quad \Rightarrow \quad y=8$

 $\mathsf{Maximum}\Big(\frac{3\pi}{2} + 2\pi n, 8\Big)$

 $\mathsf{Minimum}\Big(\frac{\pi}{2} + 2\pi n, 2\Big), \mathsf{Maximum}\Big(\frac{3\pi}{2} + 2\pi n, 8\Big)$

Graph

